
XST User Guide for Virtex-6,
Spartan-6, and 7 Series Devices

UG687 (v 13.4) January 18, 2012

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you
solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce,
distribute, republish, download, display, post, or transmit the Documentation in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation.
Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx
assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections
or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NOWARRANTY OF ANY KIND. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE
DOCUMENTATION.

© Copyright 2002-2012 Xilinx Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other
designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their
respective owners. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license.
All other trademarks are the property of their respective owners.

Revision History
Date Version
03/01/2011 13.1 • Changed guide title

• Synthesis support of the 7 series FPGA families

• Improved inference support of block RAMs with byte-write enable. The
recommended Single-Process Description Style has been generalized to any number
of write columns beyond a single BRAM primitive.

• The message filtering capability, already available in the ISE® Design Suite, is now
available to command-line users. See Running XST as a Standalone Tool.

07/06/2011 13.2 Added information regarding:

• Input data width must be 18 bits wide to infer pre-adder

• Specifying std_logic_vector type generic on the XST command line

• Complex multiply-accumulate example design

• mux_extract for Virtex®-6 devices

• Additional details on register duplication

• Keep Hierarchy true

• Threshold value for RAM inference in 7 series FPGA families

10/19/2011 13.3 • Changed order in which XST searches when an ‘include statement references a file.
See Verilog Include Directories.

• Changed $fwrite and $fdisplay to Ignored in Verilog System Tasks and
Functions.

• Corrected syntax example in Describing Write Access in Verilog

• Removed references to XST script command in XST Commands.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
2 www.xilinx.com UG687 (v 13.4) January 18, 2012

Date Version
10/26/2011 13.3 Made changes to Register Balancing topic.

• At beginning of topic, added information regarding preventing XST from moving
logic between different clock domains. See new sentence beginning “With Register
Balancing enabled, XST can move combinatorial logic ...”

• In Apply Register Balancing section, deleted sentence “In this case, the Register
Balancing is performed only for Flip-Flops synchronized by this clock.”

12/12/2011 13.4 Made changes to Improving Readability of an XST Script File topic.

Each line containing an option-value pair begins with a dash.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 3

Table of Contents
Revision History .. 2

Chapter 1 Introduction ...11
Architecture Support ... 11
Coding Examples ... 11
Syntax Examples .. 11
Acronyms.. 11
Additional Resources... 12

Chapter 2 Creating and Synthesizing an XST Project ..13
Creating an HDL Synthesis Project File ... 13
Running XST in ISE Design Suite .. 15
Running XST in Command Line Mode .. 15

Chapter 3 VHDL Support ...25
VHDL IEEE Support .. 25
VHDL Data Types .. 26
VHDL Objects .. 32
VHDL Operators .. 33
VHDL Entity and Architecture Descriptions ... 34
VHDL Combinatorial Circuits .. 44
VHDL Sequential Logic... 53
VHDL Functions and Procedures.. 59
VHDL Assert Statements... 62
VHDL Libraries and Packages .. 65
VHDL File Type Support... 70
VHDL Constructs... 75
VHDL Reserved Words.. 79

Chapter 4 Verilog Support ...81
Verilog Design.. 81
Verilog Functionality ... 82
More Information... 82
Verilog–2001 Support ... 83
Verilog Variable Part Selects ... 84
Structural Verilog ... 85
Verilog Parameters ... 88
Verilog Parameter and Attribute Conflicts ... 90

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
4 www.xilinx.com UG687 (v 13.4) January 18, 2012

Verilog Usage Restrictions... 91
Verilog–2001 Attributes and Meta Comments.. 93
Verilog Constructs.. 95
Verilog System Tasks and Functions .. 98
Verilog Primitives .. 102
Verilog User Defined Primitive (UDP) ... 102
Verilog Reserved Keywords .. 105

Chapter 5 Behavioral Verilog ..107
Variables in Behavioral Verilog .. 107
Initial Values .. 107
Arrays of Reg and Wire.. 108
Multi-Dimensional Arrays .. 108
Data Types .. 109
Legal Statements .. 110
Expressions... 110
Blocks.. 113
Modules .. 114
Continuous Assignments .. 115
Procedural Assignments .. 116
Tasks and Functions... 123
Blocking and Non-Blocking Procedural Assignments 125
Constants .. 126
Macros... 126
Include Files ... 127
Behavioral Verilog Comments... 128
Generate Statements .. 128

Chapter 6 Mixed Language Support...131
Mixing VHDL and Verilog .. 131
Instantiation ... 131
VHDL and Verilog Libraries ... 131
VHDL and Verilog Boundary Rules ... 132
Generics Support ... 134
Port Mapping.. 135
Library Search Order (LSO) Files.. 136

Chapter 7 HDL Coding Techniques ..141
Advantages of VHDL... 141
Advantages of Verilog.. 141

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 5

Macro Inference Flow Overview... 142
Flip-Flops and Registers .. 143
Latches .. 147
Tristates... 150
Counters and Accumulators .. 154
Shift Registers .. 158
Dynamic Shift Registers .. 167
Multiplexers ... 171
Arithmetic Operators HDL Coding Techniques .. 176
Comparators ... 181
Dividers .. 183
Adders, Subtractors, and Adders/Subtractors .. 184
Multipliers.. 189
Multiply-Add and Multiply-Accumulate... 194
Extended DSP Inferencing .. 198
Resource Sharing ... 201
RAMHDL Coding Techniques ... 204
ROMHDL Coding Techniques... 266
FSM Components... 273
Black Boxes... 286

Chapter 8 FPGA Optimization ...289
Mapping Logic to Block RAM... 289
Flip-Flop Implementation Guidelines.. 290
Flip-Flop Retiming... 292
Speed Optimization Under Area Constraint .. 293
Implementation Constraints ... 294
Device Primitive Support .. 295
Using the UniMacro Library ... 301
Cores Processing .. 302
Mapping Logic to LUTs ... 303
Controlling Placement on the Device ... 305
Inserting Buffers .. 306
Using the PCI Flow With XST... 306

Chapter 9 Design Constraints...309
Specifying Constraints .. 309
Constraints Precedence Rules ... 310
Setting Synthesis Options ... 311

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
6 www.xilinx.com UG687 (v 13.4) January 18, 2012

VHDL Attributes.. 312
Verilog-2001 Attributes .. 314
XST Constraint File (XCF) ... 316

Chapter 10 General Constraints ...321
Add I/O Buffers.. 322
Box Type ... 323
Bus Delimiter ... 325
Case... 326
Case Implementation Style ... 327
Duplication Suffix.. 328
Full Case ... 330
Generate RTL Schematic.. 332
Generics .. 333
HDL Library Mapping File.. 336
Hierarchy Separator ... 338
Ignore Synthesis Constraints File ... 339
I/O Standard ... 340
Keep .. 341
Keep Hierarchy .. 343
Library Search Order ... 346
LOC... 347
Netlist Hierarchy.. 348
Optimization Effort.. 350
Optimization Goal ... 352
Parallel Case ... 353
RLOC .. 354
Save... 355
Synthesis Constraint File... 356
Translate Off and Translate On... 357
Verilog Include Directories ... 358
Verilog Macros ... 359
Work Directory ... 360

Chapter 11 HDL Constraints ...363
Automatic FSM Extraction... 364
Enumerated Encoding.. 366
Equivalent Register Removal .. 367
FSM Encoding Algorithm.. 369

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 7

Mux Minimal Size ... 371
Resource Sharing ... 373
Safe Implementation ... 375
Safe Recovery State.. 377

Chapter 12 FPGA Constraints (Non-Timing) ...379
Asynchronous to Synchronous.. 380
Automatic BRAM Packing .. 382
BRAM Read-First Implementation ... 383
BRAM Utilization Ratio .. 385
Buffer Type... 387
Convert Tristates to Logic .. 388
Cores Search Directories.. 390
DSP Utilization Ratio .. 391
Extract BUFGCE ... 393
FSM Style ... 394
LUT Combining ... 396
Map Entity on a Single LUT.. 397
Map Logic on BRAM ... 399
Max Fanout ... 400
Move First Stage... 403
Move Last Stage ... 406
Multiplier Style.. 408
Number of Global Clock Buffers.. 410
Optimize Instantiated Primitives.. 411
Pack I/O Registers Into IOBs... 413
Power Reduction .. 414
RAM Extraction.. 416
RAM Style .. 418
Read Cores.. 421
Reduce Control Sets... 423
Register Balancing ... 424
Register Duplication .. 428
ROM Extraction.. 430
ROM Style .. 432
Shift Register Extraction .. 434
Shift Register Minimum Size.. 436
Slice (LUT-FF Pairs) Utilization Ratio .. 437
Slice (LUT-FF Pairs) Utilization Ratio Delta .. 439

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
8 www.xilinx.com UG687 (v 13.4) January 18, 2012

Use Carry Chain ... 441
Use Clock Enable ... 443
Use DSP Block.. 445
Use Low Skew Lines .. 448
Use Synchronous Set .. 449
Use Synchronous Reset.. 451

Chapter 13 Timing Constraints ...453

Applying Timing Constraints ... 453
Clock Signal ... 455
Cross Clock Analysis ... 456
From-To... 457
Global Optimization Goal... 458
Offset .. 460
Period.. 461
Timing Name.. 462
Timing Name on a Net... 463
Timegroup .. 464
Timing Ignore... 465
Write Timing Constraints .. 466

Chapter 14 Third-Party Constraints..467

Third-Party Constraints in VHDL... 467
Third-Party Constraints in Verilog ... 467
XST Equivalents to Third-Party Constraints .. 468

Chapter 15 Synthesis Report ..473

Synthesis Report Content .. 473
Synthesis Report Navigation... 480
Synthesis Report Information ... 480

Chapter 16 Naming Conventions ..483

Naming Conventions Coding Examples... 483
Net Naming Conventions.. 486
Instance Naming Conventions .. 487
Case Preservation ... 487
Name Generation Control ... 488

Appendix Additional Resources ...489

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 9

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
10 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 1

Introduction

Architecture Support
This Guide applies to Xilinx® Virtex®-6, Spartan®-6, and 7 series devices. All features
and constraints in this Guide support those devices, except as noted. For information
on other devices, see the XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer
CPLD Devices (UG627).

Coding Examples
The coding examples in this Guide are accurate as of the date of publication. Where
indicated within the coding example, you can download updates and other examples
from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip. Each directory
contains a summary.txt file listing all examples, together with a brief overview.

Syntax Examples
The syntax examples in this Guide show how to specify constraints with particular
tools or methods, including, where applicable, VHDL, Verilog, User Constraints File
(UCF), XST Constraint File (XCF), ISE® Design Suite, and the Command Line. Not all
constraints can be specified with all tools or methods. If a tool or method is not listed
for that constraint, you cannot use the constraint with it.

Acronyms
Acronym Meaning

HDL Hardware Description Language

VHDL VHSIC Hardware Description Language

RTL Register Transfer Level

LRM Language Reference Manual

FSM Finite State Machine

EDIF Electronic Data Interchange Format

LSO Library Search Order

XST Xilinx® Synthesis Technology (XST)

XCF XST Constraint File

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 11

Chapter 1: Introduction

Additional Resources
For more information about XST, and for references to further documentation, see
Additional Resources at the end of this Guide.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
12 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 2

Creating and Synthesizing an XST
Project

The Xilinx® Synthesis Technology (XST) software:

• Is the Xilinx® proprietary logic synthesis solution.

• Is available in:

– ISE® Design Suite

– The PlanAhead™ software

• Can run as a standalone tool in command line mode.

The XST software:

1. Takes the description of a design in an HDL (VHDL or Verilog) file.

2. Converts it to a synthesized netlist of Xilinx technology-specific logical resources.

3. The synthesized netlist, representing a logical view of the design, is then:

a. Processed by the design implementation tool chain.

b. Converted into a physical representation.

c. Converted to a bitstream file to program Xilinx devices.

Creating an HDL Synthesis Project File
XST separates 1) information about the design, from 2) information about how XST
should process the design.

File Contains
HDL synthesis project file Information about the design

XST script file Synthesis parameters

HDL Synthesis Project File Definition
An HDL synthesis project file:

• Is an ASCII text file.

• Lists the HDL source files that make up the design.

• Specifies a separate HDL source file on each line.

• Usually has a .prj extension.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 13

Chapter 2: Creating and Synthesizing an XST Project

HDL Synthesis Project File Syntax
<hdl_language> <compilation_library> <source_file>

• hdl_language

– Specifies whether the designated HDL source file is written in VHDL or Verilog.

– Allows you to create mixed VHDL and Verilog language projects.

• compilation_library

– Specifies the logic library in which the HDL is compiled.

– The default logic library is work.

• source_file

– Specifies the HDL source file.

– Uses an absolute or a relative path.

– A relative path is relative to the location of the HDL synthesis project file.

Creating a Sample HDL Synthesis Project File in ISE Design Suite
To create a sample HDL synthesis project file in ISE® Design Suite:

1. Run the following code:

vhdl work my_vhdl1.vhd
verilog work my_vlg1.v
vhdl my_vhdl_lib ../my_other_srcdir/my_vhdl2.vhd
verilog my_vlg_lib my_vlg2.v

The code uses relative paths.

2. XST creates an HDL synthesis project file in the project directory. The file has
a.prj extension.

3. XST adds entries to the HDL synthesis project file whenever you add an HDL source
file to the project.

For more information, see the ISE Design Suite Help.

Creating an HDL Synthesis Project File from the Command Line
To create an HDL synthesis project file from the command line:

1. Create the HDL synthesis project file manually.

2. Enter an Input File Name (–ifn) switch on the run command line.

The –ifn switch tells XST the location of the HDL synthesis project file.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
14 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 2: Creating and Synthesizing an XST Project

Running XST in ISE Design Suite
To run XST in ISE® Design Suite:
1. Create a new project.

File > New Project
2. Import HDL source files.

Project > Add Copy of Source
3. Select the top-level block.

Design > Hierarchy
4. If ISE Design Suite did not select the correct block as the top-level block:

a. Select the correct block.
b. Right-click Select Set as Top Module.
c. Right-click Processes > Synthesize-XST.

5. To view all available synthesis options, select Process > Properties.
6. To start synthesis:

a. Right-click.
b. Select Run.

For more information, see the ISE Design Suite Help.

Running XST in Command Line Mode
You can run XST in command line mode, which includes:
• Running XST as a Standalone Tool
• Running XST Interactively
• Running XST in Scripted Mode

Running XST as a Standalone Tool
XST can run as a standalone tool.

In command line mode, XST runs as part of a scripted design implementation, not in the
ISE® Design Suite graphical user interface (GUI).

Setting Environment Variables
Before running XST, set the following environment variables to point to the correct
installation directory. This example is for 64-bit Linux.

setenv XILINX setenv PATH $XILINX/bin/lin64:$PATH
setenv LD_LIBRARY_PATH $XILINX/lib/lin64:$LD_LIBRARY_PATH

Invoking XST
Operating System Command
Windows xst.exe

Linux xst

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 15

Chapter 2: Creating and Synthesizing an XST Project

Command Line Syntax
xst[.exe] [-ifn in_file_name] [-ofn out_file_name] [-intstyle]
[-filter msgfilter_file_name]

• –ifn
Designates the XST script file containing the commands to execute.
– If –ifn is omitted, XST runs interactively.
– If –ifn is specified, XST runs in scripted mode.

• –ofn
Forces redirection of the XST log to a directory and file of your choice. The XST log
is written to an SRP file in the work directory.

• -intstyle
Controls reporting on the standard output. For more information, see Silent Mode.

• -filter
Enables limited message filtering in command line mode.

Using Message Filtering in Command Line Mode
To use message filtering in command line mode:
1. Synthesize your design once in command line mode without any message filtering.
2. Run the Xilinx® xreport tool:

xreport –config example.xreport –reports_dir . –filter
example.filter example &

• The directory defined by –reports_dir should be the same directory in which
the XST log file was created.

• The above example assumes that:
– The log file generated from the initial run is named example.srp.
– The log file is located in the same directory in which XST was invoked.

For more information, run xreport –h.
3. Select Design Overview > Summary.
4. Select Design Properties > Enable Message Filtering.
5. Select Design Overview > Synthesis Messages to display messages from the XST

log file.
6. Select the messages to be filtered.
7. Right click.
8. Select either Filter All Instances of This Message, or Filter This Instance Only

The message filter configuration is saved in the file example.filter.
9. Run XST again in command line mode using the –filter switch:

xst … -filter example.filter …

For more advanced filtering, or to re-enable previously disabled messages:
1. Right click in the Synthesis Messages pane.
2. Select Edit Message Filters.

Running XST Interactively
• Run XST without –ifn to enter instructions on the command line.
• The –ifn option has no effect in interactive mode, since no XST log file is created.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
16 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 2: Creating and Synthesizing an XST Project

Running XST in Scripted Mode
• Instead of entering commands at the command prompt, create an XST script file

containing the commands and options.
• When you run XST in a scripted implementation flow, you must:

– Manually create an XST script file in advance, or
– Generate the XST script file on the fly.

XST Script Files
An XST script file:
• Is an ASCII text file.
• Contains one or more XST commands.
• Is passed to XST by –ifn.

xst -ifn myscript .xst

• Has no mandatory file extension. ISE® Design Suite creates XST script files with
an .xst extension.

Improving Readability of an XST Script File
• Each option-value pair is on a separate line.
• The first line contains only the run command without any options.
• There are no blank lines in the middle of the command.
• Each line containing an option-value pair begins with a dash.
• Each option has one value.
• There are no options without a value.
• The value for a given option can be:

– Predefined by XST (for example, yes or no)
– An integer
– Any string, such as a file name or a name of the top level entity

♦ Options such as –vlgincdir accept multiple directories as values.
♦ Separate the directory names with spaces.

For more information, see Names With Spaces in Command Line Mode.
♦ Enclose the directory list in {braces}.

-vlgincdir {c:\vlg1 c:\vlg2}

• Use the pound (#) character to:
– Comment out options.
– Place additional comments in the script file.

Example XST Script File
run
-ifn myproject.prj
-ofn myproject.ngc
-ofmt NGC
-p virtex6
-opt_mode area
-opt_mode speed
-opt_level 1

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 17

Chapter 2: Creating and Synthesizing an XST Project

XST Commands
XST recognizes the following commands:

• Run Command

• Set Command

• Help Command

Run Command
The run command:

• Is the main synthesis command.

• Is used only once per script file.

• Runs synthesis in its entirety.

– Synthesis begins by parsing the HDL source files.

– Synthesis ends by generating the final netlist.

• Runs HDL Parsing and Elaboration in order to:

– Verify language compliance, or

– Pre-compile HDL files.

Run Command Syntax
run option_1 value option_2 value …

• The run command is not case sensitive, except for option values that designate
elements of the HDL description, such as the top-level module.

• You can specify an option in either lowercase or uppercase. For example, options
yes and YES are treated identically.

Run Command Settings
The following tables list mandatory and optional settings for the run command. For
additional options in command line mode, see:

• Chapter 10, XST General Constraints

• Chapter 11, XST HDL Constraints

• Chapter 12, XST FPGA Constraints (Non-Timing)

• Chapter 13, XST Timing Constraints

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
18 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 2: Creating and Synthesizing an XST Project

Run Command Mandatory Settings

Option Command Line
Name

Option Value Note

Input File
Name

-ifn Relative or absolute path to an HDL Synthesis Project
file

Output File
Name

-ofn Relative or absolute path to a file in which the
post-synthesis NGC netlist is saved.

You may omit the .ngc
extension.

Target
Device

-p • A specific device, such as
xc6vlx240t-ff1759-1, or

• A generic device family, such as Virtex®-6 devices

Top Module
Name

-top Name of the VHDL entity or Verilog module describing
the top level of your design.

If you are using
a separate VHDL
configuration declaration
to bind component
instantiations to design
entities and architectures,
the value is the name of
the configuration.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 19

Chapter 2: Creating and Synthesizing an XST Project

Run Command Optional Settings

Option Command Line Name
VHDL Top Level Architecture (Name of the specific
VHDL architecture to be tied to the top level VHDL entity.
Not applicable if the top level of your design is described
in Verilog.)

-ent

Optimization Goal -opt_mode

Optimization Effort -opt_level

Power Reduction -power

Use Synthesis Constraints File -iuc

Synthesis Constraints File -uc

Keep Hierarchy -keep_hierarchy

Netlist Hierarchy -netlist_hierarchy

Global Optimization Goal -glob_opt

Generate RTL Schematic -rtlview

Read Cores -read_cores

Cores Search Directories -sd

Write Timing Constraints -write_timing_constraints

Cross Clock Analysis -cross_clock_analysis

Hierarchy Separator -hierarchy_separator

Bus Delimiter -bus_delimiter

LUT-FF Pairs Utilization Ratio -slice_utilization_ratio

BRAM Utilization Ratio -bram_utilization_ratio

DSP Utilization Ratio -dsp_utilization_ratio

Case -case

Library Search Order -lso

Verilog Include Directories -vlgincdir

Generics -generics

Verilog Macros -define

FSM Extraction -fsm_extract

FSM Encoding Algorithm -fsm_encoding

Safe Implementation -safe_implementation

Case Implementation Style -vlgcase

FSM Style -fsm_style

RAM Extraction -ram_extract

RAM Style -ram_style

ROM Extraction -rom_extract

ROM Style -rom_style

Automatic BRAM Packing -auto_bram_packing

Shift Register Extraction -shreg_extract

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
20 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 2: Creating and Synthesizing an XST Project

Option Command Line Name
Shift Register Minimum Size -shreg_min_size

Resource Sharing -resource_sharing

Use DSP Block -use_dsp48

Asynchronous To Synchronous -async_to_sync

Add I/O Buffers -iobuf

Max Fanout -max_fanout

Number of Clock Buffers -bufg

Register Duplication -register_duplication

Equivalent Register Removal -equivalent_register_removal

Register Balancing -register_balancing

Move First Flip-Flop Stage -move_first_stage

Move Last Flip-Flop Stage -move_last_stage

Pack I/O Registers into IOBs -iob

LUT Combining -lc

Reduce Control Sets -reduce_control_sets

Use Clock Enable -use_clock_enable

Use Synchronous Set -use_sync_set

Use Synchronous Reset -use_sync_reset

Optimize Instantiated Primitives -optimize_primitives

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 21

Chapter 2: Creating and Synthesizing an XST Project

Set Command
Set preferences with the set command before invoking the run command.

set –option_name [option_value]

For more information, see Chapter 9, Design Constraints.

Set Command Options
Option Description Values
-tmpdir Location of all temporary files

generated by XST during a
session

Any valid path to a directory

-xsthdpdir Work Directory (location of
all files resulting from HDL
compilation)

Any valid path to a directory

-xsthdpini HDL Library Mapping File
(INI file)

file_name

Help Command
Use the help command to view:

• Supported families

• All commands for a specific device

• Specific commands for a specific device

Supported Families
To see a list of supported families:

1. Type help at the command line with no argument.

help

2. XST issues a message:

--> help ERROR:Xst:1356 - Help : Missing "-arch ". Please
specify what family you want to target available families:
spartan6 virtex6

3. A list of supported families follows available families.

All Commands for a Specific Device
To see all commands for a specific device:

1. Type the following at the command line:

help -arch family_name

family_name is a supported device family.

2. For example, to see all commands for Virtex®-6 devices, type:

help -arch virtex6

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
22 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 2: Creating and Synthesizing an XST Project

Specific Commands for a Specific Device
To see information about a specific command for a specific device:
1. Type the following at the command line

help -arch family_name -command command_name

• family_name is a supported device family
• command_name is one of the following commands:

– run
– set
– time

2. For example, to see information about the run command for Virtex-6 devices, type:

help -arch virtex6 -command run

Names With Spaces in Command Line Mode
XST supports file and directory names with spaces in command line mode.
• Enclose file and directory names with spaces in double quotes:

“C:\my project ”

• For options supporting multiple directories (-sd and -vlgincdir), enclose multiple
directories in {braces}.

-vlgincdir {"C:\my project " C:\temp}

• In earlier releases of XST, multiple directories were enclosed in double quotes. XST
still supports this syntax, provided that the directory names do not contain spaces.
Xilinx® recommends that you change existing scripts to the new syntax enclosing
multiple directories in {braces}.

Output Files
XST output files include:
• Typical Output Files
• Temporary Output Files

Typical Output Files
XST generates the following typical output files:

• Output NGC netlist (NGC) (.ngc)
– In ISE® Design Suite, the NGC file is created in the project directory.
– In command line mode, the NGC file is created in:

♦ The current directory, or
♦ Any other directory specified by run -ofn.

• Register Transfer Level (RTL) netlist for the RTL Viewer (NGR) (.ngr)
• Synthesis log file (SRP) (.srp)

Temporary Output Files
• XST generates temporary files in the XST TEMP (temp) directory.
• HDL compilation files are generated in the TEMP directory.
• The default TEMP directory is the XST subdirectory of the current directory.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 23

Chapter 2: Creating and Synthesizing an XST Project

Temp Directory Locations
System Location
Workstations /tmp

Windows The directory specified by either the TEMP or
TMP environment variable

Changing the Temp Directory
To change the TEMP directory, run set -tmpdir <directory>:

• At the XST prompt, or

• In an XST script file.

Maintaining the Temp Directory
• The TEMP directory contains the files resulting from the compilation of all VHDL

and Verilog files during all XST sessions.

• The number of files stored in the TEMP directory can severely impact CPU
performance.

• XST does not automatically clean the TEMP directory. Xilinx® recommends that
you manually clean the TEMP directory on a regular basis.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
24 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3

VHDL Support
XST supports the VHSIC Hardware Description Language (VHDL) except as otherwise
noted.

• VHDL compactly describes complicated logic.

• VHDL allows you to:

– Describe the structure of a system:

♦ How the system is decomposed into subsystems.

♦ How those subsystems are interconnected.

– Specify the function of a system using familiar programming language forms.

– Simulate a system design before it is implemented and programmed in
hardware.

– Produce a detailed, device-dependent version of a design to be synthesized from
a more abstract specification.

For more information, see:

• IEEE VHDL Language Reference Manual (LRM)

• Chapter 9, Design Constraints, especially VHDL Attributes

VHDL IEEE Support
The XST parsing and elaboration engine complies with VHDL IEEE 1076-1993.

XST supports non-LRM compliant constructs when the construct:

• Is supported by most synthesis and simulation tools.

• Greatly simplifies coding.

• Does not cause negatively impact synthesis.

• Does not negatively impact quality of results.

Non-LRM Compliant Example
• The LRM does not allow instantiation with a port map if:

– A formal port is a buffer, and

– The corresponding effective port is an out.

• XST supports this non-LRM compliant construct. The construct meets the criteria
stated above in XST Support for Non-LRM Compliant Constructs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 25

Chapter 3: VHDL Support

VHDL Data Types
Some VHDL data types are part of predefined packages.

For information on where they are compiled, and how to load them, see VHDL
Predefined Packages.

VHDL Unsupported Data Types
VHDL supports the real type defined in the standard package for calculations only,
such as the calculation of generics values.

You cannot define a synthesizable object of type real.

VHDL Data Types
VHDL data types include:

• VHDL Predefined Enumerated Types

• VHDL User-Defined Enumerated Types

• VHDL Bit Vector Types

• VHDL Integer Types

• VHDL Multi-Dimensional Array Types

• VHDL Record Types

VHDL Predefined Enumerated Types
XST supports the following predefined VHDL enumerated types for hardware
description:

• The bit type, defined in the standard package.

Allowed values are 0 (logic zero) and 1 (logic 1).

• The boolean type, defined in the standard package.

Allowed values are false and true.

• The type defined in the IEEE std_logic_1164 package.

For allowed values, see the std_logic Allowed Values table below.

This information is summarized in the following table.

Predefined VHDL Enumerated Types Summary

Enumerated Type Defined In Allowed Values
bit standard package • 0 (logic zero)

• 1 (logic 1)

boolean standard package • false

• true

std_logic IEEE std_logic_1164 package See the std_logic Allowed Values
table below.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
26 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

std_logic Allowed Values

Value Meaning What XST does
U unitialized Not accepted by XST

X unknown Treated as don’t care

0 low Treated as logic zero

1 high Treated as logic one

Z high impedance Treated as high impedance

W weak unknown Not accepted by XST

L weak low Treated identically to 0

H weak high Treated identically to 1
- don’t care Treated as don’t care

XST-Supported Overloaded Enumerated Types

Type Defined In IEEE
Package

SubType Of Contains Values

std_ulogic std_logic_1164 N/A • Same nine values
as std_logic

• Does not contain
predefined
resolution
functions

X01 std_logic_1164 std_ulogic X, 0, 1

X01Z std_logic_1164 std_ulogic X, 0, 1, Z

UX01 std_logic_1164 std_ulogic U, X, 0 1

UX01Z std_logic_1164 std_ulogic U, X, 0, Z

VHDL User-Defined Enumerated Types
You can create your own enumerated types.

User-defined enumerated types usually describe the states of a Finite State Machine
(FSM).

VHDL User-Defined Enumerated Types Coding Example
type STATES is (START, IDLE, STATE1, STATE2, STATE3) ;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 27

Chapter 3: VHDL Support

VHDL Bit Vector Types
Supported VHDL Bit Vector Types

Type Defined In Package Models
bit_vector Standard Vector of bit elements

std_logic_vector IEEE std_logic_1164 Vector of std_logic elements

Supported VHDL Overloaded Types

Type Defined In IEEE Package
std_ulogic_vector std_logic_1164

unsigned std_logic_arith

signed std_logic_arith

VHDL Integer Types
The integer type is a predefined VHDL type.

• XST implements an integer on 32 bits by default.

• For a more compact implementation, define the exact range of applicable values.

type MSB is range 8 to 15

• You can also take advantage of the predefined natural and positive types,
overloading the integer type.

VHDL Multi-Dimensional Array Types
XST supports VHDL multi-dimensional array types.

• Although there is no restriction on the number of dimensions, Xilinx® recommends
that you describe no more than three dimensions.

• Objects of multi-dimensional array type that you can describe are:

– Signals

– Constants

– Variables

• Objects of multi-dimensional array type can be:

– Passed to functions.

– Used in component instantiations.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
28 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Fully Constrained Array Type Coding Example
An array type must be fully constrained in all dimensions.

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB12 is array (11 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB12;

Array Declared as a Matrix Coding Example
You can declare an array as a matrix.

subtype TAB13 is array (7 downto 0,4 downto 0) of STD_LOGIC_VECTOR (8 downto 0);

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 29

Chapter 3: VHDL Support

Multi-Dimensional Array Signals and Variables Coding Examples
These coding examples demonstrate the uses of multi-dimensional array signals and
variables in assignments.

1. Make the following declarations:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB05 is array (4 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB05;
signal WORD_A : WORD8;
signal TAB_A, TAB_B : TAB05;
signal TAB_C, TAB_D : TAB03;
constant CNST_A : TAB03 := (
("00000000","01000001","01000010","10000011","00001100"),
("00100000","00100001","00101010","10100011","00101100"),
("01000010","01000010","01000100","01000111","01000100"));

2. You can now specify:

• A multi-dimensional array signal or variable

TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A;

• An index of one array

TAB_A (5) <= WORD_A; TAB_C (1) <= TAB_A;

• Indexes of the maximum number of dimensions

TAB_A (5) (0) <= ’1’; TAB_C (2) (5) (0) <= ’0’

• A slice of the first array

TAB_A (4 downto 1) <= TAB_B (3 downto 0);

• An index of a higher level array and a slice of a lower level array

TAB_C (2) (5) (3 downto 0) <= TAB_B (3) (4 downto 1); TAB_D (0) (4) (2 downto 0)
\\ <= CNST_A (5 downto 3)

3. Add the following declaration:

subtype MATRIX15 is array(4 downto 0, 2 downto 0) of STD_LOGIC_VECTOR (7 downto 0);
signal MATRIX_A : MATRIX15;

4. You can now specify:

• A multi-dimensional array signal or variable

MATRIXA <= CNST_A

• An index of one row of the array

MATRIXA (5) <= TAB_A;

• Indexes of the maximum number of dimensions

MATRIXA (5,0) (0) <= ’1’;

Indexes can be variable.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
30 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Record Types
type mytype is record
field1 : std_logic;
field2 : std_logic_vector (3 downto 0)
end record;

• A field of a record type can also be of type record.

• Constants can be record types.

• Record types cannot contain attributes.

• XST supports aggregate assignments to record signals.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 31

Chapter 3: VHDL Support

VHDL Objects
VHDL objects include:

• VHDL Signals

• VHDL Variables

• VHDL Constants

VHDL Signals
Declare a VHDL signal in:

• An architecture declarative part

Use the VHDL signal anywhere within that architecture.

• A block

Use the VHDL signal within that block.

Assign the VHDL signal with the <= signal assignment operator.

signal sig1 : std_logic;
sig1 <= ’1’;

VHDL Variables
A VHDL variable is:

• Declared in a process or a subprogram.

• Used within that process or subprogram.

• Assigned with the := assignment operator.
variable var1 : std_logic_vector (7 downto 0); var1 := "01010011";

VHDL Constants
You can declare a VHDL constant in any declarative region.

• The constant is used within that region.

• The constant values cannot be changed once declared.

signal sig1 : std_logic_vector (5 downto 0);constant init0 :
std_logic_vector (5 downto 0) := "010111";sig1 <= init0;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
32 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Operators
XST supports VHDL operators. See VHDL Operators Support.

Shift Operator Examples
Operator Example Logically Equivalent To
SLL (Shift Left Logic) sig1 <= A(4 downto 0) sll 2 sig1 <= A(2 downto 0) & "00";

SRL (Shift Right Logic) sig1 <= A(4 downto 0) srl 2 sig1 <= "00" & A(4 downto 2);

SLA (Shift Left Arithmetic) sig1 <= A(4 downto 0) sla 2 sig1 <= A(2 downto 0) & A(0) & A(0);

SRA (Shift Right Arithmetic) sig1 <= A(4 downto 0) sra 2 sig1 <= <= A(4) & A(4) & A(4 downto 2);

ROL (Rotate Left) sig1 <= A(4 downto 0) rol 2 sig1 <= A(2 downto 0) & A(4 downto 3);

ROR (Rotate Right) A(4 downto 0) ror 2 sig1 <= A(1 downto 0) & A(4 downto 2);

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 33

Chapter 3: VHDL Support

VHDL Entity and Architecture Descriptions
VHDL entity and architecture descriptions include:

• VHDL Circuit Descriptions

• VHDL Entity Declarations

• VHDL Architecture Declarations

• VHDL Component Instantiation

• VHDL Recursive Component Instantiation

• VHDL Component Configuration

• VHDL Generics

VHDL Circuit Descriptions
A VHDL circuit description (design unit) consists of:

• Entity declaration

– Provides the external view of the circuit.

– Describes objects visible from the outside, including the circuit interface, such
as the I/O ports and generics.

• Architecture

– Provides the internal view of the circuit.

– Describes the circuit behavior or structure.

VHDL Entity Declarations
The I/O ports of the circuit are declared in the entity.

Each port has a:

• name

• mode

– in

– out

– inout

– buffer

• type

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
34 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Constrained and Unconstrained Ports
Ports can be constrained or unconstrained.

• Ports are usually constrained.

• Ports can be left unconstrained in the entity declaration.

• If ports are left unconstrained, their width is defined at instantiation when the
connection is made between formal ports and actual signals.

• Unconstrained ports allow you to create different instantiations of the same entity,
defining different port widths.

• Xilinx® recommends:

– Do not use unconstrained ports.

– Define ports that are constrained through generics.

– Apply different values of those generics at instantiation.

– Do not have an unconstrained port on the top-level entity.

• Array types of more than one-dimension are not accepted as ports.

• The entity declaration can also declare VHDL generics.

Buffer Port Mode
Xilinx recommends that you not use buffer port mode.

• VHDL allows buffer port mode when a signal is used both:

– Internally, and

– As an output port when there is only one internal driver.

• Buffer ports:

– Are a potential source of errors during synthesis.

– Complicate validation of post-synthesis results through simulation.

NOT RECOMMENDED Coding Example WITH Buffer Port Mode
entity alu is

port(
CLK : in STD_LOGIC;
A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
C : buffer STD_LOGIC_VECTOR(3 downto 0));

end alu;

architecture behavioral of alu is
begin

process begin
if rising_edge(CLK) then

C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);
end if;

end process;
end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 35

Chapter 3: VHDL Support

Dropping Buffer Mode
Xilinx recommends that you drop buffer port mode.

• In the coding example above, signal C:

– Has been modeled with a buffer mode.

– Is used both internally and as an output port.

• Every level of hierarchy that can be connected to C must also be declared as a buffer.

• To drop buffer mode:

1. Insert a dummy signal.

2. Declare port C as an output.

RECOMMENDED Coding Example WITHOUT Buffer Port Mode
entity alu is

port(
CLK : in STD_LOGIC;
A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
C : out STD_LOGIC_VECTOR(3 downto 0));

end alu;

architecture behavioral of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);

begin
C <= C_INT;
process begin

if rising_edge(CLK) then
C_INT <= A and B and C_INT;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
36 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Architecture Declarations
You can declare internal signals in the architecture.

Each internal signal has a:

• name

• type

VHDL Architecture Declaration Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (

A,B,C : in std_logic;
D,E : out std_logic);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal T : std_logic;

begin
...

end ARCHI;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 37

Chapter 3: VHDL Support

VHDL Component Instantiation
Component instantiation allows you to instantiate one design unit (component) inside
another design unit in order to create a hierarchically structured design description.

To perform component instantiation:

1. Create the design unit (entity and architecture) modeling the functionality to be
instantiated.

2. Declare the component to be instantiated in the declarative region of the parent
design unit architecture.

3. Instantiate and connect this component in the architecture body of the parent design
unit.

4. Map (connect) formal ports of the component to actual signals and ports of the
parent design unit.

Elements of Component Instantiation Statement
The main elements of a component instantiation statement are:

• Label

Identifies the instance.

• Association list

– Introduced by the reserved port map keyword.

– Ties formal ports of the component to actual signals or ports of the parent
design unit.

• Optional association list

– Introduced by the reserved generic map keyword.

– Provides actual values to formal generics defined in the component.

XST supports unconstrained vectors in component declarations.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
38 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Component Instantiation Coding Example
This coding example shows the structural description of a half-Adder composed of
four nand2 components.

--
-- A simple component instantiation example
-- Involves a component declaration and the component instantiation itself
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/instantiation/instantiation_simple.vhd
--
entity sub is

generic (
WIDTH : integer := 4);

port (
A,B : in BIT_VECTOR(WIDTH-1 downto 0);
O : out BIT_VECTOR(2*WIDTH-1 downto 0));

end sub;

architecture archi of sub is
begin

O <= A & B;
end ARCHI;

entity top is
generic (

WIDTH : integer := 2);
port (

X, Y : in BIT_VECTOR(WIDTH-1 downto 0);
Z : out BIT_VECTOR(2*WIDTH-1 downto 0));

end top;

architecture ARCHI of top is

component sub -- component declaration
generic (

WIDTH : integer := 2);
port (

A,B : in BIT_VECTOR(WIDTH-1 downto 0);
O : out BIT_VECTOR(2*WIDTH-1 downto 0));

end component;

begin

inst_sub : sub -- component instantiation
generic map (

WIDTH => WIDTH
)
port map (
A => X,
B => Y,
O => Z

);

end ARCHI;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 39

Chapter 3: VHDL Support

VHDL Recursive Component Instantiation
XST supports VHDL recursive component instantiation.

• XST does not support direct instantiation for recursion.

• To prevent endless recursive calls, the number of recursions is limited by default
to 64.

• Use -recursion_iteration_limit to specify the number of allowed recursive calls. See
the following coding example.

VHDL Recursive Component Instantiation Coding Example
--
-- Recursive component instantiation
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/instantiation/instantiation_recursive.vhd
--
library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity single_stage is
generic (

sh_st: integer:=4);
port (

CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);
end entity single_stage;

architecture recursive of single_stage is
component single_stage

generic (
sh_st: integer);

port (
CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);

end component;
signal tmp : std_logic;
begin

GEN_FD_LAST: if sh_st=1 generate
inst_fd: FD port map (D=>DI, C=>CLK, Q=>DO);

end generate;
GEN_FD_INTERM: if sh_st /= 1 generate

inst_fd: FD port map (D=>DI, C=>CLK, Q=>tmp);
inst_sstage: single_stage

generic map (sh_st => sh_st-1)
port map (DI=>tmp, CLK=>CLK, DO=>DO);

end generate;
end recursive;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
40 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Component Configuration
A component configuration explicitly links a component with the appropriate model.
• A model is an entity and architecture pair.
• XST supports component configuration in the declarative part of the architecture.

for instantiation_list : component_name use
LibName.entity_Name (Architecture_Name);

• The statement below indicates that:
– All NAND2 components use the design unit consisting of entity NAND2 and

architecture ARCHI.
– The design unit is compiled in the work library.

For all : NAND2 use entity work.NAND2(ARCHI);

• If the configuration clause is missing for a component instantiation:
– XST links the component to the entity with the same name (and same interface).
– XST links the selected architecture to the most recently compiled architecture.

• XST generates a Black Box during synthesis if no entity or architecture is found.
• In command line mode, you may use a dedicated configuration declaration to link

component instantiations to design entities and architectures.
• The value of the mandatory Top Module Name (-top) option in the run command is

the configuration name instead of the top level entity name.

VHDL Generics
VHDL generics:
• Are the equivalent of Verilog parameters.
• Help you create scalable design modelizations.
• Allow you to write compact, factorized VHDL code.
• Allow you to parameterize functionality such as:

– Bus sizes
– The amount of certain repetitive elements in the design unit

Parameterize Functionality Example
For the same functionality that must be instantiated multiple times, but with different
bus sizes, you need describe only one design unit with generics. See VHDL Generic
Parameters Coding Example below.

Declaring Generics
You can declare generic parameters in the entity declaration part.
• XST supports all types for generics including:

– integer
– boolean
– string
– real
– std_logic_vector

• Declare a generic with a default value.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 41

Chapter 3: VHDL Support

VHDL Generic Parameters Coding Example
--
-- VHDL generic parameters example
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/generics/generics_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
generic (

width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end addern;

architecture bhv of addern is
begin

Y <= A + B;
end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (

X, Y, Z : in std_logic_vector (12 downto 0);
A, B : in std_logic_vector (4 downto 0);
S :out std_logic_vector (17 downto 0));
end top;

architecture bhv of top is
component addern

generic (width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end component;
for all : addern use entity work.addern(bhv);

signal C1 : std_logic_vector (12 downto 0);
signal C2, C3 : std_logic_vector (17 downto 0);

begin
U1 : addern generic map (width=>13) port map (X,Y,C1);
C2 <= C1 & A;
C3 <= Z & B;
U2 : addern generic map (width=>18) port map (C2,C3,S);

end bhv;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
42 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Conflicts Among VHDL Generics and Attributes
Conflicts can arise among VHDL generics and attributes because:

• You can apply VHDL generics and attributes to both instances and components in
the HDL source code.

AND

• You can specify attributes in a constraints file.

Rules for Conflict Resolution
XST resolves the conflicts among VHDL generics and attributes as follows:

• Specifications on an instance (lower level) take precedence over specifications on a
component (higher level).

• If a generic and an attribute are applicable to the same instance or the same
component, the attribute takes precedence over the generic, regardless of where the
generic was specified.

Do not use both mechanisms to define the same constraint. XST flags such
occurrences.

• An attribute specified in the XST Constraint File (XCF) takes precedence over
attributes or generics specified in the VHDL code.

• Security attributes on the block definition take precedence over any other attribute
or generic.

This information is summarized in the following table.

Rules for Conflict Resolution Summary
Item Takes Precedence Over
Specifications on an instance (lower level) Specifications on a component (higher level)

Attribute applied to an instance or component Generic applied to the same instance or the same component

Attribute specified in the XST Constraint File (XCF) Attributes or generics specified in the VHDL code

Security attributes on the block definition Any other attribute or generic

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 43

Chapter 3: VHDL Support

VHDL Combinatorial Circuits
XST supports the following VHDL combinatorial circuits:

• VHDL Concurrent Signal Assignments

• VHDL Generate Statements

• VHDL Combinatorial Processes

VHDL Concurrent Signal Assignments
Combinatorial logic is described using concurrent signal assignments.

• Concurrent signal assignments are specified in the body of an architecture.

• VHDL supports three types of concurrent signal assignments:

– Simple

– Selected (with-select-when)

– Conditional (when-else)

• You can describe as many concurrent signal assignments as are necessary.

• The order of appearance of the concurrent signal assignments in the architecture
is irrelevant.

• All concurrent signal assignments are concurrently active.

• A concurrent signal assignment is re-evaluated when any signal on the right side of
the assignment changes value.

• The re-evaluated result is assigned to the signal on the left-hand side.

Simple Signal Assignment VHDL Coding Example
T <= A and B;

Concurrent Selection Assignment VHDL Coding Example
--
-- Concurrent selection assignment in VHDL
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/concurrent_selected_assignment.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity concurrent_selected_assignment is
generic (

width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
sel : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end concurrent_selected_assignment;

architecture bhv of concurrent_selected_assignment is
begin

with sel select
T <= a when "00",

b when "01",
c when "10",
d when others;

end bhv;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
44 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Concurrent Conditional Assignment (When-Else) VHDL Coding Example
--
-- A concurrent conditional assignment (when-else)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/concurrent_conditional_assignment.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity concurrent_conditional_assignment is
generic (
width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
sel : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end concurrent_conditional_assignment;

architecture bhv of concurrent_conditional_assignment is
begin

T <= a when sel = "00" else
b when sel = "01" else
c when sel = "10" else
d;

end bhv;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 45

Chapter 3: VHDL Support

VHDL Generate Statements
VHDL generate statements include:

• VHDL For-Generate Statements

• VHDL If-Generate Statements

VHDL For-Generate Statements
VHDL for-generate statements describe repetitive structures.

For-Generate Statement VHDL Coding Example
In this coding example, the for-generate statement describes the calculation of the result
and carry out for each bit position of this 8-bit Adder.

--
-- A for-generate example
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/for_generate.vhd
--
entity for_generate is

port (
A,B : in BIT_VECTOR (0 to 7);
CIN : in BIT;
SUM : out BIT_VECTOR (0 to 7);
COUT : out BIT);

end for_generate;

architecture archi of for_generate is
signal C : BIT_VECTOR (0 to 8);

begin
C(0) <= CIN;
COUT <= C(8);
LOOP_ADD : for I in 0 to 7 generate

SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end archi;

VHDL If-Generate Statements
• An if-generate statement activates specific parts of the HDL source code based on

a test result.

• The if-generate statement is supported for static (non-dynamic) conditions.

If-Generate Example
• A generic indicates which device family is being targeted.

• The if-generate statement:

– Tests the value of the generic against a specific device family.

– Activates a section of the HDL source code written specifically for that device
family.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
46 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

For-Generate Nested in an If-Generate Statement VHDL Coding Example
In this coding example, a generic N-bit Adder with a width ranging between 4and 32 is
described with an if-generate and a for-generate statement.

--
-- A for-generate nested in a if-generate
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/if_for_generate.vhd
--
entity if_for_generate is

generic (
N : INTEGER := 8);

port (
A,B : in BIT_VECTOR (N downto 0);
CIN : in BIT;
SUM : out BIT_VECTOR (N downto 0);
COUT : out BIT);

end if_for_generate;

architecture archi of if_for_generate is
signal C : BIT_VECTOR (N+1 downto 0);

begin
IF_N: if (N>=4 and N<=32) generate

C(0) <= CIN;
COUT <= C(N+1);
LOOP_ADD : for I in 0 to N generate

SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end generate;

end archi;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 47

Chapter 3: VHDL Support

VHDL Combinatorial Processes
VHDL combinatorial logic can be modeled with a process.

• A process is combinatorial when 1) signals assigned in the process, 2) are explicitly
assigned a new value, 3) every time the process is executed.

• No such signal should implicitly retain its current value.
• A process can contain local variables.

Memory Elements
Hardware inferred from a combinatorial process does not involve any memory elements.
• A process is combinatorial when 1) all assigned signals in a process 2) are always

explicitly assigned 3) in all possible paths within a process block.
• A signal that is not explicitly assigned in all branches of an if or case statement

typically leads to a Latch inference.
• If XST infers unexpected Latches, review the HDL source code for a signal that is

not explicitly assigned.

Sensitivity List
A combinatorial process has a sensitivity list.
• The sensitivity list appears within parentheses after the process keyword.
• A process is activated if an event (value change) appears on one of the sensitivity

list signals.
• For a combinatorial process, this sensitivity list must contain:

– All signals in conditions (for example, if and case).
– All signals on the right-hand side of an assignment.

Missing Signals
Signals may be missing from the sensitivity list.
• If one or more signals is missing from the sensitivity list:

– The synthesis results can differ from the initial design specification.
– XST issues a warning message.
– XST adds the missing signals to the sensitivity list.

• To avoid problems during simulation:
– Explicitly add all missing signals in the HDL source code.
– Re-run synthesis.

VHDL Variable and Signal Assignments
XST supports VHDL variable and signal assignments.
• A process can contain local variables.
• Local variables are:

– Declared and used within a process.
– Generally not visible outside the process.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
48 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Signal Assignment in a Process VHDL Coding Example
--
-- Signal assignment in a process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/signals_variables/signal_in_process.vhd
--
entity signal_in_process is

port (
A, B : in BIT;
S : out BIT);

end signal_in_process;

architecture archi of signal_in_process is
begin

process (A, B)
begin

S <= ’0’ ;
if ((A and B) = ’1’) then

S <= ’1’ ;
end if;

end process;
end archi;

Variable and Signal Assignment in a Process VHDL Coding Example
--
-- Variable and signal assignment in a process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/signals_variables/variable_in_process.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity variable_in_process is
port (

A,B : in std_logic_vector (3 downto 0);
ADD_SUB : in std_logic;
S : out std_logic_vector (3 downto 0));

end variable_in_process;

architecture archi of variable_in_process is
begin

process (A, B, ADD_SUB)
variable AUX : std_logic_vector (3 downto 0);

begin
if ADD_SUB = ’1’ then

AUX := A + B ;
else

AUX := A - B ;
end if;
S <= AUX;

end process;
end archi;

VHDL If-Else Statements
if-else and if-elsif-else statements use true-false conditions to execute statements.
• If the expression evaluates to true, the if branch is executed.
• If the expression evaluates to false, x, or z, the else branch is executed.
• A block of multiple statements is executed in an if or else branch.
• begin and end keywords are required.
• if-else statements can be nested.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 49

Chapter 3: VHDL Support

If-Else Statement VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel1, sel2 : in std_logic;
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is
begin

process (a, b, c, d, sel1, sel2)
begin

if (sel1 = ’1’) then
if (sel2 = ’1’) then

outmux <= a;
else

outmux <= b;
end if;

else
if (sel2 = ’1’) then

outmux <= c;
else

outmux <= d;
end if;

end if;
end process;

end behavior;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
50 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Case Statements
A VHDL case statement:

• Performs a comparison to an expression in order to evaluate one of several parallel
branches.

• Evaluates the branches in the order in which they are written.

• Executes the first branch that evaluates to true.

• Executes the default branch if none of the branches match.

Case Statement VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel : in std_logic_vector (1 downto 0);
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is
begin

process (a, b, c, d, sel)
begin

case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others => outmux <= d; -- case statement must be complete

end case;
end process;

end behavior;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 51

Chapter 3: VHDL Support

VHDL For-Loop Statements
XST supports VHDL for-loop statements for:

• Constant bounds

• Stop test condition using any of the following operators:

– <

– <=

– >

– >=

• Next step computation falling within one of the following specifications:

– var = var + step

– var = var - step

♦ var is the loop variable

♦ step is a constant value

• Next and exit statements

For-Loop VHDL Coding Example
--
-- For-loop example
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/for_loop.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity countzeros is
port (

a : in std_logic_vector (7 downto 0);
Count : out std_logic_vector (2 downto 0));

end countzeros;

architecture behavior of countzeros is
signal Count_Aux: std_logic_vector (2 downto 0);

begin
process (a, Count_Aux)
begin

Count_Aux <= "000";
for i in a’range loop

if (a(i) = ’0’) then
Count_Aux <= Count_Aux + 1;

end if;
end loop;
Count <= Count_Aux;

end process;
end behavior;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
52 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Sequential Logic
VHDL sequential logic includes:

• VHDL Sequential Processes With a Sensitivity List

• VHDL Sequential Processes Without a Sensitivity List

• VHDL Initial Values and Operational Set/Reset

• VHDL Default Initial Values on Memory Elements

VHDL Sequential Processes With a Sensitivity List
A VHDL process is sequential (as opposed to combinatorial) when 1) some assigned
signals, 2) are not explicitly assigned, 3) in all paths within the process.

The hardware generated has an internal state or memory (Flip-Flops or Latches).

Xilinx® recommends that you use the sensitivity-list based description style to describe
sequential logic.

For more information, see Chapter 7, HDL Coding Techniques.

Describing Sequential Logic
Describing sequential logic using a process with a sensitivity list includes:

• A sensitivity list containing:

– The clock signal.

– Any optional signal controlling the sequential element asynchronously
(asynchronous set/reset).

• An if statement that models the clock event.

Asynchronous Control Logic Modelization
• Modelization of any asynchronous control logic (asynchronous set/reset) is done

before the clock event statement.

• Modelization of the synchronous logic (data, optional synchronous set/reset,
optional clock enable) is done in the clock event if branch.

This information is summarized in the following table.

Asynchronous Control Logic Modelization Summary
Modelization of Contains Performed
Asynchronous control logic Asynchronous set/reset Before the clock event

statement

Synchronous logic • Data

• Optional synchronous
set/reset

• Optional clock enable

In the clock event if branch.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 53

Chapter 3: VHDL Support

Sequential Process With a Sensitivity List Syntax
process (<sensitivity list>)
begin

<asynchronous part>
<clock event>
<synchronous part>

end;

Clock Event Statements
• Describe the clock event statement as:

– rising edge clock

If clk’event and clk = ‘1’ then

– falling edge clock

If clk’event and clk = ‘0’ then

• For greater clarity, use the VHDL’93 IEEE standard rising_edge and falling_edge
functions.

– rising edge clock

If rising_edge(clk) then

– falling edge clock

If falling_edge(clk) then

Missing Signals
Signals may be missing from the sensitivity list.

• If one or more signals is missing from the sensitivity list:

– The synthesis results can differ from the initial design specification.

– XST issues a warning message.

– XST adds the missing signals to the sensitivity list.

• To avoid problems during simulation:

– Explicitly add all missing signals in the HDL source code.

– Re-run synthesis.

VHDL Sequential Processes Without a Sensitivity List
XST allows the description of a sequential process using a wait statement.

• The sequential process is described without a sensitivity list.

• The same sequential process cannot have both a sensitivity list and await statement.

Only one wait statement is allowed.

• The wait statement is the first statement.

• The condition in the wait statement describes the sequential logic clock.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
54 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Sequential Process Using a Wait Statement Coding Example
process
begin

wait until rising_edge(clk);
q <= d;

end process;

Describing a Clock Enable in the Wait Statement Coding Example
A clock enable can be described in the wait statement together with the clock.

process
begin

wait until rising_edge(clk) and clken = ’1’;
q <= d;

end process;

Describing a Clock Enable After the Wait Statement Coding Example
You can describe the clock enable separately.

process
begin

wait until rising_edge(clk);
if clken = ’1’ then

q <= d;
end if;

end process;

Describing Synchronous Control Logic
• Besides the clock enable, this coding method also allows you to describe

synchronous control logic, such as a synchronous reset or set.

• You cannot describe a sequential element with asynchronous control logic using a
process without a sensitivity list. Only a process with a sensitivity list allows such
functionality.

• XST does not allow the description of a Latch based on a wait statement.

• For greater flexibility, Xilinx® recommends that you describe synchronous logic
using a process with a sensitivity list.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 55

Chapter 3: VHDL Support

VHDL Initial Values and Operational Set/Reset
You can initialize Registers when you declare them.

The initialization value:

• Is a constant.

• May be generated from a function call. For example, loading initial values from an
external data file.

• Cannot depend on earlier initial values.

• Can be a parameter value propagated to a Register.

Initializing Registers VHDL Coding Example One
This coding example specifies a power-up value in which:

• The sequential element is initialized when the circuit goes live.

• The circuit global reset is applied.

signal arb_onebit : std_logic := ’0’;
signal arb_priority : std_logic_vector(3 downto 0) := "1011";

Initializing Sequential Elements Operationally
• To initialize sequential elements operationally, describe:

– Set/reset values

– Local control logic

• Assign a value to a Register when the Register reset line goes to the appropriate
value.

• For an example, see the following coding example.

• See Flip-Flops and Registers for more information about the advantages and
disadvantages of:

– Operational set/reset

– Asynchronous versus synchronous set/reset

Initializing Registers VHDL Coding Example Two
process (clk, rst)
begin

if rst=’1’ then
arb_onebit <= ’0’;

end if;
end process;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
56 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Initializing Registers VHDL Coding Example Three
This coding example combines power-up initialization and operational reset.

--
-- Register initialization
-- Specifying initial contents at circuit powes-up
-- Specifying an operational set/reset
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/initial/initial_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity initial_1 is
Port (

clk, rst : in std_logic;
din : in std_logic;
dout : out std_logic);

end initial_1;

architecture behavioral of initial_1 is
signal arb_onebit : std_logic := ’1’; -- power-up to vcc

begin

process (clk)
begin

if (rising_edge(clk)) then
if rst=’1’ then -- local synchronous reset

arb_onebit <= ’0’;
else

arb_onebit <= din;
end if;

end if;
end process;

dout <= arb_onebit;

end behavioral;

VHDL Default Initial Values on Memory Elements
Every memory element must come up in a known state.

• Since every memory element must come up in a known state, XST does not apply
IEEE standards for initial values in some cases.

• For example:

– In the previous coding example, if arb_onebit is not initialized to 1 (one), XST
assigns it a default of 0 (zero) as its initial state.

– XST does not follow the IEEE standard, where U is the default for std_logic.

Initialization
Initialization is the same for both Registers and RAM components.

• XST adheres whenever possible to the IEEE VHDL standard when initializing
signal values.

• If no initial values are supplied in the VHDL code, XST uses the default values
(where possible) shown in the XST column in the VHDL Initial Values table below.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 57

Chapter 3: VHDL Support

Unconnected Ports
Unconnected output ports default to the values shown in the XST column in the VHDL
Initial Values table below.

• If the output port has an initial condition, XST ties the unconnected output port to
the explicitly-defined initial condition.

• The IEEE VHDL specification does not allow unconnected input ports.

– XST issues an error message for an unconnected input port.

– Even the open keyword is not sufficient for an unconnected input port.

VHDL Initial Values
Type IEEE XST

bit 0 0

std_logic U 0

bit_vector (3 downto 0) 0 0

std_logic_vector (3 downto 0) 0 0

integer (unconstrained) integer’left integer’left

integer range 7 downto 0 integer’left = 7 integer’left = 7 (coded as 111)

integer range 0 to 7 integer’left = 0 integer’left = 0 (coded as 000)

Boolean FALSE FALSE (coded as 0)

enum (S0,S1,S2,S3) type’left = S0 type’left = S0 (coded as 000)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
58 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Functions and Procedures
Use VHDL functions and procedures for blocks that are used multiple times in a design.

• Functions and procedures are declared in:

– The declarative part of an entity

– An architecture

– A package

• A function or procedure consists of:

– A declarative part

– A body

• The declarative part specifies:

– Input parameters

– Output and inout parameters (procedures only)

– Output and inout parameters (procedures only)

• These parameters can be unconstrained. They are not constrained to a given bound.

• The content is similar to the combinatorial process content.

• Resolution functions are not supported except the function defined in the IEEE
std_logic_1164 package.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 59

Chapter 3: VHDL Support

Function Declared Within a Package VHDL Coding Example
This coding example declares an ADD function within a package.

• The ADD function is a single-bit Adder.

• The ADD function is called four times to create a 4-bit Adder.

--
-- Declaration of a function in a package
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/functions_procedures/function_package_1.vhd
--
package PKG is

function ADD (A,B, CIN : BIT)
return BIT_VECTOR;

end PKG;

package body PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR is

variable S, COUT : BIT;
variable RESULT : BIT_VECTOR (1 downto 0);

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
RESULT := COUT & S;
return RESULT;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);

begin
S0 <= ADD (A(0), B(0), CIN);
S1 <= ADD (A(1), B(1), S0(1));
S2 <= ADD (A(2), B(2), S1(1));
S3 <= ADD (A(3), B(3), S2(1));
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end ARCHI;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
60 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Procedure Declared Within a Package VHDL Coding Example
Following is the same example using a procedure.

--
-- Declaration of a procedure in a package
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/functions_procedures/procedure_package_1.vhd
--
package PKG is

procedure ADD (
A, B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0));

end PKG;

package body PKG is
procedure ADD (

A, B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0)

) is
variable S, COUT : BIT;

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
C := COUT & S;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin

process (A,B,CIN)
variable S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);

begin
ADD (A(0), B(0), CIN, S0);
ADD (A(1), B(1), S0(1), S1);
ADD (A(2), B(2), S1(1), S2);
ADD (A(3), B(3), S2(1), S3);
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end process;
end ARCHI;

Recursive Functions VHDL Coding Example
XST supports recursive functions. This coding example models an n! function.

function my_func(x : integer) return integer is
begin

if x = 1 then
return x;

else
return (x*my_func(x-1));

end if;
end function my_func;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 61

Chapter 3: VHDL Support

VHDL Assert Statements
VHDL assert statements.

• Help you debug your design.

• Enable you to detect undesirable conditions, such as bad values for:

– Generics, constants, and generate conditions.

– Parameters in called functions.

For any failed condition in an assert statement, depending on the severity level, XST
either:

• Issues a warning message, or

• Rejects the design and issues an error message.

XST supports the assert statement only with static condition.

Using an Assert Statement for Design Rule Checking
The coding example below contains a block (SINGLE_SRL) that describes a Shift
Register.

• The size of the Shift Register depends on the SRL_WIDTH generic value.

• The assert statement ensures that the implementation of a single Shift Register does
not exceed the size of a single Shift Register LUT (SRL).

• The maximum size of the Shift Register cannot exceed 17 bits, since:

– The size of the SRL is 16 bit, and

– XST implements the last stage of the Shift Register using a Flip-Flop in a slice.

• The SINGLE_SRL block is instantiated twice in the entity named TOP:

– First instantiation

SRL_WIDTH = 13

– Second instantiation

SRL_WIDTH = 18

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
62 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Using an Assert Statement for Design Rule Checking VHDL Coding
Example

--
-- Use of an assert statement for design rule checking
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/asserts/asserts_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity SINGLE_SRL is
generic (SRL_WIDTH : integer := 24);
port (

clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end SINGLE_SRL;

architecture beh of SINGLE_SRL is
signal shift_reg : std_logic_vector (SRL_WIDTH-1 downto 0);

begin
assert SRL_WIDTH <= 17
report "The size of Shift Register exceeds the size of a single SRL"
severity FAILURE;

process (clk)
begin

if rising_edge(clk) then
shift_reg <= shift_reg (SRL_WIDTH-2 downto 0) & inp;

end if;
end process;

outp <= shift_reg(SRL_WIDTH-1);
end beh;

library ieee;
use ieee.std_logic_1164.all;

entity TOP is
port (

clk : in std_logic;
inp1, inp2 : in std_logic;
outp1, outp2 : out std_logic);

end TOP;

architecture beh of TOP is
component SINGLE_SRL is

generic (SRL_WIDTH : integer := 16);
port(

clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end component;
begin

inst1: SINGLE_SRL
generic map (SRL_WIDTH => 13)
port map(

clk => clk,
inp => inp1,
outp => outp1);

inst2: SINGLE_SRL
generic map (SRL_WIDTH => 18)
port map(

clk => clk,
inp => inp2,
outp => outp2);

end beh;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 63

Chapter 3: VHDL Support

Using an Assert Statement for Design Rule Checking Error Message
HDL Elaboration *
==
Elaborating entity <TOP> (architecture <beh>) from library
<work>. Elaborating entity <SINGLE_SRL> (architecture
<beh>) with generics from library <work>. Elaborating
entity <SINGLE_SRL> (architecture <beh>) with generics
from library <work>. ERROR:HDLCompiler:1242 -
"VHDL_Language_Support/asserts/asserts_1.vhd" Line 15: "The size
of Shift Register exceeds the size of a single SRL": exiting
elaboration "VHDL_Language_Support/asserts/asserts_1.vhd" Line
4. netlist SINGLE_SRL(18)(beh) remains a blackbox,
due to errors in its contents

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
64 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Libraries and Packages
VHDL libraries and packages include:

• VHDL Libraries

• VHDL Predefined Packages

VHDL Libraries
A VHDL library is a directory in which design units are compiled.

• Design units are entity or architectures and packages.

• Each VHDL and Verilog source file is compiled in a designated library.

• See Creating an HDL Synthesis Project for information on:

– The syntax of the HDL synthesis project file.

– How to specify the library in which an HDL source file is compiled.

• Invoke a design unit compiled in a library from any VHDL source file. Reference it
through a library clause.

library library_name ;

• The work library:

– Is the default library.

– Does not require a library clause.

• To change the name of the default library, use:

run -work_lib

• The physical location of the default library, and of any other user-defined library,
is a subdirectory with the same name located under a directory defined by the
Work Directory constraint.

VHDL Predefined Packages
XST supports the following VHDL predefined packages:

• VHDL Predefined Standard Packages

• VHDL Predefined IEEE Packages

• VHDL Predefined IEEE Fixed Point and Floating Point Packages

• VHDL Predefined IEEE Real Type and IEEE math_real Packages

VHDL predefined packages:

• Are defined in the std and ieee standard libraries.

• Are pre-compiled.

• Need not be user-compiled.

• Can be directly included in the HDL source code.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 65

Chapter 3: VHDL Support

VHDL Predefined Standard Packages
VHDL predefined standard packages:
• Are included by default.
• Define basic VHDL types:

– bit
– bit_vector
– integer
– natural
– real
– boolean

VHDL Predefined IEEE Packages
XST supports some VHDL predefined IEEE packages.

VHDL predefined IEEE packages:
• Are pre-compiled in the IEEE library.
• Define common data types, functions, and procedures.

XST supports the following IEEE packages:
• numeric_bit

– Unsigned and signed vector types based on bit.
– Overloaded arithmetic operators, conversion functions, and extended functions

for these types.
• std_logic_1164

– std_logic, std_ulogic, std_logic_vector, and std_ulogic_vector types.
– Conversion functions based on these types.

• std_logic_arith (Synopsys)
– Unsigned and signed vector types based on std_logic.
– Overloaded arithmetic operators, conversion functions, and extended functions

for these types.
• numeric_std

– Unsigned and signed vector types based on std_logic.
– Overloaded arithmetic operators, conversion functions, and extended functions

for these types. Equivalent to std_logic_arith.
• std_logic_unsigned (Synopsys)

Unsigned arithmetic operators for std_logic and std_logic_vector
• std_logic_signed (Synopsys)

Signed arithmetic operators for std_logic and std_logic_vector
• std_logic_misc (Synopsys)

Supplemental types, subtypes, constants, and functions for the std_logic_1164
package, such as and_reduce and or_reduce

VHDL Predefined IEEE Fixed Point and Floating Point Packages
These packages include:
• VHDL Predefined IEEE Fixed Point Packages
• VHDL Predefined IEEE Floating Point Packages

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
66 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Predefined IEEE Fixed Point Packages
The VHDL predefined IEEE fixed point package:

• Is named fixed_pkg.

• Contains functions for fixed point math.

• Is already precompiled into the ieee_proposed library.

• Is invoked as follows:

– use ieee.std_logic_1164.all;

– use ieee.numeric_std.all;

– library ieee_proposed;

– use ieee_proposed.fixed_pkg.all;

VHDL Predefined IEEE Floating Point Packages
The VHDL predefined IEEE floating point package:

• Is named float_pkg.

• Contains functions for floating point math.

• Is already precompiled into the ieee_proposed library.

• Is invoked as follows:

– use ieee.std_logic_1164.all;

– use ieee.numeric_std.all;

– library ieee_proposed;

– use ieee_proposed.float_pkg.all;

VHDL Predefined IEEE Real Type and IEEE Math_Real Packages
VHDL predefined IEEE real type and IEEEmath_real packages:

• Are supported only for calculations such as the calculation of generics values.

• Cannot be used to describe synthesizable functionality.

VHDL Real Number Constants
Constant Value Constant Value
math_e e math_log_of_2 ln2

math_1_over_e 1/e math_log_of_10 ln10

math_pi π math_log2_of_e log2e

math_2_pi 2π math_log10_of_e log10e

math_1_over_pi 1/ π math_sqrt_2 √2

math_pi_over_2 π/2 math_1_oversqrt_2 1/√2

math_pi_over_3 π/3 math_sqrt_pi √π

math_pi_over_4 π/4 math_deg_to_rad 2π/360

math_3_pi_over_2 3π/2 math_rad_to_deg 360/2π

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 67

Chapter 3: VHDL Support

VHDL Real Number Functions
ceil(x) realmax(x,y) exp(x) cos(x) cosh(x)

floor(x) realmin(x,y) log(x) tan(x) tanh(x)

round(x) sqrt(x) log2(x) arcsin(x) arcsinh(x)

trunc(x) cbrt(x) log10(x) arctan(x) arccosh(x)

sign(x) "**"(n,y) log(x,y) arctan(y,x) arctanh(x)

"mod"(x,y) "**"(x,y) sin(x) sinh(x)

Defining Your Own VHDL Packages
You can define your own VHDL packages to specify:

• Types and subtypes

• Constants

• Functions and procedures

• Component declarations

Defining a VHDL package permits access to shared definitions and models from other
parts of your project.

Defining a VHDL package requires a:

• Package declaration

Declares each of the elements listed above.

• Package body

Describes the functions and procedures declared in the package declaration.

Package Declaration Syntax
package mypackage is

type mytype is
record
first : integer;
second : integer;

end record;

constant myzero : mytype := (first => 0, second => 0);

function getfirst (x : mytype) return integer;

end mypackage;

Package Body Syntax
package body mypackage is

function getfirst (x : mytype) return integer is
begin
return x.first;

end function;

end mypackage;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
68 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Accessing VHDL Packages
To access a VHDL package:

1. Use a library clause to include the library in which the package has been compiled.

library library_name ;

2. Designate the package, or a specific definition contained in the package, with a
use clause.

use library_name .package_name .all;

3. Insert these lines immediately before the entity or architecture in which you use
the package definitions.

Because the work library is the default library, you can omit the library clause if the
designated package has been compiled into this library.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 69

Chapter 3: VHDL Support

VHDL File Type Support
Function Package

file (type text only) standard

access (type line only) standard

file_open (file, name, open_kind) standard

file_close (file) standard

endfile (file) standard

text std.textio

line std.textio

width std.textio

readline (text, line) std.textio

readline (line, bit, boolean) std.textio

read (line, bit) std.textio

readline (line, bit_vector, boolean) std.textio

read (line, bit_vector) std.textio

read (line, boolean, boolean) std.textio

read (line, boolean) std.textio

read (line, character, boolean) std.textio

read (line, character) std.textio

read (line, string, boolean) std.textio

read (line, string) std.textio

write (file, line) std.textio

write (line, bit, boolean) std.textio

write (line, bit) std.textio

write (line, bit_vector, boolean) std.textio

write (line, bit_vector) std.textio

write (line, boolean, boolean) std.textio

write (line, boolean) std.textio

write (line, character, boolean) std.textio

write (line, character) std.textio

write (line, integer, boolean) std.textio

write (line, integer) std.textio

write (line, string, boolean) std.textio

write (line, string) std.textio

read (line, std_ulogic, boolean) ieee.std_logic_textio

read (line, std_ulogic) ieee.std_logic_textio

read (line, std_ulogic_vector), boolean ieee.std_logic_textio

read (line, std_ulogic_vector) ieee.std_logic_textio

read (line, std_logic_vector, boolean) ieee.std_logic_textio

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
70 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Function Package
read (line, std_logic_vector) ieee.std_logic_textio

write (line, std_ulogic, boolean) ieee.std_logic_textio

write (line, std_ulogic) ieee.std_logic_textio

write (line, std_ulogic_vector, boolean) ieee.std_logic_textio

write (line, std_ulogic_vector) ieee.std_logic_textio

write (line, std_logic_vector, boolean) ieee.std_logic_textio

write (line, std_logic_vector) ieee.std_logic_textio

hread ieee.std_logic_textio

VHDL File Read and File Write Capability
XST supports a limited VHDL File Read and File Write capability.

File Read Capability
Use File Read capability to initialize memories from an external data file. For more
information, see Specifying Initial Contents in an External Data File.

File Write Capability
Use File Write capability for:
• Debugging
• Writing a specific constant or generic value to an external file

Required Packages
The following packages are required.
• The std.textio package:

– Is available in the std library.
– Provides basic text-based File I/O capabilities.
– Defines the following procedures for file I/O operations:

♦ readline
♦ read
♦ writeline
♦ write

• The ieee.std_logic_textio package:
– Is available in the IEEE library.
– Provides extended text I/O support for other data types.
– Overloads the read and write procedures shown in VHDL File Type Support.

Implicit and Explicit File Open and Close Operations
XST supports both implicit and explicit file open and close operations.

A file is implicitly opened when declared as follows:

file myfile : text open write_mode is "myfilename .dat"; --
declaration and implicit open

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 71

Chapter 3: VHDL Support

Explicitly open and close an external file as follows:

file myfile : text; -- declaration

variable file_status : file_open_status;

…

file_open (file_status, myfile , "myfilename .dat", write_mode);
-- explicit open

…

file_close(myfile); -- explicit close

Loading Memory Contents from an External File
See Specifying RAM Initial Contents in an External Data File.

Writing to a File for Debugging
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
72 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

Writing to a File (Explicit Open/Close) VHDL Coding Example
File write capability is often used for debugging. In this coding example, write
operations are performed to a file that has been explicitly opened.

--
-- Writing to a file
-- Explicit open/close with the VHDL’93 FILE_OPEN and FILE_CLOSE procedures
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/file_type_support/filewrite_explicitopen.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_LOGIC_TEXTIO.all;
use STD.TEXTIO.all;

entity filewrite_explicitopen is
generic (data_width: integer:= 4);
port (clk : in std_logic;

di : in std_logic_vector (data_width - 1 downto 0);
do : out std_logic_vector (data_width - 1 downto 0));

end filewrite_explicitopen;

architecture behavioral of filewrite_explicitopen is
file results : text;
constant base_const: std_logic_vector(data_width - 1 downto 0):= conv_std_logic_vector(3,data_width);
constant new_const: std_logic_vector(data_width - 1 downto 0):= base_const + "0100";

begin

process(clk)
variable txtline : line;
variable file_status : file_open_status;

begin
file_open (file_status, results, "explicit.dat", write_mode);
write(txtline,string’("--------------------"));
writeline(results, txtline);
write(txtline,string’("Base Const: "));
write(txtline, base_const);
writeline(results, txtline);
write(txtline,string’("New Const: "));
write(txtline,new_const);
writeline(results, txtline);
write(txtline,string’("--------------------"));
writeline(results, txtline);
file_close(results);

if rising_edge(clk) then
do <= di + new_const;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 73

Chapter 3: VHDL Support

Writing to a File (Implicit Open/Close) VHDL Coding Example
You can also use an implicit file open.

--
-- Writing to a file. Implicit open/close
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/file_type_support/filewrite_implicitopen.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_LOGIC_TEXTIO.all;
use STD.TEXTIO.all;

entity filewrite_implicitopen is
generic (data_width: integer:= 4);
port (clk : in std_logic;

di : in std_logic_vector (data_width - 1 downto 0);
do : out std_logic_vector (data_width - 1 downto 0));

end filewrite_implicitopen;

architecture behavioral of filewrite_implicitopen is
file results : text open write_mode is "implicit.dat";
constant base_const: std_logic_vector(data_width - 1 downto 0):= conv_std_logic_vector(3,data_width);
constant new_const: std_logic_vector(data_width - 1 downto 0):= base_const + "0100";

begin

process(clk)
variable txtline : LINE;

begin
write(txtline,string’("--------------------"));
writeline(results, txtline);
write(txtline,string’("Base Const: "));
write(txtline,base_const);
writeline(results, txtline);
write(txtline,string’("New Const: "));
write(txtline,new_const);
writeline(results, txtline);
write(txtline,string’("--------------------"));
writeline(results, txtline);

if rising_edge(clk) then
do <= di + new_const;

end if;
end process;

end behavioral;

Debugging Using Write Operations
Follow these rules for debugging using write operations.

• During a read operation in std_logic:

– The only allowed characters are 0, 1, and a blank space character.

– Other values such as X and Z are not allowed.

– XST rejects the design if the file includes characters other the allowed characters.

• Do not use identical names for files in different directories.

• Do not use conditional calls to read procedures.

if SEL = ’1’ then
read (MY_LINE, A(3 downto 0));

else
read (MY_LINE, A(1 downto 0));

end if;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
74 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Constructs
VHDL constructs include:

• VHDL Design Entities and Configurations

• VHDL Expressions

• VHDL Statements

VHDL Design Entities and Configurations
XST supports VHDL design entities and configurations except as noted below.

VHDL Entity Headers
• Generics

Supported

• Ports

Supported, including unconstrained ports

• Entity Statement Part

Unsupported

VHDL Packages
• STANDARD

• Type TIME is not supported

VHDL Physical Types
• TIME

Ignored

• REAL

Supported, but only in functions for constant calculations

VHDL Modes
• Linkage

• Unsupported

VHDL Declarations
• Type

• Supported for

– Enumerated types

– Types with positive range having constant bounds

– Bit vector types

– Multi-dimensional arrays

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 75

Chapter 3: VHDL Support

VHDL Objects
• Constant Declaration

Supported except for deferred constant

• Signal Declaration

Supported except for register and bus type signals

• Attribute Declaration

Supported for some attributes, otherwise skipped.

For more information, see Chapter 9, Design Constraints

VHDL Specifications
• Supported for some predefined attributes only:

– HIGHLOW

– LEFT

– RIGHT

– RANGE

– REVERSE_RANGE

– LENGTH

– POS

– ASCENDING

– EVENT

– LAST_VALUE

• Configuration

Supported only with the all clause for instances list. If no clause is added, XST looks
for the entity or architecture compiled in the default library

• Disconnection

Unsupported

• Object names can contain underscores in general (DATA_1), but XST does not allow
signal names with leading underscores (_DATA_1).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
76 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Expressions
VHDL expressions include:

• VHDL Operators

• VHDL Operands

VHDL Operators
Operator Status

Logical Operators: and, or, nand, nor, xor, xnor, not Supported

Relational Operators: =, /=, <, <=, >, >= Supported

& (concatenation) Supported

Adding Operators: +, - Supported

* Supported

/ Supported if the right operand is a constant power of 2, or if
both operands are constant

rem Supported if the right operand is a constant power of 2

mod Supported if the right operand is a constant power of 2

Shift Operators: sll, srl, sla, sra, rol, ror Supported

abs Supported

** Supported if the left operand is 2

Sign: +, - Supported

VHDL Operands
Operand Status

Abstract Literals Only integer literals are supported

Physical Literals Ignored

Enumeration Literals Supported

String Literals Supported

Bit String Literals Supported

Record Aggregates Supported

Array Aggregates Supported

Function Call Supported

Qualified Expressions Supported for accepted predefined attributes

Types Conversions Supported

Allocators Unsupported

Static Expressions Supported

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 77

Chapter 3: VHDL Support

VHDL Statements
VHDL statements include:

• VHDL Wait Statements

• VHDL Loop Statements

• VHDL Concurrent Statements

VHDL Wait Statements
Wait Statement Status

• Wait on sensitivity_list until boolean_expression.

• See VHDL Combinatorial Circuits.

• Supported with one signal in the sensitivity list and in
the Boolean expression.

• Multiple wait statements are not supported.

• wait statements for Latch descriptions are not
supported.

• Wait for time_expression.

• See VHDL Combinatorial Circuits.

Unsupported

Assertion Statement Supported for static conditions only.

Signal Assignment Statement • Supported

• Delay is ignored.

Variable Assignment Statement Supported

Procedure Call Statement Supported

If Statement Supported

Case Statement Supported

VHDL Loop Statements
Loop Statement Status

for... loop... end loop • Supported for constant bounds only.

• Disable statements are not supported.

while... loop... end loop Supported

loop ... end loop Supported for multiple wait statements only.

Next Statement Supported

Exit Statement Supported

Return Statement Supported

Null Statement Supported

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
78 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 3: VHDL Support

VHDL Concurrent Statements
Concurrent Statement Status

Process Statement Supported

Concurrent Procedure Call Supported

Concurrent Assertion Statement Ignored

Concurrent Signal Assignment Statement • Supported

• No after clause, no transport or guarded options, no
waveforms

• UNAFFECTED is supported.

Component Instantiation Statement Supported

for-generate Statement supported for constant bounds only

if-generate Statement supported for static condition only

VHDL Reserved Words
abs access after alias

all and architecture array

assert attribute begin block

body buffer bus case

component configuration constant disconnect

downto else elsif end

entity exit file for

function generate generic group

guarded if impure in

inertial inout is label

library linkage literal loop
map mod nand new

next nor not null

of on open or

others out package port

postponed procedure process pure

range record register reject
rem report return rol
ror select severity signal

shared sla sll sra

srl subtype then to

transport type unaffected units

until use variable wait

when while with xnor

xor

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 79

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
80 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4

Verilog Support
XST supports the Verilog Hardware Description Language (HDL), except as otherwise
noted.

Verilog Design
Complex circuits are often designed using a top down methodology.

• Varying specification levels are required at each stage of the design process. For
example, at the architectural level, a specification can correspond to a block diagram
or an Algorithmic State Machine (ASM) chart.

• A block or ASM stage corresponds to a register transfer block in which the
connections are N-bit wires, such as:

– Register

– Adder

– Counter

– Multiplexer

– Glue logic

– Finite State Machine (FSM)

• Verilog allows the expression of notations such as ASM charts and circuit diagrams
in a computer language.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 81

Chapter 4: Verilog Support

Verilog Functionality
Verilog provides both behavioral and structural language structures. These structures
allow the expression of design objects at high and low levels of abstraction.

• Designing hardware with Verilog allows the use of software concepts such as:

– Parallel processing

– Object-oriented programming

• Verilog has a syntax similar to C and Pascal.

• XST supports Verilog as IEEE 1364.

• Verilog support in XST allows you to describe the global circuit and each block in
the most efficient style.

– Synthesis is performed with the best synthesis flow for each block.

– Synthesis in this context is the compilation of high-level behavioral and
structural Verilog HDL statements into a flattened gate-level netlist. The netlist
can then be used to custom program a programmable logic device such as
a Virtex® device.

– Different synthesis methods are used for:

♦ Arithmetic blocks

♦ Glue logic

♦ Finite State Machine (FSM) components

More Information
• For information about basic Verilog concepts, see:

IEEE Verilog HDL Reference Manual

• For information about Behavioral Verilog, see:

Chapter 5, Behavioral Verilog

• For information about XST support for Verilog constructs and meta comments, see:

– Chapter 9, Design Constraints

Verilog design constraints and options

– Verilog–2001 Attributes and Meta Comments

Verilog attribute syntax

– Chapter 10, General Constraints

Setting Verilog options in the Process window of ISE® Design Suite

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
82 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Verilog–2001 Support
XST supports the following Verilog–2001 features.

• Generate statements

• Combined port/data type declarations

• ANSI-style port list

• Module parameter port lists

• ANSI C style task/function declarations

• Comma-separated sensitivity list

• Combinatorial logic sensitivity

• Default nets with continuous assigns

• Disable default net declarations

• Indexed vector part selects

• Multi-dimensional arrays

• Arrays of net and real data types

• Array bit and part selects

• Signed reg, net, and port declarations

• Signed-based integer numbers

• Signed arithmetic expressions

• Arithmetic shift operators

• Automatic width extension past 32 bits

• Power operator

• N sized parameters

• Explicit in-line parameter passing

• Fixed local parameters

• Enhanced conditional compilation

• File and line compiler directives

• Variable part selects

• Recursive Tasks and Functions

• Constant Functions

For more information, see:

• Sutherland, Stuart. Verilog 2001: A Guide to the New Features of the VERILOG Hardware
Description Language (2002)

• IEEE Standard Verilog Hardware Description Language Manual (IEEE Standard
1364-2001)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 83

Chapter 4: Verilog Support

Verilog Variable Part Selects
Verilog–2001 allows you to use variables to select a group of bits from a vector.

• Instead of being bounded by two explicit values, the variable part select is defined
by:

– The starting point of its range

– The width of the vector

• The starting point of the part select can vary.

• The width of the part select remains constant.

Variable Part Selects Symbols
Symbol Meaning
+ (plus) The part select increases from the starting

point.

- (minus) The part select decreases from the starting
point.

Variable Part Selects Verilog Coding Example
reg [3:0] data;
reg [3:0] select; // a value from 0 to 7
wire [7:0] byte = data[select +: 8];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
84 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Structural Verilog
Structural Verilog descriptions:

• Assemble several blocks of code.

• Allow the introduction of hierarchy in a design.

Basic Concepts of Hardware Structure
Concept Description
Component Building or basic block

Port Component I/O connector

Signal Corresponds to a wire between components

Verilog Components
Item View Describes
Declaration External What is seen from the outside, including the component ports

Body Internal The behavior or the structure of the component

• A component is represented by a design module.

• The connections between components are specified within component instantiation
statements.

• A component instantiation statement:

– Specifies an instance of a component occurring within another component or
the circuit

– Is labeled with an identifier.

– Names a component declared in a local component declaration.

– Contains an association list (the parenthesized list). The list specifies the signals
and ports associated with a given local port.

Built-In Logic Gates
Verilog provides a large set of built-in logic gates.

• The logic gates are instantiated to build larger logic circuits.

• The set of logical functions described by the built-in logic gates includes:

– AND

– OR

– XOR

– NAND

– NOR

– NOT

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 85

Chapter 4: Verilog Support

2-Input XOR Function Verilog Coding Example
In this coding example, each instance of the built-in modules has a unique instantiation
name such as:

• a_inv

• b_inv

• out

module build_xor (a, b, c);
input a, b;
output c;
wire c, a_not, b_not;

not a_inv (a_not, a);
not b_inv (b_not, b);
and a1 (x, a_not, b);
and a2 (y, b_not, a);
or out (c, x, y);

endmodule

Half-Adder Verilog Coding Example
This coding example shows the structural description of a half-Adder composed of four,
2-input nand modules.

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;

nand NANDA (S3, X, Y);
nand NANDB (S1, X, S3);
nand NANDC (S2, S3, Y);
nand NANDD (S, S1, S2);
assign C = S3;

endmodule

Instantiating Pre-Defined Primitives
• The structural features of Verilog allow you to design circuits by instantiating

pre-defined primitives such as:

– Gates

– Registers

– Xilinx® specific primitives such as CLKDLL and BUFG

• These primitives are:

– In addition to those included in Verilog

– Supplied with the XST Verilog libraries (unisim_comp.v).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
86 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Instantiating an FDC and a BUFG Primitive Verilog Coding Example
The unisim_comp.v library file includes the definitions for FDC and BUFG.

module example (sysclk, in, reset, out);
input sysclk, in, reset;
output out;
reg out;
wire sysclk_out;

FDC register (out, sysclk_out, reset, in); //position based referencing
BUFG clk (.O(sysclk_out),.I(sysclk)); //name based referencing
...

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 87

Chapter 4: Verilog Support

Verilog Parameters
Verilog parameters.

• Allow you to create parameterized code that can be easily reused and scaled.

• Make code more readable, more compact, and easier to maintain.

• Describe such functionality as:

– Bus sizes

– The amount of certain repetitive elements in the modeled design unit

• Are constants.

For each instantiation of a parameterized module, default parameter values can
be overridden.

• Are the equivalent of VHDL generics.

Null string parameters are not supported.

Use the Generics command line option to redefine Verilog parameters defined in the
top-level design block. This allows you to modify the design without modifying the
source code. This feature is useful for IP core generation and flow testing.

Verilog Parameters Coding Example
In this coding example, instantiation of the module lpm_reg with a instantiation width
of 8 causes the instance buf_373 to be 8 bits wide.

//
// A Verilog parameter allows to control the width of an instantitated
// block describing register logic
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/parameter/parameter_1.v
//
module myreg (clk, clken, d, q);

parameter SIZE = 1;

input clk, clken;
input [SIZE-1:0] d;
output reg [SIZE-1:0] q;

always @(posedge clk)
begin

if (clken)
q <= d;

end

endmodule

module parameter_1 (clk, clken, di, do);

parameter SIZE = 8;

input clk, clken;
input [SIZE-1:0] di;
output [SIZE-1:0] do;

myreg #8 inst_reg (clk, clken, di, do);

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
88 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Verilog Parameters and Generate-For Coding Example
This coding example illustrates how to control the creation of repetitive elements
using parameters and generate-for constructs. For more information, see Generate
Loop Statements.

//
// A shift register description that illustrates the use of parameters and
// generate-for constructs in Verilog
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/parameter/parameter_generate_for_1.v
//
module parameter_generate_for_1 (clk, si, so);

parameter SIZE = 8;

input clk;
input si;
output so;

reg [0:SIZE-1] s;

assign so = s[SIZE-1];

always @ (posedge clk)
s[0] <= si;

genvar i;
generate

for (i = 1; i < SIZE; i = i+1)
begin : shreg

always @ (posedge clk)
begin

s[i] <= s[i-1];
end

end
endgenerate

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 89

Chapter 4: Verilog Support

Verilog Parameter and Attribute Conflicts
Verilog parameter and attribute conflicts can arise since:

• Parameters and attributes can be applied to both instances and modules in the
Verilog code.

• Attributes can also be specified in a constraints file.

Verilog Parameter and Attribute Conflicts Precedence
XST uses the following rules of precedence to resolve these conflicts:

• Specifications on an instance (lower level) take precedence over specifications on a
module (higher level).

• If a parameter and an attribute are specified on the same instance or the same
module, the parameter takes precedence. XST issues a warning message.

• An attribute specified in the XST Constraint File (XCF) takes precedence over
attributes or parameters specified in the Verilog code.

If an attribute specified on an instance overrides a parameter specified on a module
in XST, a simulation tool can still use the parameter. If that occurs, there will be a
simulation mismatch with post-synthesis results.

Security attributes on the module definition always have higher precedence than any
other attribute or parameter.

This information is summarized in the following table.

Verilog Parameter and Attribute Conflicts Precedence Summary
Parameter on an Instance Parameter on a Module

Attribute on an Instance Apply Parameter (XST issues warning) Apply Attribute (possible simulation
mismatch)

Attribute on a Module Apply Parameter Apply Parameter (XST issues warning)

Attribute in XCF Apply Attribute (XST issues warning) Apply Attribute

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
90 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Verilog Usage Restrictions
Verilog usage restrictions in XST include:

• Case Sensitivity
• Blocking and Non-Blocking Assignments
• Integer Handling

Case Sensitivity
XST supports Verilog case sensitivity despite the potential of name collision.
• Since Verilog is case sensitive, the names of modules, instances, and signals can

theoretically be made unique by changing capitalization.
– XST can synthesize a design in which instance and signal names differ only by

capitalization.
– XST errors out when module names differ only by capitalization.

• Do not rely on capitalization alone to make object names unique. Capitalization
alone can:
– Cause problems in mixed language projects.
– Prevent you from applying constraints with an XST Constraint File (XCF) file to .

Blocking and Non-Blocking Assignments
XST supports blocking and non-blocking assignments.
• Do not mix blocking and non-blocking assignments.
• Although XST synthesizes the design without error, mixing blocking and

non-blocking assignments can cause errors during simulation.

Unacceptable Coding Example One
Do not mix blocking and non-blocking assignments to the same signal.

always @(in1)
begin

if (in2)
out1 = in1;

else
out1 <= in2;

end

Unacceptable Coding Example Two
Do not mix blocking and non-blocking assignments for different bits of the same signal.

if (in2)
begin

out1[0] = 1’b0;
out1[1] <= in1;

end
else
begin

out1[0] = in2;
out1[1] <= 1’b1;

end

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 91

Chapter 4: Verilog Support

Integer Handling
XST handles integers differently from other synthesis tools in some situations. In those
instances, the integers must be coded in a particular way.

Integer Handling in Verilog Case Statements
Unsized integers in case item expressions can cause unpredictable results.

Integer Handling in Verilog Case Statements Coding Example
• In this coding example, the case item expression 4 is an unsized integer that causes

unpredictable results.

• To resolve this problem, size the case item expression 4 to 3 bits.

reg [2:0] condition1;
always @(condition1)
begin
case(condition1)
4 : data_out = 2; // < will generate bad logic
3’d4 : data_out = 2; // < will work
endcase
end

Integer Handling in Verilog Concatenations
Unsized integers in Verilog concatenations can cause unpredictable results.

If you use an expression that results in an unsized integer:

• Assign the expression to a temporary signal.

• Use the temporary signal in the concatenation.

reg [31:0] temp;
assign temp = 4’b1111 % 2;
assign dout = {12/3,temp,din};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
92 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Verilog–2001 Attributes and Meta Comments
Verilog–2001 attributes and meta comments include:

• Verilog-2001 Attributes

• Verilog Meta Comments

Verilog-2001 Attributes
• Verilog-2001 attributes pass specific information to programs such as synthesis tools.

• Verilog-2001 attributes are generally accepted.

• You can specify Verilog-2001 attributes anywhere for 1) operators or signals, 2)
within module declarations and instantiations.

• Although the compiler may support other attribute declarations, XST ignores them.

• Use Verilog-2001 attributes to:

– Set constraints on individual objects, such as:

♦ Module

♦ Instance

♦ Net

– Set the following synthesis constraints:

♦ Full Case

♦ Parallel Case

Verilog Meta Comments
• Verilog meta comments are understood by the Verilog parser.

• Verilog meta comments set constraints on individual objects, such as:

– Module

– Instance

– Net

• Verilog meta comments set directives on synthesis:

– parallel_case and full_case

– translate_on and translate_off

– All tool specific directives (for example, syn_sharing)

For more information, see Chapter 9, Design Constraints.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 93

Chapter 4: Verilog Support

Verilog Meta Comment Support
XST supports:

• C-style and Verilog style meta comments

– C-style

/* ... */

C-style comments can be multiple line.

– Verilog style

// ...

Verilog style comments end at the end of the line.

• Translate Off and Translate On

// synthesis translate_on
// synthesis translate_off

• Parallel Case

// synthesis parallel_case full_case
// synthesis parallel_case
// synthesis full_case

• Constraints on individual objects

Verilog Meta Comment Syntax
// synthesis attribute [of] ObjectName [is] AttributeValue

Verilog Meta Comment Syntax Examples
// synthesis attribute RLOC of u123 is R11C1.S0

// synthesis attribute HUSET u1 MY_SET

// synthesis attribute fsm_extract of State2 is "yes"

// synthesis attribute fsm_encoding of State2 is "gray"

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
94 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Verilog Constructs
Verilog constructs include:

• Verilog Constants

• Verilog Data Types

• Verilog Continuous Assignments

• Verilog Procedural Assignments

• Verilog Design Hierarchies

• Verilog Compiler Directives

Verilog Constants
Constant Status
Integer Supported

Real Supported

Strings Unsupported

Verilog Data Types
Data Type Category Status
Net types • tri0

• tri1

• trireg

Unsupported

Drive strengths All Ignored

Registers Real and realtime registers Unsupported

Named events All Unsupported

Verilog Continuous Assignments
Continuous Assignment Status
Drive Strength Ignored

Delay Ignored

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 95

Chapter 4: Verilog Support

Verilog Procedural Assignments
Procedural Assignment Status
assign Supported with limitations. See Assign and

Deassign Statements.

deassign Supported with limitations. See Assign and
Deassign Statements.

force Unsupported

release Unsupported

forever statements Unsupported

repeat statements Supported, but repeat value must be constant

for statements Supported, but bounds must be static

delay (#) Ignored

event (@) Unsupported

wait Unsupported

Named Events Unsupported

Parallel Blocks Unsupported

Specify Blocks Ignored

Disable Supported except in For and Repeat Loop
statements.

Verilog Design Hierarchies
Design Hierarchy Status
Module definition Supported

Macromodule definition Unsupported

Hierarchical names Unsupported

Defparam Supported

Array of instances Supported

Verilog Compiler Directives
Compiler Directive Status

‘celldefine ‘endcelldefine Ignored

‘default_nettype Supported

‘define Supported

‘ifdef ‘else ‘endif Supported

‘undef, ‘ifndef, ‘elsif, Supported

‘include Supported

‘resetall Ignored

‘timescale Ignored

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
96 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Compiler Directive Status

‘unconnected_drive ‘nounconnected_drive Ignored

‘uselib Unsupported

‘file, ‘line Supported

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 97

Chapter 4: Verilog Support

Verilog System Tasks and Functions
XST supports system tasks or function as shown in the following table. XST ignores
unsupported system tasks.

System Task or Function Status Comment
$display Supported Escape sequences are limited to %d,

%b, %h, %o, %c and %s

$fclose Supported

$fdisplay Ignored

$fgets Supported

$finish Supported $finish is supported for statically never
active conditional branches only

$fopen Supported

$fscanf Supported Escape sequences are limited to %b
and %d

$fwrite Ignored

$monitor Ignored

$random Ignored

$readmemb Supported

$readmemh Supported

$signed Supported

$stop Ignored

$strobe Ignored

$time Ignored

$unsigned Supported

$write Supported Escape sequences are limited to %d,
%b, %h, %o, %c and %s

all others Ignored

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
98 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Using Conversion Functions
Use the following syntax to call $signed and $unsigned system tasks on any expression.

$signed(expr) or $unsigned(expr)

• The return value from these calls is the same size as the input value.
• The sign of the return value is forced regardless of any previous sign.

Loading Memory Contents With File I/O Tasks
Use the $readmemb and $readmemh system tasks to initialize block memories.
• Use $readmemb for binary representation.
• Use $readmemh for hexadecimal representation.
• Use index parameters to avoid behavioral conflicts between XST and the simulator.

$readmemb("rams_20c.data",ram, 0, 7);

• For more information, see Specifying RAM Initial Contents in an External Data File.

Display Tasks
Use display tasks to:
• Print information to the console.
• Write information to an external file.

You must call these tasks from within initial blocks.

Supported Escape Sequences
• %h
• %d
• %o
• %b
• %c
• %s

Verilog Syntax Example
The syntax for reporting the value of a binary constant in decimal is:

parameter c = 8’b00101010;

initial
begin
$display ("The value of c is %d", c);
end

Verilog Log File Example
XST writes the following to the log file during HDL Analysis:

Analyzing top module <example>.
c = 8’b00101010
"foo.v" line 9: $display : The value of c is 42

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 99

Chapter 4: Verilog Support

Creating Design Rule Checks with $finish
XST partially supports the $finish simulation control task.

• Use $finish to create a built-in Design Rule Check (DRC).

• Design rule checking detects design configurations which:

– Are syntactically correct.

– May nevertheless result in unworkable or otherwise undesired implementations.

• Use $finish to force XST to exit when it detects undesired conditions. An early exit
can save significant synthesis and implementation time.

• XST ignores $finish if its execution depends on the occurrence of specific dynamic
conditions during simulation, or during operation of the circuit on the board.

– Only simulation tools can detect such situations.

– Synthesis tools, including XST, ignore them.

Ignored Use of $finish Verilog Coding Example
//
// Ignored use of $finish for simulation purposes only
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/system_tasks/finish_ignored_1.v
//
module finish_ignored_1 (clk, di, do);

input clk;
input [3:0] di;
output reg [3:0] do;

initial
begin
do = 4’b0;
end

always @(posedge clk)
begin
if (di < 4’b1100)
do <= di;

else
begin
$display("%t, di value %d should not be more than 11", $time, di);
$finish;
end

end

endmodule

XST Support of $finish
XST flags, then ignores, the $finish system task in dynamic situations.

• XST considers a $finish if its execution depends only on static conditions that can be
fully evaluated during elaboration of the Verilog source code.

– Statically-evaluated conditions mainly involve comparison of parameters
against expected values.

– This comparison is typically done in a module initial block as shown below.

• Use the $display system task in conjunction with $finish to create exit messages to
help you locate the cause of an early exit by XST.

• XST ignores the $stop Verilog simulation control task.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
100 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Supported Use of $finish for Design Rule Checking Verilog Coding
Example

//
// Supported use of $finish for design rule checking
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/system_tasks/finish_supported_1.v
//
module finish_supported_1 (clk, di, do);

parameter integer WIDTH = 4;
parameter DEVICE = "virtex6";

input clk;
input [WIDTH-1:0] di;
output reg [WIDTH-1:0] do;

initial
begin
if (DEVICE != "virtex6")
begin
$display ("DRC ERROR: Unsupported device family: %s.", DEVICE);
$finish;
end
if (WIDTH < 8)
begin
$display ("DRC ERROR: This module not tested for data width: %d. Minimum allowed width is 8.", WIDTH);
$finish;
end

end

always @(posedge clk)
begin
do <= di;
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 101

Chapter 4: Verilog Support

Verilog Primitives
XST supports Verilog gate-level primitives except as shown in the table below.

XST does not support Verilog switch-level primitives, such as:

• cmos, nmos, pmos, rcmos, rnmos, rpmos

• rtran, rtranif0, rtranif1, tran, tranif0, tranif1

Verilog Gate Level Primitives Not Supported in XST
Primitive Status

Pulldown and pullup Unsupported

Drive strength and delay Ignored

Arrays of primitives Unsupported

Gate-Level Primitive Syntax
gate_type instance_name (output, inputs,...);

Gate-Level Primitive Coding Example
and U1 (out, in1, in2); bufif1 U2 (triout, data, trienable);

Verilog User Defined Primitive (UDP)
The Verilog User Defined Primitive (UDP) provides a modeling technique for describing
functionality in the form of a state table.

• The state table:

– Enumerates all combinations of input values.

– Specifies the corresponding values on the circuit’s unique output.

• The functionality modeled with a UDP is:

– Combinatorial, or

– Sequential

• A UDP is a convenient technique for modeling low-complexity functionality, such as:

– Simple combinatorial functions, or

– Basic sequential elements

• For more elaborate circuit descriptions:

– Use Behavioral Verilog modeling techniques.

– Leverage the inference capabilities of XST.

• For more information about inference capabilities and coding guidelines in Verilog
and VHDL, see Chapter 7, HDL Coding Techniques.

• For more information about the Verilog User Defined Primitive (UDP), including
syntax rules, see your Verilog Language Reference manual.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
102 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

UDP Definition and Instantiation
• A UDP must be defined before it can be instantiated.

• A UDP definition:

– Is described between the primitive and endprimitive keywords.

– May be found anywhere outside the scope of anymodule-endmodule section.

• A UDP is instantiated the same as gate-level primitives and user-defined modules.

Combinatorial UDP
A combinatorial UDP uses the value of its inputs to determine the next value of its
output. This allows it to describe any combinatorial function.

Combinatorial UDP Coding Example
//
// Description and instantiation of a user defined primitive
// combinatorial function
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/user_defined_primitives/udp_combinatorial_1.v
//
primitive myand2 (o, a, b);
input a, b;
output o;

table
// a b : o
0 0 : 0;
0 1 : 0;
1 0 : 0;
1 1 : 1;

endtable

endprimitive

module udp_combinatorial_1 (a, b, c, o);
input a, b, c;
output o;

wire s;

myand2 i1 (.a(a), .b(b), .o(s));
myand2 i2 (.a(s), .b(c), .o(o));

endmodule

Sequential UDP
A sequential UDP uses 1) the value of its inputs and 2) the current value of its output,
to determine the next value of its output.

• A sequential UDP is able to:

– Model both level-sensitive and edge-sensitive behavior.

– Describe such sequential elements as flip-flops and latches.

• An initial value may be specified.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 103

Chapter 4: Verilog Support

Sequential UDP Coding Example
//
// Description and instantiation of a user defined primitive
// Sequential function
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/user_defined_primitives/udp_sequential_2.v
//
primitive mydff (q, d, c);
input c, d;
output reg q;

initial q = 1’b0;

table
// c d : q : q+

r 0 : ? : 0;
r 1 : ? : 1;
f ? : ? : -;
? * : ? : -;

endtable

endprimitive

module udp_sequential_2 (clk, si, so);
input clk, si;
output so;

wire s1, s2;

mydff i1 (.c(clk), .d(si), .q(s1));
mydff i2 (.c(clk), .d(s1), .q(s2));
mydff i3 (.c(clk), .d(s2), .q(so));

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
104 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 4: Verilog Support

Verilog Reserved Keywords
Keywords marked with an asterisk (*) are reserved by Verilog, but XST does not support
them.

always and assign automatic

begin buf bufif0 bufif1
case casex casez cell*
cmos config* deassign default

defparam design* disable edge

else end endcase endconfig*

endfunction endgenerate endmodule endprimitive

endspecify endtable endtask event

for force forever fork

function generate genvar highz0

highz1 if ifnone incdir*

include* initial inout input

instance* integer join large

liblist* library* localparam macromodule

medium module nand negedge
nmos nor noshow-cancelled* not

notif0 notif1 or output

parameter pmos posedge primitive

pull0 pull1 pullup pulldown

pulsestyle- _ondetect* pulsestyle- _onevent* rcmos real

realtime reg release repeat

rnmos rpmos rtran rtranif0

rtranif1 scalared show-cancelled* signed

small specify specparam strong0

strong1 supply0 supply1 table

task time tran tranif0

tranif1 tri tri0 tri1

triand trior trireg use*

vectored wait wand weak0

weak1 while wire wor

xnor xor

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 105

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
106 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5

Behavioral Verilog
XST supports the Behavioral Verilog Hardware Description Language (HDL), except
as otherwise noted.

Variables in Behavioral Verilog
• Variables in Behavioral Verilog are declared as:

– integer
– real

• These declarations are used in test code only. Verilog provides data types such as
reg and wire for actual hardware description.

• The difference between reg and wire depends on whether the variable is given its
value in 1) a procedural block (reg) or 2) in a continuous assignment (wire).
– Both reg and wire have a default width of one bit (scalar).
– To specify an N-bit width (vectors) for a declared reg or wire, the left and right

bit positions are defined in square brackets separated by a colon.
– In Verilog-2001, reg and wire data types can be signed or unsigned.

Variable Declarations Coding Example
reg [3:0] arb_priority;
wire [31:0] arb_request;
wire signed [8:0] arb_signed;

Initial Values
You can initialize Registers in Verilog-2001 when you declare them.
• The initial value:

– Is a constant.
– Cannot depend on earlier initial values.
– Cannot be a function or task call.
– Can be a parameter value propagated to the Register.
– Specifies all bits of a vector.

• When you assign a Register an initial value in a declaration, XST sets this value on
the output of the Register at global reset or power up.

• When a value is assigned in this manner:
– The value is carried in the NGC file as an INIT attribute on the Register.
– The value is independent of any local reset.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 107

Chapter 5: Behavioral Verilog

Assigning an Initial Value to a Register
You can assign a set/reset (initial) value to a Register.
• Assign the value to the Register when the Register reset line goes to the appropriate

value. See the following coding example.
• When you assign the initial value to a variable:

– The value is implemented as a Flip-Flop, the output of which is controlled by
a local reset.

– The value is carried in the NGC file as an FDP or FDC Flip-Flop.

Initial Values Coding Example One
reg arb_onebit = 1’b0;
reg [3:0] arb_priority = 4’b1011;

Initial Values Coding Example Two
always @(posedge clk)
begin

if (rst)
arb_onebit <= 1’b0;

end

Arrays of Reg and Wire
Verilog allows arrays of reg and wire.

Arrays Coding Example One
This coding example describes an array of 32 elements. Each element is 4-bits wide.

reg [3:0] mem_array [31:0];

Arrays Coding Example Two
This coding example describes an array of 64 8-bit wide elements. These elements can be
assigned only in structural Verilog code.

wire [7:0] mem_array [63:0];

Multi-Dimensional Arrays
XST supports multi-dimensional array types of up to two dimensions.
• Multi-dimensional arrays can be:

– Any net
– Any variable data type

• You can code assignments and arithmetic operations with arrays.
• You cannot select more than one element of an array at one time.
• You cannot pass multi-dimensional arrays to:

– System tasks or functions
– Regular tasks or functions

Multi-Dimensional Array Verilog Coding Example One
This coding example describes an array of 256 x 16 wire elements of 8-bits each. These
elements can be assigned only in structural Verilog code.

wire [7:0] array2 [0:255][0:15];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
108 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Multi-Dimensional Array Verilog Coding Example Two
This coding example describes an array of 256 x 8 register elements, each 64 bits wide.
These elements can be assigned in Behavioral Verilog code.

reg [63:0] regarray2 [255:0][7:0];

Data Types
The Verilog representation of the bit data type contains the following values:

• 0

logic zero

• 1

logic one

• x

unknown logic value

• z

high impedance

XST-Supported Verilog Data Types
• net

• wire

• tri

• triand/wand

• trior/wor

• registers

• reg

• integer

• supply nets

• supply0

• supply1

• constants

• parameter

• Multi-dimensional arrays (memories)

Net and Registers
Net and Registers can be either:

• Single bit (scalar)

• Multiple bit (vectors)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 109

Chapter 5: Behavioral Verilog

Behavioral Verilog Data Types Coding Example
This coding example shows sample Verilog data types found in the declaration section
of a Verilog module.

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3’b001; // 3 bit constant
parameter component = "TMS380C16"; // string

Legal Statements
XST supports Behavioral Verilog legal statements.
• The following statements (variable and signal assignments) are legal:

– variable = expression
– if (condition) statement
– else statement
– case (expression)

expression: statement
...
default: statement
endcase

– for (variable = expression; condition; variable = variable + expression) statement
– while (condition) statement
– forever statement
– functions and tasks

• All variables are declared as integer or reg.
• A variable cannot be declared as a wire.

Expressions
Behavioral Verilog expressions include:
• Constants
• Variables with the following operators:

– arithmetic
– logical

♦ bit-wise
♦ logical

– relational
– conditional

Logical Operators
The category (bit-wise or logical) into which a logical operator falls depends on whether
it is applied to:
• An expression involving several bits, or
• A single bit.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
110 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Supported Operators
Arithmetic Logical Relational Conditional

+ & < ?
- && ==

* | ===

** || <=

/ ^ >=

% ~ >=

~^ !=

^~ !==
<< >
>>
<<<
>>>

Supported Expressions
Expression Symbol Status

Concatenation {} Supported

Replication {{}} Supported

Arithmetic +, -, *,** Supported

Division / Supported only if:

• Second operand is a power of 2.

OR

• Both operands are constant.

Modulus % Supported only if second operand is a
power of 2

Addition + Supported

Subtraction - Supported

Multiplication * Supported

Power ** Supported

• Both operands are constants,
with the second operand being
non-negative.

• If the first operand is a 2, then the
second operand can be a variable.

• XST does not support the real
data type. Any combination of
operands that results in a real type
causes an error.

• The values X (unknown) and Z
(high impedance) are not allowed.

Relational >, <, >=, <= Supported

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 111

Chapter 5: Behavioral Verilog

Expression Symbol Status
Logical Negation ! Supported

Logical AND && Supported

Logical OR || Supported

Logical Equality == Supported

Logical Inequality != Supported

Case Equality === Supported

Case Inequality !== Supported

Bitwise Negation ~ Supported

Bitwise AND & Supported

Bitwise Inclusive OR | Supported

Bitwise Exclusive OR ^ Supported

Bitwise Equivalence ~^, ^~ Supported

Reduction AND & Supported

Reduction NAND ~& Supported

Reduction OR | Supported

Reduction NOR ~| Supported

Reduction XOR ^ Supported

Reduction XNOR ~^, ^~ Supported

Left Shift << Supported

Right Shift Signed >>> Supported

Left Shift Signed <<< Supported

Right Shift >> Supported

Conditional ?: Supported

Event OR or, ’,’ Supported

Evaluating Expressions
The (===) and (!==) operators in the following table:

• Are special comparison operators.

• Are used in simulation to see if a variable is assigned a value of (x) or (z).

• Are treated as (==) or (!=) by synthesis.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
112 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Evaluated Expressions Based On Most Frequently Used Operators
a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b
0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 1

0 x x 0 x 1 0 0 x x x

0 z x 0 x 1 0 0 x x x

1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 0 0 1 1 1 1 0

1 x x 0 x 1 x x 1 1 x

1 z x 0 x 1 x x 1 1 x

x 0 x 0 x 1 0 0 x x x

x 1 x 0 x 1 x x 1 1 x

x x x 1 x 0 x x x x x

x z x 0 x 1 x x x x x

z 0 x 0 x 1 0 0 x x x

z 1 x 0 x 1 x x 1 1 x

z x x 0 x 1 x x x x x

z z x 1 x 0 x x x x x

Blocks
XST supports some block statements.

• Block statements:

– Group statements together.

– Are designated by begin and end keywords.

– Execute the statements in the order listed within the block.

• XST supports sequential blocks only.

• XST does not support parallel blocks.

• All procedural statements occur in blocks that are defined inside modules.

• The two kinds of procedural blocks are:

– initial block

– always block

• Verilog uses begin and end keywords within each block to enclose the statements.
Since initial blocks are ignored during synthesis, only always blocks are discussed.

• always blocks usually take the following format. Each statement is a procedural
assignment line terminated by a semicolon.

always
begin
statement
....
end

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 113

Chapter 5: Behavioral Verilog

Modules
A Verilog design component is represented by a module. Modules must be declared
and instantiated.

Module Declaration
• A Behavioral Verilog module declaration consists of:

– The module name

– A list of circuit I/O ports

– The module body in which you define the intended functionality

• The end of the module is signalled by a mandatory endmodule statement.

Circuit I/O Ports
• The circuit I/O ports are listed in the module declaration.

• Each circuit I/O port is characterized by:

– A name

– A mode:

♦ Input

♦ Output

♦ Inout

– Range information if the port is of array type.

Behavioral Verilog Module Declaration Coding Example One
module example (A, B, O);
input A, B;

output O;

assign O = A & B;

endmodule

Behavioral Verilog Module Declaration Coding Example Two
module example (

input A,
input B
output O

):

assign O = A & B;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
114 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Module Instantiation
• A Behavioral Verilog module instantiation statement:

– Defines an instance name.

– Contains a port association list.

♦ The port association list specifies how the instance is connected in the
parent module.

♦ Each element of the port association list ties a formal port of the module
declaration to an actual net of the parent module.

• A Behavioral Verilog module is instantiated in another module. See the following
coding example.

Behavioral Verilog Module Instantiation Coding Example
module top (A, B, C, O);

input A, B, C;
output O;
wire tmp;

example inst_example (.A(A), .B(B), .O(tmp));

assign O = tmp | C;

endmodule

Continuous Assignments
XST supports both explicit and implicit continuous assignments.

• Continuous assignments model combinatorial logic in a concise way.

• XST ignores delays and strengths given to a continuous assignment.

• Continuous assignments are allowed on wire and tri data types only.

Explicit Continuous Assignments
Explicit continuous assignments start with an assign keyword after the net has been
separately declared.

wire mysignal;
...
assign mysignal = select ? b : a;

Implicit Continuous Assignments
Implicit continuous assignments combine declaration and assignment.

wire misignal = a | b;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 115

Chapter 5: Behavioral Verilog

Procedural Assignments
• Behavioral Verilog procedural assignments:

– Assign values to variables declared as reg.
– Are introduced by always blocks, tasks, and functions.
– Model registers and Finite State Machine (FSM) components.

• XST supports:
– Combinatorial functions
– Combinatorial and sequential tasks
– Combinatorial and sequential always blocks

Combinatorial Always Blocks
Combinatorial logic is modeled efficiently by Verilog time control statements:
• Delay time control statement [#]
• Event control time control statement [@]

Delay Time Control Statement
The delay time control statement [# (pound)] is:
• Relevant for simulation only.
• Ignored for synthesis.

Event Control Time Control Statement
The following statements describe modeling combinatorial logic with the event control
time control statement [@ (at)].
• A combinatorial always block has a sensitivity list appearing within parentheses

after always@.
• An always block is activated if an event (value change or edge) appears on one of

the sensitivity list signals.
• The sensitivity list can contain:

– Any signal that appears in conditions, such as if or case.
– Any signal appearing on the right-hand side of an assignment

• By substituting an @ (at) without parentheses for a list of signals, the always block is
activated for an event in any of the always block’s signals as described above.

• In combinatorial processes, if a signal is not explicitly assigned in all branches of if
or case statements, XST generates a Latch to hold the last value.

• For the creation of Latches, make sure that all assigned signals in a combinatorial
process are always explicitly assigned in all paths of the process statements.

• The following statements are used in a process:
– variable and signal assignments
– if-else statements
– case statements
– for-while loop statements
– function and task calls

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
116 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

If-Else Statements
XST supports if-else statements.

• If-else statements use true-false conditions to execute statements.

– If the expression evaluates to true, the first statement is executed.

– If the expression evaluates to false, x, or z, the else statement is executed.

• A block of multiple statements is executed using begin and end keywords.

• If-else statements can be nested.

If-Else Statement Coding Example
This coding example uses an if-else statement to describe a Multiplexer.

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

if (sel[1])
if (sel[0])

outmux = d;
else

outmux = c;
else

if (sel[0])
outmux = b;

else
outmux = a;

end

endmodule

Case Statements
XST supports case statements.

• A case statement performs a comparison to an expression to evaluate one of several
parallel branches.

– The case statement evaluates the branches in the order they are written.

– The first branch that evaluates to true is executed.

– If none of the branches matches, the default branch is executed.

• Do not use unsized integers in case statements. Always size integers to a specific
number of bits. Otherwise, results can be unpredictable.

• Casez treats all z values in any bit position of the branch alternative as a don’t care.

• Casex treats all x and z values in any bit position of the branch alternative as a
don’t care.

• The question mark (?) can be used as a don’t care in either the casez or casex case
statements

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 117

Chapter 5: Behavioral Verilog

Describing a Multiplexer Case Statement Coding Example
module mux4 (sel, a, b, c, d, outmux);

input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

case (sel)
2’b00: outmux = a;
2’b01: outmux = b;
2’b10: outmux = c;
default: outmux = d;

endcase
end

endmodule

Avoiding Priority Processing
• The case statement in the above coding example evaluates the values of input sel

in priority order.
• To avoid priority processing:

– Use a parallel-case Verilog attribute to ensure parallel evaluation of the sel
inputs.

– Replace the above case statement with:

(* parallel_case *) case(sel)

For and Repeat Statements
XST supports for and repeat statements.

When using always blocks, repetitive or bit slice structures can also be described using a:
• for statement, or
• repeat statement

For Statements
The for statement is supported for:
• Constant bounds
• Stop test condition using the following operators:

– <
– <=
– >
– >=

• Next step computation falling in one of the following specifications:
– var = var + step
– var =var - step

♦ var is the loop variable
♦ step is a constant value

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
118 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Repeat Statements
• The repeat statement is supported for constant values only.

• Disable statements are not supported.

module countzeros (a, Count);
input [7:0] a;
output [2:0] Count;
reg [2:0] Count;
reg [2:0] Count_Aux;

integer i;

always @(a)
begin

Count_Aux = 3’b0;
for (i = 0; i < 8; i = i+1)
begin

if (!a[i])
Count_Aux = Count_Aux+1;

end
Count = Count_Aux;

end
endmodule

While Loops
When using always blocks, use while loops to execute repetitive procedures.

• A while loop:

– Is not executed if the test expression is initially false.

– Executes other statements until its test expression becomes false.

• The test expression is any valid Verilog expression.

• To prevent endless loops, use the -loop_iteration_limit option.

• While loops can have disable statements. The disable statement is used inside a
labeled block.

disable <blockname>

While Loop Coding Example
parameter P = 4;
always @(ID_complete)
begin : UNIDENTIFIED

integer i;
reg found;
unidentified = 0;
i = 0;
found = 0;
while (!found && (i < P))
begin

found = !ID_complete[i];
unidentified[i] = !ID_complete[i];
i = i + 1;

end
end

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 119

Chapter 5: Behavioral Verilog

Sequential Always Blocks
XST supports sequential always blocks.

• Describe a sequential circuit with an always block and a sensitivity list that contains
the following edge-triggered (with posedge or negedge) events:

– A mandatory clock event

– Optional set/reset events (modeling asynchronous set/reset control logic)

• If no optional asynchronous signal is described, the always block is structured as
follows:

always @(posedge CLK)
begin

<synchronous_part>
end

• If optional asynchronous control signals are modeled, the always block is structured
as follows:

always @(posedge CLK or posedge ACTRL1 or à)
begin

if (ACTRL1)
<$asynchronous part>

else
<$synchronous_part>

end

Sequential Always Block Coding Example One
This coding example describes an 8-bit register with a rising-edge clock. There are
no other control signals.

module seq1 (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
DO <= DI ;

endmodule

Sequential Always Block Coding Example Two
This coding example adds an active-High asynchronous reset.

module EXAMPLE (DI, CLK, ARST, DO);
input [7:0] DI;
input CLK, ARST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST)
if (ARST == 1’b1)

DO <= 8’b00000000;
else

DO <= DI;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
120 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Sequential Always Block Coding Example Three
This coding example describes:

• An active-High asynchronous reset, and

• An active-Low asynchronous set.

module EXAMPLE (DI, CLK, ARST, ASET, DO);
input [7:0] DI;
input CLK, ARST, ASET;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST or negedge ASET)
if (ARST == 1’b1)

DO <= 8’b00000000;
else if (ASET == 1’b1)

DO <= 8’b11111111;
else

DO <= DI;

endmodule

Sequential Always Block Coding Example Four
This coding example describes:

• A register with no asynchronous set/reset, and

• A synchronous reset.

module EXAMPLE (DI, CLK, SRST, DO);
input [7:0] DI;
input CLK, SRST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
if (SRST == 1’b1)

DO <= 8’b00000000;
else

DO <= DI;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 121

Chapter 5: Behavioral Verilog

Assign and Deassign Statements
XST does not support assign and deassign statements.

Assignment Extension Past 32 Bits
If the expression on the left-hand side of an assignment is wider than the expression on
the right-hand side, the left-hand side is padded to the left according to the following rules:

• If the right-hand expression is signed, the left-hand expression is padded with the
sign bit.

• If the right-hand expression is unsigned, the left-hand expression is padded with
0 (zero).

• For unsized x or z constants only, the following rule applies:

If the value of the right-hand expression’s leftmost bit is z (high impedance) or x
(unknown), regardless of whether the right-hand expression is signed or unsigned,
the left-hand expression is padded with that value (z or x, respectively).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
122 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Tasks and Functions
• When the same code is used multiple times across a design, using tasks and

functions:

– Reduces the amount of code.

– Facilitates maintenance.

• Tasks and functions must be declared and used in a module. The heading contains
the following parameters:

– Input parameters (only) for functions.

– Input/output/inout parameters for tasks.

• The return value of a function is declared either signed or unsigned. The content is
similar to the content of the combinatorial always block.

Tasks and Functions Coding Examples
For update information, see “Coding Examples” in the Introduction.

Tasks and Functions Coding Example One
//
// An example of a function in Verilog
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/functions_tasks/functions_1.v
//
module functions_1 (A, B, CIN, S, COUT);

input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;

function signed [1:0] ADD;
input A, B, CIN;
reg S, COUT;
begin

S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B%CIN);
ADD = {COUT, S};

end
endfunction

assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},
COUT = S3[1];

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 123

Chapter 5: Behavioral Verilog

Tasks and Functions Coding Example Two
In this coding example, the same functionality is described with a task.

//
// Verilog tasks
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/functions_tasks/tasks_1.v
//
module tasks_1 (A, B, CIN, S, COUT);

input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;
begin

S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};

end
endtask

always @(A or B or CIN)
begin

ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT = S3[1];

end

endmodule

Recursive Tasks and Functions
Verilog-2001 supports recursive tasks and functions.

• You can use recursion only with the automatic keyword.

• The number of recursions is automatically limited to prevent endless recursive
calls. The default is 64.

• Use -recursion_iteration_limit to set the number of allowed recursive calls.

Recursive Tasks and Functions Coding Example
function automatic [31:0] fac;

input [15:0] n;
if (n == 1)

fac = 1;
else

fac = n * fac(n-1); //recursive function call
endfunction

Constant Functions
XST supports function calls to calculate constant values.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
124 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Constant Functions Coding Example
//
// A function that computes and returns a constant value
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/functions_tasks/functions_constant.v
//
module functions_constant (clk, we, a, di, do);

parameter ADDRWIDTH = 8;
parameter DATAWIDTH = 4;
input clk;
input we;
input [ADDRWIDTH-1:0] a;
input [DATAWIDTH-1:0] di;
output [DATAWIDTH-1:0] do;

function integer getSize;
input addrwidth;
begin

getSize = 2**addrwidth;
end

endfunction

reg [DATAWIDTH-1:0] ram [getSize(ADDRWIDTH)-1:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end
assign do = ram[a];

endmodule

Blocking and Non-Blocking Procedural Assignments
Blocking and non-blocking procedural assignments have time control built into their
respective assignment statements.

• The pound sign (#) and the at sign (@) are time control statements.

• These statements delay execution of the statement following them until the specified
event is evaluated as true.

• The pound (#) delay is ignored for synthesis.

Blocking Procedural Assignment Syntax Coding Example One
reg a;
a = #10 (b | c);

Blocking Procedural Assignment Syntax Coding Example Two (Alternate)
if (in1) out = 1’b0;
else out = in2;

This assignment:

• Blocks the current process from continuing to execute additional statements at the
same time.

• Should be used mainly in simulation.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 125

Chapter 5: Behavioral Verilog

Non-Blocking Procedural Assignment Syntax Coding Example One
variable <= @(posedge_or_negedge_bit) expression;

• Non-blocking assignments:
– Evaluate the expression when the statement executes.
– Allow other statements in the same process to execute at the same time.

• The variable change occurs only after the specified delay.

Non-Blocking Procedural Assignment Coding Example Two
This coding example shows how to use a non-blocking procedural assignment.

if (in1) out <= 1’b1;
else out <= in2;

Constants
Constants are assumed to be decimal integers.
• You can specify constants in binary, octal, decimal, or hexadecimal.
• To specify constants explicitly, prefix them with the appropriate syntax.

Constant Expressions Example
The following constant expressions represent the same value.

• 4’b1010
• 4’o12
• 4’d10
• 4’ha

Macros
• Verilog defines macros as follows:

’define TESTEQ1 4’b1101

• The defined macro is referenced later.

if (request == ’TESTEQ1)

• The Verilog ’ifdef and ’endif constructs:
– Determine whether a macro is defined.
– Define conditional compilation.

• If the macro called out by ’ifdef has been defined, that code is compiled.
– If the macro has not been defined, the code following the ’else command is

compiled.
– The ’else is not required, but ’endifmust complete the conditional statement.

• Use the Verilog Macros command line option to define (or redefine) Verilog macros.
– Verilog Macros allows you to modify the design without modifying the HDL

source code.
– Verilog Macros is useful for IP core generation and flow testing.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
126 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Macros Coding Example One
’define myzero 0
assign mysig = ’myzero;

Macros Coding Example Two
’ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
’else
module if_MYVAR_is_not_declared;
...
endmodule
’endif

Include Files
Verilog allows you to separate HDL source code into more than one file.

• Use either of these methods to reference the additional files:

– File Inclusion Method

– Design Project File Method

• Xilinx® recommends the design project file method.

File Inclusion Method
Xilinx does not recommend the file inclusion method.

• To reference the code in another file, use the following syntax in the current file:

’include "path/file-to-be-included "

• The path is relative or absolute.

• Multiple ’include statements are allowed in the same Verilog file. This makes
your code more manageable in a team design environment in which different files
describe different modules.

• To allow the file in your ’include statement to be recognized, identify the directory
in which it resides, either to ISE® Design Suite or to XST.

– Add the file to your project directory.

ISE Design Suite searches the project directory by default.

– Include a relative or absolute path in the ’include statement.

This path points ISE Design Suite to a directory other than the project directory.

– Use Verilog Include Directories (-vlgincdir).

This option points XST directly to the include file directory.

• If the include file is required for ISE Design Suite to construct the design hierarchy,
the file must:

– Reside in the project directory, or

– Be referenced by a relative or absolute path. The file need not be added to the
project.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 127

Chapter 5: Behavioral Verilog

Design Project File Method
Xilinx recommends the design project file method.

• To make a Verilog file visible to the rest of your project, list it in the XST design
project file.

• If you include a Verilog file using the File Inclusion Method, do not also list it in the
XST design project file. Doing so generates an error message.

ERROR:HDLCompiler:687 - "include_sub.v" Line 1: Illegal
redeclaration of module <sub>.

• This error may occur if you add Verilog files with multiple inclusions to a
project. Because ISE Design Suite adds them to the XST design project file, a
multiple-definition conflict can result.

Behavioral Verilog Comments
Behavioral Verilog comments are similar to the comments in such languages as C++.

One-Line Comments
One-line comments start with a double forward slash (//).

// This is a one-line comment.

Multiple-Line Block Comments
Multiple-line block comments start with /* and end with */.

/* This is a
multiple-line
comment.

*/

Generate Statements
Behavioral Verilog generate statements:

• Allow you to create:

– Parameterized and scalable code.

– Repetitive or scalable structures.

– Functionality conditional on a particular criterion being met.

• Are resolved during Verilog elaboration.

• Are conditionally instantiated into your design.

• Are described within a module scope.

• Start with a generate keyword.

• End with an endgenerate keyword.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
128 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 5: Behavioral Verilog

Structures Created Using Generate Statements
Structures likely to be created using a generate statement include:

• Primitive or module instances

• Initial or always procedural blocks

• Continuous assignments

• Net and variable declarations

• Parameter redefinitions

• Task or function definitions

Supported Generate Statements
XST supports all Behavioral Verilog generate statements:

• generate-loop (generate-for)

• generate-conditional (generate-if-else)

• generate-case (generate-case)

Generate Loop Statements
Use a generate-for loop to create one or more instances that can be placed inside a
module.

Use the generate-for loop the same way you use a normal Verilog for loop, with the
following limitations:

• The index for a generate-for loop has a genvar variable.

• The assignments in the for loop control refers to the genvar variable.

• The contents of the for loop are enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Generate Loop Statement 8-Bit Adder Coding Example
generate
genvar i;

for (i=0; i<=7; i=i+1)
begin : for_name

adder add (a[8*i+7 : 8*i], b[8*i+7 : 8*i], ci[i], sum_for[8*i+7 : 8*i], c0_or[i+1]);
end

endgenerate

Generate Conditional Statements
A generate-if-else statement conditionally controls which objects are generated.

• Each branch of the if-else statement is enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 129

Chapter 5: Behavioral Verilog

Generate Conditional Statement Coding Example
This coding example instantiates two different implementations of a multiplier based on
the width of data words.

generate
if (IF_WIDTH < 10)

begin : if_name
multiplier_imp1 # (IF_WIDTH) u1 (a, b, sum_if);

end
else

begin : else_name
multiplier_imp2 # (IF_WIDTH) u2 (a, b, sum_if);

end
endgenerate

Generate Case Statements
A generate-case statement conditionally controls which objects are generated under
which conditions.

• Each branch in a generate-case statement is enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Behavioral Verilog Generate Case Statements Coding Example
This coding example instantiates more than two different implementations of an Adder
based on the width of data words.

generate
case (WIDTH)

1:
begin : case1_name

adder #(WIDTH*8) x1 (a, b, ci, sum_case, c0_case);
end

2:
begin : case2_name

adder #(WIDTH*4) x2 (a, b, ci, sum_case, c0_case);
end

default:
begin : d_case_name

adder x3 (a, b, ci, sum_case, c0_case);
end

endcase
endgenerate

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
130 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 6

Mixed Language Support
XST supports VHDL and Verilog mixed language projects except as otherwise noted.

Mixing VHDL and Verilog
• Mixing VHDL and Verilog is restricted to design unit (cell) instantiation.

– A Verilog module can be instantiated from VHDL code.
– A VHDL entity can be instantiated from Verilog code.
– No other mixing between VHDL and Verilog is supported. For example, you

cannot embed Verilog source code directly in VHDL source code.
• In a VHDL design, a restricted subset of VHDL types, generics, and ports is allowed

on the boundary to a Verilog module.
• In a Verilog design, a restricted subset of Verilog types, parameters, and ports is

allowed on the boundary to a VHDL entity or configuration.
• XST binds VHDL design units to a Verilog module during HDL elaboration.
• The VHDL and Verilog files that make up a project are specified in a unique HDL

project file. For more information, see Chapter 2, Creating and Synthesizing an
XST Project.

Instantiation
• Component instantiation based on default binding is used for binding Verilog

modules to a VHDL design unit.
• For a Verilog module instantiation in VHDL, XST does not support:

– Configuration specification
– Direct instantiation
– Component configurations

VHDL and Verilog Libraries
• VHDL and Verilog libraries are logically unified.
• The default work directory for compilation (xsthdpdir) is available to both VHDL

and Verilog.
• The xhdp.ini mechanism:

– Maps a logical library name to a physical directory name on the host file system.
– Is available for both VHDL and Verilog.

• Mixed language projects accept a search order for searching unified logical libraries
in design units (cells). XST follows this search order during elaboration to select and
bind a VHDL entity or a Verilog module to the mixed language project.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 131

Chapter 6: Mixed Language Support

VHDL and Verilog Boundary Rules
The boundary between VHDL and Verilog is enforced at the design unit level.
• A VHDL entity or architecture can instantiate a Verilog module. See Instantiating

VHDL in Verilog.
• A Verilog module can instantiate a VHDL entity. See Instantiating Verilog in VHDL.

Instantiating VHDL in Verilog
To instantiate a VHDL design unit in a Verilog design:

1. Declare a module name with the same as name as the VHDL entity that you want to
instantiate (optionally followed by an architecture name).

2. Perform a normal Verilog instantiation.

XST Limitations (VHDL in Verilog)
XST has the following limitations when instantiating a VHDL design unit in a Verilog
module:

• The only VHDL construct that can be instantiated in a Verilog design is a VHDL
entity.
– No other VHDL constructs are visible to Verilog code.
– XST uses the entity-architecture pair as the Verilog-VHDL boundary.

• Use explicit port association. Specify formal and effective port names in the port
map.

• All parameters are passed at instantiation, even if they are unchanged.
• The parameter override is named and not ordered. The parameter override occurs

through instantiation, not through defparams.

XST Binding
XST performs binding during elaboration. During binding:
1. XST searches for a Verilog module with the same name as the instantiated module

in the:
a. User-specified list of unified logical libraries.
b. User-specified order.

For more information, see Library Search Order (LSO) Rules.
2. XST ignores any architecture name specified in the module instantiation.
3. If XST finds the Verilog module, XST binds the name.
4. If XST does not find the Verilog module:

• XST treats the Verilog module as a VHDL entity.
• XST searches for the first VHDL entity matching the name using a case sensitive

search for a VHDL entity in the:
a. User-specified list of unified logical libraries.
b. User-specified order.

Note This assumes that a VHDL design unit was stored with extended
identifier.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
132 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 6: Mixed Language Support

XST Limitations (Verilog from VHDL)
XST has the following limitations when instantiating a VHDL design unit from a Verilog
module:
• Use explicit port association. Specify formal and effective port names in the port

map.
• All parameters are passed at instantiation, even if they are unchanged.
• The parameter override is named and not ordered. The parameter override occurs

through instantiation, and not through defparams.

Accepted Coding Example
ff #(.init(2’b01)) u1 (.sel(sel), .din(din), .dout(dout));

NOT Accepted Coding Example
ff u1 (.sel(sel), .din(din), .dout(dout));
defparam u1.init = 2’b01;

Instantiating Verilog in VHDL
• To instantiate a Verilog module in a VHDL design:

1. Declare a VHDL component with the same name as the Verilog module to be
instantiated.

2. Observe case sensitivity.
3. If the module name is not all lowercase, use case to preserve the module case.

– ISE® Design Suite
Process > Properties > Synthesis Options > Case > Maintain

– Command Line
Set case to maintain

4. Instantiate the Verilog component as if you were instantiating a VHDL
component.

• You could attempt to bind this component to a specific design unit from a specific
library by using a VHDL configuration declaration. Such binding is not supported.
Only default Verilog module binding is supported.

• The only Verilog construct that can be instantiated in a VHDL design is a Verilog
module. No other Verilog constructs are visible to VHDL code.

• During elaboration, XST treats all components subject to default binding as design
units with the same name as the corresponding component name.

• During binding, XST treats a component name as a VHDL design unit name and
searches for it in the logical library work.
– If XST finds a VHDL design unit, XST binds it.
– If XST does not find a VHDL design unit:

♦ XST treats the component name as a Verilog module name.
♦ XST searches for it using a case sensitive search.

• XST searches for the Verilog module in the user-specified list of unified logical
libraries in the user-specified search order. For more information, see Library Search
Order (LSO) Files.

• XST selects the first Verilog module matching the name, and binds it.
• Since libraries are unified, a Verilog cell with the same name as a VHDL design unit

cannot exist in the same logical library.
• A newly-compiled cell or unit overrides a previously-compiled cell or unit.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 133

Chapter 6: Mixed Language Support

Generics Support
XST supports the following VHDL generic types and their Verilog equivalents for mixed
language designs.

• integer

• real

• string

• boolean

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
134 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 6: Mixed Language Support

Port Mapping
XST supports:

• Port Mapping for VHDL Instantiated in Verilog

• Port Mapping for Verilog Instantiated in VHDL

Port Mapping for VHDL Instantiated in Verilog
When a VHDL entity is instantiated in a Verilog module, formal ports may have the
following characteristics:

• Allowed directions

– in

– out

– inout

• Unsupported directions

– buffer

– linkage

• Allowed data types

– bit

– bit_vector

– std_logic

– std_ulogic

– std_logic_vector

– std_ulogic_vector

Port Mapping for Verilog Instantiated in VHDL
When a Verilog module is instantiated in a VHDL entity or architecture, formal ports
may have the following characteristics.

• Allowed directions

– input

– output

– inout

• Allowed data types

– wire

– reg

• XST does not support:

– Connection to bi-directional pass options in Verilog.

– Unnamed Verilog ports for mixed language boundaries.

Use an equivalent component declaration to connect to a case sensitive port in a Verilog
module. XST assumes Verilog ports are in all lowercase.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 135

Chapter 6: Mixed Language Support

Library Search Order (LSO) Files
Library Search Order (LSO) files specify the search order that XST uses to link the
libraries used in VHDL and Verilog mixed language designs.

• XST searches the files specified in the project file in the order in which they appear
in the LSO file.

• XST uses the default search order when:

– The DEFAULT_SEARCH_ORDER keyword appears in the LSO file, or

– The LSO file is not specified.

Specifying LSO Files in ISE Design Suite
The default name of the Library Search Order (LSO) file is project_name.lso.

• If project_name.lso exists, it is preserved and used as is.

• If project_name.lso does not exist, ISE® Design Suite:

– Creates a default project_name.lso file.

– Places the DEFAULT_SEARCH_ORDER keyword in the first line of the file.

• The name of the project is the name of the top-level block.

Specifying LSO Files in Command Line Mode
• The Library Search Order (LSO) (-lso) command line option specifies the Library

Search Order (LSO) file.

• If -lso is omitted, XST uses the default library search order without an LSO file.

LSO Rules
When XST processes a mixed language project, the search order rules depend on the
content of the Library Search Order (LSO) file:

• Empty LSO File

• DEFAULT_SEARCH_ORDER Keyword Only

• DEFAULT_SEARCH_ORDER Keyword and List of Libraries

• List of Libraries Only

• DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name

Empty LSO Files
If the Library Search Order (LSO) file is empty:

• XST warns that the LSO file is empty.

• XST searches the files specified in the project file using the default library search
order.

• XST adds the list of libraries to the LSO file in the order that they appear in the
project file.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
136 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 6: Mixed Language Support

DEFAULT_SEARCH_ORDER Keyword Only
When the LSO file contains only the DEFAULT_SEARCH_ORDER keyword:

• XST searches the specified library files in the order in which they appear in the
project file.

• XST removes the DEFAULT_SEARCH_ORDER keyword from the LSO file.

• XST adds the list of libraries to the LSO file in the order in which they appear
in the project file.

Search Order Example
1. For a project file, my_proj.prj, with the following content:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

2. And an LSO file, my_proj.lso, created by ISE® Design Suite, with the following
content:

DEFAULT_SEARCH_ORDER

3. XST uses the following search order:

vhlib1
rtfllib
vhlib2

The same content appears in the updated my_proj.lso file after processing.

DEFAULT_SEARCH_ORDER Keyword and List of Libraries
• When the LSO file contains:

– The DEFAULT_SEARCH_ORDER keyword, and

– A list of libraries

• XST does the following:

– Searches the specified library files in the order in which they appear in the
project file.

– Ignores the list of library files in the LSO file.

– Leaves the LSO file unchanged.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 137

Chapter 6: Mixed Language Support

Search Order Example
1. For a project file my_proj.prj with the following content:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

2. And an LSO file my_proj.lso with the following content:

rtfllib
vhlib2
vhlib1
DEFAULT_SEARCH_ORDER

3. XST uses the following search order:

vhlib1
rtfllib
vhlib2

4. After processing, the content of my_proj.lso remains unchanged:

rtfllib
vhlib2
vhlib1
DEFAULT_SEARCH_ORDER

List of Libraries Only
When the LSO file contains a list of libraries without the DEFAULT_SEARCH_ORDER
keyword:

• XST searches the library files in the order in which they appear in the LSO file.

• XST leaves the LSO file unchanged.

File Search Example
1. For a project file my_proj.prj with the following content:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

2. And an LSO file my_proj.lso with the following content:

rtfllib
vhlib2
vhlib1

3. XST uses the following search order:

rtfllib
vhlib2
vhlib1

4. After processing, the content of my_proj.lso is:

rtfllib
vhlib2
vhlib1

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
138 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 6: Mixed Language Support

DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name
XST ignores a library when the LSO file:

• Contains a library name that does not exist in the project or INI file, and

• Does not contain the DEFAULT_SEARCH_ORDER keyword.

Search Order Example
1. For a project file my_proj.prj with the following contents:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

2. And an LSO file my_proj.lso with the following content:

personal_lib
rtfllib
vhlib2
vhlib1

3. XST uses the following search order:

rtfllib
vhlib2
vhlib1

4. After processing, the content of my_proj.lso is:

rtfllib
vhlib2
vhlib1

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 139

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
140 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7

HDL Coding Techniques
Hardware Description Language (HDL) coding techniques allow you to:

• Describe the most common functionalities found in digital logic circuits.

• Take advantage of the architectural features of Xilinx® devices.

For instructions on accessing the synthesis templates from ISE® Design Suite, see the
ISE Design Suite Help.

Advantages of VHDL
• Enforces stricter rules, in particular strongly typed, less permissive and error-prone

• Initialization of RAM components in the HDL source code is easier (Verilog initial
blocks are less convenient)

• Package support

• Custom types

• Enumerated types

• No reg versus wire confusion

Advantages of Verilog
• Extension to System Verilog (currently not supported by XST)

• C-like syntax

• Results in more compact code

• Block commenting

• No heavy component instantiation as in VHDL

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 141

Chapter 7: HDL Coding Techniques

Macro Inference Flow Overview
Macros are inferred during three stages of the XST synthesis flow.

• Basic macros are inferred during HDL Synthesis.

• Complex macros are inferred during Advanced HDL Synthesis.

• Other macros are inferred during Low-Level Optimizations, when timing
information is available to make more fully-informed decisions.

• Macros inferred during Advanced HDL Synthesis are usually the result of an
aggregation of several basic macros previously inferred during HDL Synthesis.
In most cases, the XST inference engine can perform this grouping regardless of
hierarchical boundaries, unless Keep Hierarchy has been set to yes in order to
prevent it.

Example

A block RAM is inferred by combining RAM core functionality described in one
user-defined hierarchical block, with a Register described in a different user-defined
hierarchy. This allows you to structure the HDL project in a modular way, ensuring
that XST can recognize relationships among design elements described in different
VHDL entities and Verilog modules.

• Do not describe every basic bit-level element in its own separate hierarchy.

– Doing so may prevent you from leveraging the RTL inference capabilities of
the synthesis tool.

– For information structuring the HDL source code, see the design projects in
Extended DSP Inferencing.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
142 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Flip-Flops and Registers
• XST recognizes Flip-Flops and Registers with the following control signals:

– Rising or falling-edge clocks

– Asynchronous Set/Reset

– Synchronous Set/Reset

– Clock Enable

• Flip-Flops and Registers are described with:

– sequential process (VHDL)

– always block (Verilog)

• The process or always block sensitivity list should list:

– The clock signal

– All asynchronous control signals

• For more information on describing sequential logic in HDL, see:

– Chapter 3, VHDL Support

– Chapter 4, XST Verilog Support

Flip-Flops and Registers Initialization
To initialize the content of a Register at circuit power-up, specify a default value for the
signal modeling it.

Flip-Flops and Registers Initialization in VHDL
To initialize the content of a Register at circuit power-up in VHDL, declare a signal
such as:

signal example1 : std_logic := ’1’;
signal example2 : std_logic_vector(3 downto 0) := (others => ’0’);
signal example3 : std_logic_vector(3 downto 0) := "1101";

Flip-Flops and Registers Initialization in Verilog
Describe initial contents in Verilog as follows:

reg example1 = ’b1 ;
reg [15:0] example2 = 16’b1111111011011100;
reg [15:0] example3 = 16’hFEDC;

The synthesized Flip-Flops are initialized to the specified value on the target device
when the circuit global reset is activated at circuit power-up.

Flip-Flops and Registers Control Signals
Flip-Flops and Registers control signals include:

• Clocks

• Asynchronous and synchronous set and reset signals

• Clock enable

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 143

Chapter 7: HDL Coding Techniques

Coding Guidelines
• These coding guidelines:

– Minimize slice logic utilization.

– Maximize circuit performance.

– Utilize device resources such as block RAM components and DSP blocks.

• Do not set or reset Registers asynchronously.

– Control set remapping becomes impossible.

– Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

– You will be unable to leverage device resources resources, or they will be
configured sub-optimally.

– Use synchronous initialization instead.

• Use Asynchronous to Synchronous if your own coding guidelines require Registers
to be set or reset asynchronously. This allows you to assess the benefits of using
synchronous set/reset.

• Do not describe Flip-Flops with both a set and a reset.

– No Flip-Flop primitives feature both a set and a reset, whether synchronous
or asynchronous.

– If not rejected by the software, Flip-Flop primitives featuring both a set and a
reset may adversely affect area and performance.

• Do not describe Flip-Flops with both an asynchronous reset and an asynchronous
set. XST rejects such Flip-Flops rather than retargeting them to a costly equivalent
model.

• Avoid operational set/reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired effect, such as taking advantage of the circuit
global reset by defining an initial contents.

• Always describe the clock enable, set, and reset control inputs of Flip-Flop primitives
as active-High. If they are described as active-Low, the resulting inverter logic will
penalize circuit performance.

Flip-Flops and Registers Related Constraints
• Pack I/O Registers Into IOBs

• Register Duplication

• Equivalent Register Removal

• Register Balancing

• Asynchronous to Synchronous

For other ways to control implementation of Flip-Flops and Registers, see Mapping
Logic to LUTs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
144 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Flip-Flops and Registers Reporting
• Registers are inferred and reported during HDL Synthesis.

• Registers are expanded to individual Flip-Flops after Advanced HDL Synthesis.

• The number of Registers inferred during HDL Synthesis may not precisely equal the
number of Flip-Flop primitives in the Design Summary section.

• The number of Flip-Flop primitives depends on the following processes:

– Absorption of Registers into DSP blocks or block RAM components

– Register duplication

– Removal of constant or equivalent Flip-Flops

– Register balancing

Flip-Flops and Registers Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit registers_5>.
Found 4-bit register for signal Q>.
Summary:

inferred 4 D-type flip-flop(s).
Unit registers_5> synthesized.

===
HDL Synthesis Report

Macro Statistics
Registers : 1
4-bit register : 1

===

===
* Advanced HDL Synthesis *
===
(…)

===
Advanced HDL Synthesis Report

Macro Statistics
Registers : 4
Flip-Flops : 4

===

Flip-Flops and Registers Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 145

Chapter 7: HDL Coding Techniques

Flip-Flops and Registers VHDL Coding Example
--
-- Flip-Flop with
-- Rising-edge Clock
-- Active-high Synchronous Reset
-- Active-high Clock Enable
-- Initial Value
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/registers/registers_6.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity registers_6 is
port(

clk : in std_logic;
rst : in std_logic;

clken : in std_logic;
D : in std_logic;

Q : out std_logic);
end registers_6;

architecture behavioral of registers_6 is
signal S : std_logic := ’0’;

begin

process (clk)
begin

if rising_edge(clk) then
if rst = ’1’then

S <= ’0’;
elsif clken = ’1’ then

S <= D;
end if;

end if;
end process;

Q <= S;

end behavioral;

Flip-Flops and Registers Verilog Coding Example
//
// 4-bit Register with
// Rising-edge Clock
// Active-high Synchronous Reset
// Active-high Clock Enable
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/registers/registers_6.v
//
module v_registers_6 (clk, rst, clken, D, Q);

input clk, rst, clken;
input [3:0] D;
output reg [3:0] Q;

always @(posedge clk)
begin

if (rst)
Q <= 4’b0011;

else if (clken)
Q <= D;

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
146 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Latches
Latches inferred by XST have:

• Data input

• Enable input

• Data output

• Optional set/reset

Describing Latches
Latches are usually created when 1) an HDL description in which a signal modeling the
Latch output 2) is not assigned any new content in a branch of an if-else construct.

• A Latch can be described as follows:

– Concurrent signal assignment (VHDL)

Q <= D when G = ’1’;

– Process (VHDL)

process (G, D)
begin
if G = ‘1’ then
Q <= D;

end process;

– Always block (Verilog)

always @ (G or D)
begin
if (G)
Q <= D;

end

• XST can infer Latches in VHDL from descriptions based on a wait statement.

Latches Related Constraints
Pack I/O Registers Into IOBs

Latches Reporting
• The XST log file reports the type and size of recognized Latches during Macro

Recognition.

• Inferred Latches are often the result of HDL coding mistakes, such as incomplete if
or case statements.

• XST issues a warning for the instance shown in the reporting example below. This
warning allows you to verify that the inferred Latch functionality was intended.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 147

Chapter 7: HDL Coding Techniques

Latches Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit example>.
WARNING:Xst:737 - Found 1-bit latch for signal <Q>.

Latches may be generated from incomplete case or if statements.
We do not recommend the use of latches in FPGA/CPLD designs,
as they may lead to timing problems.

Summary:
inferred 1 Latch(s).
Unit example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Latches : 1
1-bit latch : 1

===

Latches Coding Examples
For update information, see “Coding Examples” in the Introduction.

Latch With Positive Gate and Asynchronous Reset VHDL Coding Example
--
-- Latch with Positive Gate and Asynchronous Reset
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/latches/latches_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity latches_2 is
port(G, D, CLR : in std_logic;

Q : out std_logic);
end latches_2;

architecture archi of latches_2 is
begin

process (CLR, D, G)
begin

if (CLR=’1’) then
Q <= ’0’;

elsif (G=’1’) then
Q <= D;

end if;
end process;

end archi;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
148 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Latch With Positive Gate Verilog Coding Example
//
// Latch with Positive Gate
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/latches/latches_1.v
//
module v_latches_1 (G, D, Q);

input G, D;
output Q;
reg Q;

always @(G or D)
begin

if (G)
Q = D;

end
endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 149

Chapter 7: HDL Coding Techniques

Tristates
• Tristate buffers are usually modeled by:

– A signal
– An if-else construct

• This applies whether the buffer drives:
– An internal bus, or
– An external bus on the board on which the device resides

• The signal is assigned a high impedance value in one branch of the if-else.

Coding Style Examples
• Concurrent signal assignment (VHDL)

<= I when T = ’0’ else (others => ’Z’);

• Concurrent signal assignment (Verilog)

assign O = (~T) ? I : 1’bZ;

• Combinatorial process (VHDL)

process (T, I)
begin
if (T = ’0’) then
O <= I;

else
O <= ’Z’;

end if;
end process;

• Always block (Verilog)

always @(T or I)
begin
if (~T)
O = I;

else
O = 1’bZ;

End

Tristates Implementation
Inferred tristate buffers are implemented with different device primitives when driving
an:
• Internal bus (BUFT)
• External pin of the circuit (OBUFT)

Tristates Related Constraints
Convert Tristates to Logic

Tristates Reporting
Tristate buffers are inferred and reported during HDL Synthesis.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
150 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Tristate Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit example>.
Found 1-bit tristate buffer for signal S> created at line 22
Summary:

inferred 8 Tristate(s).
Unit example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Tristates : 8
1-bit tristate buffer : 8

===

Tristates Coding Examples
For update information, see “Coding Examples” in the Introduction.

Tristate Description Using Combinatorial Process VHDL Coding Example
--
-- Tristate Description Using Combinatorial Process
-- Implemented with an OBUFT (IO buffer)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/tristates/tristates_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity three_st_1 is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st_1;

architecture archi of three_st_1 is
begin

process (I, T)
begin

if (T=’0’) then
O <= I;

else
O <= ’Z’;

end if;
end process;

end archi;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 151

Chapter 7: HDL Coding Techniques

Tristate Description Using Concurrent Assignment VHDL Coding Example
--
-- Tristate Description Using Concurrent Assignment
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/tristates/tristates_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity three_st_2 is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st_2;

architecture archi of three_st_2 is
begin

O <= I when (T=’0’) else ’Z’;
end archi;

Tristate Description Using Combinatorial Process VHDL Coding Example
--
-- Tristate Description Using Combinatorial Process
-- Implemented with an OBUF (internal buffer)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/tristates/tristates_3.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity example is

generic (
WIDTH : integer := 8

);
port(

T : in std_logic;
I : in std_logic_vector(WIDTH-1 downto 0);
O : out std_logic_vector(WIDTH-1 downto 0));

end example;

architecture archi of example is

signal S : std_logic_vector(WIDTH-1 downto 0);

begin

process (I, T)
begin

if (T = ’1’) then
S <= I;

else
S <= (others => ’Z’);

end if;
end process;

O <= not(S);

end archi;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
152 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Tristate Description Using Combinatorial Always Block Verilog Coding
Example

//
// Tristate Description Using Combinatorial Always Block
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/tristates/tristates_1.v
//
module v_three_st_1 (T, I, O);

input T, I;
output O;
reg O;

always @(T or I)
begin

if (~T)
O = I;

else
O = 1’bZ;

end

endmodule

Tristate Description Using Concurrent Assignment Verilog Coding Example
//
// Tristate Description Using Concurrent Assignment
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/tristates/tristates_2.v
//
module v_three_st_2 (T, I, O);

input T, I;
output O;

assign O = (~T) ? I: 1’bZ;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 153

Chapter 7: HDL Coding Techniques

Counters and Accumulators
XST provides inference capability for Counters and Accumulators.

• You can describe additional optional features, such as:

– Asynchronous set, reset, or load

– Synchronous set, reset, or load

– Clock enable

– Up, down, or up/down direction

• A Counter is also known as an Incrementer or Decrementer.

• XST supports the description of both signed and unsigned Counters and
Accumulators.

Accumulator Compared to Counter
An Accumulator differs from a Counter in the nature of the operands of the add or
subtract operation, or both.

Counter Description

• The destination and first operand is a signal or variable.

• The other operand is a constant equal to 1.

A <= A + 1;

Accumulator Description

• The destination and first operand is a signal or variable.

• The second operand is either:

– A signal or variable

A <= A + B;

– A constant not equal to 1

A <= A + Constant;

Direction of Inferred Counter or Accumulator
• The direction of an inferred Counter or Accumulator is:

– up

– down

– updown

• For an updown Accumulator, the accumulated data can differ between the up and
down mode.

if updown = ’1’ then
a <= a + b;

else
a <= a - c;

end if;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
154 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Number of Bits
• XST determines the minimum number of bits needed to implement an inferred

Counter or Accumulator whether it is described with:

– A signal of type integer, or

– An array of bits

• Unless otherwise specified in the HDL description, a Counter can take all values
allowed by this number during circuit.

• You can count up to a specific value using a modulo operator. See the following
syntax examples.

VHDL Syntax Example
cnt <= (cnt + 1) mod MAX ;

Verilog Syntax Example
cnt <= (cnt + 1) %MAX;

Counters and Accumulators Implementation
• Implement Counters and Accumulators on:

– Slice logic

– DSP block resources

• A DSP block can absorb up to two levels of Registers.

– The Counter or Accumulator must fit on a single DSP block.

– If the Counter or Accumulator macro does not fit on a single DSP block, XST
implements the entire macro using slice logic.

• Macro implementation on DSP block resources is controlled by Use DSP Block with
a default value of auto.

• In auto mode, XST implements Counters and Accumulators considering such
factors as:

– DSP block resources available on the device.

– Contextual information such as the source of the data being accumulated.

– Whether implementation in a DSP block allows the leveraging of the
high-performance cascading capabilities of the DSP blocks.

• For most standalone Counters and Accumulators, slice logic is favored by default in
automode. Change it to yes in order to force implementation onto DSP blocks.

• In auto mode, DSP Utilization Ratio controls DSP block resource utilization. XST
tries to utilize all available DSP block resources.

• For more information, see Arithmetic Operators DSP Block Resources.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 155

Chapter 7: HDL Coding Techniques

Counters and Accumulators Related Constraints
• Use DSP Block

• DSP Utilization Ratio

Counters and Accumulators Reporting
Counters and Accumulators are identified during Advanced HDL Synthesis by a
combination of:

• A Register, and

• An Adder/Subtractor macro previously inferred during HDL Synthesis

Counters and Accumulators Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 4-bit register for signal <cnt>.
Found 4-bit register for signal <acc>.
Found 4-bit adder for signal <n0005> created at line 29.
Found 4-bit adder for signal <n0006> created at line 30.
Summary:

inferred 2 Adder/Subtractor(s).
inferred 8 D-type flip-flop(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 2
4-bit adder : 2
Registers : 2
4-bit register : 2

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <example>.
The following registers are absorbed into counter <cnt>: 1 register on signal <cnt>.
The following registers are absorbed into accumulator <acc>: 1 register on signal <acc>.
Unit <example> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
Counters : 1
4-bit up counter : 1
Accumulators : 1
4-bit up accumulator : 1

===

Counters and Accumulators Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
156 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

4-Bit Unsigned Up Accumulator With Synchronous Reset VHDL Coding
Example

--
-- 4-bit Unsigned Up Accumulator with synchronous Reset
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/accumulators/accumulators_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity accumulators_2 is
generic (

WIDTH : integer := 4);
port (

clk : in std_logic;
rst : in std_logic;
D : in std_logic_vector(WIDTH-1 downto 0);
Q : out std_logic_vector(WIDTH-1 downto 0));

end accumulators_2;

architecture archi of accumulators_2 is
signal cnt : std_logic_vector(WIDTH-1 downto 0);

begin

process (clk)
begin

if rising_edge(clk) then
if (rst = ’1’) then

cnt <= (others => ’0’);
else

cnt <= cnt + D;
end if;

end if;
end process;

Q <= cnt;

end archi;

4-Bit Unsigned Down Counter With a Synchronous Load Verilog Coding
Example

//
// 4-bit unsigned down counter with a synchronous load.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/counters/counters_31.v
//
module v_counters_31 (clk, load, Q);

parameter WIDTH = 4;
input clk;
input load;
output [WIDTH-1:0] Q;
reg [WIDTH-1:0] cnt;

always @(posedge clk)
begin

if (load)
cnt <= {WIDTH{1’b1}};

else
cnt <= cnt - 1’b1;

end

assign Q = cnt;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 157

Chapter 7: HDL Coding Techniques

Shift Registers
A Shift Register is a chain of Flip-Flops allowing propagation of data across a fixed
(static) number of latency stages. In contrast, in Dynamic Shift Registers, the length of
the propagation chain varies dynamically during circuit operation.

Static Shift Register Elements
A static Shift Register usually involves:

• A clock

• An optional clock enable

• A serial data input

• A serial data output

Including Additional Functionality
• You can include additional functionality, such as reset, set, or parallel load logic.

• If you include additional functionality, XST may not be able to take advantage
of dedicated SRL-type primitives for reduced device utilization and optimized
performance.

• Xilinx® recommends that you remove such logic and load the contents serially.

Describing Shift Registers
The following coding examples show two methods for describing the core functionality
of a Shift Register.

Concatenation Operator VHDL Coding Example
This coding example uses a concatenation operator to compactly describe the core
functionality of a Shift Register.

shreg <= shreg (6 downto 0) & SI;

For Loop VHDL Coding Example
This coding example uses a for loop construct to describe the core functionality of a
Shift Register.

for i in 0 to 6 loop
shreg(i+1) <= shreg(i);

end loop;
shreg(0) <= SI;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
158 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Shift Registers Implementation
Shift Registers Implementation includes:

• Shift Registers SRL-Based Implementation

• Implementing Shift Registers on Block RAM

• Implementing Shift Registers on LUT RAM

Shift Registers SRL-Based Implementation
• XST implements inferred Shift Registers on SRL-type resources such as:

– SRL16

– SRL16E

– SRLC16

– SRLC16E

– SRLC32E

• Depending on the length of the Shift Register, XST either:

– Implements it on a single SRL-type primitive, or

– Takes advantage of the cascading capability of SRLC-type primitives.

• XST also tries to take advantage of this cascading capability if the rest of the design
uses some intermediate positions of the Shift Register.

• You can implement delay lines on RAM resources (block RAM or LUT RAM)
instead of SRL-type resources. Implementing delay lines on RAM resources can
bring significant benefits, especially with respect to power savings, when delay
lines become relatively long.

• XST cannot implement a Shift Register on block RAM or LUT RAM resources as
outlined in Describing Shift Registers. You must explicitly describe the RAM-based
implementation. See the following coding examples.

Implementing Shift Registers on Block RAM
• Read-first synchronization mode includes a Counter that:

– Sequentially scans the addressable space.

– Counts back to zero when reaching the delay line length minus two.

• To ensure maximum performance, use the block RAM output Latch and optional
output Register stage. For example:

– A 512-deep delay line uses 510 addressable data words in the RAM.

– The data output Latch and optional output Register provide the last two stages.

• For more information, see RAM HDL Coding Guidelines.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 159

Chapter 7: HDL Coding Techniques

512-Deep 8-Bit Delay Line Implemented on Block RAM VHDL Coding
Example

--
-- A 512-deep 8-bit delay line implemented on block RAM
-- 510 stages implemented as addressable memory words
-- 2 stages implemented with output latch and optional output register for
-- optimal performance
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/delayline_bram_512.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity srl_512_bram is
generic (
LENGTH : integer := 512;
ADDRWIDTH : integer := 9;
WIDTH : integer := 8);

port (
CLK : in std_logic;
SHIFT_IN : in std_logic_vector(WIDTH-1 downto 0);
SHIFT_OUT : out std_logic_vector(WIDTH-1 downto 0));

end srl_512_bram;

architecture behavioral of srl_512_bram is

signal CNTR : std_logic_vector(ADDRWIDTH-1 downto 0);
signal SHIFT_TMP : std_logic_vector(WIDTH-1 downto 0);
type ram_type is array (0 to LENGTH-3) of std_logic_vector(WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

begin

counter : process (CLK)
begin
if CLK’event and CLK = ’1’ then
if CNTR = conv_std_logic_vector(LENGTH-3, ADDRWIDTH) then
CNTR <= (others => ’0’);

else
CNTR <= CNTR + ’1’;

end if;
end if;

end process counter;

memory : process (CLK)
begin
if CLK’event and CLK = ’1’ then
RAM(conv_integer(CNTR)) <= SHIFT_IN;
SHIFT_TMP <= RAM(conv_integer(CNTR));
SHIFT_OUT <= SHIFT_TMP;

end if;
end process memory;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
160 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

514-Deep 8-Bit Delay Line Implemented on Block RAM VHDL Coding
Example

--
-- A 514-deep 8-bit delay line implemented on block RAM
-- 512 stages implemented as addressable memory words
-- 2 stages implemented with output latch and optional output register for
-- optimal performance
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/delayline_bram_514.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity srl_514_bram is
generic (
LENGTH : integer := 514;
ADDRWIDTH : integer := 9;
WIDTH : integer := 8);

port (
CLK : in std_logic;
SHIFT_IN : in std_logic_vector(WIDTH-1 downto 0);
SHIFT_OUT : out std_logic_vector(WIDTH-1 downto 0));

end srl_514_bram;

architecture behavioral of srl_514_bram is

signal CNTR : std_logic_vector(ADDRWIDTH-1 downto 0);
signal SHIFT_TMP : std_logic_vector(WIDTH-1 downto 0);
type ram_type is array (0 to LENGTH-3) of std_logic_vector(WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

begin

counter : process (CLK)
begin
if CLK’event and CLK = ’1’ then
CNTR <= CNTR + ’1’;

end if;
end process counter;

memory : process (CLK)
begin
if CLK’event and CLK = ’1’ then
RAM(conv_integer(CNTR)) <= SHIFT_IN;
SHIFT_TMP <= RAM(conv_integer(CNTR));
SHIFT_OUT <= SHIFT_TMP;

end if;
end process memory;

end behavioral;

Implementing Shift Registers on LUT RAM
• You can implement a Shift Register on distributed RAM.

• The last stage is implemented with a separate Register. For example, a 128-deep
delay line uses:

– A LUT RAM with 127 addressable data words.

– A final Register stage.

• For more information, see RAM HDL Coding Guidelines.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 161

Chapter 7: HDL Coding Techniques

128-Deep 8-Bit Delay Line Implemented on LUT RAM VHDL Coding
Example

--
-- A 128-deep 8-bit delay line implemented on LUT RAM
-- 127 stages implemented as addressable memory words
-- Last stage implemented with an external register
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/delayline_lutram_128.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity srl_128_lutram is
generic (
LENGTH : integer := 128;
ADDRWIDTH : integer := 7;
WIDTH : integer := 8);

port (
CLK : in std_logic;
SHIFT_IN : in std_logic_vector(WIDTH-1 downto 0);
SHIFT_OUT : out std_logic_vector(WIDTH-1 downto 0));

end srl_128_lutram;

architecture behavioral of srl_128_lutram is

signal CNTR : std_logic_vector(ADDRWIDTH-1 downto 0);
type ram_type is array (0 to LENGTH-2) of std_logic_vector(WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

attribute ram_style : string;
attribute ram_style of RAM : signal is "distributed";

begin

counter : process (CLK)
begin
if CLK’event and CLK = ’1’ then
if CNTR = conv_std_logic_vector(LENGTH-2, ADDRWIDTH) then
CNTR <= (others => ’0’);

else
CNTR <= CNTR + ’1’;

end if;
end if;

end process counter;

memory : process (CLK)
begin
if CLK’event and CLK = ’1’ then
RAM(conv_integer(CNTR)) <= SHIFT_IN;
SHIFT_OUT <= RAM(conv_integer(CNTR));

end if;
end process memory;

end behavioral;

Shift Registers Related Constraints
Shift Register Extraction

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
162 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Shift Registers Reporting
During HDL Synthesis, XST initially identifies individual Flip-Flops. Actual recognition
of Shift Registers occurs during Low Level Synthesis.

Shift Registers Reporting Example
===
* HDL Synthesis *
===
Synthesizing Unit <example>.

Found 8-bit register for signal <tmp>.
Summary:

inferred 8 D-type flip-flop(s).
Unit <example> synthesized.

(…)
===
* Advanced HDL Synthesis *
===
Advanced HDL Synthesis Report
Macro Statistics
Registers : 8
Flip-Flops : 8
===

(…)
===
* Low Level Synthesis *
===
Processing Unit <example> :

Found 8-bit shift register for signal <tmp_7>.
Unit <example> processed.

(…)
===
Final Register Report
Macro Statistics
Shift Registers : 1
8-bit shift register : 1
===

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 163

Chapter 7: HDL Coding Techniques

Shift Registers Coding Examples
For update information, see “Coding Examples” in the Introduction.

32-Bit Shift Register VHDL Coding Example One
This coding example uses the concatenation coding style.

--
-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- Concatenation-based template
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/shift_registers_0.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity shift_registers_0 is

generic (
DEPTH : integer := 32

);
port (
clk : in std_logic;
clken : in std_logic;
SI : in std_logic;
SO : out std_logic);

end shift_registers_0;

architecture archi of shift_registers_0 is
signal shreg: std_logic_vector(DEPTH-1 downto 0);

begin

process (clk)
begin

if rising_edge(clk) then
if clken = ’1’ then

shreg <= shreg(DEPTH-2 downto 0) & SI;
end if;

end if;
end process;

SO <= shreg(DEPTH-1);

end archi;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
164 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

32-Bit Shift Register VHDL Coding Example Two
The same functionality can also be described as follows.

--
-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- foor loop-based template
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/shift_registers_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity shift_registers_1 is

generic (
DEPTH : integer := 32

);
port (
clk : in std_logic;
clken : in std_logic;
SI : in std_logic;
SO : out std_logic);

end shift_registers_1;

architecture archi of shift_registers_1 is
signal shreg: std_logic_vector(DEPTH-1 downto 0);

begin

process (clk)
begin

if rising_edge(clk) then
if clken = ’1’ then

for i in 0 to DEPTH-2 loop
shreg(i+1) <= shreg(i);

end loop;
shreg(0) <= SI;

end if;
end if;

end process;

SO <= shreg(DEPTH-1);

end archi;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 165

Chapter 7: HDL Coding Techniques

8-Bit Shift Register Verilog Coding Example One
This coding example uses a concatenation to describe the Register chain.

//
// 8-bit Shift Register
// Rising edge clock
// Active high clock enable
// Concatenation-based template
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/shift_registers/shift_registers_0.v
//
module v_shift_registers_0 (clk, clken, SI, SO);

parameter WIDTH = 8;
input clk, clken, SI;
output SO;
reg [WIDTH-1:0] shreg;

always @(posedge clk)
begin

if (clken)
shreg = {shreg[WIDTH-2:0], SI};

end

assign SO = shreg[WIDTH-1];

endmodule

8-Bit Shift Register Verilog Coding Example Two
//
// 8-bit Shift Register
// Rising edge clock
// Active high clock enable
// For-loop based template
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/shift_registers/shift_registers_1.v
//
module v_shift_registers_1 (clk, clken, SI, SO);

parameter WIDTH = 8;
input clk, clken, SI;
output SO;
reg [WIDTH-1:0] shreg;

integer i;

always @(posedge clk)
begin

if (clken)
begin

for (i = 0; i < WIDTH-1; i = i+1)
shreg[i+1] <= shreg[i];

shreg[0] <= SI;
end

end

assign SO = shreg[WIDTH-1];

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
166 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Dynamic Shift Registers
• ADynamic Shift Register is a Shift Register the length of which can vary dynamically

during circuit operation.

• A Dynamic Shift Register can be seen as:

– A chain of Flip-Flops of the maximum length that it can accept during circuit
operation.

– A Multiplexer that selects, in a given clock cycle, the stage at which data is to be
extracted from the propagation chain.

• XST can infer Dynamic Shift Registers of any maximal length.

• XST can implement Dynamic Shift Registers optimally using the SRL-type primitives
available in the device family.

Dynamic Shift Registers Diagram

Dynamic Shift Registers Related Constraints
Shift Register Extraction

Dynamic Shift Registers Reporting
• XST identifies Flip-Flops and Multiplexers during HDL Synthesis.

• During Advanced HDL Synthesis:

– XST identifies Dynamic Shift Registers.

– XST determines the dependency between the Flip-Flops and Multiplexers.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 167

Chapter 7: HDL Coding Techniques

Dynamic Shift Registers Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 1-bit 16-to-1 multiplexer for signal <Q>.
Found 16-bit register for signal <SRL_SIG>.
Summary:

inferred 16 D-type flip-flop(s).
inferred 1 Multiplexer(s).

Unit <example> synthesized.

(…)
===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <example>.
Found 16-bit dynamic shift register for signal <Q>.

Unit <example> synthesized (advanced).

===
HDL Synthesis Report
Macro Statistics
Shift Registers : 1
16-bit dynamic shift register : 1
===

Dynamic Shift Registers Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
168 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

32-Bit Dynamic Shift Registers VHDL Coding Example
--
-- 32-bit dynamic shift register.
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/dynamic_shift_registers/dynamic_shift_registers_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity example is

generic (
DEPTH : integer := 32;
SEL_WIDTH : integer := 5

);
port(

CLK : in std_logic;
SI : in std_logic;
CE : in std_logic;
A : in std_logic_vector(SEL_WIDTH-1 downto 0);
DO : out std_logic

);

end example;

architecture rtl of example is

type SRL_ARRAY is array (0 to DEPTH-1) of std_logic;
-- The type SRL_ARRAY can be array
-- (0 to DEPTH-1) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- or array (DEPTH-1 downto 0) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- (the subtype is forward (see below))
signal SRL_SIG : SRL_ARRAY;

begin
process (CLK)
begin

if rising_edge(CLK) then
if CE = ’1’ then

SRL_SIG <= SI & SRL_SIG(0 to DEPTH-2);
end if;

end if;
end process;

DO <= SRL_SIG(conv_integer(A));

end rtl;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 169

Chapter 7: HDL Coding Techniques

32-Bit Dynamic Shift Registers Verilog Coding Example
//
// 32-bit dynamic shift register.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/dynamic_shift_registers/dynamic_shift_registers_1.v
//
module v_dynamic_shift_registers_1 (CLK, CE, SEL, SI, DO);

parameter SELWIDTH = 5;
input CLK, CE, SI;
input [SELWIDTH-1:0] SEL;
output DO;

localparam DATAWIDTH = 2**SELWIDTH;
reg [DATAWIDTH-1:0] data;

assign DO = data[SEL];

always @(posedge CLK)
begin

if (CE == 1’b1)
data <= {data[DATAWIDTH-2:0], SI};

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
170 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Multiplexers
• Multiplexer macros can be inferred from different coding styles, involving either:

– Concurrent assignments, or

– Description in combinatorial processes or always blocks, or
– Descriptions within sequential processes or always blocks

• Descriptions of Multiplexers usually involve:

– if-elsif constructs
– case constructs

• When using a case statement, make sure that:
– All selector values are enumerated, or

– A default statement defines which data is selected for selector values that are
not explicitly enumerated.

• Failing to do so creates undesired Latches. If the Multiplexer is described with an
if-elsif construct, a missing else can also create undesired Latches.

• When the same data is to be selected for different values of the selector, use don’t
care to compactly describe those selector values.

Multiplexers Implementation
The decision to explicitly infer a Multiplexer macro may depend on the nature of the
Multiplexer inputs, especially the number of common inputs.

Multiplexers Verilog Case Implementation Style Parameter
• Use a Case Implementation Style Parameter to further specify a case statement.
• Specifying full, parallel, or full-parallel can cause the implementation to behave

differently from the initial model.

• For more information, see Chapter 9, Design Constraints.

Case Implementation Style Parameter Values
• none (default)

XST implements the behavior of the case statement as written.
• full

– XST considers that case statements are complete.

– XST avoids latch creation, even if not all possible selector values are enumerated.

• parallel

– XST considers that the branches cannot occur simultaneously.

– XST does not create priority encoding logic.

• full-parallel

– XST considers that case statements are complete, and that the branches cannot
occur simultaneously.

– XST avoids latch creation and priority encoding logic.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 171

Chapter 7: HDL Coding Techniques

XST Messages
• XST issues a message when a Case Implementation Style Parameter is actually

taken advantage of.

• XST does not issue a message if no statement is required, given the characteristics of
the case it relates to. For example, no statement is required for a full case parameter
when the case it relates to enumerates all possible values of the selector.

Multiplexers Related Constraints
Enumerated Encoding

Multiplexers Reporting
• The XST log file reports the type and size of recognized Multiplexers during Macro

Recognition.

• Explicit inference and reporting of Multiplexers can vary depending on the size
of the Multiplexer. For example, 4-to-1 Multiplexers are not reported. They are
inferred for sizes of 8-to-1 and above.

Multiplexers Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 1-bit 8-to-1 multiplexer for signal <o> created at line 11.
Summary:

inferred 1 Multiplexer(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Multiplexers : 1
1-bit 8-to-1 multiplexer : 1

===

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
172 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Multiplexers Coding Examples
For update information, see “Coding Examples” in the Introduction.

8-to-1 1-Bit MUX Using an If Statement VHDL Coding Example
//
// 8-to-1 1-bit MUX using an If statement.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_1.v
//
module v_multiplexers_1 (di, sel, do);

input [7:0] di;
input [2:0] sel;
output reg do;

always @(sel or di)
begin

if (sel == 3’b000) do = di[7];
else if (sel == 3’b001) do = di[6];
else if (sel == 3’b010) do = di[5];
else if (sel == 3’b011) do = di[4];
else if (sel == 3’b100) do = di[3];
else if (sel == 3’b101) do = di[2];
else if (sel == 3’b110) do = di[1];
else do = di[0];

end
endmodule

8-to-1 1-Bit MUX Using an If Statement Verilog Coding Example
//
// 8-to-1 1-bit MUX using an If statement.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_1.v
//
module v_multiplexers_1 (di, sel, do);

input [7:0] di;
input [2:0] sel;
output reg do;

always @(sel or di)
begin

if (sel == 3’b000) do = di[7];
else if (sel == 3’b001) do = di[6];
else if (sel == 3’b010) do = di[5];
else if (sel == 3’b011) do = di[4];
else if (sel == 3’b100) do = di[3];
else if (sel == 3’b101) do = di[2];
else if (sel == 3’b110) do = di[1];
else do = di[0];

end
endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 173

Chapter 7: HDL Coding Techniques

8-to-1 1-Bit MUX Using a Case Statement VHDL Coding Example
--
-- 8-to-1 1-bit MUX using a Case statement.
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/multiplexers/multiplexers_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_2 is

port (di : in std_logic_vector(7 downto 0);
sel : in std_logic_vector(2 downto 0);
do : out std_logic);

end multiplexers_2;

architecture archi of multiplexers_2 is
begin

process (sel, di)
begin

case sel is
when "000" => do <= di(7);
when "001" => do <= di(6);
when "010" => do <= di(5);
when "011" => do <= di(4);
when "100" => do <= di(3);
when "101" => do <= di(2);
when "110" => do <= di(1);
when others => do <= di(0);

end case;
end process;

end archi;

8-to-1 1-Bit MUX Using a Case Statement Verilog Coding Example
//
// 8-to-1 1-bit MUX using a Case statement.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_2.v
//
module v_multiplexers_2 (di, sel, do);

input [7:0] di;
input [2:0] sel;
output reg do;

always @(sel or di)
begin

case (sel)
3’b000 : do = di[7];
3’b001 : do = di[6];
3’b010 : do = di[5];
3’b011 : do = di[4];
3’b100 : do = di[3];
3’b101 : do = di[2];
3’b110 : do = di[1];
default : do = di[0];

endcase
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
174 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

8-to-1 1-Bit MUX Using Tristate Buffers Verilog Coding Example
//
// 8-to-1 1-bit MUX using tristate buffers.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_3.v
//
module v_multiplexers_3 (di, sel, do);

input [7:0] di;
input [7:0] sel;
output do;

assign do = sel[0] ? di[0] : 1’bz;
assign do = sel[1] ? di[1] : 1’bz;
assign do = sel[2] ? di[2] : 1’bz;
assign do = sel[3] ? di[3] : 1’bz;
assign do = sel[4] ? di[4] : 1’bz;
assign do = sel[5] ? di[5] : 1’bz;
assign do = sel[6] ? di[6] : 1’bz;
assign do = sel[7] ? di[7] : 1’bz;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 175

Chapter 7: HDL Coding Techniques

Arithmetic Operators HDL Coding Techniques
XST supports basic arithmetic operators:

• Adders, Subtractors, and Adders/Subtractors

• Multipliers

• Dividers

• Comparators

These basic arithmetic macros are building blocks for more complex macros such as:

• Accumulators

See Counters and Accumulators.

• Multiply-Add

See Multiply-Add and Multiply-Accumulate.

• DSP filters

See Arithmetic Operators DSP Block Resources.

Arithmetic Operators Signed and Unsigned Support
• XST supports signed and unsigned representation for the following operators:

– Adders

– Subtractors

– Comparators

– Multipliers

• Some macros, such as Adders and Counters, can be implemented for signed and
unsigned values in both VHDL and Verilog.

Verilog Signed and Unsigned Support
• Without explicit specification of the representation, Verilog defines the conventions

as shown in the Signed and Unsigned Conventions table below.

• Use the signed and unsigned keywords to explicitly force the representation
of data types.

Signed and Unsigned Conventions
Components Treated As Exception
port, wire, and reg vector types unsigned Unless explicitly declared to be signed.

Integer variables signed Unless specified otherwise.

Decimal numbers signed None

Based numbers unsigned Unless specified otherwise.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
176 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Defining Expression Types
• An expression type:

– Is defined only by its operands.
– Does not depend on the type of an assignment left-hand part.

• The sign and bit length of any self-determined operand is:
– Determined by the operand itself.
– Independent of the rest of the expression.

• If you use context-determined operands, review the additional guidelines in the
Verilog LRM.

Resolving Expression Types
Expression Types are resolved according to the rules shown in the following table.

Rules for Resolving Expression Types
Results Status Operands
Bit-select Unsigned Regardless of the operands

Part-select Unsigned Regardless of the operands, even if the
part-select specifies the entire vector

Concatenate Unsigned Regardless of the operands

Comparison Unsigned Regardless of the operands

Verilog Signed and Unsigned Support Coding Example One
input signed [31:0] example1;
reg unsigned [15:0] example2;
wire signed [31:0] example3;

Verilog Signed and Unsigned Support Coding Example Two
You can force a based number to be signed, using the notation in the base specifier.

4’sd87

Verilog Signed and Unsigned Support Coding Example Three
You can ensure proper type casting with the $signed and $unsigned conversion
functions.

wire [7:0] udata;
wire [7:0] sdata;

assign sdata = $signed(udata);

VHDL Signed and Unsigned Support
• You must include additional packages in the VHDL code, depending on the

operation and type of the operands.
• For more information about available types, see the IEEE VHDL Manual.

Unsigned Adder
To create an unsigned Adder, use the arithmetic packages and types that operate on
unsigned values.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 177

Chapter 7: HDL Coding Techniques

PACKAGE TYPE
numeric_std unsigned

std_logic_arith unsigned

std_logic_unsigned std_logic_vector

Signed Adder
To create a signed Adder, use the arithmetic packages and types that operate on signed
values.

PACKAGE TYPE
numeric_std signed

std_logic_arith signed

std_logic_signed std_logic_vector

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
178 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Arithmetic Operators Implementation
Arithmetic operators implementation includes:
• Arithmetic Operators Slice Logic
• Arithmetic Operators DSP Block Resources

Arithmetic Operators Slice Logic
XST leverages certain features of the Xilinx® CLB structure when implementing
arithmetic macros on slice logic. These features include the dedicated carry logic for
implementing fast, efficient arithmetic functions.

Arithmetic Operators DSP Block Resources
Virtex®-6, Spartan®-6, and 7 series devices contain dedicated high-performance
arithmetic blocks (DSP blocks).
• The number of DSP blocks depends on the device.
• DSP blocks can be configured to implement various arithmetic functions.
• If leveraged to their full potential, DSP blocks can implement a fully pipelined

preadder-multiply-add or preadder-multiply-accumulate function.
• XST leverages those resources for high-performance and power-efficient

implementation of arithmetic logic.
• Implementation of arithmetic macros on either slice logic or DSP block resources

is controlled by Use DSP Block with a value of auto.
• In automode, XST takes into account the actual availability of DSP block resources

in order to avoid overmapping the device.
– XST may use all available DSP resources available.
– DSP Utilization Ratio forces XST to leave some DSP resources unallocated.

• Some arithmetic macros are not implemented on DSP blocks by default.
– To force implementation of these macros, apply Use DSP Block with a value of

yes.
– These macros include standalone:

♦ Adders
♦ Accumulators
♦ Counters

• To take advantage of Registers for pipelining arithmetic functions implemented on
DSP blocks, describe the Registers with an optional clock enable.
– Registers are optionally synchronously resettable.
– Asynchronous reset logic prevents such implementation.
– Xilinx® recommends that you not use asynchronous reset logic.

• DSP block resources assume signed operands. When describing unsigned
arithmetic, you cannot map unsigned operands to the full width of a single DSP
block.
Example
– XST can implement up to a 25x18-bit signedmultiplication on a single Virtex-6

DSP48E1 block.
– XST can implement up to a 24x17-bit unsigned product only on that same single

block, with most significant bits of the DSP block inputs set to 0.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 179

Chapter 7: HDL Coding Techniques

More Information
• For more information about implementation on DSP blocks, see:

– Multipliers

– Multiply-Add and Multiply-Accumulate

• For more information about DSP block resources, see:

– Virtex-6 FPGA DSP48E1 Slice User Guide (UG369) on the Xilinx support website.

– Spartan-6 FPGADSP48A1 Slice User Guide (UG389) on the Xilinx support website.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
180 www.xilinx.com UG687 (v 13.4) January 18, 2012

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf
http://www.xilinx.com/support

Chapter 7: HDL Coding Techniques

Comparators
XST recognizes Comparators of all possible types:

• Equal

• Not equal

• Larger than

• Larger than or equal

• Less than

• Less than or equal

Comparators Related Constraints
None

Comparators Reporting
• Equal or not equal comparison of a signal or a variable to a constant does not lead

to an explicit comparator macro inference, since it is directly optimized to Boolean
logic by XST.

• For all other comparison situations, Comparator macro inference is reported as
shown in the following reporting example.

Comparators Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 8-bit comparator lessequal for signal <n0000> created at line 8
Found 8-bit comparator greater for signal <cmp2> created at line 15
Summary:

inferred 2 Comparator(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Comparators : 2
8-bit comparator greater : 1
8-bit comparator lessequal : 1

===

Comparators Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 181

Chapter 7: HDL Coding Techniques

Unsigned 8-Bit Greater or Equal Comparator VHDL Coding Example
--
-- Unsigned 8-bit Greater or Equal Comparator
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/comparators/comparators_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity comparators_1 is
generic (

WIDTH : integer := 8);
port (

A,B : in std_logic_vector(WIDTH-1 downto 0);
CMP : out std_logic);

end comparators_1;

architecture archi of comparators_1 is
begin

CMP <= ’1’ when A >= B else ’0’;
end archi;

Unsigned 8-Bit Less Than Comparator Verilog Coding Example
//
// Unsigned 8-bit Less Than Comparator
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/comparators/comparators_1.v
//
module v_comparators_1 (A, B, CMP);

parameter WIDTH = 8;
input [WIDTH-1:0] A;
input [WIDTH-1:0] B;
output CMP;

assign CMP = (A < B) ? 1’b1 : 1’b0;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
182 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Dividers
XST supports Dividers only if:

• The divisor is constant and a power of 2.

• The description is implemented as a shifter.

• Both operands are constant.

XST exits with a specific error message in all other cases.

Dividers Related Constraints
None

Dividers Reporting
None

Dividers Coding Examples
For update information, see “Coding Examples” in the Introduction.

Division By Constant 2 VHDL Coding Example
--
-- Division By Constant 2
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/dividers/dividers_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity divider_1 is
port(DI : in unsigned(7 downto 0);

DO : out unsigned(7 downto 0));
end divider_1;

architecture archi of divider_1 is
begin

DO <= DI / 2;

end archi;

Division By Constant 2 Verilog Coding Example
//
// Division By Constant 2
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/dividers/dividers_1.v
//
module v_divider_1 (DI, DO);

input [7:0] DI;
output [7:0] DO;

assign DO = DI / 2;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 183

Chapter 7: HDL Coding Techniques

Adders, Subtractors, and Adders/Subtractors
XST recognizes:

• Adders

Adders can be described with:

– An optional carry input, and

– An optional carry output

• Subtractors

Subtractors can be described with an optional borrow input.

• Adder/Subtractors

Describing a Carry Output
A carry output is usually modeled by assigning 1) the result of the described addition,
2) to a signal with an extra bit over the longest operand.

Describing a Carry Output VHDL Coding Example One
input [7:0] A;
input [7:0] B;
wire [8:0] res;
wire carryout;

assign res = A + B;
assign carryout = res[8];

Reviewing the Arithmetic Package
Carefully review the arithmetic package you plan to use for describing an Adder with a
carry output. You may find that a particular method for describing an Adder does not
work with your chosen arithmetic package.

Reviewing the Arithmetic Package Example
• The method in Coding Example One above does not work with the

std_logic_unsigned arithmetic package.

• The method does not work because the size of the result is necessarily equal to the
size of the longest argument.

• To make the method work, adjust the size of the operands as shown in the following
Coding Example Two.

Describing a Carry Output VHDL Coding Example Two
signal A : std_logic_unsigned(7 downto 0);
signal B : std_logic_unsigned(7 downto 0);
signal res : std_logic_unsigned(8 downto 0);
signal carryout : std_logic;

res <= ("0" & A) + ("0" & B);
carryout <= res[8];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
184 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Converting Operands to Type Integer
• In addition to adjusting the size of the operands, you can also:

1. Convert the operands to type integer.

2. Convert the result of the addition back to std_logic_vector.

• In the following Coding Example Three:

– The conv_std_logic_vector conversion function is contained in the
std_logic_arith arithmetic package.

– The unsigned + operation is contained in the std_logic_unsigned arithmetic
package.

Describing a Carry Output VHDL Coding Example Three
signal A : std_logic_vector(7 downto 0);
signal B : std_logic_vector(7 downto 0);
signal res : std_logic_vector(8 downto 0);
signal carryout : std_logic;

res <= conv_std_logic_vector((conv_integer(A) + conv_integer(B)),9);
carryout <= res[8];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 185

Chapter 7: HDL Coding Techniques

Adders, Subtractors, and Adders/Subtractors Implementation
Standalone Adders, Subtractors, and Adder/Subtractors:

• Are not automatically implemented on DSP blocks.

• Are synthesized using carry logic.

Implementation on DSP48 Blocks
• To force the implementation of a simple Adder; Subtractor; or Adder/Subtractor on

a DSP block, apply Use DSP Block with a value of yes.

• XST supports the one level of output Registers on DSP48 blocks. If the Carry In
or Add/Sub operation selectors are registered, XST pushes these Registers onto
DSP48 blocks as well.

• XST can implement an Adder/Subtractor on a DSP48 block if its implementation
requires only a single DSP48 resource. If an Adder/Subtractor macro does not fit on
a single DSP48 block, XST implements the entire macro using slice logic.

• Macro implementation on DSP48 blocks is controlled by DSP Utilization Ratio with
a value of auto.

– If an Adder/Subtractor is part of a more complex macro such as a filter, XST
places it on the DSP block.

– If the Adder/Subtractor is NOT part of a more complex macro, XST implements
the Adder/Subtractor using LUTs.

• To force XST to push these macros onto a DSP48 block, set the value of Use DSP
Block to yes.

– When placing an Adder/Subtractor on a DSP block, XST checks to see if it is
connected to other DSP chains.

– If the Adder/Subtractor is connected to other DSP chains:

♦ XST tries to take advantage of fast DSP connections.

♦ XST connects this Adder/Subtractor to the DSP chain using these fast
connections.

– When implementing Adder/Subtractors on DSP48 blocks, XST performs
automatic DSP48 resource control.

Maximum Macro Configuration
• To deliver the best performance:

– XST tries to infer and implement the maximum macro configuration.

– XST includes as many Registers in the DSP48 as possible.

• Use Keep to shape a macro in a specific way. For example, to exclude the first
Register stage from the DSP48 block, place Keep on the outputs of these Registers.

Adders, Subtractors, and Adders/Subtractors Related Constraints
• Use DSP Block

• DSP Utilization Ratio

• Keep

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
186 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Adders, Subtractors, and Adders/Subtractors Reporting
This section describes reporting for Adders, Subtractors, and Adders/Subtractors.

Adders With Carry Input
For Adders with a carry input:

• Two separate Adder macros are initially inferred.

• The Adders are reported in HDL Synthesis.

• The Adders are grouped together during Advanced HDL Synthesis into a single
Adder macro with carry input.

• The macro is reported in the Advanced HDL Synthesis Report

Subtractors With Borrow Input
For Subtractors with borrow input:

• Two separate Subtractor macros are initially inferred.

• The macros are grouped together during Advanced HDL Synthesis.

• Carry output logic is not explicitly reported.

Adders, Subtractors, and Adders/Subtractors Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 8-bit adder for signal <sum> created at line 9.
Summary:

inferred 1 Adder/Subtractor(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1
8-bit adder : 1

===

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 187

Chapter 7: HDL Coding Techniques

Adders, Subtractors, and Adders/Subtractors Coding Examples
For update information, see “Coding Examples” in the Introduction.

Unsigned 8-Bit Adder VHDL Coding Example
--
-- Unsigned 8-bit Adder
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/adders/adders_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adders_1 is
generic (

WIDTH : integer := 8);
port (

A, B : in std_logic_vector(WIDTH-1 downto 0);
SUM : out std_logic_vector(WIDTH-1 downto 0));

end adders_1;

architecture archi of adders_1 is
begin

SUM <= A + B;
end archi;

Unsigned 8-Bit Adder with Carry In Verilog Coding Example
//
// Unsigned 8-bit Adder with Carry In
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/adders/adders_2.v
//
module v_adders_2 (A, B, CI, SUM);

parameter WIDTH = 8;
input [WIDTH-1:0] A;
input [WIDTH-1:0] B;
input CI;
output [WIDTH-1:0] SUM;

assign SUM = A + B + CI;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
188 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Multipliers
XST infers Multiplier macros from product operators in the source code.

• The resulting signal equals the sum of the two operand sizes. For example,
multiplying a 16-bit signal by an 8-bit signal produces a result of 24 bits.

• If you do not intend to use all most significant bits of a device, Xilinx® recommends
that you reduce the size of operands to the minimum needed, especially if the
Multiplier macro will be implemented on slice logic.

Multipliers Implementation
• Multiplier macros can be implemented on:

– Slice logic

– DSP blocks

• Implementing a Multiplier on either slice logic or DSP block resources is controlled
by Use DSP Block with a value of auto.

• In auto mode:

– XST tries to implement a Multiplier on DSP block resources. Its operands must
have a minimum size. The minimum size can vary depending on the device
family.

– XST considers the actual availability of DSP block resources in order to avoid
overmapping the device. XST may use all available DSP resources. DSP
Utilization Ratio forces XST to leave some of those resources unallocated.

• To force implementation of a Multiplier to slice logic or DSP block, set Use DSP
Block on the appropriate signal, entity, or module to either:

– no (slice logic)

– yes (DSP block)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 189

Chapter 7: HDL Coding Techniques

DSP Block Implementation
• When implementing a Multiplier in a single DSP block, XST tries to take advantage

of the pipelining capabilities of DSP blocks. XST pulls up to two levels of Registers
present:

– On the multiplication operands

– Behind the multiplication

• When a Multiplier does not fit on a single DSP block, XST decomposes the macro
to implement it. In that case, XST uses:

– Several DSP blocks, or

– A hybrid solution involving both DSP blocks and slice logic

• The implementation choice is:

– Driven by the size of operands

– Aimed at maximizing performance

• Pipelining can improve the performance of implementations based on multiple DSP
blocks. Apply Multiplier Style with a value of pipe_block.

• During pipelining, XST calculates the ideal number of Register levels needed to
maximize the performance of a given Multiplier.

– If the ideal number of Register levels is available, XST moves the Register levels
in order to achieve the desired goal.

– If the ideal number of Register levels is NOT available, XST issues the following
message.

INFO:Xst:2385 - HDL ADVISOR - You can improve the performance of the
multiplier Mmult_n0005 by adding 2 register level(s).

• You can insert the suggested amount of additional Register levels behind the
multiplication.

• Use Keep to restrict absorption of Registers into DSP blocks. For example, if a
Register is present on an operand of the multiplier, place Keep on the output of the
Register to prevent the Register from being absorbed into the DSP block.

lice Logic Implementation
When Use DSP Block is set to auto, most Multipliers are implemented on DSP block
resources, provided that:

• One or more latency stages is available, and

• The latency stage is within the limits of available DSP blocks.

Forcing Multiplier Implementation on Slice Logic
• To force a Multiplier to be implemented on slice logic, apply Use DSP Block with

a value of no.

• For a Multiplier implemented on slice logic:

– XST looks for pipelining opportunities around the operator.

– XST moves those registers in order to reduce data path length.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
190 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Increasing Performance of Large Multipliers by Pipelining
Pipelining can greatly increase the performance of large Multipliers.

• The effect of pipelining is similar to Flip-Flop retiming.

• To insert pipeline stages:

1. Describe the Registers.

2. Place them after the Multiplier.

3. Set Multiplier Style to pipe_lut.

Multiplication to a Constant
• XST can use either of two dedicated implementation methods when one argument

of the multiplication is a constant.

– Constant Coefficient Multiplier (CCM)

– Canonical Signed Digit (CSD)

• These methods apply only when the multiplication is implemented on slice logic.

• The level of optimization depends on the characteristics of the constant operand.

– CCM implementation is not always better than the default slice logic
implementation.

– XST chooses between CCM or standard multiplier implementation.

• The CSD method cannot be chosen automatically. Use Multiplier Style to:

– Force CSD implementation

– Force CCM implementation

• XST does not use CCM or CSD implementations if:

– The multiplication is signed.

– One of the operands is larger than 32 bits.

Multipliers Related Constraints
• Use DSP Block

• DSP Utilization Ratio

• Keep

• Multiplier Style

Multipliers Reporting
• Multipliers are inferred during HDL Synthesis.

• Registers can be absorbed by a Multiplier macro during Advanced HDL Synthesis.
See the following reporting example.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 191

Chapter 7: HDL Coding Techniques

Multipliers Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <v_multipliers_11>.
Found 8-bit register for signal <rB>.
Found 24-bit register for signal <RES>.
Found 16-bit register for signal <rA>.
Found 16x8-bit multiplier for signal <n0005> created at line 20.
Summary:

inferred 1 Multiplier(s).
inferred 48 D-type flip-flop(s).
Unit <v_multipliers_11> synthesized.

===
HDL Synthesis Report

Macro Statistics
Multipliers : 1
16x8-bit multiplier : 1
Registers : 3
16-bit register : 1
24-bit register : 1
8-bit register : 1

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <v_multipliers_11>.
Found pipelined multiplier on signal <n0005>:
- 1 pipeline level(s) found in a register connected to the multiplier

macro output.
Pushing register(s) into the multiplier macro.

- 1 pipeline level(s) found in a register on signal <rA>.
Pushing register(s) into the multiplier macro.

- 1 pipeline level(s) found in a register on signal <rB>.
Pushing register(s) into the multiplier macro.

INFO:Xst:2385 - HDL ADVISOR - You can improve the performance of the
multiplier Mmult_n0005 by adding 1 register level(s).
Unit <v_multipliers_11> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
Multipliers : 1
16x8-bit registered multiplier : 1

===

Multipliers Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
192 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Unsigned 8x4-Bit Multiplier VHDL Coding Example
--
-- Unsigned 8x4-bit Multiplier
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/multipliers/multipliers_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity multipliers_1 is
generic (

WIDTHA : integer := 8;
WIDTHB : integer := 4);

port(
A : in std_logic_vector(WIDTHA-1 downto 0);
B : in std_logic_vector(WIDTHB-1 downto 0);
RES : out std_logic_vector(WIDTHA+WIDTHB-1 downto 0));

end multipliers_1;

architecture beh of multipliers_1 is
begin

RES <= A * B;
end beh;

Unsigned 32x24-Bit Multiplier Verilog Coding Example
//
// Unsigned 32x24-bit Multiplier
// 1 latency stage on operands
// 3 latency stage after the multiplication
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multipliers/multipliers_11.v
//
module v_multipliers_11 (clk, A, B, RES);

parameter WIDTHA = 32;
parameter WIDTHB = 24;
input clk;
input [WIDTHA-1:0] A;
input [WIDTHB-1:0] B;
output [WIDTHA+WIDTHB-1:0] RES;

reg [WIDTHA-1:0] rA;
reg [WIDTHB-1:0] rB;
reg [WIDTHA+WIDTHB-1:0] M [3:0];
integer i;

always @(posedge clk)
begin

rA <= A;
rB <= B;

M[0] <= rA * rB;
for (i = 0; i < 3; i = i+1)
M[i+1] <= M[i];
end
assign RES = M[3];

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 193

Chapter 7: HDL Coding Techniques

Multiply-Add and Multiply-Accumulate
• The following macros are inferred during Advanced HDL Synthesis:

– Multiply-Add
– Multiply-Sub
– Multiply-Add/Sub
– Multiply-Accumulate

• The macros are inferred by aggregation of:
– A Multiplier
– An Adder/Subtractor
– Registers previously inferred during HDL Synthesis

Multiply-Add and Multiply-Accumulate Implementation
• During Multiply-Add and Multiply-Accumulate implementation:

– XST can implement an inferred Multiply-Add or Multiply-Accumulate macro
on DSP block resources.

– XST tries to take advantage pipelining capabilities of DSP blocks.
– XST pulls up to:

♦ Two register stages present on the multiplication operands.
♦ One register stage present behind the multiplication.
♦ One register stage found behind the Adder, Subtractor, or Adder/Subtractor.
♦ One register stage on the add/sub selection signal.
♦ One register stage on the Adder optional carry input.

– XST can implement a Multiply Accumulate in a DSP48 block if its
implementation requires only a single DSP48 resource.

• If the macro exceeds the limits of a single DSP48:
– XST processes it as two separate Multiplier and Accumulate macros.
– XST makes independent decisions on each macro.

Macro Implementation on DSP Block Resources
Macro implementation on DSP block resources is controlled by Use DSP Block with a
value of auto.
• In auto mode, XST:

– Implements Multiply-Add and Multiply-Accumulate Macros.
– Takes into account DSP block resources availability in the targeted device.
– May use all available DSP resources.

DSP Utilization Ratio forces XST to leave some of those resources unallocated.
– Tries to maximize circuit performance by leveraging all pipelining capabilities

of DSP blocks.
– Looks for all opportunities to absorb Registers into a Multiply-Add or

Multiply-Accumulate macro.
• Use Keep to restrict absorption of Registers into DSP blocks. For example, to exclude

a Register present on an operand of the Multiplier from absorption into the DSP
block, apply Keep on the output of the Register.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
194 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Multiply-Add and Multiply-Accumulate Related Constraints
• Use DSP Block

• DSP Utilization Ratio

• Keep

Multiply-Add and Multiply-Accumulate Reporting
XST reports the details of inferred Multipliers, Accumulators, and Registers during
HDL Synthesis.

• The Advanced HDL Synthesis section displays information about the composition
of those macros into a Multiply-Add or Multiply-Accumulate macro.

• Both types of functionalities are accounted for under the unifiedMAC denomination.

Multiply-Add and Multiply-Accumulate Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <v_multipliers_7a>.
Found 16-bit register for signal <accum>.
Found 16-bit register for signal <mult>.
Found 16-bit adder for signal <n0058> created at line 26.
Found 8x8-bit multiplier for signal <n0005> created at line 18.
Summary:

inferred 1 Multiplier(s).
inferred 1 Adder/Subtractor(s).
inferred 32 D-type flip-flop(s).
Unit <v_multipliers_7a> synthesized.

===
HDL Synthesis Report

Macro Statistics
Multipliers : 1
8x8-bit multiplier : 1
Adders/Subtractors : 1
16-bit adder : 1
Registers : 2
16-bit register : 2

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <v_multipliers_7a>.
The following registers are absorbed into accumulator <accum>: 1 register
on signal <accum>.
Multiplier <Mmult_n0005> in block <v_multipliers_7a> and accumulator
<accum> in block <v_multipliers_7a> are combined into a MAC<Mmac_n0005>.
The following registers are also absorbed by the MAC: <mult> in block
<v_multipliers_7a>.
Unit <v_multipliers_7a> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
MACs : 1
8x8-to-16-bit MAC : 1

===

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 195

Chapter 7: HDL Coding Techniques

Multiply-Add and Multiply-Accumulate Coding Examples
For update information, see “Coding Examples” in the Introduction.

Multiplier Up Accumulate with Register After Multiplication VHDL Coding
Example

--
-- Multiplier Up Accumulate with Register After Multiplication
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/multipliers/multipliers_7a.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity multipliers_7a is
generic (p_width: integer:=8);
port (clk, reset: in std_logic;

A, B: in std_logic_vector(p_width-1 downto 0);
RES: out std_logic_vector(p_width*2-1 downto 0));

end multipliers_7a;

architecture beh of multipliers_7a is
signal mult, accum: std_logic_vector(p_width*2-1 downto 0);

begin

process (clk)
begin

if (clk’event and clk=’1’) then
if (reset = ’1’) then

accum <= (others => ’0’);
mult <= (others => ’0’);

else
accum <= accum + mult;
mult <= A * B;

end if;
end if;

end process;

RES <= accum;

end beh;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
196 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Multiplier Up Accumulate Verilog Coding Example
//
// Multiplier Up Accumulate with:
// Registered operands
// Registered multiplication
// Accumulation
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multipliers/multiply_accum_2.v
//
module v_multiply_accum_2 (clk, rst, A, B, RES);

parameter WIDTH = 8;
input clk;
input rst;
input [WIDTH-1:0] A, B;
output [2*WIDTH-1:0] RES;

reg [WIDTH-1:0] rA, rB;
reg [2*WIDTH-1:0] mult, accum;

always @(posedge clk)
begin

if (rst) begin
rA <= {WIDTH{1’b0}};
rB <= {WIDTH{1’b0}};

mult <= {2*WIDTH{1’b0}};
accum <= {2*WIDTH{1’b0}};

end
else begin

rA <= A;
rB <= B;

mult <= rA * rB;
accum <= accum + mult;

end
end
assign RES = accum;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 197

Chapter 7: HDL Coding Techniques

Extended DSP Inferencing
XST provides extended inferencing capabilities for describing filters with portable
behavioral source code.
• XST offers finer-grained inferencing capabilities for such basic functionalities as:

– Latency stages (registers)
– Multiply
– Multiply-add/subtract
– Accumulate
– Multiply-accumulate
– ROM

• In order to achieve high performance implementation and power reduction, XST
attempts to:
– Understand the existence of any contextual relationship between basic

functional elements.
– Leverage the features of the DSP block resources available on Xilinx® devices:

♦ Pipelining stages
♦ Cascade paths
♦ Pre-adder stage
♦ Time multiplexing

• To optimally leverage DSP block capabilities, use an adder chain instead of an adder
tree as the backbone of the filter description. Some HDL language features, such as
for generate (VHDL), facilitate describing a filter in this way, and ensure maximal
readability and scalability of the code.

• For more information about DSP block resources, see:
– Virtex-6 FPGA DSP48E1 Slice User Guide (UG369) on the Xilinx support website.
– Spartan-6 FPGADSP48A1 Slice User Guide (UG389) on the Xilinx support website.

Symmetric Filters
The optional pre-Adder capability in DSP Blocks was designed for symmetric filters.
If you describe a symmetric coefficients filter, leverage the pre-Adder to reduce the
number of required DSP blocks by half.
• Do not describe the filter generically and assume that XST will be able to determine

the symmetry.
– XST does not automatically identify and factor symmetric coefficients.
– You must manually code the factorized form in order for XST to see the

pre-Adder opportunity and configure DSP blocks accordingly.
– See the SymSystolicFilter and SymTransposeConvFilter coding examples below.

• To leverage the pre-Adder capability, XST must identify a description that exactly
matches the pre-Adder size characteristics, even though your data may be of a
lower width.
– This requirement is specific to the pre-Adder.
– Use signed or unsigned extensions for explicit padding of the pre-Adder

operands to ensure proper inference and implementation on DSP resources. See
the following coding example.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
198 www.xilinx.com UG687 (v 13.4) January 18, 2012

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf
http://www.xilinx.com/support

Chapter 7: HDL Coding Techniques

Pre-Adder Description With Explicit Data Extensions Coding Example
--
-- Explicit padding of pre-adder operands
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/dsp/preadder_padding.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity preadder_padding is

generic (
DATA_WIDTH : integer := 16

);
port (
clk : in std_logic;
a : in signed(DATA_WIDTH-1 downto 0);
b : in signed(DATA_WIDTH-1 downto 0);
c : in signed(DATA_WIDTH-1 downto 0);
d : in signed(2*DATA_WIDTH-1 downto 0);
o : out signed(2*DATA_WIDTH-1 downto 0)

);

end preadder_padding;

architecture behavioral of preadder_padding is

constant PREADD_WIDTH : integer := 18;
signal a_resized : signed(PREADD_WIDTH-1 downto 0);
signal b_resized : signed(PREADD_WIDTH-1 downto 0);
signal pre : signed(PREADD_WIDTH-1 downto 0);
signal m : signed(DATA_WIDTH+PREADD_WIDTH-1 downto 0);
signal p : signed(DATA_WIDTH+PREADD_WIDTH-1 downto 0);

begin

assert DATA_WIDTH <= PREADD_WIDTH report "DATA_WIDTH exceeds limit of 18 bits" severity ERROR;

a_resized <= RESIZE(a, PREADD_WIDTH);
b_resized <= RESIZE(b, PREADD_WIDTH);

process (clk)
begin
if rising_edge(clk) then
pre <= a_resized + b_resized;
m <= pre * c;
p <= m + d;

end if;
end process;

o <= RESIZE(p, 2*DATA_WIDTH);

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 199

Chapter 7: HDL Coding Techniques

Extended DSP Inferencing Coding Examples
For update information, see “Coding Examples” in the Introduction.

DSP Reference Designs
Design Language Description Devices

PolyDecFilter VHDL A polyphase decimating filter Spartan®-6

Virtex®-6

7 series

PolyIntrpFilter VHDL A polyphase interpolator filter Spartan-6

Virtex-6

7 series

EvenSymSystFIR VHDL A symmetric systolic filter with an even number of
taps. Symmetric coefficients have been factorized to take
advantage of pre-Adder capabilities of DSP blocks.

Virtex-6

7 series

OddSymSystFIR VHDL A symmetric systolic filter with an odd number of taps.
Symmetric coefficients have been factorized to take
advantage of pre-Adder capabilities of DSP blocks.

Virtex-6

7 series

EvenSymTranspConvFIR VHDL A symmetric transpose convolution filter with an even
number of taps. Symmetric coefficients have been factorized
to take advantage of pre-Adder capabilities of DSP blocks.

Virtex-6

7 series

OddSymTranspConvFIR VHDL A symmetric transpose convolution filter with an odd
number of taps. Symmetric coefficients have been factorized
to take advantage of pre-Adder capabilities of DSP blocks.

Virtex-6

7 series

AlphaBlender VHDL

Verilog

Implements an alpha blending function, commonly used in
image composition, on a single DSP block, taking advantage
of the pre-Adder, Multiplier and post-Adder features.

Spartan-6

Virtex-6

7 series

ComplexMult VHDL A simple way to describe complex Multiplier functionality Spartan-6

Virtex-6

7 series

ComplexMultAcc VHDL A simple way to describe complex Multiply-Accumulate
functionality

Spartan-6

Virtex-6

7 series

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
200 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Resource Sharing
XST implements high-level optimizations known as Resource Sharing.

• Resource Sharing minimizes the number of arithmetic operators, resulting in
reduced device utilization.

• Resource Sharing is based on the principle that two similar arithmetic operators can
be implemented with common resources on the device, provided their respective
outputs are never used simultaneously.

• Resource Sharing usually involves creating additional multiplexing logic to select
between factorized inputs. Factorization is performed in a way that minimizes
this logic.

• Resource Sharing is enabled by default, no matter which overall optimization
strategy you have selected.

XST Resource Sharing Support
XST supports Resource Sharing for:

• Adders

• Subtractors

• Adders/Subtractors

• Multipliers

Disabling Resource Sharing
• Xilinx® recommends that you disable Resource Sharing:

– If circuit performance is your primary optimization goal, and

– You are unable to meet timing goals.

• An HDL Advisor message informs you when Resource Sharing has taken place.

Resource Sharing Related Constraints
Resource Sharing

Resource Sharing Reporting
Arithmetic Resource Sharing:

• Takes place during HDL Synthesis.

• Is reflected by:

– Arithmetic macro statistics

– An HDL Advisor message

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 201

Chapter 7: HDL Coding Techniques

Resource Sharing Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <resource_sharing_1>.
Found 8-bit adder for signal <n0017> created at line 18.
Found 8-bit subtractor for signal <n0004> created at line 18.
Found 8-bit 2-to-1 multiplexer for signal <RES> created at line 18.
Summary:

inferred 1 Adder/Subtractor(s).
inferred 1 Multiplexer(s).
Unit <resource_sharing_1> synthesized.

===
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1
8-bit addsub : 1
Multiplexers : 1
8-bit 2-to-1 multiplexer : 1

===
INFO:Xst:1767 - HDL ADVISOR - Resource sharing has identified that some
arithmetic operations in this design can share the same physical
resources for reduced device utilization.
For improved clock frequency you may try to disable resource sharing.

Resource Sharing Coding Examples
For update information, see “Coding Examples” in the Introduction.

For the coding examples shown below, XST gives the solution shown in the following
diagram.

Resource Sharing Diagram

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
202 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Resource Sharing VHDL Coding Example
--
-- Resource Sharing
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/resource_sharing/resource_sharing_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity resource_sharing_1 is
port(A, B, C : in std_logic_vector(7 downto 0);

OPER : in std_logic;
RES : out std_logic_vector(7 downto 0));

end resource_sharing_1;

architecture archi of resource_sharing_1 is
begin

RES <= A + B when OPER=’0’ else A - C;

end archi;

Resource Sharing Verilog Coding Example
//
// Resource Sharing
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/resource_sharing/resource_sharing_1.v
//
module v_resource_sharing_1 (A, B, C, OPER, RES);

input [7:0] A, B, C;
input OPER;
output [7:0] RES;
wire [7:0] RES;

assign RES = !OPER ? A + B : A - C;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 203

Chapter 7: HDL Coding Techniques

RAM HDL Coding Techniques
XST extended Random Access Memory (RAM) inferencing:

• Makes it unnecessary to manually instantiate RAM primitives.

• Saves time.

• Keeps HDL source code portable and scalable.

Distributed RAM and Dedicated Block RAM
• RAM resources are of two types:

– Distributed RAM

Must be used for RAM descriptions with asynchronous read.

– Dedicated block RAM

Generally used for RAM descriptions with synchronous read.

• Use RAM Style to control RAM implementation.

• For more information, see distributed RAM and related topics in:

– Virtex-6 FPGA Memory Resources User Guide

– Virtex-6 FPGA Configurable Logic Block User Guide

– Spartan-6 FPGA Block RAM Resources User Guide

– Spartan-6 FPGA Configurable Logic Block User Guide

Distributed RAM and Dedicated Block RAM Comparison
Data is written synchronously into the RAM for both types. The primary difference
between distributed RAM and dedicated block RAM lies in the way data is read from the
RAM. See the following table.

Action Distributed RAM Dedicated Block Ram
Write Synchronous Synchronous

Read Asynchronous Synchronous

Choosing Between Distributed RAM and Dedicated Block RAM
Whether to use distributed RAM or dedicated block RAM may depend on:

• The characteristics of the RAM you have described in the HDL source code

• Whether you have forced a specific implementation style

• Availability of block RAM resources

Asynchronous Read (Distributed RAM)
• RAM descriptions with asynchronous read:

– Are implemented with distributed RAM.

– Cannot be implemented in dedicated block RAM.

• Distributed RAM is implemented on properly configured slice logic.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
204 www.xilinx.com UG687 (v 13.4) January 18, 2012

http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

Chapter 7: HDL Coding Techniques

Synchronous Read (Dedicated Block RAM)
RAM descriptions with synchronous read:

• Generally go into dedicated block RAM.

• Are implemented using distributed RAM plus additional registers if you have so
requested, or for device resource utilization.

RAM-Supported Features
RAM-supported features include:

• RAM Inferencing Capabilities

• Parity Bits

RAM Inferencing Capabilities
RAM inferencing capabilities include the following.

• Support for any size and data width. XST maps the RAM description to one or
several RAM primitives.

• Single-port, simple-dual port, true dual port.

• Up to two write ports.

• Multiple read ports.

Provided that only one write port is described, XST can identify RAM descriptions
with two or more read ports that access the RAM contents at addresses different
from the write address.

• Simple-dual port and true dual-port RAM with asymmetric ports. For more
information, see Asymmetric Ports Support (Block RAM).

• Write enable.

• RAM enable (block RAM).

• Data output reset (block RAM).

• Optional output register (block RAM).

• Byte-Wide Write Enable (block RAM).

• Each RAM port can be controlled by its distinct clock, RAM enable, write enable,
and data output reset.

• Initial contents specification.

Parity Bits
XST does not support parity bits.

• Parity bits are available on certain block RAM primitives.

• XST can use parity bits as regular data bits in order to accommodate the described
data widths.

• XST cannot:

– Automatically generate parity control logic.

– Use those parity bit positions for their intended purpose.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 205

Chapter 7: HDL Coding Techniques

RAM HDL Coding Guidelines
RAM HDL coding guidelines include:

• RAM Modeling

• Describing Read Access

• Block RAM Read/Write Synchronization

• Re-Settable Data Outputs (Block RAM)

• Byte-Write Enable Support (Block RAM)

• Asymmetric Ports Support

• RAM Initial Contents

RAM Modeling
RAM is usually modeled with an array of array object.

Modeling a RAM in VHDL (Single Write Port)
To model a RAM with a single write port, use a VHDL signal as follows:

type ram_type is array (0 to 255) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

Modeling a RAM in VHDL (Two Write Ports)
To model a RAM with two write ports in VHDL, use a shared variable instead of a signal.

type ram_type is array (0 to 255) of std_logic_vector (15 downto 0);
shared variable RAM : ram_type;

• XST rejects an attempt to use a signal to model a RAM with two write ports. Such a
model does not behave correctly during simulation.

• Shared variables are an extension of variables, allowing inter-process
communication.

– Use shared variables with even greater caution than variables.

– Shared variables inherit all basic characteristics from variables.

– The order in which items in a sequential process are described can condition the
functionality being modeled.

– Two or more processes making assignments to a shared variable in the same
simulation cycle can lead to unpredictable results.

• Although shared variables are valid and accepted by XST, do not use a shared
variable if the RAM has only one write port. Use a signal instead.

Modeling a RAM in Verilog Coding Example
reg [15:0] RAM [0:255];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
206 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Describing Write Access
Describing Write Access includes:

• Describing Write Access in VHDL

• Describing Write Access in Verilog

Describing Write Access in VHDL
• For a RAMmodeled with a VHDL signal, write into the RAM is typically described

as follows:

process (clk)
begin
if rising_edge(clk) then
if we = ‘1’ then
RAM(conv_integer(addr)) <= di;

end if;
end if;

end process;

• The address signal is typically declared as follows:

signal addr : std_logic_vector(ADDR_WIDTH-1 downto 0);

Including std_logic_unsigned

• You must include std_logic_unsigned in order to use the conv_integer conversion
function.

• Although std_logic_signed also includes a conv_integer function, Xilinx®
recommends that you not use std_logic_signed in this instance.

• If you use std_logic_signed:

– XST assumes that address signals have a signed representation.

– XST ignores all negative values.

– An inferred RAM of half the desired size may result.

• If you need signed data representation in some parts of the design, describe them in
units separate from the RAM components.

RAM Modeled With VHDL Shared Variable Coding Example

This coding example shows a typical write description when the RAM:

• Has two write ports, and

• Is modeled with a VHDL shared variable.

process (clk)
begin
if rising_edge(clk) then
if we = ‘1’ then
RAM(conv_integer(addr)) := di;

end if;
end if;

end process;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 207

Chapter 7: HDL Coding Techniques

Describing Write Access in Verilog
always @ (posedge clk)
begin
if (we)
RAM[addr] <= di;
end

Describing Read Access
Describing Read Access includes:

• Describing Read Access in VHDL

• Describing Read Access in Verilog

Describing Read Access in VHDL
• A RAM component is typically read-accessed at a given address location.

do <= RAM(conv_integer(addr));

• Whether this statement is a simple concurrent statement, or is described in a
sequential process, determines whether :

– The read is asynchronous or synchronous.

– The RAM component is implemented using:

♦ block RAM resources, or

♦ distributed RAM resources

• For more information, see Block RAM Read/Write Synchronization.

RAM Implemented on Block Resources Coding Example
process (clk)
begin
do <= RAM(conv_integer(addr));

end process;

Describing Read Access in Verilog
• Describe an asynchronous read with an assign statement.

assign do = RAM[addr];

• Describe a synchronous read with a sequential always block.

always @ (posedge clk)
begin
do <= RAM[addr];

end

• For more information, see Block RAM Read/Write Synchronization.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
208 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Block RAM Read/Write Synchronization
• You can configure Block RAM resources to provide the following synchronization

modes for a given read/write port:

– Read-first

Old content is read before new content is loaded.

– Write-first

♦ New content is immediately made available for reading.

♦ Write-first is also known as read-through.

– No-change

Data output does not change as new content is loaded into RAM.

• XST provides inference support for all of these synchronization modes. You can
describe a different synchronization mode for each port of the RAM.

Block RAM Read/Write Synchronization VHDL Coding Example One
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) <= di;
end if;
do <= RAM(conv_integer(addr));

end if;
end process;

Block RAM Read/Write Synchronization VHDL Coding Example Two
This coding example describes a write-first synchronized port.

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end process;

Block RAM Read/Write Synchronization VHDL Coding Example Three
This coding example describes a no-change synchronization.

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) <= di;
else

do <= RAM(conv_integer(addr));
end if;

end if;
end process;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 209

Chapter 7: HDL Coding Techniques

Block RAM Read/Write Synchronization VHDL Coding Example Four
Caution! If you model a dual-write RAM with a VHDL shared variable, be aware that
the synchronization described below is not read-first, but write-first.

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) := di;
end if;
do <= RAM(conv_integer(addr));

end if;
end process;

Block RAM Read/Write Synchronization VHDL Coding Example Five
To describe a read-first synchronization, reorder the process body.

process (clk)
begin

if (clk’event and clk = ’1’) then
do <= RAM(conv_integer(addr));
if (we = ’1’) then

RAM(conv_integer(addr)) := di;
end if;

end if;
end process;

Re-Settable Data Outputs (Block RAM)
You can optionally describe a reset to any constant value of synchronously read data.

• XST recognizes the reset and takes advantage of the synchronous set/reset feature of
block RAM components.

• For a RAM port with read-first synchronization, describe the reset functionality as
shown in the following coding example.

Re-Settable Data Outputs (Block RAM) Coding Example
process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then -- optional RAM enable

if we = ’1’ then -- write enable
ram(conv_integer(addr)) <= di;

end if;
if rst = ’1’ then -- optional dataout reset

do <= "00011101";
else

do <= ram(conv_integer(addr));
end if;

end if;
end if;

end process;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
210 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Byte-Wide Write Enable (Block RAM)
Xilinx® supports byte-wide write enable in block RAM.

• Use byte-wide write enable in block RAM to:

– Exercise advanced control over writing data into RAM.

– Separately specify the writeable portions of 8 bits of an addressed memory.

• From the standpoint of HDL modeling and inference, the concept is best described
as a column-based write.

– The RAM is seen as a collection of equal size columns.

– During a write cycle, you separately control writing into each of these columns.

• XST inferencing allows you to take advantage of the block RAM byte-wide enable
feature.

• XST supports two description styles:

– Single-Process Description Style (Recommended)

– Two-Process Description Style (Not Recommended)

Single-Process Description Style (Recommended)
The Single-Process Description Style is more intuitive and less error-prone than the
Two-Process Description Style.

The described RAM is implemented on block RAM resources, using the byte-write
enable capability, provided that the following requirements are met.

• Write columns of equal widths

• Allowed write column widths: 8-bit, 9-bit, 16-bit, 18-bit

For other write column widths, such as 5-bit or 12-bit, XST uses distributed RAM
resources and creates additional multiplexing logic on the data input.

• Number of write columns: any

• RAM depth: any

XST implements the RAM using one or several block RAM primitives as needed.

• Supported read-write synchronizations: read-first, write-first, no-change

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 211

Chapter 7: HDL Coding Techniques

Single-Process Description Style VHDL Coding Example
This coding example uses generics and a for-loop construct for a compact and easily
changeable configuration of the desired number and width of write columns.

--
-- Single-Port BRAM with Byte-wide Write Enable
-- 2x8-bit write
-- Read-First mode
-- Single-process description
-- Compact description of the write with a for-loop statement
-- Column width and number of columns easily configurable
--
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/bytewrite_ram_1b.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_ram_1b is

generic (
SIZE : integer := 1024;
ADDR_WIDTH : integer := 10;
COL_WIDTH : integer := 8;
NB_COL : integer := 2);

port (
clk : in std_logic;
we : in std_logic_vector(NB_COL-1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(NB_COL*COL_WIDTH-1 downto 0);
do : out std_logic_vector(NB_COL*COL_WIDTH-1 downto 0));

end bytewrite_ram_1b;

architecture behavioral of bytewrite_ram_1b is

type ram_type is array (SIZE-1 downto 0)
of std_logic_vector (NB_COL*COL_WIDTH-1 downto 0);

signal RAM : ram_type := (others => (others => ’0’));

begin

process (clk)
begin
if rising_edge(clk) then
do <= RAM(conv_integer(addr));
for i in 0 to NB_COL-1 loop
if we(i) = ’1’ then

RAM(conv_integer(addr))((i+1)*COL_WIDTH-1 downto i*COL_WIDTH)
<= di((i+1)*COL_WIDTH-1 downto i*COL_WIDTH);

end if;
end loop;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
212 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Single-Process Description Style Verilog Coding Example
This coding example uses parameters and a generate-for construct.

//
// Single-Port BRAM with Byte-wide Write Enable
// 4x9-bit write
// Read-First mode
// Single-process description
// Compact description of the write with a generate-for statement
// Column width and number of columns easily configurable
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/bytewrite_ram_1b.v
//
module v_bytewrite_ram_1b (clk, we, addr, di, do);

parameter SIZE = 1024;
parameter ADDR_WIDTH = 10;
parameter COL_WIDTH = 9;
parameter NB_COL = 4;

input clk;
input [NB_COL-1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [NB_COL*COL_WIDTH-1:0] di;
output reg [NB_COL*COL_WIDTH-1:0] do;

reg [NB_COL*COL_WIDTH-1:0] RAM [SIZE-1:0];

always @(posedge clk)
begin
do <= RAM[addr];

end

generate
genvar i;
for (i = 0; i < NB_COL; i = i+1)
begin
always @(posedge clk)
begin
if (we[i])
RAM[addr][(i+1)*COL_WIDTH-1:i*COL_WIDTH] <= di[(i+1)*COL_WIDTH-1:i*COL_WIDTH];

end
end

endgenerate

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 213

Chapter 7: HDL Coding Techniques

Single-Process Description Style for No-Change VHDL Coding Example
The Single-Process Description Style is the only way to correctly model byte-write
enable functionality in conjunction with no-change read-write synchronization.

--
-- Single-Port BRAM with Byte-wide Write Enable
-- 2x8-bit write
-- No-Change mode
-- Single-process description
-- Compact description of the write with a for-loop statement
-- Column width and number of columns easily configurable
--
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/bytewrite_nochange.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_nochange is

generic (
SIZE : integer := 1024;
ADDR_WIDTH : integer := 10;
COL_WIDTH : integer := 8;
NB_COL : integer := 2);

port (
clk : in std_logic;
we : in std_logic_vector(NB_COL-1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(NB_COL*COL_WIDTH-1 downto 0);
do : out std_logic_vector(NB_COL*COL_WIDTH-1 downto 0));

end bytewrite_nochange;

architecture behavioral of bytewrite_nochange is

type ram_type is array (SIZE-1 downto 0) of std_logic_vector (NB_COL*COL_WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

begin

process (clk)
begin
if rising_edge(clk) then
if (we = (we’range => ’0’)) then
do <= RAM(conv_integer(addr));

end if;
for i in 0 to NB_COL-1 loop
if we(i) = ’1’ then

RAM(conv_integer(addr))((i+1)*COL_WIDTH-1 downto i*COL_WIDTH)
<= di((i+1)*COL_WIDTH-1 downto i*COL_WIDTH);

end if;
end loop;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
214 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Single-Process Description Style for No-Change Verilog Coding Example
//
// Single-Port BRAM with Byte-wide Write Enable
// 4x9-bit write
// No-Change mode
// Single-process description
// Compact description of the write with a generate-for statement
// Column width and number of columns easily configurable
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/bytewrite_nochange.v
//
module v_bytewrite_nochange (clk, we, addr, di, do);

parameter SIZE = 1024;
parameter ADDR_WIDTH = 10;
parameter COL_WIDTH = 9;
parameter NB_COL = 4;

input clk;
input [NB_COL-1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [NB_COL*COL_WIDTH-1:0] di;
output reg [NB_COL*COL_WIDTH-1:0] do;

reg [NB_COL*COL_WIDTH-1:0] RAM [SIZE-1:0];

always @(posedge clk)
begin
if (~|we)
do <= RAM[addr];

end

generate
genvar i;
for (i = 0; i < NB_COL; i = i+1)
begin
always @(posedge clk)
begin
if (we[i])
RAM[addr][(i+1)*COL_WIDTH-1:i*COL_WIDTH]

<= di[(i+1)*COL_WIDTH-1:i*COL_WIDTH];
end

end
endgenerate

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 215

Chapter 7: HDL Coding Techniques

Two-Process Description Style
In order to take advantage of block RAM byte-write enable capabilities, you must
provide adequate data read synchronization. If you do not do so, XST implements the
described functionality sub-optimally, using distributed RAM resources instead.

• The Two-Process Description Style continues to be supported, but is no longer
recommended.

• The Two-Process Description Style does not allow you to properly describe
byte-write enable functionality in conjunction with the no-change synchronization
mode.

• Xilinx recommends:

– If you currently use the Two-Process Description Style, change your design to
the Single-Process Description Style.

– Do not use the Two-Process Description Style for new designs.

• If you are unable to migrate your code to the Single-Process Description Style, XST
still supports the Two-Process Description Style.

• In the Two-Process Description Style:

– A combinatorial process describes which data is loaded and read for each byte.
In particular, the write enable functionality is described there, and not in the
main sequential process.

– A sequential process describes the write and read synchronization.

– Data widths are more restrictive than with the Single-Process Description Style:

♦ Number of write columns: 2 or 4

♦ Write column widths: 8-bit or 9-bit

♦ Supported data widths: 2x8-bit (two columns of 8 bits each), 2x9-bit, 4x8-bit,
4x9-bit

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
216 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Two-Process Description Style VHDL Coding Example
--
-- Single-Port BRAM with Byte-wide Write Enable
-- 2x8-bit write
-- Read-First Mode
-- Two-process description
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_24.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_24 is

generic (
SIZE : integer := 512;
ADDR_WIDTH : integer := 9;
COL_WIDTH : integer := 16;
NB_COL : integer := 2);

port (
clk : in std_logic;
we : in std_logic_vector(NB_COL-1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(NB_COL*COL_WIDTH-1 downto 0);
do : out std_logic_vector(NB_COL*COL_WIDTH-1 downto 0));

end rams_24;

architecture syn of rams_24 is

type ram_type is array (SIZE-1 downto 0) of std_logic_vector (NB_COL*COL_WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

signal di0, di1 : std_logic_vector (COL_WIDTH-1 downto 0);
begin

process(we, di)
begin

if we(1) = ’1’ then
di1 <= di(2*COL_WIDTH-1 downto 1*COL_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*COL_WIDTH-1 downto 1*COL_WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(COL_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(COL_WIDTH-1 downto 0);

end if;
end process;

process(clk)
begin

if (clk’event and clk = ’1’) then
do <= RAM(conv_integer(addr));
RAM(conv_integer(addr)) <= di1 & di0;

end if;
end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 217

Chapter 7: HDL Coding Techniques

Two-Process Description Style Verilog Coding Example
//
// Single-Port BRAM with Byte-wide Write Enable (2 bytes) in Read-First Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_24.v
//
module v_rams_24 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH = 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;

always @(we or di)
begin

if (we[1])
di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

else
di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

if (we[0])
di0 = di[DI_WIDTH-1:0];

else
di0 = RAM[addr][DI_WIDTH-1:0];

end

always @(posedge clk)
begin

do <= RAM[addr];
RAM[addr]<={di1,di0};

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
218 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Asymmetric Ports Support (Block RAM)
Block RAM resources can be configured with two asymmetric ports.

• Port A accesses the physical memory with a specific data width.

• Port B accesses the same physical memory with a different data width.

• Both ports access the same physical memory, but see a different logical organization
of the RAM. For example, the same 2048 bits of physical memory may be seen as:

– 256x8-bit by Port A

– 64x32-bit by Port B

• Such an asymmetrically configured block RAM is said to have ports with different
aspect ratios.

• A typical use of port asymmetry is to create storage and buffering between two data
flows. The data flows:

– Have different data width characteristics.

– Operate at asymmetric speeds.

Block RAM With Asymmetric Ports Modeling
Like RAM with no port asymmetry, block RAM with asymmetric ports is modeled
with a single array of array object.

• The depth and width characteristics of the modeling signal or shared variable match
the RAM port with the lower data width (subsequently the larger depth).

• As a result of this modeling requirement, describing a read or write access for the
port with the larger data width no longer implies one assignment, but several
assignments.

– The number of assignments equals the ratio between the two asymmetric data
widths.

– Each of these assignments may be explicitly described as illustrated in the
following coding examples.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 219

Chapter 7: HDL Coding Techniques

Asymmetric Port RAM VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit write-only
-- Port B is 64x32-bit read-only
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_1a.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_1a is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
enA : in std_logic;
enB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_1a;

architecture behavioral of asymmetric_ram_1a is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
signal ram : ramType := (others => (others => ’0’));

signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
220 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) <= diA;

end if;
end if;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
readB(minWIDTH-1 downto 0)

<= ram(conv_integer(addrB&conv_std_logic_vector(0,2)));
readB(2*minWIDTH-1 downto minWIDTH)

<= ram(conv_integer(addrB&conv_std_logic_vector(1,2)));
readB(3*minWIDTH-1 downto 2*minWIDTH)

<= ram(conv_integer(addrB&conv_std_logic_vector(2,2)));
readB(4*minWIDTH-1 downto 3*minWIDTH)

<= ram(conv_integer(addrB&conv_std_logic_vector(3,2)));
end if;
regB <= readB;

end if;
end process;

doB <= regB;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 221

Chapter 7: HDL Coding Techniques

Asymmetric Port RAM Verilog Coding Example
//
// Asymmetric port RAM
// Port A is 256x8-bit write-only
// Port B is 64x32-bit read-only
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/asymmetric_ram_1a.v
//
module v_asymmetric_ram_1a (clkA, clkB, weA, reB, addrA, addrB, diA, doB);

parameter WIDTHA = 8;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
parameter WIDTHB = 32;
parameter SIZEB = 64;
parameter ADDRWIDTHB = 6;

input clkA;
input clkB;
input weA;
input reB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output reg [WIDTHB-1:0] doB;

‘define max(a,b) {(a) > (b) ? (a) : (b)}
‘define min(a,b) {(a) < (b) ? (a) : (b)}

localparam maxSIZE = ‘max(SIZEA, SIZEB);
localparam maxWIDTH = ‘max(WIDTHA, WIDTHB);
localparam minWIDTH = ‘min(WIDTHA, WIDTHB);
localparam RATIO = maxWIDTH / minWIDTH;

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];

reg [WIDTHB-1:0] readB;

always @(posedge clkA)
begin
if (weA)
RAM[addrA] <= diA;

end

always @(posedge clkB)
begin
if (reB)
begin
doB <= readB;
readB[4*minWIDTH-1:3*minWIDTH] <= RAM[{addrB, 2’d3}];
readB[3*minWIDTH-1:2*minWIDTH] <= RAM[{addrB, 2’d2}];
readB[2*minWIDTH-1:minWIDTH] <= RAM[{addrB, 2’d1}];
readB[minWIDTH-1:0] <= RAM[{addrB, 2’d0}];

end
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
222 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Using For-Loop Statements
Use a for-loop statement to make your VHDL code:
• More compact
• Easier to maintain
• Easier to scale

VHDL Coding Example Using For-Loop Statement
--
-- Asymmetric port RAM
-- Port A is 256x8-bit write-only
-- Port B is 64x32-bit read-only
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_1b.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_1b is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
enA : in std_logic;
enB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_1b;

architecture behavioral of asymmetric_ram_1b is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 223

Chapter 7: HDL Coding Techniques

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
signal ram : ramType := (others => (others => ’0’));

signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) <= diA;

end if;
end if;

end if;

end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
for i in 0 to RATIO-1 loop
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end loop;

end if;
regB <= readB;

end if;
end process;

doB <= regB;

end behavioral;

Verilog Coding Example Using Parameters and Generate-For Statement
Use parameters and a generate-for statement to make your Verilog code:
• More compact
• Easier to modify

//
// Asymmetric port RAM
// Port A is 256x8-bit write-only
// Port B is 64x32-bit read-only
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/v_asymmetric_ram_1b.v
//
module v_asymmetric_ram_1b (clkA, clkB, weA, reB, addrA, addrB, diA, doB);

parameter WIDTHA = 8;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
224 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

parameter WIDTHB = 32;
parameter SIZEB = 64;
parameter ADDRWIDTHB = 6;

input clkA;
input clkB;
input weA;
input reB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output reg [WIDTHB-1:0] doB;

‘define max(a,b) {(a) > (b) ? (a) : (b)}
‘define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;

begin
if (value < 2)
log2 = value;

else
begin
shifted = value-1;
for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;

log2 = res;
end

end
endfunction

localparam maxSIZE = ‘max(SIZEA, SIZEB);
localparam maxWIDTH = ‘max(WIDTHA, WIDTHB);
localparam minWIDTH = ‘min(WIDTHA, WIDTHB);
localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];

reg [WIDTHB-1:0] readB;

genvar i;

always @(posedge clkA)
begin
if (weA)
RAM[addrA] <= diA;

end

always @(posedge clkB)
begin
if (reB)
doB <= readB;

end

generate for (i = 0; i < RATIO; i = i+1)
begin: ramread
localparam [log2RATIO-1:0] lsbaddr = i;
always @(posedge clkB)
begin
readB[(i+1)*minWIDTH-1:i*minWIDTH] <= RAM[{addrB, lsbaddr}];

end
end

endgenerate

endmodule

Note These coding examples use min, max, and log2 functions to make the code as
generic and clean as possible. Those functions can be defined anywhere in the design,
typically in a package.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 225

Chapter 7: HDL Coding Techniques

Shared Variable (VHDL)
• When you describe a symmetric port RAM in VHDL, a shared variable is required

only if you describe two ports writing into the RAM. Otherwise, a signal is preferred.
• When you describe an asymmetric port RAM in VHDL, a shared variable may be

required even if only one write port is described. If the write port has the larger data
width, several write assignments are needed to describe it, and a shared variable is
therefore required as shown in the following coding example.

Shared Variable Required VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-only
-- Port B is 64x32-bit write-only
-- Compact description with a for-loop statement
-- A shared variable is necessary because of the multiple write assignments
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_4.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_4 is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
reA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0)
);

end asymmetric_ram_4;

architecture behavioral of asymmetric_ram_4 is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
226 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if reA = ’1’ then
readA <= ram(conv_integer(addrA));

end if;
regA <= readA;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if weB = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;

end process;

doA <= regA;

end behavioral;

Caution! Shared variables are an extension of variables, from which they inherit all
basic characteristics, allowing inter-process communication. Use them with great
caution.

• The order in which items in a sequential process are described can condition the
functionality being modeled.

• Two or more processes making assignments to a shared variable in the same
simulation cycle can lead to unpredictable results.

Read-Write Synchronization
• Read-Write synchronization is controlled in a similar manner, whether describing a

symmetric or asymmetric RAM.

• The following coding examples describe a RAM with two asymmetric read-write
ports, and illustrate how to respectively model write-first, read-first, and no-change
synchronization.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 227

Chapter 7: HDL Coding Techniques

Asymmetric Port RAM (Write-First) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-and-write (write-first synchronization)
-- Port B is 64x32-bit read-and-write (write-first synchronization)
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_2b.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_2b is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_2b;

architecture behavioral of asymmetric_ram_2b is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
228 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) := diA;

end if;
readA <= ram(conv_integer(addrA));

end if;
regA <= readA;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
if weB = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
for i in 0 to RATIO-1 loop
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end loop;

end if;
regB <= readB;

end if;
end process;

doA <= regA;
doB <= regB;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 229

Chapter 7: HDL Coding Techniques

Asymmetric Port RAM (Read-First) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-and-write (read-first synchronization)
-- Port B is 64x32-bit read-and-write (read-first synchronization)
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_2c.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_2c is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_2c;

architecture behavioral of asymmetric_ram_2c is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
230 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
readA <= ram(conv_integer(addrA));
if weA = ’1’ then
ram(conv_integer(addrA)) := diA;

end if;
end if;
regA <= readA;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
for i in 0 to RATIO-1 loop
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end loop;
if weB = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;
regB <= readB;

end if;
end process;

doA <= regA;
doB <= regB;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 231

Chapter 7: HDL Coding Techniques

Asymmetric Port RAM (No-Change) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-and-write (no-change synchronization)
-- Port B is 64x32-bit read-and-write (no-change synchronization)
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_2d.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_2d is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_2d;

architecture behavioral of asymmetric_ram_2d is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
232 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) := diA;

else
readA <= ram(conv_integer(addrA));

end if;
end if;
regA <= readA;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
for i in 0 to RATIO-1 loop
if weB = ’1’ then
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
else
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end if;

end loop;
end if;
regB <= readB;

end if;
end process;

doA <= regA;
doB <= regB;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 233

Chapter 7: HDL Coding Techniques

Parity Bits
For asymmetric port RAMs, XST can take advantage of the available block RAM parity
bits to implement extra data bits for word sizes of 9, 18 and 36 bits.

Asymmetric Port RAM (Parity Bits) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 2048x18-bit write-only
-- Port B is 4096x9-bit read-only
-- XST uses parity bits to accomodate data widths
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_3.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_3 is

generic (
WIDTHA : integer := 18;
SIZEA : integer := 2048;
ADDRWIDTHA : integer := 11;
WIDTHB : integer := 9;
SIZEB : integer := 4096;
ADDRWIDTHB : integer := 12
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
reB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_3;

architecture behavioral of asymmetric_ram_3 is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
234 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if weA = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrA & conv_std_logic_vector(i,log2(RATIO))))

:= diA((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;

end process;

process (clkB)
begin
if rising_edge(clkB) then
regB <= readB;
if reB = ’1’ then
readB <= ram(conv_integer(addrB));

end if;
end if;

end process;

doB <= regB;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 235

Chapter 7: HDL Coding Techniques

Asymmetric Ports Guidelines
Follow these guidelines to ensure that the synthesized solution is implemented
optimally on dedicated block RAM resources.

• Support for port asymmetry is available only if the described RAM can be
implemented on block RAM resources. Be sure to provide adequate data read
synchronization.

• Port asymmetry is supported only if the described RAM fits in a single block RAM
primitive.

• If the described asymmetric port RAM does not fit in a single block RAM primitive,
you must manually instantiate the desired device primitives.

• If XST cannot use asymmetrically-configured block RAM resources, the described
RAM is implemented on LUT resources, giving suboptimal results and a significant
increase in runtime.

• The amount of memory accessible from both ports must match exactly.

Example Do not try to describe a port which sees the RAM as a 256x8-bit (2048 bits
of memory), while the other port sees the RAM as a 64x12-bit (768 bits of memory).

• The ratio between both data widths is a power of two. .

• The ratio between both port depths is a power of two.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
236 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Asymmetric Ports Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <asymmetric_ram_1a>.
Found 256x8:64x32-bit dual-port RAM <Mram_ram> for signal <ram>.
Found 32-bit register for signal <doB>.
Found 32-bit register for signal <readB>.
Summary:
inferred 1 RAM(s).
inferred 64 D-type flip-flop(s).

Unit <asymmetric_ram_1a> synthesized.

===
HDL Synthesis Report

Macro Statistics
RAMs : 1
256x8:64x32-bit dual-port RAM : 1
Registers : 2
32-bit register : 2

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <asymmetric_ram_1a>.
INFO:Xst - The RAM <Mram_ram> will be implemented as a BLOCK RAM,
absorbing the following register(s): <readB> <doB>

| ram_type | Block | |

| Port A |
aspect ratio	256-word x 8-bit	
mode	read-first	
clkA	connected to signal <clkA>	rise
weA	connected to signal <weA_0>	high
addrA	connected to signal <addrA>	
diA	connected to signal <diA>	

| optimization | speed | |

| Port B |
aspect ratio	64-word x 32-bit	
mode	write-first	
clkB	connected to signal <clkB>	rise
enB	connected to signal <enB>	high
addrB	connected to signal <addrB>	
doB	connected to signal <doB>	

| optimization | speed | |

Unit <asymmetric_ram_1a> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
RAMs : 1
256x8:64x32-bit dual-port block RAM : 1

===

…

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 237

Chapter 7: HDL Coding Techniques

RAM Initial Contents
Tasks in RAM Initial Contents include:

• Specifying RAM Initial Contents in the HDL Source Code

• Specifying RAM Initial Contents in an External Data File

Specifying RAM Initial Contents in the HDL Source Code
Use the signal default value mechanism to describe initial RAM contents directly in the
HDL source code.

VHDL Coding Example One
type ram_type is array (0 to 31) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=
(

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
X"00340", X"00241", X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021", X"0030D", X"08201"

);

VHDL Coding Example Two
All addressable words are initialized to the same value.

type ram_type is array (0 to 127) of std_logic_vector (15 downto 0);
signal RAM : ram_type := (others => "0000111100110101");

VHDL Coding Example Three
All bit positions are initialized to the same value.

type ram_type is array (0 to 127) of std_logic_vector (15 downto 0);
signal RAM : ram_type := (others => (others => ’1’));

VHDL Coding Example Four
Particular values are selectively defined for specific address positions or ranges.

type ram_type is array (255 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type:= (

196 downto 110 => X"B8B8",
100 => X"FEFC"
99 downto 0 => X"8282",
others => X"3344");

Verilog Coding Example One
Use an initial block.

reg [19:0] ram [31:0];

initial begin
ram[31] = 20’h0200A; ram[30] = 20’h00300; ram[39] = 20’h08101;
(...)
ram[2] = 20’h02341; ram[1] = 20’h08201; ram[0] = 20’h0400D;

end

Verilog Coding Example Two
All addressable words are initialized to the same value.

Reg [DATA_WIDTH-1:0] ram [DEPTH-1:0];

integer i;
initial for (i=0; i<DEPTH; i=i+1) ram[i] = 0;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
238 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Verilog Coding Example Three
Specific address positions or address ranges are initialized.

reg [15:0] ram [255:0];

integer index;
initial begin

for (index = 0 ; index <= 97 ; index = index + 1)
ram[index] = 16’h8282;

ram[98] <= 16’h1111;
ram[99] <= 16’h7778;
for (index = 100 ; index <= 255 ; index = index + 1)

ram[index] = 16’hB8B8;
end

Specifying RAM Initial Contents in an External Data File
• Use the file read function in the HDL source code to load the RAM initial contents

from an external data file.
– The external data file is an ASCII text file with any name.
– Each line in the external data file describes the initial content at an address

position in the RAM.
– There must be as many lines in the external data file as there are rows in the

RAM array. An insufficient number of lines is flagged.
– The addressable position related to a given line is defined by the direction of

the primary range of the signal modeling the RAM.
– You can represent RAM content in either binary or hexadecimal. You cannot

mix both.
– The external data file cannot contain any other content, such as comments.

• The following external data file initializes an 8 x 32-bit RAM with binary values:

00001111000011110000111100001111
01001010001000001100000010000100
00000000001111100000000001000001
11111101010000011100010000100100
00001111000011110000111100001111
01001010001000001100000010000100
00000000001111100000000001000001
11111101010000011100010000100100

• For more information, see:
– VHDL File Type Support
– Chapter 5, Behavioral Verilog

VHDL Coding Example
Load the data as follows.

type RamType is array(0 to 127) of bit_vector(31 downto 0);

impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;

begin
for I in RamType’range loop

readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));

end loop;
return RAM;

end function;

signal RAM : RamType := InitRamFromFile("rams_20c.data");

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 239

Chapter 7: HDL Coding Techniques

Verilog Coding Example
Use a $readmemb or $readmemh system task to load respectively binary-formatted or
hexadecimal data.

reg [31:0] ram [0:63];

initial begin
$readmemb("rams_20c.data", ram, 0, 63);

end

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
240 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Block RAM Optimization Strategies
• When an inferred RAM macro does not fit in a single block RAM, you may choose

among several methods to partition it onto several block RAM components.
• Depending on your choice, the number of block RAM primitives and the amount

of surrounding logic will vary.
• These variations lead to different optimization trade-offs among performance,

device utilization, and power.

Block RAM Performance
• The default block RAM implementation strategy attempts to maximize performance.
• XST does not try to achieve the minimum theoretical number of block RAM

primitives for a given RAM size requiring multiple block RAM primitives.
• Implementing small RAM components on block resources often does not lead to

optimal performance.
• Block RAM resources can be used for small RAM components at the expense of

much larger macros.
• XST implements small RAM components on distributed resources in order to

achieve better design performance.
• For more information, see Rules for Small RAM Components.

Block RAM Device Utilization
• XST does not support area-oriented block RAM implementation.
• Use the CORE Generator™ software for area-oriented implementation.
• For more information, see Chapter 8, FPGA Optimization.

Block RAM Power Reduction
Techniques to reduce block RAM power dissipation:
• Are part of a larger set of optimizations controlled by the Power Reduction

constraint.
• Are enabled by the RAM Style constraint.
• Are primarily aimed at reducing the number of simultaneously-active block RAM

components.
• Apply only to inferred memories that:

– Require a decomposition on several block RAM primitives, and
– Take advantage of the enable capability of block RAM resources.

• Have no effect on an inferred memory that fits in single block RAM primitive.

Additional Enable Logic
XST creates additional enable logic to ensure that only one block RAM primitive is
simultaneously enabled to implement an inferred memory. This additional enable logic
seeks to:
• Reduce power
• Optimize area
• Optimize speed

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 241

Chapter 7: HDL Coding Techniques

Optimization Trade-Offs
The RAM Style constraint makes two optimization trade-offs available:

• block_power1

• block_power2

block_power1

• Achieves some degree of power reduction.

• May minimally impact power depending on memory characteristics.

• Minimally impacts performance.

• Uses the default block RAM decomposition method. This method:

– Is performance-oriented.

– Adds block RAM enable logic.

block_power2

• Provides more significant power reduction.

• May leave some performance capability unused.

• May induce additional slice logic.

• Uses a different block RAM decomposition method from block_power1.

– Attempts to reduce the number of block RAM primitives required to implement
an inferred memory. This method:

– Inserts block RAM enable logic in order to minimize the number of active block
RAM components.

– Creates multiplexing logic to read the data from active block RAM components.

Use block_power2 if:

• Your primary concern is power reduction, and

• You are willing to give up some degree of speed and area optimization.

Summary of Comparison Between block_power1 and block_power2
block_power1 block_power2

Power Reduction • Achieves some degree of power
reduction.

• May minimally impact power
depending on memory
characteristics.

Provides more significant power
reduction.

Performance Minimally impacts performance. May leave some performance capability
unused.

block RAM decomposition method Uses the default block RAM
decomposition method.

Uses a different block RAM
decomposition method.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
242 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Rules for Small RAM Components
• XST does not implement small memories on block RAM.
• XST does so in order to save block RAM resources.
• The threshold varies depending on:

– The device family
– The number of addressable data words (memory depth)
– The total number of memory bits (number of addressable data words * data

word width)
• XST implements inferred RAM on block RAM resources when it meets the criteria

in the following table.
• Use RAM Style to override these criteria and force implementation of small RAM

and ROM components on block resources.

Criteria for Implementing Inferred RAM on Block RAM Resources
Devices Depth Depth * Width

Spartan®-6 >= 127 words > 512 bits

Virtex®-6 >= 127 words > 512 bits

7 series >= 127 words > 512 bits

Implementing General Logic and FSM Components on Block RAM
• XST can implement the following on block RAM resources:

– General logic
– FSM Components

• For more information, see Mapping Logic to Block RAM.

Block RAM Resource Management
• XST takes into account the actual amount of block RAM resources available in order

to avoid overmapping the device.
– XST may use all available block RAM resources.
– BRAM Utilization Ratio forces XST to leave some block RAM resources

unallocated.
• XST determines the actual amount of block RAM resources available for inferred

RAM macros. XST subtracts the following amounts from the overall pool
theoretically defined by BRAM Utilization Ratio:
1. Block RAM that you have instantiated.
2. RAM and ROM components that you forced to block RAM implementation with

RAM Style or ROM Style. XST honors those constraints before attempting to
implement other inferred RAM components to block resources.

3. Block RAM resulting from the mapping of logic or Finite State Machine (FSM)
components to Map Logic on BRAM.

• The XST block RAM allocation strategy favors the largest inferred RAM components
for block implementation. This strategy allows smaller RAM components to go to
block resources if there are any left on the device.

• Block RAM over-utilization can occur if the sum of block RAM components created
from the three cases listed above exceeds available resources. XST avoids this
over-utilization in most cases.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 243

Chapter 7: HDL Coding Techniques

Block RAM Packing
• XST can implement additional RAM on block resources by packing small single-port

RAM components together.

• XST can implement two single-port RAM components on a single dual-port block
RAM primitive. Each port manages a physically distinct part of the block RAM.

• This optimization is controlled by Automatic BRAM Packing, and is disabled by
default.

Distributed RAM Pipelining
• XST can pipeline RAM components implemented on distributed resources.

– There must be an adequate number of latency stages.

– The effect of pipelining is similar to Flip-Flop Retiming.

– The result is increased performance.

• To insert pipeline stages:

1. Describe the necessary number of Registers in the HDL source code.

2. Place the Registers after the RAM.

3. Set RAM Style to pipe_distributed.

• During pipelining:

– XST calculates the ideal number of Register stages needed to maximize
operating frequency.

– XST issues an HDL Advisor message if there are fewer than the ideal number of
Register stages. The message reports the number of additional Register stages
needed to achieve the ideal number.

– XST cannot pipeline distributed RAM components if the Registers have
asynchronous set or reset logic.

– XST can pipeline RAM components if Registers contain synchronous reset
signals.

RAM Related Constraints
• The RAM related constraints are:

– RAM Extraction

– RAM Style

– ROM Extraction

– ROM Style

– BRAM Utilization Ratio

– Automatic BRAM Packing

• XST accepts LOC and RLOC on inferred RAM implemented in a single block RAM
primitive.

• LOC and RLOC are propagated to the NGC netlist.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
244 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

RAM Reporting
• XST provides detailed information on inferred RAM, including:

– Size

– Synchronization

– Control signals

• RAM recognition consists of two steps:

1. HDL Synthesis

XST recognizes the presence of the memory structure in the HDL source code.

2. Advanced HDL Synthesis

After acquiring a more accurate picture of each RAM component, XST
implements them on distributed or block RAM resources, depending on
resource availability.

• An inferred block RAM is generally reported as shown in the following example.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 245

Chapter 7: HDL Coding Techniques

RAM Reporting Log Example
===
* HDL Synthesis *
===

Synthesizing Unit <rams_27>.
Found 16-bit register for signal <do>.
Found 128x16-bit dual-port <RAM Mram_RAM> for signal <RAM>.
Summary:

inferred 1 RAM(s).
inferred 16 D-type flip-flop(s).
Unit <rams_27> synthesized.

===
HDL Synthesis Report

Macro Statistics
RAMs : 1
128x16-bit dual-port RAM : 1
Registers : 1
16-bit register : 1

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <rams_27>.
INFO:Xst - The <RAM Mram_RAM> will be implemented as a BLOCK RAM,
absorbing the following register(s): <do>

| ram_type | Block | |

| Port A |
aspect ratio	128-word x 16-bit	
mode	read-first	
clkA	connected to signal <clk>	rise
weA	connected to signal <we>	high
addrA	connected to signal <waddr>	
diA	connected to signal <di>	

| optimization | speed | |

| Port B |
aspect ratio	128-word x 16-bit	
mode	write-first	
clkB	connected to signal <clk>	rise
enB	connected to signal <re>	high
addrB	connected to signal <raddr>	
doB	connected to signal <do>	

| optimization | speed | |

Unit <rams_27> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
RAMs : 1
128x16-bit dual-port block RAM : 1

===

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
246 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Pipelining of Distributed RAM Reporting Log Example
Pipelining of a distributed RAM results in the following specific reporting in the
Advanced HDL Synthesis section.

Synthesizing (advanced) Unit <v_rams_22>.
Found pipelined ram on signal <n0006>:
- 1 pipeline level(s) found in a register on signal <n0006>.
Pushing register(s) into the ram macro.

INFO:Xst:2390 - HDL ADVISOR - You can improve the performance of the ram Mram_RAM
by adding 1 register level(s) on output signal n0006.
Unit <v_rams_22> synthesized (advanced).

RAM Coding Examples
For update information, see “Coding Examples” in the Introduction.

Single-Port RAM with Asynchronous Read (Distributed RAM) VHDL Coding
Example

--
-- Single-Port RAM with Asynchronous Read (Distributed RAM)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_04.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_04 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_04;

architecture syn of rams_04 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;

do <= RAM(conv_integer(a));

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 247

Chapter 7: HDL Coding Techniques

Dual-Port RAM with Asynchronous Read (Distributed RAM) Verilog Coding
Example

//
// Dual-Port RAM with Asynchronous Read (Distributed RAM)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_09.v
//
module v_rams_09 (clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [5:0] a;
input [5:0] dpra;
input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end

assign spo = ram[a];
assign dpo = ram[dpra];

endmodule

Single-Port Block RAM Read-First Mode VHDL Coding Example
--
-- Single-Port Block RAM Read-First Mode
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_01.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_01 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_01;

architecture syn of rams_01 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM: ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;

end if;
do <= RAM(conv_integer(addr)) ;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
248 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Single-Port Block RAM Read-First Mode Verilog Coding Example
//
// Single-Port Block RAM Read-First Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_01.v
//
module v_rams_01 (clk, en, we, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr]<=di;

do <= RAM[addr];
end

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 249

Chapter 7: HDL Coding Techniques

Single-Port Block RAM Write-First Mode VHDL Coding Example
--
-- Single-Port Block RAM Write-First Mode (recommended template)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_02a.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02a is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_02a;

architecture syn of rams_02a is
type ram_type is array (63 downto 0)

of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
250 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Single-Port Block RAM Write-First Mode Verilog Coding Example
//
// Single-Port Block RAM Write-First Mode (recommended template)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_02a.v
//
module v_rams_02a (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
begin

RAM[addr] <= di;
do <= di;

end
else

do <= RAM[addr];
end

end
endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 251

Chapter 7: HDL Coding Techniques

Single-Port Block RAM No-Change Mode VHDL Coding Example
--
-- Single-Port Block RAM No-Change Mode
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_03.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_03 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_03;

architecture syn of rams_03 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
252 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Single-Port Block RAM No-Change Mode Verilog Coding Example
//
// Single-Port Block RAM No-Change Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_03.v
//
module v_rams_03 (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr] <= di;

else
do <= RAM[addr];

end
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 253

Chapter 7: HDL Coding Techniques

Dual-Port Block RAM with Two Write Ports VHDL Coding Example
--
-- Dual-Port Block RAM with Two Write Ports
-- Correct Modelization with a Shared Variable
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_16b.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rams_16b is
port(clka : in std_logic;

clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
web : in std_logic;
addra : in std_logic_vector(6 downto 0);
addrb : in std_logic_vector(6 downto 0);
dia : in std_logic_vector(15 downto 0);
dib : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_16b;

architecture syn of rams_16b is
type ram_type is array (127 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;

begin

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if ENA = ’1’ then

DOA <= RAM(conv_integer(ADDRA));
if WEA = ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
end if;

end if;
end if;

end process;

process (CLKB)
begin

if CLKB’event and CLKB = ’1’ then
if ENB = ’1’ then

DOB <= RAM(conv_integer(ADDRB));
if WEB = ’1’ then

RAM(conv_integer(ADDRB)) := DIB;
end if;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
254 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Dual-Port Block RAM with Two Write Ports Verilog Coding Example
//
// Dual-Port Block RAM with Two Write Ports
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_16.v
//
module v_rams_16 (clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);

input clka,clkb,ena,enb,wea,web;
input [5:0] addra,addrb;
input [15:0] dia,dib;
output [15:0] doa,dob;
reg [15:0] ram [63:0];
reg [15:0] doa,dob;

always @(posedge clka) begin
if (ena)
begin

if (wea)
ram[addra] <= dia;

doa <= ram[addra];
end

end

always @(posedge clkb) begin
if (enb)
begin

if (web)
ram[addrb] <= dib;

dob <= ram[addrb];
end

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 255

Chapter 7: HDL Coding Techniques

Block RAM with Resettable Data Output VHDL Coding Example
--
-- Block RAM with Resettable Data Output
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_18.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_18 is
port (clk : in std_logic;

en : in std_logic;
we : in std_logic;
rst : in std_logic;
addr : in std_logic_vector(6 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_18;

architecture syn of rams_18 is
type ram_type is array (127 downto 0) of std_logic_vector (15 downto 0);
signal ram : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then -- optional enable

if we = ’1’ then -- write enable
ram(conv_integer(addr)) <= di;

end if;
if rst = ’1’ then -- optional reset

do <= (others => ’0’);
else

do <= ram(conv_integer(addr));
end if;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
256 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Block RAM with Resettable Data Output Verilog Coding Example
//
// Block RAM with Resettable Data Output
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_18.v
//
module v_rams_18 (clk, en, we, rst, addr, di, do);

input clk;
input en;
input we;
input rst;
input [6:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] ram [127:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en) // optional enable
begin

if (we) // write enable
ram[addr] <= di;

if (rst) // optional reset
do <= 16’b0000111100001101;

else
do <= ram[addr];

end
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 257

Chapter 7: HDL Coding Techniques

Block RAM with Optional Output Registers VHDL Coding Example
--
-- Block RAM with Optional Output Registers
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_19.vhd
--
library IEEE;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rams_19 is
port (clk1, clk2 : in std_logic;

we, en1, en2 : in std_logic;
addr1 : in std_logic_vector(5 downto 0);
addr2 : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
res1 : out std_logic_vector(15 downto 0);
res2 : out std_logic_vector(15 downto 0));

end rams_19;

architecture beh of rams_19 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal ram : ram_type;
signal do1 : std_logic_vector(15 downto 0);
signal do2 : std_logic_vector(15 downto 0);

begin

process (clk1)
begin

if rising_edge(clk1) then
if we = ’1’ then

ram(conv_integer(addr1)) <= di;
end if;
do1 <= ram(conv_integer(addr1));

end if;
end process;

process (clk2)
begin

if rising_edge(clk2) then
do2 <= ram(conv_integer(addr2));

end if;
end process;

process (clk1)
begin

if rising_edge(clk1) then
if en1 = ’1’ then

res1 <= do1;
end if;

end if;
end process;

process (clk2)
begin

if rising_edge(clk2) then
if en2 = ’1’ then

res2 <= do2;
end if;

end if;
end process;

end beh;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
258 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Block RAM with Optional Output Registers Verilog Coding Example
//
// Block RAM with Optional Output Registers
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_19.v
//
module v_rams_19 (clk1, clk2, we, en1, en2, addr1, addr2, di, res1, res2);

input clk1;
input clk2;
input we, en1, en2;
input [6:0] addr1;
input [6:0] addr2;
input [15:0] di;
output [15:0] res1;
output [15:0] res2;
reg [15:0] res1;
reg [15:0] res2;
reg [15:0] RAM [127:0];
reg [15:0] do1;
reg [15:0] do2;

always @(posedge clk1)
begin

if (we == 1’b1)
RAM[addr1] <= di;

do1 <= RAM[addr1];
end

always @(posedge clk2)
begin

do2 <= RAM[addr2];
end

always @(posedge clk1)
begin

if (en1 == 1’b1)
res1 <= do1;

end

always @(posedge clk2)
begin

if (en2 == 1’b1)
res2 <= do2;

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 259

Chapter 7: HDL Coding Techniques

Initializing Block RAM (Single-Port Block RAM) VHDL Coding Example
--
-- Initializing Block RAM (Single-Port Block RAM)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_20a.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_20a is
port (clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(19 downto 0);
do : out std_logic_vector(19 downto 0));

end rams_20a;

architecture syn of rams_20a is

type ram_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal RAM : ram_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

begin

process (clk)
begin

if rising_edge(clk) then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
end if;

do <= RAM(conv_integer(addr));
end if;

end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
260 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Initializing Block RAM (Single-Port Block RAM) Verilog Coding Example
//
// Initializing Block RAM (Single-Port Block RAM)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_20a.v
//
module v_rams_20a (clk, we, addr, di, do);

input clk;
input we;
input [5:0] addr;
input [19:0] di;
output [19:0] do;

reg [19:0] ram [63:0];
reg [19:0] do;

initial begin
ram[63] = 20’h0200A; ram[62] = 20’h00300; ram[61] = 20’h08101;
ram[60] = 20’h04000; ram[59] = 20’h08601; ram[58] = 20’h0233A;
ram[57] = 20’h00300; ram[56] = 20’h08602; ram[55] = 20’h02310;
ram[54] = 20’h0203B; ram[53] = 20’h08300; ram[52] = 20’h04002;
ram[51] = 20’h08201; ram[50] = 20’h00500; ram[49] = 20’h04001;
ram[48] = 20’h02500; ram[47] = 20’h00340; ram[46] = 20’h00241;
ram[45] = 20’h04002; ram[44] = 20’h08300; ram[43] = 20’h08201;
ram[42] = 20’h00500; ram[41] = 20’h08101; ram[40] = 20’h00602;
ram[39] = 20’h04003; ram[38] = 20’h0241E; ram[37] = 20’h00301;
ram[36] = 20’h00102; ram[35] = 20’h02122; ram[34] = 20’h02021;
ram[33] = 20’h00301; ram[32] = 20’h00102; ram[31] = 20’h02222;

ram[30] = 20’h04001; ram[29] = 20’h00342; ram[28] = 20’h0232B;
ram[27] = 20’h00900; ram[26] = 20’h00302; ram[25] = 20’h00102;
ram[24] = 20’h04002; ram[23] = 20’h00900; ram[22] = 20’h08201;
ram[21] = 20’h02023; ram[20] = 20’h00303; ram[19] = 20’h02433;
ram[18] = 20’h00301; ram[17] = 20’h04004; ram[16] = 20’h00301;
ram[15] = 20’h00102; ram[14] = 20’h02137; ram[13] = 20’h02036;
ram[12] = 20’h00301; ram[11] = 20’h00102; ram[10] = 20’h02237;
ram[9] = 20’h04004; ram[8] = 20’h00304; ram[7] = 20’h04040;
ram[6] = 20’h02500; ram[5] = 20’h02500; ram[4] = 20’h02500;
ram[3] = 20’h0030D; ram[2] = 20’h02341; ram[1] = 20’h08201;
ram[0] = 20’h0400D;

end

always @(posedge clk)
begin

if (we)
ram[addr] <= di;

do <= ram[addr];
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 261

Chapter 7: HDL Coding Techniques

Initializing Block RAM From an External Data File VHDL Coding Example
--
-- Initializing Block RAM from external data file
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_20c.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use std.textio.all;

entity rams_20c is
port(clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(5 downto 0);
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0));

end rams_20c;

architecture syn of rams_20c is

type RamType is array(0 to 63) of bit_vector(31 downto 0);

impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;

begin
for I in RamType’range loop

readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));

end loop;
return RAM;

end function;

signal RAM : RamType := InitRamFromFile("rams_20c.data");

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= to_bitvector(din);
end if;
dout <= to_stdlogicvector(RAM(conv_integer(addr)));

end if;
end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
262 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Initializing Block RAM From an External Data File Verilog Coding Example
//
// Initializing Block RAM from external data file
// Binary data
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_20c.v
//
module v_rams_20c (clk, we, addr, din, dout);

input clk;
input we;
input [5:0] addr;
input [31:0] din;
output [31:0] dout;

reg [31:0] ram [0:63];
reg [31:0] dout;

initial
begin

// $readmemb("rams_20c.data",ram, 0, 63);
$readmemb("rams_20c.data",ram);

end

always @(posedge clk)
begin

if (we)
ram[addr] <= din;

dout <= ram[addr];
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 263

Chapter 7: HDL Coding Techniques

Pipelined Distributed RAM VHDL Coding Example
--
-- Pipeline distributed RAM
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_22.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_22 is
port (clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(8 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0));

end rams_22;

architecture syn of rams_22 is
type ram_type is array (511 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

signal pipe_reg: std_logic_vector(3 downto 0);

attribute ram_style: string;
attribute ram_style of RAM: signal is "pipe_distributed";

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
else

pipe_reg <= RAM(conv_integer(addr));
end if;
do <= pipe_reg;

end if;
end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
264 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Pipelined Distributed RAM Verilog Coding Example
//
// Pipeline distributed RAM
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_22.v
//
module v_rams_22 (clk, we, addr, di, do);

input clk;
input we;
input [8:0] addr;
input [3:0] di;
output [3:0] do;

(*ram_style="pipe_distributed"*)
reg [3:0] RAM [511:0];
reg [3:0] do;
reg [3:0] pipe_reg;

always @(posedge clk)
begin

if (we)
RAM[addr] <= di;

else
pipe_reg <= RAM[addr];

do <= pipe_reg;
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 265

Chapter 7: HDL Coding Techniques

ROM HDL Coding Techniques
Read-Only Memory (ROM) closely resembles Random Access Memory (RAM) with
respect to HDLmodeling and implementation. XST can implement a properly-registered
ROM on block RAM resources.

ROM Description
ROM Description includes:
• ROM Modeling
• Describing Read Access

ROM Modeling
ROM Modeling includes:
• Loading ROM From an External Data File
• ROM Modeling in VHDL
• ROM Modeling in Verilog

Loading ROM From an External Data File
• Loading the content of the ROM from an external data file:

– Results in more compact and readable HDL source code.
– Allows more flexibility in generating or altering the ROM data.

• For more information, see Specifying RAM Initial Contents in an External Data File.

ROM Modeling in VHDL
For ROM modeling in VHDL:
• Use a signal.

A signal allows you to control implementation of the ROM, either on:
– LUT resources, or
– block RAM resources

• Attach a ROM Style or a RAM Style constraint to the signal to control
implementation of the ROM.

Constant-Based Declaration VHDL Coding Example
type rom_type is array (0 to 127) of std_logic_vector (19 downto 0);
constant ROM : rom_type:= (

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
(…)
X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D"

);

Signal-Based Declaration VHDL Coding Example
type rom_type is array (0 to 127) of std_logic_vector (19 downto 0);
signal ROM : rom_type:= (

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
(…)
X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D"

);

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
266 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

ROM Modeling in Verilog
• A ROM can be modeled in Verilog with an initial block.

• Verilog does not allow initializing an array with a single statement as allowed by
VHDL aggregates.

• You must enumerate each address value.

ROM Modeled With Initial Block Verilog Coding Example
reg [15:0] rom [15:0];

initial begin
rom[0] = 16’b0011111100000010;
rom[1] = 16’b0000000100001001;
rom[2] = 16’b0001000000111000;
rom[3] = 16’b0000000000000000;
rom[4] = 16’b1100001010011000;
rom[5] = 16’b0000000000000000;
rom[6] = 16’b0000000110000000;
rom[7] = 16’b0111111111110000;
rom[8] = 16’b0010000010001001;
rom[9] = 16’b0101010101011000;
rom[10] = 16’b1111111010101010;
rom[11] = 16’b0000000000000000;
rom[12] = 16’b1110000000001000;
rom[13] = 16’b0000000110001010;
rom[14] = 16’b0110011100010000;
rom[15] = 16’b0000100010000000;

end

Describing ROM With a Case Statement Verilog Coding Example
You can also describe the ROM with a case statement (or equivalent if-elseif construct).

input [3:0] addr
output reg [15:0] data;

always @(posedge clk) begin
if (en)

case (addr)
4’b0000: data <= 16’h200A;
4’b0001: data <= 16’h0300;
4’b0010: data <= 16’h8101;
4’b0011: data <= 16’h4000;
4’b0100: data <= 16’h8601;
4’b0101: data <= 16’h233A;
4’b0110: data <= 16’h0300;
4’b0111: data <= 16’h8602;
4’b1000: data <= 16’h2222;
4’b1001: data <= 16’h4001;
4’b1010: data <= 16’h0342;
4’b1011: data <= 16’h232B;
4’b1100: data <= 16’h0900;
4’b1101: data <= 16’h0302;
4’b1110: data <= 16’h0102;
4’b1111: data <= 16’h4002;

endcase
end

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 267

Chapter 7: HDL Coding Techniques

Describing Read Access
Describing access to ROM is similar to describing access to RAM.

Describing Read Access VHDL Coding Example
If you have included the IEEE std_logic_unsigned package defining the conv_integer
conversion function, the VHDL syntax is:

signal addr : std_logic_vector(ADDR_WIDTH-1 downto 0);
do <= ROM(conv_integer(addr));

Describing Read Access Verilog Coding Example
• If you have modeled the ROM in an initial block (with data described in the Verilog

source code or loaded from an external data file), the Verilog syntax is:

do <= ROM[addr];

• You can also use a case construct as shown in Describing ROM With a Case
Statement Verilog Coding Example.

ROM Implementation
• When XST detects that a properly synchronized ROM can be implemented on block

RAM resources, it applies the principles outlined in Block RAM Optimization
Strategies.

• To override any default XST decision criteria, use ROM Style instead of RAM Style.

• For more information about ROM Style, see Chapter 9, Design Constraints.

• For more information about ROM implementation, see Chapter 8, FPGA
Optimization.

ROM Related Constraints
ROM Style

ROM Reporting
The following report shows how the Read-Only Memory (ROM) is identified during
HDL Synthesis. Based on the availability of proper synchronization, the decision to
implement a ROM on block RAM resources is made during Advanced HDL Synthesis.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
268 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

ROM Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <roms_signal>.
Found 20-bit register for signal <data>.
Found 128x20-bit ROM for signal <n0024>.
Summary:

inferred 1 ROM(s).
inferred 20 D-type flip-flop(s).
Unit <roms_signal> synthesized.

===
HDL Synthesis Report

Macro Statistics
ROMs : 1
128x20-bit ROM : 1
Registers : 1
20-bit register : 1

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <roms_signal>.
INFO:Xst - The ROM <Mrom_ROM> will be implemented as a read-only BLOCK RAM,
absorbing the register: <data>.
INFO:Xst - The RAM <Mrom_ROM> will be implemented as BLOCK RAM

| ram_type | Block | |

| Port A |
aspect ratio	128-word x 20-bit	
mode	write-first	
clkA	connected to signal <clk>	rise
enA	connected to signal <en>	high
weA	connected to internal node	high
addrA	connected to signal <addr>	
diA	connected to internal node	
doA	connected to signal <data>	

| optimization | speed | |

Unit <roms_signal> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
RAMs : 1
128x20-bit single-port block RAM : 1

===

ROM Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 269

Chapter 7: HDL Coding Techniques

Description of a ROM with a VHDL Constant Coding Example
--
-- Description of a ROM with a VHDL constant
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/roms_constant.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_constant is
port (clk : in std_logic;

en : in std_logic;
addr : in std_logic_vector(6 downto 0);
data : out std_logic_vector(19 downto 0));

end roms_constant;

architecture syn of roms_constant is

type rom_type is array (0 to 127) of std_logic_vector (19 downto 0);
constant ROM : rom_type:= (

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
X"00340", X"00241", X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",

X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021", X"00301", X"00102",
X"02222", X"04001", X"00342", X"0232B", X"00900", X"00302", X"00102", X"04002",
X"00900", X"08201", X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",

X"00102", X"02137", X"02036", X"00301", X"00102", X"02237", X"04004", X"00304",
X"04040", X"02500", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0400D",

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
X"00340", X"00241", X"04112", X"08300", X"08201", X"00500", X"08101", X"00602",

X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021", X"00301", X"00102",
X"02222", X"04001", X"00342", X"0232B", X"00870", X"00302", X"00102", X"04002",
X"00900", X"08201", X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",

X"00102", X"02137", X"FF036", X"00301", X"00102", X"10237", X"04934", X"00304",
X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D"
);

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (en = ’1’) then

data <= ROM(conv_integer(addr));
end if;

end if;
end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
270 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

ROM Using Block RAM Resources Verilog Coding Example
//
// ROMs Using Block RAM Resources.
// Verilog code for a ROM with registered output (template 1)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_21a.v
//
module v_rams_21a (clk, en, addr, data);

input clk;
input en;
input [5:0] addr;
output reg [19:0] data;

always @(posedge clk) begin
if (en)

case(addr)
6’b000000: data <= 20’h0200A; 6’b100000: data <= 20’h02222;
6’b000001: data <= 20’h00300; 6’b100001: data <= 20’h04001;
6’b000010: data <= 20’h08101; 6’b100010: data <= 20’h00342;
6’b000011: data <= 20’h04000; 6’b100011: data <= 20’h0232B;
6’b000100: data <= 20’h08601; 6’b100100: data <= 20’h00900;
6’b000101: data <= 20’h0233A; 6’b100101: data <= 20’h00302;
6’b000110: data <= 20’h00300; 6’b100110: data <= 20’h00102;
6’b000111: data <= 20’h08602; 6’b100111: data <= 20’h04002;
6’b001000: data <= 20’h02310; 6’b101000: data <= 20’h00900;
6’b001001: data <= 20’h0203B; 6’b101001: data <= 20’h08201;
6’b001010: data <= 20’h08300; 6’b101010: data <= 20’h02023;
6’b001011: data <= 20’h04002; 6’b101011: data <= 20’h00303;
6’b001100: data <= 20’h08201; 6’b101100: data <= 20’h02433;
6’b001101: data <= 20’h00500; 6’b101101: data <= 20’h00301;
6’b001110: data <= 20’h04001; 6’b101110: data <= 20’h04004;
6’b001111: data <= 20’h02500; 6’b101111: data <= 20’h00301;
6’b010000: data <= 20’h00340; 6’b110000: data <= 20’h00102;
6’b010001: data <= 20’h00241; 6’b110001: data <= 20’h02137;
6’b010010: data <= 20’h04002; 6’b110010: data <= 20’h02036;
6’b010011: data <= 20’h08300; 6’b110011: data <= 20’h00301;
6’b010100: data <= 20’h08201; 6’b110100: data <= 20’h00102;
6’b010101: data <= 20’h00500; 6’b110101: data <= 20’h02237;
6’b010110: data <= 20’h08101; 6’b110110: data <= 20’h04004;
6’b010111: data <= 20’h00602; 6’b110111: data <= 20’h00304;
6’b011000: data <= 20’h04003; 6’b111000: data <= 20’h04040;
6’b011001: data <= 20’h0241E; 6’b111001: data <= 20’h02500;
6’b011010: data <= 20’h00301; 6’b111010: data <= 20’h02500;
6’b011011: data <= 20’h00102; 6’b111011: data <= 20’h02500;
6’b011100: data <= 20’h02122; 6’b111100: data <= 20’h0030D;
6’b011101: data <= 20’h02021; 6’b111101: data <= 20’h02341;
6’b011110: data <= 20’h00301; 6’b111110: data <= 20’h08201;
6’b011111: data <= 20’h00102; 6’b111111: data <= 20’h0400D;

endcase
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 271

Chapter 7: HDL Coding Techniques

Dual-Port ROM VHDL Coding Example
--
-- A dual-port ROM
-- Implementation on LUT or BRAM controlled with a ram_style constraint
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/roms_dualport.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_dualport is
port (clk : in std_logic;

ena, enb : in std_logic;
addra, addrb : in std_logic_vector(5 downto 0);
dataa, datab : out std_logic_vector(19 downto 0));

end roms_dualport;

architecture behavioral of roms_dualport is

type rom_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal ROM : rom_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

-- attribute ram_style : string;
-- attribute ram_style of ROM : signal is "distributed";

begin

process (clk)
begin

if rising_edge(clk) then
if (ena = ’1’) then

dataa <= ROM(conv_integer(addra));
end if;

end if;
end process;

process (clk)
begin

if rising_edge(clk) then
if (enb = ’1’) then

datab <= ROM(conv_integer(addrb));
end if;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
272 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

FSM Components
• XST features:

– Specific inference capabilities for synchronous Finite State Machine (FSM)
components.

– Built-in FSM encoding strategies to accommodate your optimization goals.

• You may also instruct XST to follow your own encoding scheme.

• FSM extraction is enabled by default.

• Use Automatic FSM Extraction to disable FSM extraction.

FSM Description
• XST supports specification of Finite State Machine (FSM) in both Moore and Mealy

form.

• An FSM consists of:

– State register

– Next state function

– Outputs function

HDL Coding Methods
• You can choose among many HDL coding methods. Your choice depends on your

goals with respect to code compactness and readability.

• The following HDL coding methods:

– Ensure maximum readability.

– Maximize the ability of XST to identify the FSM.

• Method One

Describe all three components of the FSM in a single sequential process or always
block.

• Method Two

1. Describe the state register and next state function together in a sequential
process or always block.

2. Describe the outputs function in a separate combinatorial process or always
block.

• Method Three

1. Describe the state register in a sequential process or always block.

2. Describe the next state and outputs functions together in a separate
combinatorial process or always block.

• Method Four

1. Describe the state register in a sequential process or always block.

2. Describe the next state function in a first combinatorial process or always block.

3. Describe the outputs function in a second separate combinatorial process or
always block.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 273

Chapter 7: HDL Coding Techniques

FSM Representation Incorporating Mealy and Moore Machines
Diagram

FSM With Three Processes Diagram

State Registers
• Specify a reset or power-up state for XST to identify a Finite State Machine (FSM).

• The State Register can be asynchronously or synchronously reset to a particular state.

• Xilinx® recommends using synchronous reset logic over asynchronous reset logic
for an FSM.

Specifying State Registers in VHDL
You can specify a State Register in VHDL with:

• Standard Type

• Enumerated Type

Standard Type

Specify the State Register with a Standard Type such as:

• integer

• bit_vector

• std_logic_vector

Enumerated Type

1. Define an Enumerated Type containing all possible state values.

2. Declare the state register with that type.

type state_type is (state1, state2, state3, state4);
signal state : state_type;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
274 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Specifying State Registers in Verilog
• A State Register type in Verilog is:

– An integer, or
– A set of defined parameters.

parameter [3:0]
s1 = 4’b0001,
s2 = 4’b0010,
s3 = 4’b0100,
s4 = 4’b1000;

reg [3:0] state;

• Modify these parameters to represent different state encoding schemes.

Next State Equation
• Next state equations can be described:

– Directly in the sequential process, or
– In a separate combinatorial process

• The sensitivity list of a separate combinatorial process contains:
– The state signal
– All Finite State Machine (FSM) inputs

• The simplest coding example is based on a case statement, the selector of which is
the current state signal.

Unreachable States
XST detects and reports unreachable states.

FSM Outputs
• Non-registered outputs are described in:

– The combinatorial process, or
– Concurrent assignments

• Registered outputs must be assigned in the sequential process.

FSM Inputs
• Registered inputs are described using internal signals.
• Internal signals are assigned in the sequential process.

State Encoding Techniques
• XST state encoding techniques accommodate different optimization goals, and

different Finite State Machine (FSM) patterns.
• Use FSM Encoding Algorithm to select the state encoding technique.
• For more information, see Chapter 9, Design Constraints.

Auto State Encoding
XST tries to select the best suited encoding method for a given FSM.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 275

Chapter 7: HDL Coding Techniques

One-Hot State Encoding
• Is the default encoding scheme.

• Is usually a good choice for optimizing speed or reducing power dissipation.

• Assigns a distinct bit of code to each FSM state.

• Implements the State Register with one flip-flop for each state.

– In a given clock cycle during operation, one and only one bit of the State
Register is asserted.

– Only two bits toggle during a transition between two states.

Gray State Encoding
• Guarantees that only one bit switches between two consecutive states.

• Is appropriate for controllers exhibiting long paths without branching.

• Minimizes hazards and glitches.

• Gives good results when implementing the State Register with T Flip-Flops.

• Can be used to minimize power dissipation.

Compact State Encoding
• Minimizes the number of bits in the state variables and flip-flops. This technique is

based on hypercube immersion.

• Is appropriate when trying to optimize area.

Johnson State Encoding
Beneficial when using state machines containing long paths with no branching (as in
Gray State Encoding).

Sequential State Encoding
• Identifies long paths

• Applies successive radix two codes to the states on these paths.

• Minimizes next state equations.

Speed1 State Encoding
• Is oriented for speed optimization.

• The number of bits for a State Register depends on the specific FSM, but is generally
greater than the number of FSM states.

User State Encoding
XST uses the original encoding specified in the HDL file.

User State Encoding Example
If the State Register is described based on an enumerated type:

• Use Enumerated Encoding to assign a specific binary value to each state.

• Select User State Encoding to instruct XST to follow your coding scheme.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
276 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Implementing FSM Components on Block RAM Resources
• Finite State Machine (FSM) components are implemented on slice logic.

– To save slice logic resources, instruct XST to implement FSM components in
block RAM.

– Implementing FSM components in block RAM can enhance the performance of
large FSM components.

• To select the implementation for slice logic, use FSM Style to choose between:

– default implementation

– block RAM implementation

• The values for FSM Style are:

– lut (default)

– bram

• If XST cannot implement an FSM in block RAM:

– XST implements the state machine in slice logic.

– XST issues a warning during Advanced HDL Synthesis.

• The failure to implement an FSM in block RAM usually occurs when the FSM has
an asynchronous reset.

FSM Safe Implementation
Safe Finite State Machine (FSM) design is a subject of debate. There is no single perfect
solution. Xilinx® recommends that you carefully review the following sections before
deciding on your implementation strategy.

Optimization
• Optimization is standard for the great majority of applications. Most applications

operate in normal external conditions. Their temporary failure due to a single event
upset does not have critical consequences.

• XST detects and optimizes the following by default:

– Unreachable states (both logical and physical)

– Related transition logic

• Optimization ensures implementation of a state machine that:

– Uses minimal device resources.

– Provides optimal circuit performance.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 277

Chapter 7: HDL Coding Techniques

Preventing Optimization
• Some applications operate in external conditions in which the potentially

catastrophic impact of soft errors cannot be ignored. Optimization is not appropriate
for these applications.

• These soft errors are caused primarily by:
– Cosmic rays, or
– Alpha particles from the chip packaging

• State machines are sensible to soft errors. A state machine may never resume
normal operation after an external condition sends it to an illegal state. For the
circuit to be able to detect and recover from those errors, unreachable states must
not be optimized away.

• Use Safe Implementation to prevent optimization. XST creates additional logic
allowing the state machine to:
– Detect an illegal transition.
– Return to a valid recovery state.

• XST selects the reset state as the recovery state by default. If no reset state is
available, XST selects the power-up state. Use Safe Recovery State to manually
define a specific recovery state.

One-Hot Encoding Versus Binary Encoding
• With binary State Encoding Techniques (such as Compact, Sequential, and Gray),

the state register is implemented with a minimum number of Flip-Flops. One-Hot
Encoding implies a larger number of Flip-Flops (one for each valid state). This
increases the likelihood of a single event upset affecting the State Register.

• Despite this drawback, One-Hot Encoding has a significant topological benefit.
A Hamming distance of 2 makes all single bit errors easily detectable. An illegal
transition resulting from a single bit error always sends the state machine to an
invalid state. The XST safe implementation logic ensures that any such error is
detected and cleanly recovered from.

• An equivalent binary coded state machine has a Hamming distance of 1. As a result,
a single bit error may send the state machine to an unexpected but valid state. If the
number of valid states is a power of 2, all possible code values correspond to a valid
state, and a soft error always produces such an outcome. In that event, the circuit
does not detect that an illegal transition has occurred, and that the state machine has
not executed its normal state sequence. Such a random and uncontrolled recovery
may not be acceptable.

Recovery-Only States
• Xilinx recommends that you define a recovery state that is none of the normal

operating states of your state machine.
• Defining a recovery-only state allows you to:

– Detect that the state machine has been affected by a single event upset.
– Perform specific actions before resuming normal operation. Such actions include

flagging the recovery condition to the rest of the circuit or to a circuit output.
• Directly recovering to a normal operation state is sufficient, provided that the faulty

state machine does not need to:
– Inform the rest of the circuit of its temporary condition, or
– Perform specific actions following a soft error.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
278 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

FSM Safe Implementation VHDL Coding Example
--
-- Finite State Machine Safe Implementation VHDL Coding Example
-- One-hot encoding
-- Recovery-only state
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/state_machines/safe_fsm.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity safe_fsm is

port(
clk : in std_logic;
rst : in std_logic;
c : in std_logic_vector(3 downto 0);
d : in std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

end safe_fsm;

architecture behavioral of safe_fsm is

type state_t is (idle, state0, state1, state2, recovery);
signal state, next_state : state_t;

attribute fsm_encoding : string;
attribute fsm_encoding of state : signal is "one-hot";
attribute safe_implementation : string;
attribute safe_implementation of state : signal is "yes";
attribute safe_recovery_state : string;
attribute safe_recovery_state of state : signal is "recovery";

begin

process(clk)
begin
if rising_edge(clk) then
if rst = ’1’ then
state <= idle;

else
state <= next_state;

end if;
end if;

end process;

process(state, c, d)
begin

next_state <= state;

case state is
when idle =>
if c(0) = ’1’ then
next_state <= state0;

end if;
q <= "0000";

when state0 =>
if c(0) = ’1’ and c(1) = ’1’ then
next_state <= state1;

end if;
q <= d;

when state1 =>
next_state <= state2;
q <= "1100";

when state2 =>
if c(1) = ’0’ then
next_state <= state1;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 279

Chapter 7: HDL Coding Techniques

elsif c(2) = ’1’ then
next_state <= state2;

elsif c(3) = ’1’ then
next_state <= idle;

end if;
q <= "0101";

when recovery =>
next_state <= state0;
q <= "1111";

end case;

end process;

end behavioral;

Verilog Support for FSM Safe Implementation
• Because Verilog does not provide enumerated types, Verilog support for FSM safe

implementation is more restrictive than VHDL.
• Recommendation Follow these coding guidelines for proper implementation of

the state machine:
– Manually enforce the desired encoding strategy.

♦ Explicitly define the code value for each valid state.
♦ Set FSM Encoding Algorithm to User.

– Use localparam or ‘define for readability to symbolically designate the various
states in the state machine description.

– Hard code the recovery state value as one of the following, since it cannot be
referred to symbolically in a Verilog attribute specification:
♦ A string, directly in the attribute statement, or
♦ A ‘define, as shown in the following coding example

FSM Safe Implementation Verilog Coding Example
//
// Finite State Machine Safe Implementation Verilog Coding Example
// One-hot encoding
// Recovery-only state
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/state_machines/safe_fsm.v
//
module v_safe_fsm (clk, rst, c, d, q);

input clk;
input rst;
input [3:0] c;
input [3:0] d;
output reg [3:0] q;

localparam [4:0]
idle = 5’b00001,
state0 = 5’b00010,
state1 = 5’b00100,
state2 = 5’b01000,
recovery = 5’b10000;

‘define recovery_attr_val "10000"

(* fsm_encoding = "user",
safe_implementation = "yes",
safe_recovery_state = ‘recovery_attr_val *)
// alternatively: safe_recovery_state = "10000" *)

reg [4:0] state;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
280 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

reg [4:0] next_state;

always @ (posedge clk)
begin

if (rst)
state <= idle;

else
state <= next_state;

end

always @(*)
begin

next_state <= state;

case (state)

idle: begin
if (c[0])
next_state <= state0;

q <= 4’b0000;
end

state0: begin
if (c[0] && c[1])
next_state <= state1;

q <= d;
end

state1: begin
next_state <= state2;
q <= 4’b1100;

end

state2: begin
if (~c[1])
next_state <= state1;

else
if (c[2])
next_state <= state2;

else
if (c[3])
next_state <= idle;

q <= 4’b0101;
end

recovery: begin
next_state <= state0;
q <= 4’b1111;

end

default: begin
next_state <= recovery;
q <= 4’b1111;

end

endcase

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 281

Chapter 7: HDL Coding Techniques

FSM Related Constraints
• Automatic FSM Extraction

• FSM Style

• FSM Encoding Algorithm

• Enumerated Encoding

• Safe Implementation

• Safe Recovery State

FSM Reporting
The XST log provides detailed information about Finite State Machine (FSM)
components and their encoding.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
282 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

FSM Reporting Example
===
* HDL Synthesis *
===

Synthesizing Unit <fsm_1>.
Found 1-bit register for signal <outp>.
Found 2-bit register for signal <state>.
Found finite state machine <FSM_0> for signal <state>.

States	4
Transitions	5
Inputs	1
Outputs	2
Clock	clk (rising_edge)
Reset	reset (positive)
Reset type	asynchronous
Reset State	s1
Power Up State	s1
Encoding	gray
Implementation	LUT

Summary:

inferred 1 D-type flip-flop(s).
inferred 1 Finite State Machine(s).
Unit <fsm_1> synthesized.

===
HDL Synthesis Report

Macro Statistics
Registers : 1
1-bit register : 1
FSMs : 1

===

===
* Advanced HDL Synthesis *
===

===
Advanced HDL Synthesis Report

Macro Statistics
FSMs : 1
Registers : 1
Flip-Flops : 1
FSMs : 1

===

===
* Low Level Synthesis *
===
Optimizing FSM <state> on signal <state[1:2]> with gray encoding.

State | Encoding

s1 | 00
s2 | 11
s3 | 01
s4 | 10

FSM Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 283

Chapter 7: HDL Coding Techniques

FSM Described with a Single Process VHDL Coding Example
--
-- State Machine described with a single process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/state_machines/state_machines_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_1 is
port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;

architecture behavioral of fsm_1 is
type state_type is (s1,s2,s3,s4);
signal state : state_type ;

begin

process (clk)
begin

if rising_edge(clk) then
if (reset =’1’) then

state <= s1;
outp <= ’1’;

else
case state is

when s1 => if x1=’1’ then
state <= s2;
outp <= ’1’;

else
state <= s3;
outp <= ’0’;

end if;
when s2 => state <= s4; outp <= ’0’;
when s3 => state <= s4; outp <= ’0’;
when s4 => state <= s1; outp <= ’1’;

end case;
end if;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
284 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

FSM with Three Always Blocks Verilog Coding Example
//
// State Machine with three always blocks.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/state_machines/state_machines_3.v
//
module v_fsm_3 (clk, reset, x1, outp);

input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;
reg [1:0] next_state;

parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

initial begin
state = 2’b00;

end

always @(posedge clk or posedge reset)
begin

if (reset) state <= s1;
else state <= next_state;

end

always @(state or x1)
begin

case (state)
s1: if (x1==1’b1)

next_state = s2;
else

next_state = s3;
s2: next_state = s4;
s3: next_state = s4;
s4: next_state = s1;

endcase
end

always @(state)
begin

case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 285

Chapter 7: HDL Coding Techniques

Black Boxes
• A design can contain EDIF or NGC files generated by:

– Synthesis tools
– Schematic text editors
– Any other design entry mechanism

• These modules must be instantiated in order to be connected to the rest of the design.
– Use Black Box instantiation in the HDL source code.
– The netlist is propagated to the final top-level netlist without being processed

by XST.
– XST enables you to apply specific constraints to these Black Box instantiations.

The instantiations are then passed to the NGC file.
• You may have a design block for which you have a Register Transfer Level (RTL)

model, as well as your own implementation of this block in the form of an EDIF
netlist.
– The RTL model is valid for simulation purposes only. Use Box Type to skip

synthesis of the RTL model and create a Black Box.
– The EDIF netlist is linked to the synthesized design during NGDBuild.

• Once you make a design a Black Box, each instance of that design is a Black Box.
While you can apply constraints to the instance, XST ignores any constraint applied
to the original design.

• For more information, see:
– Constraints Guide (UG625)
– Chapter 10, General Constraints
– VHDL and Verilog language reference manuals

Black Boxes Related Constraints
Box Type
• BoxType is used for device primitive instantiation in XST.
• Before using BoxType, see Device Primitive Support.

Black Boxes Reporting
• XST acknowledges a Black Box instantiation during VHDL elaboration.

WARNING:HDLCompiler:89 - "example.vhd" Line 15. <my_bbox>
remains a black-box since it has no binding entity.

• XST acknowledges a Black Box instantiation during Verilog elaboration.
WARNING:HDLCompiler:1498 – "example.v" Line 27: Empty module
<v_my_block> remains a black box.

• When a Black Box is explicitly designated using a Box Type constraint:
– XST processes it silently if the constraint value is black_box or primitive.
– XST issues a message for each instantiation of the designated element if the

constraint value is user_black_box
Synthesizing Unit <my_top>. Set property "box_type =
user_black_box" for instance <my_inst>. Unit <my_top >
synthesized.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
286 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 7: HDL Coding Techniques

Black Boxes Coding Examples
For update information, see “Coding Examples” in the Introduction.

Black Box VHDL Coding Example
--
-- Black Box
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/black_box/black_box_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity black_box_1 is
port(DI_1, DI_2 : in std_logic;

DOUT : out std_logic);
end black_box_1;

architecture archi of black_box_1 is

component my_block
port (I1 : in std_logic;

I2 : in std_logic;
O : out std_logic);

end component;

begin

inst: my_block port map (I1=>DI_1,I2=>DI_2,O=>DOUT);

end archi;

Black Box Verilog Coding Example
//
// Black Box
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/black_box/black_box_1.v
//
module v_my_block (in1, in2, dout);

input in1, in2;
output dout;

endmodule

module v_black_box_1 (DI_1, DI_2, DOUT);
input DI_1, DI_2;
output DOUT;

v_my_block inst (
.in1(DI_1),
.in2(DI_2),
.dout(DOUT));

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 287

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
288 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8

FPGA Optimization
During Low Level Synthesis:
1. XST separately maps and optimizes each VHDL entity or Verilog module to the

device family resources.
2. XST globally optimizes the complete design.

For more information, see Chapter 12, FPGA Constraints (Non-Timing).

The output of Low Level Synthesis is an NGC netlist file.

Mapping Logic to Block RAM
If you cannot fit the design onto the device, place some of the logic into unused block
RAM. XST does not automatically decide which logic can be placed into block RAM.
You must instruct XST to do so.
1. Isolate the part of the Register Transfer Level (RTL) description to be placed into

block RAM in a separate hierarchical block.
2. Apply Map Logic on BRAM to the separate hierarchical block, either directly in the

HDL source code, or in the XST Constraint File (XCF).

Block Ram Criteria
• The logic implemented in block RAM must satisfy the following criteria:

– All outputs are registered.
– The block contains only one level of Registers, which are Output Registers.
– All Output Registers have the same control signals.
– The Output Registers have a synchronous reset signal.
– The block does not contain multi-source situations or tristate buffers.
– Keep is not allowed on intermediate signals.

• XST attempts to map the designated logic onto block RAM during Low Level
Synthesis. When successful, XST issues a message.

Entity <logic_bram_1> mapped on BRAM.

• If any of the listed requirements is not satisfied, XST does not map the designated
logic onto block RAM, and issues a warning.

INFO:Xst:1789 - Unable to map block <no_logic_bram> on BRAM.

Output FF <RES> must have a synchronous reset.

• If the logic cannot be placed in a single block RAM primitive, XST spreads it over
several block RAM components.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 289

Chapter 8: FPGA Optimization

Flip-Flop Implementation Guidelines
CLB Flip-Flops and Latches do not natively implement both a set and reset.

• If XST finds a Flip-Flop with both a set and reset:

– The set and reset is retargeted.

– Additional logic is created.

– The set and reset is rejected with an error message.

• These rules are enforced whether the Flip-Flop is inferred, or retargeted from an
older device family primitive instantiation.

Error Message Example
ERROR: XST:#### - This design infers one or more latches or
registers with both an active asynchronous set and reset. In the
Virtex®-6 and Spartan®-6 architectures this behavior creates a
sub-optimal circuit in area, power and performance. To synthesis
an optimal implementation it is highly recommended to either
remove one set or reset or make the function synchronous. To
override this error set —retarget_active_async_set_reset option
to yes.

Setting or Resetting Registers Asynchronously
Xilinx® does not recommend setting or resetting Registers asynchronously even though
it is supported on Xilinx devices.

• Control set remapping is no longer possible.

• Sequential functionality in several device resources, such as the following, can be
set or reset synchronously only.

– block RAM components

– DSP blocks

• If you set or reset those device resources asynchronously:

– You will be unable to leverage the resources.

OR

– The resources will be configured sub-optimally.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
290 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Xilinx Recommendations
• Do not set or reset Registers asynchronously.

• Use synchronous initialization.

• If your coding guidelines call for Registers to be set or reset asynchronously, run
XST with Asynchronous to Synchronous to assess the potential benefits of using
synchronous set or reset.

– Asynchronous to Synchronous affects inferred Registers only.

– Asynchronous to Synchronous does not affect instantiated Flip-Flops.

• Do not describe Flip-Flops with both a set and a reset.

– None of the available Flip-Flop primitives natively features both a set and a
reset, whether synchronous or asynchronous.

– XST rejects Flip-Flops described with both an asynchronous reset and an
asynchronous set.

• Avoid operational set and reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired result, such as taking advantage of the circuit
global reset by defining an initial contents.

• Always describe the clock enable, set and reset control inputs of Xilinx Flip-Flop
primitives as active-High. Describing the control inputs as active-Low leads to
inverter logic that penalizes circuit performance.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 291

Chapter 8: FPGA Optimization

Flip-Flop Retiming
• Flip-Flop retiming moves Flip-Flops and Latches across logic in order to:

– Reduce synchronous paths

– Increase clock frequency

• Flip-Flop retiming is disabled by default.

• Design behavior does not change. Only timing delays are modified.

Forward and Backward Flip-Flop Retiming
• Forward Flip-Flop retiming:

– Moves a set of Flip-Flops that are the input of a LUT to a single Flip-Flop at its
output.

– Generally reduces the number of Flip-Flops.

• Backward Flip-Flop retiming:

– Moves a single Flip-Flop that is at the output of a LUT to a set of Flip-Flops at
its input.

– Generally increases the number of Flip-Flop, sometimes significantly.

Forward and Backward Flip-Flop Retiming Summary
Retiming Flip-Flops At Becomes At
Forward Set Input Single Output

Backward Single Output Set Input

Global Optimization
• Flip-Flop retiming is part of global optimization.

• Flip-Flop retiming respects the same constraints as all other optimization techniques.

• Flip-Flop retiming is incremental.

A Flip-Flop that is the result of a retiming can be moved again in the same direction
(forward or backward) if it results in better timing.

• Flip-Flop retiming iterations stop when:

– The timing constraints are satisfied, or

– No more timing improvement can be obtained.

Flip-Flop Messages
For each Flip-Flop moved, a message specifies:

• The original and new Flip-Flop names

• Whether it is a forward or backward retiming

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
292 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Limitations of Flip-Flop Retiming
Flip-Flop retiming does not take place under the following circumstances.
• Flip-Flop retiming is not applied to Flip-Flops with an IOB=TRUE property.
• Forward Flip-Flop retiming does not take place if a Flip-Flop (or the signal on its

output) has a Keep property.
• Backward Flip-Flop retiming does not take place if a Flip-Flop (or the signal on

its input) has a Keep property.
• Instantiated Flip-Flops are moved only if Optimize Instantiated Primitives is set to

yes.
• Flip-Flops are moved across instantiated primitives only if Optimize Instantiated

Primitives is set to yes.
• Flip-Flops with both a set and a reset are not moved.

Controlling Flip-Flop Retiming
The following constraints control Flip-Flop retiming:
• Register Balancing
• Move First Stage
• Move Last Stage

Speed Optimization Under Area Constraint
The Slice (LUT-FF Pairs) Utilization Ratio constraint:
• Does not control macro inference.
• Allows some control over circuit performance even when instructing XST to use

area reduction as its main goal.
• Is set by default to 100% of the selected device size.
• Influences low level optimization.

– If the estimated area is higher than the constraint requirement, XST tries to
further reduce area.

– When the estimated area falls within the constraint requirement, XST looks
for timing optimization opportunities in which the solution meets the area
constraint requirement.

Low Level Synthesis Report Example One (100%)
Found area constraint ratio of 100 (+ 5) on block tge, actual
ratio is 102. Optimizing block tge> to meet ratio 100 (+ 5) of
1536 slices Area constraint is met for block tge>, final ratio
is 95.

In this report example:
• The area constraint target was set to 100%.
• The initial area estimation found an actual device utilization of 102%.
• XST began optimization and reached 95%.

Low Level Synthesis Report Example Two (70%)
Found area constraint ratio of 70 (+ 5) on block fpga_hm, actual
ratio is 64. Optimizing block fpga_hm> to meet ratio 70 (+ 5) of
1536 slices : WARNING:Xst - Area constraint could not be met for
block tge>, final ratio is 94

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 293

Chapter 8: FPGA Optimization

In this report example:
• The area constraint target was set to 70%.
• The area constraint target was not met.
• If the area constraint target cannot be met:

– XST ignores it during timing optimization.
– XST runs low level synthesis to achieve the best frequency.

• Because XST was unable to meet the area constraint target, XST issued a warning.
WARNING:Xst - Area constraint could not be met for block tge>,
final ratio is 94

• (+5) represents the Max Margin of the area constraint.
– If the area constraint is not met, and
– If the difference between (requested area) and (actual area) is (less than or

equal to 5%):
♦ XST runs timing optimization taking into account the achieved area.
♦ XST makes sure that the final area solution does not exceed that figure.

Low Level Synthesis Report Example Three (55%)
Found area constraint ratio of 55 (+ 5) on block fpga_hm, actual
ratio is 64. Optimizing block fpga_hm> to meet ratio 55 (+ 5) of
1536 slices : Area constraint is met for block fpga_hm>, final
ratio is 60.

In this report example:
• The target area was set to 55%.
• XST achieved 60%.
• Since the difference between (requested area) and (achieved area) is (not more than

5%):
– XST considers that the area constraint was met.
– XST ensures that it is not broken by further optimizations

Disabling Automatic Resource Management
• To disable automatic resource management, specify -1 as the value for Slice (LUT-FF

Pairs) Utilization Ratio.
• You can apply Slice (LUT-FF Pairs) Utilization Ratio to a specific block.
• You can specify:

– An absolute number of slices (or FF-LUT pairs), or
– A percentage of the total number available on the device

Implementation Constraints
• XST writes all implementation constraints in the following to the output NGC file.

– HDL source code
– XST Constraint File (XCF)

• XST generates Keep properties during buffer insertion for:
– Maximum fanout control, or
– Optimization

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
294 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Device Primitive Support
XST allows you to instantiate Xilinx® device primitives directly in the HDL source code.

• The instantiated primitives are:

– Pre-compiled in the UNISIM library.

– Not automatically optimized or changed by XST.

– Preserved by XST and made available in the final NGC netlist.

• The Optimize Instantiated Primitives constraint allows XST to attempt to optimize
instantiated primitives with the rest of the design. Timing information is
available for most primitives. This allows XST to perform efficient timing-driven
optimizations.

• In order to simplify instantiation of complex primitives such as RAM components,
XST supports the UniMacro library.

For more information, see the Libraries Guides.

Generating Primitives Through Attributes
Some primitives can be generated through attributes.

Buffer Type
To force the use of a specific buffer type, assign Buffer Type to:

• Circuit primary I/Os, or

• Internal signals.

Use Buffer Type to disable buffer insertion.

I/O Standard
Use I/O Standard to assign an I/O standard to an I/O primitive.

For example, the following code assigns PCI33_5 I/O standard to the I/O port.

// synthesis attribute IOSTANDARD of in1 is PCI33_5

Primitives and Black Boxes
Primitive support is based on the concept of the Black Box.

For information on the basics of Black Box support, see FSM Safe Implementation.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 295

Chapter 8: FPGA Optimization

Primitive and Black Box Example
This example illustrates a significant difference between Black Box and primitive
support.

• Assume a design with a submodule called MUXF5. The MUXF5 can be your own
functional block or a Xilinx® device primitive.

• To avoid confusion about how XST interprets this module, attach Box Type to the
component declaration of MUXF5.

• If BoxType is applied to the MUXF5 with a value of:

– primitive or black_box

XST interprets the module as a Xilinx device primitive and uses its parameters
in, for example, critical path estimation.

– user_black_box

XST processes the module as a regular user Black Box.

• If user_black_box has the same name as that of a Xilinx device primitive:

– XST renames user_black_box to a unique name.

– XST issues a warning.

For example, if MUX5 is renamed to MUX51, XST issues the following warning.

WARNING:Xst:79 - Model ’muxf5’ has different
characteristics in destination library WARNING:Xst:80 -
Model name has been changed to ’muxf51’

• If Box Type is not applied to MUXF5, XST processes the block as a user hierarchical
block.

• If user_black_box has the same name as that of a Xilinx device primitive:

– XST renames user_black_box to a unique name.

– XST issues a warning.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
296 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Device Primitives Libraries
VHDL and Verilog libraries simplify the instantiation of Xilinx® device primitives.

• These libraries contain the complete set of Xilinx device primitive declarations.

• Box Type is applied to each component.

• If you have included these libraries, you need not apply Box Type yourself.

VHDL Device Primitives Libraries
• Declare library UNISIM with its package vcomponents in the HDL source code.

library unisim;
use unisim.vcomponents.all;

• The HDL source code is located in the following XST installation file:

vhdl\src\ unisims\unisims_vcomp.vhd

Verilog Device Libraries
The Verilog UNISIM library is precompiled. XST links it with your design.

Device Primitives Instantiation
Use uppercase for generic (VHDL) and parameter (Verilog) values when instantiating
device primitives.

Instantiating Device Primitives Example
The ODDR element has the following component declaration in the UNISIM library.

component ODDR
generic (

DDR_CLK_EDGE : string := "OPPOSITE_EDGE";
INIT : bit := ’0’;
SRTYPE : string := "SYNC");

port(
Q : out std_ulogic;
C : in std_ulogic;
CE : in std_ulogic;
D1 : in std_ulogic;
D2 : in std_ulogic;
R : in std_ulogic;
S : in std_ulogic);

end component;

• The values of DDR_CLK_EDGE and SRTYPE must be in uppercase when you
instantiate this primitive.

• If the values are not in uppercase, XST issues a warning stating that unknown values
are used.

Using INIT
Some primitives, such as LUT1, enable you to use an INIT during instantiation.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 297

Chapter 8: FPGA Optimization

To pass an INIT to the final netlist:

• Apply INIT to the instantiated primitive, or

• Pass INIT with:

– generics (VHDL), or

– parameters (Verilog)

Passing the INIT to the final netlist allows you to use the same code for synthesis and
simulation.

Specifying Primitive Properties
Use VHDL generics or Verilog parameters to specify properties on instantiated
primitives (for example, the INIT of an instantiated LUT).

• You can override the default values of instantiated primitives only with VHDL
generics or Verilog parameters. XST issues an error message if you use another
method.

ERROR:Xst:3003 - “example.vhd". Line 77. Unable to set
attribute "A_INPUT" with value "CASCADE" on instance <idsp>
of block <DSP48E1>. This property is already defined with
value “DIRECT" on the block definition by a VHDL generic or a
Verilog parameter. Apply the desired value by overriding the
default VHDL generic or Verilog parameter. Using an attribute
is not allowed.

• Simulation tools recognize generics and parameters, simplifying the circuit
validation process.

Configuring a LUT2 Primitive INIT Property VHDL Coding Example
--
-- Instantiating a LUT2 primitive
-- Configured via the generics mechanism (recommended)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: FPGA_Optimization/primitive_support/primitive_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity primitive_2 is
port(I0,I1 : in std_logic;

O : out std_logic);
end primitive_2;

architecture beh of primitive_2 is
begin

inst : LUT2
generic map (INIT=>"1")
port map (I0=>I0, I1=>I1, O=>O);

end beh;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
298 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Configuring a LUT2 Primitive INIT Property Verilog Coding Example
//
// Instantiating a LUT2 primitive
// Configured via the parameter mechanism
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/primitive_support/primitive_2.v
//
module v_primitive_2 (I0,I1,O);

input I0,I1;
output O;

LUT2 #(4’h1) inst (.I0(I0), .I1(I1), .O(O));

endmodule

Primitives Reporting
Box Type with its value (primitive) is applied to each primitive in the UNISIM library.
XST therefore processes instantiated device primitives silently.

XST Warnings
XST issues a warning if either of the following two conditions exists.

First Warning Condition
• You instantiate a block (non primitive).

AND

• The block has no content (no logic description).

Second Warning Condition
• The block has a logic description.

AND

• You apply Box Type to it with a value of user_black_box.

Warning Example
Elaborating entity <example> (architecture <archi>) from
library <work>. WARNING:HDLCompiler:89 - "example.vhd" Line 15:
<my_block> remains a black-box since it has no binding entity.

Primitives Related Constraints
• Box Type

• Constraints for placement and routing that can be passed from the HDL source code
to the NGC file without any specific XST processing

Primitives Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 299

Chapter 8: FPGA Optimization

Instantiating and Configuring a LUT2 Primitive with a Generic VHDL
Coding Example

--
-- Instantiating a LUT2 primitive
-- Configured via the generics mechanism (recommended)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: FPGA_Optimization/primitive_support/primitive_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity primitive_2 is
port(I0,I1 : in std_logic;

O : out std_logic);
end primitive_2;

architecture beh of primitive_2 is
begin

inst : LUT2
generic map (INIT=>"1")
port map (I0=>I0, I1=>I1, O=>O);

end beh;

Instantiating and Configuring a LUT2 Primitive with a Parameter Verilog
Coding Example

//
// Instantiating a LUT2 primitive
// Configured via the parameter mechanism
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/primitive_support/primitive_2.v
//
module v_primitive_2 (I0,I1,O);

input I0,I1;
output O;

LUT2 #(4’h1) inst (.I0(I0), .I1(I1), .O(O));

endmodule

Instantiating and Configuring a LUT2 Primitive with a Defparam Verilog
Coding Example

//
// Instantiating a LUT2 primitive
// Configured via the defparam mechanism
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/primitive_support/primitive_3.v
//
module v_primitive_3 (I0,I1,O);

input I0,I1;
output O;

LUT2 inst (.I0(I0), .I1(I1), .O(O));
defparam inst.INIT = 4’h1;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
300 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Using the UniMacro Library
• XST supports a library called UniMacro.

• The UniMacro library simplifies instantiation of complex primitives such as RAM
components.

• For more information, see the Libraries Guides.

Using the UniMacro Library (VHDL)
• Declare library unimacro with its package vcomponents.

library unimacro;
use unimacro.vcomponents.all;

• The HDL source code of this package is located in the Xilinx® software installation.

vhdl\src\unisims\unisims_vcomp.vhd

Using the UniMacro Library (Verilog)
• The UniMacro library is precompiled.

• XST automatically links the UniMacro library with your design.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 301

Chapter 8: FPGA Optimization

Cores Processing
Cores processing includes:
• Loading Cores
• Finding Cores
• Cores Reporting

Loading Cores
• XST can read cores in the form of EDIF or NGC netlist files to achieve more accurate:

– Timing estimation
– Resource utilization control

• The optimize value allows XST to:
– Integrate the core netlist into the overall design.
– Attempt to optimize it.

• Enable or disable Load Cores as follows:
– ISE® Design Suite

Process > Properties > Synthesis Options > Read Cores
– Command Line Mode

-read_cores

Finding Cores
XST automatically finds cores in the ISE® Design Suite project directory.
• If the cores are located in a different directory, specify the path as follows:

– ISE Design Suite
Process > Properties > Synthesis Options > Core Search Directories

– Command Line Mode
Cores Search Directories

• Xilinx® recommends that you:
– Systematically specify the directories in which the cores reside.
– Keep this information up to date.

• Follow these recommendations to:
– Obtain better timing and resource estimation.
– Protect against unexpected behaviors and hard-to-debug situations.

For example, without knowing the contents of an unloaded core (seen as a Black
Box), XST may have difficulty determining adequate buffer insertions on paths
leading to that core. This can negatively impact timing closure.

Cores Reporting
Cores Reporting Example
Launcher: Executing edif2ngd -noa "my_add.edn" "my_add.ngo"
INFO:NgdBuild - Release 11.2 - edif2ngd INFO:NgdBuild - Copyright
(c) 1995-2010 Xilinx, Inc. All rights reserved. Writing the
design to "my_add.ngo"... Loading core <my_add> for timing and
area information for instance <inst>.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
302 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Mapping Logic to LUTs
Use the UNISIM library to directly instantiate LUT components in the HDL source code.

• To specify a function that a LUT must execute, apply INIT to the instance of the LUT.

• To place an instantiated LUT or Register in a specific slice of the chip, attach RLOC
to the same instance.

• Since it is not always convenient to calculate INIT functions, you can use an alternate
method.

1. Describe the function that you want to map onto a single LUT in the HDL
source code in a separate block.

2. Attach Map Entity on a Single LUT to this block to instruct XST that the block
must be mapped on a single LUT.

3. XST calculates the INIT value for the LUT and preserves the LUT during
optimization.

• XST recognizes the Synplify xc_map attribute.

• If a function cannot be mapped on a single LUT, XST errors out.

ERROR:Xst:1349 - Failed to map xcmap entity <v_and_one> in one
lut.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 303

Chapter 8: FPGA Optimization

Mapping Logic to LUTs Verilog Coding Example
In this coding example, the top block instantiates two AND gates

• The AND gates are described in blocks and_one and and_two.

• XST generates two LUT2s and does not merge them.

//
// Mapping of Logic to LUTs with the LUT_MAP constraint
// Mapped to 2 distinct LUT2s
// Mapped to 1 single LUT3 if LUT_MAP constraints are removed
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/lut_mapping/lut_map_1.v
//

(* LUT_MAP="yes" *)
module v_and_one (A, B, REZ);

input A, B;
output REZ;

and and_inst(REZ, A, B);

endmodule

// --

(* LUT_MAP="yes" *)
module v_and_two (A, B, REZ);

input A, B;
output REZ;

or or_inst(REZ, A, B);

endmodule

// --

module v_lut_map_1 (A, B, C, REZ);
input A, B, C;
output REZ;

wire tmp;

v_and_one inst_and_one (A, B, tmp);
v_and_two inst_and_two (tmp, C, REZ);

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
304 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Controlling Placement on the Device
• You can control placement of the following inferred macros to a specific location

on the device:

– Registers

– Block RAM components

• To control placement of the macros, apply RLOC to the signal modeling the Register
or the block RAM. See the coding examples below.

• When RLOC is applied on a Register:

– XST distributes RLOC to each Flip-Flop.

– XST propagates RLOC constraints to the final netlist.

• XST supports RLOC for inferred RAMs that can be implemented with a single
block RAM primitive.

RLOC Constraint on a 4-Bit Register VHDL Coding Example
This coding example specifies an RLOC constraint on a 4-bit Register:

--
-- Specification of INIT and RLOC values for a flip-flop, described at RTL level
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: FPGA_Optimization/inits_and_rlocs/inits_rlocs_3.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity inits_rlocs_3 is
port (CLK : in std_logic;

DI : in std_logic_vector(3 downto 0);
DO : out std_logic_vector(3 downto 0));

end inits_rlocs_3;

architecture beh of inits_rlocs_3 is
signal tmp: std_logic_vector(3 downto 0):="1011";

attribute RLOC: string;
attribute RLOC of tmp: signal is "X3Y0 X2Y0 X1Y0 X0Y0";

begin

process (CLK)
begin

if (clk’event and clk=’1’) then
tmp <= DI;

end if;
end process;

DO <= tmp;

end beh;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 305

Chapter 8: FPGA Optimization

Inserting Buffers
• XST automatically inserts clock and I/O buffers.

• Use Add I/O Buffers to enable or disable automatic insertion.

• Automatic insertion is enabled by default.

• You can manually instantiate clock and I/O buffers.

• XST does not change instantiated device primitives, but propagates them to the
final netlist.

Using the PCI Flow With XST
Follow these guidelines to satisfy placement constraints and meet timing requirements
when using the PCI™ flow with XST.

1. Set the case of the names in the generated netlist to:

• uppercase (VHDL)

– The default is lowercase.

– Specify the case in ISE® Design Suite.

Process > Properties > Synthesis Options > Case

• maintain (Verilog)

– The default is maintain.

– Specify the case in ISE Design Suite.

Process > Properties > Synthesis Options > Case

2. Preserve the design hierarchy.

Specify the Keep Hierarchy setting in ISE Design Suite.

Process > Properties > Synthesis Options > Keep Hierarchy

3. Preserve equivalent Flip-Flops.

• XST removes equivalent Flip-Flops by default.

• Specify the Equivalent Register Removal setting in ISE Design Suite.

Process > Properties > Xilinx Specific Options > Equivalent Register Removal

Preventing Logic and Flip-Flop Replication
To prevent logic and Flip-Flop replication caused by a high fanout Flip-Flop set/reset
signal:

• Set a high maximum fanout value for the entire design in ISE® Design Suite.

Process > Properties > Xilinx Specific Options > Max Fanout

OR

• Set a high maximum fanout value for the initialization signal connected to the RST
port of the PCI™ core. Use Max Fanout. For example:

max_fanout=2048

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
306 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 8: FPGA Optimization

Disabling Read Cores
XST reads PCI™ cores by default for timing and area estimation.

• When reading PCI cores, XST may perform logic optimizations which:

– Do not allow the design to meet timing.

– Cause errors during MAP.

• Uncheck (disable) Read Cores in ISE® Design Suite to prevent XST from loading
the PCI cores.

Process > Properties > Synthesis Options > Read Cores

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 307

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
308 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 9

Design Constraints
XST design constraints help you:

• Meet design goals.

• Obtain the best circuit implementation.

• Control aspects of:

– Synthesis

– Placement

– Routing

Xilinx® has tuned default synthesis algorithms and heuristics to provide optimal results
for your designs. If initial synthesis fails to meet your design goals, use the XST design
constraints to try other synthesis alternatives.

Specifying Constraints
Use the following to specify constraints:

• ISE® Design Suite

• The command line

• VHDL attributes

• Verilog attributes and Verilog meta comments

• XST Constraint File (XCF)

Not all constraints can be specified with all tools or methods. If a tool or method is not
listed for a particular constraint, you cannot specify the constraint with it.

ISE Design Suite and the Command Line
To globally control most aspects of synthesis, specify constraints in:

• ISE Design Suite

• The run command in command line mode

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 309

Chapter 9: Design Constraints

VHDL Attributes
• To specify constraints in VHDL:

1. Insert VHDL attributes directly into the HDL source code.

2. Apply the VHDL attributes to individual design elements.

• VHDL attributes allows you to control:

– Synthesis

– Placement

– Routing

• You cannot use VHDL attributes to define the properties of instantiated device
primitives. Use VHDL generics or Verilog parameters instead.

Verilog Attributes and Meta Comments
To specify constraints in Verilog, insert Verilog attributes and meta comments into the
HDL source code.

• Verilog attributes are preferred over Verilog meta comments.

• You cannot use Verilog attributes or meta comments to define the properties of
instantiated device primitives. Use VHDL generics or Verilog parameters instead.

XST Constraint File (XCF)
You can specify constraints in an XST Constraint File (XCF).

You cannot use an XCF to define the properties of instantiated device primitives. Use
VHDL generics or Verilog parameters instead.

More Information
For more information, see:

• Specifying Primitive Properties

How to specify the properties of instantiated device primitives.

• Constraints Precedence Rules

How XST determines which constraint to apply when multiple instances of the
same constraint are:

– Set using different entry methods, or

– Set on different objects.

Constraints Precedence Rules
XST follows different constraints precedence rules depending on whether conflicting
constraints are:

• Set on the same object using different entry methods.

• Set on different objects.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
310 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 9: Design Constraints

Constraints Set Using Different Entry Methods
Constraints set on the same object using different entry methods take precedence as
follows. The order shown is from highest to lowest.

1. XST Constraint File (XCF)

2. HDL attribute

3. ISE® Design Suite in Process > Properties, or the command line

Constraints Set on Different Objects
Constraints set on different objects take precedence as follows.

• A local specification overrides a global specification.

• A constraint set on a signal or instance takes precedence over that same constraint
set on the design unit that contains it.

Setting Synthesis Options
Set XST synthesis options as follows:

• Setting Synthesis Options in ISE Design Suite

• Setting Other Command Line Synthesis Options

• Setting Synthesis Options for Non-Default Design Goals and Strategies

Setting Synthesis Options in ISE Design Suite
• To set XST synthesis options in ISE® Design Suite:

1. Select an HDL source file from the Hierarchy panel of the Design window.

a. Right-click Synthesize-XST in the Processes panel.

b. Select Process > Properties.

c. Select a category:

– Synthesis Options

– HDL Options

– Xilinx® Specific Options

2. Set the Property display level to:

a. Standard

Most common options.

b. Advanced

All available options.

3. Check Display switch names to see the corresponding command line switch
name for each option.

• Click Default to revert to the XST ISE Design Suite default options.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 311

Chapter 9: Design Constraints

Setting Other Command Line Synthesis Options
You can set other XST command line synthesis options in addition to the default options
listed in ISE® Design Suite in Process > Properties.

1. Select Process > Properties > Synthesis Options.
2. In Other XST Command Line Options, select the command line options in the

corresponding Value field.
3. Separate multiple options with a space.
4. Follow the syntax described in XST Commands.

Setting Synthesis Options for Non-Default Design Goals and
Strategies

ISE® Design Suite features predefined goals and strategies that allow you to run XST
with specific options settings.
• These settings have been tuned for specific optimization goals.
• This approach may be a good alternative for trying non-default constraints settings,

without having to go into the details of all XST constraints.
• To create and save your own design goals and strategies, select Project > Design

Goals & Strategies.

VHDL Attributes
Use VHDL attributes to describe constraints directly in the HDL source code.
• The attribute type defines the type of the attribute value.
• The only allowed type for XST is string.
• An attribute is declared in an entity or architecture.
• An attribute declared in the architecture cannot also be used in the entity declaration.
• The object list is a comma separated list of identifiers.
• Accepted object types are:

– Entity
– Architecture
– Component
– Label
– Signal
– Variable
– Type

• If a constraint can be applied on a VHDL entity, it can also be applied on the
component declaration.

VHDL Attribute Declaration Example
attribute AttributeName : Type ;

VHDL Attribute Specification Example
attribute AttributeName of ObjectList : ObjectType is
AttributeValue ;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
312 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 9: Design Constraints

VHDL Attribute Syntax Example
attribute RLOC : string ;

VHDL Attribute Example
attribute RLOC of u123 : label is “R11C1.S0” ;
attribute bufg of my_signal : signal is “sr”;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 313

Chapter 9: Design Constraints

Verilog-2001 Attributes
XST supports Verilog-2001 attribute statements.
• Verilog-2001 attribute statements:

– Pass information to applications such as synthesis tools.
– Are specified anywhere for operators and signals within:

♦ Module declarations
♦ Instantiations

• XST ignores other attribute declarations even though the compiler may support
them.

• Use Verilog attributes to:
– Set constraints on individual objects such as:

♦ Modules
♦ Instances
♦ Nets

– Set the following synthesis constraints:
♦ Full Case
♦ Parallel Case

Verilog-2001 Syntax
(* attribute_name = attribute_value *)

• The attributes are enclosed between asterisks.
• attribute_value is a string. No integer or scalar values are allowed.
• attribute_value is enclosed between quotes.
• The default value is 1. (* attribute_name *) is equivalent to (* attribute_name = "1" *).

Attribute Placement
The attributes may be placed using any of the following methods.
1. Place the attribute immediately before the signal, module, or instance declaration.

• The attribute is on the same line as the declaration.

(* ram_extract = “yes” *) reg [WIDTH-1:0] myRAM [SIZE-1:0];

• The attribute is on a separate line from the declaration.

(* ram_extract = “yes” *)reg [WIDTH-1:0] myRAM [SIZE-1:0];

2. Specify a list of several attributes attached to the same Verilog object.
• The attributes are separated by commas.

(* attribute_name1 = attribute_value1, attribute_name2 = attribute_value2 *)

• The attributes are enclosed in parentheses.

(* attribute_name1 = attribute_value1 *) (*attribute_name2 = attribute_value2 *)

• The attribute list spans multiple lines for improved readability.

(* ram_extract = “yes”,ram_style = “block” *)reg [WIDTH-1:0] myRAM [SIZE-1:0]

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
314 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 9: Design Constraints

Verilog-2001 Limitations
Verilog-2001 does not support attributes for:

• Signal declarations

• Statements

• Port connections

• Expression operators

Verilog Meta Comments
• You can specify constraints in Verilog using meta comments.

• Xilinx® recommends using Verilog-2001 attribute syntax.

• The Verilog meta comment syntax is:

// synthesis attribute AttributeName [of] ObjectName [is]
AttributeValue

• The following constraints use a different syntax:

– Full Case

– Parallel Case

– Translate Off and Translate On

• For more information, see Verilog–2001 Attributes and Meta Comments.

Verilog Meta Comment Syntax Example
// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HU_SET u1 MY_SET
// synthesis attribute bufg of my_clock is "clk"

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 315

Chapter 9: Design Constraints

XST Constraint File (XCF)
In addition to the HDL source code, you can also specify XST constraints in an XST
Constraint File (XCF) in:
• ISE® Design Suite
• Command Line

Specifying an XCF in ISE Design Suite
To specify an XCF in ISE Design Suite:
1. Select an HDL source file from Design > Hierarchy.
2. Right-click Processes > Synthesize-XST.
3. Select Process > Properties.
4. Select Synthesis Options.
5. Edit Synthesis Constraints File.
6. Check Synthesis Constraints File.

Specifying an XCF in the Command Line
• To specify an XCF in the command line, use Synthesis Constraint File (-uc) with

the run command.
• For more information about the run command and running XST from the command

line, see XST Commands.

XCF Syntax
• The XCF syntax enables you to specify constraints that are applicable to:

– The entire design
– Specific entities or modules

• The XCF syntax is an extension of the User Constraints File (UCF) syntax. Apply
constraints to nets or instances in the same manner.

Defining and Applying Constraints
• The XCF syntax allows constraints to be applied to specific levels of the design

hierarchy.
– Use theMODELkeyword to define the entity or module to which the constraint is

applied.
– If a constraint is applied to an entity or module, the constraint is effective for

each instantiation of the entity or module.
• Define constraints in:

– ISE Design Suite
Process > Properties

– The run command on the command line.
• Specify exceptions in the XCF. XCF constraints are applied only to the module listed,

and not to any submodules below it.
• Use the following syntax to apply a constraint to the entire entity or module.

MODEL entityname constraintname = constraintvalue;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
316 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 9: Design Constraints

Using INST and NET
Use the INST or NETkeywords to apply constraints to specific instances or signals
within an entity or module. XST does not support constraints that are applied to VHDL
variables.

Syntax

BEGIN MODELentityname

INST instancename constraintname = constraintvalue ;
NET signalname constraintname = constraintvalue ;

Syntax Example

BEGIN MODEL crc32
INST stopwatch opt_mode = area ;
INST U2 ram_style = block ;
NET myclock clock_buffer = true ;
NET data_in iob = true ;

END;

Native and Non-Native UCF Syntax
XST-supported constraints include:

• Native UCF Constraints

• Non-Native UCF Constraints

Native UCF Constraints
Only timing constraints and area group constraints use native User Constraints File
(UCF) syntax.

• The UCF syntax includes wildcards and hierarchical names.

• Use UCF syntax for native UCF constraints such as:

– Period

– Offset

– From-To

– Timing Name

– Timing Name on a Net

– Timegroup

– Timing Ignore

• XST issues an error message if you use these constraints between BEGIN MODEL
and END.

Non-Native UCF Constraints
For all non-native User Constraints File (UCF) constraints, use theMODEL or BEGIN
MODEL... END; constructs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 317

Chapter 9: Design Constraints

Included Constraints
Non-native UCF constraints include:

• Pure XST constraints such as:

– Automatic FSM Extraction

– RAM Style

• Implementation non-timing constraints such as:

– RLOC

– Keep

Default Hierarchy Separator
The default hierarchy separator is a forward slash (/).

• Use the default hierarchy separator when specifying timing constraints that apply to
hierarchical instance or net names in the XST Constraint File (XCF).

• Use Hierarchy Separator to change the default hierarchy separator.

XCF Syntax Limitations
• XST Constraint File (XCF) syntax does not support:

– Nested model statements.

– Wildcards in instance and signal names, except in timing constraints.

– Some native User Constraints File (UCF) constraints.

– Hierarchical instance or signal names.

• Instance or signal names listed between BEGIN MODEL and END are the only
names visible inside the entity.

For more information, see the Constraints Guide (UG625).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
318 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 9: Design Constraints

Timing Constraints Applied in the XCF
• The following timing constraints can be applied for synthesis only in the XST

Constraint File (XCF):

– Period

– Offset

– From-To

– Timing Name

– Timing Name on a Net

– Timegroup

– Timing Ignore

– Timing Specifications

See the Constraints Guide (UG625).

– Timing Specification Identifier

See the Constraints Guide (UG625).

• These timing constraints:

– Are not propagated exclusively to implementation tools.

– Are understood by XST.

– Influence synthesis optimization.

• Use Write Timing Constraints to pass these constraints to Place and Route (PAR).

• For more information as to the value and target of each constraint, see the Constraints
Guide (UG625).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 319

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
320 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10

General Constraints
This chapter discusses XST general constraints.

For most constraints, this chapter gives the following information:

• Constraint Description

• Applicable Elements

• Propagation Rules

• Constraint Values

• Syntax Examples

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 321

Chapter 10: General Constraints

Add I/O Buffers
The Add I/O Buffers (-iobuf) command line option enables or disables I/O buffer
insertion.

• Add I/O Buffers allows you to synthesize a part of a design to be instantiated later.

• XST automatically inserts I/O buffers into the design.

• If you manually instantiate I/O buffers for some I/Os, XST inserts I/O buffers only
for the remaining I/Os.

• If I/O buffers are added to a design, the design cannot be used as a submodule
of another design.

• To prevent XST from inserting any I/O buffers, set -iobuf to no.

Applicable Elements
Applies globally.

Propagation Rules
Applies to design primary I/Os.

Constraint Values
• yes (default)

Select yes to generate IBUF and IOBUF primitives. These primitives are connected
to I/O ports of the top-level module.

• no

Select no (mandatory) when XST synthesizes an internal module that is instantiated
later in a larger design.

• true

• false

• soft

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-iobuf {yes|no|true|false|soft}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Add I/O Buffers

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
322 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Box Type
The Box Type (BOX_TYPE) constraint instructs XST not to synthesize the behavior
of a module.
• Box Type:

– Is a synthesis constraint.
– Can be applied to a component.

• If Box Type is applied to at least one instance of a block, Box Type is propagated to
all other instances in the entire design.

Applicable Elements
Applies to the following design elements:

• VHDL
component, entity

• Verilog
module, instance

• XCF
model, instance

Propagation Rules
Applies to the design element to which it is attached.

Constraint Values
• primitive

XST does not report inference of a Black Box in the log file.
• black_box

Equivalent to primitive. This value will eventually become obsolete.
• user_black_box

XST does report inference of a Black Box in the log file.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute box_type: string;

Specify as follows.

attribute box_type of {component_name|entity_name} :
{component|entity} is "{primitive|black_box|user_black_box}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 323

Chapter 10: General Constraints

Verilog Syntax Example
Place immediately before the instantiation.

(* box_type = "{primitive|black_box|user_black_box}" *)

XCF Syntax Example One
MODEL "entity_name "
box_type="{primitive|black_box|user_black_box}";

XCF Syntax Example Two
BEGIN MODEL "entity_name "
INST " instance_name "
box_type="{primitive|black_box|user_black_box}"; END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
324 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Bus Delimiter
The Bus Delimiter (–bus_delimiter) command line option defines the format used to
write the signal vectors in the result netlist.

Applicable Elements
Applies to syntax.

Propagation Rules
Not applicable.

Constraint Values
• <> (default)

• []

• {}

• ()

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-bus_delimiter {<>|[]|{}|()}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Bus Delimiter

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 325

Chapter 10: General Constraints

Case
The Case (–case) command line option determines whether:

• Instance and net names are written in the final netlist using all lowercase or all
uppercase letters

or

• The case is maintained from the source.

The case can be maintained for either Verilog or VHDL synthesis flow.

Applicable Elements
Applies to syntax.

Propagation Rules
Not applicable.

Constraint Values
• upper

• lower

• maintain (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-case {upper|lower|maintain}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Case

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
326 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Case Implementation Style
The Case Implementation Style (–vlgcase) command line option:
• Supports Verilog designs only.
• Instructs XST how to interpret Verilog case statements.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• full

– XST assumes that the case statements are complete.
– XST avoids Latch creation.

• parallel
– XST assumes that the branches cannot occur in parallel.
– XST does not use a priority encoder.

• full-parallel
– XST assumes that the case statements are complete.
– XST assumes that the branches cannot occur in parallel.
– XST saves Latches and priority encoders.

• None
XST implements the exact behavior of the case statements. There is no default value.

For more information, see:
• Full Case
• Parallel Case
• Multiplexers

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-vlgcase {full|parallel|full-parallel}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > Case Implementation Style

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 327

Chapter 10: General Constraints

Duplication Suffix
The Duplication Suffix (-duplication_suffix) command line option:
• Controls how XST names replicated Flip-Flops.
• Specifies a text string to append to the default name.

Naming Replicated Flip-Flops
When XST replicates a Flip-Flop, it creates a name for the new Flip-Flop.
• XST adds _n to the end of the original Flip-Flop name.
• n is an index number.

Naming Replicated Flip-Flops Example
• The original Flip-Flop name is my_ff.
• The Flip-Flop is replicated three times.
• XST generates Flip-Flops with the following names:

– my_ff_1
– my_ff_2
– my_ff_3

Specifying a Text String
Duplication Suffix specifies a text string to append to the default name.

Specifying a Text String Example One
• Use the%d escape character to specify where the index number appears.
• For the Flip-Flop named my_ff, if you specify _dupreg_%d, XST generates the

following names:
– my_ff_dupreg_1
– my_ff_dupreg_2
– my_ff_dupreg_3

Specifying a Text String Example Two
• Place the%d escape character anywhere in the suffix definition.
• If the Duplication Suffix value is specified as _dup_%d_reg, XST generates the

following names:
– my_ff_dup_1_reg
– my_ff_dup_2_reg
– my_ff_dup_3_reg

Applicable Elements
Applies to files.

Propagation Rules
Not applicable.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
328 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-duplication_suffix string %dstring

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Other

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 329

Chapter 10: General Constraints

Full Case
The Full Case (FULL_CASE) constraint:
• Applies to Verilog designs only.
• Indicates that all possible selector values have been expressed in a case, casex, or

casez statement.
• Prevents XST from creating additional hardware for those conditions not expressed.

For more information, see Multiplexers.

Applicable Elements
Applies to case statements in Verilog meta comments.

Propagation Rules
Not applicable.

Constraint Values
• full
• parallel
• full-parallel

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

Verilog Syntax Example
(* full_case *)

• Since Full Case does not contain a target reference, the attribute immediately
precedes the selector.

(* full_case *)
casex select
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

• Full Case is also available as a meta comment in the Verilog code. The syntax differs
from the standard meta comment syntax as shown in the following.

// synthesis full_case

• Since Full Case does not contain a target reference, the meta comment immediately
follows the selector.

casex select // synthesis full_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
330 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

XST Command Line Syntax Example
Define globally with the run command.

-vlgcase {full|parallel|full-parallel}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Full Case

For Case Implementation Style, select full as a Value.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 331

Chapter 10: General Constraints

Generate RTL Schematic
The Generate RTL Schematic (-rtlview) command line option allows XST to generate a
netlist file.

• The netlist file represents a Register Transfer Level (RTL) design structure.

• View the netlist file with:

– RTL Viewer

– Technology Viewer

• The file containing the RTL view has an .NGRfile extension.

Applicable Elements
Applies to files.

Propagation Rules
Not applicable.

Constraint Values
• yes

• no

• only

When only is specified, XST stops synthesis immediately after the RTL view is
generated.

Constraint Defaults
Defaults vary depending on the entry method. See below.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-rtlview {yes|no|only}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Generate RTL Schematic

The default is yes.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
332 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Generics
Use the Generics (-generics) command line option to redefine the following values in the
top-level design block:
• Generics (VHDL)
• Parameters (Verilog)

Using the Generics option to redefine these values:
• Allows you to modify the design without modifying the source code.
• Can be used for IP core generation and flow testing.

Value Mismatches
If there is a mismatch between the redefined value and the value defined in the HDL
source code, XST reacts as follows.
• If the redefined value uses a generic or parameter name that does not exist in the

design:
– XST does NOT issue a warning.
– XST ignores the command line definition.

• If the redefined value does not correspond to the data type in the HDL source code:
– XST issues a warning.
– XST ignores the command line definition.

• If XST fails to detect a mismatch:
– XST does NOT issue a warning.
– XST attempts to apply the redefined value by adapting it to the data type

defined in the HDL source code.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• name

The name of a generic or parameter of the design top level block.
• value

The value of a generic or parameter of the design top level block.

Constraint Default
The default is an empty definition.

-generics {}

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 333

Chapter 10: General Constraints

Constraint Syntax Guidelines
• For binary, hexadecimal, and decimal, there are no spaces between the prefix and

the corresponding value.

-generics {company="mycompany" width=5 init_vector=b100101}

• This command sets:

– company to mycompany

– width to 5

– init_vector to b100101

• Specify values for generics of the following types in binary or hexadecimal form.

– std_logic_vector

– std_ulogic_vector

– bit_vector

Example

Specifying a binary value without the required base prefix (b) causes XST to assume
that the generic is of type integer. XST reports a type mismatch as follows:

ERROR:HDLCompiler:839 - "example.vhd" Line 11: Type
std_logic_vector does not match with the integer literal

• Formatting varies depending on the type of the generic value, as shown in the
following table.

• Place the name/value pairs inside {braces}.

• Separate the name/value pairs with spaces.

• XST can accept only constants of scalar types as values. XST supports composite
data types (arrays or records) only for the following:

– string

– std_logic_vector

– std_ulogic_vector

– signed

– unsigned

– bit_vector

Generic Value Syntax Examples
Type Generic Value Syntax Example

String “mystring”

Binary b00111010

Hexadecimal h3A

Decimal (integer) d58 (or 58)

Boolean true TRUE

Boolean false FALSE

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
334 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
run -generics {name=value name=value ... }

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 335

Chapter 10: General Constraints

HDL Library Mapping File
The HDL Library Mapping File (-xsthdpini) constraint defines the library mapping.

• The library mapping file:

– Has two associated parameters:

♦ XSTHDPINI

♦ XSTHDPDIR

– Contains:

♦ The library name.

♦ The directory in which the library is compiled.

• XST maintains two library mapping files:

– Pre-installed INI file

– Custom INI file

Pre-Installed INI File
-- Default lib mapping for XST
std=$XILINX/vhdl/xst/std
ieee=$XILINX/vhdl/xst/unisim
unisim=$XILINX/vhdl/xst/unisim
aim=$XILINX/vhdl/xst/aim
pls=$XILINX/vhdl/xst/pls

• The pre-installed INI file:

– Is named xhdp.ini.

– Is installed during the Xilinx® software installation.

– Is the default.

– Is located in %XILINX%\vhdl\xst.

– Contains information about the locations of the standard VHDL and UNISIM
libraries.

– Should not be modified.

Note The syntax can be used for user library mapping.

– Appears as follows:

• Use the INI file format to define where each of your own libraries will be placed. All
compiled VHDL flies are stored by default in the xst subdirectory of the project
directory.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
336 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Custom INI File
• You can define the custom INI file for your own projects.

• To place a custom INI file anywhere on a disk:

– Select the VHDL INI file in ISE® Design Suite

Process > Properties > Synthesis Options, or

– Set the -xsthdpini parameter in standalone mode.

set -xsthdpini file_name

• Although you can name this library mapping file anything you wish, Xilinx
recommends keeping the .ini classification. The format is:

– library_name=path_to_compiled_directory

– Use a double dash (--) for comments.

MY.INI Example Text
work1=H:\Users\conf\my_lib\work1
work2=C:\mylib\work2

Applicable Elements
Applies to files.

Propagation Rules
Not applicable.

Constraint Values
Allowed values are names of directories.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

set -xsthdpini file_name

ISE Design Suite Syntax Example
Define globally in ISE Design Suite.

Process > Properties > Synthesis Options > VHDL INI File

To view this constraint, select Edit > Preferences > Processes > Property Display Level
> Advanced.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 337

Chapter 10: General Constraints

Hierarchy Separator
The Hierarchy Separator (-hierarchy_separator) command line option defines the
hierarchy separator character used in name generation when the design hierarchy is
flattened.
• Hierarchy Separator supports the following characters:

– _ (underscore)
– / (forward slash)

• The / (forward slash) separator:
– Is useful in design debugging.
– Makes it easier to identify a name if it is hierarchical.

Hierarchy Separator Example
• A design contains a sub-block with instance INST1.
• This sub-block contains a net called TMP_NET
• The hierarchy is flattened.
• The name TMP_NET becomes INST1_TMP_NET.
• The hierarchy separator character is / (forward slash).
• The net name is NST1/TMP_NET.

Applicable Elements
Applies to files.

Propagation Rules
Not applicable.

Constraint Values
• _ (underscore)
• / (forward slash)

Constraint Default
The / (forward slash) hierarchy separator is the default for newly-created projects.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-hierarchy_separator {_|/}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Hierarchy Separator

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
338 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Ignore Synthesis Constraints File
The Ignore Synthesis Constraints File (–iuc) command line option instructs XST to ignore
the constraint file specified by the Synthesis Constraints File command line option.

Applicable Elements
Applies to files.

Propagation Rules
Not applicable.

Constraint Values
• yes

• no (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-iuc {yes|no}

ISE Design Suite Syntax Example
Caution! Ignore Synthesis Constraints File is shown as Synthesis Constraints File in
ISE® Design Suite. The constraint file is ignored if you uncheck this option. It is checked
by default (therefore resulting in a –iuc no command line switch), meaning that any
synthesis constraints file you specify is taken into account.

Define globally in ISE Design Suite.

Process > Properties > Synthesis Options > Synthesis Constraints File

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 339

Chapter 10: General Constraints

I/O Standard
The I/O Standard (IOSTANDARD) constraint assigns an I/O standard to an I/O primitive.

• Apply I/O Standard on individual signals or instances with:

– A VHDL attribute

– A Verilog attribute

– An XST Constraint File (XCF) constraint

• I/O Standard does not apply globally.

For more information about this constraint, see the Constraints Guide (UG625).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
340 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Keep
The Keep (KEEP) constraint:

• Is an advanced mapping constraint.

• Preserves signals in the netlist.

• Is applied to a signal using:

– VHDL attribute

– Verilog attribute

– XCF constraint

For more information about this constraint, see the Constraints Guide (UG625).

Absorption of Nets
• Some nets may be absorbed into logic blocks when a design is mapped.

• When a net is absorbed into a logic block, it can no longer be seen in the physical
design database. For example:

– Components connected to each side of a net are mapped into the same logic
block.

– KEEP prevents the net from being absorbed into the block containing the
components.

Limitations of KEEP
• KEEP preserves the existence of the designated signal in the final netlist, but not

the surrounding logic.

– The surrounding logic may be transformed by an XST optimization.

– See KEEP Limitation Example below.

• To preserve both a signal and the elements that directly surround it, use Save.

• Do not use KEEP to control Register replication. Use Register Duplication.

• Do not use KEEP to control removal of equivalent Registers. Use Equivalent Register
Removal.

KEEP Limitation Example
• Attaching KEEP to the 2-bit selector of a 4-to-1 Multiplexer preserves the signal

in the final netlist.

• If XST re-encodes the Multiplexer using one-hot encoding, the signal preserved in
the final netlist becomes 4 bits wide, instead of 2 bits.

• To preserve the structure of the signal, use Enumerated Encoding in addition to
KEEP.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 341

Chapter 10: General Constraints

Constraint Values
• true

– Preserves the designated signal in the NGC netlist.

– KEEP is propagated into the netlist.

– Implementation steps preserve the signal.

• soft

– Preserves the designated signal in the NGC netlist.

– KEEP is not propagated to implementation.

– The signal may be optimized away.

Note In an XST Constraint File (XCF) file, the value of KEEP may optionally be
enclosed in double quotes. Double quotes are mandatory for soft.

• false

– XST does not specifically attempt to preserve the designated signal.

– A signal may still exist in the NGC netlist as a result of internal signal
preservation rules.

– XST does not put any extra effort beyond those rules.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example One
BEGIN MODELtestkeep

NET aux1 KEEP=true;

END;

XCF Syntax Example Two
BEGIN MODELtestkeep

NET aux1 KEEP=”soft”;

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
342 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Keep Hierarchy
The Keep Hierarchy (KEEP_HIERARCHY) constraint is related to the hierarchical blocks
(VHDL entities and Verilog modules) specified in the HDL design.

• Keep Hierarchy

– Is both a synthesis and implementation constraint.

– Does not concern the macros inferred by the HDL synthesizer.

• If hierarchy is maintained during synthesis, the implementation tools use Keep
Hierarchy to:

– Preserve the hierarchy throughout implementation.

– Allow a simulation netlist to be created with the desired hierarchy.

• XST can flatten the design to obtain better results by optimizing entity or module
boundaries.

• If Keep Hierarchy is set to yes, the generated netlist:

– Is hierarchical.

– Respects the hierarchy and interface of all entities and modules.

Preserving the Hierarchy
• An HDL design is a generally a collection of hierarchical blocks. Preserving the

hierarchy speeds up processing, since optimization occurs on separate pieces with
reduced complexity.

• Merging the hierarchy blocks nonetheless frequently improves the fitting results
by producing:

– Fewer PTerms

– Fewer device macrocells

– Better frequency

• This improvement occurs because the optimization processes (collapsing and
factorization) are applied globally to the entire logic.

• In the Keep Hierarchy Diagram, if Keep Hierarchy is set to the entity or module I2:

– The hierarchy of I2 is in the final netlist.

– Its contents I4 and I5 are flattened inside I2.

– I1, I3, I6, and I7 are also flattened.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 343

Chapter 10: General Constraints

Keep Hierarchy Diagram

Applicable Elements
Applies to logical blocks, including blocks of hierarchy or symbols.

Propagation Rules
Applies to the entity or module to which it is attached.

Constraint Values
• yes

– Preserves the design hierarchy as described in the HDL project.
– If yes is applied to synthesis, it is also propagated to implementation.

• no (default)
Hierarchical blocks are merged in the top level module.

• soft
– Allows the preservation of the design hierarchy in synthesis.
– Keep Hierarchy is not propagated to implementation.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute keep_hierarchy : string;

Specify as follows.

attribute keep_hierarchy of architecture_name : architecture is
"{yes|no|soft}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
344 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Verilog Syntax Example
(* keep_hierarchy = "{yes|no|soft}" *)

XCF Syntax Example
MODEL "entity_name " keep_hierarchy={yes|no|soft};

Command Line Syntax Example
Define globally with the run command.

-keep_hierarchy {yes|no|soft}

For more information, see Command Line Mode.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Keep Hierarchy

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 345

Chapter 10: General Constraints

Library Search Order
The Library Search Order (-lso) command line option specifies the order in which
library files are used.

To invoke Library Search Order:

• Specify the search order file in ISE® Design Suite.

Process > Properties > Synthesis Options > Library Search Order, or

• Use the –lso command line option.

For more information, see Library Search Order (LSO) Files.

Applicable Elements
Applies to files.

Propagation Rules
Not applicable.

Constraint Values
The only allowed value is a file name.

Constraint Default
There is no default file name. If not specified, XST uses the default search order.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-lso file_name .lso

ISE Design Suite Syntax Example
Define globally in ISE Design Suite

Process > Properties > Synthesis Options > Library Search Order

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
346 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

LOC
LOC defines where a design element can be placed within a device.

For more information about this constraint, see the Constraints Guide (UG625).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 347

Chapter 10: General Constraints

Netlist Hierarchy
The Netlist Hierarchy (-netlist_hierarchy) command line option:
• Controls the form in which the final NGC netlist is generated.
• Allows you to write the hierarchical netlist even if the optimization was done on a

partially or fully-flattened design.

The hierarchy is not always fully rebuilt.

Optimization of Small Hierarchical Blocks During LUT Optimizations
• During Low-Level Synthesis, logic optimizations such as LUT packing may send all

logic in certain small hierarchical blocks to the surrounding context.
• These small hierarchical blocks:

– Are of very low complexity.
– Are typically only a few LUTs.
– Are eliminated during optimization.
– Are not rebuilt in the final netlist.

Macro Grouping Across Hierarchy
• During Advanced HDL Synthesis, XST attempts to group basic inferred macros

together into higher complexity macros.
• These composite macros are usually candidates for implementation with DSP or

block RAM resources.
• When grouped macros are inferred in distinct hierarchical blocks, local hierarchical

boundaries:
– May be removed.
– Are not rebuilt in the final netlist.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• as_optimized (default)

– XST takes Keep Hierarchy into account.
– XST generates the NGC netlist in the form in which it was optimized.
– Some hierarchical blocks are flattened, while others maintain hierarchy

boundaries.
• rebuilt

XST writes a hierarchical NGC netlist, regardless of Keep Hierarchy.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
348 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

- netlist_hierarchy {as_optimized|rebuilt}

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 349

Chapter 10: General Constraints

Optimization Effort
The Optimization Effort (OPT_LEVEL) constraint defines the synthesis Optimization
Effort Level.

Applicable Elements
Applies globally, or to an entity or module.

Propagation Rules
Applies to the entity or module to which it is attached.

Constraint Values
• 1 (Normal Optimization Effort Level) (default)

– Is the recommended Optimization Effort Level.
– Results in (especially for hierarchical designs)

♦ A high level of optimizations.
♦ Fast processing times.

• 2 (High Optimization Effort Level)
– Instructs XST to explore additional optimization techniques.
– Can result in significantly increased synthesis runtimes.
– Does not guarantee a better outcome.
– May benefit only some designs. In other designs there may be no improvement,

or the results may be degraded.
• 0 (Fast Optimization Effort Level)

– Turns off some of the optimization algorithms used in Optimization Effort
Level One (Normal).

– Delivers a synthesized result in minimal runtime.
– May result in an optimization trade-off.
– Is used early in the design process to obtain rapid results.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute opt_level: string;

Specify as follows.

attribute opt_level of entity_name: entity is "{0|1|2}";

Verilog Syntax Example
(* opt_level = "{0|1|2}" *)

XCF Syntax Example
MODEL "entity_name" opt_level={0|1|2};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
350 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

XST Command Line Syntax Example
Define globally with the run command.

-opt_level {0|1|2}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Optimization Effort

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 351

Chapter 10: General Constraints

Optimization Goal
The Optimization Goal (OPT_MODE) constraint defines the synthesis optimization
strategy.

Applicable Elements
Applies globally, or to an entity or module.

Propagation Rules
Applies to the entity or module to which it is attached.

Constraint Values
• speed (default)

Reduces the number of logic levels and therefore increases frequency.
• area

Reduces the total amount of logic used for design implementation and therefore
improves design fitting.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute opt_mode: string;

Specify as follows.

attribute opt_mode of entity_name : entity is "{speed|area}";

Verilog Syntax Example
(* opt_mode = "{speed|area}" *)

XCF Syntax Example
MODEL "entity_name " opt_mode={speed|area};

XST Command Line Syntax Example
Define globally with the run command.

-opt_mode {area|speed}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Optimization Goal

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
352 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Parallel Case
The Parallel Case (PARALLEL_CASE) constraint:

• Is valid for Verilog designs only.

• Forces a case statement to be synthesized as a parallel Multiplexer.

• Prevents the case statement from being transformed into a prioritized if-elsif
cascade.

Applicable Elements
Applies to case statements in Verilog meta comments only.

Propagation Rules
Not applicable.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

Verilog Syntax Example
(* parallel_case *)

• Since Parallel Case does not contain a target reference, the attribute immediately
precedes the selector.

(* parallel_case *)
casex select
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

• Parallel Case is also available as a meta comment in the Verilog code. The syntax
differs from the standard meta comment syntax as shown in the following:

// synthesis parallel_case

• Since Parallel Case does not contain a target reference, the meta comment
immediately follows the selector.

casex select // synthesis parallel_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

XST Command Line Syntax Example
Define globally with the run command.

-vlgcase {full|parallel|full-parallel}

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 353

Chapter 10: General Constraints

RLOC
The RLOC constraint:

• Is a basic mapping and placement constraint.

• Groups logic elements into discrete sets.

• Defines the location of any element within a set relative to other elements in the set,
regardless of eventual placement in the overall design.

For more information about this constraint, see the Constraints Guide (UG625).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
354 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Save
The Save (S or SAVE) constraint is an advanced mapping constraint.

• When a design is mapped:

– Some nets are absorbed into logic blocks.

– Some elements such as LUTs are optimized away.

• SAVE prevents such optimizations in order to preserve access to specific nets and
blocks in the post-synthesis netlist.

• Disabled optimization techniques include:

– Nets or blocks replication

– Register balancing

SAVE Applied To XST Action
Net Preserves the net with all elements directly connected to it in the final netlist, including

nets connected to these elements.

Block Preserves the LUT with all signals connected to it.

For more information about this constraint, see the Constraints Guide (UG625).

Applicable Elements
• Nets

XST preserves the designated net with all elements directly connected to it in the
final netlist. Nets connected to these elements are also preserved.

• Instantiated device primitives

If SAVE is applied to an instantiated primitive such as a LUT, XST preserves the LUT
with all signals connected to it.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 355

Chapter 10: General Constraints

Synthesis Constraint File
The Synthesis Constraint File (–uc) command line option specifies the XST Constraint
File (XCF) that XST uses during synthesis.

• The XCF has an extension of .xcf.

• If the extension is not .xcf, XST errors out and stops processing.

Applicable Elements
Applies to files.

Propagation Rules
Not applicable.

Constraint Value
The only value is a file name. There is no default.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-uc filename

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Synthesis Constraints File

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
356 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Translate Off and Translate On
The Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON) constraints
instruct XST to ignore HDL source code not relevant for synthesis, such as simulation
code.

• TRANSLATE_OFF marks the beginning of the section to be ignored.

• TRANSLATE_ON marks the end of the section to be ignored.

Synopsys Directives
Translate Off and Translate On are Synopsys directives.

• XST supports Translate Off and Translate On in Verilog.

• Automatic conversion is also available in VHDL and Verilog.

• Translate Off and Translate On can be used with the following words:

– synthesis

– synopsys

– pragma

Applicable Elements
Applies locally.

Propagation Rules
Instructs the synthesis tool to enable or disable portions of code.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

-- synthesis translate_off
...code not synthesized...
-- synthesis translate_on

Verilog Syntax Example
Translate Off and Translate On are available as HDL meta comments. The Verilog syntax
differs from the standard meta comment syntax.

// synthesis translate_off
...code not synthesized...
// synthesis translate_on

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 357

Chapter 10: General Constraints

Verilog Include Directories
• The Verilog Include Directories (–vlgincdir) command line option:

– Is used in conjunction with ‘include.

– Helps the parser find files referenced by ‘include statements.

• When an ‘include statement references a file, XST searches in the following order
relative to the:

– Current working directory

– Directory of the Verilog file containing ‘include

– Directory of the .prj file

– Directories referenced by the -vlgincdir option

Applicable Elements
Applies to directories.

Propagation Rules
Not applicable.

Constraint Values
Allowed values are names of directories.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-vlgincdir {directory_path [directory_path] }

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Verilog Include Directories

To view this constraint, select Edit > Preferences > Processes > Property Display Level
> Advanced.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
358 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Verilog Macros
The Verilog Macros (-define) command line option:
• Defines (or redefines) Verilog macros.
• Allows you to modify the design configuration without modifying the source code.
• Can be used for IP core generation and flow testing. If the defined macro is not

used in the design, no message is given.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• name is a macro name
• value is a macro text

The default is an empty definition.

-define {}

Syntax Rules
• Values for macros are not mandatory.
• Place the values inside {braces}.
• Separate the values with spaces.
• You can specify macro text between quotation marks or without them. If the macro

text contains spaces, you must use quotation marks.

-define {macro1=Xilinx macro2="Xilinx Virtex6"}

• Do not use {braces} when specifying values in ISE® Design Suite.
acro1=Xilinx macro2="Xilinx Virtex6"

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-define {name[=value] name[=value] -}

ISE Design Suite Syntax Example
Define globally in ISE Design Suite.

Process > Properties > Synthesis Options > Verilog Macros

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 359

Chapter 10: General Constraints

Work Directory
The Work Directory (-xsthdpdir) command line option defines the location in which
VHDL-compiled files must be placed if the location is not defined by library mapping
files.
• ISE® Design Suite

Process > Properties > Synthesis Options > VHDL Work Directory
• Command Line Mode

set -xsthdpdir directory

Work Directory Examples
1. Three different users are working on the same project.
2. They share one standard, pre-compiled library, shlib.
3. This library contains specific macro blocks for their project.
4. Each user also maintains a local work library.
5. User Three places her local work library outside the project directory (for example,

in c:\temp).
6. User One and User Two share another library (lib12) between them, but not

with User Three.

Work Directory Example User One
Mapping file:
schlib=z:\sharedlibs\shlib
lib12=z:\userlibs\lib12

Work Directory Example User Two
Mapping file:
schlib=z:\sharedlibs\shlib
lib12=z:\userlibs\lib12

Work Directory Example User Three
Mapping file:
schlib=z:\sharedlibs\shlib

User Three also sets:

XSTHDPDIR = c:\temp

Applicable Elements
Applies to directories.

Propagation Rules
Not applicable.

Constraint Values
Allowed values are names of directories.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
360 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 10: General Constraints

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

set -xsthdpdir directory

Work Directory can accept a single path only. You must specify the directory.

ISE Design Suite Syntax Example
Define globally in ISE Design Suite.

Process > Properties > Synthesis Options > VHDL Work Directory

To view this constraint, select Edit > Preferences > Processes > Property Display Level
> Advanced.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 361

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
362 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11

HDL Constraints
This chapter discusses XST Hardware Description Language (HDL) constraints.

For most constraints, this chapter gives the following information:

• Constraint Description

• Applicable Elements

• Propagation Rules

• Constraint Values

• Syntax Examples

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 363

Chapter 11: HDL Constraints

Automatic FSM Extraction
The Automatic FSM Extraction (FSM_EXTRACT) constraint:
• Enables Finite State Machine (FSM) extraction and specific synthesis optimizations.
• Must be enabled in order to set values for the FSM Encoding Algorithm and FSM

Flip-Flop Type.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)
• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute fsm_extract: string;

Specify as follows.

attribute fsm_extract of {entity_name |signal_name }:
{entity|signal is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* fsm_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL"entity_name " fsm_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " fsm_extract={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-fsm_extract {yes|no}*

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
364 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11: HDL Constraints

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > FSM Encoding Algorithm

• If FSM Encoding Algorithm is set to none, and -fsm_extract is set to no,
-fsm_encoding does not influence synthesis.

• In all other cases, -fsm_extract is set to yes, and -fsm_encoding is set to the selected
value. .

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 365

Chapter 11: HDL Constraints

Enumerated Encoding
The Enumerated Encoding (ENUM_ENCODING) constraint:

• Applies a specific encoding to a VHDL enumerated type.

• Can be specified only as a VHDL constraint on the enumerated type.

• Allows you to specify the encoding scheme for a Finite State Machine (FSM) that
uses an enumerated type for the state register.

• Must have FSM Encoding Algorithm set to user for the state register.

Applicable Elements
• Applies to a type or signal.

• Because Enumerated Encoding must preserve the external design interface, XST
ignores Enumerated Encoding when it is used on a port.

Propagation Rules
Applies to the type or signal to which it is attached.

Constraint Values
The value is a string containing space-separated binary codes.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Specify as a VHDL constraint on the considered enumerated type.

...
architecture behavior of example is
type statetype is (ST0, ST1, ST2, ST3);
attribute enum_encoding : string;
attribute enum_encoding of statetype : type is "001 010 100 111";
signal state1 : statetype;
signal state2 : statetype;
begin
...

XCF Syntax Example
BEGIN MODEL "entity_name "

NET "signal_name " enum_encoding="string ";

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
366 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11: HDL Constraints

Equivalent Register Removal
The Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL) constraint
enables or disables removal of equivalent Registers described at the Register Transfer
Level (RTL).

• XST does not remove equivalent Flip-Flops if they are instantiated from a Xilinx®
primitive library.

• Removing equivalent Flip-Flops increases the probability that the design will fit
on the device

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Removes equivalent flip-flops and flip-flops with constant inputs.

Constraint Values
• yes [or true (XCF)] (default)

Flip-Flop optimization is allowed.

• no [or false (XCF)]

Flip-Flop optimization is inhibited.

Flip-Flop optimization is time consuming. For fast processing, use no.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute equivalent_register_removal: string;

Specify as follows.

attribute equivalent_register_removal of
{entity_name |signal_name }: {signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* equivalent_register_removal = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name "
equivalent_register_removal={yes|no|true|false};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 367

Chapter 11: HDL Constraints

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name "
equivalent_register_removal={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-equivalent_register_removal {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Equivalent Register Removal

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
368 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11: HDL Constraints

FSM Encoding Algorithm
• The FSM Encoding Algorithm (FSM_ENCODING) constraint selects the Finite State

Machine (FSM) coding technique.

• Automatic FSM Extraction must be enabled in order to select a value for the FSM
Encoding Algorithm.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• auto (default)

XST selects the best coding technique for each individual state machine.

• one-hot

• compact

• sequential

• gray

• johnson

• speed1

• user

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute fsm_encoding: string;

Specify as follows.

attribute fsm_encoding of
{entity_name|signal_name }: {entity|signal} is
"{auto|one-hot|compact|sequential|gray|johnson|speed1|user}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 369

Chapter 11: HDL Constraints

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* fsm_encoding = "{auto|one-hot
|compact|sequential|gray|johnson|speed1|user}" *)

XCF Syntax Example One
MODEL "entity_name " fsm_encoding={auto|one-hot
|compact|sequential|gray|johnson|speed1|user};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " fsm_encoding={auto|one-hot
|compact|sequential|gray|johnson|speed1|user};

END;

XST Command Line Syntax Example
Define globally with the run command.

-fsm_encoding
{auto|one-hot|compact|sequential|gray|johnson|speed1|user}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > FSM Encoding Algorithm

• If FSM Encoding Algorithm is set to none, and -fsm_extract is set to no,
-fsm_encoding has no influence on the synthesis.

• In all other cases, -fsm_extract is set to yes and -fsm_encoding is set to the value
selected in the menu.

For more information, see Automatic FSM Extraction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
370 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11: HDL Constraints

Mux Minimal Size
Caution! Review this constraint carefully before use.

The Mux Minimal Size (MUX_MIN_SIZE) constraint:

• Controls the minimal size of Multiplexer macros inferred by XST.

• Takes an integer value greater than 1. The default is 2.

Number of Multiplexed Data Inputs
Size is the number of multiplexed data inputs. Selector inputs do not count.

Multiplexer Size
2-to-1 Multiplexer 2

16-to-1 Multiplexer 16

Width of Selected Data
Size is independent of the width of the selected data.

Multiplexer Size
1-bit wide 8-to-1 Multiplexer 8

16-bit wide 8-to-1 Multiplexer 8

2-to-1 Multiplexer Macros
XST automatically infers 2-to-1 Multiplexer macros.

• Explicitly inferring 2-to-1 Multiplexers can positively or negatively impact device
utilization.

– If device utilization is satisfactory, do not use Mux Minimal Size.

– If device utilization is not satisfactory, Mux Minimal Size may benefit your
design.

Note A large number of inferred 2-to-1 Multiplexers may be contributing to the
unsatisfactory device utilization. Apply a value of 3 to disable inferencing of
2-to-1 Multiplexers, either globally or for the specific blocks that are contributing
to the unsatisfactory device utilization.

• Mux Minimal Size may prevent inferencing of Multiplexers for sizes above 2, but
the benefits are speculative. Use extra caution before applying Mux Minimal Size
for sizes above 2.

Applicable Elements
Applies globally, or to a designated VHDL entity or Verilog module.

Propagation Rules
Applies to the designated entity or module.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 371

Chapter 11: HDL Constraints

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute mux_min_size: string;

Specify as follows.

attribute mux_min_size of entity_name : entity is "integer ";

Verilog Syntax Example
Place immediately before the module declaration

(* mux_min_size= "integer " *)

XST Command Line Syntax Example
Define globally with the run command.

-mux_min_size integer

Mux Minimal Size is not available in the default XST options set in ISE® Design Suite.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
372 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11: HDL Constraints

Resource Sharing
The Resource Sharing (RESOURCE_SHARING) constraint enables or disables resource
sharing of arithmetic operators.

Applicable Elements
Applies globally, or to design elements.

Propagation Rules
Applies to the entity or module to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)

• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute resource_sharing: string;

Specify as follows.

attribute resource_sharing of entity_name : entity is
"{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation.

attribute resource_sharing of entity_name : entity is
"{yes|no}";

XCF Syntax Example One
MODEL "entity_name " resource_sharing={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " resource_sharing={yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 373

Chapter 11: HDL Constraints

XST Command Line Syntax Example
Define globally with the run command.

-resource_sharing {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

HDL Options > Resource Sharing

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
374 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11: HDL Constraints

Safe Implementation
The Safe Implementation (SAFE_IMPLEMENTATION) constraint implements Finite
State Machine (FSM) components in Safe Implementation mode.
• If the FSM enters an invalid state, XST generates additional logic that forces the FSM

to a valid state (recovery state).
– XST selects reset as the default recovery state.
– If the FSM does not have an initialization signal, XST selects power-up as the

recovery state.
– Define the recovery state manually with Safe Recovery State.

• Activate Safe Implementation as follows:
– ISE® Design Suite

Process > Properties > HDL Options > Safe Implementation
– Hardware Description Language (HDL)

Apply Safe Implementation to the hierarchical block or signal that represents
the state register in the FSM.

Applicable Elements
Applies to an entire design through the XST command line, to a particular block (entity,
architecture, component), or to a signal.

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached.

Constraint Values
• yes [or true (XCF)]
• no [or false (XCF)] (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute safe_implementation: string;

Specify as follows.

attribute safe_implementation of
entity_name |component_name |signal_name }:entity|component|signal
is "{yes|no}}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* safe_implementation = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " safe_implementation={yes|no|true|false};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 375

Chapter 11: HDL Constraints

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name "safe_implementation="{yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-safe_implementation {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE Design Suite.

HDL Options > Safe Implementation

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
376 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 11: HDL Constraints

Safe Recovery State
The Safe Recovery State (SAFE_RECOVERY_STATE) constraint defines a recovery state
for use when a Finite State Machine (FSM) is implemented in Safe Implementation mode.

• If the FSM enters an invalid state, XST uses additional logic to force the FSM to
a valid recovery state.

• By implementing FSM in safe mode, XST collects all code not participating in the
normal FSM behavior and treats it as illegal.

• XST uses logic that returns the FSM synchronously to the:

– Known state

– Reset state

– Power up state

– State specified using Safe Recovery State

Applicable Elements
Applies to a signal representing a state register

Propagation Rules
Applies to the signal to which it is attached.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute safe_recovery_state: string;

Specify as follows.

attribute safe_recovery_state of {signal_name }:{signal} is
"<value >";

Verilog Syntax Example
Place immediately before the signal declaration.

(* safe_recovery_state = "<value >" *)*

XCF Syntax Example
BEGIN MODEL "entity_name "

NET "signal_name " safe_recovery_state="<value >";

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 377

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
378 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12

FPGA Constraints (Non-Timing)
This chapter discusses FPGA Constraints (Non-Timing).

For most constraints, this chapter gives the following information:

• Constraint Description

• Applicable Elements

• Propagation Rules

• Constraint Values

• Syntax Examples

Many constraints can be applied:

• Globally to an entire entity or model, or

• Locally to individual signals, nets or instances.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 379

Chapter 12: FPGA Constraints (Non-Timing)

Asynchronous to Synchronous
Caution! Carefully review this constraint to assess the potential impact of
Asynchronous to Synchronous transformation on your design.

Use the Asynchronous to Synchronous (ASYNC_TO_SYNC) constraint to treat
asynchronous set and reset signals as synchronous.

Asynchronous to Synchronous Transformation
The Asynchronous to Synchronous transformation:
• Applies to inferred sequential elements only.
• Does not apply to instantiated Flip-Flops and Latches.
• Is performed on the fly.
• Is reflected in the post-synthesis netlist.
• Does not change the HDL source code.

Set and Reset Functionality
• The set and reset functionality of Xilinx® device resources such as DSP blocks and

block RAM components is inherently synchronous.
• If your coding guidelines require you to describe set and reset signals

asynchronously, you may not be using those resources to their full potential.
• Asynchronous to Synchronous transformation allows you to assess the potential

of those resources without changing the description of the sequential elements in
the HDL source code.

• By better leveraging Registers, you may be able to:
– Improve device utilization
– Increase circuit performance
– Achieve better power reduction

Post-Synthesis Netlist
• As a result of Asynchronous to Synchronous transformation, the post-synthesis

netlist is theoretically not functionally equivalent to the pre-synthesis HDL
description.

• However, the post-synthesis netlist is functionally equivalent if:
– The transformation does not actually use the asynchronous sets and resets that

you have described, or
– The asynchronous sets and resets are derived from synchronous sources.

Changing the HDL Description
If you achieve your design goals by using Asynchronous to Synchronous transformation,
determine whether you should change the HDL description to:
• Enforce synchronous set and reset signals in order to ensure the expected circuit

behavior.
• Ease design validation.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
380 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Xilinx Recommendations
Xilinx recommends that you:

• Perform a timing simulation in order to assess the impact of the Asynchronous to
Synchronous transformation on your design.

• Describe synchronous set and reset signals in your HDL source code.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• yes

• no (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-async_to_sync {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > Asynchronous to Synchronous

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 381

Chapter 12: FPGA Constraints (Non-Timing)

Automatic BRAM Packing
The Automatic BRAM Packing (AUTO_BRAM_PACKING) constraint packs two small
block RAM components into a single block RAM primitive as dual-port block RAM.

• XST packs block RAM components together only if they are situated in the same
hierarchical level.

• Automatic BRAM Packing is disabled by default.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• yes

• no (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-auto_bram_packing {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Automatic BRAM Packing

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
382 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

BRAM Read-First Implementation
The BRAM Read-First Implementation (RDADDR_COLLISION_HWCONFIG)
constraint controls implementation of a block RAM described with read-first
synchronization.

BRAM Read-First Implementation:
• Applies to Virtex®-6 devices only.
• Is ignored if:

– You are targeting a device family other than Virtex-6 devices, or
– The described read-write synchronization is not read-first.

• Can be applied to:
– An instantiated block RAM primitive
– An inferred RAM

• Does not instruct XST in the case of inferred RAM that the described memory has a
read-first synchronization. This is done by proper HDL coding.

• Is not available as an option in:
– ISE® Design Suite
– Command Line Mode

For more information, see Block RAM Read/Write Synchronization.

Applicable Elements
• Applies locally through:

– A VHDL attribute
– A Verilog attribute
– An XST Constraint File (XCF) constraint

• Applies to:
– A block:

♦ Entity
♦ Architecture
♦ Component

– A signal describing the RAM

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

Constraint Values
• delayed_write

The block RAM is configured to avoid memory collision. While conflicts are
avoided, this configuration sacrifices some performance compared to write-first
and no-change synchronization.

• performance
Maximizes performance of the read-firstmode. Performance is comparable to that
obtained with write-first and no-change modes. However, you must ensure that
memory collisions do not occur.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 383

Chapter 12: FPGA Constraints (Non-Timing)

Constraint Defaults
For inferred RAM components, the default value depends on the number of RAM ports.

Port Default Value Note
Single-port performance Memory collisions are

possible only when the RAM
is dual-port. The performance
mode can therefore be safely
enforced when a memory is
single-port.

Dual-port delayed_write

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute RDADDR_COLLISION_HWCONFIG: string;

Specify as follows.

attribute RDADDR_COLLISION_HWCONFIG of
"entity_name |component_name |signal_name }:{entity|component|signal}
is "{delayed_write|performance}";

Verilog Syntax Example
Place immediately before the instance, module, or signal declaration.

(*RDADDR_COLLISION_HWCONFIG = "{delayed_write|performance}" *)

XCF Syntax Example One
MODEL "entity_name " RDADDR_COLLISION_HWCONFIG
={delayed_write|performance};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " RDADDR_COLLISION_HWCONFIG
={delayed_write|performance};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
384 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

BRAM Utilization Ratio
The BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO) constraint defines the
number of block RAM components that XST must not exceed during synthesis.

• Block RAM components may come from:

– Block RAM inference processes

– Instantiation and block RAM mapping optimizations

• You can isolate a Register Transfer Level (RTL) description of logic in a separate
block, and then direct XST to map this logic to block RAM.

For more information, see Mapping Logic to Block RAM.

• Instantiated block RAM components are the primary candidates for available block
RAM resources.

– The inferred RAM components are placed on the remaining block RAM
resources.

– If the number of instantiated block RAMs exceeds the number of available
resources, XST does not modify the instantiations and implement them as block
RAM components.

– The same behavior occurs if you force specific RAMs to be implemented as
block RAM components.

– If there are no resources, XST respects user constraints, even if the number
of block RAM resources is exceeded.

• If the number of user-specified block RAM components exceeds the number of
available block RAM resources on the device:

– XST issues a warning.

– XST uses only available block RAM resources for synthesis.

• Use value -1 to disable automatic block RAM resource management. This allows you
to see the number of block RAM components that XST can infer for a specific design.

• Synthesis time may increase if the number of block RAM components significantly
exceeds the number of block RAM available on the device (hundreds of block RAM
components). This may happen due to a significant increase in design complexity
when all non-fittable block RAM components are converted to distributed RAM
components.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 385

Chapter 12: FPGA Constraints (Non-Timing)

Constraint Values
• The integer value range is -1 to 100.
• % denotes a percentage value, whereas #means an absolute number of block RAMs.
• There must be no space between the integer value and the% or # character.
• If both% and # are omitted, a percentage value is assumed.
• The default value is 100 (XST uses up to 100% of available block RAM resources).
• A value of -1:

– Disables automatic block RAM resource management
– May be useful in assessing the amount of block RAM resources that XST can

potentially infer.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Examples
Define globally with the run command.

-bram_utilization_ratio <integer >[%|#]

XST Command Line Syntax Example One
-bram_utilization_ratio 50

50% of block RAMs in the target device

XST Command Line Syntax Example Two
-bram_utilization_ratio 50%

50% of block RAMs in the target device

XST Command Line Syntax Example Three
-bram_utilization_ratio 50#

50 block RAMs

• There must be no space between the integer value and the percent (%) or pound
(#) characters.

• In some situations, you can disable automatic block RAM resource management.
Example Disable automatic block RAM resource management to see how many
block RAMs XST can infer for a specific design.

• To disable automatic block RAM resource management, specify -1 (or any negative
value) as a constraint value.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > BRAM Utilization Ratio

In ISE Design Suite, you can define the value of BRAM Utilization Ratio only as a
percentage. You cannot define the value as an absolute number of Block RAMs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
386 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Buffer Type
The Buffer Type (BUFFER_TYPE) constraint specifies the type of buffer to be inserted
on a designated I/O port or internal net.

Applicable Elements
Applies to signals.

Propagation Rules
Applies to the signal to which it is attached.

Constraint Values
• ibufg
• bufg
• bufgp
• bufh
• bufr
• bufio
• bufio2fb
• bufio2
• ibuf
• obuf
• buf
• none

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute buffer_type: string;

Specify as follows.

attribute buffer_type of signal_name : signal is
"{bufpll|ibufg|bufg|bufgp|bufh|bufr|bufio|bufio2fb|bufio2|ibuf|obuf|buf|none}";

Verilog Syntax Example
Place immediately before the signal declaration.

(* buffer_type = "{bufpll|ibufg|bufg|bufgp|bufh|bufr|bufio|bufio2fb|bufio2|ibuf|obuf|buf|none}" *)

XCF Syntax Example
BEGIN MODEL "entity_name "

NET
"signal_name " buffer_type={bufpll|ibufg|bufg|bufgp|bufh|bufr|bufio|bufio2fb|bufio2|ibuf|obuf|buf|none};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 387

Chapter 12: FPGA Constraints (Non-Timing)

Convert Tristates to Logic
Some devices do not support internal tristates. XST replaces the internal tristates of those
devices with equivalent logic using the Convert Tristates to Logic (TRISTATE2LOGIC)
constraint.

• The equivalent logic can be combined and optimized with surrounding logic.

• Replacing internal tristates with equivalent logic can sometimes:

– Increase speed.

– Improve area optimization.

• Replacing internal tristates with equivalent logic generally increases area. If your
optimization goal is area, set Convert Tristates to Logic to no.

Convert Tristates to Logic Limitations
• Only internal tristates are replaced with equivalent logic. The tristates of the top

module connected to output pads are preserved.

• Internal tristates are not replaced with equivalent logic for modules in which
incremental synthesis is active.

• XST cannot replace an internal tristate with equivalent logic when:

– The tristate is connected to:

♦ A black box

♦ The output of a block when the hierarchy of the block is preserved

♦ A top-level output

– Convert Tristates to Logic is set to no on:

♦ The block in which the tristate is placed, or

♦ The signals to which the tristate is connected

Applicable Elements
Applies to an entire design through the XST command line, to a particular block (entity,
architecture, component), or to a signal.

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)

• no [or false (XCF)]

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
388 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute tristate2logic: string;

Specify as follows.

attribute tristate2logic of
{entity_name |component_name |signal_name }:
{entity|component|signal} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* tristate2logic = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " tristate2logic={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " tristate2logic={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-tristate2logic {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Convert Tristates to Logic

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 389

Chapter 12: FPGA Constraints (Non-Timing)

Cores Search Directories
The Cores Search Directories (–sd) command line option specifies the directories (in
addition to the default directory) in which XST looks for cores.

• XST searches for cores by default in the directory designated by the -ifn option.

• List only the directories containing the cores. Do not list individual core files.

• Specify core directories with absolute or relative paths.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• The value may be a single directory name, or a list of several directory names.

– Enclose the list of directory names between {braces}.

– Omit the {braces} if specifying only one directory.

– Separate multiple directory names with spaces.

• Xilinx® recommends that you not use directory names containing spaces.

– You may include directory names containing spaces in your search list if they
are enclosed in double quotes.

-sd {"./mydir1/mysubdir1" "./mydir2" "./mydir3/mysubdir
with space" }

– For more information, see Names With Spaces in Command Line Mode.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-sd {directory_path [directory_path]}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Cores Search Directory

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
390 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

DSP Utilization Ratio
The DSP Utilization Ratio (DSP_UTILIZATION_RATIO) constraint restricts the number
of DSP blocks that XST uses to implement inferred functions.

• XST infers DSP blocks within the limit of available resources.

• DSP Utilization Ratio prevents XST from using all those resources.

Budgeting DSP Resources
• Designers typically use DSP Utilization Ratio in a collaborative workflow.

– Components are designed separately before being consolidated into the final
project.

– DSP Utilization Ratio allows you to budget DSP resources for each separate
component.

• DSP Utilization Ratio defines either:

– An absolute number of DSP slices, or

– A percentage of the total amount of resources available on the device.

• The default is 100% of DSP resources available in the selected device.

• XST flags any absolute number or percentage that exceeds available DSP resources.
XST uses no more resources than allowed by the device.

• Instantiated DSP primitives are served first. XST allocates a corresponding amount
from the total budget defined by DSP Utilization Ratio. XST uses the remaining
resources to implement inferred functions.

• The defined budget may be exceeded if:

– The number of instantiated DSP blocks is higher than the defined budget.
All DSP instantiations are always honored by XST. You must ensure that the
selected device can accommodate all instantiated DSP blocks.

– You have forced DSP implementation of inferred macros with Use DSP Block
set to yes.

• When using Use DSP Block set to yes, XST ignores both the maximumDSP allocation
defined by DSP Utilization Ratio, and the amount of DSP resource actually available
in the selected device. Your design may not fit in the device as a result. DSP
Utilization Ratio works best with the auto and automaxmodes of Use DSP Block.

Disabling Automatic DSP Resource Management
To disable automatic DSP resource management, set DSP Utilization Ratio to -1 (or any
negative value). For example, you might disable automatic DSP resource management
to see how many DSP components XST can infer for a specific design.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 391

Chapter 12: FPGA Constraints (Non-Timing)

Constraint Values
• <integer> range is [-1 to 100] when% is used or both% and # are omitted.

• To specify a percent of total slices:

– -dsp_utilization_ratio 50

OR

– -dsp_utilization_ratio 50%

• To specify an absolute number of slices:

-dsp_utilization_ratio 50#

• There must be no space between the integer value and the percent (%) or pound
(#) characters.

• The default is %.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-dsp_utilization_ratio number[%|#]

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > DSP Utilization Ratio

In ISE Design Suite, you can define the value of DSP Utilization Ratio only as a percent.
You cannot define the value as an absolute number of slices.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
392 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Extract BUFGCE
The Extract BUFGCE (BUFGCE) constraint implements BUFGMUX functionality by
inferring a BUFGMUX primitive.
• This operation reduces the wiring.
• Clock and clock enable signals are driven to n sequential components by a single

wire.
• BUFGCE must be attached to the primary clock signal.
• BUFGCE is accessible through HDL code.

Applicable Elements
Applies to clock signals.

Propagation Rules
Applies to the signal to which it is attached.

Constraint Values
• yes [or true (XCF)]

– If bufgce=yes, XST implements BUFGMUX functionality if possible.
– All Flip-Flops must have the same clock enable signal.

• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute bufgce : string;

Specify as follows.

attribute bufgce of signal_name : signal is "{yes|no}";

Verilog Syntax Example
Place immediately before the signal declaration.

(* bufgce = "{yes|no}" *)

XCF Syntax Example One
BEGIN MODEL "entity_name "

NET "primary_clock_signal " bufgce={yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 393

Chapter 12: FPGA Constraints (Non-Timing)

FSM Style
The FSM Style (FSM_STYLE) constraint makes large Finite State Machine (FSM)
components faster and more compact by implementing them in block RAM resources.

• FSM Style is both a global and a local constraint.

• FSM Style can direct XST to use block RAM resources rather than LUTs (default) to
implement FSM Styles.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• lut (default)

• bram

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute fsm_style: string;

Specify as follows.

attribute fsm_style of {entity_name|signal_name }:
{entity|signal} is "{lut|bram}";

Verilog Syntax Example
Place immediately before the instance, module, or signal declaration.

(* fsm_style = "{lut|bram}" *)

XCF Syntax Example One
MODEL "entity_name " fsm_style = {lut|bram};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " fsm_style = {lut|bram};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
394 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XCF Syntax Example Three
BEGIN MODEL "entity_name "

INST "instance_name " fsm_style = {lut|bram};

END;

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > FSM Style

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 395

Chapter 12: FPGA Constraints (Non-Timing)

LUT Combining
The LUT Combining (LC) constraint merges LUT pairs with common inputs into single
dual-output LUT6 elements.

This optimization process may:

• Improve design area.

• Reduce design speed.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• auto (default)

XST tries to make a trade-off between area and speed.

• area

XST performs maximum LUT combining to provide as small an implementation as
possible.

• off

Disables LUT combining.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-lc {auto|area|off}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > LUT Combining

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
396 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Map Entity on a Single LUT
The Map Entity on a Single LUT (LUT_MAP) constraint forces XST to map a single
block into a single LUT.
• XST issues an error message if a described function in a Register Transfer Level

(RTL) description does not fit in a single LUT.
• XST recognizes the Synplify xc_map constraint.

For more information, see Mapping Logic to LUTs.

Using the UNISIM Library
Use the UNISIM library to directly instantiate LUT components in the HDL code.
• Apply INIT to a LUT instance to specify a function that the LUT must execute.
• Apply RLOC to the same instance in order to place an instantiated LUT or register

in a particular slice.

Describing the Function in the HDL Source Code
Describe the function that you want to map into a single LUT in the HDL source code.
1. Describe the function in a separate block.
2. Attach LUT_MAP to this block to indicate that this block must be mapped into

a single LUT.
3. XST calculates the INIT value for the LUT.
4. XST preserves this LUT during optimization.

Applicable Elements
Applies to an entity or module.

Propagation Rules
Applies to the entity or module to which it is attached.

Constraint Values
• yes [or true (XCF)]
• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute lut_map: string;

Specify as follows.

attribute lut_map of entity_name : entity is "{yes|no}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 397

Chapter 12: FPGA Constraints (Non-Timing)

Verilog Syntax Example
Place immediately before the module declaration or instantiation.

(* lut_map = "{yes|no}" *)

XCF Syntax Example
MODEL "entity_name " lut_map={yes|no|true|false};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
398 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Map Logic on BRAM
The Map Logic on BRAM (BRAM_MAP) constraint maps an entire hierarchical block on
the block RAM resources.
• BRAM_MAP is both a global and a local constraint.
• For more information, see Mapping Logic to Block RAM.

Applicable Elements
Applies to block RAM components.

Propagation Rules
• Isolate the logic (including output register) to be mapped on RAM in a separate

hierarchical level.
• Logic that does not fit on a single block RAM is not mapped.
• Ensure that the whole entity fits, not just part of it.
• The attribute BRAM_MAP is set on the instance or entity.
• If XST is unable to infer block RAM, the logic is passed to Global Optimization Goal,

where it is optimized.
• The macros are not inferred. Be sure that XST has mapped the logic.

Constraint Values
• yes [or true (XCF)]
• no [or false (XCF)] (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute bram_map: string;

Specify as follows.

attribute bram_map of component_name: component is "{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation.

(* bram_map = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " bram_map = {yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

INST "instance_name " bram_map = {yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 399

Chapter 12: FPGA Constraints (Non-Timing)

Max Fanout
The Max Fanout (MAX_FANOUT) constraint limits the fanout of nets or signals.

• Max Fanout:

– Is both a global and a local constraint.

– Has a default value of 100000 (One Hundred Thousand). The value is an integer.

• Large fanouts can interfere with routability. XST tries to limit fanout by duplicating
gates or by inserting buffers.

– This limit is not a technology limit, but a guide to XST.

– This limit is not always observed, especially when this limit is small (less than
30).

• In most cases, XST controls fanout by duplicating the gate driving the net with a
large fanout.

– If XST cannot duplicate the gate, XST inserts buffers.

– To protect these buffers against logic trimming at the implementation level,
define Keep in the NGC file.

• If the register replication option is set to no, only buffers are used to control fanout
of Flip-Flops and Latches.

• Max Fanout is global for the design, but you can use constraints to control maximum
fanout independently for each entity or module or for individual signals.

Actual Net Fanout Less Than Max Fanout Value
• If the actual net fanout is less than the Max Fanout value, XST behavior depends on

how Max Fanout is specified.

• XST interprets the value of Max Fanout only as a guidance if the value:

– Is set in ISE® Design Suite.

– Is set in the command line.

– Is applied to a specific hierarchical block.

• If Max Fanout is applied to a specific net, XST does not perform logic replication.
Putting Max Fanout on a net may prevent XST from having better timing
optimization.

Example The critical path goes through the net, for which the actual fanout is 80,
and sets the Max Fanout value to 100.

– If Max Fanout is specified in ISE Design Suite, XST can replicate it, trying to
improve timing.

– If Max Fanout is applied to the net itself, XST does not perform logic replication.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
400 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Max Fanout With a Value of Reduce
• Max Fanout can take the value reduce.

• The reduce value:

– Has no direct meaning to XST.

– Is considered only during placement and routing. Until then, fanout control is
deferred.

• Max Fanout with a value of reduce:

– Can be applied only to a net.

– Cannot be applied globally.

• XST disables any logic optimization related to the designated net.

– The designated net is preserved in the post-synthesis netlist.

– AMAX_FANOUT=reduce property is attached to the designated net.

• A more global Max Fanout constraint can be defined with an integer value:

– On the command line, or

– With an attribute attached to the entity or module that contains the net

• If such a global Max Fanout constraint has been defined, then:

– The reduce value takes precedence.

– The integer value is ignored for the designated net.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Exception: When Max Fanout takes the value reduce, it can be applied only to a signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute max_fanout: string;

Specify as follows.

attribute max_fanout of {signal_name |entity_name }:
{signal|entity} is "integer ";

OR

attribute max_fanout of {signal_name }: {signal} is "reduce";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 401

Chapter 12: FPGA Constraints (Non-Timing)

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* max_fanout = "integer " *)

OR

(* max_fanout = "reduce" *)

XCF Syntax Example One
MODEL "entity_name " max_fanout=integer ;

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " max_fanout=integer ;

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name "

NET "signal_name " max_fanout="reduce";

END;

XST Command Line Syntax Example
-max_fanout integer

ISE Design Suite Syntax Example
Define globally in ISE Design Suite.

Process > Properties > Xilinx-Specific Options > Max Fanout

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
402 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Move First Stage
The Move First Stage (MOVE_FIRST_STAGE) constraint controls the retiming of
Registers with paths coming from primary inputs.

Move First Stage Diagram

• A Flip-Flop belongs to the First Stage if it is on the paths coming from primary inputs.
• A Flip-Flop belongs to the Last Stage if it is on the paths going to primary outputs.

Register Balancing
• Both Move First Stage and Move Last Stage relate to Register Balancing.
• During Register Balancing:

– First Stage Flip-Flops are moved forward.
– Last Stage Flip-Flops are moved backward.

• This process can greatly increase input-to-clock and clock-to-output timing. To
prevent this increase, use:
– OFFSET_IN_BEFORE
– OFFSET_IN_AFTER

• Several constraints influence Register Balancing.

Additional Constraints
• You can use two additional constraints if:

– Your design does not have strong requirements, or
– You want to see the first results without touching the first and last flip-flop

stages.
• The additional constraints are:

– MOVE_FIRST_STAGE
– MOVE_LAST_STAGE

• Both constraints can have two values: yes and no.
– MOVE_FIRST_STAGE=no prevents the first Flip-Flop stage from moving.
– MOVE_LAST_STAGE=no prevents the last Flip-Flop stage from moving.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 403

Chapter 12: FPGA Constraints (Non-Timing)

Applicable Elements
Applies to the following only:

• Entire design

• Single modules or entities

• Primary clock signal

Propagation Rules
For Move First Stage propagation rules, see the figure above.

Constraint Values
• yes [or true (XCF)] (default)

• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute move_first_stage : string;

Specify as follows.

attribute move_first_stage of {entity_name|signal_name}:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* move_first_stage = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " move_first_stage={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "primary_clock_signal " move_first_stage={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-move_first_stage {yes|no}

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
404 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Move First Flip-Flop Stage

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 405

Chapter 12: FPGA Constraints (Non-Timing)

Move Last Stage
The Move Last Stage (MOVE_LAST_STAGE) constraint controls the retiming of
Registers with paths going to primary outputs.

Both Move Last Stage and Move First Stage relate to Register Balancing.

Applicable Elements
Applies to the following only:
• Entire design
• Single modules or entities
• Primary clock signal

Propagation Rules
See Move First Stage.

Constraint Values
• yes [or true (XCF)] (default)
• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute move_last_stage : string;

Specify as follows.

attribute move_last_stage of {entity_name|signal_name }:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* move_last_stage = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name "{move_last_stage={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "primary_clock_signal " move_last_stage={yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
406 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XST Command Line Syntax Example
Define globally with the run command.

-move_last_stage {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Move Last Flip-Flop Stage

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 407

Chapter 12: FPGA Constraints (Non-Timing)

Multiplier Style
The Multiplier Style (MULT_STYLE) constraint controls the manner in which the
macrogenerator implements the Multiplier macros.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
• Applies to the entity, module, or signal to which it is attached.

• Multiplier Style is applicable only through an HDL attribute.

• Multiplier Style is not available as a command line option.

Constraint Values
• auto (default)

XST looks for the best implementation for each considered macro.

• block

• pipe_block

Used to pipeline DSP48-based Multipliers.

• kcm

• csd

• lut

• pipe_lut

For pipeline slice-based Multipliers. The implementation style can be manually
forced to use block Multiplier or LUT resources.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute mult_style: string;

Specify as follows.

attribute mult_style of
{signal_name|entity_name }: {signal|entity } is
"{auto|block|pipe_block|kcm|csd|lut|pipe_lut}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
408 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* mult_style = "{auto|block|pipe_block|kcm|csd|lut|pipe_lut}" *)

XCF Syntax Example One
MODEL "entity_name "
mult_style={auto|block|pipe_block|kcm|csd|lut|pipe_lut};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name "
mult_style={auto|block|pipe_block|kcm|csd|lut|pipe_lut};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 409

Chapter 12: FPGA Constraints (Non-Timing)

Number of Global Clock Buffers
The Number of Global Clock Buffers (–bufg) command line option controls the
maximum number of BUFG elements created by expressions.

The number of BUFG elements cannot exceed the maximum number of BUFG elements
for the device.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• The value is an integer.

• The default value:

– Depends on the target device.

– Equals the maximum number of available BUFG elements.

Default Values of Number of Global Clock Buffers
Device Default Value

Spartan®-6 16

Virtex®-6 32

7 series TBI

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-bufg integer

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Number of Clock Buffers

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
410 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Optimize Instantiated Primitives
The Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) constraint deactivates
the default whereby XST does not optimize instantiated Xilinx® library primitives.
Deactivating the default allows XST to optimize those primitives.

Limitations on Optimization of Instantiated Primitives
• If an instantiated primitive has specific constraints such as RLOC applied, XST

preserves it as is.

• XST does not consider all primitives for optimization. Hardware elements such
as MULT18x18, block RAM, and DSP48 are not optimized (modified) even if
optimization of instantiated primitives is enabled.

Applicable Elements
Applies globally, or to the designated hierarchical blocks, components, and instances.

Propagation Rules
Applies to the component or instance to which it is attached.

Constraint Values
• yes [or true (XCF)]

• no [or false (XCF)] (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

Schematic Syntax Examples
• Attach to a valid instance

• Attribute Name

OPTIMIZE_PRIMITIVES

VHDL Syntax Example
Declare as follows.

attribute optimize_primitives: string;

Specify as follows.

attribute optimize_primitives of
{component_name|entity_name|label_name }:
{component|entity|label} is "{yes|no}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 411

Chapter 12: FPGA Constraints (Non-Timing)

Verilog Syntax Example
Place immediately before the instance, module or signal declaration.

(* optimize_primitives = "{yes|no}" *)

XCF Syntax Example
MODEL "entity_name " optimize_primitives = {yes|no|true|false};

XST Command Line Syntax Example
Define globally with the run command.

-optimize_primitives {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Optimize Instantiated Primitives

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
412 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Pack I/O Registers Into IOBs
The Pack I/O Registers Into IOBs (IOB) constraint packs Flip-Flops into the I/Os to
improve input and output path timing.

When Pack I/O Registers Into IOBs is set to auto, the action XST takes depends on the
Optimization setting:

• area

XST packs Registers as tightly as possible to the IOBs in order to reduce the number
of slices occupied by the design.

• speed

XST packs Registers to the IOBs provided they are not covered by timing constraints
(are not taken into account by timing optimization).

♦ For example, if you specify a PERIOD constraint, XST packs a Register to the
IOB, provided it is not covered by the PERIOD constraint.

♦ If a Register is covered by timing optimization, but you want to pack it to an
IOB, apply the IOB constraint locally to the Register.

For more information about this constraint, see the Constraints Guide (UG625).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 413

Chapter 12: FPGA Constraints (Non-Timing)

Power Reduction
The Power Reduction (POWER) constraint enables synthesis optimization techniques
to reduce power consumption.
• Power optimization is disabled by default.
• Even if Power Reduction is enabled, XST still attempts to honor the primary

optimization goal (speed or area) set by Optimization Goal.
• Determine whether the optimizations performed to reduce power consumption

negatively impact your primary optimization goal.
• Power optimizations are primarily related to block RAM elements. XST tries to

minimize the number of simultaneously active block RAM elements by using
RAM enable features.

For more information about RAM power optimizations, see RAM Style.

Applicable Elements
Applies to:
• A component or entity (VHDL)
• A model or label (instance) (Verilog)
• A model or INST (in model) (XCF)
• The entire design (XST command line)

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• yes [or true (XCF)]
• no [or false (XCF)] (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute power: string;

Specify as follows.

attribute power of {component name|entity_name } :
{component|entity } is "{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation.

(* power = "{yes|no}" *)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
414 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XCF Syntax Example
MODEL "entity_name " power = {yes|no|true|false};

XST Command Line Syntax Example
Define globally with the run command.

-power {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Power Reduction

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 415

Chapter 12: FPGA Constraints (Non-Timing)

RAM Extraction
The RAM Extraction (RAM_EXTRACT) constraint enables or disables RAM macro
inference.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)

• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute ram_extract: string;

Specify as follows.

attribute ram_extract of {signal_name |entity_name }:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* ram_extract = "{yes|no}" *)

XCF Syntax Example One
RAM Extraction Syntax MODEL "entity_name "

ram_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " ram_extract={yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
416 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XST Command Line Syntax Example
Define globally with the run command.

-ram_extract {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > RAM Extraction

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 417

Chapter 12: FPGA Constraints (Non-Timing)

RAM Style
The RAM Style (RAM_STYLE) constraint controls the way the macrogenerator
implements the inferred RAM macros.

Use block_power1 and block_power2 to enable two levels of optimizations aimed at
reducing power consumption of RAM components implemented on block resources.

block_power1
• Is intended to have minimal impact on the primary optimization goal defined by

Optimization Goal (area or speed)

• Is the selected mode when general power optimizations are enabled with the Power
Reduction constraint.

• May be specified only as:

– VHDL attribute

– Verilog attribute

– XST Constraint File (XCF) constraint

block_power2
• Allows further power reduction

• Can significantly impact area and speed

• May be specified only as:

– VHDL attribute

– Verilog attribute

– XST Constraint File (XCF) constraint

For more information on those optimization techniques, see Block RAM Power
Reduction.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
418 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Constraint Values
• auto (default)

Instructs XST to look for the best implementation for each inferred RAM, based on:
– Whether the description style allows block RAM implementation (synchronous

data read)
– Available block RAM resources

• distributed
Manually forces the implementation to distributed RAM resources

• pipe_distributed
– When an inferred RAM is implemented on LUT resources, and several

distributed RAM primitives are required to accommodate its size, multiplexing
logic is created on the RAM data output path. The pipe_distributed value
instructs XST to use any latency stages available behind the RAM to pipeline
this logic.

– May be specified only as:
♦ VHDL attribute
♦ Verilog attribute
♦ XST Constraint File (XCF) constraint

• block
Manually forces the implementation to block RAM. Actual implementation on block
RAM remains conditional on:
– A properly synchronized data read, and
– Available resources on the device

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute ram_style: string;

Specify as follows.

attribute ram_style of {signal_name|entity_name }: {signal|entity} is
"{auto|block|distributed|pipe_distributed|block_power1|block_power2}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* ram_style = "{auto|block|distributed|pipe_distributed|block_power1|block_power2}" *)

XCF Syntax Example One
MODEL "entity_name " ram_style={auto|block|distributed|pipe_distributed|block_power1|block_power2};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " ram_style={auto|block|distributed|pipe_distributed|block_power1|block_power2};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 419

Chapter 12: FPGA Constraints (Non-Timing)

XST Command Line Syntax Example
Define globally with the run command.

-ram_style {auto|block|distributed}

The pipe_distributed value is not accessible through the command line.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > RAM Style

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
420 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Read Cores
The Use Read Cores (READ_CORES) constraint allows XST to read Electronic Data
Interchange Format (EDIF) and NGC core files for timing estimation and device
utilization control.
• By reading a specific core, XST sees how the logic is connected and is able to better

optimize logic around the core.
• You can enable or disable read operations on a core by core basis.
• Use Read Cores must be disabled in some cases. For example, the PCI™ core must

not be visible to XST, since the logic directly connected to the PCI core is optimized
differently from other cores.

For more information, see Cores Processing.

Applicable Elements
Applies to:
• A component or entity (VHDL)
• A model or label (instance) (Verilog)
• A model or INST (in model) (XCF)
• The entire design (XST command line)

The following rules apply:
• Since Read Cores can be used with Box Type, the set of objects on which the

constraints are applied must be the same.
• If Read Cores is applied to at least a single instance of a block, then Read Cores is

applied to all other instances of this block for the entire design.

Propagation Rules
Not applicable.

Constraint Values
• yes [or true (XCF)] (default)

Enables cores processing, but maintains the core as a black box and does not further
incorporate the core into the design.

• no [or false (XCF)]
Disables cores processing

• optimize
Enables cores processing, and merges the core netlist into the overall design. This
value is available only in command line mode.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute read_cores: string;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 421

Chapter 12: FPGA Constraints (Non-Timing)

Specify as follows.

attribute read_cores of {component_name|entity_name } :
{yes|no|optimize}";component|entity } is "{yes|no|optimize}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation.

(* read_cores = "{yes|no|optimize}" *)

XCF Syntax Example One
MODEL "entity_name " read_cores = {yes|no|true|false|optimize};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

INST "instance_name " read_cores = {yes|no|true|false|optimize};

END;

XST Command Line Syntax Example
-read_cores {yes|no|optimize}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Read Cores

The optimize option is not available in ISE Design Suite.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
422 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Reduce Control Sets
The Reduce Control Sets (REDUCE_CONTROL_SETS) constraint reduces the number
of control sets.

• Reducing the number of control sets:

– Reduces the design area.

– Improves the packing process in MAP.

– Reduces the number of slices even if the number of LUTs increases.

• Reduce Control Sets:

– Applies only to synchronous control signals:

♦ Synchronous set/reset

♦ Clock enable

– Has no effect on asynchronous sets/reset logic.

Applicable Elements
Applies globally.

Propagation Rules
Not applicable.

Constraint Values
• auto (default)

XST performs control set optimization.

• no

XST does not perform control set optimization.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-reduce_control_sets {auto|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx Specific Options > Reduce Control Sets

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 423

Chapter 12: FPGA Constraints (Non-Timing)

Register Balancing
The Register Balancing (REGISTER_BALANCING) constraint enables Flip-Flop
retiming.
• Register Balancing moves Flip-Flops and Latches across logic to increase clock

frequency.
• With Register Balancing enabled, XST can move combinatorial logic across different

clock domain boundaries. To prevent XST from moving logic between different
clock domains, use any of the following solutions.
– Turn off the Register Balancing option by setting the Register Balancing value to

NO.
– Specify a false path (TIG) constraint on cross clock domains in the XCF.
– The Keep constraint applied to signals does not allow Flip-Flops to cross these

signals.
• The two categories of Register Balancing are:

– Forward Register Balancing
– Backward Register Balancing

Forward Register Balancing
• Forward Register Balancing moves a set of Flip-Flops at the inputs of a LUT to a

single Flip-Flop at its output.
• When replacing several Flip-Flops with one, select the name based on the name of

the LUT across which the Flip-Flops are moving as shown in the following:
LutName _FRBId

Forward Register Balancing

Backward Register Balancing
• Backward Register Balancing moves a Flip-Flop at the output of a LUT to a set of

Flip-Flops at its inputs.
• The number of Flip-Flops might increase or decrease.
• The new Flip-Flop has the same name as the original Flip-Flop with an indexed

suffix:
OriginalFFName _BRBId

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
424 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Backward Register Balancing

Additional Constraints That Affect Register Balancing
• The following constraints control Register Balancing:

– Move First Stage
– Move Last Stage

• The following constraints also influence Register Balancing:
– Keep Hierarchy

♦ If the hierarchy is preserved, Flip-Flops are moved only inside the block
boundaries.

♦ If the hierarchy is flattened, Flip-Flops may leave the block boundaries.
– Pack I/O Registers Into IOBs

If IOB=TRUE, Register Balancing is not applied to the Flip-Flops having this
property.

– Optimize Instantiated Primitives
♦ Instantiated Flip-Flops are moved only if OPTIMIZE_PRIMITIVES=YES.
♦ Flip-flops are moved across instantiated primitives only if

OPTIMIZE_PRIMITIVES=YES.
– Keep

♦ If applied to the output Flip-Flop signal, the Flip-Flop is not moved forward.
See the following figure.

♦ If applied to the input Flip-Flop signal, the Flip-Flop is not moved backward.
♦ If applied to both the input and output of the Flip-Flop, it is equivalent to

REGISTER_BALANCING=no.

Applied to the Output Flip-Flop Signal

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 425

Chapter 12: FPGA Constraints (Non-Timing)

Applicable Elements
Apply Register Balancing:
– Globally to the entire design using the command line or ISE® Design Suite
– To an entity or module
– To a signal corresponding to the Flip-Flop description (RTL)
– To a Flip-Flop instance
– To the Primary Clock Signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• yes [or true (XCF)]

Both forward and backward retiming are allowed.
• no [or false (XCF)] (default)

Neither forward nor backward retiming is allowed.
• forward

Only forward retiming is allowed.
• backward

Only backward retiming is allowed.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute register_balancing: string;

Specify as follows.

attribute register_balancing of {signal_name |entity_name }:
{signal|entity} is "{yes|no|forward|backward}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

* register_balancing = "{yes|no|forward|backward}" *)(

XCF Syntax Example One
MODEL "entity_name "

register_balancing={yes|no|true|false|forward|backward};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
426 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "primary_clock_signal "
register_balancing={yes|no|true|false|forward|backward};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name "

INST "instance_name "

register_balancing={yes|no|true|false|forward|backward};

END;

XST Command Line Syntax Example
Define globally with the run command.

-register_balancing {yes|no|forward|backward}

ISE Design Suite Syntax Example
Define globally in ISE Design Suite.

Process > Properties > Xilinx-Specific Options > Register Balancing

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 427

Chapter 12: FPGA Constraints (Non-Timing)

Register Duplication
The Register Duplication constraint enables or disables Register replication.

Register duplication can happen for the following reasons:
• As part of timing optimization, register with high fanout will be replicated.
• For the IOB constraint, a register which is under timing constraint but also with

IOB=true attribute will be replicated.
• When a Max Fanout constraint is applied, if the fanout of any register exceeds the

applied max_fanout value.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Applies to the entity or module to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)
• no [or false (XCF)]

When Register Duplication is set to yes, Register replication:
• Is enabled.
• Is performed during timing optimization and fanout control.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute register_duplication: string;

Specify as follows for an entity:

attribute register_duplication of entity_name : entity is
"{yes|no}";

Specify as follows for a signal:

attribute register_duplication of signal_name : signal is
"{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation, or the signal
declaration:

(* register_duplication = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " register_duplication={yes|no|true|false};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
428 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " register_duplication={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-register_duplication {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Register Duplication

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 429

Chapter 12: FPGA Constraints (Non-Timing)

ROM Extraction
The ROM Extraction (ROM_EXTRACT) constraint enables ROM macro inference. A
ROM can usually be inferred from a case statement in which all assigned contexts are
constant values

Applicable Elements
Applies globally, or to a design element or signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)

• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute rom_extract: string;

Specify as follows.

attribute rom_extract of {signal_name |entity_name }:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* rom_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " rom_extract={yes|no|true|false};*

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " rom_extract={yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
430 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XST Command Line Syntax Example
Define globally with the run command.

-rom_extract {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > ROM Extraction

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 431

Chapter 12: FPGA Constraints (Non-Timing)

ROM Style
The ROM Style (ROM_STYLE) constraint controls how the macrogenerator implements
the inferred ROM macros.

• ROM Extraction must be set to yes in order to use ROM Style.

• XST looks for the best implementation for each inferred ROM.

• You can manually force the implementation style to use block RAM or LUT
resources.

Applicable Elements
Applies globally, or to an entity, module, or signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Constraint Values
• auto (default)

• block

• distributed

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
ROM Extraction must be set to yes for ROM Style to take effect.

Declare as follows.

attribute rom_style: string;

Specify as follows.

attribute rom_style of {signal_name |entity_name }:
{signal|entity} is "{auto|block|distributed}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* rom_style = "{auto|block|distributed}" *)

XCF Syntax Example One
ROM Extraction must be set to yes for ROM Style to take effect.

MODEL "entity_name " rom_style={auto|block|distributed};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
432 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XCF Syntax Example Two
ROM Extraction must be set to yes for ROM Style to take effect.

BEGIN MODEL "entity_name "

NET "signal_name " rom_style={auto|block|distributed};

END;

XST Command Line Syntax Example
ROM Extraction must be set to yes for ROM Style to take effect.

Define globally with the run command.

-rom_style {auto|block|distributed}

ISE Design Suite Syntax Example
ROM Extraction must be set to yes for ROM Style to take effect.

Define globally in ISE® Design Suite.

Process > Properties > HDL Options > ROM Style

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 433

Chapter 12: FPGA Constraints (Non-Timing)

Shift Register Extraction
The Shift Register Extraction (SHREG_EXTRACT) constraint enables Shift Register
macro inference.

• Enabling Shift Register Extraction results in the usage of dedicated hardware
resources such as SRL16 and SRLC16.

• For more information, see Chapter 7, HDL Coding Techniques.

Applicable Elements
Applies globally, or to a design element or signal.

Propagation Rules
Applies to the design elements or signals to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)

• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute shreg_extract : string;

Specify as follows.

attribute shreg_extract of {signal_name |entity_name }:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* shreg_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " shreg_extract={yes|no|true|false};

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
434 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " shreg_extract={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-shreg_extract {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > Shift Register Extraction

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 435

Chapter 12: FPGA Constraints (Non-Timing)

Shift Register Minimum Size
The Shift Register Minimum Size (SHREG_MIN_SIZE) constraint controls the minimum
length of Shift Registers that are inferred and implemented using SRL-type resources.
• Shift Registers below the specified limit are implemented using simple Flip-Flops.
• Using SRL-type resources excessively to implement small Shift Register macros

(such as 2-bit Shift Registers) may lead to undesirable placement restrictions for
other design elements. This may eventually degrade circuit performance.

• When Shift Register Minimum Size is specified, XST forces implementation of Shift
Registers below a designated length by using simple Flip-Flop resources.

• In Spartan®-6 devices, a single SliceM is available for every four Slices:
– SliceL
– SliceM
– SliceX
– SliceY
This availability makes this element particularly scarce and valuable, and may
justify saving it for better use, such as real LUT RAM applications.

Applicable Elements
• Shift Register Minimum Size is available only as an XST option, defining a global

inference threshold for the whole design.
• If you need to more finely control inference of individual Shift Registers, use Shift

Register Minimum Size in conjunction with Shift Register Extraction. You can apply
Shift Register Extraction to designated design elements.

Propagation Rules
Not applicable.

Constraint Values
The constraint value is an integer.
• The value is a natural value of 2 or higher.
• The default value is 2.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-shreg_min_size integer

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > Shift Register Minimum Size

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
436 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Slice (LUT-FF Pairs) Utilization Ratio
The Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO) constraint
defines the area size of LUT-FF pairs that XST must not exceed during timing
optimization.
• The area size of LUT-FF pairs is defined in 1) absolute numbers, or 2) a percent

of total numbers.
• If the area constraint cannot be satisfied, XST makes timing optimization regardless

of the area constraint.
• To disable automatic resource management, specify -1 as a constraint value.

For more information, see Speed Optimization Under Area Constraint.

Applicable Elements
Applies globally, or to a VHDL entity or Verilog module.

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute slice_utilization_ratio: string;

Specify as follows.

attribute slice_utilization_ratio of entity_name : entity is
"integer ";

attribute slice_utilization_ratio of entity_name : entity is
"integer %";

attribute slice_utilization_ratio of entity_name : entity is
"integer #";

In these examples:
• XST interprets the integer values in the first two attributes as a percentage.
• XST interprets the integer value in the last attribute as an absolute number of slices

or FF-LUT pairs.

Verilog Syntax Example
Place immediately before the module declaration or instantiation.

(* slice_utilization_ratio = "integer " *)

(* slice_utilization_ratio = "integer %" *)

(* slice_utilization_ratio = "integer #" *)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 437

Chapter 12: FPGA Constraints (Non-Timing)

In these examples:

• XST interprets the integer values in the first two attributes as a percentage.

• XST interprets the integer values in the last attribute as an absolute number of slices
or FF-LUT pairs.

XCF Syntax Example Three
MODEL "entity_name " slice_utilization_ratio="integer #";*

• In this example:

– XST interprets the integer values in the first two lines as a percentage.

– XST interprets the integer values in the last line as an absolute number of slices
or FF-LUT pairs.

• There must be no space between the integer value and the percent (%) or pound
(#) characters.

• The integer value range is -1 to 100when percent (%) is used or both percent (%) and
pound (#) are omitted.

• You must surround the integer value and the percent (%) and pound (#) characters
with double quotes. The percent (%) and pound (#) characters are special characters
in the XST Constraint File (XCF).

XST Command Line Syntax Example
Define globally with the run command.

-slice_utilization_ratio integer

-slice_utilization_ratio integer %

-slice_utilization_ratio integer #

In these examples:

• XST interprets the integer values in the first two lines as a percentage.

• XST interprets the integer values in the last line as an absolute number of slices
or FF-LUT pairs.

The integer value range is -1 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

• Process > Properties > Synthesis Options > Slice Utilization Ratio, or

• Process > Properties > Synthesis Options > LUT-FF Pairs Utilization Ratio

In ISE Design Suite:

• You can define the value of Slice (LUT-FF Pairs) Utilization Ratio only as a
percentage.

• You cannot define the value as an absolute number of slices.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
438 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Slice (LUT-FF Pairs) Utilization Ratio Delta
The Slice (LUT-FF Pairs) Utilization Ratio Delta constraint:

• Is represented as SLICE_UTILIZATION_RATIO_MAXMARGIN in code.

• Defines the tolerance margin for Slice (LUT-FF Pairs) Utilization Ratio.

– The value of the parameter is defined as:

♦ A percentage, or

♦ An absolute number of slices or LUT-FF Pairs.

– If the ratio is within the margin set, the constraint is met and timing optimization
can continue.

For more information, see Speed Optimization Under Area Constraint.

Applicable Elements
Applies globally, or to a VHDL entity or Verilog module.

Propagation Rules
Applies to the entity or module to which it is attached.

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute slice_utilization_ratio_maxmargin: string;

Specify as follows.

attribute slice_utilization_ratio_maxmargin of entity_name :
entity is "integer ";

attribute slice_utilization_ratio_maxmargin of entity_name :
entity is "integer %";

attribute slice_utilization_ratio_maxmargin of entity_name :
entity is "integer #";

• XST interprets the integer values in the first two attributes as a percentage.

• XST interprets the integer values in the last attribute as an absolute number of slices
or FF-LUT pairs.

• The integer value range is 0 to 100 when:

– Percent (%) is used, or

– Both percent (%) and pound (#) are omitted.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 439

Chapter 12: FPGA Constraints (Non-Timing)

Verilog Syntax Example
Place immediately before the module declaration or instantiation.

(* slice_utilization_ratio_maxmargin = "integer " *)

(* slice_utilization_ratio_maxmargin = "integer %" *)

(* slice_utilization_ratio_maxmargin = "integer #" *)

• XST interprets the integer values in the first two attributes as a percentage.

• XST interprets the integer values in the last attribute as an absolute number of slices
or FF-LUT pairs.

XCF Syntax Example Three
MODEL "entity_name "
slice_utilization_ratio_maxmargin="integer# ";

• XST interprets the integer values in the first two lines as a percentage.

• XST interprets the integer values in the last line as an absolute number of slices
or FF-LUT pairs.

• There must be no space between the integer value and the percent %) or pound
(#) characters.

• You must surround the integer value and the percent (%) and pound (#) characters
with double quotes because the percent (%) and pound (#) characters are special
characters in the XST Constraint File (XCF).

• The integer value range is 0 to 100when percent (%) is used or both percent (%) and
pound (#) are omitted).

XST Command Line Syntax Example
Define globally with the run command.

-slice_utilization_ratio_maxmargin integer

-slice_utilization_ratio_maxmargin integer %

-slice_utilization_ratio_maxmargin integer #

In these examples, XST interprets the integer values in the first two lines as a percentage,
and in the last line as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
440 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Use Carry Chain
The Use Carry Chain (USE_CARRY_CHAIN) constraint:
• Is both a global and a local constraint.
• Can deactivate carry chain use for macro generation.

Although XST uses carry chain resources to implement certain macros, you can
sometimes obtain better results by not using carry chain.

Applicable Elements
Applies globally, or to signals.

Propagation Rules
Applies to the signal to which it is attached.

Constraint Values
• yes [or true (XCF)] (default)
• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

Schematic Syntax Examples
• Attach to a valid instance
• Attribute Name

USE_CARRY_CHAIN

VHDL Syntax Example
Declare as follows.

attribute use_carry_chain: string;

Specify as follows.

attribute use_carry_chain of signal_name : signal is "{yes|no}";

Verilog Syntax Example
Place immediately before the signal declaration.

(* use_carry_chain = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " use_carry_chain={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " use_carry_chain={yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 441

Chapter 12: FPGA Constraints (Non-Timing)

XST Command Line Syntax Example
Define globally with the run command.

-use_carry_chain {yes|no}

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
442 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Use Clock Enable
The Clock Enable (USE_CLOCK_ENABLE) constraint enables or disables clock enabling
in Flip-Flops.
• Clock Enable is usually disabled in ASIC prototyping.
• When Use Clock Enable is set to no, XST does not use Clock Enable resources

during final implementation.
• For some designs, putting Clock Enable on the data input of the Flip-Flop may

optimize logic and give better Quality of Results (QoR).
• In auto mode, XST tries to estimate a trade-off between:

– Using a dedicated Clock Enable input of a Flip-Flop input, and
– Putting Clock Enable logic on the D input of a Flip-Flop.

• If you instantiate a Flip-Flop yourself, XST removes the Clock Enable only if
Optimize Instantiated Primitives is set to yes.

Applicable Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached.

Constraint Values
• auto (default)
• yes [or true (XCF)]
• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute use_clock_enable: string;

Specify as follows.

attribute use_clock_enable of
{entity_name |component_name |signal_name |instance_name } :
{entity|component|signal|label} is "{auto|yes|no}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 443

Chapter 12: FPGA Constraints (Non-Timing)

Verilog Syntax Example
Place immediately before the instance, module or signal declaration.

(* use_clock_enable = "{auto|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " use_clock_enable={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " use_clock_enable={auto|yes|no|true|false};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name "

INST "instance_name " use_clock_enable={auto|yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-use_clock_enable {auto|yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Use Clock Enable

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
444 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Use DSP Block
The Use DSP Block (USE_DSP48) constraint enables or disables the use of DSP block
resources.

DSP Block Resources
• Use DSP Utilization Ratio in auto and automaxmodes to further control the number

of DSP block resources used by synthesis. XST assumes that all available DSP blocks
can be used.

• Macros such as Multiply-Add/Sub and Multiply-Accumulate are treated as a
composition of simpler macros such as:

– Multipliers

– Accumulators

– Registers

• To maximize performance, XST performs these aggregations aggressively. XST
attempts to use all pipelining stages in the DSP block.

• Use Keep to control how XST aggregates those basic macros into a DSP block. For
example, when two Register stages are available before a multiplication operand,
insert Keep between them to prevent one of the Register stages from being
implemented in the DSP block.

• For more information on supported macros and their implementation control, see
Chapter 7, HDL Coding Techniques.

Applicable Elements
• An entire design through the XST command line

• A particular block (entity, architecture, component)

• A signal representing a macro described at the RTL level

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 445

Chapter 12: FPGA Constraints (Non-Timing)

Constraint Values
• auto (default)

XST selectively implements arithmetic logic to DSP blocks, and seeks to maximize
circuit performance.

– Macros such as the following are considered for DSP block implementation:

♦ Multiply

♦ Multiply-Add/Sub

♦ Multiply-Accumulate

– XST looks for opportunities to leverage the cascading capabilities of DSP blocks.

– Other macros are implemented on slice logic, including:

♦ Adders

♦ Counters

♦ standalone Accumulators

• automax

XST attempts to maximize DSP block utilization within the limits of available
resources on the selected device.

– In addition to the macros considered in auto mode, automax considers
additional functions as candidates for DSP block implementation, including:

♦ Adders

♦ Counters

♦ standalone Accumulators

– Xilinx® recommends that you use automax when a tightly packed device is
your primary concern, and you are attempting to free up LUT resources.

Attention Using automax may degrade circuit performance compared to the
default auto mode. Do not use automax when performance is your primary
implementation goal.

• yes [or true (XCF)]

Allows you to manually force implementation of arithmetic logic to DSP blocks.

– Use yes primarily to force individual functions to DSP resources.

– Xilinx does not recommend applying yes globally, since XST does not check
actual DSP resources availability in this mode, and may oversubscribe DSP
blocks.

Attention With a value of yes, the decision to implement a function in a DSP block
ignores both the actual availability of DSP resources on the selected device, and any
maximum allocation defined with the DSP Utilization Ratio constraint. As a result,
the design may use more DSP resources than are available or budgeted.

• no [or false (XCF)]

Allows you to manually prevent implementation of designated logic on DSP
resources.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
446 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute use_dsp48: string;

Specify as follows.

attribute use_dsp48 of "entity_name |component_name |signal_name }:
{entity|component|signal} is "{auto|automax|yes|no}";

Verilog Syntax Example
Place immediately before the instance, module or signal declaration.

(* use_dsp48 = "{auto|automax|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " use_dsp48={auto|automax|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " use_dsp48={auto|automax|yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-use_dsp48 {auto|automax|yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > HDL Options > Use DSP Block

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 447

Chapter 12: FPGA Constraints (Non-Timing)

Use Low Skew Lines
The Use Low Skew Lines (USELOWSKEWLINES) constraint:

• Is a basic routing constraint.

• Prevents XST from using dedicated clock resources and logic replication during
synthesis based on the value of Max Fanout.

• Specifies the use of low skew routing resources for any net.

For more information about this constraint, see the Constraints Guide (UG625).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
448 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Use Synchronous Set
The Use Synchronous Set (USE_SYNC_SET) constraint enables or disables the
synchronous set function in Flip-Flops.
• Use Synchronous Set is usually disabled in ASIC prototyping.
• XST does not use synchronous set resources during final implementation if Use

Synchronous Set has a value of no.
• Putting the synchronous set function on the data input of a Flip-Flop may allow for

better logic optimization and give better Quality of Results (QoR).
• In auto mode, XST tries to estimate a trade-off between:

– Using dedicated Synchronous Set input of a Flip-Flop input, and
– Putting Synchronous Set logic on the D input of a Flip-Flop.

• If you instantiate a Flip-Flop yourself, XST removes the synchronous set only if
Optimize Instantiated Primitives is set to yes.

Applicable Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached.

Constraint Values
• auto (default)
• yes [or true (XCF)]
• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute use_sync_set: string;

Specify as follows.

attribute use_sync_set of
{entity_name |component_name |signal_name |instance_name }:
{entity|component|signal|label} is "{auto|yes|no}";

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 449

Chapter 12: FPGA Constraints (Non-Timing)

Verilog Syntax Example
Place immediately before the instance, module or signal declaration.

(* use_sync_set = "{auto|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name " use_sync_set={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " use_sync_set={auto|yes|no|true|false};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name "

INST "instance_name " use_sync_set={auto|yes|no|true|false };

END;

XST Command Line Syntax Example
Define globally with the run command.

-use_sync_set {auto|yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Use Synchronous Set

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
450 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 12: FPGA Constraints (Non-Timing)

Use Synchronous Reset
The Use Synchronous Reset (USE_SYNC_RESET) constraint enables or disables the
synchronous reset function in Flip-Flops.
• Use Synchronous Reset is usually disabled in ASIC prototyping.
• XST does not use synchronous reset resources during final implementation if Use

Synchronous Reset has a value of no or false.
• Putting the synchronous reset function on the data input of a Flip-Flop may allow for

better logic optimization and give better Quality of Results (QoR) for some designs.
• In auto mode, XST tries to estimate a trade-off between:

– Using dedicated Synchronous Reset input of a Flip-Flop input, and
– Putting Synchronous Reset logic on the D input of a Flip-Flop.

• If you instantiate a Flip-Flop yourself, XST removes the synchronous reset only if
Optimize Instantiated Primitives is set to yes.

Applicable Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached.

Constraint Values
• auto (default)
• yes [or true (XCF)]
• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute use_sync_reset: string;

Specify as follows.

attribute use_sync_reset of
{entity_name |component_name |signal_name |instance_name }: is
"{entity|component|signal|label; is {auto|yes|no}";

Verilog Syntax Example
Place immediately before the instance, module, or signal declaration.

(* use_sync_reset = "{auto|yes|no}" *)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 451

Chapter 12: FPGA Constraints (Non-Timing)

XCF Syntax Example One
MODEL "entity_name " use_sync_reset={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name "

NET "signal_name " use_sync_reset={auto|yes|no|true|false};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name "

INST "instance_name " use_sync_reset={auto|yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command.

-use_sync_reset {auto|yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Xilinx-Specific Options > Use Synchronous Reset

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
452 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 13

Timing Constraints
This chapter discusses XST timing constraints.

For most constraints, this chapter gives the following information:
• Constraint Description
• Applicable Elements
• Propagation Rules
• Constraint Values
• Syntax Examples

Applying Timing Constraints
• Apply timing constraints using any of the following methods:

– Global Optimization Goal
– User Constraints File (UCF)
– XST Constraint File (XCF)

• The following options affect timing constraint processing, regardless of how the
timing constraints are applied:
– Clock Signal
– Cross Clock Analysis
– Write Timing Constraints

Applying Timing Constraints With Global Optimization Goal
You can apply timing constraints with the Global Optimization Goal command line
option.
• Use Global Optimization Goal to apply the five global timing constraints:

– ALLCLOCKNETS
– OFFSET_IN_BEFORE
– OFFSET_OUT_AFTER
– INPAD_TO_OUTPAD
– MAX_DELAY

• These constraints:
– Are applied globally.
– Cannot have a specified value. XST optimizes them for best performance.
– Are overridden by constraints in the User Constraints File (UCF).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 453

Chapter 13: Timing Constraints

Applying Timing Constraints With a User Constraints File (UCF)
You can apply timing constraints with a User Constraints File (UCF).

• Use the UCF to apply timing constraints using native UCF syntax.

• XST supports constraints such as:

– Timing Name

– Timegroup

– Period

– Timing Ignore

– From-To

• XST supports wildcards and hierarchical names with these constraints.

Applying Timing Constraints With the XST Constraint File (XCF)
You can apply timing constraints with the XST Constraint File (XCF).

• Xilinx® recommends that you use a forward slash (/) as a hierarchy separator
instead of an underscore (_).

• If XST does not support all or part of a specified timing constraint:

– XST issues a warning.

– XST ignores the unsupported timing constraint (or unsupported part of it) in
the Timing Optimization step.

• If Write Timing Constraints is set to yes, XST propagates the entire constraint to the
final netlist, even if it was ignored at the Timing Optimization step.

• An XCF supports the following timing constraints:

– Period

– Offset

– From-To

– Timing Name

– Timing Name on a Net

– Timegroup

– Timing Ignore

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
454 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 13: Timing Constraints

Clock Signal
The Clock Signal (CLOCK_SIGNAL) constraint defines a clock signal when the signal
goes through combinatorial logic before being connected to the clock input of a Flip-Flop.

• XST cannot identify which input pin or internal signal is the real clock signal.

• Use Clock Signal to define the signal.

Applicable Elements
Applies to signals.

Propagation Rules
Applies to clock signals.

Constraint Values
• yes [or true (XCF)] (default)

• no [or false (XCF)]

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

VHDL Syntax Example
Declare as follows.

attribute clock_signal : string;

Specify as follows.

attribute clock_signal of signal_name : signal is “{yes|no}”;

Verilog Syntax Example
Place immediately before the signal declaration.

(* clock_signal = "{yes|no}" *)

XCF Syntax Example
BEGIN MODEL "entity_name "

NET "primary_clock_signal " clock_signal={yes|no|true|false};

END;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 455

Chapter 13: Timing Constraints

Cross Clock Analysis
The Cross Clock Analysis (–cross_clock_analysis) command line option allows XST to
perform timing optimizations across clock domains.

• Timing optimizations across clock domains are disabled by default. They may
not always be desirable. When optimizations are disabled, XST optimizes timing
only within each separate clock domain.

• If you use Register Balancing to enable Flip-Flop retiming, Cross Clock Analysis
defines the scope of the retiming.

– If Cross Clock Analysis is enabled, logic may be moved from one clock domain
to the other when beneficial.

– If Cross Clock Analysis is disabled, register balancing takes place only within
each clock domain.

• Inter-clock domain timing information is available by default in the Synthesis
Report. Inter-clock domain optimizations do not need to be activated to access it.

For more information, see Obtaining Cross Clock Domain Timing Information.

Applicable Elements
Applies to an entire design through the XST command line.

Propagation Rules
Not applicable.

Constraint Values
• yes

• no (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-cross_clock_analysis {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Cross Clock Analysis

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
456 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 13: Timing Constraints

From-To
The From-To (FROM-TO) constraint defines a timing constraint between two groups.

A group can be user-defined or predefined:

• FF

• PAD

• RAM

For more information, see the Constraints Guide (UG625).

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example
TIMESPEC TSname = FROMgroup1 TO group2 value ;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 457

Chapter 13: Timing Constraints

Global Optimization Goal
The Global Optimization Goal (-glob_opt) command line option:

• Defines how XST optimizes the entire design for best performance.

• Allows XST to optimize the following design regions:

– Register to register

– Inpad to register

– Register to outpad

– Inpad to outpad

Global Timing Constraints
• Global Optimization Goal lets you select one of the following global timing

constraints:

– ALLCLOCKNETS

Optimizes the period of the entire design.

– OFFSET_BEFORE

Optimizes the maximum delay from input pad to clock, either for a specific
clock or for an entire design.

– OFFSET_OUT_AFTER

Optimizes the maximum delay from clock to output pad, either for a specific
clock or for an entire design.

– INPAD_OUTPAD

Optimizes the maximum delay from input pad to output pad throughout an
entire design.

– MAX_DELAY

Incorporates all previously mentioned constraints.

• These global timing constraints:

– Are applied globally to the entire design.

– Apply only if no timing constraints are specified in the constraint file.

– Cannot have a user-specified value, since XST optimizes them for the best
performance.

– Are overridden by constraints specified in the User Constraints File (UCF).

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
458 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 13: Timing Constraints

Global Optimization Goal Domain Definitions
The possible domains are shown in the following schematic.

• ALLCLOCKNETS (register to register)
Identifies all paths from register to register on the same clock for all clocks in a
design. To take inter-clock domain delays into account, set Cross Clock Analysis to
yes.

• OFFSET_IN_BEFORE (inpad to register)
Identifies all paths from all primary input ports to either all sequential elements or
the sequential elements driven by the given clock signal name.

• OFFSET_OUT_AFTER (register to outpad)
Similar to OFFSET_IN_BEFORE, but sets the constraint from the sequential elements
to all primary output ports.

• INPAD_TO_OUTPAD (inpad to outpad)
Sets a maximum combinatorial path constraint.

• MAX_DELAY
– ALLCLOCKNETS
– OFFSET_IN_BEFORE
– OFFSET_OUT_AFTER
– INPAD_TO_OUTPAD

Global Optimization Goal Domain Diagram

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

glob_opt
{allclocknets|offset_in_before|offset_out_after|inpad_to_outpad|max_delay}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite.

Process > Properties > Synthesis Options > Global Optimization Goal

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 459

Chapter 13: Timing Constraints

Offset
The Offset (OFFSET) constraint specifies the timing relationship between an external
clock and its associated data-in or data-out pin.

The Offset constraint:

– Is a basic timing constraint.

– Is used only for pad-related signals.

– Cannot extend the arrival time specification method to the internal signals in a
design.

– Calculates whether a setup time is being violated at a Flip-Flop for which data and
clock inputs are derived from external nets.

– Specifies the delay of an external output net derived from theQ output of an internal
Flip-Flop being clocked from an external device pin.

For more information about this constraint, see the Constraints Guide (UG625).

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example
OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER} clk_name
[TIMEGRP group_name];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
460 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 13: Timing Constraints

Period
The Period (PERIOD) constraint is a basic timing constraint and synthesis constraint.

• A clock period specification checks timing between all synchronous elements
within the clock domain as defined in the destination element group. The group
may contain paths that cross between clock domains if the clocks are defined as
a function of one or the other.

• For an MMCM block, apply the PERIOD constraints to the appropriate clock input
signals.

– It is not necessary to manually create related PERIOD constraints for the MMCM
clock output signals.

– XST automatically derives the PERIOD constraints to allow synthesis decisions
to be made on the basis of accurate timing data.

• XST writes out only those PERIOD constraints specified in the NGC netlist.

– XST does not explicitly write out derived constraints.

– Derived constraints are written out later during implementation.

For more information about this constraint, see the Constraints Guide (UG625).

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example
NET netname PERIOD = value [{HIGH|LOW} value];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 461

Chapter 13: Timing Constraints

Timing Name
The Timing Name (TNM) constraint identifies the elements that make up a group used
in a timing specification.

• TNM is a basic grouping constraint.

• TNM tags the following elements as members of a group to simplify the application
of timing specifications:

– FF

– RAM

– LATCH

– PAD

– BRAM_PORTA

– BRAM_PORTB

– CPU

– HSIO

– MULT

• TNM supports the RISING and FALLING keywords.

For more information about this constraint, see the Constraints Guide (UG625).

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example
{INST|NET|PIN} inst_net_or_pin_name TNM =
[predefined_group:]identifier ;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
462 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 13: Timing Constraints

Timing Name on a Net
The Timing Name on a Net (TNM_NET) constraint is essentially equivalent to Timing
Name on a net except for input pad nets.

• TNM_NET is usually used to tag a specific net. All downstream synchronous
elements and pads tagged with TNM_NET are considered a group.

• Special rules apply when using Timing Name and TNM_NET with Period for a:

– DLL

– DCM

– PLL

For more information, see “PERIOD Specifications on CLKDLLs, DCMs, and PLLs” in
the Constraints Guide (UG625).

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example
NET netname TNM_NET = [predefined_group:] identifier ;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 463

Chapter 13: Timing Constraints

Timegroup
The Timegroup (TIMEGRP) constraint is a basic grouping constraint.

• Use Timegroup to:

– Name groups using the Timing Name identifier.

– Define groups in terms of other groups.

– Create a group that is a combination of existing groups.

– Place Timegroup constraints in:

♦ An XST Constraint File (XCF), or

♦ A Netlist Constraints File (NCF)

• Use Timegroup attributes to create groups by:

– Combining multiple groups into one, or

– Defining flip-flop subgroups by clock sense.

For more information about this constraint, see the Constraints Guide (UG625).

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example
TIMEGRP newgroup = existing_grp1 existing_grp2 [existing_grp3
...];

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
464 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 13: Timing Constraints

Timing Ignore
The Timing Ignore (TIG) constraint:

• Causes all paths going through a specific net to be ignored for timing analysis and
optimization.

• Can be applied to the name of the affected signal.

For more information about this constraint, see the Constraints Guide (UG625).

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XCF Syntax Example
NET net_name TIG;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 465

Chapter 13: Timing Constraints

Write Timing Constraints
The Write Timing Constraints (–write_timing_constraints) command line option
specifies whether timing constraints are written to the NGC file.

• Timing constraints are not automatically written to the NGC file.

• Timing constraints are written to the NGC file only when:

– Write Timing Constraints is checked yes in ISE® Design Suite.

Process > Properties > Synthesis Options > Write Timing Constraints, or

– -write_timing_constraints is specified in the command line.

Applicable Elements
Applies to an entire design through the XST command line.

Propagation Rules
Not applicable.

Constraint Values
• yes

• no (default)

Syntax Examples
If a tool or method is not listed below, you cannot use it with this constraint. For more
information, see Syntax Examples in the Introduction.

XST Command Line Syntax Example
Define globally with the run command.

-write_timing_constraints {yes|no}

ISE Design Suite Syntax Example
Define globally in ISE Design Suite.

Process > Properties > Synthesis Options > Write Timing Constraints

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
466 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 14

Third-Party Constraints
XST supports many third-party constraints.

• The table below shows the XST equivalents for these constraints.

– Constraints marked yes are fully supported.

– If a constraint is only partially supported, the support conditions are shown in
the Automatic Recognition column.

– For information on specific constraints, see your vendor documentation.

• Third-party constraints use the same mechanisms to apply constraints as do Xilinx®
constraints:

– VHDL attribute

– Verilog attribute

– XST Constraint File (XCF) constraint

Third-Party Constraints in VHDL
• VHDL uses standard attribute syntax.

• No changes to the HDL source code are required.

Third-Party Constraints in Verilog
• For Verilog with third-party meta-comment syntax, you must change the

meta-comment syntax to conform to XST conventions.

• The constraint name and its value are used as described in the third-party tool.

• For Verilog–2001 attributes, no changes to the HDL code are required. The constraint
is automatically translated as in the case of VHDL attribute syntax.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 467

Chapter 14: Third-Party Constraints

XST Equivalents to Third-Party Constraints
Name Vendor XST Equivalent Automatic

Recognition
Available For

VHDLblack_box Synopsys BoxType N/A

Verilog

black_box_pad_pin Synopsys N/A N/A N/A

black_box_tri_pins Synopsys N/A N/A N/A

cell_list Synopsys N/A N/A N/A

clock_list Synopsys N/A N/A N/A
enum Synopsys N/A N/A N/A

full_case Synopsys Full Case N/A Verilog

ispad Synopsys N/A N/A N/A

map_to_module Synopsys N/A N/A N/A

net_name Synopsys N/A N/A N/A

parallel_case Synopsys Parallel Case N/A Verilog

return_port_name Synopsys N/A N/A N/A

VHDLresource_sharing directives Synopsys Resource Sharing N/A

Verilog

set_dont_touch_network Synopsys not required N/A N/A

set_dont_touch Synopsys not required N/A N/A

set_dont_use_cel_name Synopsys not required N/A N/A

set_prefer Synopsys N/A N/A N/A

state_vector Synopsys N/A N/A N/A

VHDLsyn_allow_retiming Synopsys Register Balancing N/A

Verilog

VHDLsyn_black_box Synopsys BoxType Yes

Verilog

syn_direct_enable Synopsys N/A N/A N/A

syn_edif_bit_format Synopsys N/A N/A N/A

syn_edif_scalar_format Synopsys N/A N/A N/A

VHDLsyn_encoding Synopsys FSM Encoding
Algorithm

YesThe value safe
is not supported
for automatic
recognition. Use
Safe Implementation
in XST to activate this
mode.

Verilog

syn_enum_encoding Synopsys Enumerated Encoding N/A VHDL

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
468 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 14: Third-Party Constraints

Name Vendor XST Equivalent Automatic
Recognition

Available For

VHDL

Verilog

syn_hier Synopsys Keep Hierarchy Yes
syn_hier = hard
is recognized as
keep_hierarchy
= softsyn_hier =
remove is recognized
as keep_hierarchy
= no XST supports
only the values
hard and remove for
syn_hier in automatic
recognition.

syn_isclock Synopsys N/A N/A N/A

VHDLsyn_keep Synopsys Keep Yes

Verilog

VHDLsyn_maxfan Synopsys Max Fanout Yes

Verilog

VHDLsyn_netlist_hierarchy Synopsys Netlist Hierarchy N/A

Verilog

syn_noarrayports Synopsys N/A N/A N/A

VHDLsyn_noclockbuf Synopsys Buffer Type Yes

Verilog

VHDLsyn_noprune Synopsys Optimize Instantiated
Primitives

Yes

Verilog

VHDLsyn_pipeline Synopsys Register Balancing N/A

Verilog

VHDLsyn_preserve Synopsys Equivalent Register
Removal

Yes

Verilog

Yes VHDL

Verilog

syn_ramstyle Synopsys RAM Extraction and
RAM Style

XST implements
RAM components
in no_rw_check
mode whether or
not no_rw_check is
specified.The area
value is ignored.

syn_reference_clock Synopsys N/A N/A N/A

VHDLsyn_replicate Synopsys Register Duplication Yes

Verilog

VHDLsyn_romstyle Synopsys ROM Extraction and
ROM Style

Yes

Verilog

VHDLsyn_sharing Synopsys Resource Sharing N/A

Verilog

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 469

Chapter 14: Third-Party Constraints

Name Vendor XST Equivalent Automatic
Recognition

Available For

VHDLsyn_state_machine Synopsys Automatic FSM
Extraction

Yes

Verilog

syn_tco Synopsys N/A N/A N/A

syn_tpd Synopsys N/A N/A N/A

syn_tristate Synopsys N/A N/A N/A

syn_tristatetomux Synopsys N/A N/A N/A

syn_tsu Synopsys N/A N/A N/A

syn_useenables Synopsys Use Clock Enable N/A N/A

VHDLsyn_useioff Synopsys Pack I/O Registers
Into IOBs (IOB)

N/A

Verilog

synthesis_translate_off Synopsys VHDL

synthesis_translate_on Synopsys

Translate Off and
Translate On

Yes

Verilog

xc_alias Synopsys N/A N/A N/A

VHDLxc_clockbuftype Synopsys Buffer Type N/A

Verilog

VHDLxc_fast Synopsys FAST N/A

Verilog

VHDLxc_fast_auto Synopsys FAST N/A

Verilog

VHDLxc_global_buffers Synopsys BUFG (XST) N/A

Verilog

VHDLxc_ioff Synopsys Pack I/O Registers
Into IOBs

N/A

Verilog

xc_isgsr Synopsys N/A N/A N/A

VHDLxc_loc Synopsys LOC Yes

Verilog

VHDLxc_map Synopsys Map Entity on a Single
LUT

Yes
XST supports only the
value lut for automatic
recognition.

Verilog

xc_ncf_auto_relax Synopsys N/A N/A N/A

VHDLxc_nodelay Synopsys NODELAY N/A

Verilog

VHDLxc_padtype Synopsys I/O Standard N/A

Verilog
xc_props Synopsys N/A N/A N/A

VHDLxc_pullup Synopsys PULLUP N/A

Verilog

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
470 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 14: Third-Party Constraints

Name Vendor XST Equivalent Automatic
Recognition

Available For

VHDLxc_rloc Synopsys RLOC Yes

Verilog

VHDLxc_fast Synopsys FAST N/A

Verilog

xc_slow Synopsys N/A N/A N/A

VHDLxc_uset Synopsys U_SET Yes

Verilog

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 471

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
472 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 15

Synthesis Report
• The Synthesis Report:

– Is an ASCII text file.

– Is a hybrid between a report and a log.

– Contains information about the XST synthesis run.

• During synthesis, the Synthesis Report allows you to:

– Control the progress of the synthesis.

– Review preliminary synthesis results.

• After synthesis, the Synthesis Report allows you to determine whether:

– The HDL description has been processed according to expectations.

– Device resource utilization and optimization levels will meet design goals once
the synthesized netlist has been run through the implementation chain.

Synthesis Report Content
The Synthesis Report contains the following sections:

• Table of Contents

• Synthesis Options Summary

• HDL Parsing and Elaboration

• HDL Synthesis

• Advanced HDL Synthesis

• Low Level Synthesis

• Partition Report

• Design Summary

Table of Contents
Use the Table of Contents to navigate through the Synthesis Report. For more
information, see Synthesis Report Navigation.

Synthesis Options Summary
The Synthesis Options Summary summarizes the parameters and options used for
the current synthesis run.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 473

Chapter 15: Synthesis Report

HDL Parsing and Elaboration
During HDL parsing and elaboration, XST:
• Parses the VHDL and Verilog files that make up the synthesis project.
• Interprets the content of those files.
• Recognizes the design hierarchy.
• Flags HDL coding mistakes.
• Points out potential problems such as:

– Simulation mismatches between post-synthesis and HDL.
– Potential multi-source situations.

If problems occur at later stages of synthesis, the HDL parsing and elaboration sections
may reveal the root cause of these problems.

HDL Synthesis
During HDL Synthesis:
• XST attempts to recognize basic macros for which a technology-specific

implementation might later be possible. These basic macros include:
– Registers
– Adders
– Multipliers

• XST looks for Finite State Machine (FSM) descriptions on a block by block basis.
• XST issues the HDL Synthesis Report, which provides statistics on inferred macros.

For more information about macro processing and the messages issued during synthesis,
see Chapter 7, HDL Coding Techniques.

Advanced HDL Synthesis
During Advanced HDL Synthesis, XST attempts to combine basic macros inferred
during HDL Synthesis into larger macro blocks.
• The macro blocks include:

– Counters
– Pipelined Multipliers
– Multiply-Accumulate functions

• XST reports on the selected encoding scheme for each inferred Finite State Machine
(FSM).

• The Advanced HDL Synthesis Report summarizes the recognized macros in the
overall design.

• The recognized macros are sorted by macro type.

For more information, see Chapter 7, Coding Techniques.

Low Level Synthesis
The Low Level Synthesis section displays information about XST low-level
optimizations, including:
• Removal of equivalent Flip-Flops
• Optimization of constant Flip-Flops
• Register replication

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
474 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 15: Synthesis Report

Partition Report
The Partition Report displays information about the design partitions.

Design Summary
The Design Summary section helps you determine whether:
• Synthesis has been successful.
• Device utilization and circuit performance have met design goals.

The Design Summary section contains the following subsections:
• Primitive and Black Box Usage
• Device Utilization Summary
• Partition Resource Summary
• Timing Report
• Clock Information
• Asynchronous Control Signals Information
• Timing Summary
• Timing Details
• Encrypted Modules

Primitive and Black Box Usage
The Primitive and Black Box Usage subsection displays usage statistics for:
• Device primitives
• Identified Black Boxes

The primitives are classified in the following groups:
• BELs

All basic logical primitives such as LUT, MUXCY, XORCY, MUXF5, and MUXF6
• Flip-Flops and Latches
• Block and distributed RAM
• Shift Register primitives
• Tristate buffers
• Clock buffers
• I/O buffers
• Other logical, more complex, primitives such as AND2 and OR2
• Other primitives

Device Utilization Summary
The Device Utilization Summary displays device utilization estimates for:
• Slice logic utilization
• Slice logic distribution
• Number of Flip-Flops
• I/O utilization
• Number of block RAM components
• Number of DSP blocks

XST generates a similar report when you later run MAP.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 475

Chapter 15: Synthesis Report

Partition Resource Summary
If partitions have been defined, the Partition Resource Summary subsection displays
information similar to the Device Utilization Summary on a partition-by-partition basis.

Timing Report
The Timing Report subsection displays timing estimates to help you:

• Determine whether the design meets performance and timing requirements.
• Locate bottlenecks if performance and timing requirements are not met.

Clock Information
The Clock Information subsection displays information about:
• The number of clocks.
• How each clock is buffered.
• Their respective fanouts.

Clock Information Report Example
Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
CLK | BUFGP | 11 |
-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information
The Asynchronous Control Signals Information subsection displays information about:
• The number of asynchronous set/reset signals.
• How each signal is buffered.
• Their respective fanouts.

Asynchronous Control Signals Information Report Example
Asynchronous Control Signals Information:
-------------------------------------+-------------------------------+-------+
Control Signal | Buffer(FF name) | Load |
-------------------------------------+-------------------------------+-------+
rstint(MACHINE/current_state_Out01:O)| NONE(sixty/lsbcount/qoutsig_3)| 4 |
RESET | IBUF | 3 |
sixty/msbclr(sixty/msbclr:O) | NONE(sixty/msbcount/qoutsig_3)| 4 |
-------------------------------------+-------------------------------+-------+

Timing Summary
The Timing Summary subsection shows timing information for all four possible clock
domains of a netlist:
• Minimum period

Register to Register Paths
• Minimum input arrival time before clock

Input to Register Paths
• Maximum output required time after clock

Register to Outpad Paths
• Maximum combinatorial path delay

Inpad to Outpad Paths

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
476 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 15: Synthesis Report

This timing information is an estimate. For precise timing information, see the TRACE
Report generated after placement and routing.

Timing Summary Report Example
Timing Summary:

Speed Grade: -1

Minimum period: 2.644ns (Maximum Frequency: 378.165MHz)
Minimum input arrival time before clock: 2.148ns
Maximum output required time after clock: 4.803ns
Maximum combinatorial path delay: 4.473ns

Timing Details
The Timing Details subsection displays information about the most critical path in each
clock region. The information includes:
• Start point
• End point
• Maximum delay
• Levels of logic
• Detailed breakdown of the path into individual net and component delays
• Information on net fanouts
• Distribution between routing and logic

Detailed Path Breakdown
In some cases, XST writes out a hierarchical netlist with Netlist Hierarchy in which the
reported path crosses hierarchical boundaries.

In that event, the detailed path breakdown uses the begin scope and end scope
keywords to indicate when the path enters and exits a hierarchical block.

Timing Details Report Example
Timing Details:

All values displayed in nanoseconds (ns)

===
Timing constraint: Default period analysis for Clock ’CLK’
Clock period: 2.644ns (frequency: 378.165MHz)
Total number of paths / destination ports: 77 / 11

Delay: 2.644ns (Levels of Logic = 3)
Source: MACHINE/current_state_FFd3 (FF)
Destination: sixty/msbcount/qoutsig_3 (FF)
Source Clock: CLK rising
Destination Clock: CLK rising

Data Path: MACHINE/current_state_FFd3 to sixty/msbcount/qoutsig_3
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
FDC:C->Q 8 0.272 0.642 ctrl/state_FFd3 (ctrl/state_FFd3)
LUT3:I0->O 3 0.147 0.541 Ker81 (clkenable)
LUT4_D:I1->O 1 0.147 0.451 sixty/msbce (sixty/msbce)
LUT3:I2->O 1 0.147 0.000 sixty/msbcount/qoutsig_3_rstpot (N43)
FDC:D 0.297 sixty/msbcount/qoutsig_3
--
Total 2.644ns (1.010ns logic, 1.634ns route)

(38.2% logic, 61.8% route)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 477

Chapter 15: Synthesis Report

Timing Constraint Default Path Analysis Report Example
Timing constraint: Default path analysis
Total number of paths / destination ports: 36512 / 16

Delay: 4.326ns (Levels of Logic = 14)
Source: a<0> (PAD)
Destination: out<3> (PAD)

Data Path: a<0> to out<>
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
IBUF:I->O 5 0.003 0.376 a_0_IBUF (a_0_IBUF)
begin scope: ’m’
begin scope: ’a1’
LUT2:I0->O 1 0.053 0.000 Madd_out_Madd_lut<0> (Madd_out_Madd_lut<0>)
MUXCY:S->O 1 0.219 0.000 Madd_out_Madd_cy<0> (Madd_out_Madd_cy<0>)
MUXCY:CI->O 1 0.015 0.000 Madd_out_Madd_cy<1> (Madd_out_Madd_cy<1>)
MUXCY:CI->O 1 0.015 0.000 Madd_out_Madd_cy<2> (Madd_out_Madd_cy<2>)
MUXCY:CI->O 1 0.015 0.000 Madd_out_Madd_cy<3> (Madd_out_Madd_cy<3>)
MUXCY:CI->O 1 0.015 0.000 Madd_out_Madd_cy<4> (Madd_out_Madd_cy<4>)
MUXCY:CI->O 1 0.015 0.000 Madd_out_Madd_cy<5> (Madd_out_Madd_cy<5>)
MUXCY:CI->O 0 0.015 0.000 Madd_out_Madd_cy<6> (Madd_out_Madd_cy<6>)
XORCY:CI->O 1 0.180 0.279 Madd_out_Madd_xor<7> (out<7>)
end scope: ’a1’
DSP48E1:A7->P2 1 2.843 0.279 Maddsub_out (out_2_OBUF)
end scope: ’m’
OBUF:I->O 0.003 out_2_OBUF (out<2>)
--
Total 4.326ns (3.391ns logic, 0.935ns route)

(78.4% logic, 21.6% route)

Obtaining Cross Clock Domain Timing Information
• The Cross Domains Crossing Report section:

– Reports Clock Domain Crossing (CDC) paths.

– Is included by default.

– Follows the Timing Details section.

– Is available whether or not XST has performed cross clock domain optimization.

– Is available whether or not you have specified timing constraints in an XST
Constraint File (XCF).

• You do not need to enable Cross Clock Analysis to obtain cross clock domain timing
information.

• Use Cross Clock Analysis only in order to achieve timing optimizations across clock
domains.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
478 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 15: Synthesis Report

Cross Domains Crossing Report Example
Clock Domains Crossing Report:

Clock to Setup on destination clock clk2
---------------+---------+---------+---------+---------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
clk1 | 0.804| | | |
clk2 | 0.661| | | |
---------------+---------+---------+---------+---------+

Clock to Setup on destination clock clk3
---------------+---------+---------+---------+---------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
clk2 | | | 0.809| |
clk3 | | | 0.651| |
---------------+---------+---------+---------+---------+

Encrypted Modules
XST hides all information about encrypted modules.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 479

Chapter 15: Synthesis Report

Synthesis Report Navigation
To navigate in the Synthesis Report, use the methods shown in:
• ISE® Design Suite Report Navigation
• Command Line Mode Report Navigation

ISE Design Suite Report Navigation
In ISE® Design Suite, XST generates an SYR (.syr) file.

The SYR file:
• Contains the full Synthesis Report.
• Is located in the directory in which the ISE Design Suite project resides.
• Allows you to navigate to the different sections of the Synthesis Report using a

navigation pane.

Command Line Mode Report Navigation
XST generates an SRP file (.srp) in command line mode.
• The SRP file is an ASCII text file containing the full Synthesis Report.
• Entries in the SRP file Table of Contents are not hyperlinked. Use Find to navigate.

Synthesis Report Information
The following modes reduce the information displayed in the Synthesis Report:
• Message Filtering
• Quiet Mode
• Silent Mode

Message Filtering
Use Message Filtering in ISE® Design Suite to filter specific messages out of the
Synthesis Report.
• You can filter out individual messages, or a category of messages.
• For more information, see “Using the Message Filters” in the ISE Design Suite Help.

Quiet Mode
• XST normally prints the entire report to the computer screen (stdout). Quiet Mode

limits the number of messages printed to the computer screen.
• Quiet Mode does not alter the Synthesis Report. The report contains the full,

unfiltered, synthesis information.
• To invoke Quiet Mode, set -intstyle to either of the following.

Option Formats messages for
ise ISE® Design Suite

xflow XFLOW

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
480 www.xilinx.com UG687 (v 13.4) January 18, 2012

./xst_v6s6.pdf.ditaLinks/xst_v6s6_c_ch15_navigation_ise.dita

Chapter 15: Synthesis Report

Report Sections Printed to the Computer Screen
In Quiet Mode, XST prints the following sections of the Synthesis Report to the computer
screen.

• Device Utilization Summary

• Clock Information

• Timing Summary

Report Sections NOT Printed to the Computer Screen
In Quiet Mode, XST does NOT print the following sections of the Synthesis Report
to the computer screen.

• Copyright Message

• Table of Contents

• Synthesis Options Summary

• The following portions of the Design Summary:

– Final Results section

– A note stating that the timing numbers are only a synthesis estimate

– Timing Details

– CPU (XST runtime)

– Memory usage

Silent Mode
Silent Mode prevents messages from being sent to the computer screen (stdout).

• The Synthesis Report is written to the log file.

• To invoke Silent Mode, set -intstyle to silent.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 481

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
482 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 16

Naming Conventions
Synthesis tools must use naming conventions for objects written to the synthesized
netlist.
• The naming conventions must be:

– Logical
– Consistent
– Predictable
– Repeatable

• Naming conventions help you:
– Control implementation of a design with constraints.
– Reduce timing closure cycles.

Naming Conventions Coding Examples
For update information, see “Coding Examples” in the Introduction.

Reg in Labeled Always Block Verilog Coding Example
//
// A reg in a labelled always block
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Naming_Conventions/reg_in_labelled_always.v
//
module top (

input clk,
input di,
output do

);

reg data;

always @(posedge clk)
begin : mylabel

reg tmp;

tmp <= di; // Post-synthesis name : mylabel.tmp
data <= ~tmp; // Post-synthesis name : data

end

assign do = ~data;

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 483

Chapter 16: Naming Conventions

Primitive Instantiation in If-Generate Without Label Verilog Coding
Example

//
// A primitive instantiation in a if-generate without label
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Naming_Conventions/if_generate_nolabel.v
//
module top (

input clk,
input di,
output do

);

parameter TEST_COND = 1;

generate

if (TEST_COND) begin
FD myinst (.C(clk), .D(di), .Q(do)); // Post-synthesis name : myinst

end

endgenerate

endmodule

Primitive Instantiation in If-Generate With Label Verilog Coding
Example

//
// A primitive instantiation in a labelled if-generate
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Naming_Conventions/if_generate_label.v
//
module top (

input clk,
input rst,
input di,
output do

);

// parameter TEST_COND = 1;
parameter TEST_COND = 0;

generate

if (TEST_COND)
begin : myifname

FDR myinst (.C(clk), .D(di), .Q(do), .R(rst));
// Post-synthesis name : myifname.myinst

end
else

begin : myelsename
FDS myinst (.C(clk), .D(di), .Q(do), .S(rst));

// Post-synthesis name : myelsename.myinst
end

endgenerate

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
484 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 16: Naming Conventions

Variable in Labeled Process VHDL Coding Example
--
-- A variable in a labelled process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: Naming_Conventions/var_in_labelled_process.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity top is
port(

clk : in std_logic;
di : in std_logic;

do : out std_logic
);

end top;

architecture behavioral of top is
signal data : std_logic;

begin

mylabel: process (clk)
variable tmp : std_logic;

begin
if rising_edge(clk) then

tmp := di; -- Post-synthesis name : mylabel.tmp
end if;
data <= not(tmp);

end process;

do <= not(data);

end behavioral;

Flip-Flop Modeled With a Boolean VHDL Coding Example
--
-- Naming of boolean type objects
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: Naming_Conventions/boolean.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity top is
port(

clk : in std_logic;
di : in boolean;

do : out boolean
);

end top;

architecture behavioral of top is
signal data : boolean;

begin

process (clk)
begin

if rising_edge(clk) then
data <= di; -- Post-synthesis name : data

end if;
end process;

do <= not(data);

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 485

Chapter 16: Naming Conventions

Net Naming Conventions
XST creates net names based on the following rules, listed in order of naming priority.

1. Maintain external pin names.

2. Keep hierarchy in signal names.

Use the hierarchy separator defined by Hierarchy Separator. The default hierarchy
separator is a forward slash (/).

3. Maintain output signal names of registers, including state bits.

Use the hierarchical name from the level in which the register was inferred.

4. For output signals of clock buffers, a _clockbuffertype suffix (such as _BUFGP or
_IBUFG) is appended to the clock signal name.

5. Maintain input nets to registers and tristates names.

6. Maintain names of signals connected to primitives and black boxes.

7. The output net of an IBUF is named <signal_name>_IBUF.

For example, if an IBUF output drives signal DIN, the output net of this IBUF is
named DIN_IBUF.

8. The input net to an OBUF is named <signal_name>_OBUF.

For example, if an OBUF input is driven by signal DOUT, the input net of this OBUF
is named DOUT_OBUF.

9. Base names for internal (combinatorial) nets on user HDL signal names where
possible.

10. Nets resulting from the expansion of buses are formatted as:

<bus_name><left_delimiter><position>#<right_delimiter>.

• The default left and right delimiters are respectively < and >.

• Use Bus Delimiter to change this convention.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
486 www.xilinx.com UG687 (v 13.4) January 18, 2012

Chapter 16: Naming Conventions

Instance Naming Conventions
XST creates instance names based on the following rules, listed in order of naming
priority:

1. Maintain hierarchy in instance names.

• Use the hierarchy separator defined by Hierarchy Separator.

• The default hierarchy separator is a slash (/).
2. When instance names are generated from HDL generate statements, labels from the

generate statements are used in composition of instance names.
• For the following VHDL generate statement:

i1_loop: for i in 1 to 10 generate
inst_lut:LUT2 generic map (INIT => "00")

• XST generates the following instance names for LUT2:

i1_loop[1].inst_lut
i1_loop[2].inst_lut
...
i1_loop[9].inst_lut
i1_loop[10].inst_lut

3. Match the Flip-Flop instance name to the name of the signal it drives. This principle
also applies to state bits.

4. Name clock buffer instances _clockbuffertype (such as _BUFGP or _IBUFG) after
the output signal.

5. Names of Black Box instances are maintained.

6. Names of library primitive instances are maintained.

7. Name input and output buffers using the form _IBUF or _OBUF after the pad name.
8. Name output instance names of IBUF elements using the form instance_name_IBUF.
9. Name input instance names ofOBUF elements using the form instance_name_OBUF.

Case Preservation
• This section discusses XST case preservation in Verilog and VHDL.

• For more information, see Case Sensitivity.

VHDL (Case Insensitive)
• VHDL is case insensitive.

• XST converts object names based on names defined in the HDL source code to
all lowercase in the synthesized netlist, unless instructed otherwise by the Case
command line option.

Verilog (Case Sensitive)
• Verilog is case sensitive.

• XST enforces the exact capitalization found in the HDL source code, unless
instructed otherwise by the Case command line option.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 487

Chapter 16: Naming Conventions

Name Generation Control
• The following constraints permit some control over the naming of objects in the

synthesized netlist.

– Hierarchy Separator

– Bus Delimiter

– Case

– Duplication Suffix

• Apply these constraints in either:

– ISE® Design Suite

Synthesize - XST Process > Properties

– Command Line

• For more information, see Chapter 9, Design Constraints.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
488 www.xilinx.com UG687 (v 13.4) January 18, 2012

Appendix

Additional Resources
• Xilinx Global Glossary,

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

• Xilinx® Support, http://www.xilinx.com/support

• For more information about XST, see Xilinx® Synthesis Technology (XST) - Frequently
Asked Questions (FAQ).

• For more information about DSP block resources, see:

– Virtex®-6 FPGA DSP48E1 Slice User Guide (UG369)

– Spartan®-6 FPGA DSP48A1 Slice User Guide (UG389)

– 7 Series DSP48E1 Slice User Guide (UG479)

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 13.4) January 18, 2012 www.xilinx.com 489

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=glossary
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/support/answers/15390.htm
http://www.xilinx.com/support/answers/15390.htm
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

	Software Manuals
	XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
	Revision History
	Table of Contents
	Chapter 1 Introduction
	Coding Examples
	Syntax Examples
	Acronyms
	Additional Resources

	Chapter 2 Creating and Synthesizing an XST Project
	Creating an HDL Synthesis Project File
	HDL Synthesis Project File Definition
	HDL Synthesis Project File Syntax
	Creating a Sample HDL Synthesis Project File in ISE Design Suite
	Creating an HDL Synthesis Project File from the Command Line

	Running XST in ISE Design Suite
	Running XST in Command Line Mode
	Running XST as a Standalone Tool
	Setting Environment Variables
	Invoking XST
	Command Line Syntax
	Using Message Filtering in Command Line Mode

	Running XST Interactively
	Running XST in Scripted Mode
	XST Script Files
	Improving Readability of an XST Script File

	XST Commands
	Run Command
	Run Command Syntax
	Run Command Settings
	Run Command Mandatory Settings
	Run Command Optional Settings

	Set Command
	Help Command
	Supported Families
	All Commands for a Specific Device
	Specific Commands for a Specific Device

	Names With Spaces in Command Line Mode
	Output Files
	Typical Output Files
	Temporary Output Files
	Changing the Temp Directory
	Maintaining the Temp Directory

	Chapter 3 VHDL Support
	VHDL IEEE Support
	VHDL Data Types
	VHDL Unsupported Data Types
	VHDL Data Types
	VHDL Predefined Enumerated Types
	Predefined VHDL Enumerated Types Summary
	std_logic Allowed Values
	XST-Supported Overloaded Enumerated Types

	VHDL User-Defined Enumerated Types
	VHDL Bit Vector Types
	Supported VHDL Bit Vector Types
	Supported VHDL Overloaded Types

	VHDL Integer Types
	VHDL Multi-Dimensional Array Types
	VHDL Record Types

	VHDL Objects
	VHDL Signals
	VHDL Variables
	VHDL Constants

	VHDL Operators
	VHDL Entity and Architecture Descriptions
	VHDL Circuit Descriptions
	VHDL Entity Declarations
	Constrained and Unconstrained Ports
	Buffer Port Mode
	Dropping Buffer Mode

	VHDL Architecture Declarations
	VHDL Component Instantiation
	Elements of Component Instantiation Statement

	VHDL Recursive Component Instantiation
	VHDL Component Configuration
	VHDL Generics
	Parameterize Functionality Example
	Declaring Generics

	Conflicts Among VHDL Generics and Attributes
	Rules for Conflict Resolution

	VHDL Combinatorial Circuits
	VHDL Concurrent Signal Assignments
	VHDL Generate Statements
	VHDL For-Generate Statements
	VHDL If-Generate Statements

	VHDL Combinatorial Processes
	Memory Elements
	Sensitivity List
	Missing Signals
	VHDL Variable and Signal Assignments
	VHDL If-Else Statements
	VHDL Case Statements
	VHDL For-Loop Statements

	VHDL Sequential Logic
	VHDL Sequential Processes With a Sensitivity List
	Describing Sequential Logic
	Asynchronous Control Logic Modelization
	Sequential Process With a Sensitivity List Syntax
	Clock Event Statements
	Missing Signals

	VHDL Sequential Processes Without a Sensitivity List
	Describing Synchronous Control Logic

	VHDL Initial Values and Operational Set/Reset
	VHDL Default Initial Values on Memory Elements
	Initialization
	Unconnected Ports
	VHDL Initial Values

	VHDL Functions and Procedures
	VHDL Assert Statements
	Using an Assert Statement for Design Rule Checking
	Using an Assert Statement for Design Rule Checking Error Message

	VHDL Libraries and Packages
	VHDL Libraries
	VHDL Predefined Packages
	VHDL Predefined Standard Packages
	VHDL Predefined IEEE Packages
	VHDL Predefined IEEE Fixed Point and Floating Point Packages
	VHDL Predefined IEEE Fixed Point Packages
	VHDL Predefined IEEE Floating Point Packages

	VHDL Predefined IEEE Real Type and IEEE Math_Real Packages

	Defining Your Own VHDL Packages
	Accessing VHDL Packages

	VHDL File Type Support
	VHDL File Read and File Write Capability
	File Read Capability
	File Write Capability
	Required Packages
	Implicit and Explicit File Open and Close Operations

	Loading Memory Contents from an External File
	Writing to a File for Debugging
	Debugging Using Write Operations

	VHDL Constructs
	VHDL Design Entities and Configurations
	VHDL Entity Headers
	VHDL Packages
	VHDL Physical Types
	VHDL Modes
	VHDL Declarations
	VHDL Objects
	VHDL Specifications

	VHDL Expressions
	VHDL Operators
	VHDL Operands

	VHDL Statements
	VHDL Wait Statements
	VHDL Loop Statements
	VHDL Concurrent Statements

	VHDL Reserved Words

	Chapter 4 Verilog Support
	Verilog Design
	Verilog Functionality
	More Information
	Verilog–2001 Support
	Verilog Variable Part Selects
	Variable Part Selects Verilog Coding Example

	Structural Verilog
	Basic Concepts of Hardware Structure
	Verilog Components
	Built-In Logic Gates
	Instantiating Pre-Defined Primitives

	Verilog Parameters
	Verilog Parameter and Attribute Conflicts
	Verilog Parameter and Attribute Conflicts Precedence
	Verilog Parameter and Attribute Conflicts Precedence Summary

	Verilog Usage Restrictions
	Case Sensitivity
	Blocking and Non-Blocking Assignments
	Integer Handling
	Integer Handling in Verilog Case Statements
	Integer Handling in Verilog Concatenations

	Verilog–2001 Attributes and Meta Comments
	Verilog-2001 Attributes
	Verilog Meta Comments
	Verilog Meta Comment Support
	Verilog Meta Comment Syntax

	Verilog Constructs
	Verilog Constants
	Verilog Data Types
	Verilog Continuous Assignments
	Verilog Procedural Assignments
	Verilog Design Hierarchies
	Verilog Compiler Directives

	Verilog System Tasks and Functions
	Using Conversion Functions
	Loading Memory Contents With File I/O Tasks
	Display Tasks
	Supported Escape Sequences

	Creating Design Rule Checks with $finish
	XST Support of $finish

	Verilog Primitives
	Verilog Gate Level Primitives Not Supported in XST
	Gate-Level Primitive Syntax
	Gate-Level Primitive Coding Example

	Verilog User Defined Primitive (UDP)
	UDP Definition and Instantiation
	Combinatorial UDP
	Sequential UDP

	Verilog Reserved Keywords

	Chapter 5 Behavioral Verilog
	Variables in Behavioral Verilog
	Initial Values
	Assigning an Initial Value to a Register

	Arrays of Reg and Wire
	Multi-Dimensional Arrays
	Data Types
	XST-Supported Verilog Data Types
	Net and Registers

	Legal Statements
	Expressions
	Logical Operators
	Supported Operators
	Supported Expressions
	Evaluating Expressions

	Blocks
	Modules
	Module Declaration
	Circuit I/O Ports

	Module Instantiation

	Continuous Assignments
	Explicit Continuous Assignments
	Implicit Continuous Assignments

	Procedural Assignments
	Combinatorial Always Blocks
	Delay Time Control Statement
	Event Control Time Control Statement

	If-Else Statements
	Case Statements
	Avoiding Priority Processing

	For and Repeat Statements
	For Statements
	Repeat Statements

	While Loops
	Sequential Always Blocks
	Assign and Deassign Statements
	Assignment Extension Past 32 Bits

	Tasks and Functions
	Tasks and Functions Coding Examples
	Recursive Tasks and Functions
	Constant Functions

	Blocking and Non-Blocking Procedural Assignments
	Constants
	Macros
	Include Files
	File Inclusion Method
	Design Project File Method

	Behavioral Verilog Comments
	One-Line Comments
	Multiple-Line Block Comments

	Generate Statements
	Structures Created Using Generate Statements
	Supported Generate Statements
	Generate Loop Statements
	Generate Conditional Statements
	Generate Case Statements

	Chapter 6 Mixed Language Support
	Mixing VHDL and Verilog
	Instantiation
	VHDL and Verilog Libraries
	VHDL and Verilog Boundary Rules
	Instantiating VHDL in Verilog
	XST Limitations (VHDL in Verilog)
	XST Binding
	XST Limitations (Verilog from VHDL)

	Instantiating Verilog in VHDL

	Generics Support
	Port Mapping
	Port Mapping for VHDL Instantiated in Verilog
	Port Mapping for Verilog Instantiated in VHDL

	Library Search Order (LSO) Files
	Specifying LSO Files in ISE Design Suite
	Specifying LSO Files in Command Line Mode
	LSO Rules
	Empty LSO Files
	DEFAULT_SEARCH_ORDER Keyword Only
	DEFAULT_SEARCH_ORDER Keyword and List of Libraries
	Search Order Example

	List of Libraries Only
	DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name

	Chapter 7 HDL Coding Techniques
	Advantages of VHDL
	Advantages of Verilog
	Macro Inference Flow Overview
	Flip-Flops and Registers
	Flip-Flops and Registers Initialization
	Flip-Flops and Registers Initialization in VHDL
	Flip-Flops and Registers Initialization in Verilog

	Flip-Flops and Registers Control Signals
	Coding Guidelines

	Flip-Flops and Registers Related Constraints
	Flip-Flops and Registers Reporting
	Flip-Flops and Registers Reporting Example

	Flip-Flops and Registers Coding Examples

	Latches
	Describing Latches
	Latches Related Constraints
	Latches Reporting
	Latches Reporting Example

	Latches Coding Examples

	Tristates
	Tristates Implementation
	Tristates Related Constraints
	Tristates Reporting
	Tristates Coding Examples

	Counters and Accumulators
	Accumulator Compared to Counter
	Direction of Inferred Counter or Accumulator
	Number of Bits
	Counters and Accumulators Implementation
	Counters and Accumulators Related Constraints
	Counters and Accumulators Reporting
	Counters and Accumulators Coding Examples

	Shift Registers
	Static Shift Register Elements
	Including Additional Functionality
	Describing Shift Registers
	Shift Registers Implementation
	Shift Registers SRL-Based Implementation
	Implementing Shift Registers on Block RAM
	Implementing Shift Registers on LUT RAM

	Shift Registers Related Constraints
	Shift Registers Reporting
	Shift Registers Coding Examples

	Dynamic Shift Registers
	Dynamic Shift Registers Related Constraints
	Dynamic Shift Registers Reporting
	Dynamic Shift Registers Coding Examples

	Multiplexers
	Multiplexers Implementation
	Multiplexers Verilog Case Implementation Style Parameter
	Case Implementation Style Parameter Values
	XST Messages

	Multiplexers Related Constraints
	Multiplexers Reporting
	Multiplexers Coding Examples

	Arithmetic Operators HDL Coding Techniques
	Arithmetic Operators Signed and Unsigned Support
	Verilog Signed and Unsigned Support
	Defining Expression Types
	Resolving Expression Types

	VHDL Signed and Unsigned Support
	Unsigned Adder
	Signed Adder

	Arithmetic Operators Implementation
	Arithmetic Operators Slice Logic
	Arithmetic Operators DSP Block Resources
	More Information

	Comparators
	Comparators Related Constraints
	Comparators Reporting
	Comparators Reporting Example

	Comparators Coding Examples

	Dividers
	Dividers Related Constraints
	Dividers Reporting
	Dividers Coding Examples

	Adders, Subtractors, and Adders/Subtractors
	Describing a Carry Output
	Reviewing the Arithmetic Package
	Converting Operands to Type Integer

	Adders, Subtractors, and Adders/Subtractors Implementation
	Implementation on DSP48 Blocks
	Maximum Macro Configuration

	Adders, Subtractors, and Adders/Subtractors Related Constraints
	Adders, Subtractors, and Adders/Subtractors Reporting
	Adders With Carry Input
	Subtractors With Borrow Input
	Adders, Subtractors, and Adders/Subtractors Reporting Example

	Adders, Subtractors, and Adders/Subtractors Coding Examples

	Multipliers
	Multipliers Implementation
	DSP Block Implementation
	lice Logic Implementation
	Forcing Multiplier Implementation on Slice Logic
	Increasing Performance of Large Multipliers by Pipelining

	Multiplication to a Constant

	Multipliers Related Constraints
	Multipliers Reporting
	Multipliers Reporting Example

	Multipliers Coding Examples

	Multiply-Add and Multiply-Accumulate
	Multiply-Add and Multiply-Accumulate Implementation
	Macro Implementation on DSP Block Resources

	Multiply-Add and Multiply-Accumulate Related Constraints
	Multiply-Add and Multiply-Accumulate Reporting
	Multiply-Add and Multiply-Accumulate Reporting Example

	Multiply-Add and Multiply-Accumulate Coding Examples

	Extended DSP Inferencing
	Symmetric Filters
	Extended DSP Inferencing Coding Examples

	Resource Sharing
	XST Resource Sharing Support
	Disabling Resource Sharing
	Resource Sharing Related Constraints
	Resource Sharing Reporting
	Resource Sharing Coding Examples

	RAM HDL Coding Techniques
	Distributed RAM and Dedicated Block RAM
	Distributed RAM and Dedicated Block RAM Comparison
	Choosing Between Distributed RAM and Dedicated Block RAM
	Asynchronous Read (Distributed RAM)
	Synchronous Read (Dedicated Block RAM)

	RAM-Supported Features
	RAM Inferencing Capabilities
	Parity Bits

	RAM HDL Coding Guidelines
	RAM Modeling
	Modeling a RAM in VHDL (Two Write Ports)

	Describing Write Access
	Describing Write Access in VHDL
	Describing Write Access in Verilog

	Describing Read Access
	Describing Read Access in VHDL
	Describing Read Access in Verilog

	Block RAM Read/Write Synchronization
	Re-Settable Data Outputs (Block RAM)
	Re-Settable Data Outputs (Block RAM) Coding Example

	Byte-Wide Write Enable (Block RAM)
	Single-Process Description Style (Recommended)
	Two-Process Description Style

	Asymmetric Ports Support (Block RAM)
	Block RAM With Asymmetric Ports Modeling
	Using For-Loop Statements
	Shared Variable (VHDL)
	Read-Write Synchronization
	Parity Bits
	Asymmetric Ports Guidelines
	Asymmetric Ports Reporting Example

	RAM Initial Contents
	Specifying RAM Initial Contents in the HDL Source Code
	Specifying RAM Initial Contents in an External Data File

	Block RAM Optimization Strategies
	Block RAM Performance
	Block RAM Device Utilization
	Block RAM Power Reduction
	Additional Enable Logic
	Optimization Trade-Offs

	Rules for Small RAM Components
	Implementing General Logic and FSM Components on Block RAM
	Block RAM Resource Management
	Block RAM Packing

	Distributed RAM Pipelining
	RAM Related Constraints
	RAM Reporting
	RAM Coding Examples

	ROM HDL Coding Techniques
	ROM Description
	ROM Modeling
	Loading ROM From an External Data File
	ROM Modeling in VHDL
	ROM Modeling in Verilog

	Describing Read Access

	ROM Implementation
	ROM Related Constraints
	ROM Reporting
	ROM Reporting Example

	ROM Coding Examples

	FSM Components
	FSM Description
	HDL Coding Methods
	State Registers
	Specifying State Registers in VHDL
	Specifying State Registers in Verilog

	Next State Equation
	Unreachable States
	FSM Outputs	
	FSM Inputs	
	State Encoding Techniques
	Auto State Encoding
	One-Hot State Encoding
	Gray State Encoding
	Compact State Encoding
	Johnson State Encoding
	Sequential State Encoding
	Speed1 State Encoding
	User State Encoding

	Implementing FSM Components on Block RAM Resources
	FSM Safe Implementation
	Optimization
	Preventing Optimization
	One-Hot Encoding Versus Binary Encoding
	Recovery-Only States
	FSM Safe Implementation VHDL Coding Example
	Verilog Support for FSM Safe Implementation
	FSM Safe Implementation Verilog Coding Example

	FSM Related Constraints
	FSM Reporting
	FSM Reporting Example

	FSM Coding Examples

	Black Boxes
	Black Boxes Related Constraints
	Black Boxes Reporting
	Black Boxes Coding Examples

	Chapter 8 FPGA Optimization
	Mapping Logic to Block RAM
	Block Ram Criteria

	Flip-Flop Implementation Guidelines
	Setting or Resetting Registers Asynchronously
	Xilinx Recommendations

	Flip-Flop Retiming
	Forward and Backward Flip-Flop Retiming
	Global Optimization
	Flip-Flop Messages
	Limitations of Flip-Flop Retiming
	Controlling Flip-Flop Retiming

	Speed Optimization Under Area Constraint
	Implementation Constraints
	Device Primitive Support
	Generating Primitives Through Attributes
	Buffer Type
	I/O Standard

	Primitives and Black Boxes
	Primitive and Black Box Example

	Device Primitives Libraries
	VHDL Device Primitives Libraries
	Verilog Device Libraries
	Device Primitives Instantiation
	Instantiating Device Primitives Example
	Using INIT

	Specifying Primitive Properties
	Primitives Reporting
	XST Warnings
	First Warning Condition
	Second Warning Condition

	Primitives Related Constraints
	Primitives Coding Examples

	Using the UniMacro Library
	Using the UniMacro Library (VHDL)
	Using the UniMacro Library (Verilog)

	Cores Processing
	Loading Cores
	Finding Cores
	Cores Reporting

	Mapping Logic to LUTs
	Controlling Placement on the Device
	Inserting Buffers
	Using the PCI Flow With XST
	Preventing Logic and Flip-Flop Replication
	Disabling Read Cores

	Chapter 9 Design Constraints
	Specifying Constraints
	ISE Design Suite and the Command Line
	VHDL Attributes
	Verilog Attributes and Meta Comments
	XST Constraint File (XCF)
	More Information

	Constraints Precedence Rules
	Constraints Set Using Different Entry Methods
	Constraints Set on Different Objects

	Setting Synthesis Options
	Setting Synthesis Options in ISE Design Suite
	Setting Other Command Line Synthesis Options
	Setting Synthesis Options for Non-Default Design Goals and Strat

	VHDL Attributes
	Verilog-2001 Attributes
	Verilog-2001 Syntax
	Attribute Placement

	Verilog-2001 Limitations
	Verilog Meta Comments

	XST Constraint File (XCF)
	Specifying an XCF in ISE Design Suite
	Specifying an XCF in the Command Line
	XCF Syntax
	Defining and Applying Constraints
	Using INST and NET
	Native and Non-Native UCF Syntax
	Native UCF Constraints
	Non-Native UCF Constraints
	Included Constraints
	Default Hierarchy Separator

	XCF Syntax Limitations
	Timing Constraints Applied in the XCF

	Chapter 10 General Constraints
	Add I/O Buffers
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Box Type
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Bus Delimiter
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Case
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Case Implementation Style
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Duplication Suffix
	Naming Replicated Flip-Flops
	Specifying a Text String
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Full Case
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Generate RTL Schematic
	Applicable Elements
	Propagation Rules
	Constraint Values
	Constraint Defaults
	Syntax Examples

	Generics
	Value Mismatches
	Applicable Elements
	Propagation Rules
	Constraint Values
	Constraint Default
	Constraint Syntax Guidelines
	Generic Value Syntax Examples
	Syntax Examples

	HDL Library Mapping File
	Pre-Installed INI File
	Custom INI File
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Hierarchy Separator
	Hierarchy Separator Example
	Applicable Elements
	Propagation Rules
	Constraint Values
	Constraint Default
	Syntax Examples

	Ignore Synthesis Constraints File
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	I/O Standard
	Keep
	Absorption of Nets
	Limitations of KEEP
	KEEP Limitation Example
	Constraint Values
	Syntax Examples

	Keep Hierarchy
	Preserving the Hierarchy
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Library Search Order
	Applicable Elements
	Propagation Rules
	Constraint Values
	Constraint Default
	Syntax Examples

	LOC
	Netlist Hierarchy
	Optimization of Small Hierarchical Blocks During LUT Optimizatio
	Macro Grouping Across Hierarchy
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Optimization Effort
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Optimization Goal
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Parallel Case
	Applicable Elements
	Propagation Rules
	Syntax Examples

	RLOC
	Save
	Applicable Elements

	Synthesis Constraint File
	Applicable Elements
	Propagation Rules
	Constraint Value
	Syntax Examples

	Translate Off and Translate On
	Synopsys Directives
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Verilog Include Directories
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Verilog Macros
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Rules
	Syntax Examples

	Work Directory
	Work Directory Examples
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Chapter 11 HDL Constraints
	Automatic FSM Extraction
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Enumerated Encoding
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Equivalent Register Removal
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	FSM Encoding Algorithm
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Mux Minimal Size
	Number of Multiplexed Data Inputs
	Width of Selected Data
	2-to-1 Multiplexer Macros
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Resource Sharing
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Safe Implementation
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Safe Recovery State
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Chapter 12 FPGA Constraints (Non-Timing)
	Asynchronous to Synchronous
	Asynchronous to Synchronous Transformation
	Set and Reset Functionality
	Post-Synthesis Netlist
	Changing the HDL Description
	Xilinx Recommendations
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Automatic BRAM Packing
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	BRAM Read-First Implementation
	Applicable Elements
	Propagation Rules
	Constraint Values
	Constraint Defaults
	Syntax Examples

	BRAM Utilization Ratio
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Buffer Type
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Convert Tristates to Logic
	Convert Tristates to Logic Limitations
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Cores Search Directories
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	DSP Utilization Ratio
	Budgeting DSP Resources
	Disabling Automatic DSP Resource Management
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Extract BUFGCE
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	FSM Style
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	LUT Combining
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Map Entity on a Single LUT
	Using the UNISIM Library
	Describing the Function in the HDL Source Code
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Map Logic on BRAM
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Max Fanout
	Actual Net Fanout Less Than Max Fanout Value
	Max Fanout With a Value of Reduce
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Move First Stage
	Register Balancing
	Additional Constraints
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Move Last Stage
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Multiplier Style
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Number of Global Clock Buffers
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Optimize Instantiated Primitives
	Limitations on Optimization of Instantiated Primitives
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Pack I/O Registers Into IOBs
	Power Reduction
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	RAM Extraction
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	RAM Style
	block_power1
	block_power2
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Read Cores
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Reduce Control Sets
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Register Balancing
	Forward Register Balancing
	Backward Register Balancing
	Additional Constraints That Affect Register Balancing
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Register Duplication
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	ROM Extraction
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	ROM Style
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Shift Register Extraction
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Shift Register Minimum Size
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Slice (LUT-FF Pairs) Utilization Ratio
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Slice (LUT-FF Pairs) Utilization Ratio Delta
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Use Carry Chain
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Use Clock Enable
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Use DSP Block
	DSP Block Resources
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Use Low Skew Lines
	Use Synchronous Set
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Use Synchronous Reset
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Chapter 13 Timing Constraints
	Applying Timing Constraints
	Applying Timing Constraints With Global Optimization Goal
	Applying Timing Constraints With a User Constraints File (UCF)
	Applying Timing Constraints With the XST Constraint File (XCF)

	Clock Signal
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Cross Clock Analysis
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	From-To
	Syntax Examples

	Global Optimization Goal
	Global Timing Constraints
	Global Optimization Goal Domain Definitions
	Syntax Examples

	Offset
	Syntax Examples

	Period
	Syntax Examples

	Timing Name
	Syntax Examples

	Timing Name on a Net
	Syntax Examples

	Timegroup
	Syntax Examples

	Timing Ignore
	Syntax Examples

	Write Timing Constraints
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	Chapter 14 Third-Party Constraints
	Third-Party Constraints in VHDL
	Third-Party Constraints in Verilog
	XST Equivalents to Third-Party Constraints

	Chapter 15 Synthesis Report
	Synthesis Report Content
	Table of Contents
	Synthesis Options Summary
	HDL Parsing and Elaboration
	HDL Synthesis
	Advanced HDL Synthesis
	Low Level Synthesis
	Partition Report
	Design Summary
	Primitive and Black Box Usage
	Device Utilization Summary
	Partition Resource Summary
	Timing Report
	Clock Information
	Asynchronous Control Signals Information
	Timing Summary
	Timing Details
	Detailed Path Breakdown

	Obtaining Cross Clock Domain Timing Information
	Encrypted Modules

	Synthesis Report Navigation
	ISE Design Suite Report Navigation
	Command Line Mode Report Navigation

	Synthesis Report Information
	Message Filtering
	Quiet Mode
	Report Sections Printed to the Computer Screen
	Report Sections NOT Printed to the Computer Screen

	Silent Mode

	Chapter 16 Naming Conventions
	Naming Conventions Coding Examples
	Reg in Labeled Always Block Verilog Coding Example
	Primitive Instantiation in If-Generate Without Label Verilog Cod
	Primitive Instantiation in If-Generate With Label Verilog Coding
	Variable in Labeled Process VHDL Coding Example
	Flip-Flop Modeled With a Boolean VHDL Coding Example

	Net Naming Conventions
	Instance Naming Conventions
	Case Preservation
	VHDL (Case Insensitive)
	Verilog (Case Sensitive)

	Name Generation Control

	Appendix Additional Resources

