CSE 473 – Introduction to Computer Networks

Roch Guérin

Quiz 3 - (10 points)

Your Name:

10/09/2017

- 1) **[5 points total]** Consider webserver mywebserver.mycompany.com located in a network that uses private addresses, *e.g.*, the webserver has address 10.1.1.10, where the network is connected to the Internet using a NAT/PAT router with public address 153.12.45.67.
 - a. **[2 points]** What would you expect the content of the DNS A-record for mywebserver.mycompany.com to be?

An A record maps a domain name to the IP address (IPv4) of the computer hosting the domain. The expected A-record would be 153.12.45.67, the IP address of the NAT/PAT router.

b. **[2 points]** What static mapping entry would you expect to see in the NAT/PAT to support external web connectivity to mywebserver.mycompany.com?

The NAT/PAT should map 153.12.45.67:80 to 10.1.1.10:80 to ensure that http request directed at mywebserver.mycompany.com are properly forwarded to the local address of the web server.

c. [1 point] Assume that 10 external clients are connected to mywebserver.mycompany.com. How many mapping entries would there be in the NAT/PAT router? Justify your answer.

Only one entry that maps 153.12.45.67:80, or simply port 80, to 10.1.1.10:80 will be sufficient to direct all external connections to the local address of the web server.

- 2) **[5 points]** A sender is using the go-back-N protocol with *N*=50 to communicate with a receiver over a direct link with a 5ms one-way propagation delay, *i.e.*, the RTT is 10ms. Packets are 10,000 bits long (including headers).
 - a. **[2 points]** What is the fastest link the protocol can keep continuously busy assuming no errors (assume that ACKs have a negligible transmission time)?

Let C denote the link speed. To keep the link busy, the first ACK needs to come back before the 50^{th} packet has been transmitted. The last bit of the 1st packet arrives at the receiver 5ms after leaving the sender and the ACK takes another 5ms to get back to the sender, for a total of 10ms. Assuming that the link remains busy, Cx20ms bits will have been transmitted during that time. With a window of 50 packets, the sender had another 49 packets to send, i.e., 490,000 bits, after the first packet. So we need Cx10⁻² ≤ 490,000 or C ≤ 4.9x10⁷ bps or 49 Mbps.

b. **[3 points]** Assume a link speed of 10Mbps (10⁷ bps) and that on average one out of every 50 packets is lost. The time-out is set to **twice** the RTT or 20ms. What fraction of the link capacity is the protocol able to realize?

With a 10 Mbps link, $t_{pkt} = 1ms$, so that $t_{out} = 20 ms = 20 t_{pkb}$ i.e., α -1=20. The packet loss probability is q=1/50=0.02. This gives $T_{succ} = t_{pkt} \times (1+20\times0.02)/0.98 \sim 1.43ms$. Hence, the fraction of the link capacity the protocol can realize is 1/1.43 = 0.7 or 7 Mbps.