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1) (5 points). A user in St. Louis is connected to the Internet via a 4 Mbps (4x106 bits/sec) DSL 
link (download speed) and is retrieving a webpage from a server in China.  The page is 125 
kbytes and contains references to ten (10) images that are each 250 kbytes.  The one-way 
propagation delay is 50 ms and the DSL link is the bandwidth bottleneck for this connection. 

(2 points) Approximately how long does it take for the page (including images) to appear on 
the user’s screen, assuming she uses a single persistent HTTP connection to access the server 
(queueing and transmission delays on links other than the DSL access link are negligible, 
and you can ignore the impact of TCP’s ramp-up)? 

Total download time is three RTTs (TCP connection, request of main page, requests for images), plus 
the transmission times of the main page and the 10 images, i.e.,  

3*(100) ms + (125,000*8 + 10*250,000*8)/(4,000,000) =300 ms + 5.25s = 5.55 seconds 

 

 

(2 points) How long would it take if the user’s browser used instead two persistent HTTP 
connections (the two connections are opened in parallel; one connection is used to request 
the page, and the two connections would then each request five images)? 

There would be no difference.  Each connection incurs a penalty of 3 RTTs, and the total transmission 
time on the DSL access link is unchanged. 

 

 

(1 point) Approximately how big (in bytes) should the buffer at the access router connected 
to the user’s DSL link be to ensure there are no packet losses (assume that packets arrive 
from the Internet much faster than the 4 Mbps download speed of the DSL link)? 

The buffer needs to be able to hold the 10 images arriving from the server (note that the main page 
must have been fully transmitted and received by the user’s browser for requests for images to be sent, 
and it must therefore have cleared the buffer by the time the images arrive).   This translates into a 
total buffer space of 10*250 kbytes = 2.5 Mbytes. 
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2)  (10 points).  A private network that uses the 10.1.0.0/16 private address space sits behind a 
NAT router (NAT1) that has been allocated the public IP address 45.6.7.1.  Assume that a 
local host in that network with address 10.1.10.1 is accessing a remote web server with 
public address 194.34.45.67.  Headers of local packets originating from host 10.1.10.1 and 
destined for the web server have the following format in the private network behind NAT1: 

<src_addr> <dst_ addr> <src_port> <dest_port> 
10.1.10.1 194.34.45.67 4567 80 

The NAT (NAT1) already has the following  entries:  

Internal: <local_addr><local_port> External: <external_port> 
<10.1.11.2><4567> <4567> 
<10.1.10.1><3333> <3333> 
<10.1.10.1><4444> <5555> 

(3 points) What is (i) a possible entry in the forwarding table of NAT1 to accommodate the 
connection from 10.1.10.1 to web server 194.34.45.67, and (ii) what would then be the 
headers of packets from this connection when forwarded by NAT1 into the public Internet? 

Because outgoing port <4567> is already in use, the NAT needs to assign a different unused 
outgoing port to the connection.  A possible new entry in the NAT would be of the form 

Internal: <local_addr><local_port> External: <external_port> 
<10.1.10.1><4567> <5678> 

Correspondingly, the headers of packets forwarded by the NAT in the public Internet would be of the 
form 

<src_addr> <dst_ addr> <src_port> <dest_port> 
45.6.7.1 194.34.45.67 5678 80 

 

 

 

(2 points) Assume now that host 10.1.10.1 decides to open a second parallel connection to 
the web server.  Packet headers for this connection are of the following form in the private 
network behind NAT1: 

<src_addr> <dst_ addr> <src_port> <dest_port> 
10.1.10.1 194.34.45.67 4568 80 

Does NAT1 need to create a new entry for this connection, or can it reuse the previous one?  
Justify your answer. 

Because the connection uses a different port number (4568), the NAT is forced to create a new entry 
in its table. 
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Host 10.1.10.1 is also engaged in a videoconference with another host in a different private 
network behind another NAT (NAT2). The private address of that other host is 10.2.2.2.  
Packet headers for the connection from host 10.1.10.1. to host 10.2.2.2 have the following 
formats on the internal network of host 10.1.10.1 (internal network 1), in the public Internet, 
and in the internal network of host 10.2.2.2 (internal network 2): 

Packet headers <src_addr> <dst_ addr> <src_port> <dest_port> 

Internal Network 1 10.1.10.1 53.3.4.7 3456 2345 
Public Internet 45.6.7.1 53.3.4.7 5889 2345 
Internal Network 2 45.6.7.1 10.2.2.2 5889 1345 

(3 points) Identify the entries for this connection in the forwarding table of the two NATs? 

The corresponding entry in NAT1 is of the form 

Internal: <local_addr><local_port> External: <external_port> 
<10.1.10.1><3456> <5889> 

and conversely, the entry in NAT2 is of the form 

Internal: <local _addr><local_port> External: <external_port> 
<10.2.2.2><1345> <2345> 

 

 

 

 

 

(2 points) How would the header of a packet for the return connection (from 10.2.2.2 to 
10.1.10.1) look like when traversing the public Internet? 

The header of packets for the return connection would be of the following form when traversing the 
public Internet 

<src_addr> <dst_ addr> <src_port> <dest_port> 
53.3.4.7 45.6.7.1 2345 5889 
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3) (10 points) Consider a circular DHT with 64 nodes numbered 0, 1,..., 63.  Node i handles 
keys with hash values in the range ix228 to (i+1)x228-1, and has routes to nodes i+1, i+4, i+8 
and i+32 (where addition is modulo 64).  

(5 points) What is the maximum number of hops required to get from one server to another 
in this DHT? 

Each node proceeds greedily jumping to the next node that brings it closest to the target without 
overshooting, under the constraint that it can only progress in jumps of 1, 4, 8 or 32 hops.  It is easy 
to enumerate possible options for this scenario given a client query that originally arrives at node i. 

If the key is located in node i+3, 3 one-hop jumps are required to node i+1, i+2 and i+3. If the key is 
in node i+7, 4 jumps are required, first to i+4 and then three one-hop jumps as in the previous case.  
If the key is in node i+31, the query proceeds to nodes i+8, i+16, i+24, i+28, i+29, i+30 and i+31 for 
a total of 7 hops.  Finally, if the key is in node i+63, the query proceeds to node i+32, i+40, i+48, 
i+56, i+60, i+61, i+62 and i+63 for a total of 8 hops, which is therefore the maximum number of hops 
a query will require. 

(2 points) Suppose that node 32 receives a get request with a key string of “Led Zeppelin” 
that hashes to 8,321,499,137.  How many hops will this request go through? 

8,321,499,137=(31*228)+1, which implies that the key hashes to a value in the range belonging to 
node 31, the immediate predecessor of node 32 that receives the query so that this belongs to the 
scenario where the key is in node 31=32+63 mod 64.  Hence, according to the reasoning of the 
previous question, the query will be resolved in 8 hops. 

 

 

(3 points) Assume now that nodes can cache key-value pairs.  Suppose node 4 cached the 
key-value pair for the key “Led Zeppelin” but is the only node to have done so, i.e., the only 
other node that has the key-value pair is the node that has the hash value of the key in its 
range.  Assuming that the next query for key “Led Zeppelin” arrives at a randomly selected 
node, what are the odds that node 4 will be handling it, i.e., what are the odds that the next 
query for “Led Zeppelin” is handled by node 4? 

To answer the question, we need to identify the starting nodes for which node 4 is on the “shortest 
path” to node 31. Given that nodes greedily forward the query towards node 31, node 4 is on the path 
only if the query originally arrives at either node 4 or node 36.  Hence, the odds that node 4 handles 
the next query is 2/64 = 0.03125.  
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4)  (10 points)  Two hosts, A and B, are connected by a direct point-to-point link of speed 100 
Mbps (108 bits/sec), and rely on a basic go-back-N protocol to ensure reliable transmissions 
between them.  The link can lose/corrupt packets, but not reorder them.  A and B use 1,250 
bytes packets, including header and payload, and as usual the protocol uses a single shared 
timer.  The window size is 61 packets. 

(3 points) What is the maximum possible RTT between A and B that will allow 
communication at the maximum rate of 100 Mbps in the absence of packet errors or losses? 
For simplicity, assume that the RTT measures the time between the transmission of the last 
bit of a packet until the ACK for that packet is received. 

It takes 60*1,250*8/108 = 6 ms to transmit the sixty 1,000 bytes packets (packets 2 to 61) allowed 
after the transmission of packet 1.  In order for transmission to be able to continue uninterrupted, the 
ACK for packet 1 must, therefore, have been received by that time.  Hence, 6 ms is the maximum RTT 
that the connection can tolerate and still be able to communicate at 100 Mbps in the absence of packet 
errors or losses. 

 

(4 points) Assume from now on an RTT of 10 ms (5 ms each way) and a time-out value of 11 
ms.  Consider a scenario where at time t = 0, A starts transmitting packets 1 to 50, packet 1 is 
lost, so that A eventually retransmits packets 1 to 50.  Packet 50 is then lost during this 
retransmission.   When will packet 50 be eventually received at B (assume that no ACKs are 
lost)? 

The loss of packet 1 is detected at t = 11 ms because of a time-out.  This triggers the retransmission of 
all 50 packets.  The ACKs for packets 1 to 49 arrive 10 ms after A transmits their last bit and are each 
0.1 ms apart.  Hence, the ACK for packet 49 arrives at t=11+10+49*0.1=25.9 ms.  The receipt of the 
ACK for packet 49 restarts the time-out timer that will, therefore, expire 11 ms later at t=36.9 ms.  
This triggers the retransmission of packet 50 with the packet’s last bit leaving A at time t=37 ms to 
finally arrive at B 5 ms later at t = 42 ms. 

 

(3 points) Assume next that at time t the state at A is as follows: sendBase = 25, nextSeqNum 
= 63, timerExpiration = 5 ms, where sendBase is the sequence number of the oldest 
unacknowledged packet, nextSeqNum is the sequence number to be used in the next packet 
transmission, and timerExpiration tracks how much time is left before the time-out timer 
expires.  An ACK with sequence number 32 is received at t + 1 ms, and at t + 7 ms the 
application at A writes five (5) packets worth of new payload.  What is the state at A, i.e., 
values of sendBase, nextSeqNum, and timerExpiration, at time t + 9 ms, and what packets 
are still in A’s re-send buffer? 

The receipt of an ACK with sequence number 32  at t + 1 ms shifts sendBase to 33 and restarts the 
time-out timer, so that its value is now timerExpiration = 11 ms.  Given that the window size is 60 
and that sendBase = 33, the legal sendWindow of A extends from sequence number 33 to sequence 
number 92.  Since nextSeqNum is 63, A is able to send another 30 packets, which is sufficient to 
allow it to transmit the five packets needed to carry the new payload written by the application.  
Hence at time t + 9 ms, the state at A is as follows: sendBase = 33, nextSeqNum = 68, and 
timerExpiration = 3 ms.   

Additionally, packets 33 to 67 are still in A’s resend buffer. 
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5) (15 points) Consider a TCP sender that sends MSS size packets with MSS = 1000 bytes.   The 
sender needs to upload a file whose size corresponds to the aggregate payload of a total of 
2048 MSS size packets.  The sender starts packet transmissions at t = 0 (after the TCP 
handshakes completes) with ssthresh = rcvWindow = 64 MSS.  The sender is connected to the 
Internet through a 10 Gbps (1010 bits/sec) link, but the bottleneck link on the connection’s 
path is 100 Mbps (108 bits/sec).   The connection’s RTT is mostly constant at 40 ms, i.e., 
EstimatedRTT ≈ 40 ms and DevRTT ≈ 0 ms.  Assume that the TCP connection does not use 
delayed ACKs. 

(5 points) How long approximately will it take the sender to upload half the file, i.e., 
transmit 1024 MSS size packets, in the absence of packet losses? 

The sender enters slow-start with cwnd = 1 MSS at t = 0, and the slow-start period lasts until cwnd 
= ssthresh with cwnd increasing by one packet for each ACK received.  cwnd therefore increases as 
follows during successive cycles of duration 1 RTT each: 1, 2, 4, 8, 16, 32, 64.  Hence, the sender 
exits slow-start approximately six (6) RTTs later, and during that time transmitted 127 packets.  It 
subsequently transmits 64 MSS size packets in each RTT.  As a result, after 20 RTTs it will have 
transmitted 127+14*64 = 1023 MSS size packets. The sender receives another ACK at the start of the 
21st RTT cycle, at which point it is able to transmit the 1024th packet.  So it takes approximately 20 
RTTs (plus one packet transmission time) or 800 ms for the sender to upload half the file. 

(6 points) The sender uses TCP Reno.  Assume that the connection experienced no losses 
until packet number 1984 that is lost at time t.  At that time, cwnd had long reached it 
maximum value.  How long approximately will it take from t onward before the sender 
knows that the entire file has been successfully uploaded to the receiver, i.e., receives an 
ACK acknowledging the last packet?  For simplicity, assume that the lost packet 1984 is the 
first to be transmitted in a new batch (window) of cwnd packets sent by the sender. 

Packet 1984 is actually the first packet to be transmitted in the 36th RTT of the connection.  Because 
packet 1984 is lost, the receiver will generate duplicate ACKs when receiving packets 1985, 1986, and 
1987.  The sender receives them approximately one RTT after transmitting packet 1984 (one RTT 
plus three packet transmissions).  This then triggers the retransmission of packet 1984 and the sender 
enters fast recovery.  Fast recovery will last for about one RTT (until the receipt of the retransmitted 
packet 1984 is acked) during which time the sender will be able to send an additional 31 packets 
beyond those that were sent in the same RTT as packet 1984, i.e., packet 1985 to 2047. Since the file 
only requires 2048 packets, the sender only needs to send one more packet in addition to 
retransmitting packet 1984.  Duplicate ACKs triggered by packets 1985 to 2047 arrive spaced 80 
μsecs apart.  The sender can transmit a new packet when the duplicate ACK for packet 1984 + 32 = 
2016 arrives, i.e., after 2.56 ms.  Hence, the ACK for this last packet arrives 2.56 ms after the ACK 
for the retransmitted packet 1984.  So it takes approximately two (2) RTTs + 2.56 ms, i.e., 82.56 ms, 
after the loss occurred for the sender to know that the entire file has been successfully uploaded to the 
receiver. 

(4 points) Assume next that the sender is using TCP Tahoe instead of TCP Reno.  How does 
this change the answer? 

The main difference between TCP Tahoe and Reno is that Tahoe does not implement fast recovery, 
i.e., it enters slow-start after detecting a loss.  This adds one RTT to the transmission of the next 
packet after the retransmitted packet (the ACK for the retransmitted packet acknowledges all packets 
up to packet 2047 and allows the transmission of packet 2048, whose ACK is then received one RTT 
later), i.e., the sender knows that the file has been fully received 120 ms after the loss occurred. 
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6) (15 points) A sender uses TCP Reno (without delayed ACKs) with cwnd = rcvWindow = 64 
kbytes (216 bytes), an MSS of 1 kbytes (210 bytes), an RTT of 104.858 ms, and is transmitting 
over a path with a bottleneck link of speed 10 Mbps (107 bits/sec).  The router connected to 
that link has a very small buffer, so that it will lose packets as soon as the aggregate 
incoming transmission rate barely exceeds the link capacity. 

(5 points) How many parallel connections can the sender safely open to increase its 
aggregate transmission rate without incurring losses at the bottleneck link?  You can assume 
that the receiver has enough memory to allocate a rcvBuffer of 64 kbytes to each new 
connection. 

Assuming cwnd = 64 kbytes and RTT = 104.858 ms, each connection has as rate of 216*8/0.104858 = 
5 Mbits/sec.  Hence, the sender can open two parallel connections to realize an aggregate 
transmission rate of 10 Mbits/sec without incurring losses. 

 

 

 

 

 

(10 points) Assume that the sender decides to open 4 parallel connections.  What will 
approximately be the steady-state aggregate transmission rate it manages to realize? Note 
that if connections experience losses, you need to identify what their overall rate would be, 
accounting for the up and down pattern of transmission rate the connection would 
experience 

The maximum possible rate that each connection can realize without causing losses is 2.5 Mbits/sec, 
which correspond to cwnd = 32 kbytes, which they will therefore repeatedly exceed.  Since all 
connections have the same RTT, TCP’s fairness property ensures that in steady state the 4 
connections achieve the same rate, and alternate through similar patterns of rate increase followed by 
losses and consequently rate decrease.  Since losses occur as soon as the aggregate rate exceeds 10 
Mbits/sec, this implies that when each connection just exceeds 2.5 Mbits/sec, it experiences a loss and 
drops back to half that rate, i.e., cwnd = 16 kbytes.  Since the sender is using TCP Reno, the 
connections do not enter slow-start and progressively increase their rate back up. It takes each 
connection approximately 16 RTTs to increase their cwnd back up to 32 kbytes, at which point, i.e., 
in the next RTT, losses occur again and the cycle repeats. 

During one cycle of duration 17 RTTs, each connection transmits 16+17+18+…+31+32+32 =440 
MSS or 3,604,480 bits over a period of 18*104.858 ms = 1.887 secs, or a throughput of just under 2 
Mbits/sec (1.909 Mbits/sec).  This translates into an aggregate throughput of about 7.639 Mbits/sec, 
which is below the maximum possible rate the sender could have achieved by opening fewer 
connections. 
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