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Metastability (What?) 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.:  



 © 2010 Blended Integrated Circuit Systems, LLC 2 

Metastability Is 

• a fundamental property of all bi-stable circuits 
(flip-flops and arbiters) 

• the cause of ambiguous output voltages and 
unpredictable behavior  

• the reason for setup & hold-time constraints on 
flip-flops 

– When observed they eliminate metastability 

– When violated may lead to circuit malfunction  

– Satisfying constraints perfectly between multiple 
independent clock domains is not possible 
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Results for a D-Latch 

•Latch output before final inverter (clock is also shown). 

•Rightmost two traces bracket unbounded metastable point 
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Prototypical Master-Slave DFF 
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Results for a Master-Slave 

• Clock is shown 

in yellow.  

• Other traces 

are obtained 

by varying the 

data-clock 

separation and 

observing the 

output of the 

FF before the 

output inverter. 
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Real plots! 

Times and voltages far from normal experience 
 And History Dependent! – must collect data slowly 

7 

6 

Photos of ECL circuits taken about 45 years ago.  
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VCLK 1 0 pulse (2.5  0  0.063028851134n 0.5n 0.5n 100n 200n) 

Vdata 2 0 pulse (0  2.5 0n                           0.5n 0.5n 100n 200n) 

psec 
fsec 

asec 
zepto sec  

These measured waveforms  

represent an input timing resolution  

of about 100 asec.   
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A Synchronizer Failure 
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Probability of Synchronizer Failure 

(Noise Free Case First) 
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Circuit Model Analysis 

For V0 small 

Use small signal analysis 
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MTBF for Synchronizers 
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MTBF Based on Aperture 
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Synchronizer Failure Trend 

• System failures due to synchronizer failures 
have been rare, but will be more likely in future 

– Many more synchronizers in use (Moore’s Law) 

• Systems with 100s of synchronizers, perhaps 1000s soon 

• Systems with synchronizers in million-fold production 

– Small changes in Vt cause large changes in   

• Growing parameter variability in nano-scale circuits 

– In an IBM 90 nm process Vt varies for 0.4 to 0.58 volts 

• Transistor aging increases vulnerability 

– An ASU model shows Vt increasing by 5% over 5 years 

– Clock domains may not have uncorrelated clocks 
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Is There A Perfect Solution? 

• Theoretical results show metastability is a 
fundamental problem of all bi-stable circuits 

• Failures caused by metastability are always a 
possibility 

–  between two independently clocked domains 

–  between a clock domain and outside world 

• One solution uses asynchronous circuits, but 
real-time applications may still be problematic 

• Another solution uses synchronizer circuits and 
designers must hope failures are rare 
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Completion Detection 

• It is not possible to bound 
the amount of time needed 
for a synchronizer to settle. 

• It is, however, possible to 
detect when the 
synchronizer has settled! 

• This is only useful if the 
downstream logic can use 
this asynchronous 
completion signal 
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What Could Go Wrong?  

• It’s easy to get a synchronizer 

design wrong 

• The three most common pitfalls 

are: 

– using a non-restoring (or slowly 

restoring) flip-flop 

•  needs to be small 

– not isolating the flip-flop feedback 

loop 

– Using two flip-flops in parallel 

• The last pitfall is doing everything 

“right” but not understanding that 

influences MTBF! 
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Correlated Clocks 

Osc. 

PLL A 

Core A 

PLL B 

Sync. Core B 

Although Cores A and B may be clocked at different rates, these rates are 

based on the same oscillator and are thus correlated. This relationship 

between the synchronizer’s clock and data inputs can be very malicious. 
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Correlated Clocks & Noise 

• The effects of correlated clocks 
and the effects of noise can be 
approached similarly. 

• As we will see, circuit noise may be 
treated as one case of correlated 
clocks. 
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Region of Vulnerability: Dt 
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Malicious Data Events 
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Malicious Data Events 
Even More Malicious 
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Effects of Thermal Noise 
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Upper Bound on Punresolved 
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Bottom Line: Thermal noise establishes an upper 

bound on Punresolved and a lower bound on MTBF 
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Calculating MTBF 

• Always a stochastic calculation 

– Assume clock and data unrelated 

 

 

– If related, thermal noise gives lower bound 

• E.g. clock and data from same source or clockless 

 

 
 

• Thermal noise voltage standard deviation: 

– This lower bound is 2 to 3 orders of magnitude smaller 
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MTBF Affects System Behavior 

• Assume: 

– Desired probability of system failure = 1 : 2,000,000 

– System lifetime is 30 years (~ 10 9 sec) 

– System has 50 processors with 10 synchronizers each 

• Then: 

– Need MTBF of 30 billion years (3·1010) per synchronizer 

• But: 

– Corner cases can further reduce needed MTBF 

– If clock and data are related, must use lower bound set by thermal 
noise: MTBFn 

• Unwise to use conventional MTBF formula without 
understanding its limitations 
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90 nm process 

 =39.83 ps, Gtv=0.375 V/ns, fd = 133 MHz 

125 ps setup time assumed 

MTBF ranges from 1 day to 9.7·1037 years 

MTBFn ranges from 11.5 minutes to 2.1·1035 years  

Master-Slave DFF MTBF 

Examples 

Clock Frequency (MHz) MTBF (yrs) MTBFn (yrs)

200 9.7E+37 2.1E+35

300 4.3E+19 1.4E+17

500 7.5E+04 4.1E+02

750 2.7E-03 2.2E-05
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200 MHz Clock; 90 nm process, 125 ps setup time 

MTBF ranges from 5.07·104 years to 4.16·10110 years 

MTBFn ranges from 112 years to 1.09·10109 years  

Parameter Variations in Master-Slave 

Process-Voltage-Temperature 200 MHz 

 (ps) Gtv (V/ns) MTBF (yrs) MTBFn (yrs)

-3 sigma 106.49 0.369 5.07E+04 1.12E+02

-1 sigma 55.50 0.543 1.37E+23 2.06E+20

Nominal     0 degrees 39.30 0.751 1.00E+39 1.04E+36

Nominal   27 degrees 39.83 0.375 9.79E+37 2.13E+35

Nominal   70 degrees 41.01 0.301 2.29E+36 6.65E+33

1 sigma 28.98 0.866 1.80E+58 1.70E+55

3 sigma 16.69 0.031 4.16E+110 1.09E+109
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200 MHz Clock; 90 nm process, 125 ps setup time 

Latch Versus Master-Slave FF 

MTBF @200 MHz 

 (ps) Gtv (V/ns) MTBF (yrs)

Master-Slave FF 39.83 0.375 9.8E+37

Latch 40.54 4.729 1.4E+38


