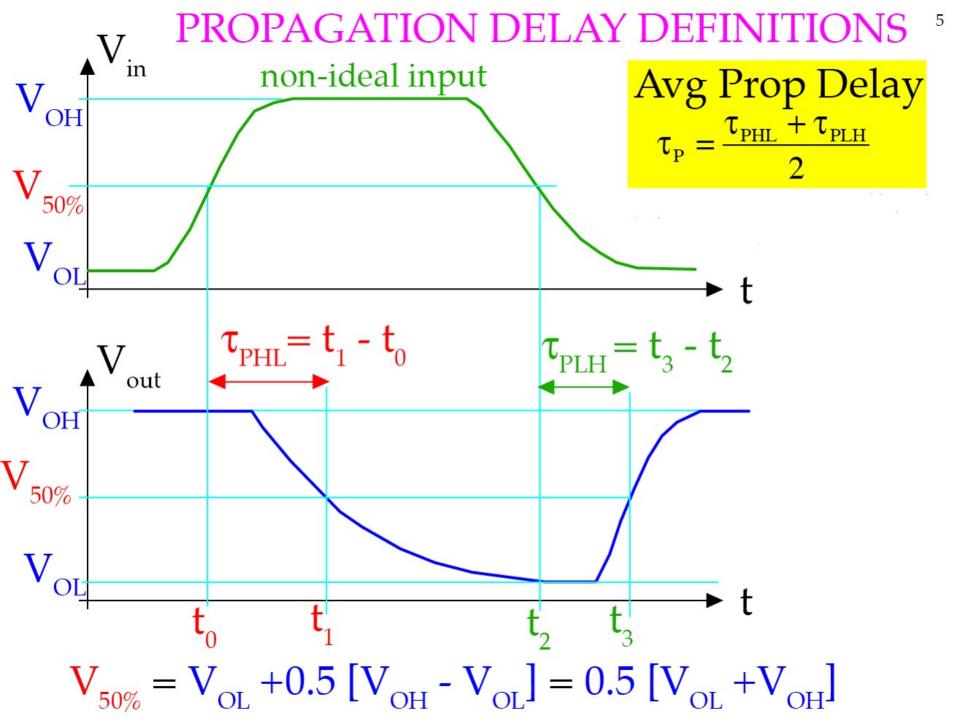
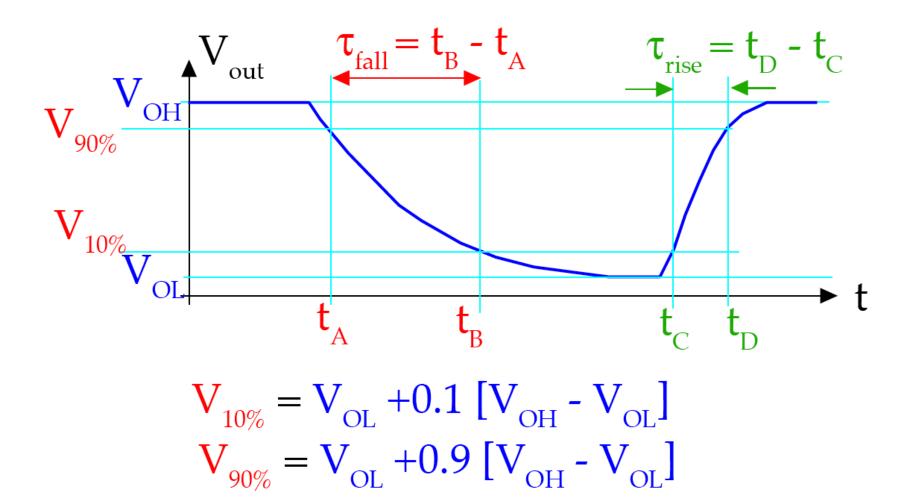
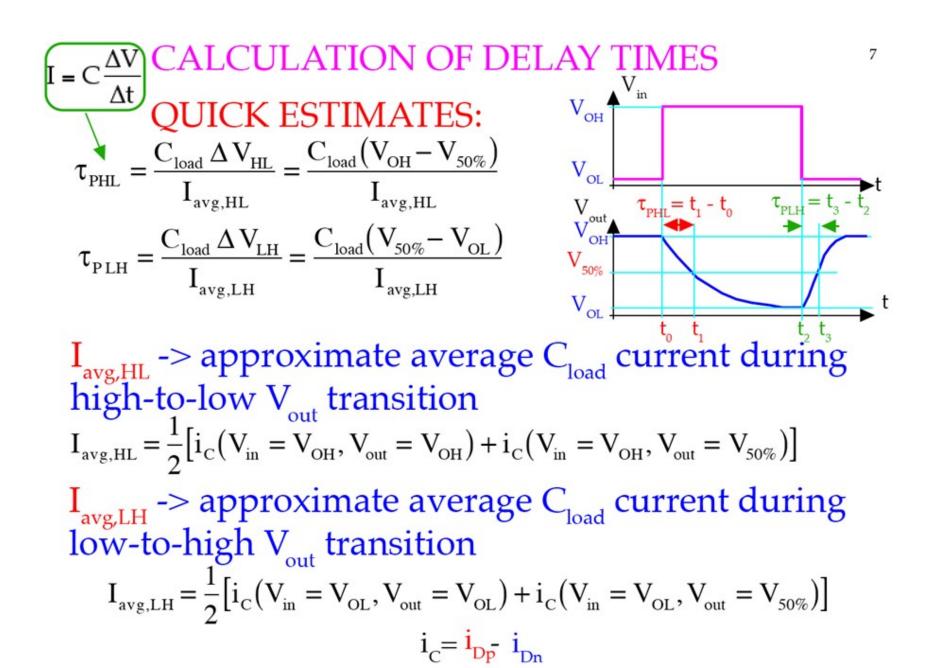
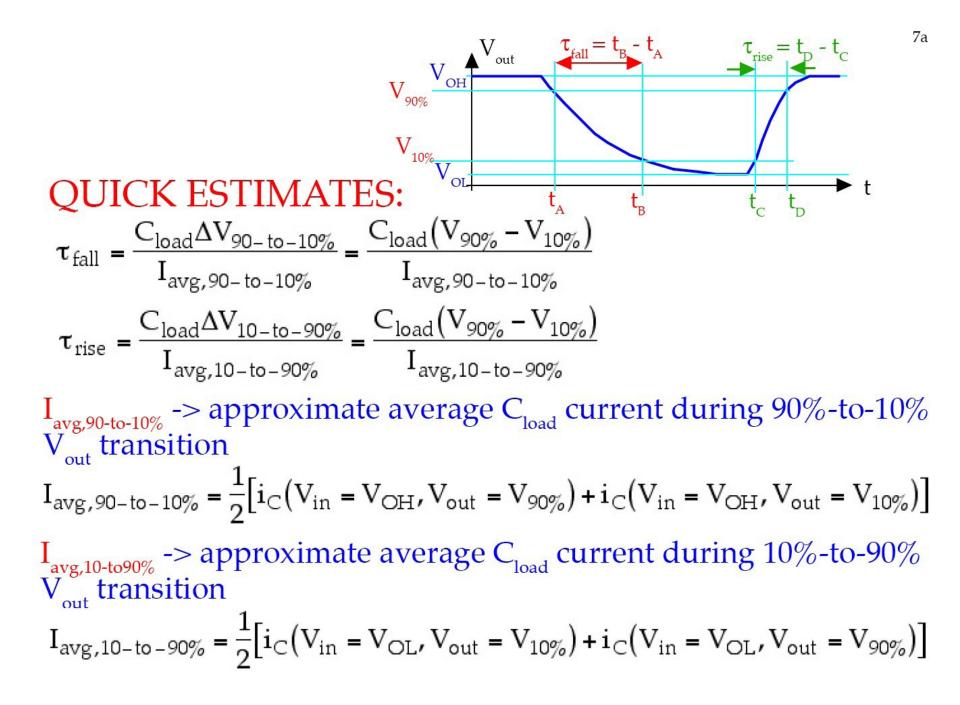

Digital IC Design and Architecture



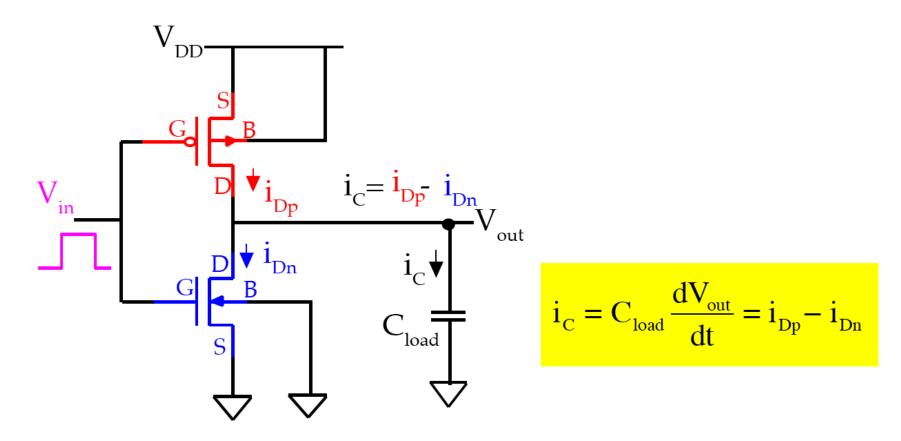
MOS Inverter Dynamic Behavior

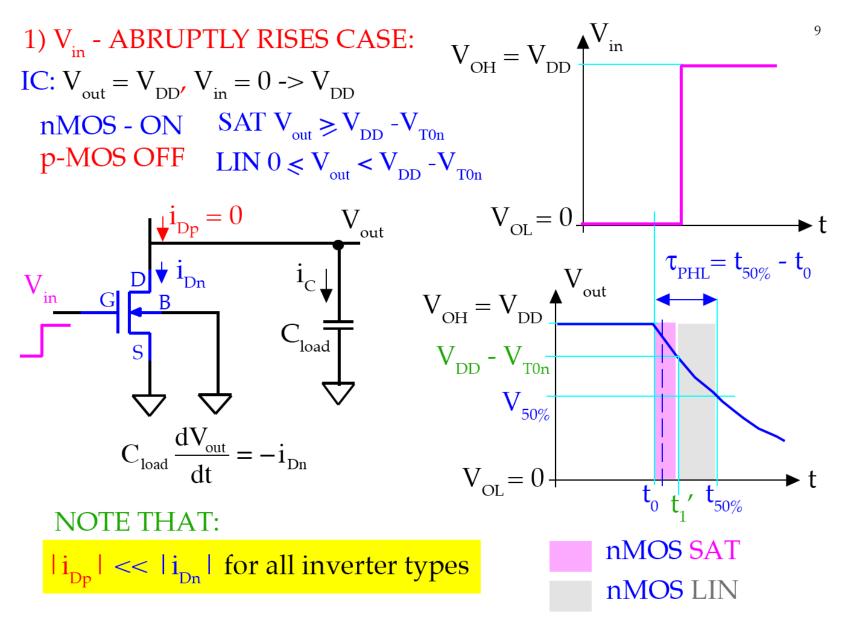


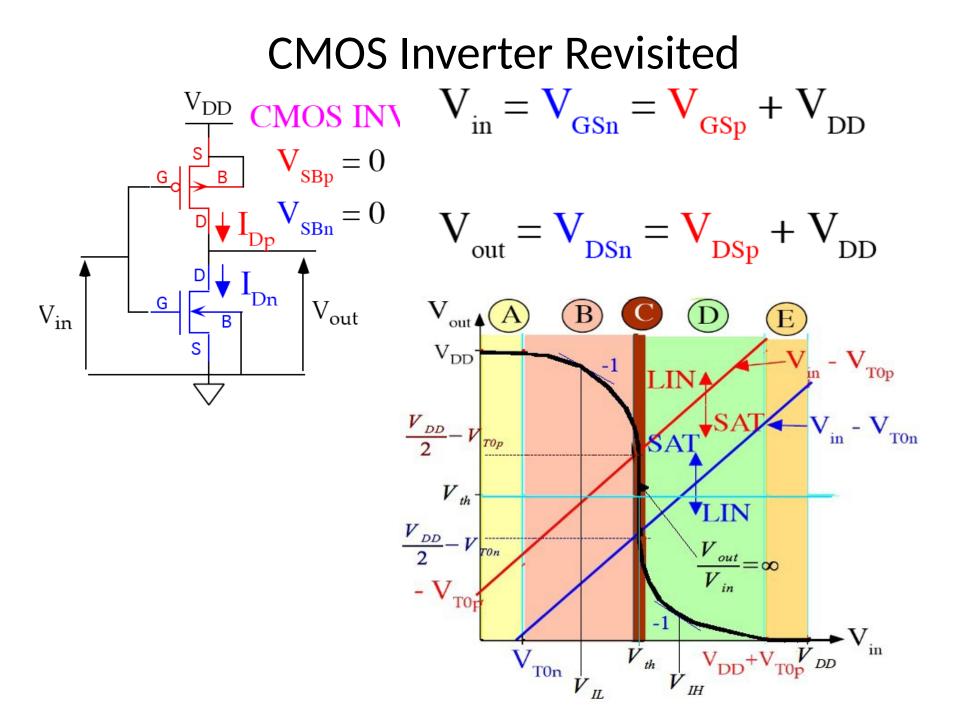




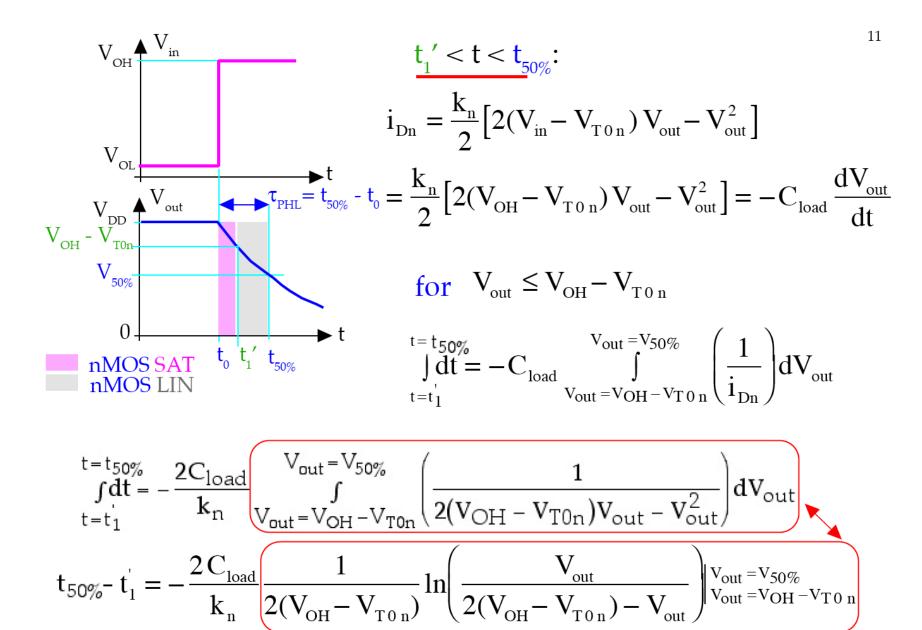
OUTPUT VOLTAGE RISE & FALL TIMES






Calculating Propagation Delays By Solving the Circuit Differential Equation

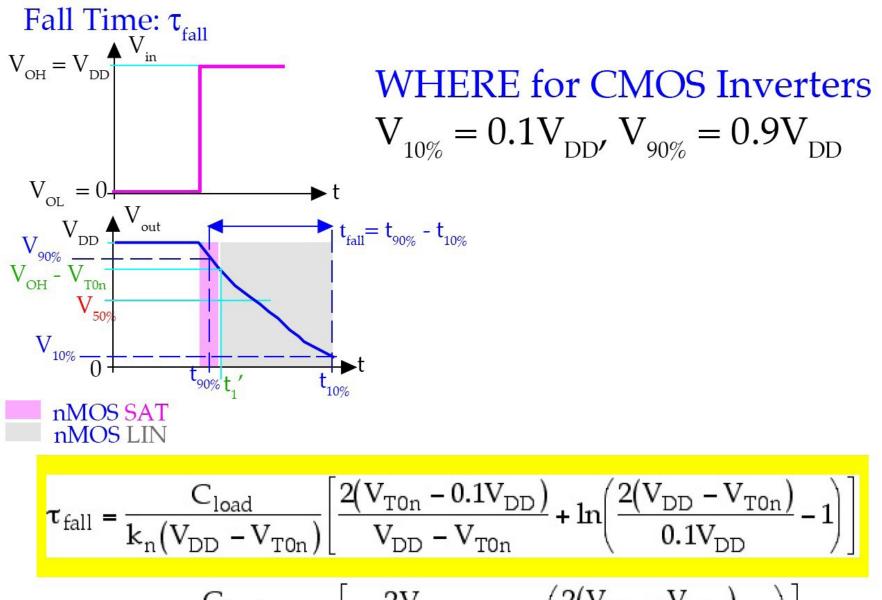
MORE ACCURATE CALCULATION OF $\tau_{PHL'}$ τ_{PLH} :



1) Vin - ABRUPTLY RISES CASE -> TPHL

$$V_{OH} = V_{DD} \bigvee_{in} \underbrace{\tau_{PHL}}_{V_{OH}} \underbrace{\tau_{PHL}}_{V_{OH}} \underbrace{t_{0} < t < t_{1}'}_{iDn} = \frac{k_{n}}{2} (V_{in} - V_{T0n})^{2} = -i_{C} \\ \frac{k_{n}}{2} (V_{OH} - V_{T0n})^{2} = -C_{load} \frac{dV_{out}}{dt} \\ \underbrace{v_{OH} - V_{T0n}}_{V_{T0n}} \underbrace{v_{out}}_{V_{T0n}} \underbrace{v_{out} + t_{TPHL} = t_{50\%} - t_{0}}_{iDn} = -C_{load} \frac{dV_{out}}{dt} \Rightarrow \underbrace{dt = -\frac{C_{load}}{i_{Dn}} dV_{out}}_{iDn} = -C_{load} \frac{dV_{out}}{dt} \Rightarrow \underbrace{dt = -\frac{C_{load}}{i_{Dn}} dV_{out}}_{V_{out}} \\ \underbrace{fdt = -C_{load}}_{iDn} \underbrace{fdt = -C_{load}}_{V_{out} = V_{OH} - V_{T0n}} \left(\frac{1}{i_{Dn}}\right) dV_{out} \\ \underbrace{fdt = -C_{load}}_{t = t_{0}} \underbrace{fdt = -\frac{C_{load}}{V_{out}} - V_{OH}}_{V_{out} = V_{OH} - V_{T0n}} \\ \underbrace{fdt = -\frac{C_{load}}{k_{n}} (V_{OH} - V_{T0n})^{2}}_{V_{out} = V_{OH}} \underbrace{fdv_{out}}_{i_{Dn}} dV_{out} \\ \underbrace{f_{1} - t_{0} = \frac{2C_{load}V_{T0n}}{k_{n}(V_{OH} - V_{T0n})^{2}}}$$

$$\begin{split} t_{50\%} - t_{1}^{'} &= -\frac{2 C_{load}}{k_{n}} \frac{1}{2(V_{OH} - V_{T0n})} ln \left(\frac{V_{out}}{2(V_{OH} - V_{T0n}) - V_{out}} \right) V_{out}^{*} = V_{50\%} \\ &= \frac{C_{load}}{k_{n}(V_{OH} - V_{T0n})} ln \left(\frac{2(V_{OH} - V_{T0n}) - V_{50\%}}{V_{50\%}} \right) \\ &\longrightarrow t_{1}^{'} - t_{0} = \frac{2 C_{load} V_{T0n}}{k_{n}(V_{OH} - V_{T0n})^{2}} \\ \tau_{PHL} &= t_{50\%} - t_{1}^{'} + t_{1}^{'} - t_{0} \\ \tau_{PHL} &= \frac{2 C_{load} V_{T0n}}{k_{n}(V_{OH} - V_{T0n})^{2}} + \frac{C_{load}}{k_{n}(V_{OH} - V_{T0n})} ln \left(\frac{2(V_{OH} - V_{T0n}) - V_{50\%}}{V_{50\%}} \right) \\ &= \frac{C_{load}}{k_{n}(V_{OH} - V_{T0n})^{2}} \left[\frac{2 V_{T0n}}{V_{OH} - V_{T0n}} + ln \left(\frac{2(V_{OH} - V_{T0n}) - V_{50\%}}{V_{50\%}} - 1 \right) \right] \end{split}$$


$$\tau_{\text{PHL}} = \frac{C_{\text{load}}}{k_{n}(V_{\text{OH}} - V_{\text{T0n}})} \left[\frac{2V_{\text{T0n}}}{V_{\text{OH}} - V_{\text{T0n}}} + \ln \left(\frac{2(V_{\text{OH}} - V_{\text{T0n}})}{V_{50\%}} - 1 \right) \right]$$

SUBSTITUTING $V_{50\%} = 0.5 [V_{OL} + V_{OH}]$

$$\tau_{\rm PHL} = \frac{C_{\rm load}}{k_{\rm n}(V_{\rm OH} - V_{\rm T0\,n})} \left[\frac{2\,V_{\rm T0\,n}}{V_{\rm OH} - V_{\rm T0\,n}} + \ln \left(\frac{4(V_{\rm OH} - V_{\rm T0\,n})}{V_{\rm OH} + V_{\rm OL}} - 1 \right) \right]$$

WHERE for CMOS Inverters $V_{OL} = 0$, $V_{OH} = V_{DD}$

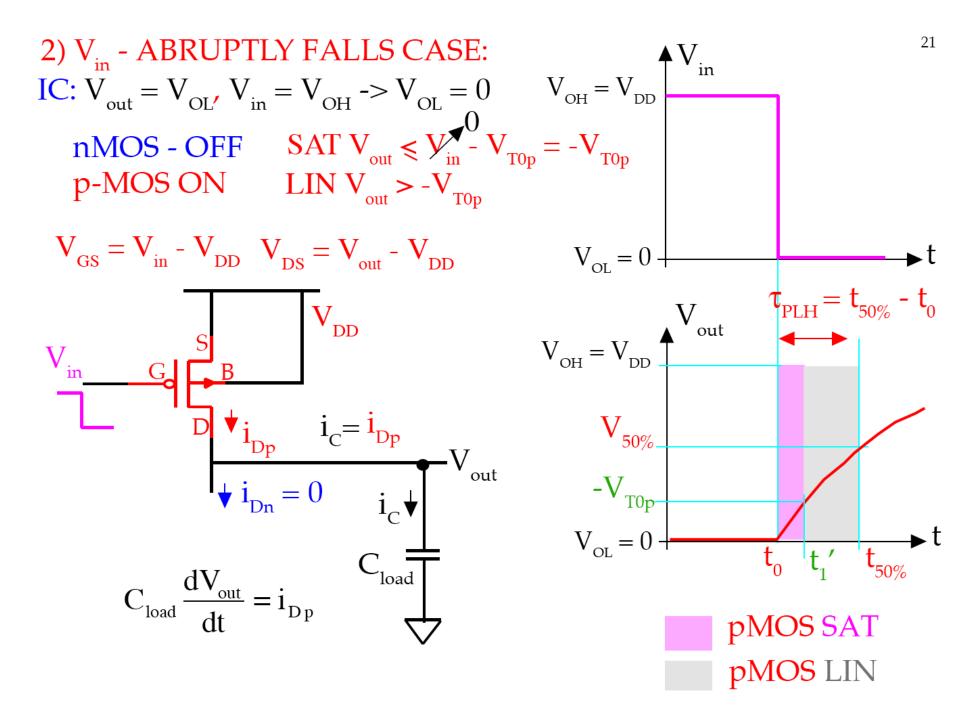
$$\tau_{\rm PHL} = \frac{C_{\rm load}}{k_{\rm n}(V_{\rm DD} - V_{\rm T0n})} \left[\frac{2 V_{\rm T0n}}{V_{\rm DD} - V_{\rm T0n}} + \ln \left(\frac{4(V_{\rm DD} - V_{\rm T0n})}{V_{\rm DD}} - 1 \right) \right]$$

 $\tau_{\rm PHL} = \frac{C_{\rm load}}{k_{\rm n} (V_{\rm DD} - V_{\rm T0n})} \left[\frac{2V_{\rm T0n}}{V_{\rm DD} - V_{\rm T0n}} + \ln \left(\frac{2(V_{\rm DD} - V_{\rm T0n})}{0.5V_{\rm DD}} - 1 \right) \right]$

EXAMPLE 6.1

Consider a CMOS inverter with $C_{load} = 1.0 \text{ pF}$, where the IV characteristics of the nMOS transitor driver are specified as follows:

$$V_{GSn} = 5 \text{ V and } V_{DSn} \ge 4 \text{ V} \implies i_{Dn} = i_{Dnsat} = 5 \text{ mA}$$


Assume V_{in} is a step pulse that switches instantaneously from 0 to 5 V. Calculate the delay time necessary for the inverter output to fall from its initial value of 5 V to 2.5 V.

$$V_{50\%} = 0.5 [V_{OL} + V_{OH}] = 0.5 [0 + 5 V] = 2.5 V$$

1. FROM IV DATA: Determine V_{T0n} and k_n

nMOS in SAT =>
$$V_{DSn} = 5V - V_{T0n} = 4V => V_{T0n} = 1V$$

Using $i_{Dnsat} = \frac{k_n}{2} (V_{GS} - V_{T0n})^2 = 5 \text{ mA}$
 $k_n = \frac{2i_{Dnsat}}{(V_{GS} - V_{T0n})^2} = \frac{2 \times 5 \text{ mA}}{(4 \text{ V})^2} = 0.625 \times 10^{-3} \text{ A} / V^2$

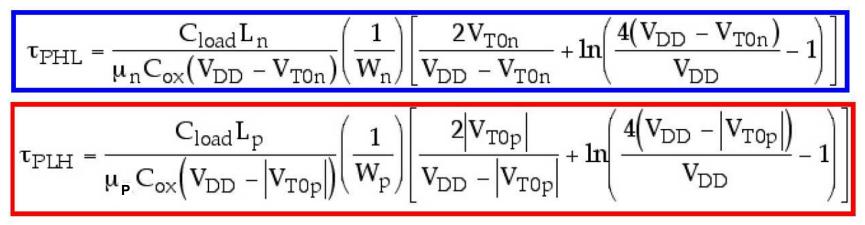
2.
$$t_0 < t < t_1'$$
: where $i_{Dn} = I_{Dnsat} = 5mA$ ¹⁷
 $t_{et_1} V_{out} = V_{OH} - V_{T0n} \left(\frac{1}{i_{Dn}}\right) dV_{out}$ $V_{OH} - V_{T0n} = 4 V$
 $\int dt = -C_{load} \int_{V_{out} = V_{OH}} V_{out} = -\frac{1}{i_{Dn}} dV_{out}$ $V_{OH} = 5 V$
 $t_1 - t_0 = -\frac{C_{load}}{i_{Dnsat}} \int_{V_{out} = 5V}^{V_{out} = 4V} (-1V) = 0.2 nS$
3. $t_1' < t < t_1:$
 $t_1 - t_1' = \frac{C_{load}}{k_n(V_{OH} - V_{T0n})} ln \left(\frac{2(V_{OH} - V_{T0n}) - V_{50\%}}{V_{50\%}}\right)$
 $= \frac{1pF}{(0.625 x 10^3 A/V^2)(5 - 1) V} ln \left(\frac{2(5 - 1) V - 2.5 V}{2.5 V}\right)$
 $= \frac{1 x 10^{-12} F}{(0.625 x 10^3 A/V^2) 4 V} ln \left(\frac{5.5}{2.5}\right) = 1.26 ns$
 $T_{PHL} = 0.2 ns + 1.26 ns = 1.46 ns$

$$\tau_{\rm PLH} = \frac{C_{\rm load}}{k_{\rm p}(V_{\rm OH} - V_{\rm OL} - |V_{\rm T0p}|)} \left[\frac{2 |V_{\rm T0p}|}{V_{\rm OH} - |V_{\rm T0p}|} + \ln \left(\frac{2(V_{\rm OH} - V_{\rm OL} - |V_{\rm T0p}|)}{V_{\rm OH} - V_{\rm 50\%}} - 1 \right) \right]$$

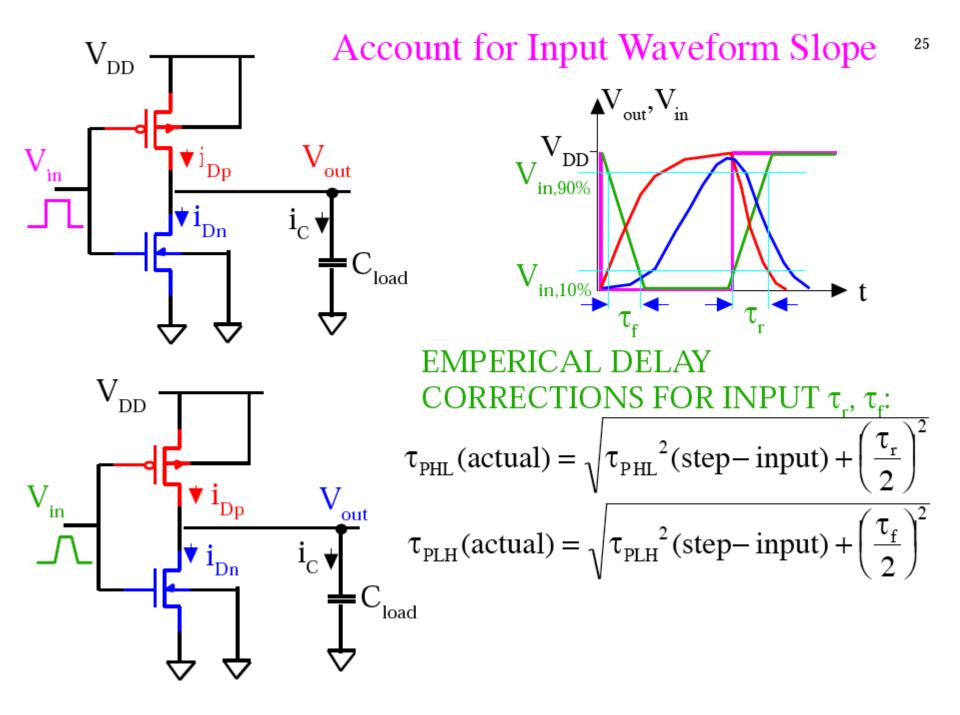
 $V_{50\%} = 0.5 [V_{OL} + V_{OH}], \text{ FOR CMOS INV: } V_{OL} = 0, V_{OH} = V_{DD}$

$$\tau_{\rm PLH} = \frac{C_{\rm load}}{k_{\rm p}(V_{\rm DD} - |V_{\rm T0p}|)} \left[\frac{2|V_{\rm T0p}|}{V_{\rm DD} - |V_{\rm T0p}|} + \ln \left(\frac{4(V_{\rm DD} - |V_{\rm T0p}|)}{V_{\rm DD}} - 1 \right) \right]$$

$$\tau_{\text{rise}} = \frac{C_{\text{load}}}{k_{p} (V_{\text{DD}} - |V_{\text{T0p}}|)} \left[\frac{2 (|V_{\text{T0p}}| - 0.1 V_{\text{DD}})}{V_{\text{DD}} - |V_{\text{T0p}}|} + \ln \left(\frac{2 (V_{\text{DD}} - |V_{\text{T0p}}|)}{0.1 V_{\text{DD}}} - 1 \right) \right]$$


FOR CMOS INV:
$$V_{OL} = 0$$
, $V_{OH} = V_{DD}$
$$\tau_{PHL} = \frac{C_{load}}{k_n (V_{DD} - V_{T0n})} \left[\frac{2V_{T0n}}{V_{DD} - V_{T0n}} + \ln \left(\frac{4(V_{DD} - V_{T0n})}{V_{DD}} - 1 \right) \right]$$

CONDITIONS FOR Balanced CMOS Inverter Propagation Delays, i.e. $\tau_{PHL} = \tau_{PLH}$


$$\begin{aligned} \tau_{\rm PLH} &= \frac{C_{\rm load}}{k_{\rm p}(V_{\rm DD} - |V_{\rm T0\,p}|)} \left[\frac{2 |V_{\rm T0\,p}|}{V_{\rm DD} - |V_{\rm T0\,p}|} + \ln \left(\frac{4(V_{\rm DD} - |V_{\rm T0\,p}|)}{V_{\rm DD}} - 1 \right) \right] \\ \tau_{\rm PHL} &= \frac{C_{\rm load}}{k_{\rm n}(V_{\rm DD} - V_{\rm T0\,n})} \left[\frac{2 V_{\rm T0\,n}}{V_{\rm DD} - V_{\rm T0\,n}} + \ln \left(\frac{4(V_{\rm DD} - V_{\rm T0\,n})}{V_{\rm DD}} - 1 \right) \right] \\ \text{where} \quad k_{\rm n} = \mu_{\rm n} C_{\rm ox} \frac{W_{\rm n}}{L_{\rm n}} \quad \& \quad k_{\rm p} = \mu_{\rm p} C_{\rm ox} \frac{W_{\rm p}}{L_{\rm p}} \end{aligned}$$

FOR
$$\tau_{\text{PHL}} = \tau_{\text{PLH}}$$

 $V_{\text{T0n}} = |V_{\text{T0p}}|$
 $k_n = k_p$ or $\left(\frac{W}{L}\right)_n = \frac{\mu p}{\mu_n}$

OBSERVATIONS

- Calculation of τ_{PHL} , depends largely on NMOS driver, i.e. nearly same for all INV types.
- Calculation of τ_{PLH} , depends largely on the load device and its operation, i.e. different for all INV types.
- Options to reduce $\tau_{PHL'}$, τ_{PLH} :
 - Decrease C_{load}
 - Increase V_{DD}
 - Increase W/L ratio (which usually means increasing W)

CMOS INVERTER DELAY DESIGN FORMULAS

$$\tau_{\text{PHL}} = \frac{C_{\text{load}}}{k_n (V_{\text{DD}} - V_{\text{T0n}})} \left[\frac{2 V_{\text{T0n}}}{V_{\text{DD}} - V_{\text{T0n}}} + \ln \left(\frac{4 (V_{\text{DD}} - V_{\text{T0n}})}{V_{\text{DD}}} - 1 \right) \right]$$

where $k_n = \mu_n C_{\text{ox}} \frac{W_n}{L_n}$

$$\frac{W_{n}}{L_{n}} = \frac{C_{load}}{\tau_{PHL}\mu_{n}C_{ox}(V_{DD} - V_{T0n})} \left[\frac{2V_{T0n}}{V_{DD} - V_{T0n}} + \ln \left(\frac{4(V_{DD} - V_{T0n})}{V_{DD}} - 1 \right) \right]$$

$$\begin{aligned} \tau_{\rm PLH} &= \frac{C_{\rm load}}{k_{\rm p}(V_{\rm DD} - |V_{\rm T0\,p}|)} \left[\frac{2 |V_{\rm T0\,p}|}{V_{\rm DD} - |V_{\rm T0\,p}|} + \ln \left(\frac{4(V_{\rm DD} - |V_{\rm T0\,p}|)}{V_{\rm DD}} - 1 \right) \right] \\ & \text{where } k_{\rm p} = \mu_{\rm p} C_{\rm ox} \frac{W_{\rm p}}{L_{\rm p}} \\ \frac{W_{\rm p}}{L_{\rm p}} &= \frac{C_{\rm load}}{\tau_{\rm PLH} \mu_{\rm p} C_{\rm ox} \left(V_{\rm DD} - |V_{\rm T0\,p}| \right)} \left[\frac{2 |V_{\rm T0\,p}|}{V_{\rm DD} - |V_{\rm T0\,p}|} + \ln \left(\frac{4 \left(V_{\rm DD} - |V_{\rm T0\,p}| \right)}{V_{\rm DD}} - 1 \right) \right] \end{aligned}$$

EXAMPLE 6.3

Design a CMOS inverter by determining the W_n and W_p of the nMOS and PMOS transistors to meet the following specs:

->
$$V_{th} = 2 V$$
 for $V_{DD} = 5 V$
-> Delay time of 2 ns for a V_{out} transition from 4 V to 1 V, with $C_{base} = 1.0 \text{ pF}$.

The process and device parameters are specified as follows:

$$\begin{array}{l} k_n' = \mu_n C_{ox} = 30 \ \mu A/V^2, \\ k_p' = \mu_p C_{ox} = 10 \ \mu A/V^2 \\ L_n = L_p = 1.0 \ \mu m \\ V_{T0n} = 1.0 \ V \\ V_{T0p} = -1.5 \ V \\ W_{min} = 2 \ \mu m \ (limited \ by \ design \ rules) \end{array}$$

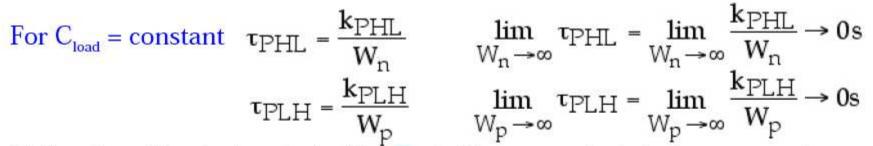
STEP #1: Satisfy the Delay Constraint: τ_{PHL} from 4 V to 1 V HL => PULL-DOWN => τ_{PHL} determined by nMOS driver NOTE V_{in} = V_{OH} and 1 \leq V_{out} \leq 4 V => nMOS LIN

$$\begin{split} & C_{\text{load}} \frac{dV_{\text{out}}}{dt} = -\frac{\mu_n C_{\text{ox}}}{2} \frac{W_n}{L_n} \Big[2(V_{\text{OH}} - V_{\text{T0}\,n}) \, V_{\text{out}} - V_{\text{out}}^2 \Big] \\ & \tau_{\text{delay}} = 2.0 \, \text{x} 10^{-9} \, \text{s} = -2 \, C_{\text{load}} \frac{1}{\mu_n C_{\text{ox}}} \frac{W_n}{L_n} \int_{\text{vout}=4}^{\text{vout}=1} \frac{dV_{\text{out}}}{[2(V_{\text{OH}} - V_{\text{T0}\,n}) \, V_{\text{out}} - V_{\text{out}}^2]} \\ & = -2 \, C_{\text{load}} \frac{1}{\mu_n C_{\text{ox}}} \frac{W_n}{L_n} \frac{1}{2(V_{\text{OH}} - V_{\text{T0}\,n})} \ln \left[\frac{V_{\text{out}=4}}{2(V_{\text{OH}} - V_{\text{T0}\,n}) - V_{\text{out}}} \right] |_{V_{\text{out}=4}}^{V_{\text{out}=4}} \\ & = \frac{-C_{\text{load}}}{\mu_n C_{\text{ox}}} \frac{W_n}{L_n} (V_{\text{DD}} - V_{\text{T0}\,n})} \left\{ \ln \left[\frac{1V}{2(5-1)V - 1V} \right] - \ln \left[\frac{4V}{2(5-1)V - 4V} \right] \right\} \\ & 2.0 \, \text{x} 10^{-9} \, \text{s} = \frac{-1 \, \text{x} 10^{-12} \, \text{F}}{(30 \, \text{x} 10^{-6} \, \text{A} / \, \text{V}^2) \frac{W_n}{L_n} (5-1)V} \left\{ \ln \left[\frac{1}{7} \right] - \ln \left[\frac{4}{4} \right] \right\} \\ & \frac{W_n}{L_n} = \frac{1 \, \text{x} 10^{-12} \, \text{F}}{(2.0 \, \text{x} 10^{-9} \, \text{s}) (30 \, \text{x} 10^{-6} \, \text{A} / \text{V}^2) (4)} \ln(7) = \frac{1}{(2.0) (0.03) (4)} \ln(7) = 8.108 \end{split}$$

$$\begin{split} & \frac{W_n}{L_n} = 8.108 \text{, } L_n = 1 \mu \text{m} \implies W_n = 8.108 \text{ (1 } \mu \text{m}) = 8.1 \mu \text{m} \\ & \text{From } \tau_{\text{delay}} \text{ spec} \end{split}$$

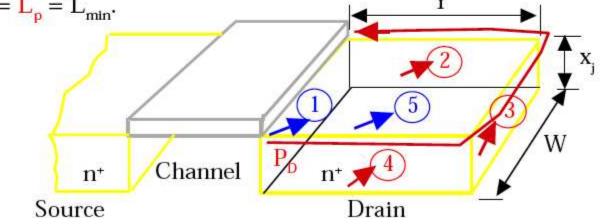
$$& \text{STEP #2: Satisfy the } V_{\text{th}} \text{ constraint, where:}$$

$$& V_{\text{th}} = \frac{V_{\text{T0n}} + \sqrt{\frac{1}{k_R}} (V_{\text{DD}} + V_{\text{T0p}})}{\left(1 + \sqrt{\frac{1}{k_R}}\right)} = \frac{1.0 \text{ V} + \sqrt{\frac{1}{k_R}} (5 + (-1.5)) \text{ V}}{\left(1 + \sqrt{\frac{1}{k_R}}\right)}$$

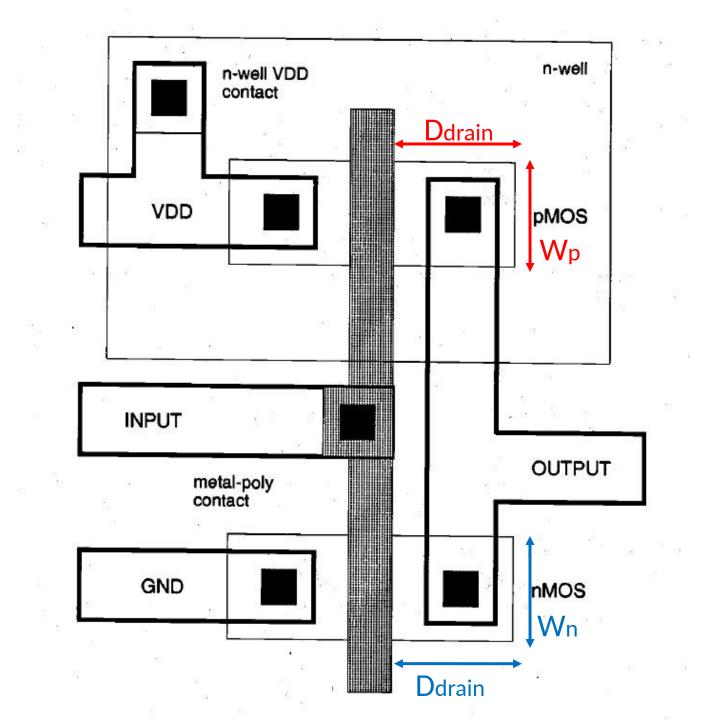

$$& = \frac{1.0 \text{ V} + \sqrt{\frac{1}{k_R}} (3.5) \text{ V}}{\left(1 + \sqrt{\frac{1}{k_R}}\right)} = 2 \text{ V} \implies k_R = (1.5)^2 = \frac{9}{4}$$

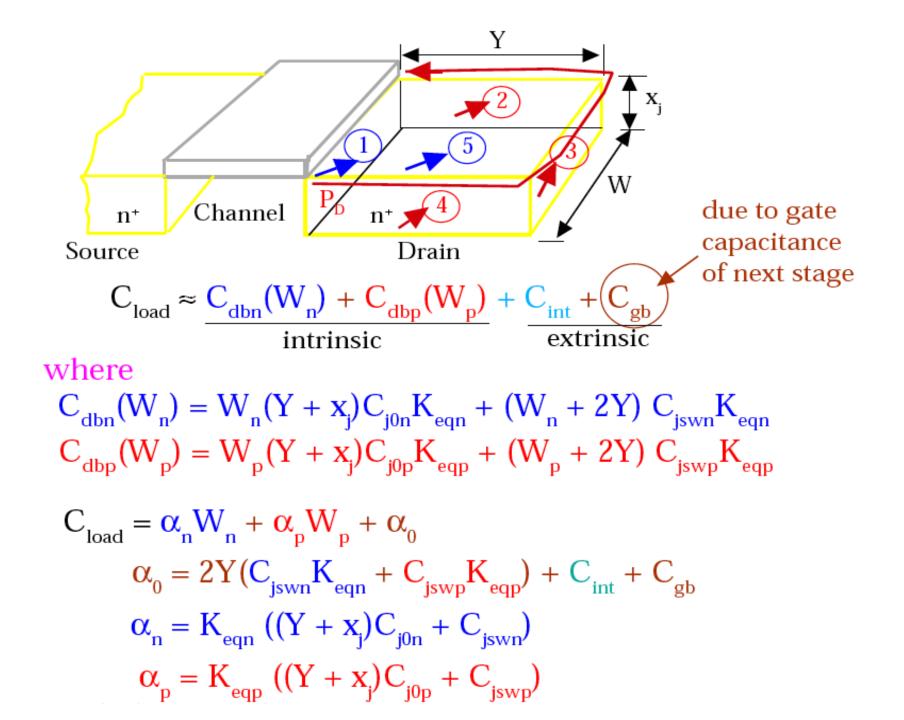
$$& k_R = \frac{\mu_n C_{\text{ox}} (W/L)_n}{\mu_p C_{\text{ox}} (W/L)_p} = \frac{30 \text{ W}_n}{10 \text{ W}_p} = 3 \frac{\text{W}_n}{\text{W}_p} = \frac{9}{4} \implies W_p = \frac{4}{9} (3) \text{ W}_n$$

$$& \text{ with } L_p = 1 \mu \text{m} \qquad W_p = \frac{4}{9} (3) 8.1 \mu \text{ m} = 10.8 \mu \text{ m}$$

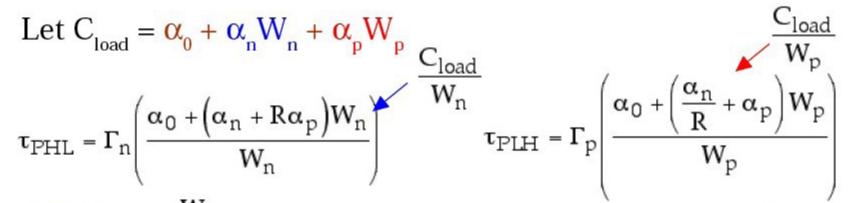

$$\begin{aligned} \text{LIMITS TO SCALING DEVICE DIMENSIONS TO REDUCE} & \text{PROPAGATION DELAYS} \\ \tau_{\text{PHL}} &= \frac{C_{\text{load}}}{k_n(V_{\text{DD}} - V_{\text{T0n}})} \Biggl[\frac{2V_{\text{T0n}}}{V_{\text{DD}} - V_{\text{T0n}}} + \ln\Biggl(\frac{4(V_{\text{DD}} - V_{\text{T0n}})}{V_{\text{DD}}} - 1 \Biggr) \Biggr] \\ \tau_{\text{PLH}} &= \frac{C_{\text{load}}}{k_p(V_{\text{DD}} - |V_{\text{T0p}}|)} \Biggl[\frac{2|V_{\text{T0p}}|}{V_{\text{DD}} - |V_{\text{T0p}}|} + \ln\Biggl(\frac{4(V_{\text{DD}} - |V_{\text{T0p}}|)}{V_{\text{DD}}} - 1 \Biggr) \Biggr] \\ k_n &= \mu_n C_{\text{ox}} \frac{W_n}{L_n} \qquad k_p = \mu_p C_{\text{ox}} \frac{W_p}{L_p} \\ \text{If } C_{\text{load}} = \text{independent of } L_n, W_n \text{ and } L_p, W_p \\ \tau_{\text{PHL}} &= \frac{C_{\text{load}} L_n}{\mu_n C_{\text{ox}}(V_{\text{DD}} - V_{\text{T0n}})} \Biggl(\frac{1}{W_n} \Biggr) \Biggl[\frac{2|V_{\text{T0p}}|}{V_{\text{DD}} - V_{\text{T0n}}} + \ln\Biggl(\frac{4(V_{\text{DD}} - |V_{\text{T0p}}|)}{V_{\text{DD}}} - 1 \Biggr) \Biggr] = \frac{k_{\text{PHL}}}{W_n} \\ \tau_{\text{PLH}} &= \frac{C_{\text{load}} L_p}{\mu_n C_{\text{ox}}(V_{\text{DD}} - |V_{\text{T0p}}|)} \Biggl(\frac{1}{W_p} \Biggr) \Biggl[\frac{2|V_{\text{T0p}}|}{V_{\text{DD}} - |V_{\text{T0p}}|} + \ln\Biggl(\frac{4(V_{\text{DD}} - |V_{\text{T0p}}|)}{V_{\text{DD}}} - 1 \Biggr) \Biggr] = \frac{k_{\text{PLH}}}{W_p} \\ \text{Also} \\ \hline \tau_{\text{fall}} = \frac{k_{\text{fall}}}{W_n} \end{aligned}$$

Cload \approx Cdbn + Cdbp + Cint + Cgb




Only when C_{load} is dominated by C_{load} is C_{load} a constant design parameter that is independent of the device dimensions.

In practice, to minimize area, L_n , L_p are set to the minimum dimension, i.e. $L_n = L_p = L_{min}$.

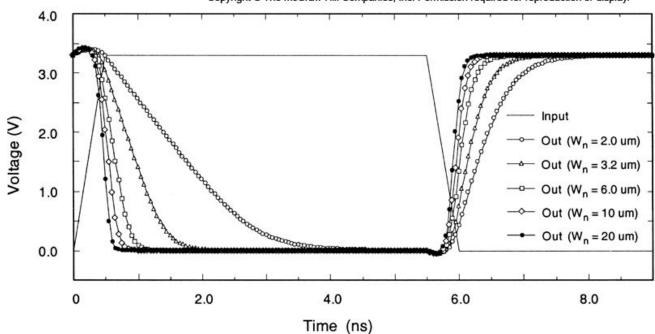


Cload \approx Cdbn(Wn) + Cdbp(Wp) + Cint + Cgb

$$\begin{aligned} \tau_{\rm PHL} &= \frac{C_{\rm load} L_n}{\mu_n C_{\rm ox} (V_{\rm DD} - V_{\rm T0n})} \left(\frac{1}{W_n}\right) \left[\frac{2V_{\rm T0n}}{V_{\rm DD} - V_{\rm T0n}} + \ln\left(\frac{4(V_{\rm DD} - V_{\rm T0n})}{V_{\rm DD}} - 1\right)\right] \\ \tau_{\rm PLH} &= \frac{C_{\rm load} L_p}{\mu_n C_{\rm ox} (V_{\rm DD} - |V_{\rm T0p}|)} \left(\frac{1}{W_p}\right) \left[\frac{2|V_{\rm T0p}|}{V_{\rm DD} - |V_{\rm T0p}|} + \ln\left(\frac{4(V_{\rm DD} - |V_{\rm T0p}|)}{V_{\rm DD}} - 1\right)\right] \end{aligned}$$

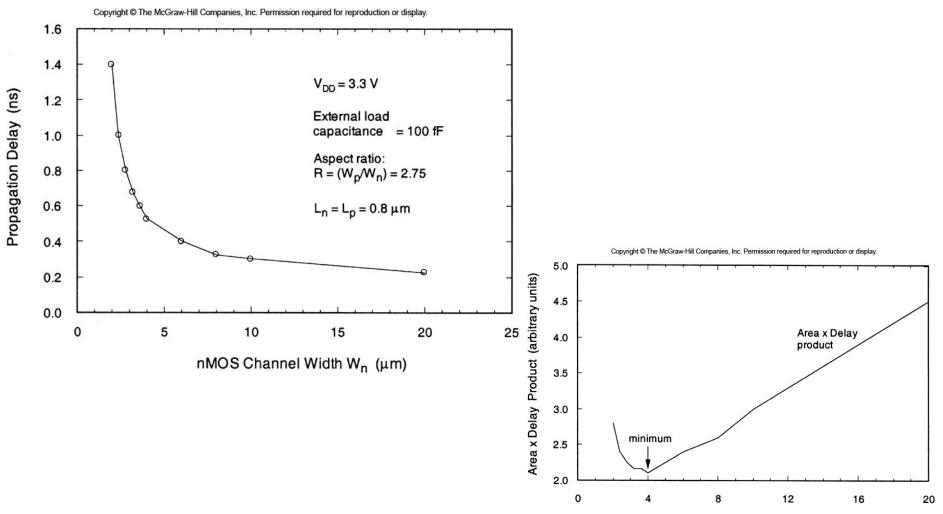
where $R = \frac{W_p}{W_n}$ (set to static parameters, V_{th} in CMOS) $\Gamma_n = \left(\frac{L_n}{\mu_n C_{ox}(V_{DD} - V_{T0n})}\right) \left[\frac{2V_{T0n}}{V_{DD} - V_{T0n}} + \ln\left(\frac{4(V_{DD} - V_{T0n})}{V_{DD}} - 1\right)\right]$ $\Gamma_p = \left(\frac{L_p}{\mu_p C_{ox}(V_{DD} - |V_{T0p}|)}\right) \left[\frac{2|V_{T0p}|}{V_{DD} - |V_{T0p}|} + \ln\left(\frac{4(V_{DD} - |V_{T0p}|)}{V_{DD}} - 1\right)\right]$

$$\tau_{\text{PHL}} = \Gamma_n \left(\frac{\alpha_0 + (\alpha_n + R\alpha_p) W_n}{W_n} \right) \qquad \tau_{\text{PLH}} = \Gamma_p \left(\frac{\alpha_0 + (\frac{\alpha_n}{R} + \alpha_p) W_p}{W_p} \right)$$

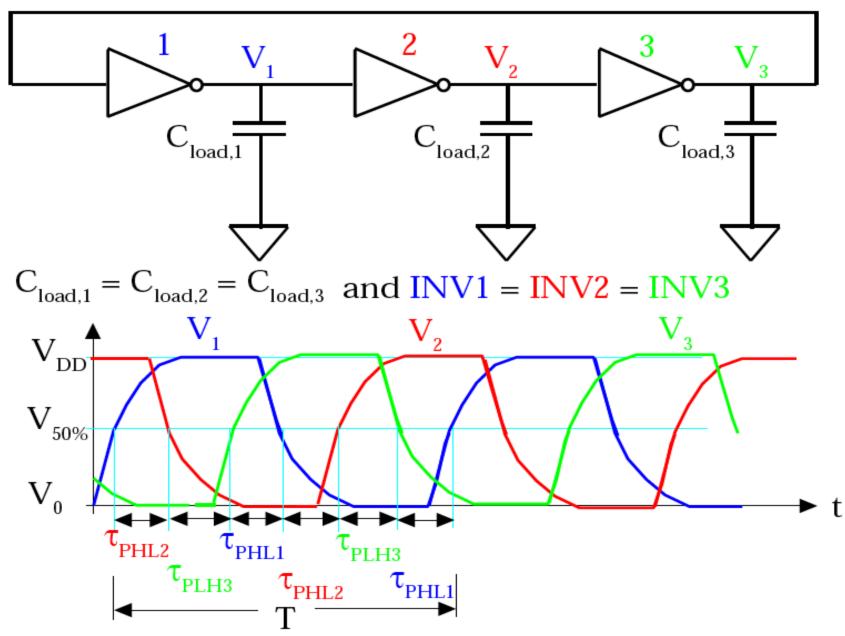

Hence, increasing $W_{_{P}}$ and $W_{_{n}}$ will have diminishing influence on $\tau_{_{PHL}}$ and $\tau_{_{PLH}}$ as they become large, i.e.

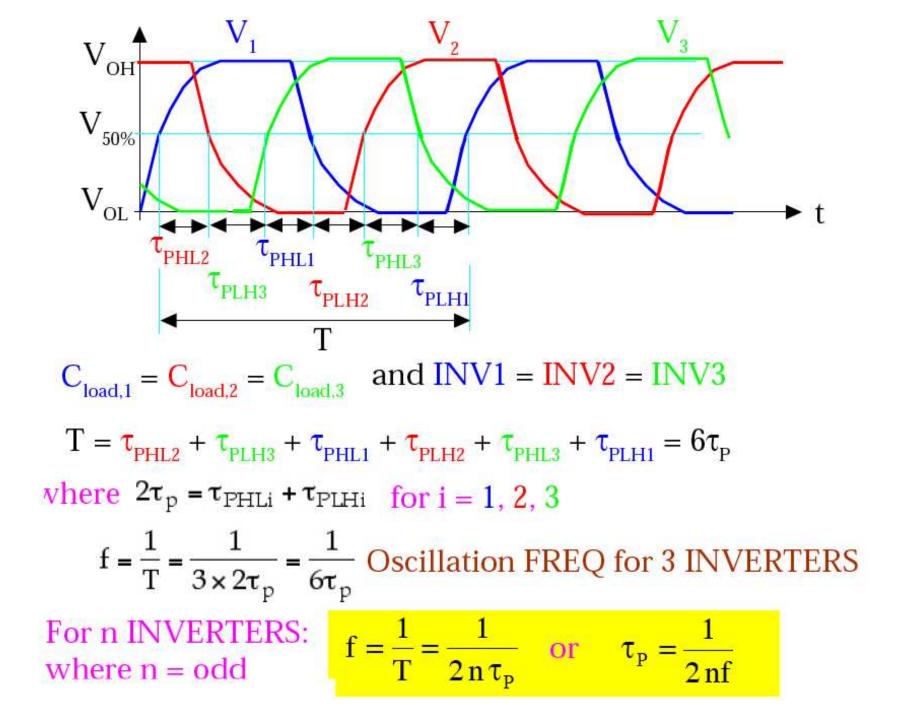
$$\tau_{PHL}^{Limit} = \underset{Wn \to \infty}{limit} \tau_{PHL} = \Gamma_n (\alpha_n + R\alpha_p)$$
absolute
$$\tau_{PLH}^{Limit} = \underset{Wp \to \infty}{limit} \tau_{PHL} = \Gamma_p \left(\frac{\alpha_n}{R} + \alpha_p\right)$$
delays

NOTE: 1. τ_{PHL}^{Limit} , τ_{PLH}^{Limit} are independent of $\alpha_0 = f(C_{int}, C_{gb})$. 2. Achievement of ABSOLUTE MINIUMUM DELAYS comes with maximum cost, i.e.


DIE AREA -> Maximized POWER DISIPATION -> Maximized

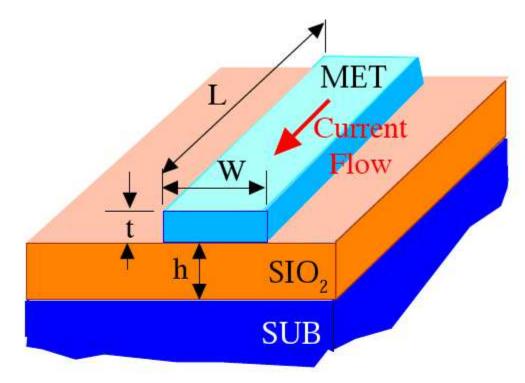
Propagation Delay vs. W


Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Propagation Delay vs. Area

nMOS Channel Width Wn (µm)

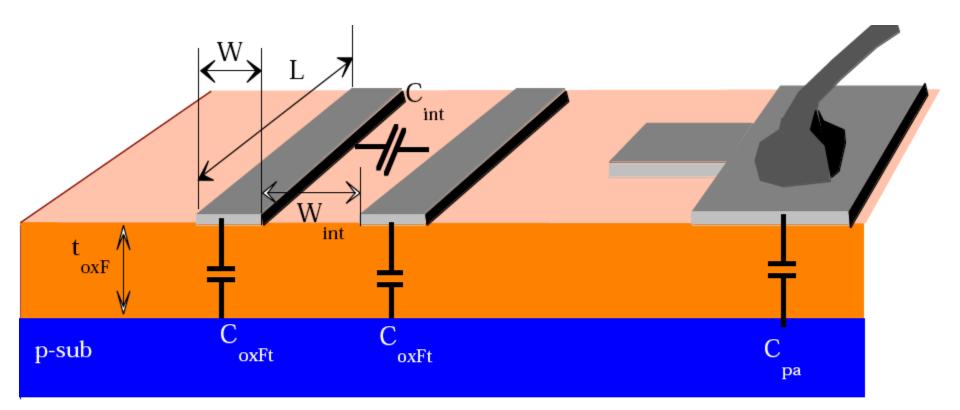
CMOS RING OSCILLATOR



AMI 0.5 micron process

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.04	volts
Vinv	1.5	2.29	volts
Vol (100 uA)	2.0	0.12	volts
Voh (100 uA)	2.0	4.86	volts
Vinv	2.0	2.47	volts
Gain	2.0	-18.26	
Ring Oscillator Freq.			
DIV256 (31-stg,5.0V)		98.75	MHz
D256 WIDE (31-stg,5.0V)		153.47	MHz
Ring Oscillator Power			
DIV256 (31-stg,5.0V)		0.49	uW/MHz/gate
D256_WIDE (31-stg,5.0V)		1.00	uW/MHz/gate

Interconnection Capacitance

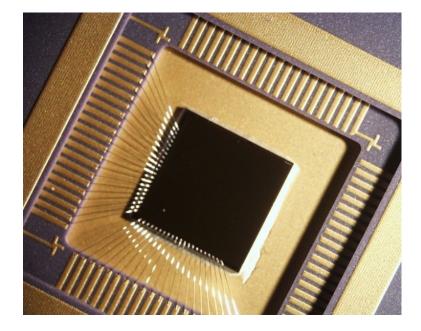

PARASITIC RESISTANCE:

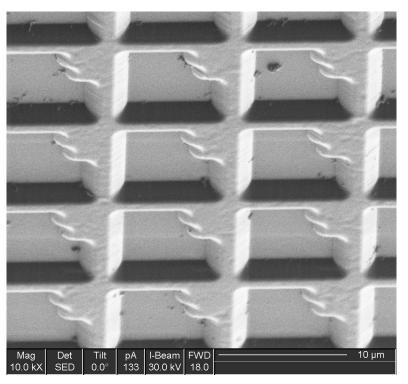
$$R_{metal} = \rho \frac{L}{Wt} = R_{sheet} \frac{L}{W}$$

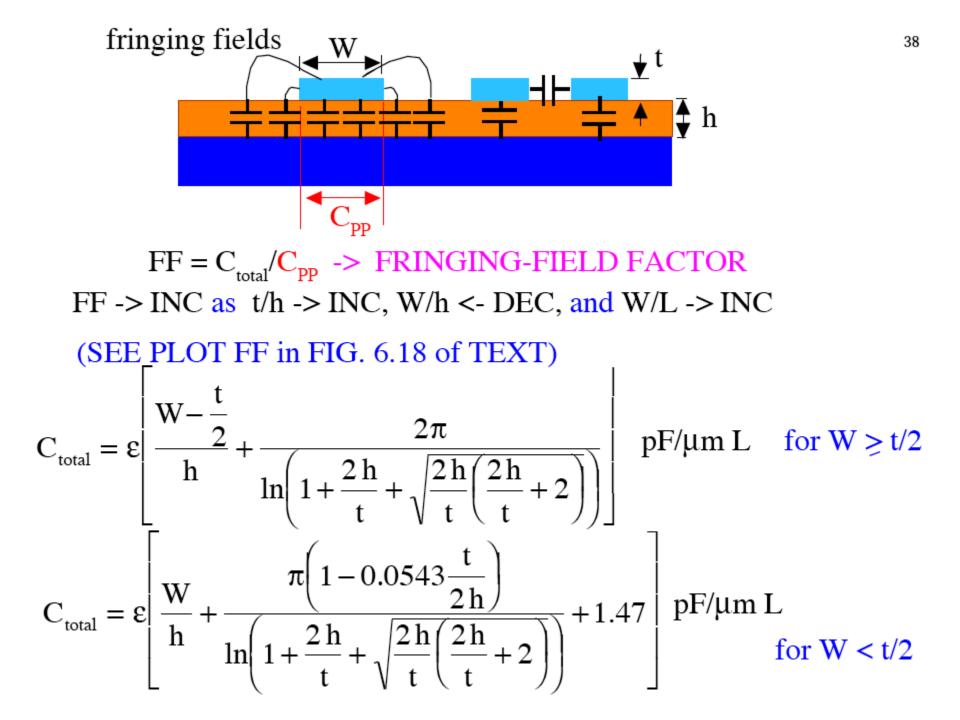
AMI 0.5 micron process

PROCESS PARAMETERS	N+	P+	POLY	PLY2_HR	POLY2	M1	M2	UNITS
Sheet Resistance	84.4	109.2	22.9	1102	41.9	0.09	0.09	ohms/sq
Contact Resistance	60.9	150.6	15.8		26.8		0.81	ohms
Gate Oxide Thickness	142							angstrom

Note: Polysilicon vs. Metal resistance!




Double-metal double-poly n-well CMOS process


~			
C _{mm}	C _{metal-to-metal}	=	2.5 nF/cm ²
С	C _{metal-to-substrate}	=	5.2 nF/cm^2
C	C	=	$6.5 \mathrm{nF/cm^2}$
$C_{\rm mp}^{\rm oxp}$	C _{poly-to-substrate} C _{metal-to-poly}	=	12.0 nF/cm ²
1	I - J		

	A m2		D m2 m1 L	E m2 m1 m1 field ox	F G m2 m2 m2 m2	4(
	substrate					
A	Layer Poly-substrate	1	x Thickness 3000 Å	Typ Value 50 aF/µm ²	1 µm CMOS	
В	Metal2-sub	C _p C _{m2}	9000 Å	20 aF/μm ²	Capacitances	
С	Poly-metal2	C _{m2p}	6000 Å	30 aF/μm²	$t_{ox} = 200 \text{\AA}$	
D	Metal1-sub	C _{m1}	6000 Å	30 aF/µm ²	C _e = 1800 aF/µm	1 ²
Е	Metall-poly	C_{mlp}	3000 Å	60 aF/µm ²	$aF = 10^{-18} F$	
E	Metal1-metal2	C _{m2m1}	6000 Å	$50 \text{ aF}/\mu\text{m}^2$		
F	Metall-diffusion	C_{mld}	3000 Å	$60 \text{ aF}/\mu\text{m}^2$		
G	Metal2-diffusion	Passivation	6000 Å	$30 \text{ aF}/\mu m^2$		

Surface of an IC

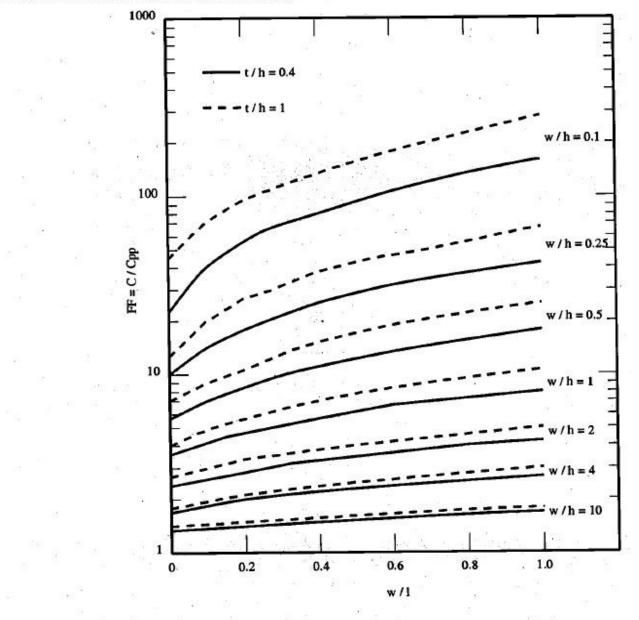
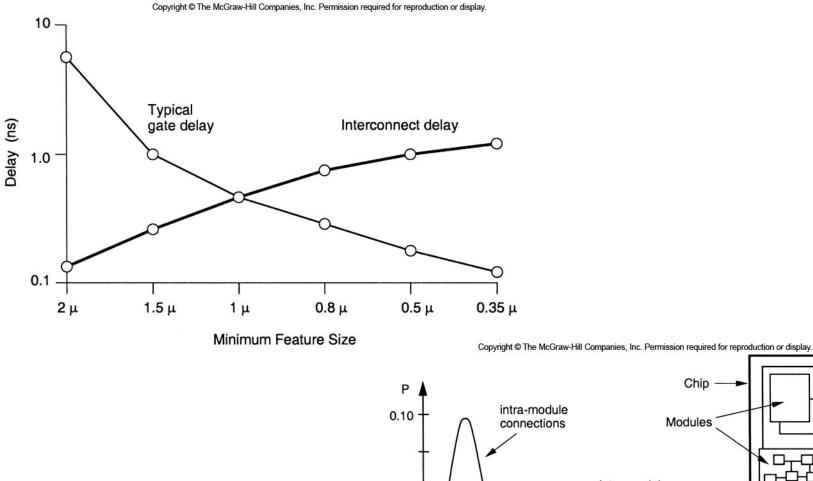
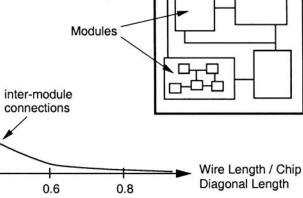



Figure 6.18. Variation of the fringing-field factor with the interconnect geometry.

AMI 0.5 micron process

CAPACITANCE PARAMETER	RS N+	P+	POLY	POLY2	M1	M2	МЗ	N_W	UNITS
Area (substrate)	426	724	85		30	15	9	37	aF/um^2
Area (N+active)			2434		34	17	12		aF/um^2
Area (P+active)			2351						aF/um^2
Area (poly)				899	56	16	9		aF/um^2
Area (poly2)					46				aF/um^2
Area (metal1)						33	13		aF/um^2
Area (metal2)							32		aF/um^2
Fringe (substrate)	361	241			71	49	33		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						46	34		aF/um
Fringe (metal2)							54		aF/um
Overlap (N+active)			292						aF/um
Overlap (P+active)			387						aF/um
- · · · · ·									
PROCESS PARAMETERS	N+	P+	POLY	PLY2 HR	POI	.Y2	M1	M2	UNITS
Sheet Resistance	84.4	109.2		1102	41.		0.09	0.09	ohms/sq
Contact Resistance	60.9	150.6			26.			0.81	ohms
Gate Oxide Thickness		200.0	20.0			-			angstrom
OCCC ANTAC THTOMICDD									angoerom


Interconnection Delays in Sub-micron process

0.05

0.2

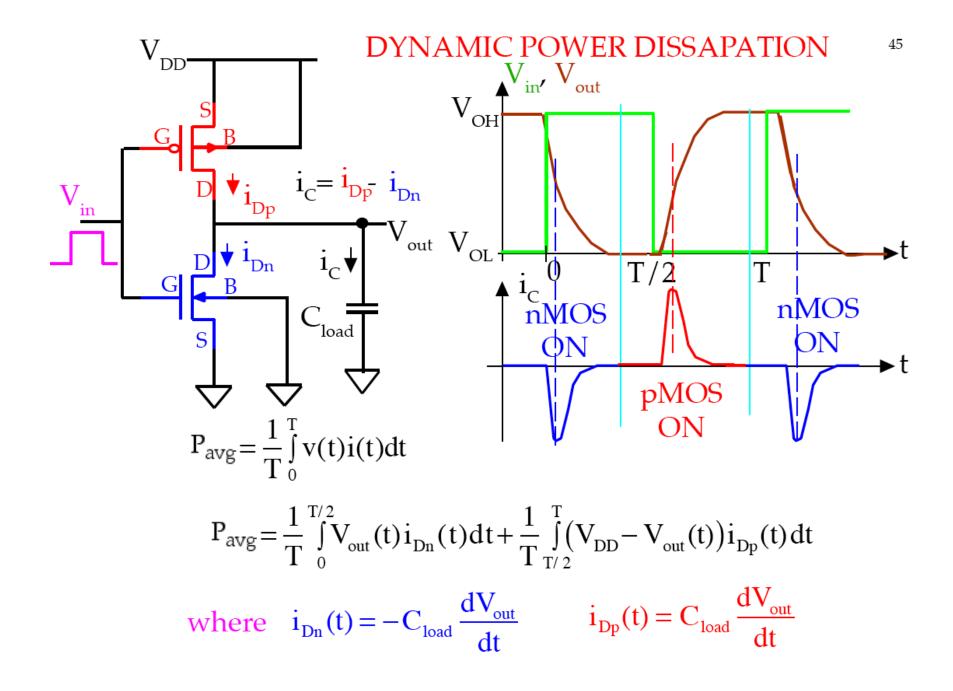
0.4

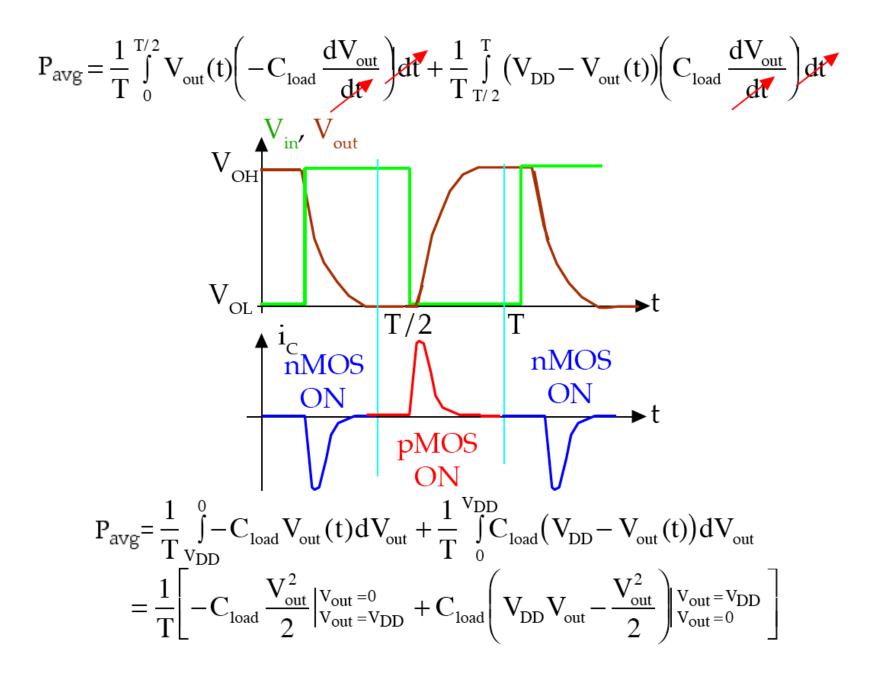
Chip

Examples of Propagation Delay

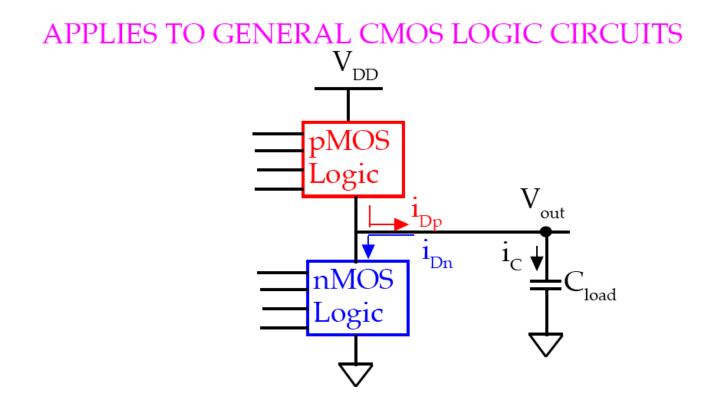
Product	CMOS technology generation	Clock frequency, f	Fan-out=4 inverter delay
Pentium II	0.25 μm	600 MHz	~100 <u>ps</u>
Pentium III	0.18 μm	1.8 GHz	~40 <u>ps</u>
Pentium IV	0.13 μm	3.2 GHz	~20 <u>ps</u>

Typical clock periods:


- high-performance <u>µP</u>: ~15 FO4 delays
- PlayStation 2: 60 FO4 delays


POWER DISSIPATION

 $P_s =$ Static power dissipation due to leakage current or other current drawn continuously from the power supply.


 P_d = dynamic power dissipation due to charging and discharging load capacitances (v_{in} assumed to be square-like)


 P_{sc} = short circuit power dissipation due to charging and discharging load capacitances during the finite rise and fall times of v_{in} .

$$P_{\text{avg}} = \frac{1}{T} \left[-C_{\text{load}} \frac{V_{\text{out}}^2}{2} \Big|_{V_{\text{out}} = V_{\text{DD}}}^{V_{\text{out}} = 0} + C_{\text{load}} \left(V_{\text{DD}} V_{\text{out}} - \frac{V_{\text{out}}^2}{2} \right) \Big|_{V_{\text{out}} = 0}^{V_{\text{out}} = V_{\text{DD}}} \right]$$
$$= \frac{1}{T} C_{\text{load}} V_{\text{DD}}^2$$
$$Pavg = C_{\text{load}} V_{\text{DD}}^2 f$$

Cascade of N Inverters or Super-Buffer to Drive Large C_{load} cont.

NOTE: ALL inverters have the same delay

 $t_{d} = \frac{\tau_{0}}{a^{i}} \frac{a^{i}(C_{d} + aC_{g})}{C_{d} + C_{g}} = \tau_{0} \frac{C_{d} + aC_{g}}{C_{d} + C_{g}} \quad \text{where } \mathbf{i} = 1, \dots, \mathbf{N}; \tau_{0} \text{ is the gate delay for INV1 in a ring oscillator with load } \mathbf{C}_{d} + \mathbf{C}_{g}$ $t_{total} = (N+1) \cdot t_{d} = (N+1) \cdot \tau_{0} \cdot \frac{C_{d} + aC_{g}}{C_{d} + C_{g}} \quad \text{Choose N and a to minimize } \mathbf{t}_{total}$ $\text{where } \mathbf{a}^{\mathbf{N}+1} = \mathbf{C}_{\mathbf{LOAD}}/\mathbf{C}_{\mathbf{g}} \quad \& \quad \mathbf{N}+1 = \frac{\ln(\mathbf{C}_{\mathbf{LOAD}}/\mathbf{C}_{\mathbf{g}})}{\ln(\mathbf{a})}$

Cascade of N Inverters or Super-Buffer to Drive Large C_{load} cont.

$$t_{\text{total}} = (N+1)\tau_0 \frac{C_d + aC_g}{C_d + C_g}$$

$$N+1 = \frac{\ln(C_{\text{LOAD}}/C_g)}{\ln(a)} \qquad = > \quad t_{\text{total}} = \frac{\ln(C_{\text{LOAD}}/C_g)}{\ln(a)} \tau_0 \frac{C_d + aC_g}{C_d + C_g}$$

$$W_{\text{ni}} = a^{i}W_{\text{n0}} \text{ and } W_{\text{pi}} = a^{i}W_{\text{p0}}$$

$$TO \text{ MINIMIZE } t_{\text{total}}$$

$$\frac{dt_{\text{total}}}{da} = \tau_0 \ln\left(\frac{C_{\text{LOAD}}}{C_g}\right) \left[-\frac{1/a}{(\ln(a))^2} \left(\frac{C_d + aC_g}{C_d + C_g}\right) + \frac{1}{\ln(a)} \left(\frac{C_g}{C_d + C_g}\right) \right] = 0$$

$$a_{\text{opt}} \left[\ln(a_{\text{opt}}) - 1 \right] = \frac{C_d}{C_g} = 0 \quad a_{\text{opt}} \ge e = 2.718$$
For the SPECIAL CASE $C_d = 0 \Longrightarrow \ln(a_{\text{opt}}) = 1 \text{ or } a_{\text{opt}} = e^1 = 2.718$

Since $C_d > C_g$, $C_d = 0$ is only an academic special case.

Cascade of N Inverters or Super-Buffer to Drive Large C_{load} cont.

EXAMPLE: Design a Buffer using a scaled cascade of inverters to achieve minimum total delay t_{total} when $C_{LOAD} = 100 C_g$. Consider the case where $C_d = 2C_g$. $C_d = 2C_g \implies plot a_{opt}$ as function of C_d/C_g : $a_{opt} = 4.35 \implies ln (a_{opt}) = 1.47$ $N+1 = \frac{\ln(C_{LOAD}/C_g)}{\ln(a_{opt})}$ $\Rightarrow N = \frac{\ln(C_{LOAD}/C_g)}{1.47} - 1 = 2.13 \rightarrow N = 3$ Plot using Excel, MathCad, MatLab. 5 $a_{opt} = 4.35$ 4.5 $e^{3.13*1.47} = 100 \le \frac{C_{LOAD}}{C_{g}} \le e^{4*1.47} = 365$ 4 *a*_{opt} 3.5 $\frac{W_{pi}}{(a_{opt})^1} = 4.35$ W_{ni}/W_{n0} $(a_{ont})^1 = 4.35$ 1 3 $C_{d}/C_{g} = 2$ e – 2.5 $(a_{opt})^2 = 18.92$ $(a_{opt})^2 = 18.92$ 2 0.5 1.5 1 2 2.50 3 $(a_{ont})^3 = 82.31$ $(a_{ont})^3 = 82.31$ 3 $\frac{C_d}{C} = a_{opt} \cdot (\ln a_{opt} - 1)$ 3rd stage can be eliminated with little impact.