
 - 1 -

Reminder. The purpose of the studio sessions is to help you get a better understanding of the material, and
to help you prepare for the labs. Studios are not graded and there is nothing to turn in, but the more you
learn during studio, the better prepared you will be to tackle the labs.

The purpose of this studio is to familiarize you with ONL. Before coming to studio, read the tutorial
material available on the ONL web page. This will help you proceed much more quickly when you come
to studio.

Before you come to studio, the resources you need for your session will be reserved for you using one of
six studio accounts cse473a, cse473b,..., cse473f. Each group will be told which account to use, and you
will be provided with the studio account password. These accounts should be used only during studio
sessions. You will have your own personal account that you should use for the lab assignments. Your svn
repository includes a studio2 directory that contains an ONL configuration file called cse473-studio2.onl,
which you should use for this studio.

To get started, the first step is to create an ssh connection to ONL that is configured with a tunnel. The
web site describes a variety of ways to do this, but for this studio, the simplest approach is to first open a
command prompt window and type

ssh -L 7070:onlsrv:7070 cse473X@onl.wustl.edu

where the X should be replaced by a, b,... f, depending on which studio account you have been assigned.
When you are prompted for a password, enter the password you have been given. At this point, you
should start the RLI (on the Urbauer 214 computers, you will find it in the Start menu, under
Programming) and open the provided configuration file (cse473-studio2.onl). Then, select commit from
the File menu. You will be prompted to login using your studio account and password (sorry for the
double login, but it is required). If all works correctly, your experimental network will change color and
the dashed links will turn solid. If this does not work, first make sure that you have followed all
instructions exactly, and then request help if necessary.

At this point, you can also check out a copy of your bitbucket repository on onl. You’ll find that having a
copy of your repo on onl makes things more convenient. Alternatively, you can open an SFTP graphical
client on the Windows machine and use it to transfer files to the onl server and access files stored there.
This will allow you to use standard Windows applications for editing and/or compiling programs, which
you may prefer.

Once you’ve gotten to this point, you should proceed through the following exercises with your group.

1. Open ssh connections to two of the computers in your ONL configuration, specifically the
computers labeled h4x2 and h7x1 (find these in the RLI window and note that they are on
different routers). You can use the SSH client on the Urbauer 214 computers for this purpose.
You will be connecting to onl.wustl.edu and using your provided studio account. Make two
connections to the main onl server, and then in the first window, type

source /users/onl/.topology
ssh $h4x2

CSE 473 – Introduction to Computer Networks

Studio 2
(Adapted from Jon Turner’s Studios)

 - 2 -

The first command defines a set of shell variables (including $h4x2) which are used to login to
the computers in your onl network. The second connects you to the specified computer. In the
second window, type

source /users/onl/.topology
ssh $h7x1

Keep these windows open throughout the remainder of the studio. We will refer to these as the
h4x2 window and the h7x1 window.

2. In the h4x2 window, type

ping h7x1

(note that there is no $ sign in front of h7x1 in this case). Observe what happens in the monitoring
display window. Explain what you see. To terminate the ping, type CTRL-C. Try pinging other
computers in your network and observe how the monitoring display window changes.

Now, in the h4x2 window, type

/sbin/ifconfig

and record the packet counts for interface data0. Now run one of the ping commands again and
then re-run ifconfig. Note how the packet counts change. Make sure that the numbers are
consistent with what you observe on the monitoring display.

3. In this part, you will be using Wireshark to observe the packets being sent between the computers
in your onl network. Using Wireshark in onl requires a little extra effort, since Wireshark itself
must run on the target computer within onl, while the graphical interface needs to appear on your
local computer. Start by opening a new command prompt window on your local computer and
type

startxwin

This causes another window to open. In this new window, type

ssh –X myLogin@onl.wustl.edu

This creates an ssh connection that forwards “X-windows” commands from onlusr back to your
local computer. X-windows is a generic windowing system developed at MIT in the 1980s. It is
still used for a number of applications, including Wireshark. Note, that you do not need the tunnel
specification in this window (-L 7070:onlsrv:7070), since original ssh connection already
provides the tunnel. Now, in the new window, type

source /users/onl/.topology
ssh –X $h4x2

This will log you into host h4x2 and forward X-windows commands from h4x2 back through
onlusr to your local computer. Next, type

 sudo wireshark

After you enter your password, Wireshark will start running on h4x2, and the Wireshark window
will open on your local computer. Configure Wireshark to capture packets on the data0 interface
and then re-run remoteScript in the original terminal window connected to h4x2.

Now, in your original h4x2 window, run ping. Terminate the ping command after a few packets.
Observe the packets in the Wireshark window. Make sure you understand what you are seeing. In
particular, notice the delay reported by the ping command. Try to figure out where this delay is
coming from.

 - 3 -

4. In this part, you will run a provided TCP echo server, similar to the UDP echo server from studio
1. You will find the Java source code in your studio 2 folder. Review the code to make sure you
understand what both the client and server do. Transfer the code for both the server and the client
to your onl studio account. Then, in the h7x1 window, compile the server by typing

javac TcpEchoServer.java

then, run the server in the background by typing

java TcpEchoServer h7x1 30123 &

Before starting the client, type the following command in the h7x1 window

netstat -an | grep 30123

the netstat command (see http://en.wikipedia.org/wiki/Netstat for information on netstat and its
syntax) produces a list of active sockets and the grep command filters out all lines except those
containing the string 30123. After typing the command, you should get a line describing a TCP
socket in the listening state.

Now, run the client in the h4x2 window, using the command

java TcpEchoClient h7x1 30123

and run the netstat command in the h7x1 window again. Observe what has changed, and make
sure you understand why. Type a few lines into the client and verify that the echoed responses are
as expected, then enter a blank line to terminate the program. Re-run the netstat command at the
end of this sequence.

5. In this part, you will be using the iperf utility to send traffic through your onl network (see
https://iperf.fr for a short description of iperf and its syntax). To simplify your use of iperf, we
have provided a couple shell scripts. Before running the scripts logout of the h4x2 window, by
typing CTRL-D. This will bring you back to the main onl server (onlusr) and from here you can
run the scripts you will be using.

The scripts can again be found in your studio2 folder (they are called udpSenders, udpRcvrs,
tcpSenders, tcpRcvrs and mix) and also need to be transferred to your onl studio account. Review
the two udp scripts and make sure you understand what they are doing. Ask about anything
you’re not sure of. Run udpRcvrs and then run udpSenders. Observe the traffic in the monitoring
windows. How much traffic is being sent by each sender? How much is being received by each
receiver? Explain any discrepancies you observe. Terminate udpSenders by typing CTRL-C.

Now, run tcpRcvrs, followed by tcpSenders. Compare the results in this case to the results in the
previous case. Explain why they are different.

Now, run the mix script. What do you observe? Explain why these results are different from the
previous two.

