
 - 1 -

IMPORTANT PREAMBLE

On this lab, you have the option to work with a lab partner of your own choosing. When
choosing a partner, you are strongly advised to choose a partner whose ability is similar to your
own. One way to assess this is by looking at your overall “score” in the class up to this point. If
you and your prospective partner have very different scores, you should think twice before
agreeing to work together on the lab. When partners have mismatched abilities, collaboration
typically tends to be difficult and not productive. The stronger partner ends up doing the bulk
of the work, while the weaker partner sits back and watches. It may seem contradictory, but
two weaker partners will actually learn more from each other than they will if they are paired
with stronger partners (and the point of these labs is for you to learn as much as possible).

IF YOU DECIDE TO WORK ON THE LAB WITH A PARTNER, YOU NEED TO RECORD
YOUR TEAM BY FRIDAY 10/06/2017 5:00 PM CT. SEND ME AN EMAIL (WITH COPY TO
YOUR PARTNER) WITH THE NAMES AND STUDENT IDs OF THE TWO PARTNERS.

LAB INSTRUCTIONS

As before, re-read and follow the general instructions included in the Lab 1 writeup.

In this lab, you will be implementing a server for a distributed hash table. While some of the
code will be provided, you will be doing much of the implementation (and all of the testing).
The DHT stores (key,value) pairs, where the keys and values are strings. Clients add pairs to the
DHT using put operations, retrieve them using get operations. The DHT uses a circular
organization, similar to the one described in Kurose and Ross. Each node of the DHT should
maintain the information of both its successor and predecessor. The DHT also uses “shortcuts”
to improve routing efficiency and caches pairs when it can.

The protocol uses UDP packets and all information is represented as text. An example of the
UDP payload for a get request is shown below.

CSE473 DHTPv0.1
type:get
key:dungeons
tag:12345
ttl:100

The first line is just an identifying string that is required in every DHT packet. The remaining
lines all start with a keyword and a colon, usually followed by some additional text. Here, the
type field specifies that this is a get request; the key field specifies the key to be looked up; the
tag is a client-specified tag (must be an integer) that is returned in the response—it can be used
by the client to match responses with requests; the ttl is set by the client to a positive integer, is
decremented by every DhtServer, and if <0 causes the packet to be discarded.

Possible responses to the above request include:

CSE 473 – Introduction to Computer Networks
Lab 3

 Due 10/30/2017

 - 2 -

CSE473 DHTPv0.1
type:success
key:dungeons
value:dragons
tag:12345
ttl:95

or

CSE473 DHTPv0.1
type:no match
key:dungeons
tag:12345
ttl:95

Put requests are formatted similarly, but in this case the client typically specifies a value field
(omitting the value field causes the pair with the specified key to be removed).

The packet type “failure” is used to indicate an error of some sort; in this case, the “reason” field
provides an explanation of the failure. The “join” type is used by a server to join an existing
DHT. In the same way, the “leave” type is used by the leaving server to circle around the DHT
asking other servers to delete it from their routing tables. The “transfer” type is used to transfer
(key,value) pairs to a newly added server. The “update” type is used to update the predecessor,
successor, or hash range of another DHT server, usually when a join or leave even happens.

Other fields and their use are described briefly below

clientAdr is used to specify the IP address and port number of the client that sent a
particular request; it is added to a request packet by the first server to receive the
request, before forwarding the packet to another node in the DHT; an example of
the format is clientAdr:123.45.67.89:51349.

relayAdr is used to specify the IP address and port number of the first server to receive a
request packet from the client; it is added to the packet by the first server before
forwarding the packet.

hashRange is a pair of integers separated by a colon, specifying a range of hash indices; it is
included in the response to a “join” packet, to inform the new DHT server of the
set of hash values it is responsible for; it is also included in the update packet to
update the hash range a server is responsible for.

succInfo is the IP address and port number of a server, followed by its first hash index; this
information is included in the response to a join packet to inform the new DHT
server about its immediate successor; it’s also included in the update packet to
change the immediate successor of a DHT server; an example of the format is
succInfo:123.45.6.7:5678:987654321.

predInfo is also the IP address and port number of a server, followed by its first hash index;
this information is included in a join packet to inform the successor DHT server of
its new predecessor; it is also included in update packets to update the new
predecessor of a server.

senderInfo is the IP address and port number of a DHT server, followed by its first hash
index; this information is sent by a DHT to provide routing information that can

 - 3 -

be used by other servers. It also used in leave packet to let other servers know the
IP address and port number information of the leaving server.

For the purposes of this lab, you may assume that packets are never lost and that clients and
servers are all cooperative (that is, you need not protect against malicious behavior). You may
assume that servers will never leave the DHT without an announcement. You may also assume
that the servers will never fail.

Here are some more details of the server’s operation. When a server receives a get or put from a
client, it first hashes the key to determine if it is the “responsible server” for this request. If it is,
then it responds directly to the client. If it is not, it adds a clientAdr field to the packet containing
the client’s socket address. It also adds a relayAdr field containing its own socket address. Then,
it forwards the packet around the DHT. When a server receives a get or put from another server,
it behaves similarly. If the server determines that it is not the responsible server, it simply
forwards the packet towards the responsible server. If it determines that it is the responsible
server, it performs the operation and then converts the packet to a response packet, and sends it
to the relay server using the relayAdr field in the packet. Before sending the response, the server
also adds a senderInfo field to the packet containing its own IP address and port number and the
first hash index in its range (this field is used to establish shortcut routes, as discussed below).
Note that a server can recognize a packet coming from a client, since it will not include a
relayAdr field.

When a server gets a response packet (type = “success”, “failure” or “no match”) from another
server, it assumes that it is the relay server, and forwards the packet on to the client, using the
address in the clientAdr field of the packet. Before doing so, it removes the clientAdr, relayAdr
and senderInfo fields from the packet. It also uses the senderInfo field to add a shortcut route to its
routing table. If the response is a “success” packet, it also stores the (key,value) pair in its local
cache.

The server uses a routing table when deciding where to forward a packet. For this lab, the
routing table will be a simple list containing tuples of the form (nexthopAddress, firstHash) where
nexthopAddress is the IP address and port number of another server, and firstHash is the first
hash index in the range for which that server is responsible. When forwarding a packet, we try
to forward it to the server that is closest to the target of the operation. We do this by comparing
the hash index of the packet’s key to the firstHash values of the entries in the routing table, and
selecting the server that comes closest to the target. Routes are added to the routing table
opportunistically. Whenever a packet is received that contains a senderInfo field, this
information is added to the routing table. However, if this would cause the number of routing
table entries to exceed a specified limit, the new entry will replace one of the old ones. However,
note that the entry for the successor of a node should never be replaced.

A server joins the DHT by sending a join packet to an existing server, then waiting for a
response. The response will normally be a “success” packet, with a hashRange field, a succInfo
field, and a predInfo field. This tells the new server what range of hash indices it is responsible
for and who its successor and predecessor are. The new server records this information and
initializes its routing table to include an entry for its successor (only its successor). When a
server receives a join packet, it splits its hash range in half, giving the “top” half of the range to
its new successor. The responding server will set the new server as its new successor, and
change the original successor’s predecessor to the new server using a packet “update” with
predInfo field. After responding to a join request, the responding server also sends a series of

 - 4 -

transfer packets to the new server. Each of these contains a (key,value) that the new server is now
responsible for. The original server also removes these pairs from its own local map. When a
server receives a transfer packet, it updates its local map, but does not send a reply.

If a server wants to leave the DHT, it sends a leave packet to its successor. Any server who
receives a leave packet will relay the packet to its successor and remove the entry if the senderInfo
field of the leave packet is present in its routing table. The leaving server will wait until it
received the same leave packet circling back to it. After that it transfers its range and all of its
(key, value) pairs to its predecessor. The leaving server should change its predecessor’s successor
to its successor, and its successor’s predecessor to its predecessor. It sends an update packet
with the hashRange and succInfo fields to its predecessor, and sends an update packet with the
predInfo field to its successor. When a server receives an update packet, a server should update
its field(s) based on the field(s) in the packet. We assume that leaving process is atomic; no other
queries or operations of DHT will happen during the leaving process. We assume the first
server (with the lowest hashRange) will not leave, so you don’t have to handle this special case.

Some final details. If a server receives a get packet that it is not responsible for, it checks to see if
it has a matching key in its local cache. If so, it responds to the request as though it were the
responsible server. When a server receives a put that it is not responsible for, it checks for the key
in its cache. If there is a pair with that key in the cache, it removes it.

The repository contains a partial implementation of DhtServer and another file containing a
partial implementation of a Packet class. You will need to study the provided code first, then fill
in the missing parts. Think carefully about the interactions among servers and make sure you
understand how all the “moving parts” work together. You will also need to write a DhtClient.
This program will take from 3 to 5 command line arguments. The first is the IP address of the
interface that the client should bind to its own datagram socket. The second is the name of a
configuration file containing the IP address and port number used by a DhtServer (each server
writes such a file when it starts up). The third is an operation (“get”or “put”) and the remaining
arguments specify the key and/or value for the operation. These may be omitted. Your client
should not do any error checking. Leave that to the server. The client should enable the debug
flag for the Packet.send() and Packet.receive() methods. This will allow you to see every packet
that the client sends or receives.

A word of advice. Start with a limited version of DhtServer. Specifically implement only what you
need for a single node DHT and test the interactions with the client using this configuration
(remember to include the debug argument when you run the server). Then, expand to a two
node DHT. Make sure that the join works correctly. Then go to three nodes and start testing
puts and gets. Don’t bother with short-cut routes or caching in your initial testing, as these
features make the behavior of the DHT more complicated and harder to understand. Once you
are sure that the basic stuff works correctly, go ahead and add short-cut routes. Then add
caching at the very end.

The provided lab report template contains additional instructions and a number of questions
for you to answer.

