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Chapter 2

A Brief Introduction to Fluid-Flow Models

This chapter describes a model for evaluating the performance of systems where the arrival of work is propor-
tional to time. Such models arise commonly in communication networks where work is often in the form of
packets that require transmission on network links. Hence, work is in proportion to the size of the packet to
be transmitted, with larger packets taking longer to arrive on the system’s input link(s). It is this correlation
between service times and inter-arrival times that we seek to capture. The introduction of correlation typically
makes for a much more complex analysis, e.g., see [1] for an example, and the goal is to capture the main feature
of correlation, without adding too much complexity. Fluid-flow models offer such an intermediate alternative.

2.1 Limitations of Point Processes

Before describing the main characteristics of fluid-flow models, we highlight the impact that failure to account
for correlation (between arrivals and services times) can have.

Specifically, consider the traditional point process based approach used by, say, M/M/1 or M/G/1 queues, to
represent the arrival of work (packets) at a communication link/multiplexer. Those models do not account for
the fact that the finite speed of (input) links couple inter-arrival times and service times. This is not unreason-
able when considering a multiplexer with many input links, each of higher speed than the output link, where
this coupling is weak, but can result in overly pessimistic outcomes in other cases. Consider for example the
configuration of Fig. 2.1, where a single high-speed link, e.g., a 1 Gbps Ethernet link, feeds packets to a buffer
connected to a slower 100 Mbps Ethernet wide-area uplink. The presence of a single, finite speed input link
imposes a tight upper bound on the maximum amount of data that can arrive to the buffer during any period of
time. This constraint on the arrival process in turn limits the amount of buffering required1.
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Figure 2.1: A simple link model.

For illustration purposes, assume that the 1 Gbps Ethernet input link of Figure 2.1 is active (receiving packets)
only 10 % of the time, i.e., the average incoming bit rate is 100 Mbps or exactly the speed of the output link, i.e.,
for a resulting load of ρ = 1. If we further assume that the size of incoming packets follows (approximately) an

1E.g., when input and output links speeds are equal and the output link is work conserving, the buffer never stores more than one
packet.
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exponential distribution with mean 2, 000 bits, we could rely on an M/M/1 queue to model the system (the packet
arrival rate is λ = 50, 000 packets/sec). Under an M/M/1 model, a load of ρ = 1 implies an infinite average
waiting time for incoming packets (assuming an infinite buffer as well). This is, however, a gross over-estimate,
in part because it assumes arrival patterns that are not all feasible. For example, under a Poisson arrival process of
rate λ = 50, 000 packets/sec, the probability that two consecutive arrivals are less than 1µsec apart is about 0.05,
and given exponentially distributed packet sizes with mean 2, 000 bits, the probability that the second packet is
larger than the average packet size of 2, 000 bits is about 0.37. Hence, an M/M/1 model allows two consecutive
packets that are less than 1µsec apart with the second one being larger than 2, 000 bits with a probability of about
0.018. However, we know that this is physically not possible, i.e., has zero probability, since in 1µsec no more
than 1, 000 bits can arrive on a 1 Gbps link. Our goal is to develop models that can capture this constraint.
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Figure 2.2: A fluid model analogy.

2.2 Fluid-Flow Models Overview

The basic premise of a fluid-flow model is that the arrival of work (packets) on a link is progressive with a rate
(in bits/sec) that is a function of the input link speed. Packet transmissions (service times) are also progressive,
but at a rate that depends on the speed of the output link. The main simplification that makes fluid-flow models
tractable is that they ignore packet boundaries. This is best understood through an analogy that further illustrates
the similarity to fluid systems. In the context of a fluid-flow model for the system of Fig. 2.1, the input link is a
pipe through which bits flow at a maximum rate of 1 Gbps, the buffer is a container that stores the bits as they
arrive, and the output link is another pipe that drains bits out of the container at a maximum rate of 100 Mbps.
The flow of bits on the input pipe can be turned on and off (see Fig. 2.3) as packets transmissions start and stop.
Conversely, any bit is deemed available for transmission over the output pipe, as soon as it has been received. This
is an approximation of the common behavior of packet networks, which typically operate in a store-and-forward
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fashion. This primarily affects packets that arrive to find an empty buffer or a low level of buffer occupancy2.
Hence, the impact should be small unless the (output) link load is very low.

In the rest of this chapter, we describe and analyze this basic model, with a focus on the probability distri-
bution of the buffer content, e.g., P (B ≤ x), where B is a random variable denoting the number of bits in the
buffer, and x is in bits.

2.3 Buffer Content Distribution
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Figure 2.3: Source model.

2.3.1 Notation and System Model

We assume that the input to the system is characterized by a source that alternates between active and idle states,
i.e., an ON-OFF source. In the ON state, the source transmits data (bits) at its peak rate R. In the OFF state,
the source does not transmit any data. The source is further characterized by the distributions of its ON and
OFF periods that are both take to be exponential. The average duration of an ON period is denoted as b, and the
average duration of an OFF period is denoted as I . The source utilization (probability π1 that the source is in
the ON state) is denoted as ρ, and is readily seen to be equal to the ratio of the average ON period to the sum of
the average ON and OFF periods, i.e., the duty cycle of the source or ρ = b/(b + I). Note that conversely, the
probability that the source is OFF is π0 = 1− ρ.

Under the assumption of exponentially distributed ON and OFF states, the source is essentially a two-state
(ON and OFF) continuous time Markov chain as shown in Fig. 2.3. The transition rate λ out of the OFF state and
the transition rate µ out of the ON state can be expressed as functions of b and ρ, namely

λ =
ρ

b(1− ρ)

µ =
1

b
(2.1)

The source, when active, feeds data into a buffer that is being emptied (served) by a link (server) of speed
C. Unless stated otherwise, we assume that the buffer is infinite. When considering finite buffer systems, X
will be used to denote the buffer size. Our goal is to obtain an expression for the buffer content distribution
P (B ≤ x), x ≥ 0, where B is the random variable denoting the buffer content, and we proceed with this
derivation next.

2Note that as long as the input link speed is higher than that of the output, packet transmissions on the output still proceed continuously
once started even if their transmission starts before the arrival of the last bit of the packet.
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2.3.2 System State and Evolution

Let the tuple (t, x) denote the state of the buffer at time t, i.e., the buffer content is ≤ x at time t, and let Pi(t, x)
be the probability that at time t the source is in state i (i = 0 if the source is idle and i = 1 if the source is active)
and the buffer content is at most x. Our first step is to express the evolution over time of the quantities Pi(t, x),
i = 0, 1, based on the characteristics of the source and the server. Specifically, the evolution of the system can be
described by the following set of equations:

P0(t+ dt, x) = (1− λdt)P0(t, x+ Cdt) + µdtP1(t, x− (R− C)dt)

P1(t+ dt, x) = λdtP0(t, x+ Cdt) + (1− µdt)P1(t, x− (R− C)dt). (2.2)

Let us consider first the equation giving P0(t+ dt, x). There are two possible ways for the buffer content to
be below x at time t+ dt with the source being in state i = 0. One possibility is if the source was in state i = 0
at time t and did not make a transition to state i = 1 in the interval t, t + dt) (this has probability (1 − λdt)),
and the buffer content was below x + Cdt at time t (the link empties Cdt during the interval [t, t + dt)). The
second possibility is that the source was in state i = 1 at time t and that it switched to state i = 0 in the interval
t, t + dt) (this has probability µdt), and the buffer content at time t was below x − (R − C)dt ((R − C) is the
rate at which the buffer fills when the source is active). A similar reasoning can be carried out for P1(t + dt, x)
to yield the second equation.

Our next step is to rewrite Eq. (2.2) so as to ultimately be able to express it in terms of differential equations.
Specifically, we can rewrite the first expression in Eq. (2.2) as follows:

P0(t+ dt, x)− P0(t, x+ Cdt) =

[−λP0(t, x+ Cdt) + µP1(t, x− (R− C)dt)] dt

⇒ P0(t+ dt, x)− P0(t, x)

dt
+ C

P0(t, x)− P0(t, x+ Cdt)

Cdt
=

− λP0(t, x+ Cdt) + µP1(t, x− (R− C)dt).

Letting dt→ 0 in the above expression gives

∂P0(t, x)

∂t
− C∂P0(t, x)

∂x
= −λP0(t, x) + µP1(t, x) (2.3)

Similarly, we can rewrite the second expression in Eq. (2.2) as follows:

P1(t+ dt, x)− P1(t, x− (R− C)dt) =

[λP1(t, x+ Cdt)− µP1(t, x− (R− C)dt)] dt

⇒ P1(t+ dt, x)− P1(t, x)

dt
+ (R− C)

P1(t, x)− P1(t, x− (R− C)dt)

(R− C)dt
=

λP1(t, x+ Cdt)− µP1(t, x− (R− C)dt).

Letting again dt→ 0 in the above expression gives

∂P1(t, x)

∂t
+ (R− C)

∂P1(t, x)

∂x
= λP0(t, x)− µP1(t, x) (2.4)

II-4



2.3.3 A Matrix Differential Equation for the Stationary Distribution

We have so far obtained a set of partial differential equations that characterize the evolution of the buffer content
over time. However, we are primarily interested in the stationary behavior, and assuming the existence of a
stationary distribution independent of t, we get

−CF ′0(x) = −λF0(x) + µF1(x)

(R− C)F ′1(x) = λF0(x)− µF1(x), (2.5)

where Fi(x) = limt→∞ Pi(t, x), i = 0, 1, gives the stationary buffer content distribution in state i, and where
f ′(x) denotes the derivative of f(x) with respect to x. Using the vector notation F (x) = [F0(x), F1(x)]T ,
Eq. (2.5) can be expressed in matrix form as follows:[

−C 0
0 −(C −R)

]
F ′(x) =

[
−λ µ
λ −µ

]
F (x),

where again F ′(x) is the derivative of F (x) with respect to x.
The next step is to solve the above matrix differential equation. It can be rewritten as follows:

F ′(x) =

[
λ
C − µ

C
λ

R−C − µ
R−C

]
F (x) (2.6)

In order to solve the above matrix differential equation, we first “guess” that a solution is of the form Fi(x) =
βi + γie

δx. Using this expression in Eq. (2.6) gives:

γ0δe
δx =

λ

C
β0 −

µ

C
β1 + eδx

(
λ

C
γ0 −

µ

C
γ1

)
γ1δe

δx =
λ

R− C
β0 −

µ

R− C
β1 + eδx

(
λ

R− C
γ0 −

µ

R− C
γ1

)
Concentrating first on the constant term, we easily find λβ0 = µβ1, from which we deduce:

β0 = α0µ and β1 = α0λ (2.7)

Focusing next on the exponential term, we get

γ0δ =
λ

C
γ0 −

µ

C
γ1

γ1δ =
λ

R− C
γ0 −

µ

R− C
γ1

Eliminating δ yields
γ1

γ0
=

C

R− C
,

which gives

γ0 = α1
R− C
C

and γ1 = α1 (2.8)

It now remains to obtain an expression for δ. From the above expression for the ratio γ1/γ0 and the previous
equations, we get:

δ =
λ

C
− µ

R− C
(2.9)
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Combining Eqs. (2.7) and (2.8), and (2.9) with Eq. (2.1), we get the following expression for F (x):

F (x) =

[
F0(x)
F1(x)

]
= α0

[
1/b
ρ

b(1−ρ)

]
+ α1

[
R−C
C
1

]
× e−

[
x(C−ρR)

b(1−ρ)(R−C)C

]
, (2.10)

where the coefficients α0 and α1 can be determined from boundary conditions. However, before we proceed
with deriving expressions for α0 and α1, we first obtain an expression for the buffer content distribution based
on Eq. (2.10).

Recall that Fi(x) corresponds to the stationary probability that the buffer content is less than or equal to x
and the source feeding it is in state i. Since states 0 and 1 are complementary (the source is in either one of them),
we readily obtain:

P (B ≤ x) = F0(x) + F1(x).

This gives

P (B ≤ x) =
α0

b(1− ρ)
+ α1

R

C
e
−
[

x(C−ρR)
b(1−ρ)(R−C)C

]
(2.11)

Boundary conditions depend on the type of system being considered, and we first derive expressions for α0 and
α1 assuming an infinite buffer system.

Infinite Buffer Case

There are two boundary conditions we can identify. The first is obtained by noticing that the buffer cannot be
empty when the source is active, i.e., we have F∞1 (0) = 0. This first relation gives

α0
ρ

b(1− ρ)
+ α1 = 0 (2.12)

Assuming a stable system so that a stationary distribution exists, we get a second boundary condition from letting
x→∞ in either Eq. (2.10) or Eq. (2.11), which yields

α0 = b(1− ρ) (2.13)

Combining Eqs. (2.12) and (2.13) in Eq. (2.11) gives

P∞(B ≤ x) = 1− ρR

C
e
−
[

x(C−ρR)
b(1−ρ)(R−C)C

]
= 1− ρR

C
e
−
[
x(1−ρR/C)
b(1−ρ)(R−C)

]
, (2.14)

where ρR is the average rate generated by the source, so that ρRC corresponds to the system’s load.

Finite Buffer Case

In this section, we assume that the available buffer size is finite and limited to X . Our goal is again to derive an
explicit expression for the buffer content distribution PX(B ≤ x) by using boundary conditions to determine the
two unknown quantities α0 and α1.

The boundary condition F1(0) = 0 still holds even assuming a finite buffer, so that Eq. (2.12) remains valid.
The second boundary condition, i.e., for x → ∞ is, however, not available anymore because of the finite buffer
assumption. Nevertheless, a similar boundary condition can be obtained by focusing on the system state when
the queue is full. A full queue corresponds to an event with a non-zero probability mass at x = X . This then
gives rise to the equivalent of Eq. (2.13)

πi = P i,ovflwX + Fi(X
−), (2.15)
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where P i,ovflwX is the probability mass associated with an overflow event when the source is in state i. Overflow
is obviously not possible when the source is in state i = 0, so that P 0,ovflw

X = 0. Using this in Eq. (2.15) gives

α0

b
+ α1

(R− C)

C
e
−
[

X(C−ρR)
b(1−ρ)(R−C)C

]
= 1− ρ (2.16)

From combining Eqs. (2.12) and (2.16), we get:

α0 =
b(1− ρ)2C

∆

α1 = −ρ(1− ρ)C

∆
, (2.17)

where
∆ = (1− ρ)C − ρ(R− C)e

− X(C−ρR)
b(1−ρ)(R−C)C .

Combining this with Eq. (2.11) gives the following expression for the buffer content distribution:

PX(B ≤ x) =

{
(1−ρ)C

∆ − ρ(1−ρ)R
∆ e

− x(C−ρR)
b(1−ρ)(R−C)C for 0 ≤ x < X,

1 for x ≥ X.
(2.18)

The buffer overflow probability, P ovflwX , can then be obtained from Eq. (2.15) or directly from the above
expression by computing the “missing” probability mass between the values X− and X . Using either approach,
one obtains:

P ovflwX = P 1,ovflw
X =

ρ(C − ρR)e
− X(C−ρR)
b(1−ρ)(R−C)C

(1− ρ)C − ρ(R− C)e
− X(C−ρR)
b(1−ρ)(R−C)C

(2.19)

Note, however, that in practice we are interested in the overflow probability given that the source is active. This
probability is readily obtained by dividing the above expression by the probability π1 = ρ that the source is
active.

P
ovflw
X =

(C − ρR)e
− X(C−ρR)
b(1−ρ)(R−C)C

(1− ρ)C − ρ(R− C)e
− X(C−ρR)
b(1−ρ)(R−C)C

(2.20)

Eq. (2.20) can be inverted to obtain the buffer size X̃ that will ensure a (conditional) buffer overflow probability
below a desired value ε. Setting P ovflwX = ε in Eq. (2.20) and solving for X̃ gives:

X̃ = ln

[
(C − ρR) + ερ(R− C)

ε(1− ρ)C

]
× b(1− ρ)(R− C)C

C − ρR
. (2.21)

2.4 Effective Bandwidth of a Fluid ON-OFF Source

A symmetric quantity of interest to the buffer size X̃ needed to ensure a target (conditional) overflow probability
ε for a given link capacity C, is the required link capacity ĉ (often called effective bandwidth or equivalent
capacity) to ensure a (conditional) overflow probability ε given a buffer size of X .

Letting P ovflwX = ε in Eq. (2.20) can be rewritten as

ε = βe−δX , (2.22)
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where

β =
(c− ρR) + ερ(R− c)

(1− ρ)c
and δ =

c− ρR
b(1− ρ)(R− c)c

,

Computing the effective bandwidth ĉ then calls for solving the transcendental equation Eq. (2.22) for c, which
can only be done numerically. However, a reasonable approximation is available by assuming β = 1, which can
be shown to hold in most cases (actually we always have β ≤ 1). With this simplification, ĉ can be obtained
simply by solving a second order equation.

α =
X(c− ρR)

b(1− ρ)(R− c)c
⇒ 0 = c2αb(1− ρ) + c[X − bα(1− ρ)R]− ρXR , (2.23)

where α = ln 1/ε. Solving equation (2.23) gives the following expression for the effective bandwidth ĉ for the
flow,

ĉ =
αb(1− ρ)R−X +

√
[αb(1− ρ)R−X]2 + 4xαbρ(1− ρ)R

2αb(1− ρ)
(2.24)
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