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Preface

The aim of this textbook is to provide students with basic knowledge of stochastic models that
may apply to telecommunications research areas, such as traffic modelling, resource provisioning
and traffic management. These study areas are often collectively called teletraffic. This book
assumes prior knowledge of a programming language, mathematics, probability and stochastic
processes normally taught in an electrical engineering course. For students who have some but
not sufficiently strong background in probability and stochastic processes, we provide, in the
first few chapters, a revision of the relevant concepts in these areas.

The book aims to enhance intuitive and physical understanding of the theoretical concepts it
introduces. The famous mathematician Pierre-Simon Laplace is quoted to say that “Probability
is common sense reduced to calculation” [13]; as the content of this book falls under the field
of applied probability, Laplace’s quote very much applies. Accordingly, the book aims to link
intuition and common sense to the mathematical models and techniques it uses.

A unique feature of this book is the considerable attention given to guided projects involving
computer simulations and analyzes. By successfully completing the programming assignments,
students learn to simulate and analyze stochastic models, such as queueing systems and net-
works, and by interpreting the results, they gain insight into the queueing performance effects
and principles of telecommunications systems modelling. Although the book, at times, pro-
vides intuitive explanations, it still presents the important concepts and ideas required for the
understanding of teletraffic, queueing theory fundamentals and related queueing behavior of
telecommunications networks and systems. These concepts and ideas form a strong base for
the more mathematically inclined students who can follow up with the extensive literature
on probability models and queueing theory. A small sample of it is listed at the end of this
book.

As mentioned above, the first two chapters provide a revision of probability and stochastic
processes topics relevant to the queueing and teletraffic models of this book. The content
of these chapters is mainly based on [13, 24, 70, 75, 76, 77]. These chapters are intended for
students who have some background in these topics. Students with no background in probability
and stochastic processes are encouraged to study the original textbooks that include far more
explanations, illustrations, discussions, examples and homework assignments. For students with
background, we provide here a summary of the key topics with relevant homework assignments
that are especially tailored for understanding the queueing and teletraffic models discussed in
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later chapters. Chapter 3 discusses general queueing notation and concepts and it should be
studied well. Chapter 4 aims to assist the student to perform simulations of queueing systems.
Simulations are useful and important in the many cases where exact analytical results are not
available. An important learning objective of this book is to train students to perform queueing
simulations. Chapter 5 provides analyses of deterministic queues. Many queueing theory books
tend to exclude deterministic queues; however, the study of such queues is useful for beginners
in that it helps them better understand non-deterministic queueing models. Chapters 6 – 14
provide analyses of a wide range of queueing and teletraffic models most of which fall under
the category of continuous-time Markov-chain processes. Chapter 15 provides an example of
a discrete-time queue that is modelled as a discrete-time Markov-chain. In Chapters 16 and
17, various aspects of a single server queue with Poisson arrivals and general service times
are studied, mainly focussing on mean value results as in [12]. Then, in Chapter 18, some
selected results of a single server queue with a general arrival process and general service times
are provided. Next, in Chapter 19, we extend our discussion to queueing networks. Finally,
in Chapter 20, stochastic processes that have been used as traffic models are discussed with
special focus on their characteristics that affect queueing performance.

Throughout the book there is an emphasis on linking the theory with telecommunications
applications as demonstrated by the following examples. Section 1.19 describes how properties
of Gaussian distribution can be applied to link dimensioning. Section 6.6 shows, in the context of
an M/M/1 queueing model, how optimally to set a link service rate such that delay requirements
are met and how the level of multiplexing affects the spare capacity required to meet such delay
requirement. An application of M/M/∞ queueing model to a multiple access performance
problem [12] is discussed in Section 7.6. In Sections 8.6 and 9.5, discussions on dimensioning
and related utilization issues of a multi-channel system are presented. Especially important is
the emphasis on the insensitivity property of models such as M/M/∞, M/M/k/k, processor
sharing and multi-service that lead to practical and robust approximations as described in
Sections 7, 8, 13, and 14. Section 19.3 guides the reader to simulate a mobile cellular network.
Section 20.6 describes a traffic model applicable to the Internet.

Last but not least, the author wishes to thank all the students and colleagues that provided
comments and questions that helped developing and editing the manuscript over the years.
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1 Revision of Relevant Probability Topics

Probability theory provides the foundation for queueing theory and stochastic teletraffic models,
therefore it is important that the student masters the probability concepts required for the
material that follows. We aim to provide in this chapter sufficient coverage for readers that
have some probability background. Although the cover here is comprehensive in the sense that
it discusses all the probability concepts and techniques used in later chapters, it does not include
the many examples and exercises that are normally included in a probability textbook to help
readers grasp the material better. Therefore, readers without prior probability background may
be aided by additional probability texts, such as [13] and [76].

1.1 Events, Sample Space, and Random Variables

Consider an experiment with an uncertain outcome. The term “experiment” refers to any
uncertain scenario, such as tomorrow’s weather, tomorrow’s share price of a certain company,
or the result of flipping a coin. The sample space is a set of all possible outcomes of an
experiment. An event is a subset of the sample space. Consider, for example, an experiment
which consists of tossing a die. The sample space is {1, 2, 3, 4, 5, 6}, and an event could be
the set {2, 3}, or {6}, or the empty set {} or even the entire sample space {1, 2, 3, 4, 5, 6}.
Events are called mutually exclusive if their intersection is the empty set. A set of events is
said to be exhaustive if its union is equal to the sample space.

A random variable is a real valued function defined on the sample space. This definition appears
somewhat contradictory to the wording “random variable” as a random variable is not at all
random, because it is actually a deterministic function which assigns a real valued number to
each possible outcome of an experiment. It is the outcome of the experiment that is random
and therefore the name: random variable. If we consider the flipping a coin experiment, the
possible outcomes are Head (H) and Tail (T), hence the sample space is {H, T}, and a random
variable X could assign X = 1 for the outcome H, and X = 0 for the outcome T.

If X is a random variable than Y = g(X) for some function g(·) is also a random variable. In
particular, some functions of interest are Y = cX for some constant c and Y = Xn for some
integer n.

If X1, X2, X3, . . . , Xn is a sequence of random variables, then Y =
∑n

i=1 Xi is also a random
variable.

Homework 1.1

Consider the experiment to be tossing a coin. What is the Sample Space? What are the events
associated with this Sample Space?

Guide

Notice that although the sample space includes only the outcome of the experiments which are
Head (H) and Tail (T), the events associated with this samples space includes also the empty
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set which in this case is the event {H ∩ T} and the entire sample space which in this case is
the event {H ∪ T}. ¤

1.2 Probability, Conditional Probability and Independence

Consider a sample space S. Let A be a set in S, the probability of A is the function on S,
denoted P(A), that satisfies the following three axioms:

1. 0 ≤ P (A) ≤ 1

2. P (S) = 1

3. The probability of the union of mutually exclusive events is equal to the sum of the
probabilities of these events.

Normally, higher probability signifies higher likelihood of occurrence. In particular, if we con-
duct a very large number of experiments, and we generate the histogram by measuring how
many times each of the possible occurrences actually occurred. Then we normalize the his-
togram by dividing all its values by the total number of experiments to obtain the relative
frequencies. These measurable relative frequencies are represented by the theoretical concept
of probability.

We use the notation P (A | B) for the conditional probability of A given B, which is the
probability of the event A given that we know that event B has occurred. If we know that B
has occurred, it is our new sample space, and for A to occur, the relevant experiments outcomes
must be in A ∩ B, hence the new probability of A, namely the probability P (A | B), is the
ratio between the probability of A ∩B and the probability of B. Accordingly,

P (A | B) =
P (A ∩B)

P (B)
. (1)

Since the event {A ∩B} is equal to the event {B ∩ A}, we have that

P (A ∩B) = P (B ∩ A) = P (B | A)P (A),

so by (1) we obtain

P (A | B) =
P (B | A)P (A)

P (B)
. (2)

Eq. (2) is useful to obtain conditional probability of one event (A) given another (B) when
P (B | A) is known or easier to obtain then P (A | B).

Remark: The intersection of A and B is also denoted by A,B or AB in addition to A∩B.

If events A and B are independent, which means that if one of them occurs, the probability of
the other to occur is not affected, then

P (A | B) = P (A) (3)

and hence, by Eq. (1), if A and B are independent then,

P (A ∩B) = P (A)P (B). (4)
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Let B1, B2, B3, . . . , Bn be a sequence of mutually exclusive and exhaustive events in S, and
let A be another event in S. Then,

A =
n⋃

i=1

(A ∩Bi) (5)

and since the Bis are mutually exclusive, the events A ∩ Bis are also mutually exclusive.
Hence,

P (A) =
n∑

i=1

P (A ∩Bi). (6)

Thus, by Eq. (1),

P (A) =
n∑

i=1

P (A | Bi)× P (Bi). (7)

The latter is a very useful formula for deriving probability of a given event by conditioning
and unconditioning on a set of mutually exclusive and exhaustive events. It is called the law
of total probability. Therefore, by Eqs. (7) and (1) (again), we obtain the following formula for
conditional probability between two events:

P (B1 | A) =
P (A | B1)P (B1)∑n

i=1 P (A | Bi)× P (Bi)
. (8)

The latter is known as Bayes’ formula.

1.3 Probability and Distribution Functions

Random variables are related to events. When we say that random variable X takes value x,
this means that x represents a certain outcome of an experiment which is an event, so {X = x}
is an event. Therefore, we may assign probabilities to all possible values of the random variable.
This function denoted PX(x) = P (X = x) will henceforth be called probability function. Other
names used in the literature for a probability function include probability distribution function,
probability distribution, or simply distribution. Because probability theory is used in many
applications, in many cases, there are many alternative terms to describe the same thing. It is
important that the student is familiar with these alternative terms, so we will use these terms
alternately in this book.

The cumulative distribution function) of random variable X is defined for all x ∈ R (R being
the set of all real numbers), is defined as

FX(x) = P (X ≤ x). (9)

Accordingly, the complementary distribution function F̄X(x) is defined by

F̄X(x) = P (X > x). (10)

Consequently, for any random variable, for every x ∈ R, F (x) + F̄ (x) = 1. As the comple-
mentary and the cumulative distribution functions as well as the probability function can be
obtained from each other, we will use the terms distribution function when we refer to any of
these functions without being specific.
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1.4 Joint Distribution Functions

In some cases, we are interested in the probability that two or more random variables are
within a certain range. For this purpose, we define, the joint distribution function for n random
variables X1, X2, . . . , Xn, as follows:

FX1, X2, ...,Xn(x1, x2, ..., xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn). (11)

Having the joint distribution function, we can obtain the distribution function of a single
random variable, say, X1, as

FX1(x1) = FX1, X2, ..., Xn(x1, ∞, . . . , ∞). (12)

When the random variables X1, X2, ..., Xn are discrete, we can use their joint probability
function which is defined by

PX1, X2, ..., Xn(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn). (13)

The probability function of a single random variable can then be obtained by

PX1(x1) =
∑
x2

· · ·
∑
xn

PX1, X2, ..., Xn(x1, x2, . . . , xn). (14)

A random variable is called discrete if it takes at most a countable number of possible values.
On the other hand, a continuous random variable takes an uncountable number of possible
values. In this section and in sections 1.5, 1.6, 1.7, when we mention random variables or their
distribution functions, we consider them all to be discrete. Then in Section 1.9, we will introduce
the analogous definitions and notation relevant to their continuous counterparts.

We have already mention the terms probability function, distribution, probability distribution
function and probability distribution. These terms apply to discrete as well as to continuous
random variables. There are however additional terms that are used to describe probability
function only for discrete random variable they are: probability mass function, and probability
mass, and there are equivalent terms used only for continuous random variables – they are
probability density function, density function and simply density.

1.5 Conditional Probability for Random Variables

The conditional probability concept, which we defined for events, can also apply to random
variables. Because {X = x}, namely, the random variable X takes value x, is an event, by the
definition of conditional probability (1) we have

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
. (15)

Let PX|Y (x | y) = P (X = x | Y = y) be the conditional probability of a discrete random
variable X given Y , we obtain by (15)

PX|Y (x | y) =
PX,Y (x, y)

PY (y)
. (16)
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Noticing that

PY (y) =
∑

x

PX,Y (x, y), (17)

we obtain by (16) ∑
x

PX|Y (x | y) = 1. (18)

This means that if we condition on the event {Y = y} for a specific y, the probability function
of X given {Y = y} is a legitimate probability function. This is consistent with our discussion
above. The event {Y = y} is the new sample space and X has legitimate distribution functions
there. By (16)

PX,Y (x, y) = PX|Y (x | y)PY (y) (19)

and by symmetry
PX,Y (x, y) = PY |X(y | x)PX(x) (20)

so the latter and (17) gives

PY (y) =
∑

x

PX,Y (x, y) =
∑

x

PY |X(y | x)PX(x) (21)

which is another version of the law of total probability (7).

1.6 Independence between Random Variables

The definition of independence between random variables is very much related to the definition
of independence between events because when we say that random variables U and V are
independent, it is equivalent to say that the events {U = u} and {V = v} are independent for
every u and v. Accordingly, random variables U and V are said to be independent if

PU,V (u, v) = PU(u)PV (v) for all u, v. (22)

Notice that by (19) and (22), we obtain an equivalent definition of independent random variables
U and V which is

PU |V (u | v) = PU(u) (23)

which is equivalent to P (A | B) = P (A) which we used to define independent events A and
B.

1.7 Convolution

Consider independent random variables V1 and V2 that have probability functions PV1(v1) and
PV2(v2), respectively, and their sum which is another random variable V = V1 +V2. Let us now
derive the probability function PV (v) of V .

PV (v) = P (V1 + V2 = v)

=
∑
v1

P (V1 = v1, V2 = V − v1)

=
∑
v1

PV1(v1)PV2(v − v1).
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The latter is called the convolution of the probability functions PV1(v1) and PV2(v2).

Let us now extend the result from two to k random variables. Consider k independent ran-
dom variables Xi, i = 1, 2, 3, . . . , k. Let PXi

(xi) be the probability function of Xi, for
i = 1, 2, 3, . . . , k, and let Y =

∑k
i=1 Xi. If k = 3, we first compute the convolution of X1 and

X2 to obtain the probability function of V = X1 +X2 using the above convolution formula and
then we use the formula again to obtain the probability function of Y = V +X3 = X1+X2+X3.
Therefore, for an arbitrary k, we obtain

PY (y) =
∑

x2, x3, ..., xk: x2+x3+ ... +xk≤y

(
PX1(y − Σk

i=2xi)
k∏

i=2

PXi
(xi)

)
. (24)

If all the random variable Xi, i = 1, 2, 3, . . . , k, are independent and identically distributed
(IID) random variables, with probability function PX1(x), then the probability function PY (y)
is called the k-fold convolution of PX1(x).

Homework 1.2

Consider again the experiment to be tossing a coin. Assume that

P (H) = P (T ) = 0.5.

Illustrate each of the Probability Axioms for this case. ¤

Homework 1.3

Now consider an experiment involving three coin tosses. The outcome of the experiment is now
a 3-long string of Heads and Tails. Assume that all coin tosses have probability 0.5, and that
the coin tosses are independent events.

1. Write the sample space where each outcome of the experiment is an ordered 3-long string
of Heads and Tails.

2. What is the probability of each outcome?

3. Consider the event
A = {Exactly one head occurs}.

Find P (A) using the additivity axiom.

Partial Answer: P (A) = 1/8 + 1/8 + 1/8 = 3/8. ¤

Homework 1.4

Now consider again three coin tosses. Find the probability P (A | B) where A and B are the
events:
A = more that one head came up
B = 1st toss is a head.
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Guide:

P (B) = 4/8; P (A ∩B) = 3/8; P (A | B) = (3/8)/(4/8) = 3/4. ¤

Homework 1.5

Consider a medical test for a certain disease. The medical test detects the disease with proba-
bility 0.99 and fails to detect the disease with probability 0.01. If the disease is not present, the
test indicates that it is present with probability 0.02 and that it is not present with probability
0.98. Consider two cases:
Case a: The test is done on a randomly chosen person from the population where the occur-
rence of the disease is 1/10000.
Case b: The test is done on patients that are referred by a doctor that have a prior probability
(before they do the test) of 0.3 to have the disease.

Find the probability of a person to have the disease if the test shows positive outcome in each
of these cases.

Guide:

A = person has the disease.
B = test is positive.
Ā = person does not have the disease.
B̄ = test is negative.
We need to find P (A | B).

Case a:
We know: P (A) = 0.0001.
P (Ā) = 0.9999.
P (B | A) = 0.99.
P (B | Ā) = 0.02.

By the law of total probability:

P (B) = P (B | A)P (A) + P (B | Ā)P (Ā).

P (B) = 0.99× 0.0001 + 0.02× 0.9999 = 0.020097.

Now put it all together and use Eq. (2) to obtain:

P (A | B) = 0.004926108.

Case b:
P (A) = 0.3.

Repeat the previous derivations to show that for this case P (A | B) = 0.954983923. ¤
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Homework 1.6

In a multiple choice exam, there are 4 answers to a question. A student knows the right answer
with probability 0.8 (Case 1), with probability 0.2 (Case 2), and with probability 0.5 (Case 3).
If the student does not know the answer s/he always guesses with probability of success being
0.25. Given that the student marked the right answer, what is the probability he/she knows
the answer.

Guide:

A = Student knows the answer.
B = Student marks correctly.
Ā = Student does not know the answer.
B̄ = Student marks incorrectly.
We need to find P (A | B).

Case 1:

We know: P (A) = 0.8.
P (Ā) = 0.2.
P (B | A) = 1.
P (B | Ā) = 0.25.

By the law of total probability:

P (B) = P (B | A)P (A) + P (B | Ā)P (Ā).

P (B) = 1× 0.8 + 0.25× 0.2 = 0.85.

Now put it all together and use Eq. (2) to obtain:

P (A | B) = 0.941176471.

Case 2:

Repeat the previous derivations to obtain:

P (A) = 0.2

P (B) = 0.4

P (A | B) = 0.5.

Case 3:

Repeat the previous derivations to obtain:
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P (A) = 0.5

P (B) = 0.625

P (A | B) = 0.8. ¤

1.8 Selected Discrete Random Variables

We present here several discrete random variables and their corresponding distribution func-
tions. Although our cover here is non-exhaustive, we do consider all the discrete random
variables mentioned later in this book.

1.8.1 Bernoulli

We begin with the Bernoulli random variable. It represents an outcome of an experiment which
has only two possible outcomes. Let us call them “success” and “failure”. These two outcomes
are mutually exclusive and exhaustive events. The Bernoulli random variable assigns the value
X = 1 to the “success” outcome and the value X = 0 to the “failure” outcome. Let p be
the probability of the “success” outcome, and because “success” and “failure” are mutually
exclusive and exhaustive, the probability of the “failure” outcome is 1 − p. The probability
function in terms of the Bernoulli random variable is:

P (X = 1) = p (25)

P (X = 0) = 1− p.

1.8.2 Geometric

The geometric random variable X represents the number of independent Bernoulli trials, each
of which with p being the probability of success, required until the first success. For X to
be equal to i we must have i − 1 consecutive failures and then one success in i independent
Bernoulli trials. Therefore, we obtain

P (X = i) = (1− p)i−1p for i = 1, 2, 3, . . . . (26)

The complementary distribution function of the geometric random variable is

P (X > i) = (1− p)i for i = 0, 2, 3, . . . .

The geometric random variable possesses an important property called memorylessness. In
particular, discrete random variable X is memoryless if

P (X > m + n | X ≥ m) = P (X > n), m = 0, 1, 2, . . . , and n = 0, 1, 2, . . . (27)

The Geometric random variable is memoryless because it is based on independent Bernoulli
trials, and therefore the fact that so far we had m failures does not affect the probability that
the next n trials will be failures.

The Geometric random variable is the only discrete random variable that is memoryless.
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1.8.3 Binomial

Assume that n independent Bernoulli trials are performed. Let X be a random variable rep-
resenting the number of successes in these n trials. Such random variable is called a binomial
random variable with parameters n and p. Its probability function is:

P (X = i) =

(
n

i

)
pi(1− p)n−i i = 0, 1, 2, . . . , n.

Notice that a Binomial random variable with parameters 1 and p is a Bernoulli random variable.
The Bernoulli and binomial random variables have many applications. In particular, it is used
as a model for voice as well as data sources. Such sources alternates between two states
“on” and “off”. During the “on” state the source is active and transmits at the rate equal
to the transmission rate of its equipment (e.g. a modem), and during the “off” state, the
source is idle. If p is the proportion of time that the source is active, and if we consider a
superposition of n independent identical sources, than the binomial distribution gives us the
probability of the number of sources which are simultaneously active which is important for
resource provisioning.

Homework 1.7

Consider a state with voter population N . There are two candidates in the state election for
governor and the winner is chosen based on a simple majority. Let N1 and N2 be the total
number of votes obtained by Candidates 1 and 2, respectively, from voters other than Johnny.
Johnny just voted for Candidate 1, and he would like to know the probability that his vote
affects the election results. Johnny realizes that the only way he can affect the result of the
election is if the votes are equal (without his vote) or the one he voted for (Candidate 1) had
(without his vote) one call less than Candidate 2. That is, he tries to find the probability of
the event

0 ≥ N1 −N2 ≥ −1.

Assume that any other voter (excluding Johnny) votes independently for Candidates 1 and 2
with probabilities p1 and p2, respectively, and also that p1 + p2 < 1 to allow for the case that
a voter chooses not to vote for either candidate. Derive a formula for the probability that
Johnny’s vote affects the election results and provide an algorithm and a computer program to
compute it for the case N = 2, 000, 000 and p1 = p2 = 0.4.

Guide

By the definition of conditional probability,

P (N1 = n1, N2 = n2) = P (N1 = n1)P (N2 = n2 | N1 = n1)

so

P (N1 = n1, N2 = n2) =

(
N − 1

n1

)
pn1

1 (1− p1)
N−n1−1

(
N − n1 − 1

n2

)
pn2

2 (1− p2)
N−n1−1−n2 .



Queueing Theory and Stochastic Teletraffic Models c© Moshe Zukerman 18

Then, as the probability of the union of mutually exclusive events is the sum of their probabil-
ities, the required probability is

b(N−1)/2c∑

k=0

P (N1 = k, N2 = k) +

d(N−1)/2e−1∑

k=0

P (N1 = k, N2 = k + 1).

where bxc is the largest integer smaller or equal to x. and dxe is the smallest integer greater
or equal to x. ¤
Next, let us derive the probability distribution of the random variable Y = X1 + X2 where X1

and X2 are two independent Binomial random variables with parameters (N1, p) and (N2, p),
respectively. This will require the derivation of the convolution of X1 and X2 as follows.

PY (k) = P (X1 + X2 = k)

=
k∑

i=0

P ({X1 = i} ∩ {X2 = k − i})

=
k∑

i=0

PX1(i)PX2(k − i)

=
k∑

i=0

(
N1

i

)
pi(1− p)N1−i

(
N2

k − i

)
pk−i(1− p)N2−(k−i)

= pk(1− p)N1+N2−k

k∑
i=0

(
N1

i

)(
N2

k − i

)

= pk(1− p)N1+N2−k

(
N1 + N2

k

)
.

We can conclude that the convolution of two independent binomial random variables with
parameters (N1, p) and (N2, p) has a binomial distribution with parameter N1 + N2, p. This is
not surprising. As we recall the binomial random variable represents the number of successes
of a given number of Bernoulli trials. Thus, the event of having k Bernoulli successes out of
N1 + N2 trials is equivalent to the event of having some (or none) of the successes out of the
N1 trials and the remaining out of the N2 trials.

Homework 1.8

In the last step of the above proof, we have used the equality

(
N1 + N2

k

)
=

k∑
i=0

(
N1

i

)(
N2

k − i

)
.

Prove this equality.
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Guide

Consider the equality
(1 + α)N1+N2 = (1 + α)N1(1 + α)N2 .

Then equate the binomial coefficients of αk on both sides. ¤

1.8.4 Poisson

A Poisson random variable with parameter λ has the following probability function:

P (X = i) = e−λ λi

i!
i = 0, 1, 2, 3, . . . . (28)

To compute the values of P (X = i), it may be convenient to use the recursion

P (X = i + 1) =
λ

i + 1
P (X = i) (29)

with
P (X = 0) = e−λ.

However, if the parameter λ is large, there may be a need to set P̂ (X = bλc) = 1, where bxc
is the largest integer smaller or equal to x, and to compute recursively, using (29) (applied
to the P̂ (X = i)’s), a sufficient number of P̂ (X = i) values for i > λ and i < λ such that
P̂ (X = i) > ε, where ε is chosen to meet a given accuracy requirement. Clearly the P̂ (X = i)’s
do not sum up to one, and therefore they do not represent a probability distribution. To
approximate the Poisson probabilities they will need to be normalized as follows.

Let α and β be the lower and upper bounds, respectively, of the i values for which P̂ (X = i) > ε.
Then, the probabilities P (X = i) are approximated using the normalization:

P (X = i) =

{
P̂ (X=i)∑β

i=α P̂ (X=i)
α ≤ i ≤ β

0 otherwise.
(30)

The importance of the Poisson random variable lies in its property to approximate the binomial
random variable in case when n is very large and p is very small so that np is not too large and
not too small. In particular, consider a sequence of binomial random variables Xn, n = 1, 2, . . .
with parameters (n, p) where λ = np, or p = λ/n. Then the probability function

lim
n→∞

P (Xn = k)

is a Poisson probability function with parameter λ.

To prove this we write:

lim
n→∞

P (Xn = k) = lim
n→∞

(
n

k

)
pk(1− p)n−k.
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Substituting p = λ/n, we obtain

lim
n→∞

P (Xn = k) = lim
n→∞

n!

(n− k)!k!

(
λ

n

)k (
1− λ

n

)n−k

.

or

lim
n→∞

P (Xn = k) = lim
n→∞

n!

(n− k)!nk

(
λk

k!

)(
1− λ

n

)n (
1− λ

n

)−k

.

Now notice that

lim
n→∞

(
1− λ

n

)n

= e−λ,

lim
n→∞

(
1− λ

n

)−k

= 1,

and

lim
n→∞

n!

(n− k)!nk
= 1.

Therefore,

lim
n→∞

P (Xn = k) =
λke−λ

k!
.

In Subsection 1.15.1 this important limit will be shown using Z-transform. The Poisson ran-
dom variable accurately models the number of calls arriving at a telephone exchange or Internet
service provider in a short period of time, a few seconds or a minute, say. In this case, the
population of customers (or flows) n is large. The probability p of a customer making a call
within a given short period of time is small, and the calls are typically independent because
they are normally generated by independent individual people from a large population. There-
fore, models based on Poisson random variables have been used successfully for design and
dimensioning of telecommunications networks and systems for many years. When we refer
to items in a queueing system in this book, they will be called customers, jobs or packets,
interchangeably.

Next, let us derive the probability distribution of the random variable Y = X1 + X2 where X1

and X2 are two independent Poisson random variables with parameters λ1 and λ2, respectively.
This will require the derivation of the convolution of X1 and X2 as follows.

PY (y) = P (X1 + X2 = k)

=
k∑

i=0

P ({X1 = i} ∩ {X2 = k − i})
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=
k∑

i=0

PX1(i)PX2(k − i)

=
k∑

i=0

λi
1

i!
e−λ1

λk−i
2

(k − i)!
e−λ2

= e(λ1+λ2)

k∑
i=0

λi
1λ

k−i
2

i!(k − i)!

=
e(λ1+λ2)

k!

k∑
i=0

k!λi
1λ

k−i
2

i!(k − i)!

=
e(λ1+λ2)

k!

k∑
i=0

(
k

i

)
λi

1λ
k−i
2

=
e(λ1+λ2)(λ1 + λ2)

k

k!
.

We have just seen that the Y follows a Poisson distribution with parameter λ1 + λ2.

Homework 1.9

Consider a Poisson random variable X with parameter λ = 500. Write a program that computes
the probabilities P (X = i) for 0 ≤ i ≤ 800 and plot the function PX(x). ¤

Homework 1.10

Let X1 and X2 be two independent Poisson distributed random variables with parameters λ1

and λ2, respectively. Let Y = X1 + X2. Find the distribution of (X1 | Y ). In particular, find
for any given k, the conditional probability P (X1 = j | Y = k) for j = 0, 1, 2, . . . , k.

Guide

P (X1 = j | Y = k) =
P (X1 = j ∩ Y = k)

P (Y = k)
.

Now notice that
{X1 = j ∩ Y = k} = {X1 = j ∩X2 = k − j}.

When you claim that two events A and B are equal you must be able to show that A implies
B and that B implies A. Show both for the present case.

Because X1 and X2 are independent we have that

P (X1 = j ∩X2 = k − j) = P (X1 = j)P (X2 = k − j).

Now recall that X1 and X2 are Poisson distributed random variables with parameters λ1 and
λ2, respectively and that Y is the convolution of X1 and X2 and therefore also has a Poisson
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distribution with parameter λ1 + λ2, put it all together and show that P (X1 = j | Y = k) is a
binomial probability function with parameters λ1/(λ1 + λ2) and k.

¤

1.8.5 Pascal

The Pascal random variable X with parameters k (integer and ≥ 1) and p (real within (0,1]),
represents a sum of k geometric random variables each with parameter p. Therefore, we must
have the k successful Bernoulli trial at the ith trial. In other words, the Pascal random variable
represents the number of Bernoulli trials until the k success. Accordingly, for a Pascal random
variable X to be equal to i, the ith trial must be the kth successful trial associated with the
kth geometric random variable. Then, there must also be exactly k − 1 successes among the
first i− 1 trials.

The probability to have a success at the ith trial, as in any trial, is equal to p, and the probability
of having k − 1 successes among the first i− 1 is equal to the probability of having a binomial
random variable with parameters p and i − 1 equal to k − 1, for i ≥ k ≥ 1, which is equal
to (

i− 1

k − 1

)
pk−1(1− p)i−k k = 1, 2, . . . , i

and since the two random variables here, namely, the Bernoulli and the Binomial are indepen-
dent (because the underlying Bernoulli trials are independent), we can multiply their probabil-
ities to obtain

P (X = i) =

(
i− 1

k − 1

)
pk(1− p)i−k i = k, k + 1, k + 2, . . . . (31)

An alternative formulation of the Pascal random variable Y is defined as the number of failures
required to have k successes. In this case, the relationship between Y and X is given by
Y = X − k for which the probability mass function is given by

P (Y = j) =

(
k + j − 1

k − 1

)
pk(1− p)j j = 0, 1, 2, . . . . (32)

One important property of the latter is that the cumulative distribution function can be ex-
pressed as

FY (j) = P (Y ≤ j) = 1− Ip(j + 1, k)j = 0, 1, 2, . . . . (33)

where Ip(j + 1, k) is the regularized incomplete beta function with parameters p, j + 1 and
k.

1.9 Continuous Random Variables and their Probability Functions

Continuous random variable are related to cases whereby the set of possible outcomes is un-
countable. A continuous random variable X is a function that assigns a real number to outcome
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of an experiment, and is characterized by the existence of a function f(·) defined for all x ∈ R,
which has the property that for any set A ⊂ R,

P (X ∈ A) =

∫

A

f(x)dx. (34)

Such function is the probability density function (or simply the density) of X. Since the con-
tinuous random variable X must take a value in R with probability 1, f must satisfy,

∫ +∞

−∞
f(x)dx = 1. (35)

If we consider Eq. (34), letting A = [a, b], we obtain,

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx. (36)

An interesting point to notice is that the probability of a continuous random variable taking a
particular value is equal to zero. If we set a = b in Eq. (36), we obtain

P (X = a) =

∫ a

a

f(x)dx = 0. (37)

As a result, the distribution function F (x) is equal to both P (X ≤ x) and to P (X < x).
Similarly, the complementary distribution function is equal to both P (X ≥ x) and to P (X >
x).

By Eq. (36), we obtain

F (x) = P (X ≤ x) =

∫ x

−∞
f(s)ds. (38)

Hence, the probability density function is the derivative of the distribution function.

An important concept which gives rise to a continuous version of the law of total probability
is the continuous equivalence of Eq. (13), namely, the joint distribution of continuous random
variables. Let X and Y be two continuous random variables. The joint density of X and Y
denoted fX,Y (x, y) is a nonnegative function that satisfies

P ({X,Y } ∈ A) =

∫∫

{X,Y }∈A

fX,Y (x, y)dxdy. (39)

The continuous equivalence of the first equality in (21) is:

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx. (40)

Another important concept is the conditional density of one continuous random variable on
another. Let X and Y be two continuous random variables with joint density fX,Y (x, y). For
any y, such that the density of Y takes a positive value at Y = y (i.e. such that fY (y) > 0),
the conditional density of X given Y is defined as

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
. (41)
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For every given fixed y, it is a legitimate density because

∫ ∞

−∞
fX|Y (x | y)dx =

∫ ∞

−∞

fX,Y (x, y)dx

fY (y)
=

fY (y)

fY (y)
= 1. (42)

Notice the equivalence between the conditional probability (1) and the conditional density (41).
By (41)

fX,Y (x, y) = fY (y)fX|Y (x | y) (43)

so

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy =

∫ ∞

−∞
fY (y)fX|Y (x | y)dy. (44)

Recall again that fX,Y (x, y) is defined only for y values such that fY (y) > 0.

Let define event A as X ∈ A. Thus,

P (A) = P (X ∈ A) =

∫

A

fX(x)dx =

∫

A

∫ ∞

−∞
fY (y)fX|Y (x | y)dydx. (45)

Hence,

P (A) =

∫ ∞

−∞
fY (y)

∫

A

fX|Y (x | y)dxdy (46)

and therefore

P (A) =

∫ ∞

−∞
fY (y)P (A | Y = y)dy (47)

which is the continuous equivalence of the Law of Total Probability (7).

We will now discuss the concept of convolution as applied to continuous random variables. Con-
sider independent random variables U and V that have densities fU(u) and fV (v), respectively,
and their sum which is another random variable X = U + V . Let us now derive the density
fX(x) of X.

fX(x) = P (U + V = x)

=

∫

u

f(U = u, V = x− u)

=

∫

u

fU(u)fV (x− u).

The latter is the convolution of the densities fU(u) and fV (v).

As in the discrete case the convolution fY (y), of k densities fXi
(xi), i = 1, 2, 3, . . . , k, of

random variables Xi, i = 1, 2, 3, . . . , k, respectively, is given by

fY (y) =

∫∫

x2, x3, ..., xk: x2, x3, ..., xk≤y

(
fX1(y − Σk

i=2xi)
k∏

i=2

fXi
(xi)

)
. (48)

And again, in the special case where all the random variable Xi, i = 1, 2, 3, . . . , k, are IID,
the density fY is the k-fold convolution of fX1 .
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1.10 Selected Continuous Random Variables

We will now discuss several continuous random variables and their corresponding probability
distributions: uniform, exponential, hyper-exponential, Erlang, hypo-exponential Gaussian,
multivariate Gaussian and Pareto. These are selected because of their applicability in teletraffic
and related queueing models and consequently their relevance to the material in this book.

1.10.1 Uniform

The probability density function of the uniform random variable takes nonnegative values over
the interval (a, b) and is given by

f(x) =

{
1

b−a
if a < x < b

0 otherwise.
(49)

Of particular interest is the special case - the uniform (0,1) random variable. Its probability
density function is given by

f(x) =

{
1 if 0 < x < 1
0 otherwise.

(50)

The uniform (0,1) random variable is very important in simulations. Almost all computers
languages have a function by which we can generate uniform (0,1) random deviates. By a
simple transformation such uniform (0,1) random deviates can be translated to sequence of
random deviates of any distribution as follows. Let U1(0, 1) be the first uniform (0,1) random
deviate, and let F (x) be a distribution function of an arbitrary random variable. Set,

U1(0, 1) = F (x1) (51)

so x1 = F−1(U1(0, 1)) is the first random deviate from the distribution F (·). Then generating
the second uniform (0,1) random deviate, the second F (·) random number is obtained in the
same way, etc.

This method of generating random deviates from any distribution is known by the following
names: inverse transform sampling, inverse transformation method, inverse probability integral
transform, and Smirnov transform.

To see why this method works, let U be a uniform (0,1) random variable. Let F (x) be an
arbitrary cumulative distribution function. Let the random variable Y be defined by: Y =
F−1(U). That is, U = F (Y ). We will now show that the distribution of Y , namely P (Y ≤ x),
is equal to F (x). Notice that P (Y ≤ x) = P [F−1(U) ≤ x] = P [U ≤ F (x)]. Because U is a
uniform (0,1) random variable, then P [U ≤ F (x)] = F (x). Thus, P (Y ≤ x) = F (x). ¤

Homework 1.11

Let X1, X2, X3, . . . Xk be a sequence of k independent random variables having a uniform (0, s)
distribution. Let X = min{X1, X2, X3, . . . , Xk}. Prove that

P (X > t) =





1 for t ≤ 0
(1− t

s
)k for 0 < t < 1

0 otherwise.
(52)
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Hint: P (X > t) = P (X1 > t)P (X2 > t)P (X3 > t) · · ·P (Xk > t). ¤

1.10.2 Exponential

The exponential random variable has one parameter µ and its probability density function is
given by,

f(x) =

{
µe−µx if x ≥ 0
0 otherwise.

(53)

Its distribution function is given by

F (x) =

∫ x

0

µe−µsds = 1− e−µx x ≥ 0. (54)

A convenient and useful way to describe the exponential random variable is by its complemen-
tary distribution function. It is given by,

F̄ (x) = e−µx x ≥ 0. (55)

An important application of the exponential random variable is the time until the next call
(or connection request) arrives at a switch. Interestingly, such time does not depend on how
long ago was the last call that arrived. In other words, the exponential random variable is
memoryless. In particular, a continuous random variable is called memoryless if for any t ≥ 0
and s ≥ 0,

P (X > s + t | X > t) = P (X > s). (56)

If our lifetime were memoryless, then the probability we survive at least 80 years given that
we have survived 70 years is equal to the probability that a newborn baby lives to be 10 years.
Of course human lifetime is not memoryless, but, as mentioned above, inter-arrivals of phone
calls at a telephone exchange are. To show that exponential random variable is memoryless
we show that Eq. (56) holds using the conditional probability definition together with the
complementary distribution function of an exponential random variable as follows.

P (X > s + t | X > t) =
P (X > s + t ∩X > t)

P (X > t)

=
P (X > s + t)

P (X > t)

=
e−µ(s+t)

e−µt

= e−µs = P (X > s).

Not only is exponential random variable memoryless, it is actually, the only memoryless con-
tinuous random variable.

Homework 1.12

Write a computer program that generates a sequence of 100 random deviates from an exponen-
tial distribution with µ = 1. ¤
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Let X1 and X2 be independent and exponentially distributed random variables with parameters
λ1 and λ2. We are interested to know the distribution of X = min[X1, X2]. In other words, we
are interested in the distribution of the time that passes until the first one of the two random
variables X1 and X2 occurs. This is as if we have a competition between the two and we are
interested in the time of the winner whichever it is. Then

P (X > t) = P (min[X1, X2] > t) = P (X1 > t, X2 > t) = e−λ1te−λ2t = e−(λ1+λ2)t. (57)

Thus, the distribution of X is exponential with parameter λ1 + λ2.

Another interesting question related to the competition between two exponential random vari-
ables is what is the probability that one of them, say X1, wins. That is, we are interested in
the probability of X1 < X2. This is obtained using the continuous version of the law of total
probability (47) as follows:

P (X1 < X2) =

∫ ∞

0

(1− e−λ1t)λ2e
−λ2tdt =

λ1

λ1 + λ2

. (58)

In the following table we explain how to obtain the latter from the continuous version of the
law of total probability (47) by pointing out the equivalence between the corresponding terms
in the two equations.

term in (47) equivalent term in (58)
event A event {X1 < X2}

random variable Y random variable X2

event {Y = y} event {X2 = t}
event {A | Y = y} event {X1 < t}

P (A | Y = y) P (X1 < t) = 1− e−λ1t

density fY (y) density fX2(t) = λ2e
−λ2t

In a similar way,

P (X1 > X2) =
λ2

λ1 + λ2

. (59)

As expected, P (X1 < X2) + P (X1 > X2) = 1. Notice that as X1 and X2 are continuous-time
random variables, the probability that they are equal to each other is equal to zero.

1.10.3 Relationship between Exponential and Geometric Random Variables

We have learnt that the geometric random variable is the only discrete random variable that
is memoryless. We also know that the only memoryless continuous random variable is the
exponential random variable. These facts indicate an interesting relationship between the two.
Let Xexp be an exponential random variable with parameter λ and let Xgeo be a geometric
random variable with parameter p.

Let δ be an “interval” size used to discretize the continuous values that Xexp takes, and we are
interested to find δ such that

FXexp(nδ) = FXgeo(n), n = 1, 2, 3, . . . .
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To find such a δ, it is more convenient to consider the complementary distributions. That is,
we aim to find δ that satisfies

P (Xexp > nδ) = P (Xgeo > n), n = 1, 2, 3, . . . ,

or
e−λnδ = (1− p)n, n = 1, 2, 3, . . . ,

or
e−λδ = 1− p.

Thus,

δ =
− ln(1− p)

λ
and p = 1− e−λδ.

We can observe that as the interval size δ approaches zero the probability of success p also
approaches zero, and under these conditions the two distributions approach each other.

1.10.4 Hyper-Exponential

Let Xi for i = 1, 2, 3, . . . , k be k independent exponential random variables with parameters
λi, i = 1, 2, 3, . . . , k, respectively. Let pi for i = 1, 2, 3, . . . , k be k nonnegative real numbers
such that

∑k
i=1 pi = 1. A random variable X that is equal to Xi with probability pi is called

Hyper-exponential. By the Law of total probability, its density is

fX(x) =
k∑

i=1

pifXi
(x). (60)

1.10.5 Erlang

A random variable X has Erlang distribution with parameters λ (positive real) and k (positive
integer) if its density is given by

fX(x) =
λkxk−1e−λx

(k − 1)!
. (61)

Homework 1.13

Let Xi, i = 1, 2, . . . , k, be k independent exponentially distributed random variables each with
parameter λ, prove by induction that the random variable X defined by the sum X =

∑k
i=1 Xi

has Erlang distribution with parameter k and λ. In other words, fX(x) of (61) is a k-fold
convolution of λe−λx. ¤

Homework 1.14

Let X1 and X2 be independent and Erlangian distributed random variables with parameters
(k, λ1) and (k, λ2), respectively. Find the probability of P (X1 < X2).
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Guide

Define the probability of success p as

p =
λ1

λ1 + λ2

the probability of failure by 1− p. Then observe that the event {X1 < X2} is equivalent to the
event: having k successes before having k failures, so the required probability is the probability
of a Pascal random variable Y with parameters p and k to be less or equal to k − 1. This
observation is explained as follows. Consider individual points that occur randomly on the
time axis starting from t = 0. The points are of two types 1 and 2. The first type 1 point
occurs at time t1(1) where t1(1) is exponentially distributed with parameter λ1. The second
type 1 point occurs at time t2(1) where t2(1) − t1(1) is also exponentially distributed with
parameter λ1, and in general, the nth type 1 point occurs at time tn(1) where tn(1) − tn−1(1)
is exponentially distributed with parameter λ1. Observe that tk(1) is a sum of k exponentially
distributed random variables with parameter λ1 and therefore it follows an Erlang distribution
with parameters (k, λ1) exactly as X1. Equivalently, we can construct the time process of type
2 points where t1(2) and all the inter-point times tn(2)− tn−1(2) are exponentially distributed
with parameter λ2. Then tk(2) follows an Erlang distribution with parameters (k, λ2) exactly
as X2.

Accordingly, the event {X1 < X2} is equivalent to the event {tk(1) < tk(2)}. Now consider a
traveler that travels on the time axis starting from time 0. This traveler considers type 1 points
as successes and type 2 points as failures, where p is a probability that the next point of type
1 (a success) and and 1 − p is the probability the next point of type 2 (a failure). The event
{tk(1) < tk(2)} is equivalent to having k successes before having k failures, which lead to the
observation that P (X1 < X2) is the probability of a Pascal random variable Y with parameters
p and k to be less or equal to k − 1.

Based on this observation the probability P (X1 < X2) is obtained by (33) as

P (X1 < X2) = FY (j) = P (Y ≤ k − 1) = 1− Ip(k, k). (62)

where Ip(·, ·) is the regularized incomplete beta function.

¤

Homework 1.15

Again, consider the two independent and Erlangian distributed random variables random vari-
ables X1 and X2 with parameters (k, λ1) and (k, λ2), respectively. Assume λ1 < λ2. Investigate
the probability P (X1 < X2) as k approaches infinity. Use numerical, intuitive and rigorous
approaches.

¤

1.10.6 Hypo-Exponential

Let Xi, i = 1, 2, . . . , k be k independent exponentially distributed random variables each
with parameters λi, respectively. The random variable X defined by the sum X =

∑k
i=1 Xi is



Queueing Theory and Stochastic Teletraffic Models c© Moshe Zukerman 30

called hypo-exponential. In other words, the density of X is a convolution of the k densities
λie

−λix, i = 1, 2, . . . , k. The Erlang distribution is a special case of hypo-exponential when
all the k random variables are identically distributed.

1.10.7 Gaussian

A continuous random variable, which commonly used in many applications, is the Gaussian
(also called Normal) random variable. We say that the random variable X has Gaussian
distribution with parameters m and σ2 if its density is given by

fX(x) =
1√
2πσ

e−(x−m)2/2σ2 −∞ < x < ∞. (63)

This density is symmetric and bell shaped.

The wide use of the Gaussian random variable is rooted in the so-called The central limit
theorem. This theorem is the most important result in probability theory. Loosely speak-
ing, it says that the sum of a large number of independent random variables (not necessarily
of the same distribution, but each has a finite variance) has Gaussian (normal) distribution.
This is also true if the distribution of these random variables are very different from Gaussian.
This theorem explains why so many populations in nature and society have bell shaped Gaus-
sian histograms, and justifies the use of the Gaussian distribution as their model. In Section
1.18 we will further discuss the central limit theorem and demonstrate its applicability to the
telecommunication link dimensioning problem in Section 1.19.

1.10.8 Pareto

Another continuous random variable often used in telecommunication modelling is the Pareto
random variable. This random variable, for a certain parameter range, it can be useful in
modelling lengths of data bursts in data and multimedia networks [1]. We choose to define the
Pareto random variable with parameters γ and δ by its complementary distribution function
which is given by

P (X > x) =

{ (
x
δ

)−γ
, x ≥ δ

1, otherwise.

Here δ > 0 is the scale parameter representing a minimum value for the random variable, and
γ > 0 is the shape parameter of the Pareto distribution.

Homework 1.16

Write a computer program that generates a sequence of 100 random deviates from a Pareto
distribution with γ = 1.2 and δ = 4. ¤
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1.11 Moments

The mean (or the expectation) of a discrete random variable is defined by

E[X] =
∑

{n:P (n)>0}
nPX(n). (64)

Equivalently, the mean of a continuous random variable is defined by

E[X] =

∫ ∞

−∞
xfX(x)dx. (65)

A very useful expression for the mean of a continuous nonnegative random variable Z (i.e. a
random variable Z with the property that its density f(z) = 0 for z < 0) is:

E[Z] =

∫ ∞

0

P (Z > z)dz =

∫ ∞

0

[1− FZ(z)]dz. (66)

The discrete equivalence of the latter is:

E[Z] =
∞∑

n=0

P (Z > n) =
∞∑

n=0

[1− FZ(n)]. (67)

Homework 1.17

Use geometrical arguments to show (66) and (67). ¤

Homework 1.18

Let X1, X2, X3, . . . Xk be a sequence of k independent random variables having a uniform (0,s)
distribution. Let X = min{X1, X2, X3, . . . , Xk}. Prove that

E(X) =
s

k + 1
.

Hint: Use (52) and (66). ¤
As mentioned above, function of a random variable is also a random variable. The mean of a
function of random variables denoted g(·) by

E[g(X)] =
∑

{k:PX(k)>0}
g(k)PX(k) (68)

for a discrete random variable and

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx (69)

for a continuous random variable. If a and b are constants then for a random variable X (either
discrete or continuous) we have:

E[aX] = aE[X], (70)
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E[X − b] = E[X]− b, (71)

and
E[aX − b] = aE[X]− b. (72)

The nth moment of the random variable X is defined by E[Xn]. Substituting g(X) = Xn in
(68) and in (69), the nth moment of X is given by:

E[Xn] =
∑

{k:PX(k)>0}
knPX(k) (73)

for a discrete random variable and

E[Xn] =

∫ ∞

−∞
xnfX(x)dx (74)

for a continuous random variable. Similarly, the nth central moment of random variable X is
defined by E[(X − E[X])n]. Substituting g(X) = (X − E[X])n in (68) and in (69), the nth
central moment of X is given by:

E[(X − E[X])n] =
∑

{k:P (k)>0}
(k − E[X])nPX(k) (75)

for a discrete random variable and

E[(X − E[X])n] =

∫ ∞

−∞
(x− E[X])nfX(x)dx (76)

for a continuous random variable. By definition the first moment is the mean. The second
central moment is called the variance. It is defined as

V ar[X] = E[(X − E[X])2]. (77)

The variance of a random variable X is given by

V ar[X] =
∑

{k:P (k)>0}
(k − E[X])2PX(k) (78)

if X is discrete, and by

V ar[X] =

∫ ∞

−∞
(x− E[X])2fX(x)dx (79)

if it is continuous.

By (77) we obtain

V ar[X] = E[(X − E[X])2] = E[X2 − 2XE[X] + (E[X])2] = E[X2]− (E[X])2. (80)
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1.12 Mean and Variance of Specific Random Variable

Notice that since the binomial random variable is a sum of n independent Bernoulli random
variables, its mean and its variance are n times the mean and variance, respectively, of the
Bernoulli random variable. Notice also that by letting p → 0, and np → λ, both the mean and
the variance of the binomial random variable approach λ, which is the value of both the mean
and variance of the Poisson random variable.

While the mean provides the average, or the average of possible values a random variable can
take weighted according to its probability function or density, the variance is a measure of
the level of variation of the possible values of the random variable. Another measure of such
variation is the standard deviation denoted σX , or simply σ, and defined by

σX =
√

V ar[X]. (81)

Hence the variance is often denoted by σ2.

Notice that the first central moment E[x−E[X]] is not very useful because it is always equal to
zero, the second central moment E[(x−E[X])2], which is the variance, and its square root, the
standard deviation, are used for measuring the level of variation of a random variable.

The mean of sum of random variables is always the sum of their means, namely,

E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi] (82)

but the variance of sum of random variables is not always equal to the sum of their variances. It
is true for independent random variables. That is, if the random variables X1, X2, X3, . . . , Xn

are independent, then

V ar[
n∑

i=1

Xi] =
n∑

i=1

V ar[Xi]. (83)

Also, if X1, X2, X3, . . . , Xn are independent, then

E[Πn
i=1Xi] = Πn

i=1E[Xi]. (84)

Homework 1.19

Consider an experiment of tossing a die with 6 sides. Assume that the die is fair, i.e., each side
has the same probability (1/6) to occur. Consider a random variable X that takes the value i
if the outcome of the toss is i, for i = 1, 2, 3, · · · , 6. Find E[X], V ar[X] and StDev[X].

Answers

E[X] = 3.5; E[X2] = 15.16666667; V ar[X] = 2.916666667; StDev[X] = 1.707825128.

Homework 1.20

Consider the previous problem and plot the probability function, distribution function and the
complementary distribution function of X.
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Homework 1.21

Consider an exponential random variable with parameter λ. Derive its mean and Variance.

Guide

Find the mean by

E[X] =

∫ ∞

0

xλe−λxdx.

Use integration by parts to show that:

E[X] = −xe−λx
]∞
0

+

∫ ∞

0

e−λxdx =
1

λ
.

Then use integration by parts to derive the second moment. Understand and verify the following
derivations:

E[X2] =

∫ ∞

0

x2λe−λxdx

= −x2e−λx
]∞
0

+ 2

∫ ∞

0

xe−λxdx

=

(
−x2e−λx − 2

λ
xe−λx − 2

λ2
e−λx

)]∞

0

=
2

λ2
.

V ar[X] = E[X2]− (E[X])2 =
2

λ2
− 1

λ2
=

1

λ2

¤
The mean of the Pareto random variable is given by

E[X] =

{ ∞ if 0 < γ ≤ 1
δγ

γ−1
γ > 1.

(85)

For 0 < γ ≤ 2, the variance V ar[X] = ∞.

The following table provides the mean and the variance of some of the above-mentioned random
variables.
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random variable parameters mean variance
Bernoulli 0 ≤ p ≤ 1 p p(1− p)
binomial n and 0 ≤ p ≤ 1 np np(1− p)
Poisson λ > 0 λ λ
uniform a and b (a + b)/2 (b− a)2/12

exponential µ > 0 1/µ 1/µ2

Gaussian m and σ m σ2

Pareto δ > 0 and 1 < γ ≤ 2 δγ
(γ−1)

∞
In many applications it is useful to use the concept of Conditional Expectation (or Mean)
to derive moments of unknown distributions. It is defined by:

E[X | Y ] = EX [P (X | Y )], (86)

where the subscript X indicates that the mean is over X. For example, the conditional expec-
tation of two discrete random variables is defined by

E[X | Y = j] =
∑

i

iP (X = i | Y = j). (87)

If X and Y are continuous, their conditional expectation is defined as

E[X | Y = y] =

∫ ∞

x=−∞
xfX|Y (x | y)dx. (88)

It is important to realize that E[X | Y ] is a random variable which is a function of the random
variable Y . Therefore, if we consider its mean (in the case that Y is discrete) we obtain

EY [E[X | Y ]] =
∑

j

E[X | Y = j]P (Y = j)

=
∑

j

∑
i

iP (X = i | Y = j)P (Y = j)

=
∑

i

i
∑

j

P (X = i | Y = j)P (Y = j)

=
∑

i

iP (X = i) = E[X].

Thus, we have obtained the following formula for the mean E[X]

E[X] = EY [E[X | Y ]]. (89)

The latter also applies to continuous random variables. In this case we have:

EY [E[X | Y ]] =

∫ ∞

y=−∞
E[X | Y = y]fY (y)dy

=

∫ ∞

y=−∞

∫ ∞

x=−∞
xfX|Y (x | y)dxfY (y)dy

=

∫ ∞

x=−∞
x

∫ ∞

y=−∞
fX|Y (x | y)fY (y)dydx

=

∫ ∞

x=−∞
xfX(x)dx = E[X].
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Homework 1.22

Show that E[X] = EY [E[X | Y ]] holds also for the case where X is discrete and Y is continuous
and vice versa. ¤
Note that P (X = x | Y = y) is itself a random variable that is a function of the values y taken
by random variable Y . Therefore, by definition EY [P (X = x | Y = y)] =

∑
y P (X = x | Y =

y)P (Y = y) which lead to another way to express the Law of Total Probability:

PX(x) = EY [P (X = x | Y = y)]. (90)

Define the Conditional Variance as

V ar[X | Y ] = E[(X − E[X | Y ])2 | Y ]. (91)

This gives rise to the following useful formula for the variance of a random variable known as
EVVE:

V ar[X] = E[V ar[X | Y ]] + V ar[E[X | Y ]]. (92)

To show EVVE, we recall (80): V ar[X] = E[X2]− (E[X])2, and (89): E[X] = EY [E[X | Y ]],
we obtain

V ar[X] = E[E[X2 | Y ]]− (E[E[X | Y ]])2. (93)

Then using E[X2] = V ar[X] + (E[X])2 gives

V ar[X] = E[V ar[X | Y ] + (E[X | Y ])2]− (E[E[X | Y ]])2 (94)

or
V ar[X] = E[V ar[X | Y ]] + E[E[X | Y ]]2 − (E[E[X | Y ]])2. (95)

Now considering again the formula V ar[X] = E[X2] − (E[X])2, but instead of the random
variable X we put the random variable E[X | Y ], we obtain

V ar[E[X | Y ]] = E[E[X | Y ]]2 − (E[E[X | Y ]])2, (96)

observing that the right-hand side of (96) equals to the last two terms in the right-hand side
of (95), we obtain EVVE.

To illustrate the use of conditional mean and variance, consider the following example. Every
second the number of Internet flows that arrive at a router, denoted φ, has mean φe and variance
φv. The number of packets in each flow, denoted ς, has mean ςe and variance ςv. Assume that
the number of packets in each flow and the number of flows arriving per second are independent.
Let W the total number of packets arriving at the router per second which has mean We and
variance Wv. Assume W = ςφ. The network designer, aiming to meet certain quality of service
(QoS) requirements, makes sure that the router serves the arriving packets at the rate of sr per
second, such that sr = We + 4

√
Wv. To compute sr one needs to have the values of We and

Wv. Because φ and ς are independent E[W |φ] = φςe and by (89)

We = E[W ] = E[E[W |φ]] = E[φ]E[ς] = φeςe.

Note that the relationship
We = φeςe (97)
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is also obtained directly by (84). In fact, the above proves (84) for the case of two random
variables.

Also by EVVE,

V ar[W ] = E[V ar[W |φ]] + V ar[E[W |φ]] = ςvE[φ2] + (ςe)
2V ar[φ].

Therefore
Wv = φvςv + ςvφ

2
e + φvς

2
e . (98)

Homework 1.23

1. Provide detailed derivations of Equations (97) and (98) using (89) and (92).

2. Derive Equations (97) and (98) in a different way, considering the independence of the
number of packets in each flow and the number of flows arriving per second. ¤

1.13 Sample Mean and Sample Variance

If we are given a sample of n realizations of a random variable X, denoted X(1), X(2), . . . , X(n)
we will use the Sample Mean defined by

Sm =

∑n
i=1 X(i)

n
(99)

as an estimator for the mean of X. For example, if we run simulation of a queueing system and
observe n values of customer delays for n different customers, the Sample Mean will be used to
estimate a customer delay.

If we are given a sample of n realizations of a random variable X, denoted X(1), X(2), . . . , X(n)
we will use the Sample Variance defined by

Sv =

∑n
i=1[X(i)− Sm]2

n− 1
(100)

as an estimator for the variance of X. The sample standard deviation is then
√

Sv.

Homework 1.24

Generate 10 deviates from an exponential distribution of a given mean and compute the Sample
Mean and Sample Variance . Compare them with the real mean and variance. Then increase
the sample to 100, 1000, . . . , 1,000,000. Observe the difference between the real mean and
variance and the sample mean and variance. Repeat the experiment for a Pareto deviates of
the same mean. Discuss differences. ¤

1.14 Covariance and Correlation

When random variables are positively dependent, namely, if when one of them obtains high
values, the others are likely to obtain high value also, then the variance of their sum may
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be much higher than the sum of the individual variances. This is very significant for bursty
multimedia traffic modeling and resource provisioning. For example, let time be divided into
consecutive small time intervals, if Xi is the amount of traffic arrives during the ith interval, and
assume that we use a buffer that can store traffic that arrives in many intervals, the probability
of buffer overflow will be significantly affected by the variance of the amount of traffic arrives in
a time period of many intervals, which in turn is strongly affected by the dependence between
the Xis. Therefore, there is a need to define a quantitative measure for dependence between
random variables. Such measure is called the covariance. The covariance of two random
variables X1 and X2, denoted by cov(X1, X2), is defined by

cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])]. (101)

Intuitively, by Eq. (101), if high value of X1 implies high value of X2, and low value of X1

implies low value of X2, the covariance is high. By Eq. (101),

cov(X1, X2) = E[X1X2]− E[X1]E[X2]. (102)

Hence, by (84), if X1 and X2 are independent then cov(X1, X2) = 0. The variance of the sum
of two random variables X1 and X2 is given by

V ar[X1 + X2] = V ar[X1] + V ar[X2] + 2cov(X1, X2). (103)

This is consistent with our comments above. The higher the dependence between the two
random variables, as measured by their covariance, the higher the variance of their sum, and if
they are independence, hence cov(X1, X2) = 0, the variance of their sum is equal to the sum of
their variances. Notice that the reverse is not always true: cov(X1, X2) = 0 does not necessarily
imply that X1 and X2 are independent.

Notice also that negative covariance results in lower value for the variance of their sum than
the sum of the individual variances.

Homework 1.25

Prove that cov(X1, X2) = 0 does not necessarily imply that X1 and X2 are independent.

Guide

The proof is by a counter example. Consider two random variables X and Y and assume that
both have Bernoulli distribution with parameter p. Consider random variable X1 defined by
X1 = X+Y and another random variable X2 defined by X2 = X−Y. Show that cov(X1, X2) = 0
and that X1 and X2 are not independent. ¤
Let the sum of the random variables X1, X2, X3, . . . , Xk be denoted by

Sk = X1 + X2 + X3 + . . . + Xk.

Then

var(Sk) =
k∑

i=1

V ar[Xi] + 2
∑
i<j

cov[Xi, Xj] (104)
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where
∑

i<j cov[Xi, Xj] is a sum over all cov[Xi, Xj] such that i and j is a pair selected without
repetitions out of 1, 2, 3, . . . k so that i < j.

Homework 1.26

Prove Eq. (104).

Guide

First show that Sk − E[Sk] =
∑k

i=1(Xi − E[Xi]) and that

(Sk − E[Sk])
2 =

k∑
i=1

(Xi − E[Xi])
2 + 2

∑
i<j

(Xi − E[Xi])(Xj − E[Xj]).

Then take expectations of both sides of the latter. ¤
If we consider k independent random variables denoted X1, X2, X3, . . . , Xk, then by substituting
cov[Xi, Xj] = 0 for all relevant i and j in (104), we obtain

var(Sk) =
k∑

i=1

V ar[Xi]. (105)

Homework 1.27

Use Eq. (104) to explains the relationship between the variance of a Bernoulli random variable
and a binomial random variable.

Guide

Notice that a binomial random variable with parameters k and p is a sum of k independent
Bernoulli random variables with parameter p. ¤
The covariance can take any value between −∞ and +∞, and in some cases, it is convenient to
have a normalized dependence measure - a measure that takes values between -1 and 1. Such
measure is the correlation. Noticing that the covariance is bounded by

cov(X1, X2) ≤
√

V ar[X1]V ar[X2], (106)

the correlation of two random variables X and Y denoted by corr(X,Y ) is defined by

corr(X, Y ) =
cov(X,Y )

σXσY

, (107)

assuming V ar[X] 6= 0 and V ar[Y ] 6= 0.

Homework 1.28

Prove that | corr(X,Y ) |≤ 1.
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Guide

Let C = cov(X, Y ), and show C2− σ2
Xσ2

Y ≤ 0, by noticing that C2− σ2
Xσ2

Y is a discriminant of
the quadratic a2σ2

X+2aC+σ2
Y which must be nonnegative because E[a(X−E[X])+(Y −E[Y ])]2

is nonnegative. ¤

1.15 Transforms

Transforms are very useful in analysis of probability models and queueing systems. We will first
consider the following general definition [13] for a transform function Γ of a random variable
X:

ΓX(ω) = E[eωX ] (108)

where ω is a complex scalar. Transforms have two important properties:

1. There is a one-to-one correspondence between transforms and probability distributions.
This is why they are sometimes called characteristics functions. This means that for
any distribution function there is a unique transform function that characterizes it and
for each transform function there is a unique probability distribution it characterizes.
Unfortunately it is not always easy to convert a transform to its probability distribution,
and therefore we in some cases that we are able to obtain the transform but not its
probability function, we use it as means to characterize the random variable statistics
instead of the probability distribution.

2. Having a transform function of a random variable we can generate its moments. This is
why transforms are sometimes called moment generating functions. In many cases, it is
easier to obtain the moments having the transform than having the actual probability
distribution.

We will now show how to obtain the moments of a continuous random variable X with density
function fX(x) from its transform function ΓX(ω). By definition,

ΓX(ω) =

∫ ∞

−∞
eωxfX(x)dx. (109)

Taking derivative with respect to ω leads to

Γ
′
X(ω) =

∫ ∞

−∞
xeωxfX(x)dx. (110)

Letting ω → 0, we obtain
lim
ω→0

Γ
′
X(ω) = E[X], (111)

and in general, taking the nth derivative and letting ω → 0, we obtain

lim
ω→0

Γ
(n)
X (ω) = E[Xn]. (112)

Homework 1.29

Derive Eq. (112) using (109) – (111) completing all the missing steps. ¤
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Consider for example the exponential random variable X with parameter λ having density
function fX(x) = λe−λx and derive its transform function. By definition,

ΓX(ω) = E[eωX ] = λ

∫ ∞

x=0

eωxe−λxdx, (113)

which gives after some derivations

ΓX(ω) =
λ

λ− ω
. (114)

Homework 1.30

Derive Eq. (114) from (113) ¤
Let X and Y be random variables and assume that Y = aX + b. The transform of Y is given
by

ΓY (ω) = E[eωY ] = E[eω(aX+b)] = eωbE[eωaX ] = eωbΓX(ωa). (115)

Let random variable Y be the sum of independent random variables X1 and X2, i.e., Y =
X1 + X2. The transform of Y is given by

ΓY (ω) = E[eωY ] = E[eω(X1+X2)] = E[eωX1 ]E[eωX2 ] = ΓX1(ω)ΓX2(ω). (116)

This result applies to a sum of n independent random variables, so the transform of a sum of
independent random variable equals to the product of their transform. If Y =

∑n
i=1 Xi and all

the Xis are n independent and identically distributed (IID) random variables, then

ΓY (ω) = E[eωY ] = [ΓX1(ω)]n. (117)

Let us now consider a Gaussian random variable X with parameters m and σ and density

fX(x) =
1√
2πσ

e−(x−m)2/2σ2 −∞ < x < ∞. (118)

Its transform is derived as follows

ΓX(ω) = E[eωX ]

=

∫ ∞

−∞

1√
2πσ

e−(x−m)2/2σ2

eωx

= e(σ2ω2/2)+mω

∫ ∞

−∞

1√
2πσ

e−(x−m)2/2σ2

eωxe−(σ2ω2/2)−mω

= e(σ2ω2/2)+mω

∫ ∞

−∞

1√
2πσ

e−(x−m−σ2ω)2/2σ2

= e(σ2ω2/2)+mω.

Let us use the transform just derived to obtain the mean and variance of a Gaussian ran-
dom variable with parameters m and σ. Taking the first derivative and putting ω = 0, we
obtain

E[X] = Γ
′
X(0) = m. (119)
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Taking the second derivative and setting ω = 0, we obtain

E[X2] = Γ
(2)
X (0) = σ2 + m2. (120)

Thus,
V ar[X] = E[X2]− E[X2] = σ2 + m2 −m2 = σ2. (121)

A Gaussian random variable with mean equal to zero and variance equal to one is called standard
Gaussian. It is well known that if Y is Gaussian with mean m and standard deviation σ, then
the random variable X defined as

X =
Y −m

σ
(122)

is standard Gaussian.

Substituting σ = 1 and m = 0 in the above transform of a Gaussian random variable, we obtain
that

ΓX(ω) = e(ω2/2) (123)

is the transform of a standard Gaussian random variable.

Homework 1.31

Show the consistency between the results obtained for transform of a Gaussian random variable,
(115), (122) and (123). ¤
Let Xi, i = 1, 2, 3, . . . , n be n independent random variables and let Y be a random variable
that equals Xi with probability pi for i = 1, 2, 3, . . . , N . Therefore, by the Law of Total
Probability,

P (Y = y) =
N∑

i=1

piP (Xi = y) (124)

or for continuous densities

fY (y) =
n∑

i=1

pifXi
(y). (125)

Its transform is given by

ΓY (ω) = E[eωY ]

=

∫ ∞

−∞
fY (y)eωy

=

∫ ∞

−∞
[

n∑
i=1

pifXi
(y)]eωy

=

∫ ∞

−∞

n∑
i=1

pifXi
(y)eωy

=
n∑

i=1

piΓXi
(ω).

Notice that if the Xi are exponential random variables then, by definition, Y is hyper-exponential.
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Particular transforms include the Z, the Laplace, and the Fourier transforms.

The Z-transform ΠX(z) applies to integer valued random variable X and is defined by

ΠX(z) = E[zX ].

This is a special case of (108) by setting z = eω.

The Laplace transform applies to nonnegative valued random variable X and is defined
by

LX(s) = E[e−sX ] fors ≥ 0.

This is a special case of (108) by setting ω = −s.

The Fourier transform applies to both nonnegative and negative valued random variable X
and is defined by

ΥX(s) = E[eiθX ],

where i =
√−1 and θ is real. This is a special case of (108) by setting ω = iθ.

We will only use the Z and Laplace transforms in this book.

1.15.1 Z-transform

Consider a discrete and nonnegative random variable X, and let pi = P (X = i), i = 0, 1, 2, . . .
with

∑∞
i=0 pi = 1. The Z-transform of X is defined by

ΠX(z) = E[zX ] =
∞∑
i=0

piz
i, (126)

where z is a real number that satisfies 0 ≤ z ≤ 1. Note that in many applications the Z-
transform is defined for complex z. However, for the purpose of this book, we will only consider
real z within 0 ≤ z ≤ 1.

Homework 1.32

Prove the following properties of the Z-transform ΠX(z):

1. limz→1− ΠX(z) = 1 (z → 1− is defined as z approaches 1 from below).

2. pi = Π
(i)
X (0)/i! where Π

(i)
X (z) is the ith derivative of ΠX(z).

3. E[X] = limz→1− Π
(1)
X (z). ¤

For simplification of notation, in the following, we will use Π
(i)
X (1) = limz→1− Π

(i)
X (z), but the

reader must keep in mind that a straightforward substitution of z = 1 in Π
(i)
X (z) is not always

possible and the limit needs to be derived. An elegant way to show the 3rd property is to
consider ΠX(z) = E[zX ], and exchanging the operation of derivative and expectation, we

obtain Π
(1)
X (z) = E[XzX−1], so Π

(1)
X (1) = E[X]. Similarly,

Π
(i)
X (1) = E[X(X − 1) . . . (X − i + 1)]. (127)
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Homework 1.33

Show that the variance V ar[X] is given by

V ar[X] = Π
(2)
X (1) + Π

(1)
X (1)− (Π

(1)
X (1))2. ¤ (128)

Homework 1.34

Derive a formula for E[X i] using the Z-transform. ¤
As a Z-transform is a special case of the transform ΓY (ω) = E[eωY ], the following results
hold.

If random variables X and Y are related by Y = aX + b for real numbers a and b then

ΠY (z) = zbΠX(za). (129)

Let random variable Y be the sum of independent random variables X1, X2, . . . , Xn (Y =∑n
i=1 Xi), The Z-transform of Y is given by

ΠY (z) = ΠX1(z)ΠX2(z)ΠX3(z) . . . ΠXn(z). (130)

If X1, X2, . . . , Xn are also identically distributed, then

ΠY (z) = [ΠX1(z)]n. (131)

Let us now consider several examples of Z-transforms of nonnegative discrete random variables.
If X is a Bernoulli random variable with parameter p, then its Z-transform is given by

ΠX(z) = (1− p)z0 + pz1 = 1− p + pz. (132)

Its mean is E[X] = Π
(1)
X (1) = p and by (128) its variance is p(1− p).

If X is a Geometric random variable with parameter p, then its Z-transform is given by

ΠX(z) = p

∞∑
i=1

(1− p)i−1zi =
pz

1− (1− p)z
. (133)

Its mean is E[X] = Π
(1)
X (1) = 1/p and by (128) its variance is (1− p)/p2.

If X is a Binomial random variable with parameter p, then we can obtain its Z-transform
either by definition or by realizing that a Binomial random variable is a sum of n IID Bernoulli
random variables. Therefore its Z-transform is given by

ΠX(z) = (1− p + pz)n = [1 + (z − 1)p]n. (134)

Homework 1.35

Verify that the latter is consistent with the Z-transform obtained using ΠX(z) =
∑∞

i=0 piz
i.

¤
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The mean of X is E[X] = Π
(1)
X (1) = np and by (128) its variance is np(1− p).

If X is a Poisson random variable with parameter λ, then its Z-transform is given by

ΠX(z) =
∞∑
i=0

piz
i = e−λ

∞∑
i=0

λizi

i!
= e(z−1)λ. (135)

Its mean is E[X] = Π
(1)
X (1) = λ and by (128) its variance is also equal to λ.

We can now see the relationship between the Binomial and the Poisson random variables. If
we consider the Z-transform of the Binomial random variable ΠX(z) = (1 − p + pz)n, and set
λ = np as a constant so that ΠX(z) = (1 + (z − 1)λ/n)n and let n →∞, we obtain

lim
n→∞

(1− p + pz)n = lim
n→∞

[1 + (z − 1)λ/n]n = e(z−1)λ (136)

which is exactly the Z-transform of the Poisson random variable. This proves the convergence of
the binomial to the Poisson random variable if we keep np constant and let n go to infinity.

1.15.2 Laplace Transform

The Laplace transform of a non-negative random variable X with density fX(x) is defined
as

LX(s) = E[e−sX ] =

∫ ∞

0

e−sxfX(x)dx. (137)

As it is related to the transform ΓX(ω) = E[eωX ] by setting ω = −s, similar derivations to
those made for ΓX(ω) above give the following.

If X1, X2, . . . , Xn are n independent random variables then

LX1+X2+ ... +Xn(s) = LX1(s)LX2(s) . . . LXn(s). (138)

Let X and Y be random variables and Y = aX + b. The Laplace transform of Y is given
by

LY (s) = e−sbLX(sa). (139)

The nth moment of random variable X is given by

E[Xn] = (−1)nL(n)
X (0) (140)

where L(n)
Y (0) is the nth derivative of LX(s) at s = 0 (or at the limit s → 0). Therefore,

V ar[X] = E[X2]− (E[X])2 = (−1)2L(2)
X (0)− ((−1)L(1)

X (0))2 = L(2)
X (0)− (L(1)

X (0))2. (141)

Let X be an exponential random variable with parameter λ. Its Laplace transform is given
by

LX(s) =
λ

λ + s
. (142)
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Homework 1.36

Derive (138)–(142) using the derivations made for ΓX(ω) as a guide. ¤
Now consider N to be a nonnegative discrete (integer) random variable of a probability distribu-
tion that has the Z-transform ΠN(z), and let Y = X1+X2+ . . . +XN , where X1, X2, . . . , XN

are nonnegative IID random variables with a common distribution that has the Laplace trans-
form LX(s) (i.e., they are exponentially distributed). Let us derive the Laplace transform of
Y . Conditioning and unconditioning on N , we obtain

LY (s) = E[e−sY ] = EN [E[e−s(X1+X2+ ... +XN |N)]]. (143)

Therefore, by independence of the Xi,

LY (s) = EN [E[e−sX1 + E[e−sX2 + . . . + E[e−sXN ]] = EN [(LX(s))N ]. (144)

Therefore
LY (s) = ΠN [(LX(s))]. (145)

An interesting example of (145) is the case where the Xi are IID exponentially distributed each
with parameter λ, and N is geometrically distributed with parameter p. In this case, we already
know that since X is an exponential random variable, we have LX(s) = λ/(λ + s), so

LY (s) = ΠN

(
λ

λ + s

)
. (146)

We also know that N is geometrically distributed, so ΠN(z) = pz/[1 − (1 − p)z]. Therefore,
from (146), we obtain,

LY (s) =
pλ

λ+s

1− (1−p)λ
λ+s

(147)

and after some algebra we obtain

LY (s) =
pλ

s + pλ
. (148)

This result is interesting. We have shown that Y is exponentially distributed with parameter
pλ.

Homework 1.37

Let X1 and X2 be exponential random variables with parameters λ1 and λ2 respectively. Con-
sider a random variable Y defined by the following algorithm.

1. Initialization: Y = 0.

2. Conduct an experiment to obtain the values of X1 and X2. If X1 < X2 then Y = Y + X1

and Stop. Else, Y = Y + X2 and repeat 2.

Show that Y is exponentially distributed with parameter λ1.

Hint

Notice that Y is a geometric sum of exponential random variables. ¤
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Homework 1.38

Derive the density, the Laplace transform, the mean and the variance of Y in the following
three cases.

1. Let X1 and X2 be exponential random variables with parameters µ1 and µ2, respectively.
In this case, Y is a hyperexponential random variable with density fY (y) = pfX1(y) +
(1− p)fX2(y).

2. Let X1 and X2 be exponential random variables with parameters µ1 and µ2, respectively.
The hypoexponential random variable Y is defined by Y = X1 + X2.

3. Let Y be an Erlang random variable, namely, Y =
∑k

i=1 Xi where the Xis are IID
exponentially distributed random variables with parameter µ.

Now plot the standard deviation to mean ratio for the cases of hyperexponential and Erlang
random variables over a wide range of parameter values and discuss implications. For example,
show that for Erlang(k) the standard deviation to mean ratio approaches zero as k approaches
infinity. ¤

1.16 Multivariate Random Variables and Transform

A multivariate random variable is a vector X = (X1, X2, . . . , Xk) where each of the k com-
ponents is a random variable. A multivariate random variable is also known as random vector.
These k components of a random vector are related to events (outcomes of experiments) on
the same sample space and they can be continuous or discrete. They also have a legitimate
well defined joint distribution (or density) function. The distribution of each individual com-
ponent Xi of the random vector is its marginal distribution. A transform of a random vector
X = (X1, X2, . . . , Xk) is called multivariate transform and is defined by

ΓX(ω1, ω2, . . . , ωk) = E[sω1X1,ω2X2, ..., ωkXk ]. (149)

1.17 Probability Inequalities and Their Dimensioning Applications

In the course of design of telecommunications networks, a fundamental important problem is
how much capacity a link should have. If we consider the demand as a non-negative random
variable X and the link capacity as a fixed scalar C > 0, we will be interested in the probability
that the demand exceeds the capacity P (X > C). The more we know about the distribution
the more accurate out estimation of P (X > C).

If we know only the mean, we use the so-called Markov inequality:

P (X > C) ≤ E[X]

C
. (150)

Homework 1.39

Prove Eq. (150).
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Guide

Define a new random variable U(C) a function of X and C defined by: U(C) = 0 if X < C, and
U(C) = C if X ≥ C. Notice U(C) ≤ X, so E[U(C)] ≤ E[X]. Also, E[U(C)] = CP (U(C) =
C) = CP (X ≥ C), and Eq. (150) follows. ¤
If we know the mean and the variance of X, then we can use the so-called Chebyshev in-
equality:

P (| X − E[X] |> C) ≤ V ar[X]

C2
. (151)

Homework 1.40

Prove Eq. (151).

Guide

Define a new random variable (X−E[X])2 and apply the Markov inequality putting C2 instead
of C obtaining:

P ((X − E[X])2 ≥ C2) ≤ E[(X − E[X])2]

C2
=

V ar[X]

C2
.

Notice that the two events (X − E[X])2 ≥ C2 and | X − E[X] |≥ C are identical. ¤
Another version of Chebyshev inequality is

P (| X − E[X] |> C∗σ) ≤ 1

(C∗)2
(152)

for C∗ > 0.

Homework 1.41

Prove and provide interpretation to Eq. (152).

Guide

Observe that the right-hand side of (152) is equal to V ar[X]
V ar[X](C∗)2 . ¤

Homework 1.42

For a wide range of parameter values, study numerically how tight the bounds provided by
Markov versus Chebyshev inequalities are. Discuss the differences and provide interpretations.
¤

A further refinement of the Chebyshev inequality is the following Kolmogorov inequality.
Let X1, X2, X3, . . . , Xk be a sequence of mutually independent random variables (not neces-
sarily identically distributed) and let Sk = X1 +X2 +X3 + . . . +Xk and σ(Sk) be the standard
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deviation of Sk. Then for every ε > 0,

P (| Sk − E[Sk] |< θσ(Sk) for all k = 1, 2, . . . , n) ≥ 1− 1

θ2
. (153)

The interested reader may consult Feller [24] for the proof of the Kolmogorov inequality. We are
however more interested in its teletraffic implication. If we let time be divided into consecutive
intervals and we assume that Xi is the number of packets arrive during the ith interval, and
if the number of packets arrive during the different intervals are mutually independent, then it
is rare that we will have within a period of n consecutive intervals any period of k consecutive
intervals (k ≤ n) during which the number of packets arriving is significantly more than the
average.

1.18 Limit Theorems

Let X1, X2, X3, . . . , Xk be a sequence of IID random variables with mean λ and variance σ2.
Let S̄k be the sample mean of these k random variables defined by

S̄k =
X1 + X2 + X3 + . . . + Xk

k
.

This gives

E[S̄k] =
E[X1] + E[X2] + E[X3] + . . . + E[Xk]

k
=

kλ

k
= λ.

Recalling that the Xis are independent, we obtain

V ar[S̄k] =
σ2

k
. (154)

Homework 1.43

Prove Eq. (154). ¤
Applying Chebyshev’s inequality, we obtain

P (| S̄k − λ |≥ ε) ≤ σ2

kε2
for all ε > 0. (155)

Noticing that as k approaches infinity, the right-hand side of (155) approaches zero which
implies that the left-hand side approaches zero as well. This leads to the so-called the weak
law of large numbers that states the following. Let X1, X2, X3, . . . , Xk be k IID random
variables with common mean λ. Then

P

(∣∣∣∣
X1 + X2 + X3 + . . . + Xk

k
− λ

∣∣∣∣ ≥ ε)

)
→ 0 as k →∞ for all ε > 0. (156)

What the weak law or large number essentially says is that the sample mean approaches the
mean as the sample size increases.
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Next we state the central limit theorem that we have mentioned in Section 1.10.7. Let
X1, X2, X3, . . . , Xk be k IID random variables with common mean λ and variance σ2. Let
random variable Yk be defined as

Yk =
X1 + X2 + X3 + . . . + Xk − kλ

σ
√

k
. (157)

Then,
lim
k→∞

P (Yk ≤ y) = Φ(y) (158)

where Φ(·) is the distribution function of a standard Gaussian random variable given by

Φ(y) =
1√
2π

∫ y

−∞
e−t2/2dt.

Homework 1.44

Prove that E[Yk] = 0 and that V ar[Yk] = 1 from first principles without using the central limit
theorem. ¤
As we mentioned in Section 1.10.7, the central limit theorem is considered the most important
result in probability. Notice that it implies that the sum of k IID random variable with common
mean λ and variance σ2 is approximately Guassian with mean kλ and variance kσ2 regardless
of the distribution of these variables.

Moreover, under certain conditions, the central limit theorem also applies in the case of se-
quences that are not identically distributed, provided one of a number of conditions apply.
One of the cases where the central limit theorem also applies in the case of non-IID ran-
dom variables is due to Lyapunov described as follows. Consider X1, X2, X3, . . . , Xk to
be a sequence of independent random variables. Let λn = E[Xn], n = 1, 2, . . . , k and
σ2

n = V ar[Xn], n = 1, 2, . . . , k, and assume that all λn and σ2
n are finite. Let

Ŝ2
n =

n∑
i=1

σ2
i ,

R̂3
n =

n∑
i=1

E[|Xi − λi|3],

and assume that Ŝ2
n and R̂3

n are finite for all n = 1, 2, . . . , k. Further assume that

lim
k→∞

R̂

Ŝ
= 0.

The latter is called “Lyapunov condition”.

If these conditions hold then the random variable
∑k

i=1 Xi has Gaussian distribution with

mean
∑k

i=1 λi and variance
∑k

i=1 σ2
i . This generalization of the central limit theorem to non

IID random variables, based on Lyapunov condition, is called “Lyapunov’s central limit theo-
rem”.
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1.19 Link Dimensioning

Before we end this chapter on probability, let us demonstrate how the probability concepts
discussed so far can be used to provide simple means for link dimensioning. We will consider
several scenarios of sources (individuals or families) sharing a communication link. Each of the
sources has certain requirements for capacity and the common link must be dimensioned in
such a way that minimizes the cost for the telecommunications provider, but still meets the
individual QoS requirements. The link dimensioning procedures that we described below apply
to user requirements for capacity. These requirements apply to transmissions from the sources
to the network as well as to downloads from the networks to the user or to combination of
downloads and transmissions. We are not concerned with specific directions of transmission.
We assume that the capacity of the common link can be used in either direction. When we say
a source “transmits” it should always be read as “transmits and/or downloads”.

1.19.1 Case 1: Homogeneous Individual Sources

Consider N independent sources (end-terminals), sharing a transmission link of capacity C
[Mb/s]. Any of the sources transmits data in accordance with an on-off process. That is, a
source alternates between two states: 1) the on state during which the source transmits at a
rate R [Mb/s], and 2) the off state during which the source is idle. Assume that the proportion
of time the source is in the on-state is p, so it is in the off-state 1−p of the time. The question is
how much capacity should the link have so it can serve all N sources such that the probability
that the demand exceeds the total link capacity is no higher than α.

We first derive the distribution of the total traffic demanded by the N sources. Without loss
of generality, let us normalize the traffic generated by a source during on period by setting
R = 1. Realizing that the demand generated by a single source is Bernoulli distributed with
parameter p, we obtain that the demand generated by all N sources has Binomial distribution
with parameters p and N . Accordingly, finding the desired capacity is reduced to finding the
smallest C such that

N∑
i=C+1

(
N

i

)
pi(1− p)N−i ≤ α. (159)

Since the left-hand side of (159) increases as C decreases, and since its value is zero if C = N ,
all we need to do to find the optimal C is to compute the value of the left-hand side of (159)
for C values of N − 1, N − 2, . . . until we find the first C value for which the inequality (159)
is violated. Increasing that C value by one will give us the desired optimal C value.

If N is large we can use the central limit theorem and approximate the Binomial distribution by
a Gaussian distribution. Accordingly, the demand can be approximated by a Gaussian random
variable with mean Np and variance Np(1 − p) and simply find CG such that the probability
of our Gaussian random variable to exceed CG is α.

It is well known that Gaussian random variables obey the so-called 68-95-99.7% Rule which
means that the following apply to a random variable X with mean m and standard deviation
σ.

P (m− σ ≤ X ≤ m + σ) = 0.68

P (m− 2σ ≤ X ≤ m + 2σ) = 0.95
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P (m− 3σ ≤ X ≤ m + 3σ) = 0.997.

Therefore, if α = 0.0015 then CG should be three standard deviations above the mean,
namely,

CG = Np + 3
√

Np(1− p). (160)

Note that α is a preassign QoS measure representing the proportion of time that the demand
exceeds the supply and under the zero buffer approximation during that period some traffic is
lost. If it is required that α is lower than 0.0015, then more than three standard deviations above
the mean are required. Recall that for our original problem, before we introduced the Gaussian
approximation, C = N guarantees that there is sufficient capacity to serve all arriving traffic
without losses. Therefore, we set our dimensioning rule for the optimal C value as follows:

Copt = min
[
N, Np + 3

√
Np(1− p)

]
. (161)

1.19.2 Case 2: Non-homogeneous Individual Sources

Here we generalize the above scenario to the case where the traffic and the peak rates of different
sources can be different. Consider N sources where the ith source transmits at rate Ri with
probability pi, and at rate 0 with probability 1 − pi. In this case where the sources are non-
homogeneous, we must invoke a generalization of the central limit theorem that allows for non
IID random variables (i.e., the “Lyapunov’s central limit theorem”). Let RX(i) be a random
variable representing the rate transmitted by source i. We obtain:

E[RX(i)] = piRi.

and
V ar[RX(i)] = R2

i pi − (Ripi)
2 = R2

i pi(1− pi).

The latter is consistent with the fact that RX(i) is equal to Ri times a Bernoulli random
variable. We now assume that the random variable

ΣR =
N∑

1=1

RX(i)

has a Gaussian distribution with mean

E[ΣR] =
N∑

1=1

E[RX(i)] =
N∑

1=1

piRi

and variance

V ar[ΣR] =
N∑

1=1

V ar[RX(i)] =
N∑

1=1

R2
i pi(1− pi).

Notice that the allocated capacity should not be more than the total sum of the peak rates of the
individual sources. Therefore, in this more general case, for the QoS requirement α = 0.0015,
our optimal C value is set to:

Copt = min

[
N∑

i=1

Ri, E[ΣR] + 3
√

V ar[ΣR]

]
. (162)
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Homework 1.45

There are 20 sources each transmits at a peak-rate of 10 Mb/s with probability 0.1 and is idle
with probability 0.9, and there are other 80 sources each transmits at a peak-rate of 1 Mb/s
with probability 0.05 and is idle with probability 0.95. A service provider aims to allocate the
minimal capacity Copt such that no more than 0.0015 of the time, the demand of all these 100
sources exceeds the available capacity. Set Copt using above describe approach.

Answer: Copt = 64.67186 Mb/s.

Notice the difference in contributions to the total variance of sources from the first group versus
such contributions of sources from the second group.

Consider a range of examples where the variance is the dominant part of Copt versus examples
where the variance is not the dominant part of Copt. ¤

1.19.3 Case 3: Capacity Dimensioning for a Community

In many cases, the sources are actually a collection of sub-sources. A source could be a family
of several members and at any given point in time, one or more of the family members are
accessing the link. In such a case, we assume that source i, i = 1, 2, 3, . . . , N , transmits at rate
Rj(i) with probability pij for j = 0, 1, 2, 3, . . . , J(i). For all i, R0(i) ≡ 0 and RJ(i)(i) is defined to
be the peak rate of source i. For each source (family) i, Rj(i) and pij for j = 1, 2, 3, . . . , J(i)−1,
are set based on measurements for the various rates reflecting the total rates transmitted by
active family members and their respective proportion of time used. For example, for a certain
family i, R1(i) could be the rate associated with one individual family member browsing the
web, R2(i) the rate associated with one individual family member using Voice over IP, R3(i) the
rate associated with one individual family member watching video, R4(i) the rate associated
with one individual family member watching video and another browsing the web, etc. The pij

is the proportion of time during the busiest period of the day that Ri(j) is used.

Again, defining RX(i) as a random variable representing the rate transmitted by source i, we
have

E[RX(i)] =

J(i)∑
j=0

pijRj(i) for i = 1, 2, 3, . . . , N.

and

V ar[RX(i)] =

J(i)∑
j=0

{Rj(i)}2pij − {E[RX(i)]}2 for i = 1, 2, 3, . . . , N.

Again, assume that the random variable

ΣR =
N∑

1=1

RX(i)

has a Gaussian distribution with mean

E[ΣR] =
N∑

1=1

E[RX(i)]
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and variance

V ar[ΣR] =
N∑

1=1

V ar[RX(i)].

Therefore, in this general case, for the QoS requirement α = 0.0015, our optimal C value is
again set by

Copt = min

[
N∑

i=1

RJ(i)(i), E[ΣR] + 3
√

V ar[ΣR]

]
. (163)
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2 Relevant Background in Stochastic Processes

Aiming to understand behaviors of various natural and artificial processes, researchers often
model them as collections of random variables where the mathematically defined statistical
characteristics and dependencies of such random variables are fitted to those of the real pro-
cesses. The research in the field of stochastic processes has therefore three facets:

Theory: mathematical explorations of stochastic processes models that aim to better under-
stand their properties.

Measurements: taken on the real process in order to identify its statistical characteristics.

Modelling: fitting the measured statistical characteristics of the real process with those of a
model and development of new models of stochastic processes that well match the real
process.

This chapter provides background on basic theoretical aspects of stochastic processes which
form a basis for queueing theory and teletraffic models discussed in the later chapters.

2.1 General Concepts

For a given index set T , a stochastic process {Xt, t ∈ T} is an indexed collection of random
variables. They may or may not be identically distributed. In many applications the index t
is used to model time. Accordingly, the random variable Xt for a given t can represent, for
example, the number of telephone calls that have arrived at an exchange by time t.

If the index set T is countable, the stochastic process is called a discrete-time process, or a
time series [7, 15, 59]. Otherwise, the stochastic process is called a continuous-time process.
Considering our previous example, where the number of phone calls arriving at an exchange
by time t is modelled as a continuous-time process {Xt, t ∈ T}, we can alternatively, use a
discrete-time process to model, essentially, the same thing. This can be done by defining the
discrete-time process {Xn, n = 1, 2, 3, . . . }, where Xn is a random variable representing, for
example, the number of calls arriving within the nth minute.

A stochastic process {Xt, t ∈ T} is called discrete space stochastic process if the random
variables Xt are discrete, and it is called continuous space stochastic process if it is continuous.
We therefore have four types of stochastic processes:

1. Discrete Time Discrete Space

2. Discrete Time Continuous Space

3. Continuous Time Discrete Space

4. Continuous Time Continuous Space.

A discrete-time stochastic process {Xn, n = 1, 2, 3, . . . } is strictly stationary if for any
subset of {Xn}, say, {Xn(1), Xn(2), Xn(3), . . . , Xn(k)}, for any integer m the joint proba-
bility function P (Xn(1), Xn(2), Xn(3), . . . , Xn(k)), is equal to the joint probability function
P (Xn(1)+m, Xn(2)+m, Xn(3)+m, . . . , Xn(k)+m). In other words,
P (Xn(1)+m, Xn(2)+m, Xn(3)+m, . . . , Xn(k)+m) is independent of m. In this case, the probability
structure of the process does not change with time. An equivalent definition for strict station-
arity is applied also for a continuous-time process accept that in that case m is non-integer.
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Notice that for the process to be strictly stationary, the value of k is unlimited as the joint
probability should be independent of m for any subset of {Xn, n = 1, 2, 3, . . .}. If k is limited
to some value k∗, we say that the process is stationary of order k∗.

A equivalent definition applies to a continuous-time stochastic process. A continuous-time
stochastic process Xt is said to be strictly stationary if its statistical properties do not change
with a shift of the origin. In other words the process Xt statistically the same as the process
Xt−d for any value of d.

An important stochastic process is the Gaussian Process defined as a process that has the
property that the joint probability function (density) associated with any set of times is multi-
variate Gaussian. The importance of the Gaussian process lies in its property to be an accurate
model for superposition of many independent processes. This makes the Gaussian process a
useful model for heavily multiplexed traffic which arrive at switches or routers deep in a major
telecommunications network. Fortunately, the Gaussian process is not only useful, but it is
also simple and amenable to analysis. Notice that for a multivariate Gaussian distribution, all
the joint moments of the Gaussian random variables are fully determined by the joint first and
second order moments of the variables. Therefore, if the first and second order moments do not
change with time, the Gaussian random variables themselves are stationary. This implies that
for a Gaussian process, stationarity of order two (also called weak stationarity) implies strict
stationarity.

For a time series {Xn, n = 1, 2, 3, . . . }, weak stationarity implies that, for all n, E[Xn] is
constant, denoted E[X], independent of n. Namely, for all n,

E[X] = E[Xn]. (164)

Weak stationarity (because it is stationarity of order two) also implies that the covariance
between Xn and Xn+k, for any k, is independent of n, and is only a function of k, denoted
U(k). Namely, for all n,

U(k) = cov(Xn, Xn+k). (165)

Notice that, the case of k = 0 in Eq. (165), namely,

U(0) = cov(Xn, Xn) = V ar[Xn] (166)

implies that the variance of Xn is also independent of n. Also for all integer k,

U(−k) = U(k) (167)

because cov(Xn, Xn+k) = cov(Xn+k, Xn) = cov(Xn, Xn−k). The function U(k), k = 0, 1, 2, . . .,
is called the autocovariance function. The value of the autocovariance function at k, U(k), is
also called the autocovariance of lag k.

Important parameters are the so-called Autocovariance Sum, denoted S, and Asymptotic Vari-
ance Rate (AVR) denoted v [4, 5]. They are defined by:

S =
∞∑
i=1

U(i) (168)

and

v =
∞∑

i=−∞
U(i). (169)
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Notice that
v = 2S + V ar[Xn]. (170)

Another important definition of the AVR which justifies its name is

v = lim
n→∞

V ar[Sn]

n
. (171)

We will further discuss these concepts in Section 20.1.

Homework 2.1

Prove that the above two definitions are equivalent; namely, prove that

lim
n→∞

V ar[Sn]

n
= 2S + V ar[Xn] (172)

where

Sn =
n∑

i=1

Xi.

Guide

Define

S(k∗) =
k∗∑
i=1

U(i)

and notice that
lim
j→∞

S(j) = S.

Let

Sk∗ =
k∗∑
i=1

Xi

and notice that

∑
i<j

cov[Xi, Xj] =
k∗−1∑
n=1

k∗−n∑

k=1

cov(Xn, Xn+k) =
k∗−1∑
n=1

k∗−n∑

k=1

U(k).

Noticing that by the weak stationarity property, we have that var(Xi) = var(Xj) and cov(Xi, Xi+k) =
cov(Xj, Xj+k) for all pairs i, j , and letting k∗ →∞, by (104), we obtain

var(S∗k) = k∗V ar[Xn] + 2k∗S

which leads to (172). ¤
The autocorrelation function at lag k, denoted C(k), is the normalized version of the autoco-
variance function, and since by weak stationarity, for all i and j, V ar[Xj] = V ar[Xi], it is given
by:

C(k) =
U(k)

V ar[Xn]
. (173)
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A stochastic process is called ergodic if every realization contains sufficient information on the
probabilistic structure of the process. For example, let us consider a process which can be in
either one of two realization: either Xn = 1 for all n, or Xn = 0 for all n. Assume that each one
of these two realizations occur with probability 0.5. If we observe any one of these realizations,
regardless of the duration of the observations, we shall never conclude that E[A] = 0.5. We
shall only have the estimations of either E[A] = 0 or E[A] = 1, depends on which realization
we happen to observe. Such a process is not ergodic.

Assuming {Xn, n = 1, 2, 3, . . . } is ergodic and stationary, and we observe m observations of
this {Xn} process, denoted by {Ân, n = 1, 2, 3, . . . , m}, then the mean of the process E[A]
can be estimated by

Ê[A] =
1

m

m∑
n=1

Ân, (174)

and the autocovariance function U(k) of the process can be estimated by

Û(k) =
1

m− k

m∑

n=k+1

(Ân−k − E[A])(Ân − E[A]). (175)

2.2 Two Orderly and Memoryless Point Processes

In this section we consider a very special class of stochastic processes called point processes
that also possess two properties: orderliness and memorylessness. After providing, somewhat
intuitive, definitions of these concepts, we will discuss two processes that belong to this special
class: one is discrete-time - called the Bernoulli process and the other is continuous-time - called
the Poisson process.

We consider here a physical interpretation, where a point process is a sequence of events which
we call arrivals occurring at random in points of time ti, i = 1, 2, . . . , ti+1 > ti, or i =
. . . , − 2,−1, 0, 1, 2, . . ., ti+1 > ti. The index set, namely, the time, or the set where the ti
get their values from, can be continuous or discrete, although in most books the index set is
considered to be the real line, or its non-negative part. We call our events arrivals to relate
is to the context of queueing theory, where a point process typically corresponds to points of
arrivals, i.e., ti is the time of the ith arrival that joints a queue. A point process can be defined
by its counting process {N(t), t ≥ 0}, where N(t) is the number of arrivals occurred within
[0, t). A counting process {N(t)} has the following properties:

1. N(t) ≥ 0,

2. N(t) is integer,

3. if s > t, then N(s) ≥ N(t) and N(s)−N(t) is the number of occurrences within (t, s].

Note that N(t) is not an independent process because for example, if t2 > t1 then N(t2) is
dependent on the number of arrivals in [0, t1), namely, N(t1).

Another way to define a point process is by the stochastic process of the interarrival times ∆i

where ∆i = ti+1 − ti.

One important property of a counting process is the so-called Orderliness which means that
the probability that two or more arrivals happen at once is negligible. Mathematically, for a
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continuous-time counting process to be orderly, it should satisfy:

lim
∆t→0

P (N(t + ∆t)−N(t) > 1 | N(t + ∆t)−N(t) ≥ 1) = 0. (176)

Another very important property is the memorylessness. A stochastic process is memoryless
if at any point in time, the future evolution of the process is statistically independent of its
past.

2.2.1 Bernoulli Process

The Bernoulli process is a discrete-time stochastic process made up of a sequence of IID
Bernoulli distributed random variables {Xi, i = 0, 1, 2, 3, . . .} where for all i, P (Xi = 1) = p
and P (Xi = 0) = 1 − p. In other words, we divide time into consecutive equal time slots. At
each time-slot we conduct a Bernoulli experiment. Then for each time-slot i, we conduct a
bernoulli experiment. If Xi = 1, we say that there was an arrival at time-slot i. Otherwise, if
Xi = 0, we say that there was no arrival at time-slot i.

The Bernoulli process is both orderly and memoryless. It is orderly because, by definition,
no more than one arrival can occur at any time-slot as the Bernoulli random variable takes
values of more than one with probability zero. It is also memoryless because the Bernoulli
trials are independent, so at any discrete point in time n, the future evolution of the process is
independent of its past.

The counting process for the Bernoulli process is another discrete-time stochastic process
{N(n), n ≥ 0} which is a sequence of Binomial random variables N(n) representing the to-
tal number of arrivals occurring within the first n time-slots. Notice that since we start from
slot 0, N(n) does not include slot n in the counting. That is, we have

P [N(n) = i] =

(
n

i

)
pi(1− p)n−i i = 0, 1, 2, . . . , n. (177)

The concept of an interarrival time for the Bernoulli process can be explained as follows. Let us
assume without loss of generality that that there was an arrival at time-slot k, the interarrival
time will be the number of slots between k and the first time-slot to have an arrival following
k. We do not count time-slot k but we do count the time-slot of the next arrival. Because the
Bernoulli process is memoryless, the interarrival times are IID, so we can drop the index i of ∆i,
designating the i interarrival time, and consider the probability function of the random variable
∆ representing any interarrival time. Because ∆ represents a number of Bernoulli trials until
a success, it is geometrically distributed, and its probability function is given by

P (∆ = i) = p(1− p)i−1 i = 1, 2, . . . . (178)

Another important statistical measure is the time it takes n until the ith arrival. This time is
a sum of i interarrival times which is a sum of i geometric random variables which we already
know has a Pascal distribution with parameters p and i, so we have

P [the ith arrival occurs in time slot n] =

(
n− 1

i− 1

)
pi(1− p)n−i i = i, i + 1, i + 2, . . . .

(179)
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The reader may notice that the on-off sources discussed in Section 1.19 could be modeled as
Bernoulli processes where the on periods are represented by consecutive successes of Bernoulli
trials and the off periods by failures. In this case, for each on-off process, the length of the
on and the off periods are both geometrically distributed. Accordingly, the superposition of
N Bernoulli processes with parameter p is another discrete-time stochastic process where the
number of arrivals during the different slots are IID and binomial distributed with parameters
N and p.

Homework 2.2

Prove the last statement. ¤
Another important concept is merging of processes which is different from superposition. Let
us use a sensor network example to illustrate it. Consider N sensors that are spread around a
country to detect certain events. Time is divided into consecutive fixed-length time-slots and
a sensor is silent if it does not detect an event in a given time-slot and active (transmitting an
alarm signal) if it does. Assume that time-slots during which the ith sensor is active follow a
Bernoulli process with parameter pi, namely, the probability that sensor i detects an event in
a given time-slot is equal to pi, and that the probability of such detection is independent from
time-slot to time-slot. We also assume that the N Bernoulli processes associated with the N
servers are independent. Assume that an alarm is sound during a time-slot when at least one of
the sensors is active. We are interested in the discrete-time process representing alarm sounds.
The probability that an alarm is sound in a given time-slot is the probability that at least one
of the sensors is active which is one minus the probability that they are all silent. Therefore
the probability that the alarm is sound is given by

Pa = 1−
N∏

i=1

(1− pi). (180)

Now, considering the independence of the processes, we can realize that the alarms follow a
Bernoulli process with parameter Pa.

In general, an arrival in the process that results from merging of N Bernoulli processes is the
process of time-slots during which at least one of the N processes records an arrival. Unlike
superposition in which we are interested in the total number of arrivals, in merging we are only
interested to know if there was at least one arrival within a time-slot without any interest of
how many arrivals there were in total.

Let us now consider splitting. Consider a Bernoulli process with parameter p and then color
each arrival, independently of all other arrivals, in red with probability q and in blue with
probability 1 − q. Then in each time-slot we have a red arrival with probability pq and a
blue one with probability p(1 − q). Therefore, the red arrivals follow a Bernoulli process with
parameter pq and the blue arrivals follow a Bernoulli process with parameter p(1− q).

2.2.2 Poisson Process

The Poisson process is a continuous-time point process which is also memoryless and orderly. It
applies to many cases where a certain event occurs at different points in time. Such occurrences
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of the events could be, for example, arrivals of phone call requests at a telephone exchange.
As mentioned above such a process can be described by its counting process {N(t), t ≥ 0}
representing the total number of occurrences by time t.

A counting process {N(t)} is defined as a Poisson process with rate λ > 0 if it satisfies the
following three conditions.

1. N(0) = 0.

2. The number of occurrences in two non-overlapping intervals are independent. That is,
for any s > t > u > v > 0, the random variable N(s) − N(t), and the random variable
N(u) − N(v) are independent. This means that the Poisson process has what is called
independent increments.

3. The number of occurrences in an interval of length t has a Poisson distribution with mean
λt.

These three conditions will be henceforth called the Three Poisson process conditions.

By definition, the Poisson process N(t) has what is called stationary increments [63, 75], that is,
for any t2 > t1, the random variable N(t2)−N(t1), and the random variable N(t2+u)−N(t1+u)
have the same distribution for any u > 0. In both cases, the distribution is Poisson with
parameter λ(t2 − t1). Intuitively, if we choose the time interval ∆ = t2 − t1 to be arbitrarily
small (almost a “point” in time), then the probability of having an occurrence there is the same
regardless of where the “point” is. Loosely speaking, every point in time has the same chace
of having a occurrence. Therefore, occurrences are equally likely to happen at all times. This
property is also called time-homogeneity [13].

Another important property of the Poisson process is that the inter-arrival times of occurrences
is exponentially distributed with parameter λ. This is shown by considering s to be an occur-
rence and T the time until the next occurrence, noticing that P (T > t) = P (N(t) = 0) = e−λt,
and recalling the properties of independent and stationary increments. As a result, the mean
interarrival time is given by

E[T ] =
1

λ
. (181)

By the memoryless property of the exponential distribution, the time until the next occurrence
is always exponentially distributed and therefore, at any point in time, not necessarily at points
of occurrences, the future evolution of the Poisson process is independent of the past, and is
always probabilistically the same. The Poisson process is therefore memoryless. Actually, the
independence of the past can be explained also by the Poisson process property of independent
increments [75], and the fact that the future evolution is probabilistically the same can also be
explained by the stationary increments property.

An interesting paradox emerges when one considers the Poisson process. If we consider a random
point in time, independent of a given Poisson process, the time until the next occurrence event
has exponential distribution with parameter λ. Because the Poisson process in reverse is also
a Poisson process, then at any point in time, the time passed from the last Poisson occurrence
event also has exponential distribution with parameter λ. Therefore, if we pick a random
point in time the mean length of the interval between two consecutive Poisson occurrences
must be 1/λ + 1/λ = 2/λ. How can we explain this phenomenon, if we know that the time
between consecutive Poisson occurrences must be exponentially distributed with mean 1/λ?
The explanation is that if we pick a point of time at random we are likely to pick an interval
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that is longer than the average.

Homework 2.3

Demonstrate the above paradox as follows. Generate a Poisson process with rate λ = 1 for a
period of time of length T ≥ 10, 000. Pick a point in time from a uniform distribution within
the interval [1,10000]. Record the length of the interval (between two consecutive Poisson oc-
currences) that includes the chosen point in time. Repeat the experiment 1000 times. Compute
the average length of the intervals you recorded. ¤
A superposition of a number of Poisson processes is another point process that comprises all
the points of the different processes. Another important property of the Poisson process is that
superposition of two Poisson processes with parameters λ1 and λ2 is a Poisson process with
parameter λ1 + λ2. Notice that in such a case, at any point in time, the time until the next
occurrence is a competition between two exponential random variables one with parameter λ1

and the other with parameter λ2. Let T be the time until the winner of the two occurs, and
let T1 and T2 be the time until the next occurrence of the first process and the second process,
respectively. Then by (57)

P (T > t) = e−(λ1+λ2)t. (182)

Thus, the interarrival time of the superposition is exponentially distributed with parameter
λ1 +λ2. This is consistent with the fact that the superposition of the two processes is a Poisson
process with parameter λ1 + λ2.

Homework 2.4

Prove that a superposition of N Poisson processes with parameters λ1, λ2, . . . , λN , is a Poisson
process with parameter λ1 + λ2+, . . . , +λN . ¤
Another interesting question related to superposition of Poisson processes is the question of
what is the probability that the next event that occurs will be of a particular process. This
is equivalent to the question of having say two exponential random variables T1 and T2 with
parameters λ1 and λ2, respectively, and we are interested in the probability of T1 < T2. By
(58),

P (T1 < T2) =
λ1

λ1 + λ2

. (183)

Before we introduce further properties of the Poisson process, we shall introduce the following
definition: a function g(·) is o(∆t) if

lim
∆t→0

g(∆t)

∆t
= 0. (184)

Examples of functions which are o(∆t) are g(x) = xv for v > 1. Sum or product of two functions
which are o(∆t) is also o(∆t), and a constant times a function which is o(∆t) is o(∆t).

If a counting process {N(t)} is a Poisson process then, for a small interval ∆t, we have:

1. P (N(∆t) = 0) = 1− λ∆t + o(∆t)
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2. P (N(∆t) = 1) = λ∆t + o(∆t)

3. P (N(∆t) ≥ 2) = o(∆t).

The above three conditions will henceforth be called small interval conditions. To show the
first, we know that N(∆t) has a Poisson distribution, therefore

P (N(∆t) = 0) = e−λ∆t (185)

and developing it into a series gives,

P (N(∆t) = 0) = 1− λ∆t + o(∆t). (186)

The second is shown by noticing that P (N(∆t) = 1) = λ∆tP (N(∆t) = 0) and using the
previous result. The third is obtained by P (N(∆t) ≥ 2) = 1−P (N(∆t) = 1)−P (N(∆t) = 0).
In fact, these three small interval conditions plus the stationarity and independence properties
together with N(0) = 0, can serve as an alternative definition of the Poisson process. These
properties imply that the number of occurrences per interval has a Poisson distribution.

Homework 2.5

Prove the last statement. Namely, show that the three small-interval conditions plus the sta-
tionarity and independence properties together with N(0) = 0 are equivalent to the Three
Poisson Conditions.

Guide

Define
Pn(t) = P (N(t) = n)

Using the the assumptions of stationary and independent increments show that

P0(t + ∆t) = P0(t)P0(∆t).

Therefore
P0(t + ∆t)− P0(t)

∆t
= P0(t)

P0(∆t)− 1

∆t
.

From the small interval conditions, we know that P0(∆t) = 1− λ∆t + o(∆), so let ∆t → 0 in
the above and obtain the differential equation:

P0
′(t) = −λP0(t).

Consider the boundary condition P0(0) = 1 due to the condition N(0) = 0, and solve the
differential equation to obtain

P0(t) = e−λt.

This proves the Poisson distribution for the case n = 0. Now continue the proof for n > 0.
This will be done by induction, but as a first step, consider n = 1 to show that
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P1(t) = λte−λt.

Notice the Pn(t + ∆t) can be obtained by conditioning and un-conditioning (using the law of
total probability) on the number of occurrences in the interval (t, t+∆t). The interesting events
are:

1. no occurrences with probability 1− λ∆t + o(∆t),

2. one occurrence with probability λ∆t + o(∆t),

3. two or more occurrences with probability o(∆t).

Considering these events show that

Pn(t + ∆t) = Pn(t)(1− λ∆t) + Pn−1(t)λ∆t + o(∆t)

which leads to

Pn(t + ∆t)− Pn(t)

∆t
= −λPn(t) + λPn−1(t) +

o(∆t)

∆t
.

Let ∆t → 0 in the above and obtain the differential equation:

Pn
′(t) = −λPn(t) + λPn−1(t).

Multiply both sides by eλt and rearrange to obtain

d{eλtPn(t)}
dt

= λeλtPn−1(t). (187)

Then use the result for P0(t) and the boundary condition of P1(0) = 0 to obtain

P1(t) = λte−λt.

To show that the Poisson distribution holds for any n, assume it holds for n− 1, i.e.,

Pn−1(t) =
e−λt(λt)n−1

(n− 1)!
.

Now by the latter and (187) obtain

d{eλtPn(t)}
dt

=
λntn−1

(n− 1)!

Then use the latter plus the condition Pn(0) = 0 to obtain

Pn(t) =
e−λt(λt)n

(n)!
.

¤
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In many networking applications, it is of interest to study the effect of splitting of packet
arrival processes. In particular, we will consider two types of splitting: random splitting and
regular splitting. To explain the difference between the two, consider an arrival process of
packets to a certain switch called Switch X. This packet arrival process is assumed to follow a
Poisson process with parameter λ. Some of these packets are then forwarded to Switch A and
the others to Switch B. We are interested in the process of packets arriving from Switch X to
Switch A, designated X-A Process.

Under random splitting, every packet that arrives at Switch X is forwarded to A with probability
p and to B with probability 1−p independently of any other event associated with other packets.
In this case, the packet stream from X to A follows a Poisson process with parameter pλ.

Homework 2.6

Prove that under random splitting, the X-A Process is a Poisson process with parameter
pλ.

Guide

To show that the small interval conditions hold for the X-A Process, let NX−A(t) be the counting
process of the X-A process, then

P (NX−A(∆t) = 0) = P (N(∆t) = 0) + (1− p)P (N(∆t) = 1) + o(∆t) = 1− λ∆t + (1− p)λ∆t +
o(∆t) = 1− pλ∆t + o(∆t),

P (NX−A(∆t) = 1) = pP (N(∆t) = 1) + o(∆t) = pλ∆t + o(∆t),

P (NX−A(∆t) > 1) = o(∆t),

and the stationarity and independence properties together with N(0) = 0 follow from the same
properties of the Poisson counting process N(t). ¤
It may be interesting to notice that the interarrival times in the X-A Process are exponentially
distributed because they are geometric sums of exponential random variables.

Under regular splitting, the first packet that arrives at Switch X is forwarded to A the second
to B, the third to A, the fourth to B, etc. In this case, the packet stream from X to A (the
X-A Process) will follows a stochastic process which is a point process where the interarrival
times are Erlang distributed with parameter λ and 2.

Homework 2.7

1. Prove the last statement.

2. Derive the mean and the variance of the interarrival times of the X-A process in the two
cases above: random splitting and regular splitting.

3. Consider now 3-way splitting. Derive and compare the mean and the variance of the
interarrival times for the regular and random splitting cases.

4. Repeat the above for n-way splitting and let n increase arbitrarily. What can you say
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about the burstiness/variability of regular versus random splitting. ¤
The properties of the Poisson process, namely, independence and time-homogeneity, make the
Poisson process able to randomly inspect other continuous-time stochastic processes in a way
that the sample it provides gives us enough information on what is called time-averages. In
other words, its inspections are not biased. Examples of time-averages are the proportion of
time a process X(t) is in state i, i.e., the proportion of time during which X(t) = i. Or the
overall mean of the process defined by

E[X(t)] =

∫ T

0
X(t)dt

T
(188)

for an arbitrarily large T . These properties that an occurrence can occur at any time with
equal probability, regardless of times of past occurrences, gave rise to the expression a pure
chance process for the Poisson process.

Homework 2.8

Consider a Poisson process with parameter λ. You know that there was exactly one occurrence
during the interval [0,1]. Prove that the time of the occurrence is uniformly distributed within
[0,1].

Guide

For 0 ≤ t ≤ 1, consider

P (occurrence within [0, t) | exacly one occurrence within [0, 1])

and use the definition of conditional probability. Notice that the latter is equal to:

P (one occurrence within [0, t) and no occurrence within [t, 1])

P (exacly one occurrence within [0, 1])

or
P (one occurrence within [0, t))P (no occurrence within [t, 1])

P (exacly one occurrence within [0, 1])
.

Then recall that the number of occurrences in any interval of size T has Poisson distribution
with parameter λT . ¤
In addition to the Poisson process there are other processes, the so-called mixing processes that
also has the property of inspections without bias. In particular, Baccelli et al. [8, 9] promoted
the use of a point process where the inter-arrival times are IID Gamma distributed for probing
and measure packet loss and delay over the Internet. Such a point-process is a mixing process
and thus can “see time-averages” with no bias.

2.3 Markov Modulated Poisson Process

The stochastic process called Markov modulated Poisson process (MMPP) is a point process
that behaves as a Poisson process with parameter λi for a period of time that is exponentially
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distributed with parameter δi. Then it moves to mode (state) j where it behaves like a Poisson
process with parameter λj for a period of time that is exponentially distributed with parameter
δj. The parameters are called mode duration parameters [88][89],[90]. In general, the MMPP
can have an arbitrary number of modes, so it requires a transition probability matrix as an
additional set of parameters to specify the probability that it moves to mode j given that it
is in mode i. However, we are mostly interested in the simplest case of MMPP – the two
mode MMPP denoted MMPP(2) and defined by only four parameters: λ0, λ1, δ0, and δ1.
The MMPP(2) behaves as a Poisson process with parameter λ0 for a period of time that is
exponentially distributed with mode duration parameter δ0. Then moves to mode 1 where it
behaves like a Poisson process with mode duration parameter λ1 for a period of time that is
exponentially distributed with parameter δ1. Then it switches back to mode 0, etc. alternating
between the two modes 0 and 1.

2.4 Discrete-time Markov-chains

2.4.1 Definitions and Preliminaries

Markov-chains are certain discrete space stochastic processes which are amenable for analysis
and hence are very popular for analysis, traffic characterization and modeling of queueing and
telecommunications networks and systems. They can be classified into two groups: discrete-
time Markov-chains discussed here and continues time Markov-chains discussed in the next
section.

A discrete-time Markov-chain is a discrete-time stochastic process {Xn, n = 0, 1, 2, . . .} with
the Markov property; namely, that at any point in time n, the future evolution of the process is
dependent only on the state of the process at time n, and is independent of the past evolution of
the process. The state of the process can be a scalar or a vector. In this section, for simplicity
we will mainly discuss the case where the state of the process is a scalar, but we will also
demonstrate how to extend the discussion to a multiple dimension case.

The discrete-time Markov-chain {Xn, n = 0, 1, 2, . . .} at any point in time may take many
possible values. The set of these possible values is finite or countable and it is called the state
space of the Markov-chain, denoted by Θ. A time-homogeneous Markov-chain is a process in
which

P (Xn+1 = i | Xn = j) = P (Xn = i | Xn−1 = j) for all n.

We will only consider, in this section, Markov-chains which are time-homogeneous.

A discrete-time time-homogeneous Markov-chain is characterized by the property that, for any
n, given Xn, the distribution of Xn+1 is fully defined regardless of states that occur before time
n. That is,

P (Xn+1 = j | Xn = i) = P (Xn+1 = j | Xn = i,Xn−1 = in−1, Xn−2 = in−2, . . .). (189)

2.4.2 Transition Probability Matrix

A Markov-chain is characterized by the so-called Transition Probability Matrix P which is a
matrix of one step transition probabilities Pij defined by

Pij = P (Xn+1 = j | Xn = i) for all n. (190)
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We can observe in the latter that the event {Xn+1 = j} depends only on the state of the process
at Xn and the transition probability matrix P.

Since the Pijs are probabilities and since when you transit out of state i, you must enter some
state, all the entries in P are non-negatives, less or equal to 1, and the sum of entries in each
row of P must add up to 1.

2.4.3 Chapman-Kolmogorov Equation

Having defined the one-step transition probabilities Pij in (190), let us define the n-step tran-
sition probability from state i to state j as

P
(n)
ij = P (Xn = j | X0 = i). (191)

The following is known as the Chapman-Kolmogorov equation:

P
(n)
ij =

∑

k∈Θ

P
(m)
ik P

(n−m)
kj , (192)

for any m, such that 0 < m < n.

Let P(n) be the matrix that its entries are the P
(n)
ij values.

Homework 2.9

First prove the Chapman-Kolmogorov equation and then use it to prove:

1. P(k+n) = P(k)× P(n)

2. P(n) = Pn. ¤

2.4.4 Marginal Probabilities

Consider the marginal distribution πn(i) = P (Xn = i) of the Markov-chain at time n, over the
different states i ∈ Θ. Assuming that the process started at time 0, the initial distribution of
the Markov-chain is π0(i) = P (X0 = i), i ∈ Θ. Then πn(i), i ∈ Θ, can be obtained based on
the marginal probability πn−1(i) as follows

πn(j) =
∑

k∈Θ

Pkjπn−1(k), (193)

or based on the initial distribution by

πn(j) =
∑

k∈Θ

P
(n)
kj π0(k), j ∈ Θ (194)

or, in matrix notation

πn(j) =
∑

k∈Θ

P
(n)
kj π0(k), (195)

Let the vector Πn be defined by Πn = {πn(j), j = 0, 1, 2, 3, . . .} . The vector Πn can be
obtained by

Πn = Πn−1P = Πn−2P
2 = . . . = Π0P

n. (196)
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2.4.5 Properties and Classification of States

One state i is said to be accessible from a second state j if there exists n, n = 0, 1, 2, . . .,
such that

P
(n)
ji > 0. (197)

This means that there is a positive probability for the Markov-chain to reach state i at some
time in the future if it is now in state j.

A state i is said to communicate with state j if i is accessible from j and j is accessible from
i.

Homework 2.10

Prove the following:

1. A state communicates with itself.

2. If state a communicates with b, then b communicates with a.

3. If state a communicates with b, and b communicates with c, then a communicates with
c. ¤

A communicating class is a set of states that every pair of states in it communicates with each
other.

Homework 2.11

Prove that a state cannot belong to two different classes. In other words, two different classes
must be disjoint. ¤
The latter implies that the state space Θ is divided into a number (finite of infinite) of com-
municating classes.

Homework 2.12

Provide an example of a Markov-chain with three communicating classes. ¤
A communicating class is said to be closed if no state outside the class is accessible from a state
that belong to the class.

A Markov-chain is said to be irreducible if all the states in its state space are accessible from
each other. That is, the entire state space is one communicating class.

A state i has period m if m is the greatest common divisor of the set {n : P (Xn = i|X0 = i) > 0}.
In this case, the Markov-chain can return to state i only in a number of steps that is a multiple
of m. A state is said to be aperiodic if it has a period of one.
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Homework 2.13

Prove that in a communicating class, it is not possible that there are two states that have
different periods. ¤
Given that the Markov-chain is in state i, define return time as the random variable representing
the next time the Markov-chain returns to state i. Notice that the return time is a random
variable Ri, defined by

Ri = min{n : Xn = i | X0 = i}. (198)

A state is called transient if, given that we start in it, there is a positive probability that we
will never return back to it. In other words, state i is transient if P (Ri < ∞) < 1. A state is
called recurrent if it is not transient. Namely, if P (Ri < ∞) = 1.

Because in the case of a recurrent state i, the probability to return to state i in finite time is one,
the process will visit state i infinitely many number of times. However, if i is transient, then
the process will visit state i only a geometrically distributed number of times with parameter.
(Notice that the probability of “success” is 1− P (Ri < ∞).) In this case the number of visits
in state i is finite with probability 1.

Homework 2.14

Show that state i is recurrent if and only if

∞∑
n=0

p
(n)
ii = ∞.

Guide

This can be shown by showing that if the condition holds, the Markov-chain will visit state i
an infinite number of times, and if it does not hold, the Markov-chain will visit state i a finite
number of times. Let Yn = Ji(Xn), where Ji(x) is a function defined for x = 0, 1, 2, . . ., taking
the value 1 if x = i, and 0 if x 6= i. Notice that E[Ji(Xn) | X0 = i] = P (Xn = i | X0 = i), and
consider summing up both sides of the latter. ¤

Homework 2.15

Prove that if state i is recurrent then all the states in a class that i belongs to are recurrent.
In other words, prove that recurrence is a class property.

Guide

Consider m and n, such that P
(m)
ji > 0 and P

(n)
ij > 0, and argue that P

(m)
ji P

(k)
ii P

(n)
ij > 0 for some

m, k, n. Then use the ideas and result of the previous proof. ¤
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Homework 2.16

Provide an example of a Markov-chain where P (Ri < ∞) = 1, but E[Ri] = ∞. ¤
State i is called positive recurrent if E[Ri] is finite. A recurrent state that is not positive
recurrent is called null recurrent. In a finite state Markov-chain, there are no null recurrent
states, i.e., all recurrent states must be positive recurrent. We say that a Markov-chain is
stable if all its states are positive recurrent. This notion of stability is not commonly used for
Markov-chains or stochastic processes in general and it is different from other definitions of
stability. It is however consistent with the notion of stability of queueing systems and this is
the reason we use it here.

A Markov-chain is said to be aperiodic if all its states are aperiodic.

2.4.6 Steady-State Probabilities

Consider an irreducible, aperiodic and stable Markov-chain. Then the following limit ex-
ists.

Π = lim
n→∞

Πn = lim
n→∞

Π0P
n (199)

and it satisfies
Π = row of lim

n→∞
Pn (200)

where row of limn→∞Pn is any row of the matrix Pn as n approaches ∞. All the rows are the
same in this matrix at the limit. The latter signifies the fact that the limit Π is independent of
the initial distribution. In other words, after the Markov-chain runs for a long time, it forgets
its initial distribution and converges to Π.

We denote by πj, j = 0, 1, 2, . . ., the components of the vector Π. That is, πj is the
steady-state probability of the Markov-chain to be at state j. Namely,

πj = lim
n→∞

πn(j) for all j. (201)

By equation (193), we obtain

πn(j) =
∞∑
i=0

Pijπn−1(i), (202)

then by the latter and (201), we obtain

πj =
∞∑
i=0

Pijπi. (203)

Therefore, recalling that π is a proper probability distribution, we can conclude that for an
irreducible, aperiodic and stable Markov-chain, the steady-state probabilities can be obtained
by solving the following steady-state equations:

πj =
∞∑
i=0

πiPij for all j, (204)

∞∑
j=0

πj = 1 (205)
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and
πj ≥ 0 for all j. (206)

In this case:

πj =
1

E[Rj]
. (207)

To explain the latter, consider a large number of sequential transitions of the Markov-chain
denoted N̄ , and let Rj(i) be the ith return time to state j. We assume that N̄ is large enough
so we can neglect edge effects. Let N(j) be the number of times the process visits state j during
the N̄ sequential transitions of the Markov-chain. Then

πj ≈ N(j)

N̄
≈ N(j)∑N(j)

k=1 Rj(k)
≈ N(j)

E[Rj]N(j)
=

1

E[Rj]
.

When the state space Θ is finite, one of the equations in (204) is redundant and replaced by
(205).

In matrix notation equation (204) is written as: Π = ΠP.

Note that if we consider an irreducible, aperiodic and stable Markov-chain, then also a unique
non-negative steady-state solution vector Π of the steady-state equation (204) exists. However,
in this case, the jth component of Π, namely πj, is not a probability but it is the proportion
of time in steady-state that the Markov-chain is in state j.

Note also that the steady-state vector Π is called the stationary distribution of the Markov-
chain, because if we set Π0 = Π, Π1 = ΠP = Π, Π2 = ΠP = Π, . . ., i.e., Πn = Π for all
n.

We know that for an irreducible, aperiodic and stable Markov-chain,

∞∑
i=0

Pji = 1.

This is because we must go from j to one of the states in one step. Then

pj

∞∑
i=0

Pji = pj.

Then by (204), we obtain the following steady-state equations:

πj

∞∑
i=0

Pji =
∞∑
i=0

πiPij for j = 0, 1, 2 . . . . (208)

These equations are called global balance equations. Equations of this type are often used in
queueing theory. Intuitively, they can be explained as requiring that the long-term frequency
of transitions out of state j should be equal to the long term frequency of transitions into state
j.
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Homework 2.17

1. Show that a discrete-time Markov-chain (MC) with two states where the rows of the
transition probability matrix are identical is a Bernoulli process.

2. Prove that in any finite MC, at least one state must be recurrent.

3. Provide examples of MCs defined by their transition probability matrices that their states
(or some of the states) are periodic, aperiodic, transient, null recurrent and positive
recurrent. Provide examples of irreducible and reducible (not irreducible) and of stable
and unstable MCs. You may use as many MCs as you wish to demonstrate the different
concepts.

4. For different n values, choose an n × n transition probability matrix P and an initial
vector Π0. Write a program to compute Π1, Π2, Π3, . . . and demonstrate convergence
to a limit in some cases and demonstrate that the limit does not exist in other cases.

5. Prove equation (207).

6. Consider a binary communication channel between a transmitter and a receiver where Bn

is the value of the nth bit at the receiver. This value can be either equal to 0, or equal
to 1. Assume that the event [a bit to be erroneous] is independent of the value received
and only depends on whether or not the previous bit is erroneous or correct. Assume the
following:
P (Bn+1 is erroneous | Bn is correct) = 0.0001
P (Bn+1 is erroneous | Bn is erroneous) = 0.01
P (Bn+1 is correct | Bn is correct) = 0.9999
P (Bn+1 is correct | Bn is erroneous) = 0.99
Compute the steady-state error probability. ¤

2.4.7 Birth and Death Process

In many real life applications, the state of the system sometimes increases by one, and at other
times decreases by one, and no other transitions are possible. Such a discrete-time Markov-
chain {Xn} is called a birth-and-death process. In this case, Pij = 0 if |i− j| > 1 and Pij > 0 if
|i− j| = 1.

Then by the first equation of (204), we obtain,

p0P01 = p1P10.

Then substituting the latter in the second equation of (204), we obtain

p1P12 = p2P21.

Continuing in the same way, we obtain

piPi,i+1 = pi+1Pi+1,i, i = 0, 1, 2, . . . . (209)

These equations are called local balance equations. They together with the normalizing equa-
tion ∞∑

i=1

pi
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constitute a set of steady-state equations for the steady-state probabilities. They are far simpler
than (204).

Homework 2.18

Solve the local balance equations together with the normalizing equations for the pi, i =
0, 1, 2, . . . .

Guide

Recursively, write all pi, i = 0, 1, 2, 3, . . . in terms of p0. Then use the normalizing equation and
isolate p0. ¤

2.4.8 Reversibility

Consider an irreducible, aperiodic and stable Markov-chain {Xn}. Assume that this Markov-
chain has been running for a long time to achieve stationarity with transition probability matrix
P = [Pij], and consider the process Xn, Xn−1, Xn−2, . . ., going back in time. This reversed
process is also a Markov-chain because Xn has dependence relationship only with Xn−1 and
Xn+1 and conditional on Xn+1, it is independent of Xn+2, Xn+3, Xn+4, . . . . Therefore,

P (Xn−1 = j | Xn = i) = P (Xn−1 = j | Xn = i,Xn+1 = in+1, Xn+2 = in+2, . . .).

In the following we derive the transition probability matrix, denoted Q = [Qij] of the process
{Xn} in reverse. Accordingly Define

Qij = P (Xn = j | Xn+1 = i). (210)

By the definition of conditional probability, we obtain,

Qij =
P (Xn = j ∩Xn+1 = i)

P (Xn+1 = i)
(211)

or

Qij =
P (Xn = j)P (Xn+1 = i | Xn = j)

P (Xn+1 = i)
(212)

and if πj denotes the steady-state probability of the Markov-chain {Xn} to be in state j, and
let n →∞, we obtain

Qij =
πjPji

πi

. (213)

A Markov-chain is said to be time reversible if Qij = Pij for all i and j. Substituting Qij = Pij

in (213), we obtain,
πiPij = πjPji for all i, j. (214)

The set of equations (214) is also a necessary and sufficient condition for time reversibility.
This set of equations is called the detailed balance conditions. In other words, a necessary and
sufficient condition for reversibility is that there exists a solution that sums up to unity for the
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detailed balance conditions. Furthermore, if such solution exists, it is the stationary probability
of the Markov chain, namely, it also solves also the global balance equations.

Intuitively, a Markov-chain Xn is time-reversible if for a large k (to ensure stationarity) the
Markov-chain Xk, Xk+1, Xk+2 . . . is statistically the same as the process Xk, Xk−1, Xk−2 . . ..
In other words, by considering the statistical characteristics of the two processes, you cannot
tell which one is going forward and which is going backward.

Homework 2.19

Provide an example of a Markov-chain that is time reversible and another one that is not time
reversible. ¤

2.4.9 Multi-Dimensional Markov-chains

So far, we discussed single dimensional Markov-chains. If the state space is made of finite
vectors instead of scalars, we can easily convert them to scalars and proceed with the above
described approach. For example, if the state-space is (0,0) (0,1) (1,0) (1,1) we can simply
change the names of the states to 0,1,2,3 by assigning the values 0, 1, 2 and 3 to the states
(0,0), (0,1), (1,0) and (1,1), respectively. In fact we do not even have to do it explicitly. All we
need to do is to consider a 4× 4 transition probability matrix as if we have a single dimension
Markov-chain. Let us now consider an example of a multi-dimensional Markov-chain.

Consider a bit-stream transmitted through a channel. Let Yn = 1 if the nth bit is received
correctly, and let Yn = 0 if the nth bit is received incorrectly. Assume the following

P (Yn = in | Yn−1 = in−1, Yn−2 = in−2)
= P (Yn = in | Yn−1 = in−1, Yn−2 = in−2, Yn−3 = in−3, Yn−4 = in−4, . . .).

P (Yn = 0 | Yn−1 = 0, Yn−2 = 0) = 0.9
P (Yn = 0 | Yn−1 = 0, Yn−2 = 1) = 0.7
P (Yn = 0 | Yn−1 = 1, Yn−2 = 0) = 0.6
P (Yn = 0 | Yn−1 = 1, Yn−2 = 1) = 0.001.

By the context of the problem, we have

P (Yn = 1) = 1− P (Yn = 0)

so,

P (Yn = 1 | Yn−1 = 0, Yn−2 = 0) = 0.1
P (Yn = 1 | Yn−1 = 0, Yn−2 = 1) = 0.3
P (Yn = 1 | Yn−1 = 1, Yn−2 = 0) = 0.4
P (Yn = 1 | Yn−1 = 1, Yn−2 = 1) = 0.999.

Homework 2.20

Explain why the process {Yn} is not a Markov-chain. ¤
Now define the {Xn} process as follows:
Xn = 0 if Yn = 0 and Yn−1 = 0.
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Xn = 1 if Yn = 0 and Yn−1 = 1.
Xn = 2 if Yn = 1 and Yn−1 = 0.
Xn = 3 if Yn = 1 and Yn−1 = 1.

Homework 2.21

Explain why the process {Xn} is a Markov-chain, produce its transition probability matrix,
and compute its steady-state probabilities. ¤

2.5 Continuous Time Markov-chains

2.5.1 Definitions and Preliminaries

A continuous-time Markov-chain is a continuous-time stochastic process {Xt}. At any point
in time t, {Xt} describes the state of the process which is discrete. We will consider only
continuous-time Markov-chain where Xt takes values that are nonnegative integer. The time
between changes in the state of the process is exponentially distributed. In other words, the
process stays constant for an exponential time duration before changing to another state.

In general, a continuous-time Markov-chain {Xt} is defined by the property that for all real
numbers s ≥ 0, t ≥ 0 and 0 ≤ v < s, and integers i ≥ 0, j ≥ 0 and k ≥ 0,

P (Xt+s = j | Xt = i,Xv = kv, v ≤ t) = P (Xt+s = j | Xt = i). (215)

That is, the probability distribution of the future values of the process Xt, represented by Xt+s,
given the present value of Xt and the past values of Xt denoted Xv, is independent of the past
and depends only on the present.

A general continuous-time Markov-chain can also be defined as a continuous-time discrete space
stochastic process with the following properties.

1. Each time the process enters state i, it stays at that state for an amount of time which
is exponentially distributed with parameter δi before making a transition into a different
state.

2. When the process leaves state i, it enters state j with probability denoted Pij. The set
of Pijs must satisfy the following:

(1) Pii = 0 for all i

(2)
∑

j Pij = 1.

An example of a continuous-time Markov-chain is a Poisson process with rate λ. The state
at time t, {Xt} can be the number of occurrences by time t which is the counting process
N(t). In this example of the Poisson counting process {Xt} = N(t) increases by one after every
exponential time duration with parameter λ.

Another example is the so-called pure birth process {Xt}. It is a generalization of the counting
Poisson process. Again {Xt} increases by one every exponential amount of time but here,
instead of having a fixed parameter λ for each of these exponential intervals, this parameter
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depends of the state of the process and it is denoted δi. In other words, when {Xt} = i, the time
until the next occurrence in which {Xt} increases from i to i + 1 is exponentially distributed
with parameter δi. If we set δi = λ for all i, we have the Poisson counting process.

2.5.2 Birth and Death Process

As in the case of the discrete-time Markov chain, in many real-life applications, such as various
queueing systems, that lend themselves to continuous-time Markov-chain modelling, the state
of the system in one point in time sometimes increases by one, and at other times decreases by
one, but never increase or decrease by more than one at one time instance. Such a continuous-
time Markov-chain {Xt}, as its discrete-time counterpart, is called a birth-and-death process.
In such a process, the time between occurrences in state i is exponentially distributed, with
parameter δi, and at any point of occurrence, the process increases by one (from its previous
value i to i + 1) with probability υi and decreases by one (from i to i − 1) with probability
ϑi = 1 − υi. The transitions from i to i + 1 are called births and the transitions from i to
i− 1 are called deaths. Recall that the mean time between occurrences, when in state i, is 1/δi.
Hence, the birth rate in state i, denoted bi, is given by

bi = δiυi

and the death rate (di) is given by
di = δiϑi.

Summing up these two equations gives the intuitive result that the total rate at state i is equal
to the sum of the birth-and-death rates. Namely,

δi = bi + di

and therefore the mean time between occurrences is

1

δi

=
1

bi + di

.

Homework 2.22

Show the following:

ϑi =
di

bi + di

and

υi =
bi

bi + di

. ¤

Birth-and-death processes apply to queueing systems where customers arrive one at a time
and depart one at a time. Consider for example a birth-and-death process with the death rate
higher than the birth rate. Such a process could model, for example, a stable single-server
queueing system.
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2.5.3 First Passage Time

An important problem that has applications in many fields, such as biology, finance and en-
gineering, is how to derive the distribution or moments of the time it takes for the process to
transit from state i to state j. In other words, given that the process is in state i find the
distribution of a random variable representing the time it takes to enter state j for the first
time. This random variable is called the first passage time from i to j. Let us derive the mean
of the first passage time from i to j in a birth-and-death process for the case i < j. To solve
this problem we start with a simpler one. Let Ui be the mean passage time to go from i to
i + 1. Then

U0 =
1

b0

. (216)

and

Ui =
1

δi

+ ϑi[Ui−1 + Ui]. (217)

Homework 2.23

Explain equations (216) and (217).

Guide

Notice that Ui−1 is the mean passage time to go from i−1 to i, so Ui−1 +Ui is the mean passage
time to go from i− 1 to i + 1. Equation (217) essentially says that Ui the mean passage time
to go from i to i + 1 is equal to the mean time the process stays in state i (namely 1/δi), plus
the probability to move from i to i− 1, times the mean passage time to go from i− 1 to i + 1.
Notice that the probability of moving from i to i + 1 is not considered because if the process
moves from i to i+1 when it completes its sojourn in state i then the process reaches the target
(state i + 1), so no further time needs to be considered. ¤
Therefore,

Ui =
1

bi + di

+
di

bi + di

[Ui−1 + Ui] (218)

or

Ui =
1

bi

+
di

bi

Ui−1. (219)

Now we have a recursion by which we can obtain U0, U1, U2, . . ., and the mean first passage
time between i and j is given by the sum

j∑

k=i

Uk.

Homework 2.24

Let bi = λ and di = µ for all i, derive a closed form expression for Ui. ¤
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2.5.4 Transition Probability Function

Define the transition probability function Pij(t) as the probability that given that the process
is in state i at time t0, then a time t later, it will be in state j. That is,

Pij(t) = P [X(t0 + t) = j | X(t0) = i]. (220)

The continuous time version of the Chapman-Kolmogorov equations are

Pij(t + τ) =
∞∑

n=0

Pin(t)Pnj(τ) for all t ≥ 0, τ ≥ 0. (221)

Using the latter to derive the limit

lim
4t→0

Pij(t +4t)− Pij(t)

4t

we obtain the so called Kolmogorov’s Backward Equations:

P ′
ij(t) =

∑

n 6=i

δiPinPnj(t)− δiPij(t) for all i, j and t ≥ 0. (222)

For a birth-and-death process the latter becomes

P ′
0j(t) = b0{P1j(t)− P0j(t)} (223)

and
P ′

ij(t) = biPi+1,j(t) + diPi−1,j(t)− (bi + di)Pij(t) for all i > 0. (224)

2.5.5 Steady-State Probabilities

As in the case of the discrete-time Markov-chain, define a continuous-time Markov-chain to
be called irreducible if there is a positive probability for any state to reach every state, and
we define a continuous-time Markov-chain to be called positive recurrent if for any state, if
the process visits and then leaves that state, the random variable that represents the time it
returns to that state has finite mean. As for discrete-time Markov-chains, a continuous-time
Markov-chain is said to be stable if all its states are positive recurrent.

Henceforth we only consider continuous-time Markov-chains that are irreducible, aperiodic and
stable. Then the limit of Pij(t) as t approaches infinity exists, and we define

πj = lim
t→∞

Pij(t). (225)

The πj values are called steady-state probabilities or stationary probabilities of the continuous-
time Markov-chain. In particular, πj is the steady-state probability of the continuous-time
Markov-chain to be at state j. We shall now describe how the steady-state probabilities πj can
be obtained.

We now construct the matrix Q which is called the infinitesimal generator of the continuous-
time Markov-chain. The matrix Q is a matrix of one step infinitesimal rates Qij defined
by

Qij = δiPij for i 6= j (226)
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and
Qii = −

∑

j 6=i

Qij. (227)

Remarks:

• The state-space can be finite or infinite and hence the matrices P and Q can also be
finite or infinite.

• In Eq. (226), Qij is the product of the rate to leave state i and the probability of transition
to state j from state i which is the rate of transitions from i to j.

To obtain the steady-state probabilities πjs, we solve the following set of steady-state equa-
tions:

0 =
∑

i

πiQij for all j (228)

and ∑
j

πj = 1. (229)

Denoting Π = [π0, π1, π2, . . .], Eq. (228) can be written as

0 = ΠQ. (230)

To explain Eqs. (228), notice that, by (226) and (227), for a particular j, the equation

0 =
∑

i

πiQij (231)

is equivalent to the equations

πj

∑

i 6=j

Qji =
∑

i 6=j

πiQij (232)

or
πj

∑

i 6=j

δjPji =
∑

i 6=j

πiδiPij (233)

which give the following global balance equations if we consider all j.

πj

∑

i6=j

δjPji =
∑

i6=j

πiδiPij for all j, (234)

or using the Qij notation,

πj

∑

i6=j

Qji =
∑

i6=j

πiQij for all j. (235)

The quantity πiQij which is the steady-state probability of being in state i times the infinitesimal
rate of a transition from state i to state j is called the probability flux from state i to state j.
Eq. (231) says that the total probability flux from all states into state j is equal to the total
probability flux out of state j to all other states. To explain this equality, consider a long period
of time L. Assuming the process returns to all states infinitely many times, during a long time
period L, the number of times the process moves into state j is equal (in the limit L →∞) to
the number of times the process moves out of state j. This leads to Eq. (233) with the factor
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L in both sides. The concept of probability flux is equivalent to the concept of the long-term
frequency of transitions discussed above in the context of discrete-time Markov chains.

Similar to the case of discrete-time Markov-chains, the set of equations (228) and (229) is
dependent and one of the equations in (228) is redundant in the finite state space case.

For continuous-time birth-and-death processes, Qij = 0 for |i− j| > 1. As in the discrete-time
case, under this special condition, the global balance equations (234) can be simplified to the
local balance equations. We start with the first equation of (234) and using the condition
Qij = 0 for |i− j| > 1, we obtain

π0Q01 = π1Q10 (236)

The second equation is
π1[Q10 + Q12] = π0Q01 + π2Q21. (237)

Then Eq. (237) can be simplified using (236) and we obtain

π1Q12 = π2Q21. (238)

In a similar way, by repeating the process, we obtain the following local balance equations.

πiQi,i+1 = πi+1Qi+1,i i = 0, 1, 2, . . . . (239)

2.5.6 Multi-Dimensional Continuous Time Markov-chains

The extension discussed earlier regarding multi-dimensional discrete-time Markov-chains ap-
plies also to the case of continuous-time Markov-chains. If the state-space is made of finite
vectors instead of scalars, as discussed, there is a one-to-one correspondence between vectors
and scalars, so a multi-dimensional continuous-time Markov-chain can be converted to a single-
dimension continuous-time Markov-chain and we proceed with the above described approach
that applies to the single dimension.

2.5.7 The Curse of Dimensionality

In many applications, the Q matrix is too large, so it may not be possible to solve the steady-
state equations (228) in reasonable time. Actually, the case of a large state-space (or large Q
matrix) is common in practice.

This is often occur when the application lead to a Markov-chain model that is of high dimen-
sionality. Consider for example a 49 cell GSM mobile network, and assume that every cell has
23 voice channels. Assuming Poisson arrivals and exponential holding and cell sojourn times.
Then this cellular mobile network can be modeled as a continuous time Markov-chain with
each state representing the number of busy channels in each cell. In this case, the number of
states is equal to 2449, so a numerical solution of the steady-state equations is computationally
prohibitive.

2.5.8 Simulations

When a numerical solution is not possible, we often rely on simulations. Fortunately, due to the
special structure of the continuous-time Markov-chain together with a certain property of the
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Poisson process called PASTA (Poisson Arrivals See Time Averages), simulations of continuous
time Markov-chain models can be simplified and expedited so they lead to accurate results. To
explain the PASTA property, consider a stochastic process for which steady-state probabilities
exist. If we are interested in obtaining certain steady-state statistical characteristics of the
process (like the πi in a continuous-time Markov-chain), we could inspect the entire evolution
of the process (in practice, for a long enough time period), or we could use an independent
Poisson inspector. (We already discussed the property of the Poisson process to see time-
averages.) The PASTA principle means that if the arrivals follow a Poisson process, we do not
need a separate Poisson inspector, but we could inspect the process at occurrences of points in
time just before points of arrivals.

Note that in practice, since we are limited to a finite number of inspections, we should choose
a Poisson process that will have sufficient number of occurrences (inspections) during the sim-
ulation of the stochastic process we are interested in obtaining its steady-state statistics.

In many cases, when we are interested in steady-state statistics of a continuous time Markov-
chain, we can conveniently find a Poisson process which is part of the continuous-time Markov-
chain we are interested in and use it as a Poisson inspector. For example, if we consider a
queueing system in which the arrival process follows a Poisson process, such process could be
used for times of arrivals of the inspector if it, at any inspection, does not count (include) its
own particular arrival. In other words, we consider a Poisson inspector that arrives just before
its own arrival occurrences.

2.5.9 Reversibility

We have discussed the time reversibility concept in the context of discrete-time Markov-
chains. In the case of a continuous-time Markov-chain the notion of time reversibility is similar.
If you observe the process Xt for a large t (to ensure stationarity) and if you cannot tell from
its statistical behavior if it is going forward or backward, it is time reversible.

Consider stationary continuous-time Markov-chain that has a unique steady-state solution.
Its [Pij] matrix characterizes a discrete-time Markov-chain. This discrete-time Markov-chain,
called the embedded chain of our continuous-time Markov-chain, has [Pij] as its transition
probability matrix. This embedded chain is in fact the sequence of states that our original
continuous-time chain visits where we ignore the time spent in each state during each visit
to that state. We already know the condition for time reversibility of the embedded chain,
so consider our continuous-time chain and assume that it has been running for a long while,
and consider its reversed process going backwards in time. In the following we show that
also the reversed process spends an exponentially distributed amount of time in each state.
Moreover, we will show that the reverse process spends an exponentially distributed amount
of time with parameter δi when in state i which is equal to the time spent in state i by the
original process.

P{X(t) = i, for t ∈ [u− v, u] | X(u) = i} =
P{X(t) = i, for t ∈ [u− v, u] ∩X(u) = i}

P [X(u) = i]

=
P [X(u− v) = i]e−δiv

P [X(u) = i]
= e−δiv.

The last equality is explained by reminding the reader that the process is in steady-state so
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the probability that the process is in state i at time (u− v) is equal to the probability that the
process is in state i at time u.

Since the continuous-time Markov-chain is composed of two parts, its embedded chain and the
time spent in each state, and since we have shown that the reversed process spends time in each
state which is statistically the same as the original process, a condition for time reversibility of
a continuous-time Markov-chain is that its embedded chain is time reversible.

As we have learned when we discussed reversibility of stationary discrete-time Markov-chains,
the condition for reversibility is the existence of positive π̂i for all states i that sum up to unity
that satisfy the detailed balance equations:

π̂iPij = π̂jPji for all adjacent i, j. (240)

Recall that this condition is necessary and sufficient for reversibility and that if such a solution
exists, it is the stationary probability of the process. The equivalent condition in the case of
a stationary continuous-time Markov-chain is the existence of positive πi for all states i that
sum up to unity that satisfy the detailed balance equations of a continuous-time Markov-chain,
defined as:

πiQij = πjQji for all adjacent i, j. (241)

Homework 2.25

Derive (241) from (240). ¤
It is important to notice that for a birth-and-death process, its embedded chain is time-
reversible. Consider a very long time L during that time, the number of transitions from
state i to state i+1, denoted Ti,i+1(L), is equal to the number of transitions, denoted Ti+1,i(L),
from state i + 1 to i because every transition from i to i + 1 must eventually follow by a
transition from i + 1 to i. Actually, there may be a last transition from i to i + 1 without
the corresponding return from i + 1 to i, but since we assume that L is arbitrarily large, the
number of transitions is arbitrarily large and being off by one transition for an arbitrarily large
number of transitions is negligible.

Therefore, for arbitrary large L,

Ti,i+1(L)

L
=

Ti+1,i(L)

L
. (242)

Since for a birth-and-death process Qij = 0 for | i−j |> 1 and for i = j, and since for arbitrarily
large L, we have

πiQi,i+1 =
Ti,i+1(L)

L
=

Ti+1,i(L)

L
= πi+1Qi+1,i, (243)

so our birth-and-death process is time reversible. This is an important result for the present
context because many of the queueing models discussed in this book involve birth-and-death
processes.
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3 General Queueing Concepts

In general, queueing systems may be characterized by complex input process, service time dis-
tribution, number of servers (or channels), buffer size (or waiting room) and queue disciplines.
In practice, such queueing processes and disciplines are often not amenable to analysis. Never-
theless, insight can be often gained using simpler queueing models. Modelling simplification is
often made when the aim is to analyze a complex queueing system or network, such as the In-
ternet, where packets on their ways to their destinations arrive at a router where they are stored
and then forwarded according to addresses in their headers. One of the most fundamental ele-
ments in this process is the single-server queue. One of the aims of telecommunications research
is to explain traffic and management processes and their effect on queueing performance. In
this section, we briefly cover basic queueing theory concepts. We shall bypass mathematically
rigorous proofs and rely instead on simpler intuitive explanations.

3.1 Notation

A commonly used shorthand notation, called Kendall notation [47], for such single queue models
describes the arrival process, service distribution, the number of servers and the buffer size
(waiting room) as follows:

{arrival process}/{service distribution}/{number of servers}/{buffer size}-{queue discipline}
Commonly used characters for the first two positions in this shorthand notation are: D (De-
terministic), M (Markovian - Poisson for the arrival process or Exponential for the service
time distribution required by each customer), G (General), GI (General and independent), and
Geom (Geometric). The fourth position is used for the number of buffer places including the
buffer spaces available at the servers. This means that if there are k servers and no additional
waiting room is available then k will be written in the fourth position. The fourth position is
not used if the waiting room is unlimited. The fifth position is used for the queue discipline.
Namely, the order in which the customers are served in the queue. For example: First In First
Out (FIFO), Last In First Out (LIFO), Processor Sharing (PS) where all customers in the
queue obtain service, and random order (random). The fifth position is not used for the case of
the FIFO queue discipline. Notice that the dash notation “-” before the fifth position is used to
designate the fifth position. This “-” designation avoids ambiguity in case the fourth position
is missing.

For example, M/M/1 denotes a single-server queue with Poisson arrival process and exponential
service time with infinite buffer, and FIFO service order. M/G/k/k denotes a k-server queue
with no additional waiting room accept at the servers with the arrival process being Poisson.
M/G/1-PS denotes a single server processor sharing queue with Poisson arrivals and generally
distributed customer service time requirement. Notice that in an M/G/1-PS queue although
the service time of a customer/packet starts immediately upon arrival it may continue for a
longer time than its service requirement, because the server capacity is always shared among
all customers/packets in the system.
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3.2 Utilization

An important measure for queueing systems performance is the utilization, denoted Û . It is
the proportion of time that a server is busy on average. In many systems, the server is paid
for its time regardless if it is busy or not. Normally, the time that transmission capacity is not
used is time during which money is spent but no revenue is collected. It is therefore important
to design systems that will maintain high utilization.

If you have two identical servers and one is busy 0.4 of the time and the other 0.6. Then
the utilization is 0.5. We always have that 0 ≤ Û ≤ 1. If we consider an M/M/∞ queue
(Poisson arrivals, exponentially distributed service times and infinite servers) and the arrival
rate is finite, the utilization is zero because the mean number of busy servers is finite and the
mean number of idle servers is infinite.

Consider a G/G/1 queue (that is, a single-server queue with arbitrary arrival process and arbi-
trary service time distribution, with infinite buffer). Let S be a random variable representing
the service time and let E[S] = 1/µ, i.e., µ denotes the service rate. Further, let λ be the
mean arrival rate. Assume that µ > λ so that the queue is stable, namely, that it will not
keep growing forever, and that whenever it is busy, eventually it will reach the state where the
system is empty. For a stable G/G/1 queue, we have that that Û = λ/µ. To show the latter let
L be a very long period of time. The average number of customers (amount of work) arrived
within time period L is: λL. The average number of customers (amount of work) that has been
served during time period L is equal to µÛL. Since L is large and the queue is stable, these
two values are equal. Thus, µÛL = λL. Hence, Û = λ/µ.

Often, we are interested in the distribution of the number (of customers, jobs or packets) in
the system. Consider a G/G/1 queue and let pn be the probability that there are n in the
system. Having the utilization, we can readily obtain p0 the probability that the G/G/1 queue
is empty. Specifically,

p0 = 1− Û = 1− λ/µ. (244)

If we have a multi-server queue, e.g. G/G/k/k + n, then the utilization will be defined as
the overall average utilization of the individual servers. That is, each server will have its
own utilization defined by the proportion of time it is busy, and the utilization of the entire
multi-server system will be the average of the individual server utilization.

3.3 Little’s Formula

Another important and simple queueing theory result that applies to G/G/1 queue (and to
other systems) is known as Little’s Formula [55, 79, 80]. It has two forms. The first form
is:

E[Q] = λE[D] (245)

where E[Q] and E[D] represent the stationary mean queue-size including the customer in
service and the mean delay (system waiting time) of a customer from the moment it arrives
until its service is complete, respectively. In remainder of this book, when we use terms such as
mean queue-size and mean delay, we refer to their values in steady-state, i.e., stationary mean
queue-size and delay, respectively.
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The second form is:
E[NQ] = λE[WQ] (246)

where E[NQ] and E[WQ] represent the mean number of customers in the queue in steady-state
excluding the customer in service and the mean delay of a customer, in steady-state, from the
moment it arrives until its service commences (waiting time in the queue), respectively.

An intuitive (non-rigorous) way to explain Eq. (245) is by considering a customer that just
left the system (completed service). This customer sees behind his/her back on average E[Q]
customers. Who are these customers? They are the customers that had been arriving during
the time that our customer was in the system. Their average number is λE[D].

For a graphical proof of Little’s Formula for the case of G/G/1 queue see [12]. The arguments
there may be summarized as follows. Consider a stable G/G/1 queue that starts at time t = 0
with an empty queue. Let A(t) be the number of arrivals up to time t, and let D(t) be the
number of departures up to time t. The queue-size (number in the system) at time t is denoted
Q(t) and is given by Q(t) = A(t) − D(t), t ≥ 0. Let L be an arbitrarily long period of time.
Then the mean queue-size E[Q] is given by

E[Q] =
1

L

∫ L

0

Q(t)dt. (247)

Also notice that ∫ L

0

Q(t)dt =

A(L)∑
i=1

Wi (248)

where Wi is the time spent in the system by the ith customer. (Notice that since L is arbitrarily
large, there have been arbitrarily large number of events during [0, L] where our stable G/G/1
queue became empty, so A(L) = D(L).) Therefore,

1

L

∫ L

0

Q(t)dt =
1

L

A(L)∑
i=1

Wi (249)

and realizing that
λ = A(L)/L, (250)

and

E[D] =
1

A(L)

A(L)∑
i=1

Wi, (251)

we obtain

E[Q] =
1

L

∫ L

0

Q(t)dt =
A(L)

L

1

A(L)

A(L)∑
i=1

Wi = λE[D]. (252)

Little’s formula applies to many systems. Its applicability is not limited to single-server queues,
or single queue systems, or systems with infinite buffer. However, the system must be in steady-
state for Little’s formula to apply.

Little’s formula is applicable to almost any queueing system in steady state. The system
may consist of more than one queue, more than one server, the order does not need to be
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FIFO, the arrivals do not need to follow Poisson process, and service time do not need to be
exponential.

Interestingly, the result Û = λ/µ for a G/G/1 queue can also be obtained using Little’s formula.
Let us consider a system to be just the server (excluding the infinite buffer). The mean time a
customer spends in this system is 1/µ because this is the mean service time so this is the mean
time spent in the system that includes just the server. The mean arrival rate into that system
must be equal to λ because all the customers that arrive at the queue eventually arrive at the
server - nothing is lost. Let us now consider the number of customers at the server, denoted Ns.
Clearly, Ns can only take the values zero or one, because no more than one customer can be at
the server at any point in time. We also know that the steady-state probability P (Ns = 0) is
equal to π0. Therefore,

E[Ns] = 0π0 + 1(1− π0) = 1− π0 = Û .

By Little’s formula, we have
E[Ns] = λ(1/µ),

so

Û =
λ

µ
.

Conventional notations in queueing theory for a k-server queue are

A =
λ

µ

and

ρ =
A

k
.

Thus, for a G/G/1 queue

E[Ns] =
λ

µ
= Û = ρ.

To obtain (246) from (245), notice that

E[Q] = E[NQ] + E[Ns] = E[NQ] +
λ

µ
(253)

and
E[D] = E[WQ] + 1/µ. (254)

Substituting (253) and (254) in (245), (246) follows.

Another interesting application of Little’s formula relates the blocking probability Pb of a
G/G/1/k queue (a G/G/1 queue with a buffer of size k) with its server utilization [39, 68].
Again, consider the server as an independent system. Since the mean number of customers
in this system is Û , and the arrival rate into this system is (1 − Pb)λ, we obtain by Little’s
formula:

Û = (1− Pb)λµ−1, (255)

where µ−1 is the mean service time. Having ρ = λ/µ, we obtain

Pb = 1− Û

ρ
. (256)
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3.4 Work Conservation

Another important concept in queuing theory is the concept of work conservation. A queuing
system is said to be work conservative if a server is never idle whenever there is still work to
be done. For example, G/G/1 and G/G/1/k are work conservative. However, a stable G/G/k
is not work conservative because a server can be idle while there are customers served by other
servers.

3.5 PASTA

Many of the queueing models we consider in this book involve Poisson arrival processes. The
Poisson Arrivals See Time Averages (PASTA) property discussed in the previous section is
important for analysis and simulations of such queueing models. Let us further explain and
prove this important property.

The PASTA property means that arriving customers in steady state will find the number of
customers in the system obeying its steady-state distribution. In other words, the statistical
characteristics (e.g., mean, variance, distribution) of the number of customers in the system
observed by an arrival is the same as those observed by an independent Poisson inspector. This
is not true in general. Consider the lonely person example of a person lives alone and never
has another person comes to his/her house. When this person comes home s/he always finds
that there are no people in the house upon its arrival, but if we use an independent Poisson
inspector to evaluate the proportion of time that person is in the house, the inspector will find
sometimes that there is one person in the house and in other times that there is no-one in the
house. Of course, the arrival process of this person is not a Poisson process as there are no
arrivals during the time the person is in the house.

In addition to the Poisson arrival assumption, for PASTA to be valid we also need the condition
that arrivals after time t are independent of the queue size at time t, Q(t). For example, if we
have a single-server queue (SSQ) with Poisson arrivals and the service times have the property
that the service of a customer must always terminate before the next arrival, then the arrivals
always see an empty queue, and, of course, an independent arrival does not.

To prove PASTA we consider the limit

Ak(t) = lim
∆t→0

P [Q(t) = k | an arrival occurs within (t, t + ∆t)].

Using Bayes’ formula and the condition that arrivals after time t are independent of Q(t), we
obtain that

Ak(t) = P [Q(t) = k]. (257)

Then, by taking the limit of both sides of (257), we complete the proof that the queue size seen
by an arrival is statistically identical to the queue size seen by an independent observer. ¤

Homework 3.1

Prove Eq. (257). ¤
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3.6 Queueing Models

In this book we discuss various queueing models that are amenable to analysis. The analysis is
simplest for D/D/ type queues where the interarrival and service times are deterministic (fixed
values). They will be discussed in the next section. Afterwards, we will consider the so-called
Markovian queues. These queues are characterized by the Poisson arrival process, independent
exponential service times and independence between the arrival process and the service times.
They are denoted by M in the first two positions (i.e., M/M/ · /·). Because of the memoryless
property of Markovian queues, these queues are amenable to analysis. In fact, they are all
continuous-time Markov-chains with the state being the queue-size defined as the number in
the system n and the time between state transitions is exponential. The reason that these
time periods are exponential is that at any point in time, the remaining time until the next
arrival, or the next service completion, is a competition between various exponential random
variables.
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4 Simulations

In many cases, analytical solutions are not available, so simulations are used to estimate per-
formance measures. Simulations are also used to evaluate accuracy of analytical approxima-
tions.

4.1 Confidence Intervals

Regardless of how long we run a simulation involving random processes, we will never obtain
the exact mathematical result of a steady-state measure we are interested in. To assess the
error of our simulation, we begin by running a certain number, say n, of simulation experiments
and obtain n observed values, denoted a1, a2, . . . , an, of the measure of interest.

Let ā be the observed mean and σ2
a the observed variance of these n observations. Their values

are given by

ā =
1

n

n∑
i=1

ai (258)

and

σ2
a =

1

n− 1

n∑
i=1

(ai − ā)2. (259)

Then the confidence interval of ā, with confidence α, 0 ≤ α ≤ 1, is given by (ā − Ur, ā + Ur),
where

Ur = {t(1−α)/2,(n−1)} σa√
n

(260)

where t(1−α)/2,(n−1) is the appropriate percentage point for Student’s t-distribution with n − 1
degrees of freedom. The t(1−α)/2,(n−1) values are available in standard tables. For example:
t0.025,5 = 2.57 and t0.025,10 = 2.23. That is, if we are interested in 95% confidence and we have
n = 6 observations, we will use t0.025,5 = 2.57 to obtain the confidence interval, and if we have
n = 11 observations, we will use t0.025,10 = 2.23.

Microsoft (MS) ExcelTM provides the function TINV whereby TINV (1 − α, n − 1) gives the
appropriate constant based in t-distribution for confidence α and n − 1 degrees of freedom.
Then the confidence interval of ā, with confidence α, 0 ≤ α ≤ 1, is given by

(ā− Ur, ā + Ur),

where
Ur = TINV (1− α, n− 1)

σa√
n

.

Let us now consider the above-mentioned two examples of n = 6 and n = 11. Using MS
ExcelTM, TINV (0.05, 5) = 2.57 and TINV (0.05, 10) = 2.23. That is, if we are interested in
95% confidence and we have n = 6 observations, we will use TINV (0.05, 5) = 2.57 to obtain
the confidence interval, and if we have n = 11 observations, we will use TINV (0.05, 10) =
2.23.
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The larger the number of observations, the smaller is the 95% confidence interval. As certain
simulations a very time consuming, a decision needs to be made on the tradeoff between time
and accuracy. In many cases, when the simulations are not very time consuming, we can
increase the number of observations until required accuracy (length of confidence interval) is
achieved.

We use here the Student’s t-distribution (and not Gaussian) because it is the right distribution
to use when we attempt to estimate the mean of a population which is normally distributed
when we have a small sample size. In fact, the need to estimate such mean based on a small
sample gave rise to the development of the Student’s t-distribution. In the next section we will
guide the reader on how to write queueing simulations for a G/G/1 queue.

4.2 Simulation of a G/G/1 Queue

We will now present an example of how to simulate a G/G/1 queue using an approach called
Discrete Event Simulation [27]. Although the example presented here is for a G/G/1 queue,
the principles can be easily extended to multi server and/or finite buffer queues. The first
step is to generate a sequence of inter-arrival times and service times in accordance with the
given distributions. (Note the discussion in Section 1.10.1 regarding the generation of random
deviates.) In our example, starting at time 0, let us consider the following inter-arrival times:
1, 2, 1, 8, 4, 5, . . . , and the following sequence of service times: 4, 6, 4, 2, 5, 1, . . . .

In writing a computer simulation for G/G/1, we aim to fill in the following table for several
100,000s or millions arrivals (rows).

arrival time service duration queue-size on arrival service starts service ends delay
1 4 0 1 5 4
3 6 1 5 11 8
4 4 2
12 2
16 5
21 1

The following comments explain how to fill in the table.

• The arrival times and the service durations values are readily obtained from the interar-
rival and service time sequences.

• Assuming that the previous rows are already filled in, the “queue-size on arrival” is
obtained by comparing the arrival time of the current arrivals and the values in the
“service ends” column of the previous rows. In particular, the queue size on arrival is
equal to the number of customers that arrive before the current customer (previous rows)
that their “service ends” time values are greater than the arrival time value of the current
arrival.

• The “service starts” value is the maximum of the “arrival time” value of the current
arrival and the “service end” value of the previous arrival. Also notice that if the queue
size on arrival of the current arrival is equal to zero, the service start value is equal to the
“arrival time” value of the current arrival and if the queue size on arrival of the current
arrival is greater than zero the service start value is equal to the “service end” value of
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the previous arrival.

• The “service ends” value is simply the sum of the “service starts” and the “service dura-
tion” values of the current arrival.

• The “delay” value is the difference between the “service ends” and the “arrival time”
values.

Using the results obtained in the last column, we can estimate the delay distribution and mo-
ments in steady-state. However, the “queue-size on arrival” values for all the customers do
not, in general, provide directly the steady-state queue-size distribution and moments. To
estimate accurately the steady-state queue-size distribution, we will need to have inspections
performed by an independent Poisson inspector. Fortunately, due to PASTA, for M/G/1 (in-
cluding M/M/1 and M/D/1) the “queue-size on arrival” values can be used directly to obtained
the steady-state queue-size distribution and moments and a separate Poisson inspector is not
required. Observing the queue-size just before the arrivals provides the right inspections for
steady-state queue-size statistics. However, if the arrival process does not follow a Poisson
process, a separate independent Poisson inspector is required. In such a case, we generate a
Poisson process: t1, t2, t3, . . . , and for each ti, i = 1, 2, 3, . . . we can invoke the queue-size at
time ti, denoted Qi, in a similar way to the one we obtained the “queue-size on arrival” values.
The Qi values are then used to evaluate the queue-size distribution and moments.

An alternative way to evaluate the queue size distribution of a G/G/1 queue is to record the
total time spent in each state. If there was an event (arrival or departure) at time tj when the
G/G/1 queue entered state i and the next event (arrival or departure) at tk when the G/G/1
queue exited state i, then the period tj− tk is added to a counter recording the total time spent
in the state i.

Homework 4.1

Fill in the above table by hand. ¤

Homework 4.2

Write a computer simulation for a P/P/1 queue (a single-server queue with Pareto inter-arrival
and service time distributions) to derive estimates for the mean and distribution of the delay
and of the queue-size. Perform the simulations for a wide range of parameter values. Compute
confidence interval as described in Section 4. ¤

Homework 4.3

Repeat the simulations, of the previous homework, for a wide range of parameter values, for
a U/U/1 queue, defined as a single-server queue with Uniform inter-arrival and service time
distributions, and for an M/M/1 queue. For the M/M/1 queue, verify that your simulation
results are consistent with respective analytical results. For the U/U/1 queue, use the Poisson
inspector approach and the “time recording” approach and verify that the results are consistent.
¤
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Homework 4.4

Discuss the accuracy of your estimations in the different cases. ¤

Homework 4.5

Use the principles presented here for a G/G/1 queue simulation to write a computer simulation
for a G/G/k/k queue. In particular, focus on the cases of an M/M/k/k queue and a U/U/k/k
queue, defined as a k-server system without additional waiting room where the inter-arrival and
service times are uniformly distributed, and compute results for the blocking probability for
these two cases. For a meaningful comparison use a wide range of parameter values. ¤
There will be many homework assignments in this book that require simulations and in some
cases a guide will be provided.
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5 Deterministic Queues

We consider here the simple case where inter-arrival and service times are deterministic. To
avoid ambiguity, we assume that if an arrival and a departure occur at the same time, the
departure occurs first. Such an assumption is not required for Markovian queues where the
queue size process follows a continuous-time Markov-chain because the probability of two events
occurring at the same time is zero, but it is needed for deterministic queues. Unlike many of
the Markovian queues that we study in this book, for deterministic queues steady-state queue
size distribution does not exist because the queue size deterministically fluctuate according to
a certain pattern. Therefore, for deterministic queues we will use the notation P (Q = n),
normally designating the steady-state probability of the queue-size to be equal to n in cases
where such steady-state probability exists, for the proportion of time that there are n customers
in the queue, or equivalently, P (Q = n) is the probability of having n in the queue at a
randomly (uniformly) chosen point in time. Accordingly, the mean queue size E[Q] will be
defined by

E[Q] =
∞∑

n=0

nP (Q = n).

We will use the term blocking probability Pb to designate the proportion of packets that are
blocked. To derive performance measures such as mean queue size, blocking probability and
utilization, in such deterministic queues, we follow the queue-size process, for a certain transient
period, until we discover a pattern (cycle) that repeats itself. Then we focus on a single cycle
and obtain the desired measures of that cycle.

5.1 D/D/1

If we consider the case λ > µ, the D/D/1 queue is unstable. In this case the queue size
constantly grows and approaches infinity as t → ∞, and since there are always packets in the
queue waiting for service, the server is always busy, thus the utilization is equal to one.

Let us consider now a stable D/D/1 queue, assuming λ < µ. Notice that for D/D/1, given
our above assumption that if an arrival and a departure occur at the same time, the departure
occurs first, the case λ = µ will also be stable. Assume that the first arrival occurs at time
t = 0. The service time of this arrival will terminate at t = 1/µ. Then another arrival will occur
at time t = 1/λ which will be completely served at time t = 1/λ + 1/µ, etc. This gives rise to
a deterministic cyclic process where the queue-size takes two values: 0 and 1 with transitions
from 0 to 1 in points of time n(1/λ), n = 0, 1, 2, . . ., and transitions from 1 to 0 in points of
time n(1/λ) + 1/µ, n = 0, 1, 2, . . . . Each cycle is of time-period 1/λ during which there is a
customer to be served for a time-period of 1/µ and there is no customer for a time-period of
1/λ − 1/µ. Therefore, the utilization is given by Û = (1/µ)/(1/λ) = λ/µ which is consistent
with what we know about the utilization of G/G/1.

As all the customers that enter the system are served before the next one arrives, the mean
queue-size of D/D/1 must be equal to the mean queue-size at the server, and therefore, it is
also equal to the utilization. In other words, the queue-size alternates between the values 1
and 0, spending a time-period of 1/µ at state 1, then a time-period of 1/λ − 1/µ at state 0,
then again 1/µ time at state 1, etc. If we pick a random point in time, the probability that
there is one in the queue is given by P (Q = 1) = (1/µ)/(1/λ), and the probability that there
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are no customers in the queue is given by P (Q = 0) = 1 − (1/µ)/(1/λ). Therefore, the mean
queue-size is given by E[Q] = 0P (Q = 0) + 1P (Q = 1) = (1/µ)/(1/λ) = Û .

Moreover, we can show that out of all possible G/G/1 queues, with λ being the arrival rate
and µ the service rate, no-one will have lower mean queue-size than D/D/1. This can be
shown using Little’s formula E[Q] = λE[D]. Notice that for each of the relevant G/G/1 queues
E[D] = 1/µ + E[WQ] ≥ 1/µ, but for D/D/1 E[WQ] = 0. Thus, E[D] for any G/G/1 queue
must be equal or greater than that of D/D/1, and consequently by Little’s formula, E[Q] for
any G/G/1 queue must be equal or greater than that of D/D/1.

5.2 D/D/k

Here we consider deterministic queues with multiple servers. The interarrival times are again
always equal to 1/λ, and the service time of all messages is equal to 1/µ. Again if we consider
the case λ > kµ, the D/D/k queue is unstable. In this case the queue size constantly increases
and approaches infinity as t →∞, and since there are always more than k packets in the queue
waiting for service, all k servers are constantly busy, thus the utilization is equal to one.

Now consider the stable case of λ < kµ, so that the arrival rate is below the system capacity.
Notice again that given our above assumption that if an arrival and a departure occur at the
same time, the departure occurs first, the case λ = kµ will also be stable. Extending the
D/D/1 example to a general number of servers, the behavior of the D/D/k queue is analyzed
as follows. As λ and µ satisfy the stability condition λ < kµ, there must exist an integer n̂,
1 ≤ n̂ ≤ k such that

(n̂− 1)µ < λ ≤ n̂µ, (261)

or equivalently
n̂− 1

λ
<

1

µ
≤ n̂

λ
. (262)

Homework 5.1

Show that

n̂ =

⌈
λ

µ

⌉
(263)

satisfies 1 ≤ n̂ ≤ k and (262). Recall that dxe designates the smallest integer greater or equal
to x.

Guide

Notice that

n̂

λ
=

⌈
λ
µ

⌉

λ
≥

λ
µ

λ
=

1

µ
.

Also,

n̂− 1

λ
=

⌈
λ
µ

⌉
− 1

λ
<

λ
µ

λ
=

1

µ
.
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¤
The inequality

n̂− 1

λ
<

1

µ
,

means that if the first arrival arrives at t = 0, there will be additional n̂ − 1 arrivals before
the first customer leaves the system. Therefore, the queue-size increases incrementally taking
the value j at time t = (j − 1)/λ, j = 1, 2, 3, . . . , n̂. When the queue reaches n̂ for the
first time, which happens at time (n̂− 1)/λ, the cyclic behavior starts. Then, at time t = 1/µ
the queue-size reduces to n̂ − 1 when the first customer completes its service. Next, at time
t = n̂/λ, the queue-size increases to n̂ and decreases to n̂ − 1 at time t = 1/λ + 1/µ when
the second customer completes its service. This cyclic behavior continuous forever whereby the
queue-size increases from n̂− 1 to n̂ at time points t = (n̂+ i)/λ, and decreases from n̂ to n̂− 1
at time points t = i/λ + 1/µ, for i = 0, 1, 2, . . . . The cycle length is 1/λ during which the
queue-size process is at state n̂, 1/µ − (n̂ − 1)/λ of the cycle time, and it is at state n̂ − 1,
n̂/λ− 1/µ of the cycle time. Thus,

P (Q = n̂) =
λ

µ
− (n̂− 1)

and

P (Q = n̂− 1) = n̂− λ

µ
.

The mean queue-size E[Q], can be obtained by

E[Q] = (n̂− 1)P (Q = n̂− 1) + n̂P (Q = n̂)

which after some algebra gives

E[Q] =
λ

µ
. (264)

Homework 5.2

Perform the algebraic operations that lead to (264). ¤.

This result is consistent with Little’s formula. As customers are served as soon as they arrive,
the time each of them spends in the system is the service time 1/µ - multiplying it by λ, gives
by Little’s formula the mean queue size. Since E[Q] in D/D/k gives the number of busy servers,
the utilization is given by

Û =
λ

kµ
. (265)

Notice that Equations (264) and (265) applies also to D/D/∞ for finite λ and µ. Eq. (264)
gives the mean queue-size of D/D/∞ (by Little’s formula, or by following the arguments that
led to Eq. (264)) and for D/D/∞, we have that Û = 0 by (265). Also notice that in D/D/∞
there are infinite number of servers and the number of busy servers is finite, so the average
utilization per server must be equal to zero.
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5.3 D/D/k/k

In D/D/k/k there is no waiting room beyond those available at the servers. Recall that to avoid
ambiguity, we assume that if an arrival and a departure occur at the same time, the departure
occurs first. Accordingly, if λ ≤ kµ, then we have the same queue behavior as in D/D/k as no
losses will occur. The interesting case is the one where λ > kµ and this is the case we focus
on. Having λ > kµ, or 1/µ > k/λ, implies that

ñ =

⌈
λ

µ

⌉
− k

satisfies
k + ñ− 1

λ
<

1

µ
≤ k + ñ

λ
.

Homework 5.3

Prove the last statement.

Guide

Notice that

k + ñ

λ
=

⌈
λ
µ

⌉

λ
≥

λ
µ

λ
=

1

µ
.

Also,

k + ñ− 1

λ
=

⌈
λ
µ

⌉
− 1

λ
<

λ
µ

λ
=

1

µ
.

¤

5.3.1 The D/D/k/k process and its cycles

Again, consider an empty system with the first arrival occurring at time t = 0. There will be
additional k − 1 arrivals before all the servers are busy. Notice that because 1/µ > k/λ, no
service completion occurs before the system is completely full. Then ñ additional arrivals will
be blocked before the first customer completes its service at time t = 1/µ at which time the
queue-size decreases from k to k − 1. Next, at time t = (k + ñ)/λ, the queue-size increases to
k and reduces to k − 1 at time t = 1/λ + 1/µ when the second customer completes its service.
This behavior of the queue-size alternating between the states k and k − 1 continues until all
the first k customers complete their service which happens at time t = (k − 1)/λ + 1/µ when
the kth customer completes its service, reducing the queue-size from k to k−1. Next, an arrival
at time t = (2k + ñ− 1)/λ increased the queue-size from k − 1 to k. Notice that the point in
time t = (2k + ñ − 1)/λ is an end-point of a cycle that started at t = (k − 1)/λ. This cycles
comprises two parts: the first is a period of time where the queue-size stays constant at k and
all the arrivals are blocked, and the second is a period of time during which no losses occur and
the queue-size alternates between k and k − 1. Then a new cycle of duration (k + ñ)/λ starts
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and this new cycle ends at t = (3k + 2ñ− 1)/λ. In general, for each j = 1, 2, 3, . . ., a cycle of
duration (k+ ñ)/λ starts at t = (jk+(j−1)ñ−1)/λ and ends at t = ((j+1)k+jñ−1)/λ.

5.3.2 Blocking probability, mean queue-size and utilization

In every cycle, there are k + ñ arrivals out of which ñ are blocked. The blocking probability is
therefore

Pb =
ñ

k + ñ
.

Since

k + ñ =

⌈
λ

µ

⌉
,

the blocking probability is given by

Pb =

⌈
λ
µ

⌉
− k

⌈
λ
µ

⌉ . (266)

Let A = λ/µ, the mean-queue size is obtained using Little’s formula to be given by

E[Q] =
λ

µ
(1− Pb) =

kA

dAe . (267)

As in D/D/k, since every customer that enters a D/D/k/k system does not wait in a queue,
but immediately enters service, the utilization is given by

Û =
E[Q]

k
=

A

dAe . (268)

5.3.3 Proportion of time spent in each state

Let us now consider a single cycle and derive the proportion of time spent in the states k − 1
and k, denoted P (Q = k − 1) and P (Q = k), respectively. In particular, we consider the first
cycle of duration

k + ñ

λ
=
dAe
λ

that starts at time

ts =
k − 1

λ

and ends at time

te =
2k + ñ− 1

λ
.

We define the first part of this cycle (the part during which arrivals are blocked) to begin at ts
and to end at the point in time when the ñth arrival of this cycle is blocked which is

tñ = ts +
ñ

λ
=

k − 1 + ñ

λ
=
dAe − 1

λ
.
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The second part of the cycle starts at tñ and ends at te. The queue-size is equal to k for the
entire duration of the first part of the cycle. However, during the second part of the cycle, the
queue-size alternates between the values k and k − 1 creating a series of k mini-cycles each of
duration 1/λ. Each of these mini-cycles is again composed of two parts. During the first part
of each mini-cycle, Q = k, and during the second part of each mini-cycle, Q = k − 1. The first
mini-cycle starts at time tñ and ends at

t1e = tñ +
1

λ
=
dAe
λ

.

The first part of the first mini-cycle starts at time tñ and ends at time 1/µ, and the second part
starts at 1/µ and ends at time t1e. Thus, the time spent in each mini-cycle at state Q = k − 1
is equal to

t1e − 1

µ
=
dAe
λ

− 1

µ
=
dAe
λ

−
λ
µ

λ
=
dAe − A

λ
.

Because there are k mini-cycles in a cycle, we have that the total time spent in state Q = k− 1
during a cycle is

k(dAe − A)

λ
.

Because P (Q = k − 1) is the ratio of the latter to the total cycle duration, we obtain,

P (Q = k − 1) =
k(dAe−A)

λ
dAe
λ

. (269)

The time spent in state Q = k during each cycle is the total cycle duration minus the time
spent in state Q = k − 1. Therefore, we obtain

P (Q = k) =
dAe
λ
− k(dAe−A)

λ
dAe
λ

. (270)

Homework 5.4

1. Show that the results for the queue-size probabilities P (Q = k − 1) and P (Q = k) in
(269) and (270) are consistent with the result for the mean queue-size in (267). In other
words, show that

(k − 1)P (Q = k − 1) + kP (Q = k) = E[Q]

or equivalently

(k − 1)

{
k(dAe−A)

λ
dAe
λ

}
+ k

{ dAe
λ
− k(dAe−A)

λ
dAe
λ

}
=

kA

dAe .

2. Consider a D/D/3/3 queue with 1/µ = 5.9 and 1/λ = 1.1. Start with the first arrival at
t = 0 and produce a two-column table showing the time of every arrival and departure
until t = 20, and the corresponding queue-size values immediately following each one of
these events.
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3. Write a general simulation program for a D/D/k/k queue and use it to validate (267) and
the results for P (Q = k− 1) and P (Q = k) in (269) and (270). Use it also to confirm the
results you obtained for the D/D/3/3 queue.

4. Consider a D/D/1/n queue for n > 1. Describe the evolution of its queue-size process and
derive formulae for its mean queue-size, mean delay, utilization, and blocking probability.
Confirm your results by simulation ¤.

5.4 Summary of Results

The following table summarizes the results on D/D/1, D/D/k and D/D/k/k. Note that we do
not consider the case λ = kµ for which the results for the case λ < kµ are applicable assuming
that if a departure and an arrival occur at the same time, the departure occurs before the
arrival.

Model Condition E[Q] Û
D/D/1 λ < µ λ/µ λ/µ
D/D/1 λ > µ ∞ 1
D/D/k λ < kµ A = λ/µ A/k
D/D/k λ > kµ ∞ 1

D/D/k/k λ < kµ A A/k
D/D/k/k λ > kµ kA/dAe A/dAe

Homework 5.5

Justify the following statements.

1. D/D/1 is work conservative.

2. D/D/k is work conservative (following a certain finite initial period) if λ > kµ.

3. D/D/k is not work conservative if λ < kµ.

4. D/D/k/k is not work conservative for all possible values of the parameters λ and µ if
we assume that if arrival and departure occurs at the same time, then the arrival occurs
before the departure.

Guide

Notice that D/D/k is work conservative if there are more than k customers in the system.
Notice that for D/D/k/k (under the above assumption) there are always periods of time during
which less than k servers are busy. ¤.
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6 M/M/1

Having considered the straightforward cases of deterministic queues, we will now discuss queues
where the interarrival and service times are non-deterministic. We will begin with cases where
the inter-arrival and service times are independent and exponentially distributed (memoryless).
Here we consider the M/M/1 queue where the arrival process follows a Poisson process with
parameter λ and service times are assumed to be IID and exponentially distributed with pa-
rameter µ, and are independent of the arrival process. As M/M/1 is a special case of G/G/1, all
the results that are applicable to G/G/1 are also applicable to M/M/1. For example, Û = λ/µ,
p0 = 1 − λ/µ and Little’s formula. It is the simplest Markovian queue; it has only a single
server and an infinite buffer. It is equivalent to a continuous-time Markov-chain on the states:
0, 1, 2, 3, . . . . Assuming that the M/M/1 queue-size process starts at state 0, it will stay in
state 0 for a period of time that is exponentially distributed with parameter λ then it moves
to state 1. The time the process stays in state n, for n ≥ 1, is also exponentially distributed,
but this time, it is a competition between two exponential random variable, one of which is
the time until the next arrival - exponentially distributed with parameter λ, and the other is
the time until the next departure - exponentially distributed with parameter µ. As discussed
in Section 1.10.2, the minimum of the two is therefore also exponential with parameter λ + µ,
and this minimum is the time the process stays in state n, for n ≥ 1. We also know from the
discussion in Section 1.10.2 that after spending an exponential amount of time with parameter
λ + µ, the process will move to state n + 1 with probability λ/(λ + µ) and to state n− 1 with
probability µ/(λ + µ).

6.1 Steady-State Queue Size Probabilities

As the M/M/1 queue-size process increases by only one, decreases by only one and stays
an exponential amount of time at each state, it is equivalent to a birth-and-death process.
Therefore, by Eqs. (226) and (227), the infinitesimal generator for the M/M/1 queue-size
process is given by

Qi,i+1 = λ for i=0, 1, 2, 3, . . .
Qi,i−1 = µ for i= 1, 2, 3, 4, . . .
Q0,0 = −λ
Qi,i = −λ− µ for i=1, 2, 3, . . . .

Substituting this infinitesimal generator in Eq. (228) we readily obtain the following global
balance steady-state equations for the M/M/1 queue. π0λ = π1µ
π1(λ + µ) = π2µ + π0λ
and in general for i ≥ 1:

πi(λ + µ) = πi+1µ + πi−1λ (271)

To explain (271) intuitively, Let L be a very long time. During L, the total time that the
process stays in state i is equal to πiL. For the case i ≥ 1, since the arrival process is a Poisson
process, the mean number of transitions out of state i is equal to (λ + µ)πiL. This can be
explained as follows. For the case i ≥ 1, the mean number of events that occur during L in
state i is (λ + µ)πiL because as soon as the process enters state i it stays there on average an
amount of time equal to 1/(µ + λ) and then it moves out of state i to either state i + 1, or
to state i − 1. Since during time πiL there are, on average, (λ + µ)πiL interval times of size
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1/(µ + λ), then (λ + µ)πiL is also the mean number of events (arrivals and departures) that
occur in state i during L. In a similar way we can explain that for the case i = 0, the mean
number of transition out of state i = 0 is equal to (λ)πiL for i = 0. It is the mean number of
events that occur during L (because there are no departures at state 0).

Recalling the notion of probability flux, introduced in Section 2.5.5, we notice that the global
balance equations (271) equate for each state the total probability flux out of the state and the
total probability flux into that state.

A solution of the global balance equations (271) together with the following normalizing
equation that will guarantee that the sum of the steady-state probabilities must be equal to
one: ∞∑

j=0

πj = 1 (272)

will give the steady-state probabilities of M/M/1.

However, the global balance equations (271) can be simplified recursively as follows. We first
write the first equation: π0λ = π1µ
Then we write the second equation π1(λ + µ) = π2µ + π0λ
Then we observe that these two equation yield π1λ = π2µ
Then recursively using all the equations (271), we obtain:

πiλ = πi+1µ, for i = 0, 1, 2, . . . . (273)

Notice that the steady-state equations (273) are the detailed balance equations of the continuous-
time Markov chain that describes the stationary behaviour of the queue-size process of M/M/1.
What we have notice here is that the global balance equations, in the case of the M/M/1 queue,
are equivalent to the detailed balance equations. In this case, a solution of the detailed balance
equations and (272) that sum up to unity will give the steady-state probability distribution of
the queue-size. Recalling the discussion we had in Section 2.5.9, this implies that the M/M/1
queue is reversible, which in turn implies that the output process of M/M/1 is also a Poisson
process. This is an important result that will be discussed later in Section 6.8.

Another way to realize that the queue size process of M/M/1 is reversible is to recall that this
process is a birth-and-death process. And we already know from Section 2.5.9 that birth-and-
death processes are reversible.

Let ρ = λ/µ, by (273)we obtain,

π1 = ρπ0

π2 = ρπ1 = ρ2π0

π3 = ρπ2 = ρ3π0

and in general:

πi = ρiπ0 for i = 0, 1, 2, . . . . (274)

As M/M/1 is a special case of G/G/1, we can use Eq. (244) to obtain π0 = 1− ρ, so

πi = ρi(1− ρ) for i = 0, 1, 2, . . . . (275)
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Let Q be a random number representing the queue-size in steady-state. Its mean is obtained
by E[Q] =

∑∞
i=0 iπi. This leads to:

E[Q] =
ρ

1− ρ
. (276)

Homework 6.1

Perform the algebraic operations that lead to (276). ¤

6.2 State Transition Diagram of M/M/1

In general, state transition diagrams are used to represent a system as a collection of states
and activities associated with various relationships among the states. Such diagrams show
how the system moves from one state to another, and the rates of movements between states.
State transition diagrams have many applications related to design and analysis of real-time and
object-oriented systems. Queueing systems that are modeled by continuous time Markov chains
are often described by their state transition diagram that provides the complete information of
their detailed balance equations. In particular, the state transition diagram of M/M/1 is1:

WVUTPQRS0

λ
$$

WVUTPQRS1

µ

dd

λ
$$

WVUTPQRS2

µ

dd

λ
$$

WVUTPQRS3

µ

dd

λ
$$

WVUTPQRS4

µ

dd

λ ..

· · ·
µ
ff

The states are the numbers in the circles: 0, 1, 2, 3, . . ., and the rates downwards and upwards
are µ and λ, respectively. We observe that the rates of transitions between the states in the state
transition diagram of M/M/1 are consistent with the rates in the detailed balance equations of
M/M/1 (273).

6.3 Delay Statistics

By (275), and by the PASTA principle, an arriving customer will have to pass a geometric
number of IID phases, each of which is exponentially distributed with parameter µ, until it
leaves the system. We have already shown that a geometrically distributed sum of an IID
exponentially distributed random variables is exponentially distributed (see Eq. (148) in Section
1.15.2). Therefore the total delay of any arriving customer in an M/M/1 system must be
exponentially distributed. This can also be intuitively explained. Because both geometric
and exponential distributed random variables are memoryless, a geometrically distributed sum
of IID exponential random variables is also memoryless. And since the exponential is the
only continuous memoryless distribution, the total delay of any arriving customer must be
exponentially distributed.

Therefore, to derive the density of the delay, all that is left to do is to obtain its mean which
can be derived by (276) invoking Little’s formula. Another way to obtain the mean delay

1The author would like to thank Yin Chi Chan for his help in producing the various state transition diagrams
in this book.
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is by noticing from (275) that the number of phases is geometrically distributed with mean
1/(1− ρ). Observe that this mean must equal E[Q] + 1 which is the mean queue-size observed
by an arriving customer plus one more phase which is the service time of the arriving customer.
Thus, the mean number of phases is

E[Q] + 1 =
ρ

1− ρ
+ 1 =

1− ρ + ρ

1− ρ
=

1

1− ρ
.

Homework 6.2

Prove that the number of phases is geometrically distributed with mean 1/(1− ρ).

Guide

Let Ph be the number of phases. We know that in steady-state an arriving customer will find
Q customers in the system, where

P (Q = i) = πi = ρi(1− ρ).

Since Ph = Q + 1, we have

P (Ph = n) = P (Q + 1 = n) = P (Q = n− 1) = ρn−1(1− ρ).

¤
The mean delay equals the mean number of phases times the mean service time 1/µ. Thus,

E[D] =
1

(1− ρ)µ
=

1

µ− λ
. (277)

Homework 6.3

Verify that (276) and (277) are consistent with Little’s formula. ¤
Substituting 1/E[D] = µ− λ as the parameter of exponential density, the density of the delay
distribution is obtained to be given by

δD(x) =

{
(µ− λ)e(λ−µ)x if x ≥ 0
0 otherwise.

(278)

Having derived the distribution of the total delay (in the queue and in service), let us now derive
the distribution of the queueing delay (excluding the service time). That is, we are interested
in deriving P (Wq > t), t ≥ 0. By the law of total probability, we obtain:

P (Wq > t) = ρP (Wq > t|server busy) + (1− ρ)P (Wq > t|server not busy)

= ρP (Wq > t|server busy) t ≥ 0. (279)

To find P (Wq > t|server busy), let us find P (Nq = n|server busy).
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P (Nq = n|server busy) =
P (Nq = n ∩ server busy)

P (server busy)

=
P (Q = n + 1 ∩ n + 1 ≥ 1)

ρ

=
ρn+1(1− ρ)

ρ
n = 0, 1, 2, 3 . . .

= ρn(1− ρ) n = 0, 1, 2, 3 . . . .

Note that this is the same geometric distribution as that of P (Q = n). Therefore, the random
variable {Wq > t|server busy} is a geometric sum of exponential random variables and therefore
has exponential distribution. As a result,

P (Wq > t|server busy) = e−(µ−λ)t

and by (279) we obtain
P (Wq > t) = ρe−(µ−λ)t t ≥ 0.

6.4 Mean Delay of Delayed Customers

So far we were interested in delay statistics of all customers. Now suppose that we are interested
in the mean delay of only those customers that found the server busy upon their arrivals and
had to wait in the queue before they commence service. We assume that the arrival rate λ and
the service rate µ are given, then the mean number of customers in the queue E[NQ] is given
by

E[NQ] = E[Q]− E[Ns] =
ρ

1− ρ
− ρ =

ρ2

1− ρ
.

Denote:
D̂ = The delay of a delayed customer including the service time
ŴQ = The delay of a delayed customer in the queue excluding the service time.

To obtain E[ŴQ], we use Little’s formula where we consider the queue (without the server) as
the system and the arrival rate of the delayed customers which is λρ. Thus

E[ŴQ] =
E[NQ]

λρ
=

1

µ− λ
,

and

E[D̂] = E[Ŵq] +
1

µ
=

1

µ− λ
+

1

µ
.

Now, let us check the latter using the law of total probability as follows:

E[D] = (1− ρ)[Mean total delay of a non-delayed customer]

+ ρ[Mean total delay of a delayed customer]

= (1− ρ)
1

µ
+ ρ

(
1

µ− λ
+

1

µ

)
=

1

µ− λ
.

and we observe that consistency is achieved. Notice that this consistency check is an alternative
way to obtain E[D̂].
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Homework 6.4

Derive E[Ŵq] using the law of total probability. ¤

Homework 6.5

Packets destined to a given destination arrive at a router according to a Poisson process with a
rate of 2000 packets per millisecond. The router has a very large buffer and serves these packets
by transmitting them through a single 10.5 Gb/s output link. The service policy is First Come
First Served. The packet sizes are exponentially distributed with a mean of 625 bytes. Answer
the following assuming the system is in steady state.

Compute the mean queue size and the mean total delay (including queueing time and service
time). What do you observe from the answer?

Solution

λ = 2000 [packet/millisecond] = 2× 106 [packet/s]

µ = 10.5 [Gb/s]/(625× 8) [bits] = 2.1× 106 [packet/s].

Consider an M/M/1 queue for the case: λ = 2× 106 and µ = 2.1× 106. We obtain

ρ =
λ

µ
= 0.952 approx.

E(Q) =
ρ

[1− ρ]
= 20 [packets]

E[D] =
E[Q]

λ
= 10−5 [seconds].

The delay is very small even if the utilization is high because of the high bit-rate (service
rate).

Notice that the mean delay in M/M/1 is given by

E[D] =
1

µ− λ
=

1

µ(1− ρ)
,

so for a fixed ρ and arbitrarily large µ, the delay is arbitrarily small.

E[D̂] =
1

µ− λ
+

1

µ
= 1.05× 10−5 [seconds] approx.

¤
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6.5 Using Z-Transform

The Z-transform defined in Section 1.15, also known as Probability Generating Function, is a
powerful tool to derive statistics of queueing behavior.

As an example, we will now demonstrate how the Z-transform is used to derive the mean
queue-size of M/M/1.

Let us multiply the nth equation of (273) by zn. Summing up both sides will give

Ψ(z)− π0

z
= ρΨ(z) (280)

where Ψ(z) =
∑∞

i=0 πiz
i. Letting z approach 1 (from below) gives

π0 = 1− ρ (281)

which is consistent with what we know already. Substituting it back in (280) gives after simple
algebraic manipulation:

Ψ(z) =
1− ρ

1− ρz
. (282)

Taking derivative and substituting z = 1, after some algebra we obtain

E[Q] = Ψ(1)(1) =
ρ

1− ρ
(283)

which is again consistent with what we know about M/M/1 queue.

Homework 6.6

1. Derive equations (280) – (283).

2. Derive the variance of the M/M/1 queue-size using Z-transform. ¤

6.6 Multiplexing

In telecommunications, the concept of multiplexing refers to a variety of schemes or techniques
that enable multiple traffic streams from possibly different sources to share a common trans-
mission resource. In certain situations such sharing of a resource can lead to a significant
improvement in efficiency. In this section, we use the M/M/1 queueing model to gain insight
into efficiency gain of multiplexing.

An important and interesting observation we can make by considering the M/M/1 queueing
performance results (275)–(278) is that while the queue-size statistics are dependent only on
ρ (the ratio of the arrival rate and service rate), the delay statistics (mean and distribution)
are a function of what we call the spare capacity (or mean net input) which is the difference
between the service rate and the arrival rate. To be more specific, it is a linear function of the
reciprocal of that difference.

Assume that our traffic model obeys the M/M/1 assumptions. Then if the arrival rate increases
from λ to Nλ and we increase the service rate from µ to Nµ (maintaining the same ρ), the
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mean queue-size and its distribution will remain the same. However, in this scenario the mean
delay does not remain the same. It reduces by N times to 1/[N(µ− λ)].

This is applicable to a situation where we have N individual M/M/1 queues each of which
with arrival rate λ and service rate µ. Then we superpose (multiplex) all the arrival processes
together which results in a Poisson process of rate Nλ. An interesting question is the following.
If we replace all the individual servers (each of which has service rate µ) with one fast server
that serves the superposed Poisson stream of rate Nλ, what service rate this fast server should
operate at.

If our QoS measure of interest is the mean delay, or the probability that the delay exceeds a
certain value, and if for a given arrival rate λ there is a service rate µ such that our delay-related
QoS measure is just met, then if the arrival rate increases from λ to Nλ, and we aim to find
the service rate µ∗ such that the delay-related QoS measure is just met, we will need to make
sure that the spare capacity is maintained, that is

µ− λ = µ∗ −Nλ (284)

or
µ∗ = µ + (N − 1)λ (285)

so by the latter and the stability condition of µ > λ, we must have that µ∗ < Nµ. We can
therefore define a measure for multiplexing gain to be given by

Mmg =
Nµ− µ∗

Nµ
(286)

so by (285), we obtain

Mmg =
N − 1

N
(1− ρ). (287)

Recalling the stability condition ρ < 1 and the fact that π0 = 1 − ρ is the proportion of
time that the server is idle at an individual queue, Eq. (287) implies that (N − 1)/N is the
proportion of this idle time gained by multiplexing. For example, consider the case N = 2,
that is, we consider multiplexing of two M/M/1 queues each with parameters λ and µ. In
this case, half of the server idle time (or efficiency wastage) in an individual queue can be
gained back by multiplexing the two streams to be served by a server that serves at the rate of
µ∗ = µ + (N − 1)λ = µ + λ. The following four messages follow from Eq. (287).

1. The multiplexing gain is positive for all N > 1.

2. The multiplexing gain increases with N .

3. The multiplexing gain is bounded above by 1− ρ.

4. In the limiting condition as N →∞, the multiplexing gain approaches its bound 1− ρ.

The 1− ρ bound means also that if ρ is very close to 1, then the multiplexing gain diminishes
because in this case the individual M/M/1 queues are already very efficient in terms of server
utilization so there is little room for improvement. On the other hand, if we have a case
where the QoS requirements are strict (requiring very low mean queueing delay) such that the
utilization ρ is low, the potential for multiplexing gain is high.

Let us now apply our general discussion on multiplexing to obtain insight into performance
comparison between two commonly used multiple access techniques used in telecommunications.
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One such technique is called Time Division Multiple Access (TDMA) whereby each user is
assigned one or more channels (in a form of time-slots) to access the network. Another approach,
which we call full multiplexing (FMUX), is to let all users to separately send the data that they
wish to transmit to a switch which then forwards the data to the destination. That is, all
the data is stored in one buffer (in the switch) which is served by the entire available link
capacity.

To compare between the two approaches, let us consider N users each transmitting packets
at an average rate of Ru [bits/second]. The average packet size denoted Su [bits] is assumed
equal for the different users. Let λ̂ [packets/second] be the packet rate generated by each of
the users. Thus, λ̂ = Ru/Su. Under TDMA, each of the users obtains a service rate of Bu

[bits/sec]. Packet sizes are assumed to be exponentially distributed with mean Su [bits], so the
service rate in packets/second denoted µ̂ is given by µ̂ = Bu/Su. The packet service time is
therefore exponentially distributed with parameter µ̂. Letting ρ̂ = λ̂/µ̂, the mean queue size
under TDMA, is given by

E[QTDMA] =
ρ̂

1− ρ̂
, (288)

and the mean delay is

E[DTDMA] =
1

µ̂− λ̂
. (289)

In the FMUX case the total arrival rate is Nλ̂ and the service rate is Nµ̂, so in this case, the
ratio between the arrival and service rate remains the same, so the mean queue size that only
depends on this ratio remains the same

E[QFMUX ] =
ρ̂

1− ρ̂
= E[QTDMA]. (290)

However, we can observe an N -fold reduction in the mean delay:

E[DFMUX ] =
1

Nµ̂−Nλ̂
=

E[DTDMA]

N
. (291)

Consider a telecommunication provider that wishes to meet packet delay requirement of its N
customers, assuming that the delay that the customers experienced under TDMA was satis-
factory, and assuming that the M/M/1 assumptions hold, such provider does not need a total
capacity of Nµ̂ for the FMUX alternative. It is sufficient to allocate µ̂ + (N − 1)λ̂.

Homework 6.7

Consider a telecommunication provider that aims to serve a network of 100 users each trans-
mits data at overall average rate of 1 Mb/s. The mean packet size is 1 kbit. Assume that
packets lengths are exponentially distributed and that the process of packets generated by each
user follows a Poisson process. Further assume that the mean packet delay requirement is 50
millisecond. How much total capacity (bitrate) is required to serve the 100 users under TDMA
and under FMUX.
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Guide

The arrival rate of each user is 1 Mb/s / 1 kbit = 1000 packets/s. For TDMA, use Eq. (289)
and substitute E[DTDMA] = 0.05 and λ̂ = 1000, to compute µ̂. This gives µ̂ = 1020 [packets/s]
or bitrate of 1.02 Mb/s per each user. For 100 users the required rate is 102,000 packets/s or
bitrate of 102 Mb/s. For FMUX the required rate is µ̂+(N −1)λ̂ which is 100,020 packets/s or
100.02 Mb/s (calculate and verify it). The savings in using FMUX versus TDMA is therefore
1.98 Mb/s. ¤

6.7 Dimensioning Based on Delay Distribution

In the previous section we have considered dimensioning based on average delay. That is, the
aim was to meet or to maintain QoS measured by average delay. It may be, however, more
practical to aim for a percentile of the delay distribution; e.g., to require that no more than 1%
of the packets will experience over 100 millisecond delay.

In the context of the M/M/1 model, we define two dimensioning problems. The first problem
is: for given λ, t ≥ 0 and α, find Minimal µ∗ such that

P (D > t) = e−(µ∗−λ)t < α.

The solution is:

µ∗ = λ− − ln(α)

t
.

The second problem is: for given µ, t ≥ 0 and α, find Maximal λ∗ such that

P (D > t) = e−(µ−λ∗)t < α.

To solve this problem we solve for λ∗ the equation

P (D > t) = e−(µ−λ∗)t = α.

However, for a certain range, the solution is not feasible because the delay includes the service
time and can never be less than the service time. That is, for certain parameter values, even if
the arrival rate is very low, the delay requirements cannot be met. To find the feasible range
set λ∗ = 0, and obtain

µ >
− ln(α)

t

In other words, if this condition does not hold there is no feasible solution to the optimal
dimensioning problem.

If a solution is feasible, the λ∗ is obtained by

λ∗ =
− ln(α)

t
+ µ.



Queueing Theory and Stochastic Teletraffic Models c© Moshe Zukerman 111

6.8 The Departure Process

We have already mentioned in Section 6.1 the fact that the output process of an M/M/1 is
Poisson. This is one of the results of the so-called Burke’s theorem [16]. In steady-state, the
departure process of a stable M/M/1, where ρ < 1, is a Poisson process with parameter λ and
is independent of the number in the queue after the departures occur. If we already know that
the output process is Poisson, given that the arrival rate is λ and given that there are no losses,
all the traffic that enters must depart. Therefore the rate of the output process must also be
equal to λ.

We have shown in Section 6.1 the reversibility of M/M/1 queue-size process showing that the
detailed balance equations and the normalizing equation yield the steady-state distribution of
the queue-size process.

By reversibility, in steady-state, the arrival process of the reversed process must also follow
a Poisson process with parameter λ and this process is the departure process of the forward
process. Therefore the departures follow a Poisson process and the inter-departure times are
independent of the number in the queue after the departures occur in the same way that
inter-arrival times are independent of a queue size before the arrivals.

Now that we know that in steady-state the departure process of a sable M/M/1 queue is
Poisson with parameter λ, we also know that, in steady-state, the inter-departure times are
also exponentially distributed with parameter λ. We will now show this fact without using the
fact that the departure process is Poisson directly. Instead, we will use it indirectly to induce
PASTA for the reversed arrival process to obtain that, following a departure, in steady-state,
the queue is empty with probability 1 − ρ and non-empty with probability ρ. If the queue is
non-empty, the time until the next departure is exponentially distributed with parameter µ –
this is the service-time of the next customer. If the queue is empty, we have to wait until the
next customer arrival which is exponentially distributed with parameter λ and then we will
have to wait until the next departure which will take additional time which is exponentially
distributed. All together, if the queue is empty, the time until the next departure is a sum
of two exponential random variables, one with parameter λ and the other with parameter µ.
Let U1 and U2 be two independent exponential random variables with parameters λ and µ,
respectively. Define U = U1 + U2, notice that U is the convolution of U1 and U2, and note that
U has hypoexponential distribution. Having the density fU(u), the density fD(t) of a random
variable D representing the inter-departure time will be given by

fD(t) = ρµe−µt + (1− ρ)fU(t). (292)

Knowing that fU(u) is a convolution of two exponentials, we obtain

fU(t) =

∫ t

u=0

λe−λuµe−µ(t−u)du

=
λµ

µ− λ

(
e−λt − e−µt

)
.

Then by the latter and (292), we obtain

fD(t) = ρµe−µt + (1− ρ)
λµ

µ− λ

(
e−λt − e−µt

)
(293)
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which after some algebra gives
fD(t) = λe−λt. (294)

This result is consistent with Burke’s theorem.

Homework 6.8

Complete all the algebraic details in the derivation of equations (292) – (294). ¤
Another way to show consistency with Burke’s theorem is the following. Consider a stable
(ρ < 1) M/M/1 queue. Let dε be the unconditional number of departures, in steady state, that
leave the M/M/1 queue during a small interval of time of size ε, and let dε(i) be the number
of departures that leave the M/M/1 queue during a small interval of time of size ε if there are
i packets in our M/M/1 queue at the beginning of the interval. Then, P (dε(i) > 0) = o(ε) if
i = 0, and P (dε(i) = 1) = εµ + o(ε) if i > 0. Therefore, in steady-state,

P (dε = 1) = (1− ρ)0 + (ρ)µε + o(ε) = ελ + o(ε),

which is a property consistent with the assertion of Poisson output process with parameter λ
in steady-state.

Homework 6.9

So far we have discussed the behaviour of the M/M/1 departure process in steady-state. You
are now asked to demonstrate that the M/M/1 departure process may not be Poisson with
parameter λ if we do not assume steady-state condition. Consider an M/M/1 system with
arrival rate λ and service rate µ, assume that ρ = λ/µ < 1 and that there are no customers in
the system at time 0. Derive the distribution of the number of customers that leave the system
during the time interval (0, t). Argue that this distribution is, in most cases, not Poisson with
parameter λt and find a special case when it is.

Guide

Let D(t) be a random variable representing the number of customers that leave the system
during the time interval (0, t). Let Xp(λt) be a Poisson random variable with parameter λt and
consider two cases: (a) the system is empty at time t, and (b) the system is not empty at time
t. In case (a), D(t) = Xp(λt) (why?) and in case (b) D(t) = Xp(λt) − Q(t) (why?) and use
the notation used in Section 2.5 P00(t) to denote the probability that in time t the system is
empty, so the probability that the system is not empty at time t is 1 − P00(t). Derive P00(t)
using Eqs. (223) and (224). Then notice that

D(t) = P00(t)Xp(λt) + [1− P00(t)][Xp(λt)−Q(t)]. ¤

Consider the limit

Dk(t) = lim
∆t→0

P [Q(t) = k | a departure occurs within(t−∆t, t)].
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Considering the fact that the reversed process is Poisson and independence between departures
before time t and Q(t), we obtain that

Dk(t) = P [Q(t) = k]. (295)

Then, by taking the limit of both sides of (295), we show that the queue size seen by a leaving
customer is statistically identical to the queue size seen by an independent observer. ¤

Homework 6.10

Write a simulation of the M/M/1 queue by measuring queue size values in two ways: (1) just
before arrivals and (2) just after departures. Verify that the results obtained for the mean
queue size in steady-state are consistent. Use confidence intervals. Verify that the results are
also consistent with analytical results. Repeat your simulations and computation for a wide
range of parameters values (different ρ values). Plot all the results in a graph including the
confidence intervals (bars). ¤

6.9 Mean Busy Period and First Passage Time

The busy period of a single-server queueing system is defined as the time between the point in
time the server starts being busy and the point in time the server stops being busy. In other
words, it is the time elapsed from the moment a customer arrives at an empty system until the
first time the system is empty again. Recalling the first passage time concept defined in Section
2.5, and that the M/M/1 system is in fact a continuous-time Markov-chain, the busy period is
also the first passage time from state 1 to state 0. The end of a busy period is the beginning
of the so called idle period - a period during which the system is empty. We know the mean
of the idle period in an M/M/1 queue. It is equal to 1/λ because it is the mean time until a
new customer arrives which is exponentially distributed with parameter λ. A more interesting
question is what is the mean busy period. Let TB and TI be the busy and the idle periods,
respectively. Noticing that E[TB]/(E[TB] + E[TI ]) is the proportion of time that the server is
busy, thus it is equal to ρ. Considering also that E[TI ] = 1/λ, we obtain

E[TB]

E[TB] + 1
λ

= ρ. (296)

Therefore,

E[TB] =
1

µ− λ
. (297)

Interestingly, for the M/M/1 queue the mean busy period is equal to the mean delay of a single
customer! This may seem counter intuitive. However, we can realize that there are many busy
periods each of which is made of a single customer service time. It is likely that for the majority
of these busy periods (service times), their length is shorter than the mean delay of a customer.
Furthermore, the fact that for the M/M/1 queue the mean busy period is equal to the mean
delay of a single customer can be proven by considering an M/M/1 queue with a service policy
of Last In First Out (LIFO). So far we have considered only queues that their service policy
is First In First Out (FIFO). Let us consider an M/M/1 with LIFO with preemptive priority.
In such a queue the arrival and service rates λ and µ, respectively, are the same as those of
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the FIFO M/M/1, but in the LIFO queue, the customer just arrived has priority over all other
customers that arrived before it and in fact interrupts the customers currently in service.

The two queues we consider, the FIFO and the LIFO, are both birth-and-death processes with
the same parameters so their respective queue size processes are statistically the same. Then by
Little’s formula their respective mean delays are also the same. Also the delay of a customer in
an M/M/1 LIFO queue we consider is equal to the busy period in M/M/1 FIFO queue (why?)
so the mean delay must be equal to the busy period in M/M/1 with FIFO service policy.

Homework 6.11

Derive an expression for the mean first passage time for M/M/1 from state n to state 0 and
from state 0 to state n, for n ≥ 3. ¤

Homework 6.12

For a wide range of parameter values, simulate an M/M/1 system with FIFO service policy
and an M/M/1 system with LIFO service policy with preemptive priority and compare their
respective results for the mean delay, the variance of the delay, the mean queue size and the
mean busy period. ¤

6.10 A Markov-chain Simulation of M/M/1

A simulation of am M/M/1 queue can be made as a special case of G/G/1 as described before,
or it can be simplified by taking advantage of the M/M/1 Markov-chain structure if we are not
interested in performance measures that are associated with times (such as delay distribution).
If our aim is to evaluate queue size statistics or blocking probability, we can avoid tracking the
time. All we need to do is to collect the relevant information about the process at PASTA time-
points without even knowing what is the running time at these points. Generally speaking, using
the random walk simulation approach, also called the Random Walk simulation approach, we
simulate the evolution of the states of the process based on the transition probability matrix
and collect information on the values of interest at selective PASTA points without being
concerned about the time. We will now explain how these ideas may be applied to few relevant
examples.

If we wish to evaluate the mean queue size of an M/M/1 queue, we can write the following
simulation.

Variables and input parameters: Q = queue size; Ê(Q) = estimation for the mean queue size;
N = number of Q-measurements taken so far which is also equal to the number of arrivals
so far; MAXN = maximal number of Q-measurements taken; µ = service rate; λ = arrival
rate.

Define function: I(Q) = 1 if Q > 0; I(Q) = 0 if Q = 0.
Define function: R(01) = a uniform U(0, 1) random deviate. A new value for R(01) is generated
every time it is called.

Initialization: Q = 0; Ê[Q] = 0; N = 0.
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1. If R(01) ≤ λ/(λ + I(Q)µ), then N = N + 1, Ê(Q) = [(N − 1)Ê(Q) + Q]/N , and Q =
Q + 1;

else, Q = Q− 1.

2. If N < MAXN go to 1; else, print Ê(Q).

This signifies the simplicity of the simulation. It has only two If statements: one to check if
the next event is an arrival or a departure according to Eq. (58), and the second is merely a
stopping criterion.

Comments:

1. The operation Q = Q + 1 is performed after the Q measurement is taken. This is done
because we are interested in Q values seen by arrivals just before they arrive. If we include
the arrivals after they arrive we violate the PASTA principle. Notice that if we do that,
we never observe a Q = 0 value which of course will not lead to an accurate estimation
of E[Q].

2. If the condition R(01) ≤ λ/(λ + I(Q)µ) holds we have an arrival. Otherwise, we have a
departure. This condition is true with probability λ/(λ+I(Q)µ). If Q = 0 then I(Q) = 0
in which case the next event is an arrival with probability 1. This is clearly intuitive.
If the system is empty no departure can occur, so the next event must be an arrival.
If Q > 0, the next event is an arrival with probability λ/(λ + µ) and a departure with
probability µ/(λ + µ). We have here a competition between two exponential random
variables: one (arrival) with parameter λ and the other (departure) with parameter µ.
According to the discussion in Section 1.10.2 and as mentioned in the introduction to this
section, the probability that the arrival “wins” is λ/(λ + µ), and the probability that the
departure “wins” is µ/(λ + µ).

3. In a case of a departure, all we do is decrementing the queue size; namely, Q = Q − 1.
We do not record the queue size at these points because according to PASTA arrivals see
time-averages. (Notice that due to reversibility, if we measure the queue size immediately
after departure points we will also see time-averages.)

Homework 6.13

Simulate an M/M/1 queue using a Markov-chain simulation to evaluate the mean queue-size
for the cases of Section 4.2. Compare the results with the results obtain analytically and with
those obtained using the G/G/1 simulation principles. In your comparison consider accuracy
(closeness to the analytical results) the length of the confidence intervals and running times.
¤
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7 M/M/∞
The next queueing system we consider is the M/M/∞ queueing system where the number of
servers is infinite. Because the number of servers is infinite, the buffer capacity is unlimited
and arrivals are never blocked. We assume that the arrival process is Poisson with parameter
λ and each server renders service which is exponentially distributed with parameters µ. As in
the case of M/M/1, we assume that the service times are independent and are independent of
the arrival process.

7.1 Offered and Carried Traffic

The concept of offered traffic is one of the most fundamentals in the field of teletraffic. It
is often used in practice in telecommunications network design and in negotiations between
telecommunications carriers. The offered traffic is defined as the mean number of arrivals per
mean service time. Namely, it is equal to the ratio λ/µ. It is common to use the notation
A for the offered traffic, so we denote A = λ/µ in the context of the M/M/∞ queue. Notice
that we use the notation A here for the ratio λ/µ while we used the notation ρ for this ratio
in the M/M/1 case. Clearly, both represent the offered traffic by definition. Also, both ρ and
A represent the mean number of busy servers in the M/M/1 and M/M/∞ cases, respectively.
We have already shown that this is true for a G/G/1 queue (and therefore also for M/M/1).
We will now show that it is true for an M/M/∞ queue. According to Little’s formula, the
mean number of customers in the system is equal to the arrival rate (λ) times the mean time a
customer spends in the system which is equal to 1/µ in the case of M/M/∞. Because there are
no losses in M/M/∞ so that all the arriving traffic enters the service-system we obtain

E[Q] = λ(1/µ) = A. (298)

In M/M/1, we must have that ρ cannot exceed unity for stability. In M/M/1 ρ also represents
the server utilization which cannot exceeds unity. However, in M/M/∞, A can take any non-
negative value and we often have A > 1. M/M/∞ is stable for any A ≥ 0. Notice that
in M/M/∞ the service rate increases with the number of busy servers and when we reach a
situation where the number of busy servers j is higher that A (namely j > A = λ/µ), we will
have that the system service rate is higher than the arrival rate (namely jµ > λ).

Offered traffic is measured in erlangs named after the Danish mathematician Agner Krarup
Erlang (1878 – 1929) who was the originator of queueing theory and teletraffic. One erlang
represents traffic load of one arrival, on average, per mean service time. This means that traffic
load of one erlang, if admitted to the system, will require service rate that its average is equal to
that of one server continuously busy, or two servers each of which is busy 50% of the time.

Another important teletraffic concept is the carried traffic. It is defined as the mean number
of customers, calls or packets leaving the system after completing service during a time period
equal to the mean service time. Carried traffic is also measured in erlangs and it is equal to
the mean number of busy servers which is equal to the mean queue size. It is intuitively clear
that if, on average, there are n busy servers each completing service for one customer per one
mean service time, we will have, on average, n service completions per service time. In the case
of M/M/∞, the carried traffic is equal to A which is also the offered traffic, namely the mean
number of arrivals during a mean service time. The equality:
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offered traffic = carried traffic

is due to the fact that all traffic is admitted as there are no losses in M/M/∞.

In practice, the number of servers (channels or circuits) is limited, and the offered traffic is
higher than the carried traffic because some of the calls are blocked due to call congestion when
all circuits are busy. A queueing model which describes this more realistic case is the M/M/k/k
queueing model discussed in the next chapter.

7.2 Steady-State Equations

As for M/M/1, the queue-size process of an M/M/∞ system can also be viewed as a continuous-
time Markov-chain with the state being the queue-size (the number of customers in the system).
As for M/M/1, since in M/M/∞ queue-size process is stationary and its transitions can only
occur upwards by one or downwards by one, the queue-size process is a birth-and-death process
and therefore it is reversible. As As in M/M/1, the arrival rate is independent of changes in
the queue-size. However, unlike M/M/1, in M/M/∞, the service rate does change with the
queue-size. When there are n customers in the system, and at the same time, n servers are
busy, the service rate is nµ, and the time until the next event is exponentially distributed with
parameter λ + nµ, because it is a competition between n + 1 exponential random variables: n
with parameter µ and one with parameter λ.

Considering a birth-and-death process that represents the queue evolution of an M/M/∞ queue-
ing system, and its reversibility property, the steady-state probabilities πi (for i = 0, 1, 2, . . .) of
having i customers in the system satisfy the following detailed balance (steady-state) equations:
π0λ = π1µ
π1λ = π22µ
. . .
and in general:

πnλ = πn+1(n + 1)µ, for n = 0, 1, 2, . . . . (299)

The sum of the steady-state probabilities must be equal to one, so we again have the additional
normalizing equation

∞∑
j=0

πj = 1. (300)

We note that the infinitesimal generator of M/M/∞ is given by

Qi,i+1 = λ for i=0, 1, 2, 3, . . .
Qi,i−1 = iµ for i= 1, 2, 3, 4, . . .
Q0,0 = −λ
Qi,i = −λ− iµ for i=1, 2, 3, . . . .

7.3 Solving the Steady-State Equations

Using the A notation we obtain
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π1 = Aπ0

π2 = Aπ1/2 = A2π0/2
π3 = Aπ2/3 = A3π0/(3!)

and in general:

πn =
Anπ0

n!
for n = 0, 1, 2, . . . . (301)

To obtain π0, we sum up both sides of Eq. (301), and because the sum of the πns equals one,
we obtain

1 =
∞∑

n=0

Anπ0

n!
. (302)

By the definition of Poisson random variable, see Eq. (28), we obtain

1 =
∞∑
i=0

e−λ λi

i!
. (303)

Thus,

eλ =
∞∑
i=0

λi

i!

which is also the well-known Maclaurin series expansion of eλ. Therefore, Eq. (302) reduces
to

1 = π0e
A, (304)

or
π0 = e−A. (305)

Substituting the latter in Eq. (301), we obtain

πn =
e−AAn

n!
for n = 0, 1, 2, . . . . (306)

By Eq. (306) we observe that the distribution of the number of busy channels (simultaneous
calls or customers) in an M/M/∞ system is Poisson with parameter A.

7.4 State Transition Diagram of M/M/∞
The state transition diagram of M/M/∞ is similar to that of M/M/1 except that the rate
downwards from state n (n = 1, 2, 3, . . .) is nµ rather than µ reflecting the fact at state n there
are n servers serving the n customers. The state transition diagram of M/M/∞ is:
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λ ..
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We observe that the rates of transitions between the states in the state transition diagram of
M/M/∞ are consistent with the rates in the detailed balance equations of M/M/∞ (299).
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7.5 Insensitivity

The above results for πi, i = 0, 1, 2 . . . and for the mean number of busy servers are insensitive
to the shape of the service time (holding time) distribution [10, 62, 66, 78]; all we need to
know is the mean service time and the results are insensitive to higher moments. In other
words, the above results apply to an M/G/∞ system. This is important because it makes the
model far more robust which allows us to use its analytical results for many applications where
the service time is not exponential. This insensitivity property is valid also for the M/G/k/k
system [35, 77, 78, 82].

To explain the insensitivity property of M/G/∞ with respect to the mean occupancy, consider
an arbitrarily long period of time L and also consider the queue size process function, that
represents the number of busy servers at any point in time between 0 and L. The average
number of busy servers is obtained by the area under the queue size process function divided
by L. This area is closely approximated by the number of arrivals during L which is λL times
the mean holding (service) time of each arrival (1/µ). Therefore the mean number of busy
servers, which is also equal to the mean number of customers in the system (queue size), is
equal to A = λ/µ (notice that the L is canceled out here). Since all the traffic load enters the
system (A) is also the carried traffic load.

The words “closely approximated” are used here because there are some customers that arrive
before L and receive service after L and there are other customers that arrive before time 0
and are still in the system after time 0. However because we can choose L to be arbitrarily
long, their effect is negligible.

Since in the above discussion, we do not use moments higher than the mean of the holding
time, this mean number of busy servers (or mean queue size) is insensitive to the shape of the
holding-time distribution and it is only sensitive to its mean.

Moreover, the distribution of the number of busy servers in M/G/∞ is also insensitive to the
holding time distribution. This can be explained as follows. We know that the arrivals follow
a Poisson process. Poisson process normally occurs in nature by having a very large number
of independent sources each of which generates occasional events (arrivals) [62] - for example,
a large population of customers making phone calls. These customers are independent of each
other. In M/G/∞, each one of the arrivals generated by these customers is able to find a
server and its arrival time, service time and departure time is independent of all other arrivals
(calls). Therefore, the event that a customer occupies a server at an arbitrary point in time in
steady-state is also independent of the event that any other customer occupies a server at that
point in time. Therefore, the server occupancy events are also due to many sources generating
occasional events. This explains the Poisson distribution of the server occupancy. From the
above discussion, we know that the mean number of servers is equal to A, so we always have,
in M/G/∞, in steady-state, a Poisson distributed number of servers with parameter A which
is independent of the shape of the service-time distribution.
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7.6 Applications

7.6.1 A multi-access model

An interesting application of the M/M/∞ system is the following multi-access problem (see
Problem 3.8 in [12]). Consider a stream of packets that their arrival times follow a Poisson
process with parameter λ. If the inter-arrival times of any pair of packets (not necessarily a
consecutive pair) is less than the transmission time of the packet that arrived earlier out of the
two, these two packets are said to collide. Assume that packets have independent exponentially
distributed transmission times with parameter µ. What is the probability of no collision?

Notice that a packet can collide with any one or more of the packets that arrived before
it. In other words, it is possible that it may not collide with its immediate predecessor, but
it may collide with a packet that arrived earlier. However, if it does not collide with its
immediate successor, it will not collide with any of the packets that arrive after the immediate
successor.

Therefore, the probability that an arriving packet will not collide on arrival can be obtained to
be the probability of an M/M/∞ system to be empty, that is, e−A. While the probability that
its immediate successor will not arrive during its transmission time is µ/(λ + µ). The product
of the two, namely e−Aµ/(λ + µ), is the probability of no collision.

7.6.2 Birth rate evaluation

Another application of the M/M/∞ system (or M/G/∞ system) is to the following problem.
Consider a city with population 3,000,000, and assume that (1) there is no immigration in and
out of the city, (2) the birth rate λ in constant (time independent), and (3) life-time expectancy
µ−1 in the city is constant. It is also given that average life-time of people in this city is 78
years. How to compute the birth rate?

Using the M/M/∞ model (or actually the M/G/∞ as human lifetime is not exponentially
distributed) with E[Q] = 3, 000, 000 and µ−1 = 78, realizing that E[Q] = A = λ/µ, we obtain,
λ = µE[Q] = 3, 000, 000/78 = 38461 new births per year or 105 new births per day.

Homework 7.1

Consider an M/M/∞ queue, with λ = 120 [call/s], and µ = 3 [call/s]. Find the steady state
probability that there are 120 calls in the system. This should be done by a computer. Use
ideas presented in Section 1.8.4 to compute the required probabilities.
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8 M/M/k/k and Extensions

We begin this chapter with the M/M/k/k queueing system where the number of servers is k
assuming that the arrival process is Poisson with parameter λ and that each server renders
service which is exponentially distributed with parameters µ. Later in the chapter we extend
the model to cases where the arrival process is non-Poisson.

In the M/M/k/k model, as in the other M/M/. . . cases, we assume that the service times are
mutually independent and are independent of the arrival process. We will now discuss Erlang’s
derivation of the loss probability of an M/M/k/k system that leads to the well known Erlang’s
Loss Formula, also known as Erlang B Formula.

8.1 M/M/k/k: Offered, Carried and Overflow Traffic

The offered traffic under M/M/k/k is the same as under M/M/∞ it is equal to

A = λ/µ.

However, because some of the traffic is blocked the offered traffic is not equal to the carried
traffic. To obtain the carried traffic given a certain blocking probability Pb, we recall that the
carried traffic is equal to the mean number of busy servers. To derive the latter we again invoke
Little’s formula. We notice that the arrival rate into the service system is equal to (1 − Pb)λ
and that the mean time each customer (or call) spends in the system is 1/µ. The mean queue
size (which is also the mean number of busy servers in the case of the M/M/k/k queue) is
obtained to be given by

E(Q) =
(1− Pb)λ

µ
= (1− Pb)A. (307)

Therefore the carried traffic is equal to (1 − Pb)A. Notice that since Pb > 0 in M/M/k/k, the
carried traffic here is lower than the corresponding carried traffic for M/M/∞ which is equal
to A.

The overflow traffic (in the context of M/M/k/k it is also called: lost traffic) is defined as the
difference between the two. Namely,

overflow traffic = offered traffic− carried traffic.

Therefore, for M/M/k/k, the overflow traffic is

A− (1− Pb)A = PbA.

8.2 The Steady-State Equations and Their Solution

The steady-state equations for M/M/k/k are the same as the first k steady-state equations for
M/M/∞.

As for M/M/∞, the queue-size process of an M/M/k/k is a birth-and-death process where
queue-size transitions can only occur upwards by one or downwards by one. Therefore, the
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M/M/k/k queue-size process is also reversible which means that solving its detailed bal-
ance equations and the normalizing equation yields the steady-state probabilities of the queue
size.

The difference between the two systems is that the queue size of M/M/k/k can never exceed k
while for M/M/∞ it is unlimited. In other words, the M/M/k/k system is a truncated version
of the M/M/∞ with losses occur at state k, but the ratio πj/π0 for any 0 ≤ j ≤ k is the same
in both M/M/k/k and M/M/∞ systems.

Another difference between the two is associated with the physical interpretation of reversibility.
Although both systems are reversible, while in M/M/∞ the physical interpretation is that in
the reversed process the input point process is the point process of call completion times in
reverse, in M/M/k/k the reversed process is the superposition of call completion times in reverse
and call blocking times in reverse.

The reversibility property of M/M/k/k and the truncation at k imply that the detailed balance
equations for M/M/k/k are the same as the first k detailed balance (steady-state) equations
for M/M/∞. Namely, these balance equations are:

πnλ = πn+1(n + 1)µ, for n = 0, 1, 2, . . . k − 1. (308)

The infinitesimal generator of M/M/k/k is given by

Qi,i+1 = λ for i = 0, 1, 2, 3, . . . , k − 1
Qi,i−1 = iµ for i = 1, 2, 3, 4, . . . , k
Q0,0 = −λ
Qi,i = −λ− iµ for i = 1, 2, 3, . . . , k − 1
Qk,k = −kµ.

The balance equations can also be described by the following state transition diagram of
M/M/k/k:
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The sum of the steady-state probabilities must be equal to one, so we again have the additional
normalizing equation

k∑
j=0

πj = 1. (309)

Accordingly, we obtain for M/M/k/k:

πn =
Anπ0

n!
for n = 0, 1, 2, . . . , k. (310)

To obtain π0, we again sum up both sides of the latter. This leads to

π0 =
1∑k

n=0
An

n!

. (311)
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Substituting Eq. (311) in Eq. (310), we obtain

πn =
An

n!∑k
n=0

An

n!

for n = 0, 1, 2, . . . , k. (312)

The relationship between (312) and (301) is now clearer. Observing (312) that gives the distri-
bution of the number of customers in an M/M/k/k model, it is apparent that it is a truncated
version of (301). Since (301) is merely the Poisson distribution, (312) is the truncated Poisson
distribution. Accordingly, to obtain (312), we can simply consider (301), and firstly set πj = 0
for all πj with j > k. Then for 0 ≤ j ≤ k we set the πj for the M/M/k/k values by dividing

the πj values of (301) by the sum
∑k

j=0 πj of the πj values in the M/M/∞ model. This is
equivalent to considering the M/M/∞ model and deriving the conditional probability of the
process being in state j for j = 0, 1, 2, . . . , k, conditioning on the process being within the states
j = 0, 1, 2, . . . , k. This conditional probability is exactly the steady-state probabilities πj of the
M/M/k/k model.

The most important quantity out of the values obtained by Eq. (312) is πk. It is the probability
that all k circuits are busy, so it is the proportion of time that no new calls can enter the
system, namely, they are blocked. It is therefore called time congestion. The quantity πk for an
M/M/k/k system loaded by offered traffic A is usually denoted by Ek(A) and is given by:

Ek(A) =
Ak

k!∑k
n=0

An

n!

. (313)

Eq. (313) is known as Erlang’s loss Formula, or Erlang B Formula, published first by A. K.
Erlang in 1917 [23].

Due to the special properties of the Poisson process, in addition of being the proportion of
time during which the calls are blocked, Ek(A) also gives the proportion of calls blocked due
to congestion; namely, it is the call congestion or blocking probability. A simple way to explain
that for an M/M/k/k system the call congestion (blocking probability) is equal to the time
congestion is the following. Let L be an arbitrarily long period of time. The proportion of
time during L when all servers are busy and every arrival is blocked is πk = Ek(A), so the time
during L when new arrivals are blocked is πkL. The mean number of blocked arrivals during
L is therefore equal to λπkL. The mean total number of arrivals during L is λL. The blocking
probability (call congestion) Pb is the ratio between the two. Therefore:

Pb =
λπkL

λL
= πk = Ek(A).

Eq. (313) has many applications to telecommunications network design. Given its importance,
it is necessary to be able to compute Eq. (313) quickly and exactly for large values of k. This
will enable us to answer a dimensioning question, for example: “how many circuits are required
so that the blocking probability is no more than 1% given offered traffic of A = 1000?”.

8.3 Recursion and Jagerman Formula

Observing Eq. (313), we notice the factorial terms which may hinder such computation for a
large k. We shall now present an analysis which leads to a recursive relation between Em(A)
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and Em−1(A) that gives rise to a simple and scalable algorithm for the blocking probability.
By Eq. (313), we obtain

Em(A)

Em−1(A)
=

Am

m!∑m
j=0

Aj

j!

Am−1

(m−1)!∑m−1
j=0

Aj

j!

=

Am

m!∑m
j=0

Aj

j!

Am−1

(m−1)!∑m
j=0

Aj

j!
−Am

m!

=
A

m
(1− Em(A)). (314)

Isolating Em(A), this leads to

Em(A) =
AEm−1(A)

m + AEm−1(A)
for m = 1, 2, . . . , k. (315)

Homework 8.1

Complete all the details in the derivation of Eq. (315). ¤
When m = 0, there are no servers (circuits) available, and therefore all customers (calls) are
blocked, namely,

E0(A) = 1. (316)

The above two equations give rise to a simple recursive algorithm by which the blocking prob-
ability can be calculated for a large k. An even more computationally stable way to compute
Em(A) for large values of A and m is to use the inverse [43]

Im(A) =
1

Em(A)
(317)

and the recursion
Im(A) = 1 +

m

A
Im−1(A) for m = 1, 2, . . . , k. (318)

with the initial condition I0(A) = 1.

A useful formula for Im(A) due to Jagerman [44] is:

Im(A) = A

∫ ∞

0

e−Ay(1 + y)mdy. (319)

Homework 8.2

Long long ago in a far-away land, John, an employee of a telecommunication provider company,
was asked to derive the blocking probability of a switching system loaded by a Poisson arrival
process of calls where the offered load is given by A = 180. These calls are served by k = 200
circuits.

The objective was to meet a requirement of no more than 1% blocking probability. The company
has been operating with k = 200 circuits for some time and there was a concern that the blocking
probability exceeds the 1% limit.

John was working for a while on the calculation of this blocking probability, but when he was
very close to a solution, he won the lottery, resigned and went to the Bahamas. Mary, another
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employee of the same company, was given the task of solving the problem. She found some
of John’s papers where it was revealed that for an M/M/196/196 model and A = 180, the
blocking probability is approximately 0.016. Mary completed the solution in a few minutes.
Assuming that John’s calculations were correct, what is the solution for the blocking proba-
bility of M/M/200/200 with A = 180? If the blocking probability in the case of k = 200 is
more that 1%, what is the smallest number of circuits that should be added to meet the 1%
requirement?

Solution

Using the Erlang B recursion (315) and knowing that E196(180) = 0.016, we obtain

E197(180) ≈ 0.0145
E198(180) ≈ 0.013
E199(180) ≈ 0.0116
E200(180) ≈ 0.0103.

One more circuit should be added to achieve:

E201(180) ≈ 0.0092

¤

8.4 The Special Case: M/M/1/1

Homework 8.3

Derive a formula for the blocking probability of M/M/1/1 in four ways: (1) by Erlang B
Formula (313), (2) by the recursion (315), (3) by the recursion (318), and (4) by Jagerman
Formula (319). ¤
The reader may observe a fifth direct way to obtain a formula for the blocking probability of
M/M/1/1 using Little’s formula. The M/M/1/1 system can have at most one customer in it.
Therefore, its mean queue size is given by E[Q] = 0π0 + 1π1 = π1 which is also its blocking
probability. Noticing also that the arrival rate into the system (made only of successful arrivals)
is equal to λ(1 − E[Q]), the mean time a customer stays in the system is 1/µ, and revoking
Little’s formula, we obtain

λ(1− E[Q])

µ
= E[Q]. (320)

Isolating E[Q], the blocking probability is given by

π1 = E[Q] =
A

1 + A
. (321)

8.5 The Limit k →∞ with A/k Fixed

As traffic and capacity (number of servers) increase, there is an interest in understanding the
blocking behavior in the limit k and A both approach infinity with A/k Fixed.
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Homework 8.4

Prove that the blocking probability approaches zero for the case A/k ≤ 1 and that it approaches
1− k/A in the case A/k > 1.

Guide (by Guo Jun based on [81])

By (319) we have.

1

E(A, k)
=

∫ ∞

0

e−t

(
1 +

t

A

)k

dt.

Consider the case where k increases in such a way that A/k is constant. Then,

lim
k→∞

1

E(A, k)
= limk→∞

∫∞
0

e−t
(
1 + t

A

)k
dt

=
∫∞
0

e−t · e t
A/k dt

=
∫∞
0

e−(1− 1
A/k

)t dt.

Then observe that

lim
k→∞

1

E(A, k)
=

{
∞ if A/k ≤ 1

1
1− 1

A/k

if A/k > 1. (322)

And the desired result follows. ¤

Homework 8.5 (Jiongze Chen)

Provide an alternative proof to the results of the previous homework using the Erlang B recur-
sion.

Guide

Set a = A/k. Notice that in the limit Ek(ak) ∼= Ek+1(a(k+1)) ∼= Ek(A) and provide a proof for
the cases k < A and k = A. Then, for the case k > A, first show that the blocking probability
decreases as k increases for a fixed A (using the Erlang B recursion), and then argue that if the
blocking probability already approaches zero for A = k, it must also approach zero for k > A.
¤

Homework 8.6

Provide intuitive explanation to the results of the previous homework.

Guide

Due to the insensitivity property, M/M/k/k and M/D/k/k experience the same blocking prob-
ability if the offered traffic in both system is the same. Observe that since the arrivals follow
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a Poisson process the variance is equal to the mean. Also notice that as the arrival rate λ
increases, the Poisson process approaches a Gaussian process. Having the variance equal to the
mean, the standard deviation becomes negligible relative to the mean for a very large λ. With
negligible variability, M/D/k/k behaves like D/D/k/k and the results follow. ¤

8.6 M/M/k/k: Dimensioning and Utilization

Taking advantage of the monotonicity of Erlang formula, we can also solve the dimensioning
problem. We simply keep incrementing the number of circuits and calculate in each case the
blocking probability. When the desired blocking probability (e.g., 1%) is reached, we have our
answer.

Homework 8.7

Prove that if A > A′ then En(A) > En(A′) for n = 1, 2, 3 . . ..
Hint: Consider the Erlang B recursion and use induction on n. ¤
We have already derived the mean number of busy circuits in an M/M/k/k system fed by A
erlangs in (307) using Little’s formula. Substituting πk for Pb in (307), we obtain

E[Q] = (1− πk)A.

Note that it can also be computed by the weighted sum

E(Q) =
k∑

i=0

iπi.

Accordingly, the utilization of an M/M/k/k system is given by

Û =
(1− πk)A

k
. (323)

Homework 8.8

Prove that
∑k

i=0 iπi = (1− πk)A. ¤
In the following Table, we present the minimal values of k obtained for various values of A such
that the blocking probability is no more than 1%, and the utilization obtained in each case. It
is clearly observed that the utilization increased with the traffic.

A k Ek(A) Utilization
20 30 0.0085 66.10%
100 117 0.0098 84.63%
500 527 0.0095 93.97%
1000 1029 0.0099 96.22%
5000 5010 0.0100 98.81%
10000 9970 0.0099 99.30%



Queueing Theory and Stochastic Teletraffic Models c© Moshe Zukerman 128

Homework 8.9

Reproduce the above Table. ¤
We also notice that for the case of A = 10, 000 erlangs, to maintain no more than 1% blocking, k
value less than A is required. Notice however that the carried traffic is not A but A(1−Ek(A)).
This means that for A ≥ 10, 000, dimensioning simply by k = A will mean no more than 1%
blocking and no less than 99% utilization - not bad for such a simple rule of thumb! This also
implies that if the system capacity is much larger than individual service requirement, very high
efficiency (utilization) can be achieved without a significant compromise on quality of service.
Let us now further examine the case k = A.

8.7 M/M/k/k under Critical Loading

A system where the offered traffic load is equal to the system capacity is called critically loaded
[40]. Accordingly, in a critically loaded Erlang B System we have k = A. From the table
below, it is clear that if we maintain k = A and we increase them both, the blocking probabil-
ity decreases, the utilization increases, and interestingly, the product Ek(A)

√
A approaches a

constant, which we denote C̃, that does not depend on A or k. This implies that in the limit,
the blocking probability decays at the rate of 1/

√
k. That is, for a critically loaded Erlang B

system, we obtain

lim
k→∞

Ek(A) =
C̃√
k
. (324)

A k Ek(A) Utilization Ek(A)
√

A
10 10 0.215 78.5 % 0.679
50 50 0.105 89.5% 0.741
100 100 0.076 92.4% 0.757
500 500 0.035 96.5% 0.779
1000 1000 0.025 97.5% 0.785
5000 5000 0.011 98.9% 0.792
10000 10000 0.008 99.2% 0.79365
20000 20000 0.00562 99.438% 0.79489
30000 30000 0.00459 99.541% 0.79544
40000 40000 0.00398 99.602% 0.79576
50000 50000 0.00356 99.644% 0.79599

To explain the low blocking probability in critically loaded large system, we refer back to our
homework problem related to an Erlang B system with large capacity where the ratio A/k is
maintained constant. In such a case the standard deviation of the traffic is very small relative
to the mean, so the traffic behaves close to deterministic. If 100 liters per second of water are
offered, at a constant rate, to a pipe that has capacity of 100 liters per second, then the pipe
can handle the offered load with very small losses.
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8.8 Insensitivity and Many Classes of Customers

We have discussed in Section 7.5, the distribution and the mean of the number of busy servers is
insensitive to the shape of the service time distribution (although it is still sensitive to the mean
of the service time) in the cases of M/G/∞ and M/G/k/k. For M/G/k/k, also the blocking
probability is insensitive to the shape of the service time distribution [35, 77, 78].

However, we must make it very clear that the insensitivity property does not extend to the
arrival process. We still require a Poisson process for the erlang B formula to apply. If we have
a more burtsy arrival process (e.g. arrivals arrive in batches) we will have more losses than
predicted by Erlang B formula, and if we have a smoother arrival process than Poisson, we
will have less losses than predicted by Erlang B formula. To demonstrate it, let us compare an
M/M/1/1 system with a D/D/1/1 system. Suppose that each of these two systems is fed by A
erlangs, and that A < 1.

Arrivals into the D/D/1/1 system with A < 1 will never experience losses because the inter-
arrivals are longer that the service times, so the service of a customer is always completed
before the arrival of the next customer. Accordingly, by Little’s formula: E[Q] = A, and since
E[Q] = 0 × π0 + 1 × π1, we have that π1 = A and π0 = 1 − A. In this case, the blocking
probability Pb is equal to zero and not to π1. As there are no losses, the utilization will be
given by Û = π1 = A.

By contrast, for the M/M/1/1 system, Pb = E1(A) = E[Q] = π1 = A/(1+A), so π0 = 1−π1 =
1/(1 + A). To obtain the utilization we can either realized that it is the proportion of time our
single server is busy, namely it is equal to π1 = A/(1 + A), or we can use the above formula for
Û in M/M/k/k system and obtain

Û = (1− πk)A = [1− A/(1 + A)]A = A/(1 + A). (325)

This comparison is summarized in the following table:

M/M/1/1 D/D/1/1
π0 1/(1 + A) 1− A
π1 A/(1 + A) A

Û A/(1 + A) A
Pb A/(1 + A) 0

E[Q] A/(1 + A) A

Clearly, the steady-state equations (310) will not apply to a D/D/1/1 system.

We have already mentioned that for M/G/k/k the distribution of the number of busy servers and
therefore also the blocking probability is insensitive to the shape of the service time distribution
(moments higher than the first). All we need is to know that the arrival process is Poisson, and
the ratio of the arrival rate to the service rate of a single server and we can obtain the blocking
probability using the Erlang B formula. Let us now consider the following problem.

Consider two classes of customers (packets). Class i customers arrives at rate of λi each of
which requires exponentially distributed service with parameter µi, for i = 1, 2. There are k
servers without waiting room (without additional buffer). The aim is to derive the blocking
probability.

The combined arrival process of all the customers is a Poisson process with parameter λ =
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λ1 + λ2. Because the probability of an arbitrary customer to belong to the first class is

p =
λ1

λ1 + λ2

,

the service time of an arbitrary customer has hyperexponential distribution because with prob-
ability p it is exponentially distributed with parameter µ1, and with probability 1 − p, it is
exponentially distributed with parameter µ2.

The mean service time (holding time) is therefore given by

E(S) =
p

µ1

+
1− p

µ2

so A = λE(S), and Erlang B applies.

Homework 8.10 [12]

Extend the results obtained for two classes of customers to the case of n classes of customers.
¤

Homework 8.11

1. Consider an M/M/∞ queueing system with the following twist. The servers are numbered
1, 2, . . . and an arriving customer always chooses the server numbered lowest among all
the free servers it finds. Find the proportion of time that each of the servers is busy [12].

Guide: Notice that the input (arrival) rate into the system comprises servers n + 1, n +
2, n + 3 . . . is equal to λEn(A). Then using Little’s formula notice that the mean number
of busy servers among n+1, n+2, n+2 . . . is equal to AEn(A). Repeat the procedure for
the system comprises servers n+2, n+3, n+4 . . ., you will observe that the mean number
of busy servers in this system is AEn+1(A). Then considering the difference between
these two mean values, you will obtain that the mean number of busy servers in a system
comprises only of the n + 1 server is

A[En(A)− En+1(A)].

Recall that the mean queue size (mean number of busy server) of a system that comprises
only the single server is (probability of server is busy) times 1 + (probability of server
is idle) times 0, which is equal to the probability that the server is busy, we obtain that
A[En(A)− En+1(A)] is the probability that the server is busy.

An alternative way to look at this problem is the following. Consider the system made only
of the n+1 server. The offered traffic into this system is AEn(A), the rejected traffic of this
system is AEn+1(A). Therefore, the carried traffic of this system is A[En(A)−En+1(A)].
This means that the arrival rate of customers that actually enters this single server system
is

λenters(n+1) = λ[En(A)− En+1(A)]
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and since the mean time spent in this system is 1/µ, we have that the mean queue size
in this single server system is

λenters(n+1)
1

µ
= A[En(A)− En+1(A)]

which is the carried load. Based on the arguments above it is equal to the proportion of
time the n + 1 server is busy.

2. Show that if the number of servers is finite k, the proportion of time that server n + 1 is
busy is

A

(
1− Ek(A)

En(A)

)
En(A)− A

(
1− Ek(A)

En+1(A)

)
En+1(A) = A[En(A)− En+1(A)]

and provide intuitive arguments to why the result is the same as in the infinite server
case.

3. Verify the results by discrete-event and Markov-chain simulations.

¤

Homework 8.12

Consider an M/M/k/k queue with a given arrival rate λ and mean holding time 1/µ. Let
A = λ/µ. Let Ek(A) be the blocking probability. An independent Poisson inspector inspects
the M/M/k/k queue at times t1, t2, t3, . . . . What is the probability that the first arrival after
an inspection is blocked?

Answer:
Ek(A)λ

kµ + λ
.

¤

Homework 8.13

Bursts of data of exponential lengths with mean 1/µ that arrive according to a Poisson process
are transmitted through a bufferless optical switch. All arriving bursts compete for k wavelength
channels at a particular output trunk of the switch. If a burst arrives and all k wavelength
channels are busy, the burst is dumped at the wavelength bit-rate. While it is being dumped, if
one of the wavelength channels becomes free, the remaining portion of the burst is successfully
transmitted through the wavelength channel.

1. Show that the mean loss rate of data E[Loss] is given by

E[Loss] = 1P (X = k + 1) + 2P (X = k + 2) + 3P (X = k + 3) + . . .

where X is a Poisson random variable with parameter A = λ/µ.

2. Prove that

E[Loss] =
Aγ(k, A)

Γ(k)
− kγ(k + 1, A)

Γ(k + 1)

where Γ(k) is the Gamma function and γ(k, A) is the lower incomplete Gamma function.
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Background information and guide

The Gamma function is defined by

Γ(a) =

∫ ∞

0

ta−1e−tdt. (326)

The lower incomplete Gamma function is defined by

γ(a, x) =

∫ x

0

ta−1e−tdt. (327)

The upper incomplete Gamma function is defined by

Γ(a, x) =

∫ ∞

x

ta−1e−tdt. (328)

Accordingly,
γ(a, x) + Γ(a, x) = Γ(a).

For an integer k, we have
Γ(k) = (k − 1)! (329)

Γ(k, x) = (k − 1)!e−x

k−1∑
m=0

xm

m!
. (330)

Therefore,

e−A

k−1∑
m=0

Ai

i!
=

Γ(k, A)

Γ(k)
(331)

so

1− e−A

k−1∑
m=0

Ai

i!
= 1− Γ(k, A)

Γ(k)
=

Γ(k)− Γ(k, A)

Γ(k)
=

γ(k, A)

Γ(k)
. (332)

Now notice that

E[Loss] = 1× P (X = k + 1) + 2× P (X = k + 2) + 3× P (X = k + 3) + . . .

=
∞∑

i=k+1

(i− k)Ai e
−A

i!

= A

∞∑

i=k+1

Ai−1 e−A

(i− 1)!
− k

∞∑

i=k+1

Ai e
−A

i!

= A

∞∑

i=k

Ai e
−A

i!
− k

∞∑

i=k+1

Ai e
−A

i!

= A

[
1− e−A

k−1∑
i=0

Ai

i!

]
− k

[
1− e−A

k∑
i=0

Ai

i!

]
.

¤
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8.9 A Markov-chain Simulation of M/M/k/k

We described a Markov-chain simulation in the context of the M/M/1 queue. In a similar way,
we can use a Markov-chain simulation to evaluate the blocking probability of an M/M/k/k
queue, as follows.

Variables and input parameters:
Q = number of customers in the system (queue size);
Bp = estimation for the blocking probability;
Na = number of customer arrivals counted so far;
Nb = number of blocked customers counted so far;
MAXNa = maximal number of customer arrivals (it is used for the stopping condition);
µ = service rate;
λ = arrival rate.

Define function: R(01) = a uniform U(0, 1) random deviate. A new value for R(01) is generated
every time it is called.

Initialization: Q = 0; Na = 0, Nb = 0.

1. If R(01) ≤ λ/(λ + Qµ), then Na = Na + 1; if Q = k then Nb = Nb + 1, else Q = Q + 1;

else, Q = Q - 1.

2. If Na < MAXNa go to 1; else, print Bp = Nb/Na.

Again, it is a very simple program of two If statements: one to check if the next event is an
arrival or a departure, and the other a stopping criterion.

Homework 8.14

Simulate an M/M/k/k queue based on the Markov-chain simulation principles to evaluate the
blocking probability for a wide range of parameter values. Compare the results you obtained
with equivalent results obtain analytically using the Erlang B Formula and with equivalent
M/M/k/k queue blocking probability results obtained using the general simulation principles
of Section 4.2. In your comparison consider accuracy (closeness to the analytical results), the
length of the confidence intervals and running times. ¤

Homework 8.15

Simulate equivalent U/U/k/k, M/U/k/k (U denotes here a uniform random variable) and
M/M/k/k models. (You may use programs you have written in previous assignments. Run
these simulations for a wide range of parameter values and compare them numerically. Compare
them also with equivalent results obtain analytically using the Erlang B Formula. Again,
in your comparison consider accuracy (closeness to the analytical results), the length of the
confidence intervals and running times. While in the previous assignment, you learn the effect
of the method used on accuracy and running time, this time try also to learn how the different
models affect accuracy and running times. ¤
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Homework 8.16

Use the M/M/k/k model to compare the utilization of an optical switch with full wavelength
conversion and without wavelength conversion.

Background information and guide

Consider a switch with TI input trunks and TO output trunks. Each trunk comprises F optical
fibers each of which comprises W wavelengths. Consider a particular output trunk and assume
that the traffic directed to it follows a Poisson process with parameter λ and that any packet
is of exponential length with parameter µ. Let A = λ/µ. In the case of full wavelength
conversion, every packet from any wavelength can be converted to any other wavelength, so
the Poisson traffic with parameter λ can all be directed to the output trunk and can use any
of the k = FW links. In the case of no wavelength conversion, if a packet arrives on a given
wavelength at an input port, it must continue on the same wavelength at the output port, so
now consider W separate systems each has only F links per trunk. Compare the efficiency that
can be achieved for both alternatives, if the blocking probability is set limited to 0.001. In other
words, in the wavelength conversion case, you have an M/M/k/k system with k = FW , and
in non-wavelength conversion case, you have k = F . Compute the traffic A the gives blocking
probability of 0.001 in each case and compare efficiency. Realistic ranges are 40 ≤ W ≤ 100
and 10 ≤ F ≤ 100. ¤

8.10 M/M/k/k with Preemptive Priorities

So far we have considered a single class traffic without any priority given to some calls over
others. Let us now consider a scenario that is common in many applications, where some calls
have preemptive priorities over other lower priority calls. In this case, when a higher priority
arrives and non of the k servers is available, the higher priority call preempts one of the calls
in service and enters service instead of the preempted lower priority call. We consider arriving
calls to be of m priority types. Where priority 1 represents the highest priority and priority m
represents the lowest priority. In general, if i < j then priority i is higher than priority j, so a
priority i arrival may preempt a priority j customer upon its arrival.

The arrival process of priority i customers follows a Poisson process with rate λi, for i =
1, 2, 3, . . .m. The service time of all the customers is exponentially distributed with parameter
µ. The traffic intensity of priority i customers is given by

Ai =
λi

µ
, i = 1, 2, 3, . . . m.

Let Pb(i) be the blocking probability of priority i customers. Because the priority 1 traffic
access the system regardless of low priority loading, for the case i = 1, we have

Pb(1) = Ek(A1).

To obtain Pb(i) for i > 1, we first observe that the blocking probability of all the traffic of
priority i and higher priorities, namely, the traffic generated by priorities 1, 2, . . . , j, is given
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by
Ek(A1 + A2 + . . . , Ai).

Next we observe that the lost traffic of priority i, i = 1, 2, 3, . . . m, is given by the lost traffic of
priorities 1, 2, 3, . . . i minus the lost traffic of priorities 1, 2, 3, . . . i− 1, namely,

(A1 + A2 + . . . , Ai)Ek(A1 + A2 + . . . , Ai)− (A1 + A2 + . . . , Ai−1)Ek(A1 + A2 + . . . , Ai−1).

Therefore, the value of Pb(i) for i > 1, can be obtained as the ratio of the lost traffic of priority
i to the offered traffic of priority i, that is,

Pb(i) =

(∑i
j=1 Aj

)
Ek

(∑i
j=1 Aj

)
−

(∑i−1
j=1 Aj

)
Ek

(∑i−1
j=1 Aj

)

Ai

.

Homework 8.17

Assume that the traffic offered to a 10 circuit system is composed of two priority traffic: high
and low. The arrival rate of the high priority traffic is 5 call/minute and that of the low
priority traffic is 4 call/minute. The calls holding time of both traffic classes is exponentially
distributed with a mean of 3 minutes. Find the blocking probability of each of the priority
classes. ¤

8.11 Overflow Traffic of M/M/k/k

In many practical situations traffic that cannot be admitted to a k server group overflows to
another server group. In such a case the overflow traffic is not Poisson, but it is more bursty
than a Poisson process. In other words, the variance of the number of arrivals in an interval is
higher than the mean number of arrivals in that interval.

It is therefore important to characterize such overflow traffic by its variance and its mean. In
particular, consider an M/M/k/k/ queueing system with input offered traffic A and let M
[Erlangs] be the traffic overflowed from this k-server system. As discussed in Section 8.1,

M = AEk(A). (333)

Let V be the variance of the overflow traffic. Namely, V is the variance of the number of
busy servers in an infinite server systems to which the traffic overflowed from our M/M/k/k/
is offered. The V can be obtained by the so-called Riordan Formula as follows:

V = M

(
1−M +

A

k + 1 + M − A

)
. (334)

Note that M and V of the overflow traffic are completely determined by k and A.

The variance to mean ratio of a traffic stream is called Peakedness. In our case, the peakedness
of the overflow traffic is denoted Z and is given by

Z =
V

M
,

and it normally satisfies Z > 1.
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8.12 Multi-server Loss Systems with Non-Poisson Input

Consider a generalization of an M/M/k/k system to the case where the arrival process is not
Poisson. As mentioned in the previous section, one way non-Poisson traffic occurs is when
we consider a secondary server group to which traffic overflows from a primary server group.
If we know the offered traffic to the primary server group (say A) and the number of servers
in the primary and secondary groups are given by k1 and k2, respectively, then the blocking
probability of the secondary server groups is obtain by

Pb(secondary) =
Ek1+k2(A)

Ek1(A)
. (335)

In this case we also know the mean and variance of the traffic offered to the secondary server
group which is readily obtained by Equations (333) and (334).

However, the more challenging problem is the following: given a multi-server loss system with
k2 servers loaded by non-Poisson offered traffic with mean M and variance V , find the blocking
probability. This offered traffic could have come from or overflowed from various sources, and
unlike the previous problem, here we do not know anything about the original offered traffic
streams or the characteristics of any primary systems. All we know are the values of M and
V . This problem does not have an exact solution, but reasonable approximations are available.
We will now present two approximations:

1. Equivalent Random Method (ERM)

2. Hayward Approximation.

Equivalent Random Method (ERM)

We wish to estimate the blocking probability for a system with k2 servers loaded by non-pure
chance offered traffic with mean M and variance V. We know that if this traffic is offered to a
system with infinite number of servers (instead of k2), the mean and variance of the number of
busy servers will be M and V, respectively.

Under the ERM, due to [84], we model the system as if the traffic was the overflow traffic from
a primary system with Neq circuits and offered traffic Aeq that follows Poisson process. If we
find such Aeq and Neq then by Eq. (335), the blocking probability in our k2-server system will
be estimated by:

ENeq+k2(Aeq)

ENeq(Aeq)
.

To approximate Aeq and Neq, we use the following:

Aeq = V + 3Z(Z − 1); (336)

Neq =
Aeq(M + Z)

M + Z − 1
−M − 1. (337)

Note that Equation (336) is an approximation, but Equation (337) is exact and it results in an
approximation only because Equation (336) is an approximation.
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Hayward Approximation

The Hayward approximation [29] is based on the following result. A multi-server system with
k servers fed by traffic with mean M and variance V has a similar blocking probability to that
of an M/M/k/k system with offered load M

Z
and k

Z
servers, hence Erlang B formula that gives

E k
Z
(M

Z
) can be used.

Homework 8.18

Assume non-Poisson offered traffic with mean = 65 Erlangs and variance = 78. Use both
Hayward Approximation and the Equivalent Random Method to estimate the minimal number
of circuits required to guarantee that the blocking probability is not more than 1%.

Solution

Let us use the notation N∗ to represent the minimal number of circuits required to guarantee
that the blocking probability is not more than 1%. Previously, we use k2 to represent the
given number of servers in the secondary system. Now we use the notation N∗ to represent the
desired number of servers in the system.

Given, M = 65 and V = 78, the peakedness is given by

Z =
78

65
= 1.2.

Equivalent Random Method

By (336): Aeq = 78 + 3× 1.2× 0.2 = 78.72.

By (337): Neq = 78.72(65+1.2)
65+1.2−1

− 65− 1 = 13.92736 = 14 approx.

A conservative rounding would be to round it down to Neq = 13. This will result in a more
conservative dimensioning. In the present case, because the result is 13.92736 (so close to 14),
we round it up to Neq = 14. In any case, we need to be aware of the implication of our choice.
Please repeat the calculation using the more conservative choice of Neq = 13.

The blocking probability in the primary equivalent system is given by,

E14(78.72) = 0.825.

Next, find N∗ such that
EN∗+14(78.72)

0.825
= 0.01,

or,

EN∗+14(78.72) = 0.00825.

By Erlang B formula: N∗ + 14 = 95, so the number of required servers is estimated by N∗ =
81.
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Hayward Approximation

Mean offered traffic in the equivalent system = 65/1.2 = 54.16667.

By Erlang B formula, the number of required servers in the equivalent system for 1% blocking
is 68.

Then, 68 × 1.2 = 81.6. Rounding up conservatively, we obtain that 82 servers are required.
¤

Homework 8.19

Consider again the two loss systems the primary and the secondary and use them to compare
numerically between:

1. the exact solution;

2. the Hayward approximation;

3. the Equivalent Random Method approximation;

4. a 3th approximation that is based on the assumption that the arrival process into the
secondary system follows a Poisson process. For this approximation assume that the
traffic lost in the primary system is offered to the secondary system following a Poisson
process.

Guide

For the comparison, at first assume that you know A, k1 and k2 and compute M and V , i.e.,
the mean and variance of the offered load to the secondary system as well as the blocking
probability of traffic in the secondary system.

Next, assume that A and k1 are not known but k2 is known; also known are M and V , i.e., the
mean and variance of the offered load to the secondary system that you computed previously.
And evaluate the blocking probability using both Hayward, the Equivalent Random Method
and the Poisson approximations.

Compare the results for a wide range of parameters.

¤
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9 M/M/k

The M/M/k queue is a generalization of the M/M/1 queue to the case of k servers. As in
M/M/1, for an M/M/k queue, the buffer is infinite and the arrival process is Poisson with rate
λ. The service time of each of the k servers is exponentially distributed with parameter µ. As
in the case of M/M/1 we assume that the service times are independent and are independent
of the arrival process.

9.1 Steady-State Equations and Their Solution

Letting A = λ/µ, and assuming the stability condition λ < kµ, or A < k, the M/M/k queue
gives rise to the following steady-state equations:

π1 = Aπ0

π2 = Aπ1/2 = A2π0/2
π3 = Aπ2/3 = A3π0/(3!)
. . .
πk = Aπk−1/k = Akπ0/(k!)
πk+1 = Aπk/k = Ak+1π0/(k!k)
πk+2 = Aπk+1/k = Ak+2π0/(k!k2)
. . .
πk+j = Aπk+j−1/k = Ak+jπ0/(k!kj) for j = 1, 2, 3, . . .

and in general:

πn =
Anπ0

n!
for n = 0, 1, 2, . . . , k − 1 (338)

and

πn =
Anπ0

k!kn−k
for n = k, k + 1, k + 2, . . . . (339)

These balance equations can also be described by the following state transition diagram of
M/M/k:

WVUTPQRS0
λ ,,WVUTPQRS1
µ

ll

λ ,,WVUTPQRS2
2µ

ll

λ ** · · ·
3µ

ll

λ ,, WVUTPQRSk
kµ

jj
λ -- WVUTPQRSk + 1
kµ

ll

λ -- WVUTPQRSk + 2
kµ

mm

λ ** · · ·
kµ
mm

To obtain π0, we sum up both sides of Eqs. (338) and (339), and because the sum of the πns
equals one, we obtain an equation for π0, which its solution is

π0 =

(
k−1∑
n=0

An

n!
+

Ak

k!

k

(k − A)

)−1

. (340)

Substituting the latter in Eqs. (338) and (339), we obtain the steady-state probabilities πn, n =
0, 1, 2, . . . .



Queueing Theory and Stochastic Teletraffic Models c© Moshe Zukerman 140

9.2 Erlang C Formula

Of special interest is the so called Erlang C formula. It represents the proportion of time that
all k servers are busy and is given by:

Ck(A) =
∞∑

n=k

πn =
Ak

k!

k

(k − A)
π0 =

Ak

k!
k

(k−A)∑k−1
n=0

An

n!
+ Ak

k!
k

(k−A)

. (341)

Homework 9.1

Derive Eq. (341). ¤
By Eqs. (313) and (341) we obtain the following relationship:

Ck(A) =
kEk(A)

k − A[1− Ek(A)]
. (342)

Homework 9.2

1. Derive Eq. (342);

2. Show that Ck(A) ≥ Ek(A). ¤
An elegant result for Ck(A) is the following

1

Ck(A
=

1

Ek(A)
− 1

Ek−1(A)
. (343)

Homework 9.3

Prove Eq. (343).

In the following table, we add the corresponding Ck(A) values to the table of the previous
section. We can observe the significant difference between Ck(A) and Ek(A) as the ratio A/k
increases. Clearly, when A/k > 1, the M/M/k queue is unstable.

A k Ek(A) Ck(A)
20 30 0.0085 0.025
100 117 0.0098 0.064
500 527 0.0095 0.158
1000 1029 0.0099 0.262
5000 5010 0.0100 0.835
10000 9970 0.0099 unstable

Homework 9.4

Reproduce the results of the above table. ¤
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9.3 Mean Queue Size, Delay, Waiting Time and Delay Factor

Let us reuse the following notation:
Q = a random variable representing the total number of customers in the system (waiting in
the queue and being served);
NQ = a random variable representing the total number of customers waiting in the queue (this
does not include those customers being served);
Ns = a random variable representing the total number of customers that are being served;
D = a random variable representing the total delay in the system (this includes the time a
customer waits in the queue and in service);
WQ = a random variable representing the time a customer waits in the queue (this excludes
the time a customer spends in service);
S = a random variable representing the service time.
D̂ = The delay of a delayed customer including the service time
ŴQ = The delay of a delayed customer in the queue excluding the service time.

Using the above notation, we have

E[Q] = E[NQ] + E[Ns] (344)

and
E[D] = E[WQ] + E[S]. (345)

Clearly,

E[S] =
1

µ
.

To obtain E[Ns] for the M/M/k queue, we use Little’s formula for the system made of servers.
If we consider the system of servers (without considering the waiting room outside the servers),
we notice that since there are no losses, the arrival rate into this system is λ and the mean
waiting time of each customer in this system is E[S] = 1/µ. Therefore, by Little’s formula the
mean number of busy servers is given by

E[Ns] =
λ

µ
= A. (346)

To obtain E[NQ], we consider two mutually exclusive and exhaustive events: {Q ≥ k}, and
{Q < k}. Recalling (89), we have

E[NQ] = E[NQ | Q ≥ k]P (Q ≥ k) + E[NQ | Q < k]P (Q < k). (347)

To derive E[NQ | Q ≥ k], we notice that the evolution of the M/M/k queue during the time
when Q ≥ k is equivalent to that of an M/M/1 queue with arrival rate λ and service rate kµ.
The mean queue size of such M/M/1 queue is equal to ρ/(1 − ρ) where ρ = λ/(kµ) = A/k.
Thus,

E[NQ | Q ≥ k] =
A/k

1− A/k
=

A

k − A
.

Therefore, since E[NQ | Q < k] = 0 and P (Q ≥ k) = Ck(A), we obtain by (347) that

E[NQ] = Ck(A)
A

k − A
. (348)
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Homework 9.5

Derive Eq. (348) by a direct approach using E[NQ] =
∑∞

n=k(n− k)πn.

Guide

By (339),

E[NQ] =
∞∑

n=k

(n− k)πn =
∞∑

n=k

(n− k)
Anπ0

k!kn−k

Set i = n− k, to obtain

E[NQ] =
∞∑
i=0

i
Ai+kπ0

k!ki
=

π0A
k

k!

∞∑
i=0

i

(
A

k

)i

= Ck(A)
k − A

k

A/k

(1− A/k)2
,

and (348) follows. ¤

Homework 9.6

Confirm consistence between (348) and (276). ¤
By (344), (346) and (348), we obtain

E[Q] = Ck(A)
A

k − A
+ A. (349)

Therefore, by Little’s formula

E[WQ] =
Ck(A) A

k−A

λ
=

Ck(A)

µk − λ
. (350)

Notice the physical meaning of E[WQ]. It is the ratio between the probability of having all
servers busy and the spare capacity of the system.

The mean delay is readily obtained by adding the mean service time to E[WQ]. Thus,

E[D] =
Ck(A)

µk − λ
+

1

µ
. (351)

Another useful measure is the so-called delay factor [18]. It is defined as the ratio of the mean
waiting time in the queue to the mean service time. Namely, it is given by

DF =

Ck(A)
µk−λ

1
µ

=
Ck(A)

k − A
. (352)

The rationale to use delay factor is that in some applications users that require long service time
may be willing to wait longer time in the queue in direct proportion to the service time.
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9.4 Mean Delay of Delayed Customers

In Section 6.4, we have shown how to derive, for the case of M/M/1, E[D̂] and E[ŴQ], namely,
mean delay of a delayed customer including the service time and excluding the service time,
respectively. We now extend the same ideas to the case of M/M/k. As in the previous case, to
obtain E[ŴQ], we use Little’s formula where we consider the queue (without the servers) as the
system and the arrival rate of the delayed customers which in the present case is λCk(A).

Therefore,

E[ŴQ] =
ACk(A)

λCk(A)(k − A)
=

1

kµ− λ
.

and

E[D̂] = E[ŴQ] +
1

µ
=

1

kµ− λ
+

1

µ
.

As in Section 6.4, we can check the latter using the law of total probability as follows:

E[D] = (1− Ck(A))E[S] + Ck(A)E[D̂]

= (1− Ck(A))
1

µ
+ Ck(A)

(
1

kµ− λ
+

1

µ

)
=

Ck(A)

µk − λ
+

1

µ
,

and again we observe that consistency is achieved and note that this consistency check is an
alternative way to obtain E[D̂].

9.5 Dimensioning

One could solve the dimensioning problem of finding, for a given A, the smallest k such that
Ck(A) or the mean delay is lower than a given value. Using Eq. (342), and realizing that the
value of Ck(A) decreases as k increases, the dimensioning problem with respect to Ck(A) can be
solved in an analogous way to the M/M/k/k dimensioning problem. Having the Ck(A) values
for a range of k value one can also obtain the minimal k such that the mean delay is bounded
using Eq. (351). A similar procedure can be used to find the minimal k such that delay factor
requirement is met.

9.6 Utilization

The utilization of an M/M/k queue is the ratio of the mean number of busy servers to k,
therefore the utilization of an M/M/k queue is obtained by

Û =
E[Ns]

k
=

A

k
. (353)

Homework 9.7

Write a computer program that computes the minimal k, denoted k∗, subject to a bound on
E[D]. Run the program for a wide range of parameter values and plot the results. Try to
consider meaningful relationships, e.g., plot the spare capacity k∗µ − λ and utilization as a
function of various parameters and discuss implications. ¤
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Homework 9.8

Consider the M/M/2 queue with arrival rate λ and service rate µ of each server.

1. Show that

π0 =
2− A

2 + A
.

2. Derive formulae for πi for i = 1, 2, 3, . . . .

3. Show that

C2(A) =
A2

2 + A
.

Note that for k = 2, it is convenient to use C2(A) = 1− π0 − π1.

4. Derive a formula for E[Ns] using the sum: π1 + 2C2(A) and show that

E[Ns] = π1 + 2C2(A) = A.

5. Derive E[Q] in two ways, one using the sum
∑∞

i=0 iπi and the other using Eqs. (347) –
(349), and show that in both ways you obtain

E[Q] =
4A

4− A2
.

¤

Homework 9.9

Queueing theory is a useful tool for decisions on hospital resource allocation [17, 33, 34, 83].
In particular, the M/M/k model has been considered [33, 34]. Consider the following example
from [83]. Assume that a patient stays at an Intensive Care Unit (ICU) for an exponentially
distributed period of time with an average time of 2.5 days. Consider two hospitals. Patients
arrivals at each of the hospitals follow a Poisson process. They arrive at Hospital 1 at the rate
of one patient per day and Hospital 2 has 2 patients arriving per day. Assume that Hospital 2
has 10 ICU beds. Then the management of Hospital 1 that has never studied queueing theory
believes that they need only 5 beds, because they think that if they have half the traffic load
they need half the number of beds. Your job is to evaluate and criticize their decision. Assuming
an M/M/k model, calculate the mean delay and the probability of having all servers busy for
each of the two systems. Which one performs better? If you set the probability of having all
servers busy in Hospital 2 as the desired quality of service (QoS) standard, how many beds
Hospital 1 will need? Maintaining the same QoS standard, provide a table with the number of
beds needed in Hospital 1 if it has traffic arrival rates λ1 = 4, 8, 16, 32, 64 patients per day. For
each of the λ1 values, provide a simple rule to estimate the number of beds n in Hospital 1,
maintaining the same QoS standard. Provide rigorous arguments to justify this rule for large
values of λ1 and n.

Hint: Observe that as n grows with λ1, n − λ1, approaches C
√

n for some constant C (find
that constant!). For rigorous arguments, study [36]. ¤
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10 Engset Loss Formula

The Engset loss formula applies to telephony situations where the number of customers is small
relative to the number of available circuits. Such situations include: an exchange in a small
rural community, PABX, or a lucrative satellite service to a small number of customers. Let
the call holding times be IID exponentially distributed with mean 1/µ and the time until an
idle source attempts to make a call is also exponential with mean 1/λ̂. We also assume that
there is not dependence between the holding times and the idle periods of the sources. Let
the number of customers (sources of traffic) be M , the number of circuits k and the blocking
probability Pb.

The reader will recall that in M/M/1, the arrival rate as well as the service rate are independent
of the state of the system, and in M/M/∞, the arrival rate is also independent of the number
of customers in the system, but the service rate is state dependent. In the present case, when
the number of customers is limited, we have a case where both the arrival rate and the service
rate are state dependent.

As in M/M/k/k, the service rate is nµ when there are n busy circuits (namely n customers
are making phone calls). However, unlike M/M/k/k, in the present case, busy customers do
not make new phone calls thus they do not contribute to the arrival rate. Therefore, if n
circuits are busy, the arrival rate is (M −n)λ̂. As a result, considering both arrival and service
processes, at any point in time, given that there are n customers in the system, and at the
same time, n servers/circuits are busy, the time until the next event is exponentially distributed
with parameter (M − n)λ̂ + nµ, because it is a competition between M exponential random
variables: n with parameter µ and M − n with parameter λ̂.

An important question we must always answer in any Markov-chain analysis is how many states
do we have. If M > k, then the number of states is k + 1, as in M/M/k/k. However, if M < k,
the number of states is M + 1 because no more than M calls can be in progress at the same
time. Therefore, the number if states is min{M,k}+ 1.

10.1 Steady-State Equations and Their Solution

Considering a finite state birth-and-death process that represents the queue evolution of the
above described queueing system with M customers (sources) and K servers, we obtain the
following steady-state equations:
π0Mλ̂ = π1µ
π1(M − 1)λ̂ = π22µ
π2(M − 2)λ̂ = π33µ
. . .
and in general:

πn(M − n)λ̂ = πn+1(n + 1)µ, for n = 0, 1, 2, . . . , min{M, k} − 1. (354)

Therefore, after standard algebraic manipulations of (354), we can write πn, for
n = 0, 1, 2, . . . , min{M, k}, in terms of π0 as follows:
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πn =

(
M
n

) (
λ̂

µ

)n

π0, for n = 0, 1, 2, . . . , min{M,k}, (355)

These local balance steady-state equations are described by the following state transition dia-
gram for the case M > k:

WVUTPQRS0
Mλ̂ ,,WVUTPQRS1
µ

ll

(M−1)λ̂
,,WVUTPQRS2

2µ

ll

(M−2)λ̂
++ · · ·

3µ

ll

(M−k)λ̂
,, WVUTPQRSk

kµ

kk

Using the notation ρ̂ = λ̂/µ, we obtain

πn =

(
M
n

)
ρ̂nπ0, for n = 0, 1, 2, . . . , min{M, k}. (356)

Homework 10.1

Derive Eqs. (355) and (356). ¤
Of course, the sum of the steady-state probabilities must be equal to one, so we again have the
additional normalizing equation

min{M,k}∑
j=0

πj = 1. (357)

By (356) together with the normalizing Eq. (357), we obtain

π0 =
1

∑min{M,k}
j=0

(
M
j

)
ρ̂j

.

Therefore, by (356), we obtain

πn =

(
M
n

)
ρ̂n

∑min{M,k}
j=0

(
M
j

)
ρ̂j

, for n = 0, 1, 2, . . . , min{M,k}. (358)

10.2 Blocking Probability

Now, what is the blocking probability Pb? When k ≥ M , clearly Pb = 0, as there is never a
shortage of circuits.

To derive the blocking probability for the case when k < M , we first realize that unlike in the
case of Erlang Formula, πk does not give the blocking probability. Still, πk is the probability
of having k busy circuits, or the proportion of time that all circuits are busy which is the
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so-called time-congestion, but it is not the probability that a call is blocked – the so-called
call-congestion. Unlike the case of Erlang B Formula, here, call-congestion is not equal to time
congestion. This is because in the Engset model, the arrival process does not follow a Poisson
process. In fact, the arrival rate is dependent on the state of the system. When the system is
full the arrival rate is lower, and could be much lower, than when the system is empty.

In particular, when i circuits are busy, the arrival rate is λ̂(M − i), therefore to find the
proportion of calls blocked, or the blocking probability denoted Pb, we compute the ratio
between calls arrive when there are k circuits busy and the total calls arrive. This gives

Pb =
λ̂(M − k)πk

λ̂
∑k

i=0(M − i)πi

. (359)

Substituting (355) and (356) in (359) and performing few algebraic manipulations, we obtain
the Engset loss formula that gives the blocking probability for the case M > k as follows.

Pb =

(
M − 1

k

)
ρ̂k

∑k
i=0

(
M − 1

i

)
ρ̂i

. (360)

Notice that ρ̂, defined above by ρ̂ = λ̂/µ, is the intensity of a free customer. An interesting
interpretation of (360) is that the call congestion, or the blocking probability, when there are
M sources is equal to the time congestion when there are M−1 sources. This can be intuitively
explained as follows. Consider an arbitrary tagged source (or customer). For this particular
customer, the proportion of time it cannot access is equal to the proportion of time the k
circuits are all busy by the other M − 1 customers. During the rest of the time our tagged
source can successfully access a circuit.

Homework 10.2

Perform the derivations that lead to Eq. (360). ¤

10.3 Obtaining the Blocking Probability by a Recursion

Letting Bi be the blocking probability given that the number of circuits (servers) is i, the
Engset loss formula can be solved numerically by the following recursion:

Bi =
ρ̂(M − i)Bi−1

i + ρ̂(M − i)Bi−1

i = 1, 2, 3, . . . , k (361)

with the initial condition
B0 = 1. (362)

Homework 10.3

Derive Eqs. (361) and (362).
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Guide

By (360) and the definition of Bi we have

Bi =

(
M − 1

i

)
ρ̂i

∑i
j=0

(
M − 1

j

)
ρ̂j

and

Bi−1 =

(
M − 1
i− 1

)
ρ̂i−1

∑i−1
j=0

(
M − 1

j

)
ρ̂j

.

Consider the ratio Bi/Bi−1 and after some algebraic manipulations (that are somewhat similar
to the derivations of the Erlang B recursion) you will obtain

Bi

Bi−1

=
ρ(M − i)

i
(1−Bi)

which leads to (361). Notice that B0 = 1 is equivalent to the statement that if there are no
circuits (servers) (and M > 0, ρ̂ > 0) the blocking probability is equal to one. ¤

10.4 Insensitivity

In his original work [22], Engset assumed that the idle time as well as the holding time are
exponentially distributed. These assumptions have been relaxed in [19] and now it is known that
Engset formula applies also to arbitrary idle and holding time distributions (see also [41]).

10.5 Load Classifications and Definitions

An important feature of Engset setting is that a customer already engaged in a conversation
does not originate calls. This leads to an interesting peculiarity that if we fix the number
of customers (assuming M > k) and reduce k, the offered traffic increases because reduction
in k leads to increase in Pb and reduction in the average number of busy customers which
in turn leads to increase in idle customers each of which offer more calls, so the offered load
increases.

Let us now discuss the concept of the so-called intended offered load [6] under the Engset
setting. We know that 1/λ̂ is the mean time until a free customer makes a call (will attempt
to seize a circuit). Also, 1/µ is the mean holding time of a call. If a customer is never blocked,
it is behaving like an on/off source, alternating between on and off states, being on for an
exponentially distributed period of time with mean 1/µ, and being off for an exponentially
distributed period of time with mean 1/λ̂. For each cycle of average length 1/λ̂+1/µ, a source
will be busy, on average, for a period of 1/µ. Therefore, in steady-state, the proportion of time
a source is busy is λ̂/(λ̂ + µ), and since we have M sources, the intended offered load is given
by
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T = M
λ̂

λ̂ + µ
=

ρ̂M

(1 + ρ̂)
. (363)

This intended offered load is equal to the offered traffic load and the carried traffic load if
M ≤ k, namely, when Pb = 0. However, when M > k (thus Pb > 0), the offered traffic load and
the carried traffic load are not equal. Let Tc and To be the carried and the offered traffic load
respectively. The carried traffic is the mean number of busy circuits and it is given by

Tc =
k∑

i=0

iπi. (364)

The offered traffic is obtained by averaging the intensities of the free customers weighted by
the corresponding probabilities of their numbers, as follows.

To =
k∑

i=0

ρ̂(M − i)πi. (365)

To compute the values for Tc and To in terms of the blocking probability Pb, we first realize
that

Tc = To(1− Pb), (366)

and also,

To =
k∑

i=0

ρ̂(M − i)πi = ρ̂M − ρ̂

k∑
i=0

iπi = ρ̂(M − Tc) (367)

and by (366) – (367) we obtain

Tc =
ρ̂M(1− Pb)

[1 + ρ̂(1− Pb)]
(368)

and

To =
ρ̂M

[1 + ρ̂(1− Pb)]
. (369)

Notice that when Pb = 0, we have
To = T = Tc, (370)

and when Pb > 0, we obtain by (363), (368) and (369) that

To > T > Tc. (371)

Homework 10.4

Using (363), (368) and (369), show (370) and (371). ¤
Notice also that the above three measures may be divided by k to obtain the relevant traffic
load per server.
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10.6 The Small Idle Period Limit

Let λ̂ approach infinity, while M , k and µ stay fixed and assume M > k. Considering the
steady-state equations (354), their solution at the limit is πi = 0 for i = 0, 1, 2, . . . , k − 1 and
πk = 1. To see that consider the equation

π0Mλ̂ = π1µ.

Assume π0 > 0, so as λ̂ →∞, we must have π1 > 1 which leads to contradiction; thus, π0 = 0,
repeating the same argument for the steady-state equations (354) for n = 1, 2, . . . , k − 1, we
obtain that πi = 0 for i = 0, 1, 2, . . . , k − 1. Then because

∑k
i=0 πi = 1, we must have πk = 1.

Therefore by (364),
Tc = k.

and by (365),
To = ρ̂(M − k) →∞.

Intuitively, this implies that as k channels (circuits) are constantly busy serving k customers,
the remaining M − k sources (customers) reattempt to make calls at infinite rate. In this case,
by (363), the intended traffic load is

T =
ρ̂M

(1 + ρ̂)
→ M.

10.7 The Many Sources Limit

Let M approach infinity and λ̂ approach zero in a way that maintains the intended offered load
constant. In this case, since λ̂ + µ → µ, the limit of the intended load will take the form

lim T = M
λ̂

µ
= ρ̂M. (372)

Furthermore, under this limiting condition, the terms ρ̂(M − i), i = 1, 2, 3, . . . , k, in (361) can
be substituted by ρ̂M which is the limit of the intended traffic load. It is interesting to observe
that if we substitute A = ρ̂M for the ρ̂(M − i) terms in (361), equations (315) and (361) are
equivalent. This means that if the number of sources increases and the arrival rate of each
source decreases in a way that the intended load stays fixed, the blocking probability obtained
by Engset loss formula approaches that of Erlang B formula.

10.8 Obtaining the Blocking Probability by Successive Iterations

In many cases, ρ̂ is not available and instead the offered load To is available. Then it is
convenient to obtain the blocking probability Pb in terms of To. By Eq. (369) we obtain,

ρ̂ =
To

M − To(1− Pb)
. (373)

The latter can be used together with Eq. (360) or (361) to obtain Pb by an iterative process.
One begin by setting an initial estimate value to Pb (e.g. Pb = 0.1). Then this initial estimate
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is substituted into Eq. (373) to obtain an estimate for ρ̂ then the value you obtain for ρ̂ is
substituted in Eq. (360), or use the recursion (361), to obtain another value for Pb which is
then substituted in Eq. (373) to obtain another estimate for ρ̂. This iterative process continues
until the difference between two successive estimations of Pb is arbitrarily small.

Homework 10.5

Consider the case M = 20, k = 10, λ̂ = 2, µ = 1. Compute Pb using the recursion of Eq.
(361). Then compute To and assuming ρ is unknown, compute Pb using the iterative processes
starting with various initial estimations. Compare the results and the running time of your
program. ¤
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11 State Dependent SSQ

In the queueing model discussed in the previous chapter, the arrival and service rates vary
based on the state of the system. In this section we consider a general model of a Markovian
queue where the arrival and service rates depend on the number of customers in the system.
Having this general model, we can apply it to many systems whereby capacity is added (service
rate increases) and/or traffic is throttled back as queue size increases.

In particular, we study a model of a single-server queue in which the arrival process is a state
dependent Poisson process. This is a Poisson process that its rate λi fluctuates based on
the queue size i. The service rate µi also fluctuates based on i. That is, when there are i
customers in the system, the service is exponentially distributed with parameter µi. If during
service, before the service is complete, the number of customers changes from i to j (j could be
either i + 1 or i− 1) then the remaining service time changes to exponentially distributed with
parameter µj. We assume that the number of customers in the queue is limited by k.

This model gives rise to a birth-and-death process described in Section 2.5. The state depen-
dent arrival and service rates λi and µi are equivalent to the birth-and-death rates ai and bi,
respectively.

Following the birth-and-death model of Section 2.5 the infinitesimal generator for our Markovian
state dependent queue-size process is given by

Qi,i+1 = λi for i = 0, 1, 2, 3, . . . , k
Qi,i−1 = µ for i = 1, 2, 3, 4, . . . , k
Q0,0 = −λ0

Qi,i = −λi − µi for i = 1, 2, 3, . . . , k − 1
Qk,k = −µk.

Then the steady-state equations 0 = ΠQ, can be written as:

0 = −π0λ0 + π1µ1 (374)

and
0 = πi−1λi−1 − πi(λi + µi) + πi+1µi+1 for i = 1, 2, 3, . . . , k − 1. (375)

There is an additional last dependent equation

0 = πk−1λk−1 − πk(µk) (376)

which is redundant.

These balance equations can also be described by the following state transition diagram:

WVUTPQRS0
λ0 ,,WVUTPQRS1
µ1

ll

λ1 ,,WVUTPQRS2
µ2

ll

λ2 ** · · ·
µ3

ll

λk−1 ,, WVUTPQRSk
µk

jj

The normalizing equation
k∑

i=0

πi = 1 (377)

must also be satisfied.
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Notice that the equation
0 = −π0λ0 + π1µ1

and the first equation of the set (375), namely,

0 = π0λ0 − π1(λ1 + µ1) + π2µ2

gives
0 = −π1λ1 + π2µ2

which together with the second equation of the set (375), namely,

0 = π1λ1 − π2(λ2 + µ2) + π3µ3

gives
0 = −π2λ2 + π3µ3

and in general, we obtain the set of k equations:

0 = −πi−1λi−1 + πiµi i = 1, 2, 3, . . . , k

or the recursive equations:

πi = ρiπi−1 for i = 1, 2, 3, . . . , k (378)

where

ρi =
λi−1

µi

for i = 1, 2, 3, . . . k.

Defining also ρ0 ≡ 1, by (378), we obtain

πi = ρiρi−1ρi−2 . . . ρ1π0 for i = 0, 1, 2, 3, . . . , k. (379)

Homework 11.1

Drive πi for i = 0, 1, 2 . . . k.

Guide

Summing up equations (378) will give an equation with 1 − π0 on its left-hand side and a
constant times π0 on its right-hand side. This linear equation for π0 can be readily solved for
π0. Having π0, all the other πi can be obtained by (378). ¤
Having obtained the πi values, let us derive the blocking probability. As in the case of M/M/k/k,
the proportion of time that the buffer is full is given by πk. However, the proportion of time
that the buffer is full is not the blocking probability. This can be easily see in the case λk = 0.
In this case, no packets arrive when the buffer is full, so no losses occur, but we may still have
ρi > 0 for i = 1, 2, 3, . . . , k, so πk > 0.

As in the case of the Engset model, the blocking probability is ratio of the number of arrivals
during the time that the buffer is full to the total number of arrivals. Therefore,

Pb =
λkπk∑k
i=0 λiπi

. (380)
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Notice that if the arrival rates do not depend on the state of the system, even if the service
rates do, the blocking probability is equal to πk. To see this simply set λi = λ for all i in Eq.
(380) and we obtain Pb = πk.

Homework 11.2

Consider a single-server Markovian queue with state dependent arrivals and service. You are
free to choose the λi and µi rates, but make sure they are different for different i values. Set the
buffer size at k = 200. Solve the steady-state equations using the successive relaxation method
and using a standard method. Compare the results and the computation time. Then obtain
the blocking probability by simulation and compare with the equivalent results obtained by
solving the state equations. Repeat the results for a wide range of parameters by using various
λi vectors. ¤
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12 Queueing Models with Finite Buffers

We have encounters already several examples of queueing systems where the number of cus-
tomers/packets in the system in limited. Examples include the M/M/k/k system, the Engset
system and the state-dependent SSQ described in the previous chapter. Given that in real life
all queueing systems have a limited capacity, it is important to understand the performance
behavior of such queues. A distinctive characteristic of a queue with finite capacity is the
possibility of a blocking event. In practice, blocking probability evaluation is an important
performance measure of a queueing system. For example, depending of the type of service and
protocol used, packets lost in the Internet due to buffer overflow are either retransmitted which
increases delay, or never arrive at their destination which may adversely affect QoS perceived
by users.

We begin the chapter by considering two extreme SSQ systems with finite buffer. The first is a
D/D/1/N system where the blocking probability is equal to zero as long as the arrival rate is
not higher than the service rate and the second one is a model where a single large burst (SLB)
arrives at time zero. We call it an SLB/D/1/N queue. In such a queue, for an arbitrarily
small arrival rate, the blocking probability approaches unity. These two extreme examples
signifies the importance of using the right traffic model, otherwise the blocking probability
estimation can be very inaccurate. These two extreme cases will be followed by four other
cases of Markovian queues with finite buffers: the M/M/1/N , the M/M/k/N for N > k, the
MMPP(2)/M/1/N and the M/Em/1/N Queues.

12.1 D/D/1/N

As in our discussion on deterministic queue, we assume that if an arrival and a departure occur
at the same point in time, the departure occurs before the arrival. For the case of ρ = λ/µ < 1,
the evolution of the D/D/1/N , N ≥ 1 is the same as that of a D/D/1 queue. In such a case,
there is never more than one packet in the system, thus no losses occur. Let us now consider
the case ρ = λ/µ > 1. In this case, the queue reaches a persistent congestion state where the
queue size fluctuates between N and N−1. The case N = 1 was already considered in previous
discussions, so we assume N > 1. In this case, whenever a packet completes its service, there
is always another packet queued which enters service immediately after the previous one left
the system. Therefore, the server generates output at a constant rate of µ. We also know that
the arrival rate is λ, therefore the loss rate is λ - µ so the blocking probability is given by

PB =
λ− µ

λ
. (381)

12.2 SLB/D/1/N

In this case we have an arbitrarily large burst LB >> N [packets] arrives at time 0, and no
further packets ever arrive. For this case the blocking probability is

PB =
LB − n

LB

. (382)
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and since LB >> N , we have that PB ≈ 1. Notice that in this case LB packets arrive during
a period of time T , with T →∞, so the arrival rate approaches zero. This case demonstrates
that we can have arbitrarily small arrival rate with very high blocking probability.

12.3 M/M/1/N

As in the M/M/1 case, the M/M/1/N queue-size process increases by only one and decreases
by only one, so it is also a birth-and-death process. However, unlike the case of the M/M/1
birth-and-death process where the state-space is infinite, in the case of the M/M/1/N birth-
and-death process, the state-space is finite limited by the buffer size.

The M/M/1/N queue is a special case of the state dependent SSQ considered in the previous
section. If we set λi = λ for all i = 0, 1, 2 . . . N − 1, λi = 0 for all i ≥ N and µi = µ, for all
i = 1, 2 . . . N , in the model of the previous section, that model is reduced to M/M/1/N .

As N is the buffer size, the infinitesimal generator for the M/M/1/N queue-size process is given
by

Qi,i+1 = λ for i = 0, 1, 2, 3, . . . , N − 1
Qi,i−1 = µ for i = 1, 2, 3, 4, . . . , N
Q0,0 = −λ
Qi,i = −λ− µ for i = 1, 2, 3, . . . , N − 1
Qk,k = −µ.

Substituting this infinitesimal generator in Eq. (228) and performing some simple algebraic
operations, we obtain the following steady-state equations for the M/M/1/N queue.
π0λ = π1µ
π1λ = π2µ
. . .
and in general:

πiλ = πi+1µ, for i = 0, 1, 2, . . . , N − 1. (383)

These balance equations can also be described by the following state transition diagram of
M/M/1/N :

WVUTPQRS0
λ ,,WVUTPQRS1
µ

ll

λ ,,WVUTPQRS2
µ

ll

λ ** · · ·
µ

ll

λ --_^]\XYZ[N
µ

jj

The normalizing equation is:
N∑

j=0

πj = 1. (384)

Setting ρ = λ/µ, so we obtain,

π1 = ρπ0

π2 = ρπ1 = ρ2π0

π3 = ρπ2 = ρ3π0

and in general:
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πi = ρiπ0 for i = 0, 1, 2, . . . N. (385)

Summing up both sides of (385), we obtain (for the case ρ 6= 1)

1 =
N∑

i=0

ρiπ0 = π0
1− ρN+1

1− ρ
. (386)

Therefore,

π0 =
1− ρ

1− ρN+1
. (387)

Substituting the latter in (385), we obtain (for the case ρ 6= 1)

πi = ρi 1− ρ

1− ρN+1
for i = 0, 1, 2, . . . N. (388)

Of particular interest is the blocking probability πN given by

πN = ρN 1− ρ

1− ρN+1
=

ρN − ρN+1

1− ρN+1
=

ρN(1− ρ)

1− ρN+1
. (389)

Notice that since M/M/1/N has a finite state-space, stability is assured even if ρ > 1.

Homework 12.1

Complete the above derivations for the case ρ = 1, noticing that equation (386) for this case
is:

1 =
N∑

i=0

ρiπ0 = π0(N + 1).

Alternatively, use L’Hopital rule to obtain the limit:

lim
ρ→1

1− ρN+1

1− ρ
.

Make sure that the results are consistent. ¤
A numerical solution for the M/M/1/N queue steady-state probabilities follows. Set an initial
value for π0 denoted π̂0 at an arbitrary value. For example, π̂0 = 1; then compute the initial
value for π1 denoted π̂1, using the equation π̂0λ = π̂1µ, substituting π̂0 = 1. Then use your
result for π̂1 to compute the initial value for π2 denoted π̂2 using π̂1λ = π̂2µ, etc. until all the
initial values π̂N are obtained. To obtain the corresponding πN values, we normalize the π̂N

values as follows.

πN =
π̂N∑N
i=0 π̂i

. (390)

Homework 12.2

Consider an M/M/1/N queue with N = ρ = 1000, estimate the blocking probability. Answer:
0.999. ¤
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Homework 12.3

Consider an M/M/1/2 queue. Show that the blocking probability is equal to the mean number
of customers in the queue (excluding the one in service). ¤

Homework 12.4

A well known approximate formula that links TCP’s flow rate RTCP [packets/sec], its round
trip time (RTT), denoted RTT , and TCP packet loss rate LTCP is [57]:

RTCP =
1.22

RTT
√

LTCP

. (391)

Consider a model of TCP over an M/M/1/N . That is, consider many TCP connections with
a given RTT all passing through a bottleneck modeled as an M/M/1/N queue. Assuming
that packet sizes are exponentially distributed, estimate TCP throughput, using Equations
(389) and (391) for a given RTT, mean packet size and service rate of the M/M/1/N queue.
Compare your results with those obtained by ns2 simulations [58].

Guide

Use the method of iterative fixed-point solution. See [25] and [30]. ¤

Homework 12.5

Consider a state dependent Markovian SSQ described as follows.
λi = λ for i = 0, 1, 2, . . . , N − 1
λN = αλ where 0 ≤ α ≤ 1
µi = µ for i = 1, 2, 3 . . . , N.
This represents a congestion control system (like TCP) that reacts to congestion by reducing
the arrival rate. Derive the blocking probability and compare it with that of an M/M/1/N
SSQ with arrival rate of λ and service rate of µ. ¤

12.4 M/M/k/N

This Markovian queue can also be viewed as a special case of the state dependent SSQ consid-
ered in the previous section setting λi = λ for all i = 0, 1, 2 . . . N − 1, λi = 0 for all i ≥ N , and
setting and µi = iµ, for all i = 1, 2 . . . k, and µi = kµ, for all i = k + 1, k + 2 . . . N .

We can observe that the rates between states 0, 1, 2, . . . k, k + 1, k + 2, . . . N are the same as in
the M/M/k queue. Therefore, the detailed balance equations of M/M/k/N are the same as
the first N − 1 equations of the M/M/k queue. They are:

λπ0 = µπ1

λπ1 = 2µπ2
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........

λπi−1 = iµπi i ≤ k

λπi−1 = kµπi i = k + 1, k + 2, . . . , N

The state transition diagram that describes these local balance equations is:
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µ
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2µ
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λ ,, WVUTPQRSk
kµ

jj
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kµ
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kµ
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kµ
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The normalizing equation is:
N∑

j=0

πj = 1. (392)

Consider the notation used previously:

A =
λ

µ
,

and

ρ =
A

k
.

From the local balance equations, we obtain

πi =





Ai

i!
π0 for 0 ≤ i ≤ k

Ak

k!
(A

k

i−k
π0 for k < i ≤ N.

Notice that πk is the probability that there are k customers in the system, namely all servers
are busy and the queue is empty. This probability is given by:

πk =
Ak

k!
π0. (393)

Also, πN , the probability that an arriving customer is blocked, is given by

πN = π0
Ak

k!

(
A

k

)N−k

= πk

(
A

k

)N−k

. (394)

Summing up the πis, using the normalising equation, and isolating π0, we obtain:

π0 =

(
k−1∑
j=0

Aj

j!
+

Ak

k!

N∑

j=k

(
A

k

)j−k
)−1

(395)

Summing up the second sum (the geometrical series) in (395), we obtain for the case ρ 6= 1 the
following:
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N∑

j=k

(
A

k

)j−k

=
N∑

j=k

ρj−k

= 1 + ρ + ρ2 + . . . , +ρN−k

=
(1− ρN−k+1)

1− ρ
.

This leads, in the case of ρ 6= 1, to the following result for π0.

π0 =

(
k−1∑
j=0

Aj

j!
+

Ak

k!

(1− ρN−k+1)

1− ρ

)−1

. (396)

For the case ρ = 1, π0 can be derived by observing that the second sum in Eq. (395), can be
simplified, namely,

N∑

j=k

(
A

k

)j−k

=
N∑

j=k

ρj−k

= 1 + ρ + ρ2 + . . . , +ρN−k

= N − k + 1.

Therefore, for ρ = 1,

π0 =

(
k−1∑
j=0

Aj

j!
+

Ak

k!
(N − k + 1)

)−1

. (397)

Notice also that using L’Hopital law we obtain

lim
ρ→1

(1− ρN−k+1)

1− ρ
=
−(N − k + 1)

−1
= N − k + 1

which is consistent with Eq. (397).

Noticing that by Eq. (395), the expression for π0 can be rewritten as

π0 =

(
k∑

j=0

Aj

j!
+

Ak

k!

N∑

j=k+1

(
A

k

)j−k
)−1

. (398)

Then by (398) and (393), in the case ρ 6= 1, we obtained

πk =

(
E−1

k (A) + ρ
(1− ρN−k)

1− ρ

)−1

where Ek(A) = is the the Erlang B blocking probability for an M/M/k/k system with offered
traffic A.
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For the case ρ = 1, we obtain

πk =
(
E−1

k (A) + N − k)
)−1

.

A call is delayed if it finds all servers busy and there is a free place in the queue. Notice that
in our discussion on the M/M/k queue a call is delayed if it arrives and find all servers busy
and the probability of an arriving call to be delayed is, for M/M/k, by the PASTA principle,
the proportion of time all servers are busy. For the M/M/k/N queue, there is the additional
condition that the queue is not full as in such a case, an arriving call will be blocked. Therefore,
the probability that an arriving call is delayed is:

P (delay) =
N−k−1∑

j=0

πj+k

= πk

N−k−1∑
j=0

ρj

= πk
1− ρN−k

1− ρ
.

We can observe that under the condition ρ < 1, and N →∞ the M/M/k/N reduces to M/M/k.
We can also observe that the M/M/1/N and M/M/k/k are also special cases of M/M/k/N , in
the instances of k = 1 and N = k, respectively.

Homework 12.6

Show that the results of M/M/k, M/M/1/N , and M/M/k/k for π0 and πk are consistent with
the results obtained of M/M/k/N . ¤
Next we derive the mean number of customers waiting in the queue E[NQ].

E[NQ] =
N∑

j=k+1

(j − k)πj

= πk

N∑

j=k+1

(j − k)ρj−k

=
Ak

k!
π0

N∑

j=k+1

(j − k)ρj−k

=
Akρ

k!
π0

N∑

j=k+1

(j − k)ρj−k−1

=
Akρ

k!
π0

N−k∑
i=1

iρi−1.
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Now, as before, we consider two cases: ρ = 1 and ρ 6= 1. In the case of ρ = 1, we have:

N−k∑
i=1

iρi−1 = 1 + 2 + . . . + N − k =
(1 + N − k)(N − k)

2
.

Therefore,

E[NQ]ρ=1 =
π0A

kρ(1 + N − k)(N − k)

2k!
.

In the case of ρ 6= 1, the mean number of customers in the queue is derived as follows:

E[NQ]ρ 6=1 =
π0A

kρ

k!

d

dρ

(
N−k∑
i=0

ρi

)

=
π0A

kρ

k!

d

dρ

(
1− ρN−k+1

1− ρ

)

=
π0A

kρ[1− ρN−k+1 − (1− ρ)(N − k + 1)ρN−k]

k!(1− ρ)2
.

As in our previous discussion on the M/M/k queue, we have

E[Q] = E[NQ] + E[Ns] (399)

and
E[D] = E[WQ] + E[S]. (400)

We know that,

E[S] =
1

µ
.

To obtain E[Ns] for the M/M/k/N queue, we again use Little’s formula for the system made
of servers. recall that in the case of the M/M/k queue the arrival rate into this system was
λ, but now the arrival rate should exclude the blocked customers, so now in the case of the
M/M/k/N queue the arrival rate that actually access the system of servers is λ(1− πN). The
mean waiting time of each customer in that system is E[S] = 1/µ (as in M/M/k). Therefore,
by Little’s formula the mean number of busy servers is given by

E[Ns] =
λ(1− πN)

µ
= A(1− πN). (401)

Having E[NQ] and E[Ns] we can obtain the mean number of customers in the system E[Q] by
Eq. (399).

Then by Little’s formula we obtain

E[D] =
E[Q]

1− πN

and

E[WQ] =
E[NQ]

λ(1− πN)
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Also, since

E[S] =
1

µ
,

by (400), we also have the relationship:

E[D] = E[WQ] +
1

µ
.

If we are interested in the mean delay of the delayed customers, denoted E[D]delayed, we can
again use Little’s formula considering the system that includes only the delayed customers, as
follows:

E[D]delayed =
E[Q]

λP (delay)
.

12.5 MMPP(2)/M/1/N

In Section 2.3, we described the MMPP and its two-state special case – the MMPP(2). Here
we consider an SSQ where the MMPP(2) is the arrival process.

The MMPP(2)/M/1/N Queue is an SSQ with buffer size N characterized by an MMPP(2)
arrival process with parameters λ0, λ1, δ0, and δ1, and exponentially distributed service time
with parameter µ. The service times are mutually independent and are independent of the
arrival process. Unlike the Poisson arrival process, the interarrival times in the case of the
MMPP(2) process are not independent. As will be discussed, such dependency affects queueing
performance, packet loss and utilization.

The MMPP(2)/M/1 queue process is a continuous-time Markov-chain, but its states are two-
dimensional vectors and not scalars. Each state is characterized by two scalars: the mode
m of the arrival process that can be either m = 0 or m = 1 and the queue size. Notice
that all the other queueing systems we considered so far were based on a single dimensional
state-space.

Let pim for i = 0, 1, 2 . . . , N be the probability that the arrival process is in mode m and that
there are i packets in the system. After we obtain the πim values, the steady-state queue size
probabilities can then be obtained by

πi = πi0 + πi1 for i = 0, 1, 2, . . . , N.

Note that the mode process itself is a two-state continues-time Markov-chain, so the probabili-
ties of the arrival mode being in state j, denoted P (m = j), for j = 0, 1, can be solved using
the following equations:

P (m = 0)δ0 = P (m = 1)δ1

and the normalizing equation

P (m = 0) + P (m = 1) = 1.
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Solving these two equations gives the steady-state probabilities P (m = 0) and P (m = 1) as
functions of the mode duration parameters δ0 and δ1, as follows:

P (m = 0) =
δ1

δ0 + δ1

(402)

P (m = 1) =
δ0

δ0 + δ1

. (403)

Because the probability of the arrival process to be in mode m (for m = 0, 1) is equal to∑N
i=0 πim, we obtain by (402) and (403)

N∑
i=0

πim =
δ1−m

δ1−m + δm

for m = 0, 1. (404)

The average arrival rate, denoted λav, is given by

λav = P (m = 0)λ0 + P (m = 1)λ1 =
δ1

δ0 + δ1

λ0 +
δ0

δ0 + δ1

λ1. (405)

Denote

ρ =
λav

µ
.

The MMPP(2)/M/1/N queueing process is a stable, irreducible and aperiodic continuous-time
Markov-chain with finite state-space (because the buffer size N is finite). We again remind the
reader that the condition ρ < 1 is not required for stability in a finite buffer queueing system,
or more generally, in any case of a continuous-time Markov-chain with finite state-space. Such
a system is stable even if ρ > 1.

An important performance factor in queues with MMPP(2) input is the actual time the queue
stays in each mode. Even if the apportionment of time between the modes stays fixed, the
actual time can make a big difference. This is especially true for the case ρ1 = λ1/µ > 1 and
ρ2 = λ1/µ < 1, or vise versa. In such a case, if the actual time of staying in each mode is long,
there will be a long period of overload when a long queue is built up and/or many packets lost,
followed by long periods of light traffic during which the queues are cleared. In such a case we
say that the traffic is bursty or strongly correlated. (As mentioned above here interarrival times
are not independent.) On the other hand, if the time of staying in each mode is short; i.e.,
the mode process exhibits frequent fluctuations, the overall traffic process is smoothed out and
normally long queues are avoided. To see this numerically one could set initially δ0 = δ∗0 δ1 = δ∗1
where, for example, δ0 = 1 and δ∗1 = 2, or δ∗0 = δ∗1 = 1, and then set δm = ψδ∗m for m = 0, 1.
Letting ψ move towards zero will mean infrequent fluctuations of the mode process that may
lead to bursty traffic (long stay in each mode) and letting ψ move towards infinity means
frequent fluctuations of the mode process. The parameter ψ is called mode duration parameter.
In the exercises below the reader is asked to run simulations and numerical computations to
obtain blocking probability and other measures for a wide range of parameter values. Varying
ψ is one good way to gain insight into performance/burstiness effects.

Therefore, the πim values can be obtain by solving the following finite set of steady-state
equations:

0 = ΠQ (406)
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where Π = [π00, π01, π10, π11, π20, π21, . . . , πN−1,0, πN−1,1, πN0, πN1], and the infinitesimal gener-
ator 2N × 2N matrix is Q = [Qi,j], where i and j are two-dimensional vectors. Its non-zero
entries are:

Q00,00 = −λ0 − δ0; Q00,01 = δ0; Q00,10 = λ0;

Q01,00 = δ1; Q01,01 = −λ1 − δ1; Q01,11 = λ1;

For N > i > 0, the non-zero entries are:

Qi0,i0 = −λ0 − δ0 − µ; Qi0,i1 = δ0; Qi0,(i+1,0) = λ0;

Qi1,i0 = δ1; Q01,01 = −λ1 − δ1 − µ; Qi1,(i+1,1) = λ1;

and

QN0,(N−1,0) = µ; QN0,N0 = −δ0 − µ; QN0,N1 = δ0;

QN1,(N−1,1) = µ; QN1,N1 = −δ1 − µ; QN1,N0 = δ1.

In addition we have the normalizing equation

N∑
i=0

1∑
m=0

πim = 1. (407)

The state transition diagram for the MMPP(2)/M/1/N queue is:
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An efficient way, that normally works well for solving the steady-state equations of the
MMPP(2)/M/1/N queue is the so called successive substitution method (it is also known as
Gauss-Seidel, successive approximation or iterations) [21]. It can be described as follows. Con-
sider a set of equation of the form of (406). First, isolate the first element of the vector Π,
in this case it is the variable π00 in the first equation. Next, isolate the second element of the
vector Π, namely π01 in the second equation, and then keep isolation all the variables of the
vector Π. This leads to the following vector equation for Π

Π = f(Π). (408)

where f(Π) is of the form
f(Π) = ΠQ̂

where Q̂ is different from the original Q because of the algebraic operations we performed
when we isolated the elements of the Π vector. Then perform the successive substitution
operations by setting arbitrary initial values to the vector Π; substitute them in the right-hand
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side of (408) and obtain different values at the left-hand side which are then substituted back
in the right-hand side, etc. For example, the initial setting can be Π = 1 without any regards
to the normalization equation (407). When the values obtain for Π are sufficiently close to
those obtained in the previous subsection, say, within a distance no more than 10−6, stop.
Then normalize the vector Π obtained in the last iteration using (407). This is the desired
solution.

After obtaining the solution for Eq. (406) and (407), one may verify that (404) holds.

To obtain the blocking probability Pb we again notice that πN = πN0 +πN1 is the proportion of
time that the buffer is full. The proportion of packets that are lost is therefore the ratio of the
number of packets arrive during the time that the buffer is full to the total number of packets
that arrive. Therefore,

Pb =
λ0πN0 + λ1πN1

λav

. (409)

As an example, we hereby provide the infinitesimal generator for N = 2:

00 01 10 11 20 21
00 −λ0 − δ0 δ0 λ0 0 0 0
01 δ1 −λ1 − δ1 0 λ1 0 0
10 µ 0 −λ0 − δ0 − µ δ0 λ0 0
11 0 µ δ1 −δ1 − µ 0 λ1

20 0 0 µ 0 −λ0 − δ0 − µ δ0

21 0 0 0 µ δ1 −δ1 − µ

Homework 12.7

Consider an MMPP(2)/M/1/1 queue with λ0 = δ0 = 1 and λ1 = δ1 = 2 and µ = 2.

1. Without using a computer solve the steady-state equations by standard methods to obtain
π00, π01, π10, π11 and verify that (404) holds.

2. Obtain the blocking Probability.

3. Find the proportion of time that the server is idle.

4. Derive an expression and a numerical value for the utilization.

5. Find the mean queue size. ¤

Homework 12.8

Consider an MMPP(2)/M/1/200 queue with λ0 = 1, δ0 = 10−3, λ1 = 2, δ1 = 2 × 10−3 and
µ = 1.9.

1. Solve the steady-state equations by sucessive substitutions to obtain the πim values and
verify that (404) holds.

2. Obtain the blocking Probability.

3. Find the proportion of time that the server is idle.

4. Obtain numerical value for the utilization.
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5. Find the mean queue size.

6. Compare the results obtained with those obtained before for the case N = 1 and discuss
the differences. ¤

Homework 12.9

Consider again the MMPP(2)/M/1/200 queue. Using successive substitutions, obtain the mean
queue size for a wide range of parameter values and discuss differences. Confirm your results by
simulations with confidence intervals. Compare the results with those obtained by successive
substitution and simulation of an equivalent M/M/1/200 queue that has the same service rate
and its arrival rate is equal to λav of the MMPP(2)/M/1/200. Provide interpretations and
explanations to all your results. ¤

Homework 12.10

Consider again the MMPP(2)/M/1/200 queue and its M/M/1/200 equivalence. For a wide
range of parameter values, compute the minimal service rate µ obtained such that the block-
ing probability is no higher than 10−4 and observe the utilization. Plot the utilization as a
function of the mode duration parameter ψ to observe the effect of burstiness on the utiliza-
tion. Confirm your results obtained by successive substitution by simulations using confidence
intervals. Demonstrate that as ψ →∞ the performance (blocking probability and utilization)
achieved approaches that of the M/M/1/200 equivalence. Discuss and explain all the results
you obtained. ¤

12.6 M/Em/1/N

We consider here an M/Em/1/N SSQ model characterized by a Poisson arrival process with
parameter λ, buffer size of N , and service time that has Erlang distribution with m phases (Em)
with mean 1/(µ). Such service time model arises is situations when the standard deviation to
mean ratio of the service time is lower than one (recall that for the exponential random variable
this ratio is equal to one).

Homework 12.11

Derive and plot the standard deviation to mean ratio as a function of m for an Em random
variable. ¤
This queueing system can be analyzed using a two-dimensional state-space representing the
number of customers and the number of phases still remained to be served for the customer
in service. However, it is simpler if we are able to represent the system by a single dimension
state-space. In the present case this can be done by considering the total number of phases as
the state, where each of the items (phases) in the queue is served at the rate of mµ and an
arrival adds m items to the queue. The total number of items (phases) is limited to m × N
because the queue size is limited to N customers each of which required m service phases.
Notice the one-to-one correspondence between the single dimension vector (0, 1, 2, . . . m × N)
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and the ordered set (0, 11, 12, . . . , 1m, 21, 22, . . . 2m, 31, . . . Nm) where the first element is 0,
and the others are 2-tuples where the first is the number of customers and the second is the
number of phases remains for the customer in service.

Let πi be the probability that there are i items (phases) in the queue i = 0, 1, 2, 3, . . . ,m×N .
For clarity of presentation also define

πi = 0 for i < 0.

This model is a continuous-time Markov-chain, so the steady-state probabilities πi, i = 1, 2, 3, . . . , m×
N satisfy the following local-balance steady-state equations:

λπ0 = mµπ1

(λ + mµ)πi = mµπi+1 + λπi−m for i = 2, 3, . . . ,m×N − 1

The first equation equates the probability flux of leaving state 0 (to state m) with the probability
flux of entering state 0 only from state 1 - where there is only one customer in the system who is
in its last service phase (one item). The second equation equates the probability flux of leaving
state i (either by an arrival or by completion of the service phase) with the probability flux of
entering state i (again either by an arrival, i.e., a transition from below from state i −m, or
from above by phase service completion from state i+1).

The probability of having i customers in the system, denoted Pi, is obtained by

Pi =
m∑

j=1

π(i−1)m+j.

The blocking probability is the probability that the buffer is full namely PN . The mean queue
size is obtained by

E[Q] =
N∑

i=1

iπi.

The mean delay is obtained by Little’s formula:

E[D] =
E[Q]

λ
.

Homework 12.12

Plot the state transition diagram for the M/Em/1/N considering the number of phases as the
state. ¤

Homework 12.13

Consider an M/Em/1/N queue. For a wide range of parameter values (varying λ, µ, m,N) using
successive substitutions, obtain the mean queue size, mean delay and blocking probability and
discuss the differences. Confirm your results by simulations using confidence intervals. Provide
interpretations and explanations to all your results. ¤
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12.7 Saturated Queues

Saturated queues are characterized by having all the servers busy all the time (or almost all
the time). In such a case it is easy to estimate the blocking probability for queues with finite
buffers, by simply considering the so-called fluid flow model. Let us consider, for example,
An M/M/k/N queue, and assume that either the arrival rate λ is much higher than the total
service rate of all k servers kµ, i.e., λ >> kµ, or that λ > kµ and N >> 0. Such conditions will
guarantee that the servers will be busy all (or most of) the time. Since all k servers are busy
all the time, the output rate of the system is kµ packets/s and since the input is λ packets/s
during a very long period of time L, there will be λL arrivals and kµL departures. Allowing L
to be arbitrarily large, so that the initial transient period during which the buffer is filled can
be ignored, the blocking probability can be evaluated by

Pb =
λL− kµL

λL
=

λ− kµ

λ
=

A− k

A
, (410)

where A = λ/µ.

Another way to see (410) is by recalling that the overflow traffic is equal to the offered traffic
minus the carried traffic. The offered traffic is A, the carried traffic in a saturated M/M/k/N
queue is equal to k because all k servers are continuously busy so the mean number of busy
servers is equal to k and the overflow traffic is equal to APb. Thus,

A− k = APb

and (410) follows.

Homework 12.14

Consider an M/M/k/N queue. Write and solve the steady-state equations to obtain exact
solution for the blocking probability. A numerical solution is acceptable. Validate your results
by both Markov-chain and discrete event simulations using confidence intervals. Then demon-
strate that as λ increases the blocking probability approaches the result of (410). Present your
results for a wide range of parameter values (varying λ, µ, N, k). Provide interpretation of your
results. ¤

Homework 12.15

Consider again an M/M/1/N queue with N = ρ = 1000 and estimate the blocking probability,
but this time use the saturated queue approach. Answer: 0.999. ¤
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13 Processor Sharing

In a processor sharing (PS) queueing system the server capacity is shared equally among all the
customers that are present in the system. This model is applicable to a time-shared computer
system where a central processor serves all the jobs present in the system simultaneously at an
equal service rate. Another important application of PS is for a multiplicity of TCP connections
that share a common bottleneck. The Internet router at the bottleneck simultaneously switches
(serves) the flows generated by the users, while TCP congestion control mechanism guarantees
that the service rate obtained by the different flows are equal. As any of the other models
considered in this book, the PS model is only an approximation for the various real-life scenarios.
It does not consider overheads and wastage associated with the discrete nature and various
protocol operations of computer systems, and therefore it may be expected to over-estimate
performance (or equivalently, underestimate delay).

If the server capacity to render service is µ [customers per time-unit] and there are i customers
in the system, each of the customers is served at the rate of µ/i. As soon as a customer arrives,
its service starts.

13.1 The M/M/1-PS queue

The M/M/1-PS queue is characterized by Poisson arrivals and exponentially distributed service-
time requirement, as the ordinary (FIFO) M/M/1 queue), but its service regime is assumed to
be processor sharing. In particular, we assume that the process of the number of customers i in
the system is a continuous time Markov-chain, where customers arrive according to a Poisson
process with parameter λ [customers per time-unit] and that the service time required by an
arriving customer is exponentially distributed with parameter µ. We also assume the stability
condition of λ < µ.

Let us consider now the transition rates of the continuous-time Markov chain for the number
of customers in the system associated with the M/M/1-PS model. Firstly, we observe that the
transition rates from state i to state i + 1 is λ as in the M/M/1 model. We also observe that
the rates from state i to state i + j for j > 1 and from state i to state i − j for j > 1 are all
equal to zero (again, as in M/M/1). The latter is due to the fact that the probability of having
more than one event, arrival or departure, occurred at the same time is equal to zero. To derive
the rates from state i to state i − 1 for i ≥ 1 notice that at state i, assuming that no arrivals
occur, the time until a given customer completes its service is exponentially distributed with
rate µ/i. Therefore, the time until the first customer out of the i customers that completes its
service is the minimum of i exponential random variables each of which with rate µ/i, which
is exponentially distributed with rate i(µ/i) = µ. Therefore, the transition rates from state i
to state i − 1 is equal to µ (again, as in M/M/1). These imply that the process of number of
customers in the system associated with the M/M/1-PS model is statistically the same as the
continuous-time Markov chain that describes the M/M/1 (FIFO) queue. Therefore the queue
size state-state distribution {πi} and the mean queue-size E[Q] given by equations (275) and
(276), respectively, are also applied to the M/M/1-PS model. That is,

πi = ρi(1− ρ) for i = 0, 1, 2, . . .
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and

E[Q] =
ρ

1− ρ
. (411)

By Little’s formula the result obtained for the mean delay E[D] in Eq. (277) is also applicable
to the M/M/1-PS model:

E[D] =
1

(1− ρ)µ
=

1

µ− λ
. (412)

However the delay distribution of M/M/1 given by Eq. (278) does not apply to M/M/1-
PS.

Having obtained the mean delay for a customer in the M/M/1-PS queue, an interesting question
is what is the mean delay of a customer that requires amount of service x. The variable x here
represents the time that the customer spends in the system to complete its service assuming
that there are no other customers being served and all the server capacity can be dedicated to
it. By definition, E[x] = 1/µ.

This is not an interesting question for the M/M/1 queue because under the FIFO discipline,
the time a customer waits in the queue is not a function of x because it depends only on service
requirements of other customers. Only after the customer completes its waiting time in the
queue, x will affects its total delay simply by being added to the waiting time in the queue. By
comparison, in the case of the M/M/1-PS queue, the mean delay of a customer in the system
from the moment it arrives until its service it complete D(x) has linear relationship with x
[49, 51]. That is,

D(x) = cx, (413)

for some constant c.

We know that under our stability assumption, the process of the number of customers in the
system i is a stable and stationary continuous time Markov chain. In fact, it is a birth-and-death
process because the transitions are only up by one or down by one. Therefore, the infinitesimal
service rate obtained by a test customer will also follow a stable and stationary continuous time
Markov chain. Although some customers will receive higher average service rate than others,
the implication of (413) is that, on average, if a customer require twice as much service than
another customer, its mean delay will be twice that of the delay of the other customer.

Taking the mean with respect to x on both sides of (413) we obtain

E[D] = c
1

µ
,

and by (412) this leads to

1

(1− ρ)µ
= c

1

µ
.

Thus
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c =
1

1− ρ
,

so by the latter and (413), we obtain

E[D|x] =
x

1− ρ
. (414)

13.2 Insensitivity

One important property of a processor sharing queue is that the mean number of customers
in the system E[Q] the mean delay of a customer E[D], and the mean delay of a customer
with service requirement x E[D(x)], given by Eqs. (411) and (412), and (414), respectively, are
insensitive to the shape of the distribution of the service-time requirements of the customers. In
other words, these results apply also to the M/G/1-PS model characterized by Poisson arrivals,
generally distributed service-time requirements, and a processor sharing service policy. The
M/G/1-PS model is a generalization of the M/M/1-PS model where we relax the exponential
distribution of the service time requirements of the M/M/1-PS model, but retaining the other
characteristics of the M/M/1-PS model, namely, Poisson arrivals and processor sharing service
discipline.

Furthermore, the insensitivity property applies also to the distribution of the number of cus-
tomers in the system, but not to the delay distribution. This means that the geometric dis-
tribution of the steady-state number of customers in the system of M/M/1 applies also to
the M/G/1-PS model and it is insensitive to the shape of the distribution of the service time
requirement. Notice that these M/M/1 results extend to the M/M/1-PS and M/G/1-PS mod-
els, but do not extend to the M/G/1 model. See discussion on the M/G/1 queue in Chapter
16.

Although the insensitivity applies to the distribution of the number of customers in the M/G/1-
PS model, it does not apply to the delay distribution of M/G/1-PS.

Finally, notice the similarity between the M/G/1-PS and the M/G/∞ models. They are both
insensitive to the shape of the distribution of the service time requirement in terms of mean
delay and mean number of customers in the system. In both, the insensitivity applies to
the distribution of the number of customers in the system, but does not apply to the delay
distribution.

Homework 13.1

Consider packets arriving at a multiplexer where the service discipline is based on processor
sharing. Assume that the service rate of the multiplexer is 2.5 Gb/s. The mean packet size
is 1250 bytes. The packet arrival process is assumed to follow a Poisson process with rate of
200,000 [packet/sec] and the packet size is exponentially distributed.

1. Find the mean number of packets in the multiplexer.

2. Find the mean delay of a packet.

3. Find the mean delay of a packet of size 5 kbytes.
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Solution

1. Find the mean number of packets in the multiplexer.

mean packet size = 1250× 8 = 10, 000 bits

µ =
2, 500, 000, 000

10, 000
= 250, 000 packet/s

ρ =
200, 000

250, 000
= 0.8

E[Q] =
0.8

1− 0.8
= 4 approx.

2. Find the mean delay of a packet.

By Little’s formula

E[D] =
E[Q]

λ
=

4

200, 000
= 0.00002 sec. = 20 microseconds

3. Find the mean delay of a packet of size 5 kbytes.

Let x be the time that the 5 kbytes packet is delayed if it is the only one in the system.

x =
5000× 8

2.5× 1, 000, 000, 000
= 16 microseconds

Now we will use the time units to be microseconds.

E[D(x)] =
x

1− ρ
=

16

1− 0.8
= 80 microseconds

A packet four times larger than the average sized packet will be delayed four times longer.
¤

Homework 13.2

Assume that packets that arrive at a processor sharing system are classified into n classes of
traffic characterized by arrival rates λ1, λ2, . . . λn, and required mean holding times (assuming
a packet is alone in the system) h1, h2, . . . , hn. The server rate is µ.

1. Find the mean delay of a packet.

2. Find the mean delay of a packet that requires service time x.

3. Find the mean number of packets in the system.

4. Find the mean number of class i, i = 1, 2, . . . n, packets in the system.

5. Show that the mean number of packets in the system is equal to the sum of the means
obtained for classes i, i = 1, 2, . . . n.
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Guide

The arrival rate of all packets is given by λ =
∑n

i=1 λi. The mean holding time of a packet is
given by

h =

∑n
i=1 λihi

λ
.

Then

ρ = λh =
n∑

i=1

λihi.

Invoke insensitivity and use equations (412) and (414).

To find the mean number of packets in the system, you can use either Little’s formula, or the
M/M/1 model.

Next, considering the mean delay of a packet that require hi time if it is the only one in the
system, obtain the mean system time of class i packets. Then having the arrival rate λi and
the mean system time of class i packets, by Little’s formula, obtain the mean number of class
i customers in the system.

Finally, with the help of some algebra you can also show that the mean number of packets in
the system is equal to the sum of the means obtained for classes i, i = 1, 2, . . . , n. ¤
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14 Multi-service Loss Model

We have discussed in Section 8.8, a case of a Markovian multi-server loss system (k servers
without additional waiting room), involving different classes (types) of customers where cus-
tomers belong to different classes (types) may be characterized by different arrival rates and
holding times. There we assumed that each admitted arrival will always be served by a single
server. We will now extend the model to the case where customers of some classes may require
service by more than one server simultaneously. This is applicable to a telecommunications
network designed to meet heterogenous service requirements of different applications. For ex-
ample, it is clear that a voice call will require lower service rate than a movie download. In
such a case, a movie download will belong to a class that requires more servers/channels than
that of the voice call. By comparison, the M/M/k/k system is a multi-server single-service loss
model, while here we consider a multi-server multi-service loss model and we are interested in
the blocking probability of each class of traffic.

As the case is with the Erlang Loss System, the blocking probability is an important perfor-
mance measure also in the more general multi-service system with a finite number of servers.
However, unlike the case in the M/M/k/k system where all customers experience the same
blocking probability, in the case of the present multi-service system, customers belonging to
different classes experience different blocking probabilities. This is intuitively clear. Consider
a system with 10 servers and assume that seven out of the 10 servers are busy. If a customer
that requires one server arrives, it will not be blocked, but if a new arrival, that requires five
servers, will be blocked. Therefore, in many cases, customers that belong to class that requires
more servers, will experience higher blocking probability. However, there are cases, where cus-
tomers of different classes experience the same blocking probability. See the relevant homework
question below.

This chapter covers certain key issues on multi-service models, but it provides intuitive expla-
nations rather than rigorous proofs. For more extensive coverage and rigorous treatments, the
reader is referred to [43] and [71] and to earlier publications on the topic [28, 42, 45, 67, 69, 72,
73, 74].

14.1 Model Description

Consider a set of k servers that serve arriving customers that belong to I classes. Customers
from class i require simultaneous si servers and their holding times are assumed exponentially
distributed with mean 1/µi. (As the case is for the M/M/k/k system, the results of the analysis
presented here are insensitive to the shape of the distribution of the holding time, but since we
use a continuous time Markov-chain modelling, this exponential assumption is made for now.)
Class i customers arrive according to an independent Poisson process with arrival rate λi. The
holding times are independent of each other, of the arrival processes and of the state of the
system.

Define

Ai =
λi

µi

.

As discussed, an admitted class-i customer will use si servers for the duration of its holding
time which has mean of 1/µi. After its service time is complete, all these si servers are released
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and they can serve other customers. When a class-i customer arrives, and cannot find si free
servers, its service is denied and it is blocked and cleared from the system. An important
measure is the probability that an arriving class-i customer is blocked. This is called the class-i
customer blocking probability denoted B(i).

Next, we provide the state transition diagram for the multi-service loss model for the case
k = 5, s1 = 2, and s2 = 1:
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14.2 Attributes of the Multi-service Loss Model

The multi-service system model as defined above has the following important attributes.

1. Accuracy and Scalability: The process of the number of customers in the system of
the various classes is reversible. This property implies that the detailed balance equations
hold and together with the normalizing equation lead to exact solution. It is far easier to
solve the detailed balance equations than the global balance equations and therefore the
exact solution is scalable to problems of realistic size.

2. Robustness – Insensitivity: The blocking probabilities depend on the customers’ hold-
ing time distributions only through their means. That is, they are insensitive to the shape
of the holding time distributions. This insensitivity property implies that holding time
(packet size, or flow size) can have any distribution. All that we need to know about the
holding times of the calls of the various services are their means, and the exact block-



Queueing Theory and Stochastic Teletraffic Models c© Moshe Zukerman 177

ing probability for each service type can be obtained using the local balance equations
as if the holding times follow exponential distributions. It is known that the Internet
flows follow a heavy tailed distribution such as Pareto. Due to this insensitivity property,
the model is robust enough to be exact even for heavy-tailed holding time distributions.
This makes the analyzes and results of multi-service systems very relevant for real life
telecommunications systems and networks.

3. Applicability: Given the wide diversity of bandwidth requirements of Internet services,
and limited capacity of communications links, there is a clear need for a model that
will provide performance evaluation in terms of blocking probability. The M/M/k/k
which is a special case of this model (for the case of a single service class) has been a
cornerstone in telephony used by engineers to design and dimension telephone networks
for almost a century due to its accuracy, scalability and robustness. In telephony we
have had one service phone calls all requiring the same link capacity. As we have entered
the Internet age, the multi-service model, given its accuracy, scalability, and robustness
can play an important role. As discussed, the insensitivity and scalability properties of
the M/M/k/k system extends to the multi-service system model and make it applicable
to practical scenarios. For example, a transmission trunk or lightpath [87] has limited
capacity which can be subdivided into many wavelength channels based on wavelength
division multiplexing (WDM) and each wavelength channel is further subdivided into
TDM sub-channels. Although the assumption of Poisson arrivals of Internet flows during
a busy-hour that demand capacity from a given trunk or a lightpath may be justified
because they are generated by a large number of sources, the actual demand generated
by the different flows/connections vary significantly from a short SMS or email, through
voice calls, to large movie downloads, and far larger data bursts transmitted between data
centers or experimental data generated, for example, by the Large Hadron Collider (LHC).
These significant variations imply a large variety of capacity allocated to the various
flows/connections and also large variety in their holding times, so that the restrictive
exponentially distributed holding time assumption may not be relevant. Therefore, the
insensitivity property of the multi-service loss model is key to the applicability of the
multi-service model.

14.3 A Simple Example with I = 2 and k = 2

Consider a multi-service-system with two classes of services (voice and video). Both traffic
streams of voice and video calls follow a Poisson process and their holding time are exponentially
distributed. The arrival rate of the voice service is λ1 = 0.3 calls per minute and the average
voice service-time 1/µ1 is 3 minutes. The arrival rate of the video service is λ2 = 0.2 calls per
minute and the average video service-time 1/µ2 is 5 minutes. The system has two channels
(servers).

We now aim to calculate the blocking probability of the arriving voice calls and of the arriving
video calls in the case where the voice service requires one channel per call and video service
requires two channels per call. The system has two channels (servers), i.e, k = 2.

Let ji be the number of channels used to serve class-i customers for i = 1, 2. Then the state
space is all feasible pairs {j1, j2}, namely: (0,0), (1,0), (2,0), (0,2).
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Homework 14.1

Plot the state transition diagram for this case with I = 2 and k = 2. ¤
Let πj1,j2 be the steady-state probability of being in state (j1, j2). Then we obtain the following
global balance equations.

(λ1 + λ2)π0,0 = µ1π1,0 + µ2π0,2

(µ1 + λ1)π1,0 = λ1π0,0 + 2µ1π2,0

2µ1π2,0 = λ1π1,0

µ2π0,2 = λ2π0,0.

Each of these equations focuses on one state and represents the balance of the total probability
flux out and into the state. The first equation focuses on the state (0,0), the second on (1,0),
the third on (2,0) and the fourth on (0,2).

By the first and the fourth equations we can obtain a fifth equation:

µ1π1,0 = λ1π0,0.

The same result is obtained by the second and third equations.

The third, fourth and fifth equations are a complete set of detailed balance equations repre-
senting the balance of probability flux between each pair of neighboring states. These three
detailed balance equations together with the normalizing equation

π0,0 + π1,0 + π2,0 + π0,2 = 1

yield a unique solution for the steady-state probabilities: π0,0, π1,0, π2,0, and π0,2.

This shows that this 4-state multi-service system is reversible. As the case is with the M/M/k/k
system, the physical interpretation of the reversibility property includes the lost calls. For the
system in the forward direction we have multiple of Poisson processes for different type (classes)
of calls, and for the system in the reversed direction, we will also have the same processes if we
include as output (input in reverse) the lost calls.

The reversibility property applies also to the general case of a multi-service system, so it is
sufficient to solve the detailed balance equations together with the normalizing equation to
obtain the steady-state probabilities of the process.

Having obtained the steady-state probability, we can obtain the blocking probability for the
voice and for the video calls. Notice that the voice calls are only blocked when the system is
completely full. Therefore the voice blocking probability is:

π2,0 + π0,2.

However, the video calls are blocked also when there is only one channel free. Therefore, the
video blocking probability is
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π1,0 + π2,0 + π0,2.

Actually, in our example, the video calls can only access in state (0,0), so the video blocking
probability is also given by

1− π0,0.

Homework 14.2

Compute the blocking probability of the voice calls and of the video calls for the above small
example with I = 2 and k = 2.

Answer

Voice blocking probability = 0.425
Video blocking probability = 0.7 ¤

14.4 Other Reversibility Criteria for Markov Chains

We have realized the importance of the reversibility property in simplifying steady-state solu-
tions of Markov chains, where we can solve the simpler detailed balance equations and avoid
the complexity of solving the global balance equations. It is therefore important to know ways
that we can identify if a continuous-time Markov chain is reversible. We use here the oppor-
tunity that being presented by considering the multi-service model which is an example of the
more general multi-dimensional Markov chain to discuss useful reversibility criteria for gen-
eral Markov chains that have a wider scope of applicability which goes beyond multi-service
systems.

Note that all the discussion on continuous-time Markov chains has analogy in discrete-time
Markov chains. However, we focus here on stationary, irreducible and aperiodic continuous-
time Markov chains which is the model used for multi-service systems and is also relevant to
many other models in this book. Accordingly, whenever we mention a continuous-time Markov
chain in this chapter, we assume that it is stationary, irreducible and aperiodic.

We already know that if the detailed balance equations together with the normalizing equation
have a unique solution for the steady-state probabilities, the process is reversible. Here we
describe other ways to identify if a process is reversible. However, before discussing specific
reversibility criteria, we shall introduce several relevant graph theory concepts (as in [46]) to
help visualize relationship associated with probability flux balances.

Consider a graph G = G(V, E) where V is the set on vertices and E is the set of edges. We
associate G with a continuous-time Markov-chain as follows. Let the set V represent the set of
states in the continuous-time Markov chain. The graph G will have an edge between nodes x
and y in G if there there is an edge between the two states in the corresponding continuous-time
Markov-chain, i.e., if there is positive rate either from state x to state y, and/or from state y
to state x, in the corresponding continuous-time Markov-chain. We consider only cases that
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the continuous-time Markov chain is irreducible, therefore the corresponding graph must be
connected [46]. We define a cut in the graph G as a division of G into two mutually exclusive
set of nodes A and Ā such that A ∩ Ā = G.

From the global balance equations, it can be shown (see [46] for details) that for stationary
continuous-time Markov chain the probability flux across a cut in one way is equal to the
probability flux in the opposite way.

Now it is easy to show that a continuous-time Markov chain that its graph is a tree must be
reversible. Because in this case, every edge in G is a cut and therefore the probability flux
across any edge must be balanced. As a result, the detailed balanced equations hold.

Notice that all the reversible processes that we have discussed so far, including single dimension
birth-and-death processes, such as the queue size processes of M/M/1, M/M/∞, and M/M/k/k,
and the process associated with the above discussed multi-service example with I = 2 and k = 2
are all trees. We can therefore appreciate that the tree criterion of reversibility is applicable
to many useful processes. However, there are many reversible continuous-time Markov chains
that are not trees and there is a need for further criteria to identify reversibility.

One important class of reversible processes is the general multi-service problem with any finite
I and k. We have already demonstrated the reversibility property for the small example with
I = 2 and k = 2 that its associated graph is a tree. Let us now consider a slightly larger
example where k is increased from 2 to 3. All other parameter values are as before: I = 2,
λ1 = 0.3, 1/µ1 = 3, λ2 = 0.2, and 1/µ2 = 5. The associated graph of this multi-service problem
is no longer a tree, but we already know that it is reversible because the general queue size
process(es) of the multi-service model is reversible.

The detailed balance equations of this multi-service problem are:

(i + 1)µ1πi+1,0 = λ1πi,0, i = 0, 1, 2.

µ1π1,2 = λ1π0,2

µ2π0,2 = λ2π0,0

µ2π1,2 = λ2π1,0.

Because the reversibility property applies to the general case of a multi-service system, it is
sufficient to solve the detailed balance equations together with the normalizing equation

π0,0 + π1,0 + π2,0 + π3,0 + π0,2 + π1,2 = 1.

This yields a unique solution for the steady-state probabilities: π0,0, π1,0, π2,0, π3,0, π0,2 and
π1,2.

Having obtained the steady-state probability, we can obtain the blocking probability for the
voice and for the video calls. As in the previous case, the voice calls are only blocked when the
system is completely full. Therefore, the voice blocking probability is:

π3,0 + π1,2

and as the video calls are blocked also when the there is only one channel free, the blocking
probability of the video calls is
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π3,0 + π2,0 + π0,2 + π1,2.

The associated graph of the continuous-time Markov-chain that represents this multi-service
problem with k = 3 is not a tree, but this Markov-chain is still reversible. Using this example
with k = 3, we will now illustrate another criterion for reversibility called Kolmogorov crite-
rion that applies to a general continuous-time Markov-chain and not only to those that their
associated graphs are trees. Graphs that are not trees, by definition have cycles and this crite-
rion is based on conditions that apply to every cycle in the graph that represents the Markov
chain. Furthermore, the Kolmogorov criterion has the desired feature that it establishes the
reversibility property directly from the given transition rates without the need to compute other
results, such as steady-state probabilities.

To establish the Kolmogorov criterion, let i and j be two neighboring states in a continuous-
time Markov chain and define R(i, j) as the transition rate from state i to state j. The following
Theorem is known as the Kolmogorov criterion.

A stationary continuous-time Markov chain is reversible if and only if for any cycle defined by
the following finite sequence of states i1, i2, i3, . . . , in, i1 its transition rates satisfy:

R(i1, i2)R(i2, i3) . . . , R(in−1, ik)R(in, i1)

= R(i1, in)R(in, in−1) . . . R(i3, i2)R(i2, i1). (415)

The Kolmogorov criterion essentially says that a sufficient and necessary condition for a continuous-
time Markov chain to be reversible is that for every cycle in the graph associated with the
Markov chain, the product of the rates in one direction of the cycle starting in a given state
and ending up in the same state is equal to the product of the rates in the opposite direc-
tion.

To illustrate the Kolmogorov Criterion, consider in our example with k = 3, the circle composed
of the states (0,0), (0,2), (1,2) and (1,0). According to the above detailed balance equations,
we obtain the following rates in one direction:

R([0, 0], [0, 2]) = λ2

R([0, 2], [1, 2]) = λ1

R([1, 2], [1, 0]) = µ2

R([1, 0], [0, 0]) = µ1

and in the opposite direction:

R([0, 0], [1, 0]) = λ1

R([1, 0], [1, 2]) = λ2

R([1, 2], [0, 2]) = µ1

R([0, 2], [0, 0]) = µ2.
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We can see that the product of the rates in one direction (which is λ1λ2µ1µ2) is equal to the
product of the rates in the opposite direction.

14.5 Computation

One simple method to compute the steady-state probabilities is to set an arbitrary initial value
to one of them, to use the detailed balance equations to obtain values for the neighbors, the
neighbors’ neighbors etc. until they all have values that satisfy the detailed balance equations.
Finally normalize all the values.

Having the steady-state probabilities, blocking probability of all classes can be found by adding
up, for each class i the steady-state probabilities of all the states where the server occupancy
is higher than k − si.

Let πi be the steady-state probability of the being in state i after the normalization and π̂i the
steady-state probability of the being in state i before the normalization. Let Ψ be the set of
all states. Therefore

πi =
π̂i∑
i∈Ψ π̂i

. (416)

To illustrate this approach, let again consider the above example with I = 2, k = 3, λ1 = 0.3,
1/µ1 = 3, λ2 = 0.2, and 1/µ2 = 5.

Set ˆπ0,0 = 1, then

ˆπ1,0 = π̂0,0
λ1

µ1

= 1× 0.3

1/3
= 0.9.

Next,

ˆπ2,0 = π̂1,0
λ1

2µ1

= 0.9× 0.3

2/3
= 0.45

and

ˆπ3,0 = π̂2,0
λ1

3µ1

= 0.45× 0.3

3/3
= 0.3.

Moving on to the states (0,2) and (1,2), we obtain:

ˆπ0,2 = π̂0,0
λ2

µ2

= 1× 0.2

1/5
= 1
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and

ˆπ1,2 = π̂0,2
λ1

µ1

= 1× 0.3

1/3
= 0.9.

To normalize we compute
∑

i∈Ψ

π̂i = 1 + 0.9 + 0.45 + 0.3 + 1 + 0.9 = 4.55

Therefore

π0,0 =
1

4.55
= 0.21978022

π1,0 =
0.9

4.55
= 0.197802198

π2,0 =
0.45

4.55
= 0.098901099

π3,0 =
0.3

4.55
= 0.065934066

π0,2 =
1

4.55
= 0.21978022

π1,2 =
0.9

4.55
= 0.197802198.

Therefore, the voice blocking probability is:

Bvoice = π3,0 + π1,2

= 0.065934066 + 0.197802198 = 0.263736264

and the video blocking probability is

Bvideo = π2,0 + π3,0 + π0,2 + π1,2

= 0.098901099 + 0.065934066 + 0.21978022 + 0.197802198 = 0.582417582.

We can see that reversibility makes it easier to solve for steady-state probabilities. However, if
we consider a multi-service system where I and k are very large, it may be challenging to solve
the problem in reasonable time.

There are two methods to improve the efficiency of the computation.

1. The Kaufman Roberts Algorithm: This algorithm is based on recursion on the
number of busy servers. For details on this algorithm see [28, 43, 45, 67, 71].

2. The Convolution Algorithm: This algorithm is based on aggregation of traffic streams.
In other words, if one is interested in the blocking probability of traffic type i, the algo-
rithm successively aggregate by convolution all other traffic types, until we have a problem
with I = 2, namely, traffic type i and all other types together. Then the problem can be
easily solved. For details on this algorithm see [42, 43, 71, 74].
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14.6 A General Treatment

So far we discussed properties of multi-service systems through simple examples. Now we
present general definitions and concepts. For notation convenience, let us consider a slightly
different Markov chain than the one we considered above. Previously we considered the state
space to represent the number of busy servers (channels) occupied by each of the services (traffic
types). Now we will consider a continuous-time Markov chain where the state space represents
the number of customers (calls) of each traffic type rather than the number of busy servers.
The two approaches are equivalent because at any point in time, the number of channels for
service i in the system is a multiplication by a factor of si of the number of customers (calls)
of service i in the system.

Let ji be the number of class-i customers in the system for i = 1, 2, . . . , I. Let

−→
j = (j1, j2, . . . , jI)

and
−→s = (s1, s2, . . . , sI).

Then

−→
j −→s =

I∑
i=1

jisi

is the number of busy servers. Now we consider an I-dimensional continuous-time Markov-
chain where the state space is defined by all feasible vectors

−→
j each of which represents a

multi-dimensional possible state of the system. In particular, we say that state
−→
j is feasible

if

−→
j −→s =

I∑
i=1

jisi ≤ k.

Let F be a set of all feasible vectors
−→
j .

A special case of this multi-service model is the M/M/k/k model where I = 1. If we consider
the M/M/k/k model and let k → ∞, we obtain the M/M/∞ model described in Section 7.
Accordingly, the M/M/∞ model is the special case (I = 1) of the multi-service model with
k = ∞. In our discussion in Section 8.2, the distribution of the number of customers in an
M/M/k/k model, given by (312) is a truncated version of the distribution of the number of
customers in an M/M/∞ model. As we explain there, the former distribution can be obtained
using the latter by truncation.

In a similar way, we begin by describing a multi-service system with an infinite number of
servers. Then using truncation, we derive the distribution of the number of customers of each
class for a case where the number of servers is finite.

14.6.1 Infinite number of servers

For the case k = ∞, every arrival of any class i customer can always find si free servers,
therefore this case can be viewed as I independent uni-dimensional continuous-time Markov-
chains, where Xi(t), i = 1, 2, . . . I, represents the evolution of the number of class-i customers
in the system and characterized by the birth-rate λi and the death-rate jiµi.
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Let πi(ji) be the steady-state probability of the process Xi(t), i = 1, 2, . . . I being in state ji.
Then πi(ji) satisfy the following steady-state equations:

λiπi(0) = jiµiπi(1)

λiπi(ji) = jiµiπi(ji + 1)for ji = 1, 2, 3, . . .

and the normalizing equation
∞∑

ji=0

πi(ji) = 1.

These equations are equivalent to the equations that represent the steady-state equations of
the M/M/∞ model. Replacing n for ji, λ for λi, and µ for jiµi in the above equations, we
obtain the M/M/∞ steady-state equations. This equivalence has also a physical interpretation.
Simply consider a group of si servers as a single server serving each class-i customer. Following
the derivations is Section 7 for the M/M/∞ model, we obtain:

πi(ji) =
e−AiAji

i

ji!
for ji = 0, 1, 2, . . . . (417)

Since the processes Xi(t), i = 1, 2, . . . I, are independent, the probability p(
−→
j ) = p(j1, j2, . . . , jI)

that in steady-state X1(t) = j1, X2(t) = j2, . . ., XI(t) = jI , is given by

p(
−→
j ) = p(j1, j2, . . . , jI) =

I∏
i=1

e−AiAji

i

ji!
e−Ai . (418)

The solution for the steady-state joint probability distribution of a multi-dimensional process,
where it is obtained as a product of steady-state distribution of the individual single-dimensional
processes, such as the one given by (418), is called a product-form solution.

An simple example to illustrate the product-form solution is to consider a two-dimensional
multi-service loss system with k = ∞, and to observe that to satisfy the detailed balance
equations, the steady-state probability of the state (i, j) πij is the product of

π0j = π00
Aj

2

j!

and
Ai

1

i!
.

Then realizing that
π00 = π0(1)π0(2)

where π0(1) and π0(2) are the probabilities that the independent systems of services 1 and 2
are empty, respectively. Thus,

πij = π00
Ai

1

i!

Aj
2

j!

= π0(1)π0(2)
Ai

1

i!

Aj
2

j!

=

(
π0(1)

Ai
1

i!

) (
π0(2)

Aj
2

j!

)
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and the product form has directly been obtained from the detailed balanced equations. This
illustrates the relationship of reversibility and product form solution.

Next, we consider a system with a finite number of servers, observe that for such a system the
detailed balance equations also gives a product form solution because the equation

πij = π00
Ai

1

i!

Aj
2

j!

which results directly from the detailed balance equation still holds. Note that π00 is not the
same in the infinite and finite k cases, and it is normally different for different k values.

Homework 14.3

Provide an example where π00 is the same for different k values. ¤

14.6.2 Finite Number of Servers

Consider a multi-service system model where the number of servers is limited to k. We are
interested in the probability B(m) that a class m customer is blocked. We begin by deriving
the state probability vector p(

−→
j ) for all

−→
j ∈ F. By the definition of conditional probability,

p(
−→
j ) conditional on

−→
j ∈ F is given by

p(
−→
j ) = p(j1, j2, . . . , jI) =

1

C

I∏
i=1

e−AiAji

i

ji!

−→
j ∈ F (419)

where

C =
∑
−→
j ∈F

I∏
i=1

e−AiAji

i

ji!
.

Homework 14.4

Derive (419) by truncating (418).

Guide

Consider the steady-state probability distribution of
−→
j for the case k = ∞ give by (418). Then

set p(
−→
j ) = 0 for all

−→
j not in F, and normalize the probabilities

−→
j ∈ F by dividing by them by

the probability that the infinite server process is in a feasible state considering that the number
of servers k is finite. Then cancel out the exponentials and obtain (419). ¤
Let F(m) be the subset of the states in which an arriving class m customer will not be blocked.
That is

F(m) = {−→j ∈ F such that
I∑

i=1

siji ≤ k − sm}. (420)
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Then
B(m) = 1−

∑
−→
j ∈F(m)

p(
−→
j ), m = 1, 2, . . . , I. (421)

Therefore, by (419), we obtain

B(m) = 1−

∑
−→
j ∈F(m)

I∏
i=1

Aji

i

ji!

∑
−→
j ∈F

I∏
i=1

Aji

i

ji!

. (422)

Homework 14.5

Consider the case with k = 3, s1 = 1, s2 = 2, λ1 = λ2 = 1, and µ1 = µ2 = 1. Find the Blocking
probabilities B(1) and B(2).

Guide

Let (i, j) be the state in which there are i class 1 and j class 2 customers in the system.

The Set F in this example is given by

F = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (3, 0)}.

Write and solve the steady-state equations for the steady-state probabilities of the states in the
set F. Alternatively, you can use (419).

Then
F(1) = {(0, 0), (0, 1), (1, 0), (2, 0)}.

and
F(2) = {(0, 0), (1, 0)}.

Use (422) to obtain the blocking probability. ¤

14.7 Critical Loading

As discussed in Section 8.7, a critically loaded system is a one where the offered traffic load is
equal to the system capacity. Accordingly, in a critically loaded multi-service loss system, the
following condition holds

I∑
i=1

Ai = k. (423)

Given the tremendous increase in capacity of telecommunications networks and systems and in
the number of human and non-human users of the Internet, the case of large k is of a special
interest. As we have learnt in the case of M/M/k/k when the total capacity of the system
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is very large relative to the capacity required by any individual user, critical loading is an
efficient dimensioning rule. The result for the asymptotic behavior of the blocking probability
under critical loading condition can be extended to the case of a multi-service loss system as
follows:

lim
k→∞

B(i) =
siCMS√

k
, i = 1, 2, . . . , I (424)

where CMS is a constant independent of i and k. Notice that if there is only one class (I = 1)
and s1 = 1, this asymptotic result reduces to (324) by setting CMS = C̃. Notice that as in the
special case of M/M/k/k, the asymptotic blocking probability decays at the rate of 1/

√
k, and

also notice that the asymptotic class i blocking probability is linear with si. This means that
in the limit, if each of class 1 customers requires one server and each of the class 2 customers
requires two servers, then a class 2 customer will experience twice the blocking probability
experienced by a class 1 customer. Recall that, in this case, a class 1 customer requires only
one server to be idle for it to be able to access a server and to obtain service, while a class 2
customer requires two idle servers to obtain service otherwise, according to our multi-service
loss model, it is blocked and cleared from the system.

Homework 14.6

Consider the case λ1 = 1, s1 = 1, µ1 = 1, λ2 = 2, s1 = 2, µ2 = 2, k = 4. Obtain the blocking
probability of each class in two ways: (1) by a discrete event simulation, (2) by solving the
steady-state equations or (419) and using Eq. (421), and (3) by using the recursive algorithm.
¤

Homework 14.7

Provide examples where customers that belong to different class experience the same blocking
probability. Verify the equal blocking probability using (419), by the recursive algorithm. and
by simulations.

Guide

One example is with k = 6, and two classes of customers s1 = 6 and s2 = 5. Provide other
examples and verify the equal blocking probability using the analysis that leads to (421) and
simulations. ¤

Homework 14.8

Demonstrate by simulations the robustness of the multi-service loss model to the shape of the
holding time distribution.
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Guide

Simulate various multi-service loss systems with exponential holding time versus equivalent
systems where the holding times distributions are hyper-exponential (the variance is larger
than exponential), deterministic (where the variance is equal to zero), and Pareto (choose cases
where the valiance is finite). Demonstrate that the blocking probability for each class is the
same when the mean holding time is the same regardless of the choice of the holding time
distribution. ¤

Homework 14.9

Study and program the convolution algorithm described in [42, 43, 71]. Also write a program
for the recursion algorithm and for the method based on (419). For a given (reasonably large)
problem, compute the blocking probability for each class. Make sure it is the same for all three
alternatives. Then compare for a wide range of parameter values the running times of the
various algorithms and explain the differences. ¤

Homework 14.10

Provide an example of a continuous-time Markov chain that represent a queueing model that
is not reversible.

Guide

Consider MMPP(2)/M/1/1 and show cases that the continuous-time Merkov chain is not re-
versible. ¤
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15 Discrete-Time Queue

To complement the considerable attention we have given to continuous-time queues, we will
now provide an example of a discrete-time queueing system. Discrete-time models are very
popular studies of computer and telecommunications systems because in some cases, time is
divided into fixed length intervals (time-slots) and packets of information called cells are of
fixed length, such that exactly one cell can be transmitted during a time-slot. Examples of
such cases include technologies, such as ATM and the IEEE 802.6 Metropolitan Area Network
(MAN) standard.

Let the number of cells that join the queue at different time-slots be an IID random variable.
Let ai be the probability of i cells joining the queue at the beginning of any time-slot. Assume
that at any time-slot, if there are cells in the queue, one cell is served, namely, removed from
the queue. Further assume that arrivals occur at the beginning of a time-slot means that if a
cell arrives during a time-slot it can be served in the same time-slot.

In this case, the queue size process follows a discrete-time Markov-chain with state-space Θ
composed of all the nonnegative integers, and a Transition Probability Matrix P = [Pij] given
by

Pi,i−1 = a0 for i ≥ 1 (425)

and

P0,0 = a0 + a1

Pi,i = a1 for i ≥ 1

Pi,i+1 = a2 for i ≥ 0

and in general

Pi,i+k = ak+1 for i ≥ 0, k ≥ 1. (426)

Defining the steady-state probability vector by Π = [π0, π1, π2, . . .], it can be obtained by
solving the steady-state equations:

Π = ΠP.

together with the normalizing equation

∞∑
i=0

πi = 1.

To solve for the πis, we will begin by writing down the steady-state equations as follows
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π0 = π0P00 + π1P10

π1 = π0P01 + π1P11 + π2P21

π2 = π0P02 + π1P12 + π2P22 + π3P32

π3 = π0P03 + π1P13 + π2P23 + π3P33 + π4P43

and in general

πn =
∑n+1

i=0 πiPi,n for n ≥ 0.

Substituting (425) and (426) in the latter, we obtain

π0 = π0[a0 + a1] + π1a0 (427)

π1 = π0a2 + π1a1 + π2a0 (428)

π2 = π0a3 + π1a2 + π2a1 + π3a0 (429)

and in general

πn =
n+1∑
i=0

πian+1−i for n ≥ 1. (430)

Defining Π(z) the Z-transform of the Π vector and A(z) as the Z-Transform of [a0, a1, a2, . . .],
multiplying the nth equation of the set (427) – (430) by zn, and summing up, we obtain after
some algebraic operations

Π(z) = π0a0 − π0z
−1a0 + z−1A(z)Π(z) (431)

which leads to

Π(z) =
π0a0(1− z−1)

1− z−1A(z)
. (432)

Then deriving the limit of Π(z) as z → 1 by applying L’Hopital rule, denoting A′(1) =
limz→1 A′(z), and noticing that limz→1 Π(z) = 1 and limz→1 A(z) = 1, we obtain,

π0 =
1− A′(1)

a0

. (433)

This equation is somewhat puzzling. We already know that the proportion of time the server
is idle must be equal to one minus the utilization. We also know that A′(1) is the mean arrival
rate of the number of arrivals per time-slot and since the service rate is equal to one, A′(1) is
also the utilization; so what is wrong with Eq. (433)? The answer is that nothing wrong with it.
What we call π0 here is not the proportion of time the server is idle. It is the probability that
the queue is empty at the slot boundary. There may have been one cell served in the previous
slot and there may be an arrival or more in the next slot which keep the server busy.

The proportion of time the server is idle is in fact π0a0 which is the probability of empty queue
at the slot boundary times the probability of no arrivals in the next slot, and the consistency
of Eq. (433) follows.

Homework 15.1

Provide in detail all the algebraic operations and the application of L’Hopital rule to derive
equations (431), (432) and (433).
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Guide

Multiplying the nth equation of the set (427) – (430) by zn and summing up, we obtain an
equation for Π(z) by focussing first on terms involving π0 then on the remaining terms. For the
remaining terms, it is convenient to focus first on terms involving a0 then on those involving
a1, etc. Notice in the following that all the remaining terms can be presented by a double
summation.

Π(z) = π0a0z
0 + π0

∞∑
i=1

aiz
i−1 +

∞∑
j=0

[
aj

∞∑
i=1

πiz
i−(1−j)

]

= π0a0 + π0z
−1[A(z)− a0] + z−1A(z)[Π(z)− π0]

= π0a0 − π0z
−1a0 + z−1A(z)Π(z)

and (432) follows.

L’Hopital rule says that if functions a(x) and b(x) satisfy limx→l∗ a(x) = 0 and limx→l∗ b(x) = 0,
then

lim
x→l∗

a(x)

b(x)
=

limx→l∗ a(x)

limx→l∗ b(x)
.

Therefore, from (432) we obtain

lim
z→1

Π(z) = lim
z→1

π0a0(1− z−1)

1− z−1A(z)

= lim
z→1

π0a0z
−2

z−2A(z)− z−1A′(z)
.

Substituting limz→1 Π(z) = 1 and limz→1 A(z) = 1, we obtain,

1 =
π0a0

1− A′(z)

and (433) follows. ¤

Homework 15.2

Derive the mean and variance of the queue size using the Z-transform method and verify
your results by simulations over a wide range of parameter values using confidence intervals.
¤
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16 M/G/1

The M/G/1 queue is a generalization of the M/M/1 queue where the service time is no longer
exponential. We now assume that the service times are IID with mean 1/µ and standard
deviation σs. The arrival process is assumed to be Poisson with rate λ and we will use the
previously defined notation: ρ = λ/µ. As in the case of M/M/1 we assume that the service times
are independent and are independent of the arrival process. In addition to M/M/1, another
commonly used special case of the M/G/1 queue is the M/D/1 queue where the service time
is deterministic.

The generalization from M/M/1 to M/G/1 brings with it a significant increase in complexity.
No longer can we use the Markov-chain structure that was so useful in the previous analyzes
where both service and inter-arrival times are memoryless. Without the convenient Markov
chain structure, we will use different methodologies as described in this section.

16.1 Pollaczek Khintchine Formula: Residual Service Approach [12]

The waiting time in the queue of an arriving customer to an M/G/1 queue is the remaining
service time of the customer in service plus the sum of the service times of all the customers
in the queue ahead of the arriving customer. Therefore, the mean waiting time in the queue is
given by

E[WQ] = E[R] +
E[NQ]

µ
(434)

where E[R] denotes the mean residual service time. Note that for M/M/1, E[R] = ρ/µ, which
is the probability of having one customer in service, which is equal to ρ, times the mean residual
service time of that customer, which is equal to 1/µ due to the memoryless property of the
exponential distribution, plus the probability of having no customer in service (the system is
empty), which is 1− ρ, times the mean residual service time if there is no customer in service,
which is equal to zero.

Homework 16.1

Verify that Eq. (434) holds for M/M/1. ¤
Observe that while Equation (434) is based on considerations at time of arrival, Little’s for-
mula

E[NQ] = λE[WQ]

could be explained based on considerations related to a point in time when a customer leaves
the queue and enters the server. Recall the intuitive explanation of Little’s formula in Section
(3) which can be applied to a system composed of the queue excluding the server. Consider a
customer that just left the queue leaving behind on average E[NQ] customers that have arrived
during the customer’s time in the system which is on average λE[WQ].

By Little’s formula and (434), we obtain,

E[WQ] =
E[R]

1− ρ
. (435)
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It remains to obtain E[R] to obtain results for the mean values of waiting time and queue-
size.

Now that as the service time is generally distributed, we encounter certain interesting effects.
Let us ask ourselves the following question. If we randomly inspect an M/G/1 queue, will the
mean remaining (residual) service time of the customer in service be longer or shorter than
the mean service time? A hasty response may be: shorter. Well, let us consider the following
example. There are two types of customers. Each of the customers of the first type requires
106 service units, while each of the customers of the second type requires 10−6 service units.
Assume that the proportion of the customers of the first type is 10−7, so the proportion of the
customers of the second type is 1 − 10−7. Assume that the capacity of the server to render
service is one service unit per time unit and that the mean arrival rate is one customer per time
unit. As the mean service time is of the order of 10−1, and the arrival rate is one, although
the server is idle 90% of the time, when it is busy it is much more likely to be busy serving a
customer of the first type despite the fact that these are very rare, so the residual service time
in this case is approximately 0.1 × 106/2 = 50, 000 which is much longer than the 10−1 mean
service time. Intuitively, we may conclude that the residual service time is affected significantly
by the variance of the service time.

Notice that what we have computed above is the unconditional mean residual service time
which is our E[R]. Conditioning on the event that the server is busy, the mean residual service
time will be 10 times longer. We know that if the service time is exponentially distributed, the
conditional residual service time of the customer in service has the same distribution as the
service time due to the memoryless property of the exponential distribution. Intuitively, we
may expect that if the variance of the service time is greater than its exponential equivalence
(an exponential random variable with the same mean), then the mean residual service time
(conditional) will be longer than the mean service time. Otherwise, it will be shorter. For
example, if the service time is deterministic of length d, the conditional mean residual service
time is d/2, half the size of its exponential equivalence.

To compute the (unconditional) mean residual service time E[R], consider the process {R(t), t ≥
0} where R(t) is the residual service time of the customer in service at time t. And consider a
very long time interval [0, T ]. Then

E[R] =
1

T

∫ T

0

R(t)dt. (436)

Following [12], let S(T ) be the number of service completions by time T and Si the ith service
time. Notice that the function R(t) takes the value zero during times when there is no customer
in service and jumps to the value of Si at the point of time the ith service time commences.
During a service time it linearly decreases with rate of one and reaches zero at the end of a
service time. Therefore, the area under the curve R(t) is equal to the sum of the areas of S(T )
isosceles right triangles where the side of the ith triangle is Si. Therefore, for large T , we can
ignore the last possibly incomplete triangle, so we obtain

E[R] =
1

T

S(T )∑
i=1

1

2
S2

i =
1

2

S(T )

T

1

S(T )

S(T )∑
i=1

S2
i . (437)
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Letting T approach infinity, the latter gives

E[R] =
1

2
λS2 (438)

where S2 is the second moment of the service time.

By (435) and (438), we obtain

E[WQ] =
λS2

2(1− ρ)
. (439)

Thus, considering (254), we obtain

E[D] =
λS2

2(1− ρ)
+ 1/µ. (440)

Using Little’s formula and recalling that σ2
s = S2 − (1/µ)2, Eq. (440) leads to the well known

Pollaczek Khintchine Formula for the mean number of customers in an M/G/1 system:

E[Q] = ρ +
ρ2 + λ2σ2

s

2(1− ρ)
. (441)

16.2 Pollaczek Khintchine Formula: by Kendall’s Recursion [48]

Let us now derive (441) in a different way. Letting qi be the number of customers in the system
immediately following the departure of the ith customer, the following recursive relation, is
obtained.

qi+1 = qi + ai+1 − I(qi) (442)

where ai is the number of arrivals during the service time of the ith customer, and I(x) is a
function defined for x ≥ 0, taking the value 1 if x > 0, and the value 0 if x = 0. This recursion
was first introduced by Kendall [48], so we will call it Kendall’s Recursion. Some call it a
“Lindley’s type Recursion” in reference to an equivalent recursion for the G/G/1 waiting time
in [54]. Along with Little’s and Erlang B formulae, and the Pollaczek-Khintchine equation, the
Kendall’s and Lindley’s recursions are key foundations of queueing theory.

To understand the recursion (442), notice that there are two possibilities here: either qi = 0 or
qi > 0.

If qi = 0, then the i + 1th customer arrives into an empty system. In this case I(qi) = 0 and
the number of customers in the system when the i + 1th customer leaves must be equal to the
number of customers that arrives during the service time of the i + 1th customer.

If qi > 0, then the i + 1th customer arrives into nonempty system. It starts it service when
the ith customer leaves. When it starts its service there are qi customers in the system. Then
during its service additional ai+1 customers arrive. And when it leaves the system there must
be qi + ai+1 − 1 (where the ‘-1’ represents the departure of the i + 1th customer).

Squaring both sides of (442) and taking expectations, we obtain

E[q2
i+1] = E[q2

i ] + E[I(qi)
2] + E[a2

i+1]− 2E[qiI(qi)] + 2E[qiai+1]− 2E[I(qi)ai+1] (443)
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Notice that in steady-state E[q2
i+1] = E[q2

i ], I(qi)
2 = I(qi), E[I(qi)

2] = E[I(qi)] = ρ , and that
for any x ≥ 0, xI(x) = x, so qiI(qi) = qi. Also notice that because of the independence between
ai+1 and qi, and because (by (89)) the mean number of arrivals during service time in M/G/1 is
equal to ρ, we obtain in steady-state that E[I(qi)ai+1] = ρ2 and E[qiai+1] = E[qi]ρ. Therefore,
considering (443), and setting the steady-state notation E[a] = E[ai] and E[Q] = E[qi], we
obtain after some algebra

E[Q] =
ρ + E[a2]− 2ρ2

2(1− ρ)
. (444)

To obtain E[a2], we notice that by EVVE,

V ar[a] = E[V ar[a | S]] + V ar[E[a | S]] = λE[S] + λ2σ2
s = ρ + λ2σ2

s (445)

recalling that S is the service time and that σ2
s is its variance. Also recall that V ar[a] =

E[a2]− (E[a])2 and since E[a] = ρ, we have by Eq. (445) that

E[a2] = V ar[a] + ρ2 = ρ + λ2σ2
s + ρ2.

Therefore,

E[Q] =
2ρ + λ2σ2

s − ρ2

2(1− ρ)
(446)

or

E[Q] = ρ +
ρ2 + λ2σ2

s

2(1− ρ)
(447)

which is identical to (441) - the Pollaczek-Khintchine Formula.

Homework 16.2

Re-derive the Pollaczek-Khintchine Formula in the two ways presented above with attention to
all the details (some of which are skipped in the above derivations). ¤

16.3 Special Cases: M/M/1 and M/D/1

Now let us consider the special case of exponential service time. That is, the M/M/1 case.
To obtain E[Q] for M/M/1, we substitute σ2

s = 1/µ2 in (441), and after some algebra, we
obtain

E[Q] =
ρ

1− ρ
(448)

which is consistent with (276).

Another interesting case is the M/D/1 queue where σ2
s = 0. Substituting the latter in (441),

we obtain after some algebra

E[Q] =
ρ

1− ρ
× 2− ρ

2
. (449)

Because the second factor of (449), namely (2− ρ)/2, is less than one for the range 0 < ρ < 1,
we clearly see that the mean number of customers in an M/M/1 queue is higher than that of
an M/D/1 queue with the same arrival and service rates.
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Homework 16.3

Show that E[W ] (the time spent in the queue but not in service) for M/D/1 is half of that
of it M/M/1 counterpart assuming that the mean service times in both systems is the same.
¤

16.4 Busy Period

We have defined and discussed the concept of busy period in Section 6.9 in the context of the
M/M/1 queue. The same analysis applies to the case of the M/G/1 system, and we obtain:

E[TB] =
1

µ− λ
. (450)

What we learn from this is that the mean busy period is insensitive to the shape of the service
time distribution. In other words, the mean busy periods of M/M/1 and M/G/1 systems are
the same if the mean arrival rate and service rates are the same.

Homework 16.4

1. Prove that
E[TB]

E[TB] + E[TI ]

is the proportion of time that the server is busy.

2. Show that Equation (450) also applies to an M/G/1 queue. ¤

Homework 16.5

Consider an M/G/1 queueing system with the following twist. When a new customer arrives
at an empty system, the server is not available immediately. The customer then rings a bell
and the server arrives an exponentially distributed amount of time with parameter ζ later. As
in M/G/1, customers arrive in accordance with a Poisson process with rate λ and the mean
service time is 1/µ. Service times are mutually independent and independent of the interarrival
times. Find the mean busy period defined as a continuous period that the server is busy.

Guide

Explain and solve the following two equations:

E[TB]

E[TB] + E[TI ]
= ρ =

λ

µ

and

E[TI ] =
1

λ
+

1

ζ
.

¤
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17 M/G/1 with non-FIFO disciplines

17.1 M/G/1-LIFO

The M/G/1-LIFO queue posses similar properties to the M/G/1-PS queue that we discussed
in Section 13.2. They are both insensitive to the shape of the service time distribution.

We have already mentioned in Section 6.9 that the queue size process of M/M/1 is the same as
that of its M/M/1-LIFO equivalence. Therefore they also have the same mean queue size and
delay. Due to the insensitivity of M/G/1-LIFO, the M/M/1 results for the mean queue size,
mean delay and queue size distribution are applicable also to M/G/1-LIFO.

Specifically, if we are given an M/G/1-LIFO queue with arrival rate λ and mean service rate
1/µ, denote ρ = λ/µ, then the queue size distribution is given by:

πi = ρi(1− ρ) for i = 0, 1, 2, . . . . (451)

The mean queue size is given by

E[Q] =
ρ

1− ρ
(452)

and the mean delay is given by

E[D] =
1

µ− λ
. (453)

17.2 M/G/1 with m priority classes

Let us consider an M/G/1 queueing system with m priority classes. Let λj and µj be the
arrival and service rate of customers belonging to the jth priority class for j = 1, 2, 3, . . . , m.
The mean service time of customers belonging to the jth priority class is therefore equal to
1/µj. The second moment of the service time of customers belonging to the jth priority class

is denoted S2(j). We assume that priority class j has higher priority that priority class j + 1,
so Class 1 represents the highest priority class and Class m the lowest. For each class j, the
arrival process is assumed to be Poisson with parameter λj, and the service times are assume
mutually independent and independent of any other service times of customers belonging to
the other classes, and are also independent of any interarrival times. Let ρj = λj/µj. We
assume that

∑m
j=1 ρj < 1. We will consider two priority policies: nonpreemptive and preemptive

resume.

17.3 Nonpreemptive

Under this regime, a customer in service will complete its service even if a customer of a higher
priority class arrive while it is being served. Let E[NQ(j)] and E[WQ(j)] represent the mean
number of class j customers in the queue excluding the customer in service and the mean waiting
time of a class j customer in the queue (excluding its service time), respectively. Further let R
be the residual service time (of all customers of all priority classes). In similar way we derived
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(438), we obtain:

E[R] =
1

2

m∑
j=1

λjS2(j). (454)

Homework 16.6

Derive Eq. (454). ¤
As in Eq. (434), we have for the highest priority,

E[WQ(1)] = E[R] +
E[NQ(1)]

µ1

(455)

and similar to (434) we obtain

E[WQ(1)] =
E[R]

1− ρ1

. (456)

Regarding the second priority, E[WQ(2)] is the sum of the mean residual service time E[R], the
mean time it takes to serve the Class 1 customers in the queue E[NQ(1)]/µ1, the mean time it
takes to serve the Class 2 customers in the queue E[NQ(2)]/µ2, and the mean time it takes to
serve all the Class 1 customers that arrives during the waiting time in the queue for the Class
2 customer E[WQ(2)]λ1/µ1 = E[WQ(2)]ρ1. Putting it together

E[WQ(2)] = E[R] +
E[NQ(1)]

µ1

+
E[NQ(2)]

µ2

+ E[WQ(2)]ρ1. (457)

By the latter and Little’s formula for Class 2 customers, namely,

E[NQ(2)] = λ2E[WQ(2)],

we obtain

E[WQ(2)] =
E[R] + ρ1E[WQ(1)]

1− ρ1 − ρ2

. (458)

By Eqs. (458) and (456), we obtain

E[WQ(2)] =
E[R]

(1− ρ1)(1− ρ1 − ρ2)
. (459)

Homework 16.7

Show that for m = 3,

E[WQ(3)] =
E[R]

(1− ρ1 − ρ2)(1− ρ1 − ρ2 − ρ3)
. (460)

and that in general

E[WQ(j)] =
E[R]

(1−∑j−1
i=1 ρi)(1−

∑j
i=1 ρi)

. ¤ (461)

The mean delay for a jth priority class customer, denoted E(D(j)), is given by

E[D(j)] = E[WQ(j)] +
1

µj

for j = 1, 2, 3, . . . ,m. (462)
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Homework 16.8

Consider the case of m = 2, λ1 = λ2 = 0.5 with µ1 = 2 and µ2 = 1. Compute the average delay
for each class and the overall average delay. Then consider the case of m = 2, λ1 = λ2 = 0.5
with µ1 = 1 and µ2 = 2 and compute the average delay for each class and the overall average
delay. Explain the difference between the two cases and draw conclusions. Can you generalize
your conclusions? ¤

17.4 Preemptive Resume

In this case an arriving customer of priority j never waits for a customer of a lower priority class
(of Class i for i > j) to complete its service. Therefore, when we are interested in deriving the
delay of a customer of priority j, we can ignore all customers of class i for all i > j. Therefore
the mean delay of a priority j customer satisfies the following equation

E[D(j)] =
1

µj

+
R(j)

1−∑j
i=1 ρi

+ E[D(j)]

j−1∑
i=1

ρi (463)

where R(j) is the mean residual time of all customers of classes i = 1, 2, . . . , j given by

R(j) =
1

2

j∑
i=1

λiS2(i).

The first term of Eq. (463) is simply the mean service time of a jth priority customer. The
second term is the mean time it takes to clear all the customers of priority j or higher that are
already in the system when a customer of Class j arrives. It is merely Eq. (435) that gives the
mean time of waiting in the queue in an M/G/1 queueing system where we replace ρ of (435)
by

∑j
i=1 ρi which is the total traffic load offered by customers of priority j or higher. From the

point of view of the jth priority customer the order of the customers ahead of it will not affect
its mean delay, so we can “mix” all these customers up and consider the system as M/G/1.
The first term of Eq. (463) is the mean total work introduced to the system by customers of
priorities higher than j that arrive during the delay time of our j priority customer. Notice
that we use the ρis there because ρi = λi(1/µi) representing the product of the mean rate of
customer arrivals and the mean work they bring to the system for each priority class i.

Eq. (463) leads to

E[D(1)] =
(1/µ1)(1− ρ1) + R(1)

1− ρ1

, (464)

and

E[D(j)] =
(1/µj)(1−

∑j
i=1 ρi) + R(j)

(1−∑j−1
i=1 ρi)(1−

∑j
i=1 ρi)

. (465)

Homework 16.9

Derive Eqs. (464) and (465). ¤
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Homework 16.10

Consider a single server queue with two classes of customers: Class 1 and Class 2, where Class
1 customers have preemptive resume priority over Class 2 customers. Class i customer arrivals
follow a Poisson process with parameter λi, and their service times are exponentially distributed
with mean 1/µi, i = 1, 2.

1. Derive formulae for the mean delay (including service time) of each of the classes.

2. Assume µ = µ1 = µ2, let ρi = λi/µ, i = 1, 2, and assume ρ1 + ρ2 < 1. Maintain ρ1 and
ρ2 fixed and let µ approach infinity, show that under these conditions, the mean delay of
either traffic class approaches zero.

3. Now assume the conditions ρ1 < 1, but ρ1 + ρ2 > 1, again let µ = µ1 = µ2 approach
infinity and show that under these conditions, the mean delay of traffic Class 1 approaches
zero.

Guide

For exponentially distributed service times with mean 1/µ, we have

R(1) =
1

2

(
λ1

2

µ

)
=

ρ1

µ
.

R(2) =
1

2

(
λ1

2

µ
+ λ2

2

µ

)
=

ρ1 + ρ2

µ
.

E[D(1)] =
(1/µ)(1− ρ1) + ρ1/µ

1− ρ1

=
1

µ(1− ρ1)

This is not a surprise. It is the mean delay obtained by M/M/1 if all the traffic is of class 1
customers. We can observe clearly that if ρ1 stays fixed and µ approaches infinity, the mean
delay approaches zero. This applies to both 2 and 3.

E[D(2)] =
(1/µ)(1− ρ1 − ρ2) + R(2)

(1− ρ1)(1− ρ1 − ρ2)
.

Substituting R(2), we obtain,

E[D(2)] =
(1/µ)(1− ρ1 − ρ2) + (1/µ)(ρ1 + ρ2)

(1− ρ1)(1− ρ1 − ρ2)
=

1

µ(1− ρ1)(1− ρ1 − ρ2)
.

Now we can observe that if ρ1 +ρ2 < 1, as µ approaches infinity, the mean delay also of priority
2, approaches zero. ¤
The last homework problem solution implies the following. For the M/M/1 with priorities
model, if the queues of all priorities are stable, and if the service rate is arbitrarily high, then
the mean delay is arbitrarily low regardless of the utilization. Then in such a case, there is
no much benefit in implementing priorities. However, if for example, ρ1 + ρ2 > 1 but ρ1 < 1,
then priority 1 customers clearly benefit from having priority even if the service rate (and also
arrival rate) is arbitrarily large. Notice that we have observed similar results for M/M/1 without
priorities. Also notice that we consider here a scenario where the service rate is arbitrarily high
and the utilization is fixed which means that the arrival rate is also arbitrarily high.
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18 Queues with General Input

In many situations where there is non-zero correlation between inter-arrival times, the Poisson
assumption for the arrival process which makes queueing models amenable to analysis does
not apply. In this case, we consider more general single-server queues, such as G/GI/1 and
G/G/1, or their finite buffer equivalent G/GI/1/k and G/G/1/k. In fact, the performance of
a queue can be very different if we no longer assume that interarrival times are IID. Consider
for example the blocking probability of an M/M/1/N queue as a function of ρ = λ/µ, then the
blocking probability will gradually increase with ρ and approaches one as ρ → ∞. However,
we recall our discussion of the SLB/D/1/N where we demonstrate that we can construct an
example of a finite buffer queue where the blocking probability approaches one for an arbitrarily
low value of ρ = λ/µ.

Note that we have already covered some results applicable to G/G/1. We already know that
for G/G/1, the utilization Û representing the proportion of time the server is busy satisfies Û =
λ/µ. We know that G/G/1 is work conservative, and we also know that Little’s formula

E[Q] = λE[D] (466)

is applicable to G/G/1.

18.1 Reich’s Formula

We would like to introduce here a new and important concept the virtual waiting time, and a
formula of wide applicability in the study of G/G/1 queues known as Reich’s formula [11, 20,
65].

The virtual waiting time, denoted Wq(t), is the time that a packet has to wait in the queue
(not including its own service) if it arrives at time t. It is also known as remaining workload;
meaning, the amount of work remains in the queue at time t where work is measured in time
it needed to be served. We assume nothing about the interarrival times or the service process.
The latter is considered as an arbitrary sequence representing the workload that each packet
brings with it to the system, namely, the time required to serve each packet. For simplicity, we
assume that the system is empty at time t = 0. Let Wa(t) be a function of time representing
the total work arrived during the interval [0, t). Then Reich’s formula says that

Wq(t) = sup
0≤s<t

{Wa(t)−Wa(s)− t + s}. (467)

If the queue is not empty at time t, the s value that maximizes the right-hand side of (467)
corresponds to the point in time where the current (at time t) busy period started. If the queue
is empty at time t, then that s value is equal to t.

Homework 18.1

Consider the arrival process and the corresponding service duration requirements in the follow-
ing Table.
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Arrival time Service duration (work requirement) Wq(t
+) optimal s

1 3
3 4
4 3
9 3
11 2

11.5 1
17 4

Plot the function Wq(t) for every t, 0 ≤ t ≤ 25 and fill in the right values for Wq(t
+) and the

optimal s for each time point in the Table. ¤

18.2 Queue Size Versus Virtual Waiting Time

Let us now consider the queue size probability function at time t P (Qt = n), for n = 0, 1, 2, . . . .
Its complementary distribution function is given by P (Q > n). Note that for a G/D/1 queue
we have [68]

Qt = dWq(t)e, (468)

so if we consider n integer, and consider the service time to be equal to one unit of work, then
for a G/D/1 queue we have the following equality for the complementary distribution functions
of the virtual waiting time P (Wq(t) > n) and the queue size [68]

P (Qt > n) = P (Wq(t) > n), for n = 0, 1, 2, . . . . (469)

18.3 G/GI/1 Queue and Its G/GI/1/k Equivalent

Let us consider special cases of the G/G/1 and G/G/1/k queues which we call them G/GI/1
and G/GI/1/k, respectively. The GI notation indicates that the service times are mutually
independent and independent of the arrival process and the state of the queue. We consider
two queueing systems: a G/GI/1 queue and a G/GI/1/k queue that are statistically equal in
every aspect except for the fact that the first has an infinite buffer and the second has a finite
buffer. They both have the same arrival process the distribution of their service times and the
relationship of service times to interarrival times are all statistically the same.

In queueing theory there are many cases where it is easier to obtain overflow probability estima-
tions of the unlimited buffer queue G/GI/1, namely, the steady-state probability that the queue
size Q exceeds a threshold k, P (Q > k), than to obtain the blocking probability, denoted Ploss,
of its G/GI/1/k equivalent. In practice, no buffer is of unlimited size, so the more important
problem in applications is the blocking probability of a G/GI/1/k queue.

By applying Little’s formula on the system defined by the single server we can observe that the
mean delay of a G/GI/1/k will be bounded above by the mean delay of its G/GI/1 equivalent.
Notice that if we consider only the server system for both systems, we observe that they have the
same mean delay (service time) and the one associated with the G/GI/1/k has somewhat lower
arrival rate due to the losses. The fact that only part of the customers offered to the G/GI/1
enter the G/GI/1/k equivalent also implies that the percentiles of the delay distribution of the
G/GI/1/k system will be lower than those of the G/GI/1 equivalent.
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An interesting problem associated with these two equivalent queues is the following. Given
P (Q > k) for a G/GI/1 queue, what can we say about the blocking probability of the G/GI/1/k
equivalent. Let us begin with two examples. First, consider a discrete-time single-server queue-
ing model where time is divided into fixed-length intervals called slots. This example is a
discrete-time version of our earlier example where we demonstrated a case of a finite buffer
queue with arbitrarily low traffic and large packet loss. Assume that the service time is de-
terministic and is equal to a single slot. Let the arrival process be described as follows: 109

packets arrive at the first time-slot and no packets arrived later. Consider the case of k = 1.
In the finite buffer case with buffer size equal to k, almost all the 109 packets that arrived
are lost because the buffer can store only one packet. Therefore, Ploss ≈ 1. However, for the
case of infinite buffer where we are interested in P (Wq > k), (Wq = limt→∞ Wq(t)) the case
is completely the opposite. After the 109 time-slots that it takes to serve the initial burst the
queue is empty forever, so in steady-state P (Wq > k) = 0.

In our second example, on the other hand, consider another discrete-time queueing model with
k = 109 and a server that serves 109 customers – all at once at the end of a time slot – with
probability 1 − 10−9 and 1090 customers with probability 10−9. The rare high service rate
ensures stability. Assume that at a beginning of every time-slot, 109 +1 customers arrive at the
buffer. This implies that one out of the arriving 109 + 1 customers is lost, thus Ploss ≈ 10−9,
while P (Wq > k) ≈ 1. We conclude that Ploss and P (Wq > k) can be very different.

Wong [85] considered this problem in the context of an ATM multiplexer fed by multiple
deterministic flows (a queueing model denoted N∗D/D/1 and its finite buffer equivalent) and
obtained the following inequality.

ρPloss ≤ P (Q > k) (470)

Roberts et al. [68] argued that it can be generalized to G/D/1 and its G/D/1/k equivalent.
This can be further generalized. The arguments are analogous to those made in [85]. Let λ be
the arrival rate and µ the service rate in both the G/GI/1 queue and its G/GI/1/k equivalent,
with ρ = λ/µ. Consider a continuous period of time, in our G/GI/1 queue, during which
Q > k and that just before it begins and just after it ends Q ≤ k, and define such time period
as overflow period. Since the queue size at the beginning is the same as at the end of the
overflow period, the number of customers that joined the queue during an overflow period must
be equal to the number of customers served during the overflow period, because the server is
continuously busy during an overflow period.

Now consider a G/GI/1/k queue that has the same realization of arrivals and their work
requirements as the G/GI/1 queue. Let us argue that in the worst case, the number of lost
customers in the G/GI/1/k queue is maximized if all customers that arrive during overflow
periods of the equivalent G/GI/1 queue are lost. If for a given G/GI/1 overflow period, not all
arriving customers in the G/GI/1/k queue are lost, the losses are reduced from that maximum
level without increasing future losses because at the end of a G/GI/1 overflow period, the
number of customers in the equivalent G/GI/1/k queue can never be more than k.

Consider a long period of time of length L, the mean number of lost customers the G/GI/1/k
queue during this period of time of length L is λLPloss. This must be lower or equal to the
number of customers that arrived during the same period of time during the G/GI/1 overflow
periods. This must be equal to the number of customers served during that period of time of
length L during the G/GI/1 overflow periods which is equal to µLP (Q > k).
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Therefore,
λLPloss ≤ µLP (Q > k)

and (470) follows. ¤

Homework 18.2

Show that (470) applies to an M/M/1 queue and its M/M/1/N Equivalent, and discuss how
tight is the bound in this case for the complete range of parameter values.

Guide

Recall that for M/M/1/N ,

Ploss =
ρN(1− ρ)

1− ρN+1
,

and for M/M/1,

P (Q > N) = ρN+1(1− ρ) + ρN+2(1− ρ) + ρN+3(1− ρ) + . . . = ρN+1. ¤

Homework 18.3

Using the UNIX command netstat collect a sequence of 100,000 numbers representing the
number of packets arriving recorded every second for consecutive 100,000 seconds. Assume
that these numbers represent the amount of work, measured in packets, which arrive at an SSQ
during 100,000 consecutive seconds. Write a simulation of an SSQ fed by this arrival process,
assume that all the packets are of equal length and compute the Packet Loss Ratio (PLR)
for a range of buffer sizes and the overflow probabilities for a range of thresholds. PLRs are
relevant in the case of a finite buffer queue and overflow probabilities represent the probability
of exceeding a threshold in an infinite buffer queue. Plot the results in two curves one for
the PLR and the other for the overflow probabilities times ρ−1 and observe and discuss the
relationship between the two. ¤

Homework 18.4

Consider the sequence of 100,000 numbers you have collected. Let E[A] be their average. Gen-
erate a sequence of 100,000 independent random numbers governed by a Poisson distribution
with mean λ = E[A]. Use your SSQ simulation, and compute the PLR for a range of buffer
sizes, and the overflow probabilities for a range of thresholds. Compare your results to those
obtained in the previous Assignment, and try to explain the differences. ¤

Homework 18.5

In this exercise the reader is asked to repeat the previous homework assignment for the Bernoulli
process. Again, consider the sequence of 100,000 numbers you have collected. Let E[A] be
their average. Generate a sequence of 100,000 independent random numbers governed by the
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Bernoulli distribution with mean p = E[A]. Use your SSQ simulation from Exercise 1, and
compute the PLR for a range of buffer sizes, and the overflow probabilities for a range of
thresholds. Compare your results to those obtained previously, and discuss the differences.
¤
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19 Queueing Networks

So far we have considered various queueing systems, but in each case we have considered a
single queueing system in isolation. Very important and interesting models involve networks
of queues. One important application is the Internet itself. It may be viewed as a network
of queueing systems where all network elements, such as routers and switches, are connected
and where the packets are the customers served by the various network elements and are often
queued there waiting for service.

Queueing network models can be classified into two groups: (1) open queueing networks, and
(2) closed queueing networks. In closed queueing networks the same customers stay in the
network all the time. No new customers join and no customer leaves the network. Customers
that complete their service in one queueing system goes to another and then to another and
so forth, and never leaves the network. In open queueing systems new customers from the
outside of the network can join any queue, and when they complete their service in the network
obtaining service from an arbitrary number of queueing system they may leave the network. In
this section we will only consider open queueing networks.

19.1 Jackson Networks

Consider a network of queues. An issue that is very important for such a queueing networks
is the statistical characteristics of the output of such queues because in queueing networks,
output of one queue may be the input of another.

Burke’s Theorem states that, in steady-state, the output (departure) process of M/M/1, M/M/k
or M/M/∞ queue follows a Poisson process. Because no traffic is lost in such queues, the arrival
rate must be equal to the departure rate, then any M/M/1, M/M/k, or M/M/∞ queue with
arrival rate of λ will have a Poisson departure process with rate λ in steady-state.

Having information about the output processes, we will now consider an example of a very
simple queueing network made of two identical single-server queues in series, in steady-state,
where all the output of the first queue is the input of the second queue and all the customers
that complete service at the second queue leave the system. Let us assume that the customers
that arrive into the first queue follow a Poisson process with parameter λ. The service times
required by each of the arriving customers at the two queues are independent and exponentially
distributed with parameter µ. This means that the amount of time a customer requires in the
first queue is independent of the amount of time a customer requires in the second queue and
they are both independent of the arrival process into the first queue. Since the output process
of the first queue is Poisson with parameter λ, and since the first queue is clearly an M/M/1
queue, we have here nothing but two identical M/M/1 queues is series. This is an example of
a network of queues where Burke’s theorem [16] leads immediately to a solution for queue size
and waiting time statistics. A class of networks that can be easily analyzed this way is the class
of the so-called acyclic networks. These networks are characterized by the fact that a customer
never goes to the same queue twice for service.

If the network is not acyclic, the independence between inter arrival times and between inter
arrival and service times do not hold any longer. This means that the queues are no longer
Markovians. To illustrate this let us consider a single server queue with feedback described as
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follows. (Normally, a single node does not constitute a network, however, this simple single
queue example is the simplest model to illustrate the feedback effect, and it is not too simple,
as it can easily be extended to the case of two nodes with feedback.) Customers arrive into the
system from the outside according to a Poisson process with parameter λ and the service time
is exponentially distributed with parameter µ. Then when the customer completes the service
the customer returns to the end of the queue with probability p, and with probability (1-p) the
customer leaves the system. Now assume that λ is very small and µ is very high. Say p > 0.99.
This results in an arrival process which is based on very infrequent original arrivals (from the
outside) each of which brings with it a burst of many feedback arrivals that are very closed
to each other. Clearly this is not a Poisson process. Furthermore, the inter-arrivals of packets
within a burst, most of which are feedback from Q2, are very much dependent on the service
times, so clearly we have dependence between inter-arrival times and service times.

Nevertheless, the so-called Jackson’s Theorem extends the simple result applicable to an acyclic
network of queues to networks that are not acyclic. In other words, although the queues are
not M/M/1 (or M/M/k or M/M/∞), they behave in terms of their queue-size statistics as if
they are.

Jackson’s Theorem can be intuitively justified for the case of a single queue with feedback as
follows. Let the feedback arrivals have preemptive resume priority over all other arrivals. This
priority regime will not change the queue size statistics. Now we have that the service time
comprises a geometric sum of exponential random variables which is also exponential. As a
result, we have an M/M/1 queue with arrival rate λ and service rate µ(1− p).

Consider a network of N single-server queues with infinite buffer in steady-state. The Jackson
theorem also applies to multi-server queues, but let us consider single-server queues for now.
For queue i, i = 1, 2, 3, . . . , N , the arrival process from the outside is Poisson with rate Ai.
We allow for Ai = 0 for some queues, but there must be at least one queue j, such that Aj > 0.
Once a customer completes its service in queue i, it continues to queue j with probability Pij,

i = 1, 2, 3, . . . , N , or leaves the system with probability 1−∑N
j=1 Pij. Notice that we allow for

Pii > 0 for some queues. That is, we allow for positive probability for customers to return to
the same queue they just exited.

Let λj be the total arrival rate into queue j. These arrival rates can be computed by solving
the following set of equations.

λj = Aj +
N∑

i=1

λiPij, j = 1, 2, 3, . . . , N. (471)

The above set of equations can be solved uniquely, if every customer eventually leaves the
network. This means that the routing probabilities Pij must be such that there is a sequence
of positive routing probabilities and a final exit probability that create an exit path of positive
probability from each node.

The service times at the jth queue are assumed exponentially distributed with parameter µj.
They are assumed to be mutually independent and also independent of the arrival process at
that queue. Let ρj be defined by

ρj =
λj

µj

for j = 1, 2, 3, . . . , N. (472)
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Assume that
ρj < 1 for j = 1, 2, 3, . . . , N.

Let Qj be the queue-size of queue j. Then according to Jackson’s Theorem, in steady-state,
we have that

P (Q1 = k1, Q2 = k2, . . . , QN = kN) = P (k1)P (k2)P (k3) · . . . · P (kN) (473)

where P (ki) = ρki
i (1− ρi), for i = 1, 2, 3, . . . , N.

Comment: Although Jackson theorem assumes that the arrival processes from the outside
follow Poisson processes, it does not assume that the input into every queue follows a Poisson
processes. Therefore it does not assume that the queues are independent M/M/1 (or M/M/k
or M/M/∞) queues. However, it turns out, according to Jackson theorem that the joint
probability distribution of the queue sizes of the N queues is obtained as if the queues are
independent M/M/1 (or M/M/k or M/M/∞) queues. This result applies despite the fact that
the network is cyclic (not acyclic) in which case we have demonstrated that the queues do not
have to be M/M/1 queues.

Therefore, the mean queue-size of the jth queue is given by

E[Qj] =
ρj

1− ρj

. (474)

The mean delay of a customer in the jth queue E[Dj] defined as the time from the moment
the customer joins the queue until it completes service, can be obtain by Little’s formula as
follows.

E[Dj] =
E[Qj]

λj

. (475)

Using Little’s formula, by considering the entire queueing network as our system, we can also
derive the mean delay of an arbitrary customer E[D]:

E[D] =

∑N
j=1 E[Qj]∑N

j=1 Aj

. (476)

Let us now consider a network of two-queue in series where all the traffic that completes service
in queue 1 enters queue 2 and some of the traffic in queue 2 leaves the system while the rest
enters queue 1. This example is similar to the above mentioned example of a single queue with
feedback. Using our notation, let the arrivals from the outside follow Poisson processes with
rates A1 = 10−8 and A2 = 0 and let µ1 = µ2 = 1. Further assume that the probability that a
customer that completes service in queue 2 leaves the system is 10−3, so it exters queue 1 with
probability 1− 10−3

Accordingly,
λ1 = A1 + (1− 10−3)λ2

and
λ2 = λ1.

Thus,
λ1 = 10−8 + (1− 10−3)λ1,
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so
λ1 = λ2 = 10−5

and
ρ1 = ρ2 = 10−5,

so

E[Q1] = E[Q2] =
10−5

1− 10−5
≈ 10−5

and

E[D1] = E[D2] ≈ 10−5

10−5
= 1.

Recalling that the mean service time is equal to one, this means that negligible queueing delay
is expected. (The word ‘negligible’ is used instead of ‘zero’ because of the approximation
1− 10−5 ≈ 1 made above.) This result makes sense intuitively. Although the feedbacked traffic
is more bursty than Poisson we are considering here the same packet that returns over and over
again and it is impossible for the same packet to wait in the queue for itself to be served.

An open network of M/M/1, M/M/k or M/M/∞ queues described above is called a Jackson
Network. For such network an exact solution is available. However, in most practical cases,
especially when we have to deal with the so-called loss networks that comprise queues, such
as M/M/k/k, where traffic is lost, we have to make additional modelling assumptions and
to rely on approximations to evaluate performance measures, such as blocking probability, or
carried traffic. One useful approximation is the so-called Reduced-Load Erlang Fixed-Point
Approximation which is reasonably accurate and very useful for loss networks.

Homework 19.1

Consider a 6-node network of M/M/1 queues, the service rate of all the queues is equal to one,
i.e., µi = 1 for i = 1, 2, 3, . . . , 6. The arrival rates from the outside into the different queues is
given by r1 = 0.6, r2 = 0.5, and ri = 0 for i = 3, 4, 5, 6. The routing matrix is as follows

1 2 3 4 5 6
1 0 0.4 0.6 0 0 0
2 0 0.1 0 0.7 0.2 0
3 0 0 0 0.3 0.7 0
4 0 0 0 0 0 0.6
5 0 0 0 0.3 0 0.2
6 0 0 0.3 0 0 0

1. Find the mean delay in each of the queues.

2. Find the mean time a packet spends in the network from the moment it enters the network
until it leaves the network.

3. Find the probability that the entire network is empty. ¤

19.2 Erlang Fixed-Point Approximation

Let us consider a circuit switched network made of nodes (switching centers) that are connected
by links. Each link has a fixed number of circuits. In order to make a call between two nodes,
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a user should reserve a free circuit in each consecutive link of a path between the two nodes.
Such reservation is successful if and only if there exists a free circuit on each of the links of that
path.

To evaluate the probability that a circuit reservation is blocked, we first make the following
simplifying assumptions:

1. all the links are independent,

2. the arrival process of calls for each origin-destination pair is Poisson, and

3. the arrival process seen by each link is Poisson.

Having made these assumptions, we now consider each link as an independent M/M/k/k system
for which the blocking probability is readily available by the Erlang B formula. In particular,
let aj be the total offered load to link j from all the routes that pass through link j. Recall
that multiplexing of Poisson processes give another Poisson process which its rate is the sum
of the individual rates. Then the blocking probability on link j is obtained by

Bj = Ek(aj). (477)

Now that we have means to obtain the blocking probability on each link, we can compute the
blocking probability of a call made on a given route. Let B(R) be the blocking probability of
a call made on route R. The route R can be viewed as an ordered set of links, so the route
blocking probability is given by

B(R) = 1−
∏
i∈LR

(1−Bi). (478)

Note that in the above equation, LR represents the set of links in route R.

Let A(R) be the offered traffic on route R and let aj(R) be the total traffic offered to link j
from traffic that flow on route R. Then aj(R) can be computed by deducting from A(R) the
traffic lost due to congestion on links other than j. That is,

aj(R) = A(R)
∏

i∈LR; i6=j

(1−Bi). (479)

This consideration to the reduced load due to blocking on other links gave rise to the name
reduced load approximation to this procedure.

Then the total offered traffic on link j is obtained by

aj =
∑
R∈R

aj(R) (480)

where R is the set of all routes.

These give a set of nonlinear equations that require a fixed-point solution. Notice that Erlang
B is non-linear.

To solve these equations, we start with an initial vector of Bj values, for example, set Bj = 0
for all j. Since the A(R) values are known, we use equation (479) to obtain the aj(R) values.
Then use equation (480) to obtain the aj values, which can be substituted in equation (477)
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to obtain a new set of values for the blocking probabilities. Then the process repeats itself
iteratively until the blocking probability values obtained in one iteration is sufficiently close to
those obtained in the previous iteration.

The above solution based on the principles of the Reduced-Load and Erlang Fixed-Point Ap-
proximations can be applied to many systems and networks. For example, an application is an
Optical Burst Switching (OBS) network is described in [70] where bursts of data are moving
between OBS nodes each of which is modelled as an M/M/k/k system.

We have discussed an approach to evaluate blocking probability for circuit switched networks
under the so-called fixed routing regime, where a call is offered to a route, and if it is rejected
it is lost and cleared from the system. There are, however, various other regimes involving
alternate routing where rejected calls from a given routes can overflow to other routes. A similar
Erlang fixed-point approximation can be used for circuit switching with alternate routing. See
[32].

19.3 A Markov Chain Simulation of a Mobile Cellular Network

A mobile cellular network can be modelled as a network of M/M/k/k systems by assuming that
the number of channels in each cell is fixed and equal to k, that new call generations in each
cell follows a Poisson process, that call holding times are exponentially distributed and that
times until handover occurs in each cell are also exponentially distributed. In the following we
describe how to simulate such a network.

Variables and input parameters:
N = total of M/M/k/k Systems (cells) in the network;
Q(i) = number of customers (queue size) in cell i ;
Bp = estimation for the blocking probability;
Na(i) = number of customer arrivals counted so far in cell i;
Nb(i) = number of blocked customers counted so far in cell i;
MAXNa = maximal number of customers - used as a stopping criterion;
µ = 1/(the mean call holding time)
λ(i) = arrival rate of new calls in cell i;
P (i, j) = Matrix of routing probabilities;
δ(i) = handover rate in cell i per call = 1/(mean time a call stays in cell i before it leaves the
cell)
PB = Blocking probability.
Neib(i) = the set of neighboring cells of cell i.
|Neib(i)|= number of neighboring cells of cell i.

Again, we will repeatedly consider R(01) a uniform U(0, 1) random deviate. A new value for
R(01) is generated every time it is called.

To know if the next event is an arrival, we use the following if statement.

If

R(01) ≤
∑N

i=1 λ(i)∑N
i=1 λ(i) +

∑N
i=1 Q(i)µ +

∑N
i=1 Q(i)δ(i)

then the next event is an arrival. Else, to find out if it is a departure (it could also be a
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handover) we use the following if statement. If

R(01) ≤
∑N

i=1 λ(i) +
∑N

i=1 Q(i)µ∑N
i=1 λ(i) +

∑N
i=1 Q(i)µ +

∑N
i=1 Q(i)δ(i)

then the next event is a departure; else, it is a handover.

If the next event is an arrival, we need to know in which of the N cells it occurs. To find out,
we use the following loop.

For i = 1 to N , do: If

R(01) ≤
∑i

j=1 λ(j)
∑N

j=1 λ(j)
,

stop the loop. The arrival occurs in cell i, so if

N∑
j=1

Na(j) = MAXNa,

the simulation ends, so we compute the blocking probabilities as follows.

PB =

∑N
i=1 Nb(i)

MAXNa

.

Else, Na(i) = Na(i) + 1 and if Q(i) < k then Q(i) = Q(i) + 1, else the number of lost calls
needs to be incremented, namely, Nb(i) = Nb(i) + 1.

If the next event is a departure, we need to know in which of the N cells it occurs. To find out
we use the following loop.

For i = 1 to N , do: If

R(01) ≤
∑i

j=1 Q(j)µ
∑N

j=1 Q(j)µ
.

Then stop the loop. The departure occurs in System i, so Q(j) = Q(j) − 1. Note that we do
not need to verify that Q(j) > 0 (why?).

If the next event is a handover, we need to know from which of the N cells it handovers out of.
To find it out, we use the following loop.

For i = 1 to N , do: If

R(01) ≤
∑i

j=1 Q(j)δ(j)
∑N

j=1 Q(j)δ(j)
.

Then stop the loop. The handover occurs out of cell i, so Q(i) = Q(i)− 1. Note that again we
do not need to verify that Q(i) > 0.

Then to find out into which cell the call handover in, we use the following:

For j = 1 to |Neib(i)|, do: If

R(01) ≤
∑j

k=1 P (i, k)∑|Neib(i)|
k=1 P (i, k)

,

The call handovers into cell k.
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20 Stochastic Processes as Traffic Models

In general, the aim of traffic modelling is to provide the network designer with relatively simple
means to characterize traffic load on a network. Ideally, such means can be used to estimate
performance and to enable efficient provisioning of network resources. Modelling a traffic stream
emitted from a source, or a traffic stream that represents a multiplexing of many Internet traffic
streams, is part of traffic modelling. It is normally reduced to finding a stochastic process
that behaves like the real traffic stream from the point of view of the way it affects network
performance or provides QoS to customers.

20.1 Parameter Fitting

One way to choose such a stochastic process is by fitting its statistical characteristics to those
of the real traffic stream. Consider time to be divided into fixed-length consecutive intervals,
and consider the number of packets arriving during each time interval as the real traffic stream.
Then, the model of this traffic stream could be a stationary discrete-time stochastic process
{Xn, n ≥ 0}, with similar statistical characteristics as those of the real traffic stream. In
this case, Xn could be a random variable representing the number of packets that arrive in
the nth interval. Let Sn be a random variable representing the number of packets arriving
in n consecutive intervals. We may consider the following for fitting between the statistics of
{Xn, n ≥ 0} and those of the real traffic stream:

• The mean E[Xn].

• The variance V ar[Xn].

• The AVR discussed in Section 2.1. The AVR is related to the so-called Index of Dispersion
for Counts (IDC) [37] as follows: the AVR is equal to E[Xn] times the IDC.

A stationary stochastic process {Xn, n ≥ 0}, where autocorrelation function decays slower than
exponential is said to be Long Range Dependent (LRD). Notice that if the autocovariance sum∑∞

k=1 Cov(X1, Xk) is infinite the autocorrelation function must decay slower than exponential,
so the process is LRD. In such processes the use of AVR (or IDC) may not be appropriate
because it is not finite, so a time dependent version of the IDC, i.e., IDC(n) = V ar[Sn]/E[Xn]
may be considered. Another statistical characteristic that is suitable for LRD processes is the
so-called Hurst parameter denoted by H for the range 0 ≤ H < 1 that satisfies

lim
n→∞

V ar[Sn]

αn2H
= 1. (481)

Each of these statistical parameters have their respective continuous-time counterparts. As the
concepts are equivalent, we do not present them here. We will discuss now a few examples of
stochastic processes (out of many more available in the literature) that have been considered
as traffic models.

20.2 Poisson Process

For many years the Poisson process has been used as a traffic model for the arrival process of
phone calls at a telephone exchange. The Poisson process is characterized by one parameter
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λ, and λt is the mean as well as the variance of the number of occurrences during any time
interval of length t. Its memoryless nature makes it amenable to analysis as noticed through the
analyzes of the above-mentioned queueing systems. Its ability to characterize telephone traffic
well, being characterized by a single parameter, and its memoryless nature which makes it so
amenable to analysis have made the Poisson process very useful in design and dimensioning of
telephone networks.

By its nature, the Poisson process can accurately model events generated by a large number
of independent sources each of which generating relatively sparsely spaced events. Such events
could include phone calls or generation of Internet traffic flows. For example, a download of
a page could be considered such a traffic flow. However, it cannot accurately model a packet
traffic stream generated by a single user or a small number of users. It is important to note here
that many textbooks and practitioners do consider the Poisson process as a model of a packet
traffic stream (despite the inaccuracy it introduces) due to its nice analytical properties.

Normally, the Poisson process is defined as a continuous-time process. However, in many
cases, it is used as a model for a discrete sequence of a traffic stream by considering time to
be divided into fixed length intervals each of size one (i.e., t = 1), and simply to generate a
sequence of independent random numbers which are governed by a Poisson distribution with
mean λ where λ is equal to the average of the sequence we try to model. As we fit only one
parameter here, namely the mean, such model will not have the same variance, and because of
the independence property of the Poisson process, it will not mimic the autocorrelation function
of the real process. In an assignment below, you will be asked to demonstrate that such process
does not lead to a similar queueing curves as the real traffic stream.

20.3 Markov Modulated Poisson Process (MMPP)

Traffic models based on MMPP have been used to model bursty traffic. Due to its Markovian
structure together with its versatility, the MMPP can capture bursty traffic statistics better
than the Poisson process and still be amenable to queueing analysis. The simplest MMPP
model is MMPP(2) with only four parameters: λ0, λ1, δ0, and δ1.

Queueing models involving MMPP input have been analyzed in the 70s and 80s using Z-
transform [86, 88, 89, 90]. Neuts developed matrix methods to analyse such queues [61]. For
applications of these matrix methods for Queueing models involving MMPP and the use of
MMPP in traffic modelling and its related parameter fitting of MMPP the reader is referred to
[26, 37, 53, 60].

20.4 Autoregressive Gaussian Process

A traffic model based on a Gaussian process can be described as a traffic process were the
amount of traffic generated within any time interval has a Gaussian distribution. There are
several ways to represent a Gaussian process. The Gaussian auto-regressive is one of them.
Also, in many engineering applications, the Gaussian process is described as a continuous-time
process. In this section, we shall define the process as a discrete time.

Let time be divided into fixed length intervals. Let Xn be a continuous random variable
representing the amount of work entering the system during the nth interval.
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According to the Gaussian Autoregressive model we assume that Xn, n = 1, 2, = 3 . . . is the
so-called kth order autoregressive process, defined by

Xn = a1Xn−1 + a2Xn−2 + . . . + akXn−kbG̃n, (482)

where G̃n is a sequence of IID Gaussian random variables each with mean η and variance 1,
and ai (i = 1, 2, . . . , k) and b are real numbers with |a| < 1.

In order to characterize real traffic, we will need to find the best fit for the parameters
a1, . . . , ak, b, and η. On the other hand, it has been shown in [3], [4], [5] that in any
Gaussian process only three parameters are sufficient to estimate queueing performance to a
reasonable degree of accuracy. It is therefore sufficient to reduce the complexity involved in
fitting many parameters and use only the 1st order autoregressive process, also called the AR(1)
process. In this case we assume that the Xn process is given by

Xn = aXn−1 + bG̃n, (483)

where G̃n is again a sequence of IID Gaussian random variables with mean η and variance 1,
and a and b are real numbers with |a| < 1. Let λ = E[Xn] and σ2 = var[Xn]. The AR(1)
process was proposed in [56] as a model of a VBR traffic stream generated by a single source
of video telephony.

The Xns can be negative with positive probability. This may seem to hinder the application
of this model to real traffic processes. However, in modeling traffic, we are not necessarily
interested in a process which is similar in every detail to the real traffic. What we are interested
in is a process which has the property that when it is fed into a queue, the queueing performance
is sufficiently close to that of the queue fed by the real traffic.

Fitting of the parameters a b and η with measurable (estimated) parameters of the process λ,
σ2 and S, are provided based on [4]:

a =
S

S + σ2
(484)

b = σ2(1− a2) (485)

η =
(1− a)λ

b
(486)

where S is the autocovariance sum given by Eq. (168).

20.5 Exponential Autoregressive (1) Process

In the previous section we considered an autoregressive process which is Gaussian. What made
it a Gaussian process was that the so-called innovation process, which in the case of the previous
section was the sequence bG̃n, was a sequence of Gaussian random variables. Letting Dn be
a sequence of inter-arrival times, here we consider another AR(1) process called Exponential
Autoregressive (1) (EAR(1)) [31], defined as follows:

Dn = aDn−1 + InEn, (487)

where D0 = I0, {In} is a sequence of IID random variables in which P (In = 1) = 1 − a and
P (In = 0) = a, and {En} is a sequence of IID exponential random variables with parameter
λ.
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The EAR(1) has many nice and useful properties. The {Dn} process is a sequence of exponential
random variables with parameter λ. These are IID only for the case a = 0. That is, when
a = 0, the {Dn} is a sequence of inter-arrival times of a Poisson process. The autocorrelation
function of {Dn} is given by

CEAR1(k) = ak. (488)

It is very easy to simulate the {Dn} process, so it is useful to demonstrate by simulation the
relationship between correlation in the arrival process and queueing performance.

Homework 20.1

Prove that Dn is exponentially distributed for all n ≥ 0.

Guide

Knowing that the statement is true for D0, prove that the statement is true for D1. Let
LX(s) be the Laplace transform of random variable X. By definition, LX(s) = E[e−sX ], so
LI1E1(s) = E[e−sI1E1 ]. Thus, by (89), LI1E1(s) = P (I = 1)E[e−SE1 ] + P (I = 0)E[e−0] =
(1− a)λ/(λ + s) + a. By definition, LD1(s) = E[e−s(aD0+I1E1)] = LD0(as)LI1E1(s). Recall that
D0 is exponentially distributed with parameter λ, so LD0(as) = λ/(λ + as). Use the above
to show that LD1(s) = λ/(λ + s). This proves that D1 is exponentially distributed. Use the
recursion to prove that Dn is exponentially distributed for all n > 1. ¤

20.6 Poisson Pareto Burst Process

Unlike the previous models, the Poisson Pareto Burst Process (PPBP) is Long Range Depen-
dent (LRD). The PPBP has been proposed as a more realistic model for Internet traffic than
its predecessors. According to this model, bursts of data (e.g. files) are generated in accordance
with a Poisson process with parameter λ. The size of any of these bursts has a Pareto distribu-
tion, and each of them is transmitted at fixed rate r. At any point in time, we may have any
number of sources transmitting at rate r simultaneously because according to the model, new
sources may start transmission while others are active. If m sources are simultaneously active,
the total rate equals mr. A further generalization of this model is the case where the burst
lengths are generally distributed. In this case, the amount of work introduced by this model
as a function of time is equivalent to the evolution of an M/G/∞ queueing system. Having
m sources simultaneously active is equivalent to having m servers busy in an M/G/∞ system.
M/G/∞ which is a name of a queueing system is also often use to describe the above describe
traffic model. The PPBP is sometimes called M/Pareto/∞ or simply M/Pareto [2].

Again, let time be divided into fixed length intervals, and let Xn be a continuous random
variable representing the amount of work entering the system during the nth interval. For
convenience, we assume that the rate r is the amount transmitted by a single source within
one time interval if the source was active during the entire interval. We also assume that the
Poisson rate λ is per time interval. That is, the total number of transmissions to start in one
time interval is λ.
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To find the mean of Xn for the PPBP process, we consider the total amount of work generated in
one time interval. The reader may notice that the mean of the total amount of work generated
in one time interval is equal to the mean of the amount of work transmitted in one time interval.
Hence,

E[Xn] = λr/(γ − 1). (489)

Also, another important relationship for this model, which is provided here without proof,
is

γ = 3− 2H, (490)

where H is the Hurst parameter.

Having the last two equations, we are able to fit the overall mean of the process (E[Xn]) and
the Hurst parameter of the process with those measured in a real life process, and generate
traffic based on the M/Pareto/∞ model.

Homework 20.2

Use the 100,000 numbers representing the number of packets arriving recorded every second
for consecutive 100,000 seconds you have collected in the assignments of Section 18 Using the
UNIX command netstat. Again assume that these numbers represent the amount of work,
measured in packets, which arrive at an SSQ during 100,000 consecutive time-intervals. Let
E[A] be their average. Use your SSQ simulation of the assignments of Section 18, and compute
the PLR, the correlation and the variance of the amount of work arrive in large intervals (each
of 1000 packet-transmission times) for the various processes you have considered and discuss
the differences. ¤

Homework 20.3

Compare by simulations the effect of the correlation parameter a on the performance of the
queues EAR(1)/EAR(1)/1 versus their EAR(1)/M/1, M/EAR(1)/1 and M/M/1 equivalence.
Demonstrate the effect of a and ρ on mean delay. Use the ranges 0 ≤ a ≤ 1 and 0 ≤ ρ ≤ 1.
¤
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The End of the Beginning

It is appropriate now to recall Winston Churchill’s famous quote: “Now this is not the end.
It is not even the beginning of the end. But it is, perhaps, the end of the beginning.” In
this book, the reader has been introduced to certain fundamental theories, techniques and
numerical methods of queueing theory and related stochastic models as well as to certain
practical telecommunications applications. However, for someone who is interested to pursue a
research career in this field, there is a scope for far deeper and broader study of both the theory
of queues as well as the telecommunications and other applications. For the last half a century,
advances in telecommunications technologies have provided queueing theorists with a wealth of
interesting problems and research challenges and it is often said that the telecommunications
and information technologies actually revived queueing theory. However, this is only part of
the story. There are many other application areas of queueing theory. The fact is that many
exceptional queueing theorists also developed expertise in various real-life systems, operations
and technologies, and have made tremendous contributions to their design, operations and
understanding. This dual relationship between queueing theory and its applications will likely
to continue, so it is very much encouraged to develop understanding of real-life problems as
well as queueing theory. And if the aim is to become expert in both, it is not the end of the
beginning, but merely the beginning.
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