
CSE 538 – Fall 2015 Midterm
4 Problems – 80 points total

Your Name:



Figure 1: Open network model.

Problem 1 [15 points] Consider the open network of Fig. 1 with two servers of rates µ1 = 2 and µ2 = 3. Jobs
arrive according to a Poisson process of rate λ, with jobs assigned to server 1 with probability p and to server 2
with probability (1− p).

1. [5 points] Assuming a stable system and a corresponding λ value, give the system’s maximum throughput
and the value(s) of p for which it is realized.

In a stable open system, the throughput is constant and equal to the arrival rate λ. This is independent of
the value chosen for p, as long as stability is ensured.

2. [5 points] What is the value of p that maximizes the system’s stability region, i.e., will allow the highest
possible value of λ while ensuring stability? Justify your answer.

Stability is ensured as long as we have

λp < µ1 = 2 and λ(1− p) < µ2 = 3

This implies

λ < min

{
2

p
,

3

1− p

}
From the above expression, we see that λ is maximized when 2

p = 3
1−p . In other words, p = 2

5 .

3. [5 points] Assume that λ = 2 and compute, as a function of p, the probability P{3, 0} that there are three
(3) jobs in the top system and that the bottom system is empty (0 jobs). Explain what happens when p = 1.

Each system behaves as an independent M/M/1 queue with loads ρ1 = 2p
2 = p and ρ2 = 2(1−p)

3 . Hence,
we know that the probabilities of i ≥ 0 jobs in each systems are of the form

π
(1)
i = ρi1(1− ρ1) = pi(1− p) and π

(2)
i = ρi2(1− ρ2) =

(
2(1− p)

3

)i 1 + 2p

3

The probability P{3, 0} that there are three jobs in the top system (system 1) and that the bottom system
(system 2) is empty is, therefore equal to π(1)3 × π

(2)
0 , i.e.,

P{3, 0} = (1− p)p3 (1 + 2p)

3

When p = 1, no jobs are sent to the second system so that π(2)0 = 1, but at the same time the first system
becomes unstable. The latter implies that the first queue never stabilizes and therefore π(1)i = 0,∀ i, which
implies that P{3, 0} = 0. .
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Problem 2 [35 points] Consider the interactive system of Fig. 2 that consists of a CPU and two disks, a fast
one and a slow one. Jobs visit the CPU once, but can visit the disks multiple times (multiple R/W operations).
Note that p may be a design parameter, i.e., we may be able to influence what fraction of R/W operations go to
the fast disk, but β is outside our control, i.e., is a function of the data footprint of the instructions being executed.

Figure 2: Closed system model.

We make the following measurements to assess the system’s performance:

• Measurement duration: 20 minutes
• Average think time: 10 seconds
• Number of completed transactions in measurement interval: 1,500
• Number of CPU visits: 1,500
• Number of fast disk accesses: 30,000
• Number of slow disk accesses: 10,000
• CPU busy time: 1,000 seconds
• Fast disk busy time: 500 seconds
• Slow disk busy time: 600 seconds

1. [10 points] What is the average total service time of an individual transaction?

We first compute the average service times of an individual visit to the CPU, fast disk and slow disk.
Specifically, we have

SCPU =
1000

1500
=

2

3
seconds

Sfast d =
500

30000
=

1

60
seconds

Sslow d =
600

10000
= 0.06 seconds

Similarly, we can obtain from the measurements the average number of visits to the CPU, fast disk, and
slow disk per completed transactions.

VCPU =
1500

1500
= 1 visit

Vfast d =
30000

1500
= 20 visits

Vslow d =
10000

1500
=

20

3
visits
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Using the fact that D = V · S, we get

DCPU =
2

3
second

Dfast d =
20

60
=

1

3
second

Dslow d =
20

3
× 0.06 = 0.4 second

so that the average total service time of a transaction is equal to

D = DCPU +Dfast d +Dslow d =
2

3
+

1

3
+ 0.4 = 1.4 seconds

2. [5 points] Give asymptotic bounds for the system’s throughput X and response time E[R], as a function
of N , the number of terminals using the interactive system.

From the above expression for D, we get

Dmax =
2

3
second

Since we also know that the average think time Z = 10 seconds, we have

X ≤ min

(
N

11.4
, 1.5

)
E[R] ≥ max(1.4, N · 2

3
− 10)

3. [20 points] We are considering making the following changes to the system.

(a) Turn the slow disk off;
(b) Add a second fast disk and load-balance across all three disks;
(c) Replace the CPU by one that is 50% faster;
(d) All of the above, i.e., faster CPU, slow disk off and load-balancing across two fast disks.

Provide expressions, function of N , for the system’s throughput X and response time E[R] in each of the
four configurations [5 points each].

(a) Turning the slow disk off means that the fast disk now gets to handle on average Vslow d additional
visits for each transaction. In other words,

Vfast d,(a) = Vfast d + Vslow d = 20 +
20

3
=

80

3

Hence, the new average service time per transaction for the fast disk is

Dfast d,(a) =
80

3
· 1
60

=
4

9
second
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This does not change Dmax since the CPU remains the bottleneck, but it affects D. Specifically, we
have

D(a) =
2

3
+

4

9
=

10

9
= 1.111 seconds

This then yields

X(a) ≤ min

(
N

11.11
, 1.5

)
E[R(a)] ≥ max(1.11, N · 2

3
− 10)

(b) We now add a fast disk and rebalance the load across all three disks. This means that we want
D

(1)

fast d,(b) = D
(2)

fast d,(b) = Dslow d,(b), while keeping the total average number of disk visits

per transaction constant and equal to 80
3 . Using the fact that by symmetry we have V (1)

fast d,(b) =

V
(2)

fast d,(b), this gives the following set of equations

Vfast d,(b)
60

= Vslow d,(b) · 0.06

2Vfast d,(b) + Vslow d,(b) =
80

3

After some manipulations, this yields Vslow d,(b) ≈ 3.25 and Vfast d,(b) ≈ 11.707, and therefore

D
(1)

fast d,(b) = D
(2)

fast d,(b) = Dslow d,(b) = 0.195 second

and therefore D(b) = 2
3 + 3 × 0.195 = 1.252 seconds. Note that adding a second fast disk without

turning off the slow disk performs worst than a single fast disk. This because the visits directed to
the slow disk lower the efficiency of the disk sub-system. In this scenario as in the previous one, the
CPU remains the bottleneck, so that Dmax is unchanged and we have

X(b) ≤ min

(
N

11.252
, 1.5

)
E[R(b)] ≥ max(1.252, N · 2

3
− 10)

(c) Replacing the CPU by one that is 50% faster means that we now haveDCPU,(c) =
2
3/

3
2 = 4

9 second.
The CPU, however, remains the bottleneck so that we have

Dmax,(c) =
4

9
= 0.444 second

D(c) =
4

9
+

1

3
+ 0.4 = 1.178 seconds

As a result, we get

X(c) ≤ min

(
N

11.178
, 2.25

)
E[R(c)] ≥ max(1.178, N · 4

9
− 10)
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(d) If we now consider the scenario where we have a faster CPU and two fast disks across which we
load-balance, the total average service times of the two fast disks must satisfy

Dfast d,(d) =
1

60
· 80
3
· 1
2
=

2

9
= 0.222 second

Since, as per the previous question, DCPU,(d) = 4
9 = 0.444 second, we still have Dmax,(d) =

DCPU,(d) = 0.444 second, while the total average service time per transaction is now equal to

D(d) =
4

9
+

2

9
+

2

9
=

8

9
= 0.888 second

This gives

X(d) ≤ min

(
N

10.888
, 2.25

)
E[R(d)] ≥ max(0.888, N · 4

9
− 10)
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Problem 3 [20 points] Consider the two priority system of Fig. 3. High priority jobs arrive according to a
Poisson process of rate λH , while low priority jobs arrive according to an independent Poisson process of rate
λL. High and low priority jobs are assigned to separate queues, both of infinite capacity, but share a common
server of unit service rate. Both high and low priority jobs have exponentially distributed service times with the
same mean 1/µ. The system is assumed to be stable, i.e., λH+λL

µ < 1.
The system operates according to a preemptive priority policy. In other words, the server only serves jobs

from the low priority queue if the high priority queue is empty. In particular, if a high priority job arrives (to an
empty high priority queue) and finds the server busy serving a low priority job, the service of the low priority
job is immediately interrupted and the server begins serving the high priority job. The low priority job resumes
service only once the high priority queue is empty.
Note 1: The memoryless property of the exponential distribution ensures that a low priority job that resumes
service is indistinguishable from one that just starts service.
Note 2: None of the questions below require solving for the probability distribution of the Markov chain repre-
senting the overall system.

Figure 3: Priority system.

1. [5 points] Find an expression, function of the system parameters, for the probability P (L)

server busy that the
server is busy serving a low priority job.

We simply apply Little’s Law to the server using the fact that the probability that the server is busy serving
a low priority job is equal to the average number of low priority jobs in the server. In other words, we
directly have

P
(L)

server busy = E
[
N

(L)
server

]
=
λL
µ

= ρL

2. [5 points] Find an expression, function of the system parameters, for the probability π0 that the system is
empty (both queues are empty and the server is idle).

Applying again Little’s Law to the server, we find that the probability that the server is busy (the average
number of customers in the system) is given by

P{server busy} = E[Nserver] = (λL + λH) ·
[

λL
λL + λH

· 1
µ
+

λH
λL + λH

· 1
µ

]
=

λL
µ

+
λH
µ

= ρH + ρL = ρ

Alternatively, we could have used the reasoning of the previous question and applied it to high priority jobs
to find that the server was busy serving high priority jobs with probability λH

µ . The probability that the
server is busy is then simply the sum of the probabilities that it is busy serving a high or low priority job.
Hence, the probability π0 that the system is empty is given by

π0 = 1− P{server busy} = 1−
[
λL
µ

+
λH
µ

]
= 1− ρ
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3. [5 points] Find an expression, function of the system parameters, for the average number of high priority
jobs in the system, E[NH ].

Because the system operates according to a preemptive resume priority policy, the low priority jobs are
essentially transparent to the high priority jobs. Hence, the high priority queue behaves like a regular
M/M/1 system with arrival rate λH and service rate µ. This implies that

E[NH ] =
ρH

1− ρH
, where ρH =

λH
µ

4. [5 points] Now, find an expression, function of the system parameters, for the average number of low
priority jobs in the system, E[NL]. (Hint: Unlike the result of the previous question that can be derived
directly, this requires an intermediate step.)

We know that E[N ] = E[NH ] + E[NL] with Little’s Law applied to the entire system giving us E[N ] =
ρ

1−ρ , where ρ = ρH + ρL. Combining this with the result of the previous question gives

E[NL] = E[N ]− E[NH ] =
ρH + ρL

1− ρH − ρL
− ρH

1− ρH
=

ρL
(1− ρH − ρL)(1− ρH)
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Problem 4 [10 points] Consider the discrete time Markov chain (DTMC) of Fig. 4.

Figure 4: Discrete time Markov chain.

1. [2 points] Does the chain admit a limiting distribution? Justify your answer.

The chain is finite, irreducible and aperiodic (because it has self-loops), and therefore it admits a limiting
distribution.

2. [8 points] Compute the stationary probabilities π0, π1, . . . , π7 for the chain.

The chain’s balance equations give

π2 = π1 + 0.5π4 π4 = π7 + 0.5π2

π3 = 0.5π2 π5 = 0.5π4

0.5π0 = π3 0.5π6 = π5

π1 = 0.5π0 π7 = 0.5π6

which can be readily seen to imply

π2 = π2 π4 = π2

π3 = 0.5π2 π5 = 0.5π2

π0 = π2 π6 = π2

π1 = 0.5π2 π7 = 0.5π2

which together with the normalization equation
∑7

i=0 πi = 1 gives

π2 =
1

6
π4 =

1

6

π3 =
1

12
π5 =

1

12

π0 =
1

6
π6 =

1

6

π1 =
1

12
π7 =

1

12
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