
 - 1 -

As usual, review and follow the general instructions included in the Lab 1 writeup.

In this lab, you will be implementing a reliable data transfer protocol and testing it in ONL. The
protocol is a sliding window protocol, similar to those discussed in Kurose and Ross, and
includes the go-back-N feature. You will be provided with the basic framework for the protocol,
but you will need to implement the mechanisms for detecting lost packets and retransmitting
them, as needed. Unlike the descriptions in Kurose and Ross, your protocol will support data
transfer in both directions. That is, both endpoints can operate as both “senders” and
“receivers”.

The provided framework is structured in three layers, an application layer, called SrcSnk, a
transport layer called Rdt that implements the reliable data transfer protocol, and a lower layer,
called the Substrate which deals with the socket communication. These three layers are each
implemented as a separate java modules, each with their own threads, and they communicate
with each other through queues. You will be provided with the SrcSnk and Substrate modules,
as well as a skeleton of the Rdt module. There is also a “main” module called TestRdt that
handles command-line arguments and launches the others. Finally, there is a Packet module that
provides methods for accessing and setting packet fields and packing the packet fields into a
buffer that can be sent over the network. You will find additional details in the provided source
code, which is located in the lab4 folder in your repository.

To complete the Rdt module, you will need to add a send buffer that stores packets that have
been sent, but not yet acknowledged. The send buffer can be implemented as an array, with the
index of each entry being its sequence number. You will also need to add a receive buffer for
packets whose payloads have not yet been passed up to the application layer. Because packets
can be lost and the payloads must be delivered in order, the receive buffer may need to hold a
number of packets equal to the window size. You can implement the receive buffer as an array,
indexed by sequence numbers.

Lastly, your go-back-N feature should implement cumulative ACKs (naturally) and triple-
duplicate ACKs, i.e., trigger a retransmission after three duplicate ACKs. Go-back-N has subtle
behavior, so pay close attention to its specification. In particular, there is a single timer that
triggers retransmissions and is reset whenever pending ACKs are received. In addition, while
you will be using triple duplicate ACKs to detect lost packets early, because go-back-N
retransmits all pending packets (up to a full window), you need to exercise some care not to
repeatedly retransmit all those packets as you keep getting more duplicate ACKs, e.g., by setting
a flag that prevents such successive retransmissions and that is reset by a time-out or the receipt
of the ACK for the missing packet.

The lab includes completing the Rdt module, demonstrating that it works correctly and then
performing a series of experiments to get a better understanding of its performance
characteristics. Detailed instructions are contained in the lab report template.

CSE 473 – Introduction to Computer Networks
Lab 4

 Due 11/15/2017

