Tutorial and Survey Paper

Combinational Logic Synthesis for LUT
Based Field Programmable Gate Arrays

JASON CONG

University of California, Los Angeles
and

YUZHENG DING

AT&T Bell Laboratories

The increasing popularity of the field programmable gate-array (FPGA) technology has
generated a great deal of interest in the algorithmic study and tool development for FPGA-
specific design automation problems. The most widely used FPGAs are LUT based FPGAs, in
which the basic logic element is a K-input one-output lookup-table (LUT) that can implement
any Boolean function of up to K variables. This unique feature of the LUT has brought new
challenges to logic synthesis and optimization, resulting in many new techniques reported in
recent years. This article summarizes the research results on combinational logic synthesis for
LUT based FPGAs under a coherent framework. These results were dispersed in various
conference proceedings and journals and under various formulations and terminologies. We
first present general problem formulations, various optimization objectives and measure-
ments, then focus on a set of commonly used basic concepts and techniques, and finally
summarize existing synthesis algorithms and systems. We classify and summarize the basic
techniques into two categories, namely, logic optimization and technology mapping, and
describe the existing algorithms and systems in terms of how they use the classified basic
techniques. A comprehensive list of references is compiled in the attached bibliography.

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles—combinational
logic; B.6.3 [Logic Design]: Design Aids—automatic synthesis, optimization; B.7.1 [Integrated
Circuits]: Types and Design Styles—gate arrays; J.6 [Computer-Aided Engineering]:
Computer-Aided Design

General Terms: Algorithms, Design, Experimentation, Measurement, Performance, Theory

Additional Key Words and Phrases: Area minimization, computer-aided design of VLSI,
decomposition, delay minimization, delay modeling, FPGA, logic optimization, power minimi-

This work is partially supported by National Science Foundation Young Investigator Award
MIP-9357582 and grants from AT&T Microelectronics and Xilinx under the University of
California MICRO program.

Authors’ addresses: J. Cong, Department of Computer Science, University of California, Los
Angeles, CA 90095; email: (cong@cs.ucla.edu); Y. Ding, AT&T Bell Laboratories, Murray Hill,
NJ 07974; email: (eugene@research.att.com).

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1996 ACM 1084-4309/96/0400-0145 $03.50

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996, Pages 145-204.

146 . J. Cong and Y. Ding

zation, programmable logic, routing, simplification, synthesis, system design, technology
mapping.

1. INTRODUCTION

The field programmable gate-array (FPGA) is a new technology evolved in
the last decade as an alternative to application-specific integrated circuit
(ASIC) designs. An FPGA is an off-the-shelf VLSI chip consisting of
programmable logic elements, programmable I/O elements, and program-
mable routing elements. Designers can realize their designs by program-
ming the FPGA chips in the field, thus avoiding the often lengthy and
expensive fabrication process. An important FPGA technology is the static
random-access memory (SRAM) based FPGA, in which programmability is
realized by using SRAM cells to implement programmable logic elements
and to control programmable routing elements. Because contents of SRAM
cells can be rewritten by the user, the SRAM based FPGAs have the
advantage of field-reprogrammability, which leads to many important
applications. The most common approach of implementing the basic logic
element in an SRAM based FPGA is via a 2K-bit SRAM cell, which
represents a K-input one-output lookup-table (LUT), capable of realizing
any Boolean function of up to K variables by loading the SRAM cell with
the truth table of that function. Such LUT based FPGAs are available from
several major commercial FPGA vendors, such as Altera [1994], AT&T
[1995], and Xilinx [1994]; and are so far the most widely used type of
FPGAs.

The FPGA design process is similar to that for conventional technologies
such as standard cell or gate array. It consists of the system-level design
(high-level synthesis), the logic-level design (logic synthesis), and the
physical-level design (layout synthesis). The logic-level design for FPGAs
consists of sequential logic synthesis, which optimizes the assignment
and/or arrangement of storage elements, and combinational logic synthesis,
which optimizes the logic gate networks. This article focuses on the
combinational logic synthesis problem for LUT based FPGAs. Sequential
logic synthesis techniques for FPGAs, such as retiming (Malik et al. [1991],
Pan and Liu [1996], Touati et al. [1992], and Weinmann and Rosenstiel
[1993]), state-splitting (e.g., Allen [1992]), and flip-flop assignment (e.g.,
Murgai et al. [1993]) are not covered in this article.

Conventional library based synthesis techniques, such as those in De-
tjens et al. [1987], Devadas et al. [1994], and Keutzer [1987], are difficult to
apply to LUT based FPGA synthesis directly, as a K-input LUT can
implement 22X different functions,! which vary significantly in terms of
network size and depth when represented as networks of basic logic gates.

1 If we consider the equivalent classes under input permutation, the number is reduced, but is
still very large for K > 4.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 147

This problem has motivated much research on combinational logic synthe-
sis techniques specifically for LUT based FPGAs, and many results have
been published in the past few years. These results, however, were dis-
persed in a large number of papers in various conference proceedings and
technical journals, presented in different terminologies and often in archi-
tecture-specific contexts, making it difficult to follow the progress in this
field. Although an early survey paper [Sangiovanni-Vincentelli et al. 1993]
and several books (e.g., Brown et al. [1994] Chan and Mourad [1994],
Murgai et al. [1995], and Trimberger [1994]) have provided good introduc-
tions to FPGA technologies and FPGA synthesis techniques, they do not
cover many results obtained more recently. Given the rapid growth of this
field, there is a strong need for a comprehensive survey of FPGA synthesis
results to include up-to-date information. This article is written to fulfill
such a need.

Instead of tracing the evolution of the theory and practice in this field,
this article focuses on presenting the commonly used basic techniques in a
coherent framework. The reason is that due to the complexity of the
problems, almost every study in this field has used multiple techniques and
aimed for multiple objectives. Most techniques are shared by multiple
FPGA synthesis algorithms and systems. Identification and understanding
of these basic techniques are helpful not only for the understanding of the
complete algorithms and systems that were built upon them, but also for
the development of new algorithms and systems. Therefore we first present
these basic techniques in an algorithm/system-independent fashion, and
then review the complete algorithms and systems in terms of how these
basic techniques were used.

There are several possible criteria to classify these basic techniques (or
operations). We first recognize the two major steps of combinational logic
synthesis, namely, logic optimization, which transforms the gate-level
network into another equivalent gate-level network which is more suitable
for the subsequent step, and technology mapping, which transforms the
gate-level network into a network of logic elements (or cells) in the target
technology by covering the network with the cells. This distinction is used
to classify the basic techniques in our article. We choose to follow this
classification because many synthesis algorithms and systems indeed go
through these two steps. Also, the techniques used in these two steps
generally have different characteristics. Logic optimization operations usu-
ally rely on the knowledge of the functionality of the gates and the network,
and use Boolean optimization techniques, whereas technology mapping
operations usually depend heavily on the structural information of the
gates and the network, and use combinatorial optimization techniques.
Such a dividing line is not always easy to draw—some logic optimization
operations may use combinatorial methods along their course, and some
technology mapping operations also make use of the gate and network
functionality. In some FPGA synthesis systems, a separate mapping or
covering step does not even exist, as a gate-level network with bounded
gate input can be viewed as an LUT network.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

148 . J. Cong and Y. Ding

Another classification of FPGA synthesis algorithms, often used in liter-
ature, is based on their optimization objectives, such as area minimization,
delay minimization, routability optimization, and so on. We choose not to
use this classification because many optimization techniques can be used
for multiple objectives with proper choice of cost functions. We point out the
applicable objective(s) when presenting each technique in later discussions.

The rest of this article is organized as follows. Section 2 presents the
basic concepts, terminologies, and problem formulations. Section 3 presents
the basic techniques for logic optimization, with emphasis on various node
decomposition techniques. Section 4 presents technology mapping methods.
Then, in Section 5, we briefly summarize various combinational logic
synthesis algorithms for LUT based FPGAs published in recent literature,
in terms of their choice and combination of the techniques presented in
Sections 3 and 4. A bibliography of related publications is compiled at the
end of the article. To keep the article concise, most proofs and algorithmic
details are omitted. Although experimental results as well as comparative
studies were reported for most algorithms in their original publications,
they are not always on the same ground due to different choices of the
benchmark examples, the initial optimization procedures, and various
algorithm-specific and/or architecture-specific parameters used. This pre-
vents us from providing a fair across-the-board quantitative comparison of
all the techniques. We also avoid citing the reported experimental results
directly, except in a few cases where the consistency of the experimental
environments for comparison was guaranteed.

2. PRELIMINARIES AND PROBLEM FORMULATIONS

2.1 Design Representation

Inasmuch as our interest is in combinational logic synthesis, we focus on
the combinational portion of a design, which is assumed to be a two- or
multi-level network of logic gates. It carries two types of information,
namely, the structural information and the functional information.

2.1.1 Representation of Structural Information. A combinational cir-
cuit can be viewed as a directed acyclic graph (DAG) N = (V(N), E(N)),
where each node v € V(IN) represents a logic gate or a primary input/
output, and a directed edge (v, w) € E(N) indicates that the output of gate
v is an input of gate w, in which case v is called a fanin of w and w is a
fanout of v. A primary input (PI) node has no fanin and a primary output
(PO) node has no fanout, and a node with both fanins and fanouts is an
internal node. The PI and PO nodes are created to carry the outputs and
inputs of noncombinational logic elements, such as flip-flops and I/O pads,
respectively; the internal nodes represent the logic gates. The level of a
node v is the maximum number of edges on any path from a PI to v, and
the depth of the network is the largest level of its primary outputs. If there
is a path from node v to node w, v is a predecessor of w and w is a successor
of v. Because the network is a DAG, a partial order called topological order

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 149

RS
MFFC , MT,

Fig. 1. A multilevel logic gate network, its DAG network, and the fanin network, the
maximum tree, and the maximum fanout-free cone of v.

exists among the nodes, such that each node appears after all its predeces-
sors and before all its successors in the ordering.

Given a network N, the set of fanins of gate v is denoted input(v), and
the set of distinct nodes that supply inputs to the gates in subnetwork H is
denoted input(H). A node v is K-feasible if |input(v)| = K, and a subnet-
work H is K-feasible if |input(H)| = K. If every node in a network is
K-feasible, the network is K-bounded. Similarly, the set of fanouts of v is
denoted output(v), and the set of fanouts of a subnetwork H is denoted
output(H). A node v is fanout-free if | output(v) | = 1. If every nonPI node in
a network is fanout-free, the network is internal fanout-free, and is called a
leaf-DAG. If every node (including PI) is fanout-free, the network is called a
tree if it has a single PO node, or a forest if it has multiple PO nodes.

There are several useful substructures in a network. Given a node v in
the network N, a cone of v, denoted C,, is a subnetwork of N consisting of v
and some of its nonPI predecessors such that for any node w € C,, there is
a path from w to v that lies entirely in C,. Node v is called the root of C,,.
The maximum cone of v consisting of all the nonPI predecessors of v is
denoted MC,. The fanin network of v, denoted N,, is an extension of the
MC, by including all of the PI predecessors of v as well.

A fanout-free cone (FFC) is a cone in which the fanouts of every node
other than the root are in the cone (i.e., they converge to the root). For each
node v there is a unique maximum fanout-free cone (MFFC) [Cong and Ding
1993a] of v, denoted MFFC,, which contains every FFC rooted at v. An
equivalent characterization is output(w) C MFFC, implies w € MFFC, or
w is a PI. An FFC is not necessarily a tree, but any subnetwork that is a
tree forms an FFC. For each node v, there is also a maximum tree (MT) of
nonPI nodes rooted at the node, and is denoted MT,. Clearly, MT, C
MFFC, C N,. The K-feasibility for various cone or tree structures is
defined the same way as that for the general subnetworks. Figure 1 shows
a multilevel network of logic gates, its DAG network representation, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

150 . J. Cong and Y. Ding

various structural elements. A topological ordering is (1, 2, ..., 8, o, p,
q, ..., 2).

A cone C, defines a bipartitioning (X, X) of the nodes in N, with X = C,,
such that v € X and all PIs are in X. This bipartitioning is called a cut of
N,, and the size of the cut is defined as | input(X) |, where input(X) is the
node cut-set. Similarly, we define a cut of a cone C, to be a bipartitioning
(X, X) of the nodes in C, U input(C,) such that input(C,) C X, v € X, and XC
C, is a subcone. A cut is K-feasible if its size is no more than K, that is, X forms
a K-feasible cone. Because the node cut-set input(X) uniquely determines the
cut, it is often referred to as the cut itself.

A general network can be partitioned into a collection of subnetworks.
The cone partitioning [Saucier et al. 1993a] divides a network into the
fanin networks of its primary outputs. Clearly, cone partitioning is not a
disjoint partitioning. Two important disjoint partitionings are the tree
partitioning [Keutzer 1987] and the MFFC partitioning [Cong and Ding
1993al.? Given two nodes v and w, the two MTs MT, and MT,, are either
disjoint or one contains another. Similarly, the two MFFCs MFFC, and
MFFC, are either disjoint or one contains another. Therefore the set of
MTs (or MFFCs) that are not contained in other MTs (MFFCs) defines a
disjoint partitioning, which can be obtained as follows: first, the MT
(MFFC) of each PO is a partition; then recursively the MT (MFFC) of each
input node to an existing partition is also a partition. Note that the input
nodes to a partition are not part of the MT (MFFC), and may have multiple
fanouts to the nodes inside and/or outside the partition. In a tree partition-
ing, a tree and its input nodes often need to be considered together during
logic synthesis. In this case, they form a leaf-DAG.

2.1.2 Representation of Functional Information. Each gate in a multi-
level gate network and, correspondingly, each internal node v in the DAG
representation, is associated with a Boolean function f, in terms of the
signals from input(v). It can be one of the simple-gate functions—inverter
(INV), and (AND), inclusive-or (OR), exclusive-or (XOR), and their comple-
ments (NAND, NOR, XNOR); or any complex-gate function. We first review
various representations of a Boolean function.

A single-output Boolean function f can be defined by partitioning its
input vectors into the ON set ON,, the OFF set OFF,, and the DC set DCy,
corresponding to the vectors that evaluate the function to 1, 0, and the
undefined value (called don’t-care). If DC, = O, f is completely specified,;
otherwise it is incompletely specified. For a completely specified function f,
only ON needs to be explicitly specified. An incompletely specified function
f can be represented by two completely specified functions g and A, with
ON, = ON; and ON,, = DC;. A straightforward way of representing f is to
use the truth table which lists all input vectors and the corresponding
function values. Figure 2(a) shows an example of a 2-D truth table.

2 Originally they were called tree decomposition and MFFC decomposition, but we changed the
names to avoid possible confusion with the decomposition of gates we discuss later.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 151

J21 00 01 10 11

WX

00 1 1 1 0O
01 1 0 0 1
10 1 0 0 1
11 1 0 0 1

f = wxyz+wxyz+wxyz+wxyz+

WXYZ+WXYZ+WXYZ+WXYZ+WXYZ

)

f = wxytwxz+wyz+xyz+y

(©) (e)

Fig. 2. Various representations of a completely specified function: (a) 2-D truth table; (b)
minterm SOP; (¢) cube cover; (d) two OBDDs with different variable orders; (e) ITE.

A literal is a variable or its complement. A cube is a product term (AND)
of some literals. A minterm is a cube in which the literal of every variable
appears exactly once. Each minterm corresponds to a bit vector in the input
vector space (e.g., abc corresponds to 101), and a cube contains one or more
vectors (e.g., ab contains abc and abc). A set of vectors can then be repre-
sented by a collection of minterms in the form of sum-of-products (SOP). A
cube cover is a collection of cubes whose union covers ON, but does not
intersect OFF;. Cube cover is one of the most popular ways to represent a
function. More details on its manipulations can be found in Brayton et al.
[1984]. The DC set of an incompletely specified function can be used for cube
cover minimization, as a cube cover can be extended to cover not only all the
vectors in the ON set, but also some or even all of the vectors in the DC set.
Figures 2(b) and 2(c) show the minterm SOP and a cube cover (also in SOP
form), respectively, of the function defined in Figure 2(a).

The decision diagrams are another type of popular logic representation,
led by the binary decision diagram (BDD) first introduced in Akers [1978].
A BDD is a rooted DAG that consists of a root with no incoming edge, two
terminals with no outgoing edge, and possibly other nonterminal vertices.
Each nonterminal vertex v is associated with a variable var(v) of the
function, and has exactly two outgoing edges marked 1 and 0, whose
destination vertices are called hi(v) and low(v), respectively; the two
terminals are marked 1 and 0. Such a DAG, as well as each of its rooted
subgraphs, represents a completely specified function, defined recursively

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

152 . J. Cong and Y. Ding

as follows. The terminal vertices marked 1 and 0 represent constant
functions 1 and 0, respectively, and a nonterminal vertex v represents the
function f, = var®@) - f,;w) + var() - fi,we) (This recursion is called
Shannon expansion.) The most famous type of BDD is the reduced ordered
BDD (ROBDD, or OBDD in short) by Bryant [1986]. In an OBDD, the
variable ordering along every path from the root to a terminal must be the
same, and each vertex must be unique and irredundant. That is, for any
nonterminal vertex v, hi(v) # low(v), and for any two distinct vertices u
and v, if var(u) = var(v), then either hi(u) # hi(v) or low(u) # low(v).
Given a variable ordering, OBDD is a canonical representation; moreover,
functions under OBDD representation can be manipulated easily under
Boolean operations and many other transformations. More discussions on
OBDD and its manipulations can be found in Bryant [1986, 1992]. An
efficient implementation of an OBDD package was described in Brace et al.
[1990].

OBDD representation can be more compact than cube based representa-
tion due to the sharing of its irredundant subOBDDs and its multilevel
representation. Further size reduction can be achieved by sharing subOB-
DDs among multiple functions (called multiroot OBDD), and by allowing
complemented edge so that subfunctions f and f can be represented by the
same subOBDD [Madre and Billon 1988]. (Complemented edges are re-
stricted only to the low edges to ensure a canonical representation.) In the
worst case, however, an OBDD can still have an exponential size in terms
of the number of variables. The size of an OBDD is strongly related to the
variable ordering: Figure 2(d) shows two OBDDs of the same function using
different variable orders. Many studies have been focused on obtaining a
good ordering that minimizes the OBDD size (see, e.g., Panda et al. [1994],
Rudell [1993], and Soe and Karplus [1993]).

BDDs can be easily converted to multilevel logic gate networks. Each
nonterminal vertex v can be converted into a 2-to-1 multiplexor (a MUX2
gate), with var(v) as the selector input, and hi(v) and low(v) as two data
inputs. The terminals become constant inputs, and are propagated
throughout the network for simplification. BDDs can also be extended to
handle incompletely specified functions by adding a terminal for don’t-care
(e.g., see Matsunaga and Fujita [1989]).

There are also many other decision diagrams (see Bryant [1995] for a
partial list). One of them is the If-Then-Else DAG (ITE) [Karplus 1989], in
which each nonterminal vertex v has three outgoing edges i(v), ¢(v), and
e(v), and a terminal can be associated with a constant or a literal. Each
nonterminal vertex is associated with the function f, = f;,) fiwy *
ficw) * Fooy» Which reads if i(v) then t(v) else e(v). Figure 2(e) shows an
example. ITE is more concise than BDD [Lam and Brayton 1992], although
it is also more difficult to manipulate and come up with a canonical
representation.

Both cube cover and BDD can be used to represent a node function f,,,
which is associated with node v using input(v) as the variable set. We can
define other functions at node v as well. Given a cone C, rooted at v, we use

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 153

fc, to denote the function using input(C,) as the variable set; that is, f¢,
is the function associated with a cone C,. In particular, fj,c, is the func-
tion associated with v with respect to the primary inputs. If v, ..., v,, are
the primary outputs, then the functionality of the network is defined by
{fuc,» - - - » fuc,,), the functions of the primary outputs with respect to the
primary inputs. Function f; can be derived by composing the node func-
tions in C,,.

2.2 Combinational Logic Synthesis for LUT Based FPGAs

Given a multilevel network of logic gates, combinational logic synthesis
transforms it into a network of LUTSs, each of no more than K inputs
(denoted K-LUT) where K is determined by the target FPGA technology.?
(Therefore it is referred as LUT logic synthesis in the rest of the article.)
This transformation usually includes two major steps, the logic optimiza-
tion and the technology mapping. Logic optimization works on a network of
logic gates, and transforms it into another network of logic gates suitable
for mapping into a network of LUTs. Technology mapping then covers the
network with K-LUTs. (For simplicity, we reserve the symbol K as the
maximum input size of an LUT, and use LUT to indicate K-LUT in the rest
of the article.)

These two steps are not clearly distinguished in a number of LUT logic
synthesis algorithms. Because each gate of no more than K inputs can be
implemented by an LUT, a separate technology mapping step may be
skipped if the result of logic optimization is a K-bounded network. Itera-
tions over these two steps are also quite common where a mapped network
is further optimized as a gate network and then remapped. However,
techniques for these two steps are generally different in nature. Logic
optimization relies on the network functionality, whereas technology map-
ping depends on the network structure. Therefore we choose to present the
techniques used in these two steps separately.

2.2.1 Logic Optimization. The goal of logic optimization is to transform
the given network into an equivalent optimized network which is more
suitable for mapping into LUTs. The minimum requirement for this is that
the resulting network must have a valid K-LUT mapping solution, in which
case the network is said to be K-mappable. It is not hard to show that the
sufficient and necessary condition for a multilevel network to be K-mappa-
ble is that every node has a K-feasible cone.* Because for a given network
there are many equivalent K-mappable networks, the goal of logic optimi-
zation is to produce an equivalent network that will have a good mapping

3 Although many commercial FPGA architectures support LUTSs of different sizes on one chip
(e.g., the Xilinx XC4000 [Xilinx 1994] supplies 3-LUTs and 4-LUTs, which can also be
combined to form 5-LUTs; the AT&T ORCA2C [AT&T 1995] supplies 4-LUTs that can be
combined to form 5-LUTSs and 6-LUTs), most studies assume a homogeneous LUT architecture
with uniform LUT size for simplicity.

4 Note that a K-bounded network is K-mappable, but a K-mappable network does not have to
be K-bounded.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

154 . J. Cong and Y. Ding

solution according to one or several mapping objectives. Unfortunately, due
to the flexibility in LUT mapping, there has been no good quantitative
measurement of logic optimization operations for LUT based FPGAs with-
out going through the mapping process. As a result, logic optimization
operations often aim for intuitively good solutions, such as those with a
small number of gates, small gate input size, small depth, and sparse
interconnections.

Most techniques used for logic optimization in LUT logic synthesis have
their roots in multilevel combinational logic synthesis for library based
technologies, such as standard cell or gate array designs. Summaries of
those techniques in the context of conventional logic synthesis can be found
in Brayton et al. [1990], Devadas et al. [1994], and DeMicheli [1994].

We classify the logic optimization techniques for LUT into two categories,
namely, node decomposition and network simplification. Node decomposi-
tion extracts subfunctions from the functions of one or more nodes, and
creates new nodes to implement these subfunctions, resulting in a repre-
sentation with more but simpler nodes (e.g., with fewer fanins). Network
simplification reexpresses the functions of one or more nodes and modifies
the interconnection accordingly, resulting in a simpler network with fewer
nodes, sparser interconnections, and/or smaller network depth. Details of
logic optimization techniques are presented in Section 3.

2.2.2 Technology Mapping. The task of technology mapping in LUT
logic synthesis is to cover the optimized gate-level network with LUTs. (For
simplicity, we also call it LUT technology mapping or LUT mapping for
short.) We say an LUT LUT, implements a node v if LUT, covers a cone
whose root is v. A valid covering must satisfy the following conditions: (1)
every PO node is an output of an LUT; and (2) if v is implemented by LUT,,
then every nonPI node in input (LUT,) must also be implemented by some
LUT. An irredundant covering implements only the nodes defined by these
conditions. Nodes that are not implemented are covered entirely in the
LUTs implementing their successors. Throughout this article, we always
assume that the input network to the technology mapping step is K-
mappable so that a mapping solution is always possible.’

Note that LUTs may overlap, which implies that the overlapped portion
of logic will be duplicated into each of these overlapping LUTs. When no
logic duplication is allowed, the mapping is called a duplication-free map-
ping. Figure 3 illustrates various types of mappings of a gate-level network.

Although LUT covering can be viewed as a procedure of collapsing-based
network simplification, the procedure itself does not care about the func-
tionality of each covered cone. Therefore technology mapping operations
are combinatorial in nature and work on the structural representation of

5 Although an integrated logic optimization and technology mapping process can take an
unbounded network as input, its logic optimization operations will make the portion of
network to be mapped K-mappable prior to its covering.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 155

m}

) @

Fig. 3. Various LUT mappings of a network (K = 3): (a) original network; (b) mapping after
tree partitioning; (c) duplication-free mapping; (d) general mapping with overlapping LUTs.

the network. Details of the technology mapping methods are presented in
Section 4.

2.3 Optimization Objectives and Optimality

There are several optimization objectives for LUT logic synthesis. The area
minimization objective is to use the minimum chip area to implement the
network; the delay minimization objective is to minimize the delay from
primary inputs to primary outputs in the FPGA implementation; the
routability optimization objective is to make the LUT network more
routable in the subsequent placement and routing steps; and the power
minimization objective is to minimize the power dissipation of the imple-
mentation. Accurate measurement for these objectives requires information
that is only available after layout synthesis. Therefore various estimations
are used during logic synthesis, either by a quick layout synthesis, or by
simplified cost models. We introduce some commonly used cost models in
the following.

Given an LUT network, its area is usually estimated by the number of
LUTs (or actual logic elements if aiming for a specific FPGA architecture)

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

156 . J. Cong and Y. Ding

used for its implementation. Although a close approximation, it may not be
accurate, as other constraints, such as flip-flop distribution and routing
congestion, may prevent 100% utilization of logic elements.

The delay of an LUT network is measured by the length of the longest
path from a primary input to a primary output, where the length is the
accumulation of the delays associated with the nodes and edges along the
path. For a given technology, the LUT delay is roughly a constant;
therefore the various delay models focus on the net delays. The most
commonly used model (For example, see Cong et al. [1992a], Cong and Ding
[1992], Francis et al. [1991a], and Shin and Kim [1995], among others) is
the unit delay model, which assumes that each net has a constant delay.
Under the unit delay model, delay minimization is equivalent to depth
minimization. Improvements over the unit delay models include the net
delay model [Cong et al. 1993], which allows each net to be assigned a
different delay value, and the edge delay model [Yang and Wong 1994],
which allows each branch (edge) of a net to be assigned a different delay
value. The delay values should reflect the impact of placement and routing
on each net (or branch). In general, a static delay model assigns the delay
values to each net (or branch) prior to mapping, and assumes that the delay
of that net (branch) will remain unchanged in the final mapping solution if
it is still visible (i.e., is an output of an LUT), and become zero if it is not
visible (i.e., covered inside LUTSs). This type of models faces the problem
that the delay values are difficult to determine prior to mapping.

Alternatively, one can estimate the delay value for a net (branch) based
on its structure in the mapped network. For example, the nominal delay
model [Cong and Ding 1994a; Schlag et al. 1991] assumes that the net
delay is proportional to net size in the mapped solution. Inasmuch as
nominal delay is related to the structure of the mapped network, it is
difficult to predict prior to mapping. In general, a dynamic delay model
directly associates a function (of the net structure) with each net as its
estimated delay, which will change as the net structure changes. Although
more accurate, dynamic delay models are more difficult to use in optimiza-
tion.

Routability is usually modeled by interconnection complexity, in particu-
lar, the size and the terminal distribution of the net. Simplified measure-
ments include the pin-to-net ratio and pin-to-cell ratio [Schlag et al. 1992].
Power minimization is of recent interest in logic synthesis. The power
consumption can be estimated based on the output load capacitance and
transition frequency of the LUTs and primary inputs. The load capacitance
changes dynamically during the mapping process depending on the output
net structure [Farrahi and Sarrafzadeh 1994a].

In general, these optimization objectives may not be mutually compati-
ble. For example, minimizing the number of LUTs may reduce the parallel-
ism of the design, resulting in larger delay [Cong and Ding 1994b].
Therefore it is often necessary to find a proper tradeoff among different
objectives. Because FPGA chips are prefabricated, area and routability
optimizations usually only need to pursue a feasible solution that fits into

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 157

the chip. Delay minimization, on the other hand, should aim at the best
solution, under the area and routability constraints. Most studies on FPGA
logic synthesis have focused on area and delay minimization, and so does
our discussion.

3. LOGIC OPTIMIZATION

In this section we introduce the techniques, used in the logic optimization
step, that transform a multilevel network of generic gates into another
K-mappable gate-level network which is more suitable for LUT implemen-
tation. Node decomposition techniques presented in Sections 3.1-3.4 are
our focus, and network simplification techniques are discussed in Section
3.5.

Node decomposition reexpresses a node function by a logically equivalent
composition of two or more functions, and correspondingly introduces two
or more new nodes to replace the original node. It is an important type of
logic optimization operation, especially for LUT logic synthesis, as the
original network may not be mappable. If a node v does not have a
K-feasible cone, some of the nodes in N, have to be decomposed to reduce
their input sizes. In addition to making a network mappable, reducing node
input size also gives technology mapping more freedom to cover (or pack)
the nodes into LUTs. Moreover, node decomposition is more flexible in LUT
logic synthesis, because as long as the input size of a decomposed node is no
more than K, it can be implemented by a K-LUT regardless of its complex-
ity. As a result, some previously developed, but not widely used, techniques
(such as functional decomposition) find important applications in LUT logic
synthesis.

There are various node decomposition techniques for various kinds of
node functions and optimization objectives. It can be performed towards
one or more nodes, for simple- or complex-gate functions, and based on
different form of representations. We classify them into three types: struc-
tural decompositions that apply to simple gates or certain simple-gate
networks, symbolic decompositions that apply to complex gates based on
symbolic operations on a given form of functional representation, and
Boolean decompositions that apply to complex gates based on their general
functionality. We also introduce several simple bounds on the optimality of
decomposition.

3.1 Structural Decomposition Methods for Simple Gates

Simple-gate functions (AND, OR, XOR and their complements) have com-
mutative and associative properties, which allow arbitrary grouping of the
inputs in decomposition. As a result, knowledge of the specific gate function
is not required, and the gate decomposition becomes a combinatorial
operation. In this subsection, we consider the decomposition of simple gate
v with input(v) = {w4, ..., w,,} (m > K) into a tree of nodes of input size
K or smaller.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

158 . J. Cong and Y. Ding

3.1.1 Balanced Tree Decomposition. The balanced tree decomposition
divides input(v) into K groups of equal (or nearly equal) size, introduces K
new gates, each carrying inputs from one group of input(v), and replaces
input(v) with the set of these K new gates. Each new gate is recursively
decomposed if necessary. This method has been widely used (e.g., as part of
the tech_decomp command of the MIS-Il logic synthesis system [Brayton et
al. 1987, and in logic optimization for LUT logic synthesis [Schlag et al.
1992]).

This approach results in a decomposition tree of minimum depth, but the
size of the decomposition tree (i.e., the number of gates used in the
decomposition) may not be minimum (when K > 2) due to the balance
constraint. Without the strict balance constraint, minimum depth and
minimum gate count can be achieved simultaneously using the following
minimum tree decomposition method. A list L of nodes currently in input(v)
is maintained in the FIFO order. In each iteration, the first K nodes in L
are removed, and a new node is created with these K nodes as inputs and
added back to L. This procedure ends when | L | = K. This procedure will
result in D = Om — 1)/(K — 1)0 gates (including v), which is the
minimum. The heights from the root to different leaf nodes differ at most
one. The complexity of this operation is O(m).

3.1.2 Huffman Tree Decomposition. If the inputs of v have different
levels (or arrival delays), balanced tree decomposition does not yield
minimum depth (or delay) at the root: According to Chen et al. [1992], when
applied to a simple-gate network of depth d, balanced tree decomposition
may increase the depth to dlogd.

Because the inputs removed earlier from L will have larger distances
from the root, one can modify the minimum tree decomposition algorithm to
maintain L as a sorted list in the nondecreasing order of the levels of the
nodes, thus the nodes of the smallest levels are always removed first. This
method, regarded as Huffman tree decomposition due to its similarity to the
Huffman encoding idea [Huffman 1952] for data compression, has been
used in Cong et al. [1992b] and Wang [1989]. This method gives a delay
optimal decomposition of the entire simple-gate network if applied in
topological order from PIs to POs. The optimality can be generalized to the
case of nonunit delay models as well. Moreover, it was shown [Chen et al.
1992] that after the Huffman tree decomposition, the network depth will be
bounded by log (2f) - d + log I, where f is the maximum fanout of any node
(usually a small constant) and I is the number of primary inputs. The time
complexity of this operation is O(m log m) due to the need of maintaining a
sorted list L.

3.1.3 Bin-Packing Decomposition. The Huffman tree decomposition
produces trees of the minimum size and depth. However, such trees may
not result in minimum size or depth LUT mapping, as an LUT may cover a
number of nodes in one or several decomposition trees. This problem is
overcome by the bin-packing based decompositions [Francis et al. 1991a,b]
when the network is a tree of simple gates.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 159

Decomposition for Area Minimum LUT Covering. The bin-packing based
decomposition is carried out in topological order from Pls to POs such that
when node v is to be decomposed, every node w € input(v) is either a
primary input or a node that is already decomposed, and hence is K-
feasible. The objectives at each node v are (1) to decompose v into a tree T',
of nodes of K or fewer inputs rooted at v’ (which replaces v), such that the
number of K-LUTs needed to cover T,, as well as input(v), is minimum,
and (2) |input(v')| is minimum under condition (1). It was shown in Francis
et al. [1991b] that if these two conditions are satisfied, the decomposition
will have a minimum number LUT covering for a tree.

In order to satisfy the two conditions, the problem is formulated as the
bin-packing problem,® where the LUTSs are bins of size K, and each node
w € input(v) is an object of size input(w). The algorithm is as follows.
First, each node w € input(v) is packed into bins (LUTs) in turn by
restricted bin-packing, which will choose among all the minimum bin
solutions the one that has the least saturated bin [in order to satisfy
condition (2)]. Then, repeatedly the bin B with maximal input(B) is closed,
a new node u is created with input(u) = B, and packed as a new object of
size 1 into the unsaturated bin that is most full (or if none remains, a new
bin). This procedure ends when there is only one bin left, which creates the
root node v’. It can be shown that the result of this algorithm satisfies the
two conditions listed, thus giving each node a decomposition such that they
can be covered totally by the minimum number of LUTs. Although the
bin-packing problem is NP-hard [Garey and Johnson 1979], in practice K is
not too large, and an exact algorithm may be affordable. Heuristic bin-
packing algorithms [Johnson et al. 1974] can also be used. In particular,
the first-fit decreasing (FFD) algorithm, which sorts the objects in decreas-
ing order of sizes and packs each object to the first bin that has enough
room, was shown to be optimal for the restricted bin-packing problem when
K = 5 [Francis et al. 1991b]. The best-fit decreasing (BFD) algorithm,
which is similar to FFD but packs each object into the bin that has the least
available room after accommodating the object, also has the same property
[Murgai et al. 1991b]. In either case, the heuristic bin-packing can be
implemented with time complexity of O(m log m). Figure 4 illustrates the
bin-packing decomposition of a node using the FFD heuristic, where the
objects [p, s] and [q] are packed into one bin, [r] and [¢] into another, and
[u] into the third one; this derives a decomposition of v.

Decomposition for Delay Minimum LUT Covering. A similar approach
can obtain a decomposition for delay minimum LUT covering [Francis et al.
1991a]. We present the idea using the unit delay model, which is also
applicable to other delay models.

8 The bin-packing problem is to pack a set of objects, each of an integer size = B, into the
minimum number of bins of size B such that the total size of the objects in each bin is no more
than B. Algorithms for bin-packing can be found in Garey and Johnson [1979] and Johnson et
al. [1974].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

160 . J. Cong and Y. Ding

(a) (b)

Fig. 4. Bin-packing decompositions at node v of a tree for 5-LUT mapping. Dashed boxes
indicate anticipated LUTSs: (a) before decomposition; (b) after decomposition.

It was shown [Francis et al. 1991a] that if a decomposition procedure of a
tree can yield a covering of the minimum number of LUTs at each level in
the covering solution, the resulting LUT covering has the minimum depth.
To achieve this minimization, bin-packing based decomposition is carried
out at each level in the increasing order. Each bin used at the current level
becomes an object of size one at the next level, and the procedure ends
when there is only one object left at depth d + 1, which implies a single bin
at depth d, that is, the root of the decomposition tree. Again, the FFD
heuristic algorithm can be used. It achieves an optimal solution for K = 6,
a better result than area minimum covering, because the restriction on
optimal bin packing is not required [Francis et al. 1991a].

Enhancements. To minimize delay in the area minimum decomposition,
in the second phase of bin-packing when several bins can be closed, the one
with minimum delay should be closed first. To reduce area in the delay
minimum decomposition, some bins at the previous levels can be unpacked
and their objects repacked into the unsaturated bins at the current level
[Francis et al. 1991a].

The bin-packing based decompositions are optimal only for trees. The
formulation is invalid when the network is a leaf-DAG or general network,
because the combined size of two or more objects may not be the sum of
their sizes when the nodes share fanins. Inasmuch as tree partitioning
produces leaf-DAGs, it is important to generalize the bin-packing based
decomposition to leaf-DAGs. An exhaustive search approach [Francis et al.
1991b] considers for a node v all possible K-feasible pregroupings of nodes
in input(v) that share inputs. Each group is packed together during
bin-packing as a single object, using their combined size as the object size.
For a given pregrouping, the solution may still be suboptimal. But if all
possible groupings are tried, the optimal solution is guaranteed to be found.

Heuristics were also proposed as more practical alternatives. The mauxi-
mum share decreasing (MSD) heuristic [Francis et al. 1991b] is an exten-

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 161

sion of the FFD heuristic. At each iteration, MSD chooses one of the largest
objects that also has the largest number of shared inputs with any bin and
the largest number of shared inputs with any other object, and packs it into
an available bin that shares the most inputs with it. The number of shared
inputs with an unpacked object can be used to break ties. Similarly, two
extensions of the BFD heuristic were proposed in Murgai et al. [1991b], by
different choices of the “best” bin: in the minimum support heuristic, the
best bin is a nonempty one that is most unsaturated after packing the
current node, whereas in the minimum support increment heuristic, the
best bin is a nonempty one whose capacity will be reduced the least after
the packing (i.e., the bin that shares the maximum number of inputs with
the node to be packed). Another method, proposed in Sawkar and Thomas
[1992], constructs a compatibility graph over nodes in input(v) when v is
being decomposed, in which two nodes are linked with an edge if they have
a combined input size of K or smaller. A heuristic is used to repeatedly
choose a pair of connected nodes according to a cost function, merge them,
and update the edges connecting the merged node with other nodes. At the
end of this procedure, each remaining node represents a bin. The cost
function favors smaller combined input size and a small decrease of the
number of edges in the compatibility graph. However, these extensions of
bin-packing based decomposition apply only to leaf-DAGs.

3.1.4 Structural Gate Decomposition for General Networks. The recent
work in Cong and Hwang [1996] investigates the problem of structural gate
decomposition of general unbounded networks for depth-optimal LUT map-
ping. First, the authors showed that any further decomposition of gates in a
K-mappable network leads to a smaller or equal mapping depth regardless
of the decomposition algorithm used. That is, one should always decompose
a network into a two-input network in order to obtain the minimum
mapping depth. Therefore they focused on the following problem of struc-
tural gate decomposition for depth optimal K-LUT mapping (the SGD/K
problem): Given an unbounded network N, decompose N into a two-input
network N, such that for any other two-input network decomposition N, of
N, the optimal LUT mapping depth of N, is less than or equal to the
optimal LUT mapping depth of N;,. When the input networks are restricted
to only K-bounded networks (instead of unbounded networks), the resulting
problem is called the K-SGD/K problem, which is a special case of the
SGD/K problem. It was shown in Cong and Hwang [1996] that the SGD/K
problem is NP-hard for K = 3 and that the K-SGD/K problem is NP-hard
for K = 5. They developed an efficient heuristic algorithm for the K-SGD
problem that combines the level-driven bin-packing decomposition tech-
nique for depth-optimal covering of trees (presented in the preceding
subsection) and the network flow based node labeling technique for depth-
optimal LUT mapping of K-mappable networks (presented in Section 4.3.1).
This algorithm shows significant improvement in terms of both the final
mapping depth and LUT count over the simple method of partitioning a

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

162 . J. Cong and Y. Ding

general unbounded network into trees and then decomposing each tree for
depth-optimal mapping.

3.2 Symbolic Decomposition Methods

When the node is associated with a complex-gate function, node decompo-
sition must consider the node functionality. A relatively simple approach is
to manipulate the given representation of the function symbolically. For
example, if the function is expressed as a cube cover (equivalently, an
SOP), it can be treated as a polynomial and decomposed by polynomial
factorization. Similarly, if the function is represented by an OBDD, decom-
position can be performed by subgraph splitting. We regard such operations
as symbolic decompositions in general. The complexities of these operations
are usually functions of the representation size, which in the worst case is
exponential to the input size of the gate.

3.2.1 AND-OR Decomposition and Cube-Packing. A node with SOP
representation has a direct decomposition of a set of AND gates, each
implementing a product term, and an OR gate with the AND gates as its
inputs. This is called the AND-OR decomposition. Minimizing the SOP
expression using two-level logic synthesis [Brayton et al. 1984] can result
in a good and fast AND-OR decomposition, as the complexity is clearly
linear to the number of literals. If a resultant node is not K-feasible, a
simple-gate decomposition method will be applied. In the tech_decomp
command of MIS-Il [Brayton et al. 1987], balanced tree decomposition is
used. A bin-packing based decomposition with consideration of input shar-
ing, called cube-packing, is used in Murgai et al. [1991b]. In Weinmann and
Rosenstiel [1994] the decomposition of the OR gate is viewed as the
partitioning of the AND gates, and the Kernighan and Lin partitioning
method [Kernighan and Lin 1970] is adapted.

3.2.2 Algebraic Division Based Extraction. An important type of sym-
bolic operation on cube cover representation is algebraic division, which
algebraically reexpresses a function f in the form of f = p - ¢ + r, where
the variable in p (the divisor) and g (the quotient) are disjoint, and function
r (the remainder) has as few cubes as possible. For example, f = a - ¢ +
b-c+d=1(a+b) c+disadivision withp = (¢ + b),q =candr =
d. If r = 0 the division is even. The important task for algebraic division is
to choose a good divisor. The quotient of f divided by a cube is called a
primary divisor, and if a primary divisor is cube-free (i.e., cannot be divided
evenly by any cube), it is called a kernel, and the cubes that can be used to
divide f to obtain the kernel are called its cokernels. In the previous
example, (¢ + b) is a kernel with cokernel c. Kernels and cubes (cokernels)
are considered good candidates for divisors, and can be generated system-
atically [Brayton et al. 1990; Devadas et al. 1994].

When the node function is represented in SOP or any other literal based
form, algebraic division can be used to identify subfunctions and create new
nodes for the decomposition, which we call the extraction based decomposi-

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 163

f = abc+abd+acd+bed+c = ;B:: + ;1-;& + ax,+ bxv, where x,= E& + cd

(a) () (©)

Fig. 5. Example of OBDD-based extraction.

tion, or extraction for short. Common subfunctions can be extracted from
multiple nodes and shared in the decompositions of these nodes.

When there are multiple subfunctions to choose for extraction, a cost
function can be evaluated for each of them, and the best one is chosen. In
Murgai et al. [1991b], the cost is determined by an estimation of the
number of LUTs needed to cover the network before and after the extrac-
tion, using the cube-packing heuristic. A simplified measurement used in
Lu et al. [1994], is based on the change of the input numbers on the related
nodes before and after the extraction.

One may order the variables before or during extraction, so that the
kernels or cokernels of the variables with higher priority are extracted
first. One application is to extract nodes with smaller levels first for depth
minimization. In the lexicographical factorization approach [Saucier et al.
1993], a (partial or full) variable ordering is maintained by a precedence
matrix, and lexicalgraphical compatible kernels (whose variables appear
later in the ordering than those of their cokernels) are computed for
extraction. As shown in Saucier et al. [1993b], this improves the routability
of the synthesized network, and can also minimize area and/or depth by
finding a good ordering.

3.2.3 OBDD Based Extraction. If the node function f is represented by
OBDD, let v be a nonterminal with associated subfunction f,. The sub-
OBDD rooted at v defines f,. Using the method of Chang and Marek-
Sadowska [1992], f, is extracted from f by replacing the subOBDD rooted at
v with a single nonterminal v’ such that hi(v') is terminal 1, low(v') is
terminal 0, and var(v') = x, is a new variable representing the extracted
function f, in the input set of f. Figure 5 shows an example of this OBDD
based extraction, which has several advantages. First, it is very simple and
efficient, and the decomposed functions are instantly available in OBDD
form. Second, common subfunctions are easily identified and extracted in a

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

164 . J. Cong and Y. Ding

multiroot OBDD, or among subOBDDs of a single-root OBDD. Moreover,
because x, is not an independent variable, it can be used to simplify other
portions of the OBDD (Section 3.5.2).

The OBDD based extraction was used in a heuristic for global optimiza-
tion of multilevel extractions in Stanion and Sechen [1995]. It recursively
performs extractions until all functions are K-feasible. At each step it
simultaneously performs a set of extractions, with the objective of minimiz-
ing the total cost of the resulting subfunctions. The cost of a function is an
estimation of its size when decomposed into K-feasible functions. The
implementation in Stanion and Sechen [1995] uses implicit enumeration to
generate the sets of OBDD vertices to be extracted. Although it still cannot
guarantee a decomposition of a minimum number of K-feasible subfunc-
tions, this heuristic provides a way of quickly examining many extraction
alternatives.

3.3 Boolean Decomposition Methods

The solution space of a symbolic decomposition method is limited by the
given function representation. This lowers the computational complexity
but also limits the effectiveness. Boolean decomposition methods go beyond
the given representation and exploit the full functionality. For example, the
Boolean division can be defined similarly to algebraic division in terms of
f=p-q + r,whereas p - ¢ + r is a Boolean equivalence of f rather than
a symbolic reexpression. Several heuristic methods for Boolean division can
be found in Brayton et al. [1990]. In this subsection, we discuss two
Boolean decomposition methods, cofactoring and functional decomposition,
which are widely used for LUT logic synthesis.

3.3.1 Cofactoring and Decision Diagram Conversion. Shannon expan-
sion f = x - fi,; + & * f1z defines a way of decomposition called cofactoring,
where f;,; and f;; denote functions f|,_; and f|,_,, and are called the
cofactors of f with respect to x and %, respectively. Because a cofactor has
one fewer variable, a K-feasible decomposition on any node is possible by
recursive application of cofactoring.

There are several ways to generalize cofactoring. First, other expansion
forms such as the XOR based Davio expansions (see Becker and Drechsler
[1995]) can be used similarly. Second, cofactoring with respect to a cube can
be obtained by cofactoring with respect to each literal one by one. More-
over, cofactoring can be defined with respect to a function g as f =
g fis1 + & fiz where f, and fz are functions satisfying the equation.
Proper choice of g can result in simpler subfunctions with fewer variables.
Finally, the Shannon expansion formula may be simplified to the form f =
x+g1t+ X%-8, + g3 where f;,; = g, + g5 and fj3; = g5 t+ g3, and g5 are
independent of variable x. The time complexity of cofactoring is linear to
the size of the cube-cover representation.

Cofactoring based decompositions can be viewed as the conversion of
decision diagrams to multilevel networks. For example, a complex gate can
be decomposed into a network of MUX2 gates by converting its OBDD or

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 165

ITE representation into a network of MUX2 gates. The Davio expansions,
which are based on XOR operation, can be used to obtain a network of AND
and XOR gates. Although any complex gate can be decomposed into an
AND/OR-network, a MUX2-network, or an AND/XOR-network using cofac-
toring, each form is suitable for certain types of gate functions, and should
be chosen properly to obtain a good decomposition. Various studies have
been done on this issue (See, for example, Heap et al. [1992], Saul [1991],
Schafer and Perkowski [1993], and Thakur et al. [1995]). The approach
proposed in Thakur et al. [1995] adds a MUX recognition heuristic in a
combined AND-OR and Huffman tree decomposition procedure. If a node is
recognized as a MUX, it is decomposed into MUX2 gates using a MUX
decomposition algorithm instead of AND and OR gates; otherwise the
normal AND-OR and Huffman tree decompositions apply. This approach
can reduce the decomposition size and depth if many nodes do carry MUX
type functions.

3.3.2 Functional Decomposition. The advantage of cofactoring based
decomposition is that a simple procedure applies to any node function, but
it is limited to the use of only cofactors as subfunctions. Functional
decomposition exploits the possible use of arbitrary subfunctions. It is
particularly suitable for LUT technology, as the decomposed functions can
be implemented using LUTs directly as long as they are K-feasible,
whereas in cell library based technology, they have to match the library
cells. In fact, although the concept of functional decomposition was devel-
oped very early [Ashenhurst 1957], it has not been used very successfully in
conventional logic synthesis [Brayton et al. 1990].

We first introduce some related concepts. In general, a functional decom-
position is of the form f(x,, ..., x,) = g(y(x1, ..., %), oo o, ¥Vu(xg, ...,
%), Xj, ..., %,), where i, j, m = r and i =j — 1 > 0. Intuitively, this is
a procedure of encoding the first j — 1 variables using m new variables.
Therefore we refer the functions y, . .., y,, as the encoding functions, and
g as the base function. If i = j — 1, it is called a disjunctive decomposition,
in which variables x4, . .., x; form the bound set, and x;, . .., x, form the
free set; otherwise it is a nondisjunctive decomposition. If m = 1, it is called
a simple decomposition; otherwise it is a complex decomposition. If m < j —
1, that is, g has fewer variables than f, the decomposition is nontrivial;
otherwise it is trivial. For the purpose of obtaining K-feasible nodes,
nontrivial decomposition is usually of interest, as it guarantees conver-
gence of the recursive decomposition.

Ashenhurst Decomposition. The first functional decomposition method,
Ashenhurst decomposition [Ashenhurst 1957] solves the simple disjunctive
decomposition problem by giving the sufficient and necessary condition. It
uses a partition matrix, in the form of a 2-D truth table, for a given variable
partitioning of bound set B = {x4, ..., x;} and free set F = {x,,4, ...,
x,}. Each column corresponds to one possible assignment (i.e., a minterm)
of the bound set variables, and each row corresponds to one possible
assignment of the free set variables. The partition matrix implies a simple

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

166 . J. Cong and Y. Ding

disjunctive decomposition if and only if there are at most two distinct
columns (thus the bound set variables can be encoded into one bit, using
one function). To have a nontrivial decomposition, the size of the bound set
must be at least two. The derivation of the base and encoding functions is
easy: the encoding function y(B) can be defined by the bound set minterms
corresponding to the columns of one pattern (which is equivalent to
assigning y = 1 for these columns); the base function g(y, F) can be
defined by the compressed truth table obtained after merging the identical
columns and assigning the value of y for each column.

Ashenhurst decomposition can be easily generalized to the case of com-
plex disjunctive decomposition, as was first proposed in Curtis [1961]: if
there are at most 2™ different columns, the bound set can be encoded by m
bits using m encoding functions. To have a nontrivial decomposition, the
size of the bound set must be larger than m. The encoding and base
functions can be obtained similarly based on the encoding.

Extensions of Ashenhurst decomposition to multilevel disjunctive decom-
positions can be found in Ashenhurst [1957] and Curtis [1963]. Ashenhurst
decomposition has also been generalized to incompletely specified func-
tions. In Wan and Perkowski [1992], a graph is constructed with the
columns as vertices, and two columns are connected with an edge if they
cannot be made identical by properly specifying don’t-care entries. The
problem is then reduced to the graph coloring problem and solved by a
greedy heuristic.”

A partition matrix defined by the chosen bound and free sets may not
yield any nontrivial decomposition. Such a “bad” partition matrix may be
converted into a “good” one using a patching method proposed in Wan and
Perkowski [1992]. Specifically, if the partition matrix P of function f can be
decomposed into two matrices P, and P, such that for each corresponding
entry (i, j), P, j) = P,G, j) @ Py(i, j), and P; and P, define
decomposable functions f; and f,, respectively, then f = f; @ f5, and a
decomposition can be obtained using the current bound/free set partition-
ing by decomposing f; and f, separately.

Roth-Karp Decomposition. A major drawback of the Ashenhurst decom-
positions is that they are based on the partition matrix (also called
decomposition chart in Curtis [1961, 1963]), which is a 2-D truth table,
thus the time and space complexity is always O(2") for an r-variable
function. If r is large, this method is impractical due to the high memory
requirement. A more efficient way of solving complex disjunctive decompo-
sition is the Roth-Karp decomposition [Roth and Karp 1962], which also
considers nondisjunctive decomposition. It works on the ON and OFF sets
of f in the form of cube covers, which can be substantially smaller in size
than the truth table.

7 The graph-coloring problem is to use the minimum number of colors to color the vertices,
such that two vertices do not have the same color if they are connected by an edge.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 167

Given a cube cover representation of a function and a partitioning of
variables into bound and free sets, each cube ¢ can be partitioned into a
bound-part ¢, and free-part cy, that is, ¢ = c,c;. An incompatibility graph is
constructed with the minterms of the bound set variables as the vertices.
The edges are determined as follows. For each cube ¢ in the ON set and
each cube d in the OFF set, if c, intersects d, (i.e., they cover a common
minterm), then ¢, and d, are said to be incompatible, and an edge (v, w) is
added between each vertex v corresponding to a minterm covered by ¢, and
each vertex w corresponding to a minterm covered by d,. (In terms of the
partition matrix, this implies that there is at least one row, corresponding
to a common minterm of ¢, and df, on which the entries at the columns
corresponding to ¢, and d, are different.) After the incompatibility graph is
constructed, the problem is reduced to the graph-coloring problem, and a
set of vertices with the same color are mutually compatible (corresponding
to a collection of identical columns in the partition matrix). Consequently,
an encoding of m bits exists if and only if the incompatibility graph can be
colored using no more than 2™ colors. Derivation of the encoding and base
functions is similar to the case of Ashenhurst decomposition.

In Roth and Karp [1962], nondisjunctive decomposition was also studied,
and two alternatives were proposed. One is to treat the appearance of
bound set variables in the free set as single variable encoding functions
generated by the decomposition. This restricts the flexibility of encoding,
but if the nondisjunctive decomposition exists, a valid encoding will be
found. The other approach is to replicate the shared variables in the cube
representation to make the two sets disjoint. When the literal of a shared
variable x does not appear in a cube ¢, however, ¢ must be split into two,
one containing x and the other containing X, before the replication.

OBDD Based Decomposition. Although Roth-Karp decomposition uses
cube cover representation, which is more compact compared with the
partition matrix of Ashenhurst decomposition, for complex functions the
representation may still be large. Moreover, because the graph-coloring
problem is NP-hard [Garey and Johnson 1979], Roth-Karp decomposition
has high time complexity: for a bound set of £ variables, the number of
vertices in the incompatibility graph is 2*, and the worst case complexity of
solving the graph-coloring problem is 0(22").

If the function is represented in OBDD (which is often smaller than cube
cover), functional decomposition can be done directly on OBDD in a very
simple way. (In recent years, this approach has been used in Chang and
Marek-Sadowska [1992], Cong and Ding [1993b], Lai et al. [1993a]).

Given a partitioning of the variable set X into bound set B and free set F,
an OBDD is built such that the variables in B appear before the variables
in F. Then the vertices are partitioned into two sets, U and L, where U
contains the vertices labeled with the variables in B, and L contains the
vertices labeled with the variables in F' and the two terminals. (If the
OBDD is drawn with the root at the top and vertices aligned for each
variable, such partitioning corresponds to a horizontal line drawn immedi-

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

= a;+ad+;hc_d+a;+;+cd

=g+ (h@®4q)

=(a®c) +b

Fig. 6. OBDD based decomposition: (a) original OBDD, with bound set {a, b, c}, free set {d]},
and minterm assignment of nodes in Cp; (b) corresponding function and its decomposition; (c)
construction of base function; (d, e) construction of encoding functions.

ately below the |B|th level.) This partitioning defines a cut of the OBDD
which is the set of vertices in L (denoted Cz) that have incoming edges
from vertices in U. The size of Cpg, denoted sp, is called the size of the
partitioning. Figure 6(a) shows an example of a cut in an OBDD.

If sy = 2™, it means that the first |B| variables induce no more than 2™
distinct functional states, and thus can be encoded in no more than m bits,
or with m encoding functions in a decomposition. [In Figure 6(a), the three
shadowed nodes are in Cp, so sz = 3 and a 2-bit encoding is needed.] This
condition is easy to check, and the base function and the encoding functions
can be obtained efficiently in OBDD form from the original OBDD as
follows.

Assuming that 2"~ ! < sz = 2™, then there will be m encoding functions

Vis -+ » ¥Ym- We assign the first sz minterms of new variables y4, ..., y,,
to the vertices in Cpz. To construct the base function, the U part of the
OBDD is first replaced by a full OBDD of the m variables y;, ..., y,, 1

which each of the 2™ terminals corresponds to a minterm of y,, ..., ym.

[In Figure 6(c), the upper portion of the OBDD associated with variables a,
b, and c is replaced by a full BDD of g and & first.] Next we replace each
terminal with a vertex in Cp that was assigned with the same minterm if it
exists, or an arbitrary cut vertex otherwise—a don’t-care case. [In Figure
6(c), path (v, v4, vy) corresponds to minterm gh, which was associated with
vy.] Then we reduce the resulting OBDD which represents the base
function. To construct the encoding function y;, the L part of the OBDD is
modified by removing the noncut vertices and replacing each cut vertex v
by terminal 0 if y;, appears in the minterm associated with v, or by terminal
1 if y;, appears in the minterm. Finally, we reduce the resulting OBDD,
which yields an OBDD representation of encoding function y,. [In Figure
6(d), encoding function g is constructed. For example, we have hi(vg) = O,
because originally hi(vgy) was associated with minterm gh.]

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 169

This OBDD based functional decomposition has a clear advantage over
both Ashenhurst and Roth-Karp decompositions. First, the OBDD repre-
sentation is compact, and conversion from or to other forms of representa-
tion is simple. Second, all operations are either linear to the size of the
OBDD, or exponential only in terms of the size of bound set (which is
usually K or a smaller constant in LUT network synthesis). Moreover, it is
easily extended to the case of nondisjunctive decomposition by allowing the
partitioning line to cross the levels, that is, by allowing some vertices
labeled with variables in B to be partitioned into the L part [Lai et al.
1993a]. Because such cross-level partitioning may not be unique, there are
usually multiple choices for nondisjunctive decompositions, resulting in
base and encoding functions of different sizes and structures.

Multi-Output Functional Decomposition. If multiple node functions are
considered for simultaneous decomposition, as in the procedure of a recur-
sive multilevel decomposition, it is beneficial to find common subfunctions.
This problem was first studied in Karp [1963], where the condition for a
shared subfunction of two functions f; and f, was presented. Note that
Roth-Karp decomposition defines an equivalence relation over the bound set
minterms, where each equivalence class consists of the minterms of the
same code under the encoding. Moreover, each encoding function defines a
valid partitioning that partitions the equivalence classes into two sets,
each containing no more than 2™ ! classes. Therefore a shared encoding
function of two node functions should define a valid partitioning for both
functions. The method used in Karp [1963], applicable only to two-output
decomposition, enumerates the possible partitionings to find such shared
encoding functions.

The approach of He and Torkelson [1993] and Wan and Perkowski [1992]
extends Ashenhurst decomposition for multiple functions f;, fo, ..., [
Given the bound set and free set and a fixed variable order, let P; be the
partition matrix for f;. A new partition matrix P is constructed by superim-
posing all partition matrices P;s such that each entry in P(i, j) is a bit
vector (P,(i, j), ..., P,(i,j)). To find common encoding for all functions, P
is used. It is easily seen that the existence conditions of Ashenhurst
decomposition are still valid, but are much more difficult to satisfy because
each entry has 2" possible values instead of 2. This approach is more useful
for incompletely specified functions, as proper assignment of the don’t-cares
can help to create identical columns in P. An OBDD version of this
approach was implemented in Lai et al. [1994].

A more general multi-output decomposition method proposed in Lai et al.
[1994] finds shared encoding among some output functions. Specifically, its
objective is to find a minimum set G of encoding functions for the distinct
columns of all partition matrices P4, ..., P,, such that for each P;, there is
a subset G; C G of encoding functions that encode the distinct columns of
P,, and |G,| is less than the bound set size. Clearly, such an encoding
induces a nontrivial decomposition for each output function, and some
encoding functions can be shared among the output functions. In Lai et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

170 . J. Cong and Y. Ding

[1994] a heuristic was used to repeatedly select the “most shared” encoding
functions until all output functions were properly encoded. The decomposi-
tion was implemented using OBDD representation.

A limitation of this method is that its encoding is over the distinct
columns. Therefore identical columns in different partition matrices cannot
be assigned different codes. This is called a strict- or uni-coding. On the
other hand, a nonstrict- or multi-coding can assign different codes to such
columns. Strict-codings are easier to compute than nonstrict-codings, but
they may not result in the optimal decomposition.

The two-output decomposition in Karp [1963] is able to use nonstrict-
coding inasmuch as its encoding is over the bound set minterms of each
function, which are equivalent to its partition matrix columns. Nonstrict-
coding based multi-output functional decomposition was recently addressed
in Wurth et al. [1995]. It formulates the general decomposition and
encoding problems as the refinement of equivalence relations on the mint-
erms of the bound set variables, where one equivalence relation R; is
refined by another R, if each class of R, is contained in a class of R;. A
valid encoding G defines an equivalence relation R, that refines the
equivalence relation R, defined by the partition matrix P on its columns.
For multi-output decomposition where the partition matrix for output f; is
P;, R; must refine the product of all the relations Rp , where the product is
defined as the minimum common refinement. Moreover, for nontrivial
decomposition at every output f;, there must also be a partial encoding
G; C G of size less than the bound set size, which defines an equivalence
relation R that refines Rp. Such encoding is over the equivalence classes
of the product relation, whose encoding space is between the number of all
columns and the number of all distinct columns. Therefore nonstrict-coding
is used if necessary. For efficient implementation, OBDDs were used to
represent the functions, their equivalence relations, the product of these
relations, as well as the characteristic function used in the (reduced)
implicit enumeration of the encoding functions [Wurth et al. 1995].

Base and Encoding Function Optimization. Given a variable partition-
ing, there are often many ways to construct the base function and encoding
functions that leave room for optimization. Because the base function will
be further decomposed in many cases, it is beneficial to make its structure
simple. This was discussed in Murgai et al. [1994]. Also, the algorithms in
Sawada et al. [1995] exploit the don’t care set to reduce the number of
variables for the base function.

If the encoding functions are also subject to further decomposition, their
structural simplicity is desired as well. In Chang and Marek-Sadowska
[1992], a heuristic was presented to reduce the total number of vertices in
the OBDDs of the encoding functions. Even if the encoding functions are
not to be further decomposed, it is still beneficial to make them simple.
Several recent works [Cong and Hwang 1995b; Huang et al. 1995; Legl
1996] have focused on the support minimization of encoding functions,
where the objective is to make as many encoding functions as possible

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 171

independent of one or more bound set variables. Such encoding functions
result in LUTSs of smaller input sizes, which are more easily merged with
other LUTSs, or packed into programmable logic blocks containing multiple
LUTs with limited number of total inputs. Such LUTs may also have better
routability due to the reduced number of connections. The algorithm in
Huang et al. [1995] encodes equivalence classes according to the set of
dichotomy to eliminate variables from the bound set. It was designed for
packing encoding functions into Xilinx XC3000 programmable logic blocks,
which can implement either a 5-LUT or two 4-LUTs with no more than five
inputs in total [Xilinx 1994]. However, it only considers strict-coding. The
method in Legl et al. [1996] is able to compute nonstrict decomposition for
support minimization. It uses an implicit algorithm to consider all possible
(constructable) encoding functions. The result in Cong and Hwang [1995b]
gives a necessary and sufficient condition for support minimization of the
encoding function, which can be used to test whether there exists a
functional decomposition for a given variable partitioning such that some
encoding functions could depend partially on variables in the bound set.
Based on this condition, an algorithm is developed for computing a maxi-
mal set of encoding functions that depend partially on variables in the
bound set. This algorithm can perform nonstrict-coding, and can also be
used for nondisjunctive decomposition and multiple-output decomposition.

Variable Partitioning. All the functional decomposition techniques pre-
sented so far assume a given partitioning of variables into the bound set
and free set. An open problem is how to choose the proper variable
partitioning. It involves two issues—how to choose the best partitioning for
the current decomposition, and how to choose the best partitioning for the
overall decomposition process in the case of recursive decomposition. The
latter is obviously a more difficult problem and has not been studied. As for
the former, several approaches have been suggested. The quality of a
decomposition is usually measured by the number of variables of the base
function after decomposition, or by the depth of the decomposition. In Lai
et al. [1993a], an enumeration method was proposed using an extended
OBDD representation called EVBDD [Lai and Sastry 1992]. Because the
number of different partitionings is exponential, exhaustive enumeration is
often impractical. In Cong and Ding [1993b], the inputs (variables) are
ordered in increasing order of delay, so that inputs with smaller delays are
first chosen as bound set variables. An iterative improvement heuristic was
proposed by Hwang et al. [1992], which adopts the Kernighan-Lin parti-
tioning method to partition the variables into bound and free sets using a
heuristic cost function. Recently, in Shen et al. [1995], a heuristic method
was described to greedily choose the “most compatible” variable for the
bound set one by one.

3.4 Upper Bounds on Node Decomposition

Because of the extremely large solution space and the interdependency of
logic optimization and technology mapping, it is difficult to quantitatively

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

172 . J. Cong and Y. Ding

measure the optimality of logic optimization for LUT logic synthesis, even
in the case of the decomposition of a single node. However, based on the
decomposition techniques discussed in this section several upper bounds
can be derived in terms of the number of LUTs needed to cover the
decomposed node.

First, the exact (lower and upper) bound for a node with an m-input
simple-gate function is dm — 1)/(K — 1)Oas we have shown in Section
3.1.1.

For a node with complex function in the sum-of-product representation, if
it has ¢ product terms, an upper bound is m — 1 + (¢ + 1) (K —
2)/(K — 1)Owhen K > 2 [Murgai et al. 1993a]. In general, for a node
with complex function, an upper bound based on Shannon expansion is
om~K+1 _ 1 for K > 2, because each expansion can be implemented by a
MUX2 (thus an LUT). For larger values of K, some of the MUX2 gates in
the Shannon expansion tree can be merged to give a better bound. For
example, in Murgai et al. [1991b], an upper bound of 2" % — 1 — (2™~ 5
x)/3 was derived for K = 5, where x = 1 for odd m and x = 2 for even m.
For K = 6, each LUT can implement two levels of Shannon expansion,
resulting in a bound roughly one third of the MUX2 count in Shannon
expansion.

When m = K + ¢ for some (small) constant ¢, a constant number of
K-LUTs will suffice (e.g., via Shannon expansion). For instance, three
K-LUTs are sufficient for m = K + 1 when K > 2 (four for K = 2). In
Murgai et al. [1993a] this was shown to be a lower bound as well.

3.5 Network Simplification Techniques

The network simplification operations are carried out among a group of
nodes based on the fact that each node v can be associated with different
functions using different input variable sets. For example, if input(v) =
(s, t, u} and f, = f, + f, * f,, and there is another node w with input(w) =
{s, t} and f,, = f, + f;, then f, can be reexpressed as f,, = f,, - (fs + f.),
with input(v) = { s, u, w}. This is called substitution, as f,, is used to
substitute an expression in f,. Similarly, if f, = f, - (f, + f,) is the
original function associated with v, and f, = f; + f, - f., is more desirable,
the reversed transformation will also be a simplification operation, called
collapsing, as w is eliminated from input(v) and “collapsed” into v. As
another example of collapsing, still assume that inpuié(v) = {s, ¢, u} and f,
= f. + f;* f,. In addition, assume input(u) = {s, t}, and f, = f, * f;. By
collapsing u into v, we can get f, = f,, a support reduction for v from three
inputs to one (in fact, v can be eliminated and its output supplied by s).
Another important source of freedom for network simplification is the use
of don’t-cares. For a multilevel network, don’t-cares on primary inputs can
be specified explicitly for each primary output, and are called external
don’t-cares. Don’t-cares can also exist implicitly on the inputs of any node
due to the structural redundancy of the network, and are called internal
don’t-cares. In the previous example where f, = f, + f,* f,, and £, = £ [+,

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 173

the input vectors {011, 101, 111} for input(v) = {s, ¢, u} are not possible, thus
they belong to the DC;, and can be used to simplify f,. These are called the
satisfiability don’t-cares as they represent input assignments impossible to
satisfy. The other type of internal don’t-cares are the observability don’t-cares.
When an input vector is applied to the inputs of a node, the output of the node
may be blocked by other signals and cannot be observed at the primary output.
For example, if node v with function f, = f, + f, - f,, has a single fanout w
which with input(w) = {u, v} and f,, = f,, + f,, then the output of v on input
vectors xx1, where x can be 0 or 1, will not affect the output of w which
remains 1. Therefore these vectors also belong to DC;, and can be used to
simplify f, into f, = f, + [, for support reduction.

In this section we introduce several network simplification techniques
that have been used for LUT logic synthesis, but will leave out many of the
details, which can be found in the cited literature. Most methods for
simplification in conventional logic synthesis are also useful in LUT logic
synthesis, and can be found in Brayton et al. [1990], Devadas et al. [1994],
and De Micheli [1994].

3.5.1 Local Simplification. A commonly used technique in logic optimi-
zation is to collapse a subnetwork and redecompose it for a certain purpose.
In Murgai et al. [1991b] an operation called move-the-fanins was used. For
an infeasible node v, each of its inputs w € input(v) is examined. If w is
fanout-free, the operation will try to collapse w into v and redecompose v
into v’ and w’ such that both are K-feasible. If this operation succeeds,
some fanins of v are effectively “moved” to w. A similar operation called
gate decomposition was used in Cong et al. [1992a]. It looks for a subset of
two or more nonPI fanins u,, ..., u,, of v whose combined input size is
bounded by K. If such a set exists, the operation tries to decompose v into
v’ and v”, such that v’ is a fanin of v” and carries the fanins uq, ..., u,,,
while v” carries the remaining fanins of v. If this is possible, then u, ... u,,
can be collapsed into v'. As a result v” replaces v with fewer number of fanins
and the total number of nodes reduced by m — 1. This can be viewed as a
simple disjunctive decomposition with restricted bound set selection followed
by a collapsing. This operation has also been generalized to the case where the
fanins uq, ..., u,, are not fanout-free, but the decomposition and collapse are
simultaneously applicable to all fanouts.

For both operations, there can be multiple choices of the fanin and root
nodes. In Cong et al. [1992a], candidates for the operations were repre-
sented as the edges of a (hyper)graph over the gates, and a maximum
matching was computed in O(n®) time [Gabow 1976] (where n is the
number of gates in the network) to decide how to apply a set of gate
decomposition operations simultaneously without conflict.

3.5.2 Rule-Based Global Simplification. Local simplifications are rela-
tively efficient, but may not be very powerful due to the range limit. One
way of maintaining the efficiency while overcoming the range limit is to use
a set of transformation rules instead of exhaustive search in more global
simplification operations. Here we show two examples.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

174 . J. Cong and Y. Ding

In the approach of Chang and Marek-Sadowska [1992], when an OBDD-
based extraction is performed on a function f, a set of rules is used to
simplify OBDD,. During the extraction of f, at nonterminal v, a new
variable x, is introduced to represent the extracted subfunction f,. A set of
rules is used to identify subOBDDs of OBDD, that have similar structure to
the extracted subOBDD OBDDy , and restructure them so that part of them
will be the same as OBDDf s and thus can be replaced by x,. For example, if
nonterminal vertex w in OBDD;, satisfies var(v) = var(w) and hi(v) =
hi(w), then after f, is extracted and replaced by the new variable x,
associated with a new nonterminal vertex v’, we can simplify OBDD, by
letting hi(w) = v’ and eliminating the subOBDD of hi(w). This can be
proved by substituting f,;.,, with f,” in the Shannon expansion of f,,, and
applying the condition hi(v) = hi(w). More rules of such simplification can
be found in Chang and Marek-Sadowska [1992].

Another rule based simplification method shows interesting use of inter-
nal don’t-cares. In Chang et al. [1994], the objective is to reduce the
interconnection congestion by patching the network, in particular, by
replacing one or more connections with another set of connections (and
possibly new gates). To remove a congested connection (target wire), a set
of rules is derived to introduce new connections (alternate wires) in a less
congested area, which will not alter the functionality at the primary
outputs, but will block the observability of the target wire, so that it
becomes redundant and can be removed.

3.5.3 Permissible Function Based Simplification. For a node v, con-
sider the function fy,¢ , that is, its function in terms of the primary inputs.
The existence of don’t-cares, in particular, observability don’t-cares, makes
fuc, an incompletely specified function, which therefore can be imple-
mented in different ways (by covering different portions of the DC set).
These different functions are called permissible functions, and the maxi-
mum set of permissible functions (MSPF) covers all possible implementa-
tions of the node function. In Muroga et al. [1989], a procedure to compute
MSPFs of all the nodes, as well as a more efficient procedure to compute a
subset of MSPF for each node, called a compatible set of permissible
functions (CSPF), was developed. The latter computes the CSPF in one
pass from the primary outputs to the primary inputs while identifying and
removing redundant connections. (The original implementation was based
on cube cover representation. An OBDD version was due to Matsunaga and
Fujita [1989].) The knowledge of the permissible functions can be used to
simplify the network, including the removal of redundant connections and
nodes (if the connection or node has a trivial permissible function), substi-
tution of connections and nodes (if one connection or node carries a
permissible function of the other), and merging of nodes (if two nodes have
a common permissible function), and so on. Substitution by existing connec-
tions or nodes results in elimination of substituted connections and/or
nodes, whereas substitution by new connections and/or nodes results in
replacement. These operations are powerful, but usually of high time and

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 175

space complexity. We outline several applications of the permissible func-
tion-based network simplification.

Input (or support) reduction is an important objective in network simpli-
fication for LUT logic synthesis. The minimal dependence set problem
[Halatsis and Gaitanis 1978] on a node v and a set of nodes S = {uq, ..., u,,}
that are not successors of v is to find a minimal subset S* C S such that a
permissible function of v can be expressed by a composition of permissible
functions of the nodes w € S™*. That is, the function of v can be reexpressed
using S*. A related problem is to find a good set of candidates that results
in good minimal dependence sets. For the first problem, a cube cover-based
method was proposed in Fujita and Matsunaga [1991], and an OBDD-based
implementation was proposed in Chen [1992]. For the second problem, a set
of conditions for legitimate candidates were identified in Chen et al. [1991]
which can be used to choose candidate sets, as in Chen [1992].

Node reduction (elimination) is another important objective. A node can
be eliminated when all its fanout nodes have their functions reexpressed
using other nodes as inputs. Clearly, fanout-free nodes are the easiest
candidates. In Chen [1992], the approach was to give fanout-free nodes a
higher cost when computing minimal dependence sets, so that they are less
likely to be used. A more global approach was taken in Chen and Cong
[1992], where for each fanout-free node v, the condition of eliminating v is
computed and a maximum set of simultaneously removable fanout-free
nodes is identified and removed. However, this approach is restricted in
that, to construct the replacement functions for the fanouts of the target
node, observability don’t-cares cannot be used because simultaneous re-
moval of multiple nodes in a network will not preserve the observability
conditions derived for each single node.

Another use of permissible function-based simplification was demon-
strated in Kukimoto and Fujita [1992] where the problem of patching a
network without changing the layout (i.e., interconnections) is considered.
The algorithm selects a set of candidate nodes to change, derives a Boolean
relation that captures the allowed permissible functions of the selected
nodes for implementing the changed design, restricts the relation so that
the input to each node is not changed, and then derives a permissible
function for each selected node from the reduced relation. The candidates
are chosen from nodes of the same level, so that no node is the transitive
fanin/fanout of another node, which simplifies the derivation of the Boolean
relation.

4. TECHNOLOGY MAPPING

After a multilevel network of generic gates is optimized using the tech-
niques described in the preceding section, the technology mapping step
transforms it into an LUT network by covering it with LUTs. In this section
we present commonly used techniques for LUT technology mapping. We
organize this section based on the types of the input networks—tree,
leaf-DAG, MFFC, and general network. For each type of the networks, we

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

176 . J. Cong and Y. Ding

consider techniques for area minimization, depth minimization, and gen-
eral delay minimization. Routability and power minimization are briefly
discussed at the end of this section.

Although in a mapping solution only a subset of nodes is implemented by
LUTs (the remaining nodes are covered by the LUTs implementing others),
many mapping algorithms compute the LUT implementation for every
node, and then choose a subset of nodes to implement. Therefore in such
cases we simply illustrate the mapping technique in terms of how it maps a
generic node v in the network.

4.1 Tree Mapping

Assume that the input network is a K-bounded tree T, with root r. If LUT.,
implements r in a mapping M, of T',, then M, induces a mapping M _for
each subtree T, rooted at a node w € mput(LUT). Denote the number of
LUTSs in mapping M, as area(My), and define area(My) = 0 if v is a PL.
Then area(Mr) = 1 + 2y cinpuwur, area(Mr). Therefore the area optimal
mapping M* of T, can be determined by the area optimal mappings of its
subtrees; that is, area(M?) = min yp/{1 + 2, ¢ jppuewur,, area(My?)}. This
recursive relation suggests the use of dynamic programming, which computes
the area optimal mapping of each subtree T', for v € T in the topological order
starting from the PIs in T,.

Given the area optimal mapping of each subtree T, in T, (v # r), a
straightforward approach to find the best LUT, is to enumerate all K-
feasible cones rooted at r [Francis et al. 1990]. Because T, is a tree, the
number of such cones is a constant depending only on K [Cong and Ding
1994b]. However, it was shown in Farrahi and Sarrafzadeh [1994b] that a
greedy algorithm will also produce an optimal solution for this problem. Let
input(v) = {w4, ..., w,,}), and the LUT implementing w; in an optimal
mapping of T,, be LUT,, . Moreover, without loss of generallty we assume
that |anut(LUT = <|mput(LUT)|. Then the greedy packing LUT,
v}V ;< ,LUT,,, where s is the largest index such that LUT, remains K-
feasible, gives an area optimal mapping for T',. Based on this property, at each
node v, we sort the input LUTs of the nodes w; € input(v) in increasing order
of input size, greedily expand the cone C, to cover as many input LUTSs as
possible in that order, and let LUT, = C,,. This algorithm, named ¢ree-map
in Farrahi and Sarrafzadeh [1994b], gives the optimal mapping solution of
T, and has time complexity of O(max {K, log n} - n) on a tree of n nodes.
Figure 7 shows an example of tree-map.

A similar approach can be used to obtain a depth-optimal mapping by
changing the sorting criterion—instead of the increasing order of the input
size, we sort the input LUTs in decreasing order of their depths. This
method can also be easily generalized to other delay models.

If the K-bounded tree is obtained using the bin-packing based decompo-
sition described in Section 3.1.3, the tree-map algorithm will reproduce the
bin-packing result. However, the bin-packing approach has the advantage

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 177

@ ®)

Fig. 7. Area optimal mapping for tree: (a) original network; (b) mapping for K = 5. Nodes u,
s, w will be implemented. Input LUT sorting and partial packing happens at v and w.

of achieving decomposition and mapping simultaneously when the tree is
not K-bounded [Francis et al. 1991a,b].

Tree mapping has limited use because real networks are rarely trees.
Mapping for leaf-DAGs is more useful, inasmuch as a general network can
be partitioned into a set of leaf-DAGs. For depth-optimal mapping (or
delay-optimal mapping for any static delay model), the tree-map mapping
procedure will still produce an optimal solution, as a shared fanin can
simply be treated as different inputs. Allowing multifanout input to be
treated as multiple independent inputs is a very important property of the
static delay models, as it simplifies the optimization problem and allows
very efficient mapping methods. For area minimization, the general dy-
namic programming approach still produces an optimal mapping solution,
but the tree-map algorithm is no longer optimal. If all K-feasible cones of v
are to be checked as candidates for LUT,, the number is not bounded by a
constant, but a polynomial of n (for fixed K). Enumeration methods are
introduced in the next subsection.

4.2 MFFC Mapping and Duplication-Free Mapping

Mapping of an MFFC is more complicated than that of a leaf-DAG because
internal nodes may also have multiple fanouts, and the LUTs may overlap.
In fact, general mapping in an MFFC is as difficult as general mapping in
an arbitrary network. Because area(M yppc,) = 1 + area(Myppc, - Lur,), an
optimal mapping of MFFC, implies an optimal mapping of MFFC, — LUT,,
which may be any general network.

If we restrict the mapping solution to be duplication-free, that is, each
node is covered by only one LUT, the problem is simplified, both for an
MFFC and also for a general network. In particular, it was shown in Cong
and Ding [1993a] that in any duplication-free mapping, LUT, is always
contained in MFFC,. This implies that (1) to find the best LUT, in a
duplication-free mapping, we only need to search the K-feasible FFCs
inside MFFC,; and (2) for area minimization, duplication-free mapping of a
general network can be performed optimally by partitioning the network

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

(a) (b)

Fig. 8. Example of duplication-free mapping: (a) original network and MFFC partitioning; (b)
duplication-free mapping for K = 3. Note that LUTs do not go across MFFCs.

into a set of MFFCs and computing the optimal mapping of each MFFC
independently.

These results suggest a dynamic programming approach for duplication-
free mapping. Given a network, for each node v in topological order, an
area optimal mapping of MFFC, is computed. When we map MFFC,, for
each node w € MFFC, other than v, an optimal mapping of MFFC,, is
already known. The optimal mapping of MFFC, consists of the proper
selection of LUT,, the LUT for v, and an optimal mapping of MFFC, —
LUT,, which can in turn be partitioned into disjoint MFFCs, whose optimal
mappings have been computed already, thus area(MFFC, — LUT,) can be
calculated easily. Therefore an optimal mapping of MFFC, can be obtained
by finding the best LUT, that minimizes area(MFFC, — LUT,). This
method was called df-map in Cong and Ding [1993a]. An example is shown
in Figure 8.

In order to find the best LUT,, all K-feasible FFCs of v are enumerated,
which is achieved by enumerating all K-feasible cuts of MFFC,. In Cong
and Ding [1993a], the enumeration of all K-feasible cuts was done using
tree-based recursion. A spanning tree ST, of MFFC, was used and all
K-feasible cuts in ST, were generated. These cuts were then modified to
include the starting nodes of the edges not in ST, (called escape nodes),
when necessary. It was shown that the total number of K-feasible cuts in
MFFC, is bounded by a polynomial of | MFFC,| for a given constant K. It
was also shown in Cong and Ding [1993a] that there exists an area optimal
mapping solution, in which each K-feasible MFFC is contained in an LUT.
This leads to a preprocessing step that collapses all K-feasible MFFCs,
which often reduces the number of nodes in the network significantly.

Duplication-free mapping for area minimization is of interest for the
following reasons. First, it is a good approximation of general mapping for
area minimization, as logic duplication increases the number of gates and
the interconnection density, which may result in more LUTs and/or a large
routing area in the mapping solution implementation. Second, area optimal
mapping with logic duplication is difficult (in fact, NP-hard, as shown in
the next subsection). Nevertheless, proper logic duplication can be benefi-

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 179

cial to area minimization in some cases. For example, if a large number of
unsaturated LUTSs exist after duplication-free mapping, proper logic dupli-
cation can take advantage of the extra LUT capacities and reduce the LUT
count.

Although df-map can be easily modified for depth-optimal duplication-
free mapping, there is no such need—first, delay-optimal mapping often
uses a considerable amount of logic duplication to increase the parallelism
in the network; second, there exist more efficient algorithms for depth-
optimal mapping of general networks.

4.3 General Network Mapping

One approach to general network mapping is to partition the network into
a set of MTs or MFFCs and map each of them separately. Tree partitioning
has been a common practice in cell library based technology mapping
[Keutzer 1987]. Such approaches, however, often compromise the mapping
quality. In this section, we present direct mapping techniques for general
networks.

4.3.1 Delay Minimization. For depth and general static delay minimi-
zation, mapping for each node can be optimized independently without
worrying about logic sharing, as logic can be duplicated as needed. There-
fore the depth optimal mapping of node v depends only on the mapping of
nodes in N,. Because a mapping of N, consists of LUT, and a mapping of
N, — LUT,, an optimal mapping of N, chooses the “best” LUT, to minimize
the delay of the optimal mapping of N, — LUT,, using dynamic program-
ming. We present several algorithms that compute the “best” LUT, for each
node v. All of them assign a label for each node in topological order to guide
the dynamic programming procedure and determine LUT, for each node v.

The first method is called dag-map, proposed in Cong et al. [1992b] based
on a classical labeling algorithm called Lawler’s labeling [Lawler et al.
1969]. Lawler’s labeling is a monotonic labeling procedure, in the sense
that the labels along any path from a PI to a PO are nondecreasing with
[(v) = 0 for any PI node v. The rule is very simple. For each nonPI node v,
let p be the largest label of the nodes in input¢(v). Then [(v) = p if the set of
nodes w € N, with label [(w) = p form a K-feasible cone of v; otherwise
l(v) = p + 1. Given such a labeling, the LUT of v will be LUT, = {w|w €
N,, l(w) = l(v)}, which is K-feasible according to the labeling rule, and has
depth /(v). An example is shown in Figure 9(b). Note that dag-map requires
the input network to be K-bounded in order to guarantee a mapping
solution.

This simple method has a time complexity of O(n?) for a network of n
nodes. But the depth of its mapping solution is optimal only if the network
is monotonic under LUT mapping, namely, if a cone C,, is not K-feasible,
then any larger cone C, containing C,, cannot be K-feasible [Cong et al.
1992b]. However, general networks are not monotonic under LUT mapping
due to the existence of reconvergent fanout paths. Consequently, dag-map
cannot guarantee depth optimality [see Figure 9(c)].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

180 . J. Cong and Y. Ding

Fig. 9. General network mapping using Lawler’s labeling for K = 3: (a) original network and
labels; (b) dag-map mapping result of depth 2; (¢) optimal mapping of depth 1.

The suboptimality of Lawler’s labeling is due to the fact that when
selecting LUT,, it only looks at a neighborhood of v. This drawback was
overcome by the flowmap method proposed in Cong and Ding [1992]. It
formulates the problem of finding LUT, as computing a minimum height
K-feasible cut (X, X) of N,, where the height h(X, X) is defined to be
the largest label of nodes in X. According to the labeling rule of flowmap,
the label of each PI is still 0, and the label of a nonPI node v is I(v) =
h(X, X) + 1. It can be shown that the label defined in such a way is
actually the minimum depth of v in any mapping solution, and LUT, = X
clearly gives a solution that realizes the depth, and thus is a depth-optimal
mapping solution.

The key step is then to compute a minimum height K-feasible cut for
each node. It was shown in Cong and Ding [1992] that for node v and any
node w € input(v), [(v) = I(w). Moreover, if w has the maximum label
among the nodes in input(v), then [(v) = [(w) + 1. Therefore flowmap uses
the following strategy. First, all nodes in N, with labels equal to [(w) are
collapsed into v to obtain a reduced network N,’ [see Figure 10(b)—(c)]. This
guarantees that any cut in N/ will have height at most [(w) — 1. If a
min-cut (X, X) in N, is K-feasible, it will be of minimum height in N,, and
flowmap assigns [(v) = l(w) and LUT, = X [see Figure 10(c)—(d)]. If no
K-feasible cut exists in N, the minimum height of a K-feasible cut in N,
must be [(w). In this case, flowmap assigns [(v) = [(w) + 1 and LUT, =
{v}, given that v is K-feasible.

The min-cut in N, can be computed using the node-splitting transforma-
tion and maximum flow computation (Details can be found in Cong and
Ding [1992]). Although originally presented only for K-bounded networks,
flowmap is applicable to any K-mappable network. If node v is not
K-feasible and no K-feasible cut exists in N, LUT, can be determined by a
min-cut in N,, which is K-feasible if the network is K-mappable. The time
complexity of flowmap is O(Kmn) for a network of n nodes and m edges.

This algorithm can be extended to general static delay models. The
dynamic programming procedure, as well as the minimum height K-
feasible cut formulation, can still be applied. Only the cut computation

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 181

(a))] () (d

Fig. 10. Example of depth optimal mapping of general network for K = 3: (a) original
network and labels of nodes in N,; (b) transform into flow network; (c) collapse nodes with
largest labels, compute K-feasible cut; (d) get /(¢) and LUT,.

requires modifications. For net-delay models, we label each node v with the
delay of the optimal mapping of N,, including the net-delay on the output
of v. Because each net can have arbitrary delay, the labeling is no longer
monotonic. However, as the height of any K-feasible cut must be equal to
the label of some node in N,, one can use a binary search over the node
labels to compute a minimum height K-feasible cut (see Cong et al. [1993]
for details). The resulting time complexity is (Kmn log n), as the number of
labels is bounded by the number of nodes. For edge-delay models, different
fanout branches of a net may have different delays, resulting in multiple
labels for node v, each being the sum of the delay of the optimal mapping of
N, and an edge-delay. Therefore, for each target height 2, a node may have
some labels larger than A but others not. Such a node can be partially split
during the flow network construction for min-cut computation (for details
see Yang and Wong [1994]). The resulting complexity is O(Kmn log m).
Under dynamic delay models, the delay of a net is linked with its
structure in the mapping solution, and different branches of a multifanout
node will interact. As a result, the optimal mapping of v depends not only
on the optimal mapping of nodes in N,, but also on that of nodes outside
N,. This prevents the use of the dynamic programming technique we have
been using so far. In Cong and Ding [1994a], it was shown that the
delay-optimal mapping problem under the dynamic nominal delay model
(Section 2.3) is NP-hard. The proof transforms the well-known NP-complete
problem 3SAT [Garey and Johnson 1979] into the decision version of the
dynamic nominal delay minimization problem in two ways. For general
networks, the decision of the truth value assignment for a variable in 3SAT
is linked to the decision of duplicating a two-fanout node. Based on this
reduction, it is shown that for K = 5, the LUT mapping problem for
dynamic nominal delay minimization is NP-hard. For lead-DAGs, the
decision of the truth value assignment for a variable in 3SAT is linked to
the decision of merging two fanouts of a node. Based on this reduction, it is
shown that for K = 6, the LUT mapping problem of dynamic nominal delay

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

182 . J. Cong and Y. Ding

minimization for leaf-DAGs is NP-hard. This also implies that the duplica-
tion-free mapping on general networks for dynamic nominal delay minimi-
zation is NP-hard for K = 6. A heuristic was used in Cong and Ding
[1994a] to incrementally adjust the static delay based on the dynamic
nominal delay as the mapping process proceeds.

4.3.2 Area Minimization. Unlike delay optimal mapping, area optimal
mapping cannot be carried out independently in each N,, as the LUT
sharing among overlapped subnetworks must be considered. Determining
whether to duplicate a node of multiple fanouts (to be covered by LUTs of
other nodes) or implement it as an LUT (to be shared as input to other
LUTs) is a difficult problem. In fact, it was shown in Levin and Pinter
[1993] that for K = 4 the problem of area-optimal LUT mapping is
NP-hard. This result was further generalized in Farrahi and Sarrafzadeh
[1994b] to K = 5. Both proofs transform the 3SAT problem to the decision
version of the area-optimal mapping problem by linking the decision of the
truth value assignment for a variable in 3SAT with the decision of the
duplication of a node in the mapping problem. The only case in which
area-optimal mapping is possible in polynomial time is when the network is
K-exact, that is, it consists of K-input nodes only [Thakur and Wong 1995].
The difficulty of logic duplication, as indicated in this proof, is one reason
that the study of duplication-free mapping for area minimization is neces-
sary and interesting. On the other hand, it is also an indication that
duplication-free mapping alone will not achieve optimality. Therefore, in
practice, a second-phase mapping that exploits logic duplication often
follows duplication-free mapping (e.g., in Cong and Ding [1993a]).

Given that the area-optimal mapping problem is NP-hard, it is solved
either by solution space enumeration, which will have exponential time
complexity, or by heuristics. There are two dimensions in the solution
space: each solution has to select a subset of nodes to be implemented by
LUTSs, and each node has to select a K-feasible cone to be covered by its
LUT implementation. We classify the mapping techniques for area minimi-
zation based on the order in which these dimensions are considered.

Node Selection Based Enumeration. Node selection based enumeration
generates all node subsets for LUT implementation, and for each selected
subset determines the LUT implementation of each node. This approach
was first used in Woo [1991], in the form of edge visibility, where mapping
for multi-output LUTs was considered. A subset of edges is first selected to
be visible, and the invisible edges are collapsed to determine the coverage
of the LUTs whose outputs are visible. For single-output LUT mapping, we
can select a subset S of visible nodes, and S defines a feasible solution if
and only if S contains all PO nodes, and, for each node v € S, there is a
K-feasible cone C, such that each nonPI node w € input(C,) is also in S.
The existence of such a K-feasible cone for each v € S can be tested using
the network flow based method as used in Cong and Ding [1994a] and Cong
and Hwang [1995a]. The enumeration can be carried out using branch-and-
bound to improve efficiency.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 183

Node Covering Based Enumeration. Node covering based enumeration
first generates all LUT implementations of the nodes, and then selects a
subset of them to implement. The approach taken in Murgai et al. [1990]
can be viewed as node covering based enumeration. For each node v, it
produces all the possible LUT implementations (called supernodes) of v.
Then it chooses a subset of the supernodes to form a mapping solution
under the conditions that (1) each node must be covered in some supernode,
and (2) if one supernode is chosen, each of its inputs must be a primary
input or generated by another chosen supernode. The selection procedure is
formulated as a binate covering problem,® which is NP-hard and is solved
either exactly (by enumeration) or heuristically [De Micheli 1994].

Integer Linear Programming. Both node selection and node covering
problems can be formulated in an integer linear programming® formulation
as recently proposed in Chowdhary and Hayes [1995]. Each node v is
associated with a variable e(v) € {0, 1}, where e(v) = 1 if and only if v is
visible in the mapping solution; and with a variable s(v), indicating the
maximum input size of an LUT containing v. Moreover, each pair of nodes
u and v where some fanouts of u reconverge at v, are associated with a
variable r(u, v). The objective is to minimize e(v), that is, the total
number of LUTSs, under a set of linear constraints that specify the bound-
ary conditions (all PIs are visible and all POs need to be implemented by
LUTs), LUT size constraints, and LUT size evaluation with consideration
of reconvergent paths in the network. The numbers of variables and
constraints may reach O(n?) for a network of n nodes, due to the existence
of a possibly quadratic number of reconvergent paths. In Chowdhary and
Hayes [1995] the integer linear programming problem is solved using
branch-and-bound for implicitly enumerating the values of integer vari-
ables. At each step of enumeration, a subset of variables is fixed and other
variables are relaxed to real valued variables. Then a linear programming
problem is solved, and its solution is used to further the branch-and-bound
search.

Node Selection Based Heuristics. For simplicity we regard the heuristic
mapping methods for area minimization as approximations to the first two
enumeration methods, and classify them accordingly. Note that many

8 The binate covering problem can be stated as follows: Given a finite set S, a collection C of
its subsets, and a relation defined on C, namely, —: C X C, we want to select the minimum
number of subsets from C such that they cover S, and if a subset s is selected, then for any
subset s’ satisfying s — s’, s’ must also be selected. The covering problem can be transformed
into the well-known SAT problem [Garey and Johnson 1979] by converting each element e of
S into a clause (s,;+ - -+ + s,.), where s,q, - - -, s,; are the subsets in C that contain e, and
converting each relation s; — s; into a clause (s; + s;). The word binate in the name comes
from the appearance of complemented variables in the second type of clauses.

9 The integer linear programming problem is to minimize a linear expression a,x, + ---
+ a,x, under a set of constraints ¢;;x,+ -+ +¢;,x, = b, for 1 =i = m, where x,, ..., x,
are integer variables. This problem remains NP-hard even when all variables and coefficients
are limited in {0, 1} (called the zero-one integer programming) [Garey and Johnson 1979].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

184 . J. Cong and Y. Ding

heuristic mapping methods are approximations of both. Also, most of these
heuristics were developed independently of the preceding enumeration
methods.

Many node selection based heuristics carry out a marking procedure in a
traversal of the network in topological order, and a node is marked if it is
selected for LUT implementation. For each nonPI node v, a special cone
SC, is defined as the union of {v} and the cones SC,, of the unmarked
nonPI nodes w € input(v). The input set input(SC,), consisting of only Pls
and marked nodes, is called the signal set of v, which will be the inputs to
LUT, if SC, is used to implement v. When v is visited, if SC, is K-feasible,
no new nodes will be marked. If SC, is infeasible, some nodes u € SC,, will
be marked, and consequently SC, will be excluded from the union that
forms SC,. This may reduce |input(SC,)|. By marking one or more nodes,
SC, will eventually become K-feasible. Once all nodes are visited, the POs
and marked nodes will be implemented by LUTs. There are various ways to
select the nodes to be marked. (See, for example, Farrahi and Sarrafzadeh
[1994b], Groh [1991], Hwang et al. [1994], Kapoor [1994], Karplus [1991],
and Levin and Pinter [1993]). A common idea is to encourage signal sharing
(i.e., by marking nodes that have multiple fanouts to unvisited nodes), as
this will allow fewer nodes to be marked.

Another approach to node selection is to use a genetic algorithm. A node
subset can be represented by a bit string where each bit represents a node
and a bit of value 1 represents a selected node. Standard genetic operations
such as crossover and mutation can be applied on the bit strings to evolve to
new strings (i.e., new solutions), and fitness functions can be designed to
reflect the optimization objective. This method was used in Kommu and
Pomeranz [1993].

Node Covering Based Heuristics. Another group of heuristics can be
viewed as approximation to the node covering based enumeration. There
are two ways for such approximation. First, instead of enumerating all
possible supernodes of v, one can produce only one or a few “good”
supernodes. We illustrate this approach using two examples. Second,
instead of computing a true binate covering of the supernodes, one can
compute a simpler covering. We also give one example of this approach.

Two types of supernode generation heuristics are intuitively good. One is
to pack as many nodes into each supernode as possible; the other is to share
as many input signals among the supernodes as possible. The packing
based approach was used in Cong and Ding [1992] in a method called
flowpack. Similar to flowmap, it computes a K-feasible cut in N, to
determine LUT,, but unlike flowmap, no depth constraint is considered.
Instead, the objective is to find a maximum volume K-feasible cut, where
the volume of a cut (X, X) is defined to be |X|, and LUT, = X. The flowpack
algorithm starts with a min-cut of maximum volume (which is unique
according to Cong and Ding [1992]), and gradually increases the cut volume
as well as the cut size until a maximal volume K-feasible cut is obtained.
The worst case complexity of each cut computation is O(K®m) where m is

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 185

the number of edges in N,. The sharing based approach was used in the
procedure called cutmap [Cong and Hwang 1995a]. It improves flowpack by
computing a minimum cost K-feasible cut, where the cost of a cut (X, X) is
defined to be the sum of the costs of the nodes in input(X). To promote
sharing, the algorithm assigns a low cost to the nodes that are known (or
predicted) to be implemented by LUTs and assigns a high cost to other
nodes. It starts with an initial set of low-cost nodes that are likely to be
implemented by LUTs in a good mapping solution, such as the roots of
large MFFCs, and computes the LUT for each node that has to be
implemented (including PO nodes and the inputs to existing LUTSs) one by
one using the minimum cost K-feasible cut. Once a high-cost node is
implemented by an LUT, its cost is lowered. Because the LUTs are
determined by K-feasible cuts, cutmap can also produce a depth optimal
mapping solution by adding the minimum-height constraint into the cut
computation for the LUTs on the critical paths. The worst case complexity
of each cut computation is O(2Kmn™/2%1) but by using a pruning
theorem the actual cost can be much lower.

The preceding methods compute at most one supernode for each node,
therefore the covering part is trivial. Alternatively, we can maintain more
than one supernodes per node and select the best covering heuristically.
For example, graph matching can be used to approximate the binate
covering formulation in Murgai et al. [1990], as used in Chen et al. [1992].
In the simplest case, if each supernode is limited to cover either one node,
or a pair of nodes v and w such that v is the single output of w (called
predecessor packing in Chen et al. [1992]), a graph can be constructed using
the nodes as vertices on which each supernode of two nodes defines an
edge. On such a graph, a maximum matching implies a maximum number
of simultaneous pairwise merge. Efficient maximum matching computation
can be applied repeatedly until no more merge is possible. For a supernode
of three or more nodes, a hyperedge can be formed, and a matching implies
a set of simultaneous multinode merge (a heuristic algorithm for hyper-
graph matching is developed in Chen et al. [1992] for this purpose).

4.4 Mapping for Routability and Low Power

Very limited work has been reported on routability and power-driven LUT
technology mapping. Two approaches have been taken for routability
optimization: one approach uses a heuristic cost function to guide the
mapping process [Schlag et al. 1992], the other combines mapping with
placement or even routing [Bhat and Hill 1992; Chen et al. 1993; Togowa et
al. 1994]. For power minimization in LUT mapping, it was shown recently
in Farrahi and Sarrafzadeh [1994a] that under a power dissipation model
based on load capacitance and transition frequency, the problem is NP-
hard. A node selection based heuristic was proposed by Farrahi and
Sarrafzadeh [1994a].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

186 . J. Cong and Y. Ding

5. REVIEW OF EXISTING ALGORITHMS AND SYSTEMS

In this section we review the existing algorithms and systems for LUT logic
synthesis, which are built upon one or several of the techniques presented
in the two preceding sections. Despite our effort, our collection may not be
complete.’® Due to space limitations, the review is very brief. But we hope
it provides a fairly comprehensive and up-to-date reference source for
interested readers.

Because many algorithms and systems use more than one type of
optimization technique and have multiple optimization objectives, a strict
classification is difficult. We choose to group the algorithms and systems of
similar style or origin together in our presentation to help the readers
understand the evolution of the ideas. For each algorithm and system, we
present the assumption on input representation, the types of operations
used and the organization of these operations, the primary and secondary
optimization objectives, as well as the architecture-specific consideration
and/or interaction with other design phases (if any).

5.1 The Chortle Family

One of the earliest mapping algorithms, the original Chortle [Francis et al.
1990] takes a simple-gate network as input and partitions it into leaf-
DAGs. Infeasible nodes are first decomposed into feasible ones either
optimally or heuristically. Then each leaf-DAG is mapped separately as a
tree for area minimization, using the dynamic programming technique by
enumerating all possible LUT implementations of the root node.

This algorithm later evolved into Chortle-crf [Francis et al. 1991b], which
has significantly better performance and solution quality. In Chortle-crf,
decomposition and technology mapping are combined in a bin-packing
procedure (Section 3.1.3) using the FFD heuristic, which is much faster
than Chortle, and is optimal for K = 5. Chortle-crf also exploits the
reconvergence of the leaf-DAG inputs using the MSD heuristic (see Section
3.1.4), as well as the replication of the root LUT of a leaf-DAG when it can
be merged into its fanout LUTs. As a result, it reduces the area by 14%
when compared with the original Chortle algorithm.

The idea in Chortle-crf was then extended to depth minimization in the
Chortle-d algorithm [Francis et al. 1991a] (Section 3.1.4). In addition, it
minimizes area as a secondary objective by using area-optimal node decom-
position along noncritical paths and depth-optimal node decomposition
along critical paths, as well as predecessor packing (Section 4.3.2). The
mapping solutions of Chortle-d use an average of 35% fewer levels of LUTs
than those of Chortle-crf, at the cost of an average of 59% larger area.

Both Chortle-crf and Chortle-d have very efficient implementations. The
Chortle algorithms have solved the optimal mapping problem for an un-

10 Noticeably, the commercial FPGA synthesis systems are absent, because their detailed
algorithms are generally unknown to the public.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 187

bounded tree, but a prior tree partitioning often compromises the mapping
quality.

5.2 The MIS-pga Family

Another early algorithm, the original MIS-pga [Murgai et al. 1990], was an
extension of the UC Berkeley MIS-Il logic synthesis system [Brayton et al.
1987] to FPGA synthesis. It is applicable to general networks for area
minimization. In the logic optimization step, it first uses Roth-Karp decom-
position, kernel extraction, and AND-OR decomposition to decompose the
network into a K-bounded one. Then it collapses nodes into their fanouts,
while maintaining K-feasibility, in a heuristically determined order. In the
technology mapping step it uses node covering based enumeration (see
Section 4.4.2). It also includes a postprocessing step using maximum
matching to merge pairs of LUTs into Xilinx XC3000 (or, equivalently,
AT&T ATT3000) cells (called CLBs) which can either implement one
5-LUT, or two 4-LUTs with a total of five distinct inputs [Xilinx 1994].
Such a procedure has since been used in many other algorithms and
systems.

A subsequent improvement was referred to as MIS-pga(new) [Murgai et
al. 1991b], where the logic optimization procedure was substantially en-
hanced with more decomposition techniques including cube-packing, cofac-
toring, and cube partitioning. All decomposition methods are tried and the
best result is kept. The K-feasibility constraint during node collapsing is
relaxed, and the collapsed nodes that are not K-feasible are redecomposed
according to a cube-packing based quick cost estimation. This way the
entire network may be collapsed if the number of Pls is small. The binate
covering in the mapping step is reformulated to include two-output super-
nodes to facilitate better XC3000 CLB mapping. These enhancements
result in an area reduction of 28.2% compared with MIS-pga.

Another member in this family is MIS-pga(delay) [Murgai et al. 1991a] for
delay minimization. In topological order, the algorithm tries to collapse
each critical node into its critical fanouts. If such collapse is K-feasible, or
can be made K-feasible by decomposition without increasing level, it is
performed. This is repeated until no more collapse is possible. When the
number of PIs is small, it also tries other approaches, that is, to collapse
the entire network into a two-level one and use cofactoring and Roth-Karp
decomposition, respectively, to get two new K-bounded networks. The best
result of all applicable approaches is chosen for technology mapping using a
heuristic binate covering. The mapping solution is further improved by a
pseudoplacement phase, in which the LUTSs are iteratively placed in a 2-D
grid using simulated annealing [Kirkpatrick et al. 1983]. At each iterac-
tion, MIS-pga(delay) identifies critical sections, decomposes critical nodes,
updates the placement (with reduced routing congestion due to the decom-
position), and performs local collapsing to reduce the number of nodes.

The MIS-pga FPGA synthesis system also provides other functionalities
in addition to those in the preceding algorithms, such as sequential

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

188 . J. Cong and Y. Ding

synthesis for LUT based FPGAs [Murgai et al. 1993b] and synthesis for
nonLUT based FPGAs [Murgai et al. 1992]. As part of the MIS-II system, it
has great flexibility in combining various logic synthesis operations in its
course of optimization, although the time-consuming nature of these oper-
ations often limits the space of exploration.

5.3 The TechMap Family

The TechMap algorithms represent the combination and enhancement of
the ideas of both the Chortle algorithms and the MIS-pga algorithms. The
original TechMap algorithm for area minimization [Sawkar and Thomas
1992] works on a simple-gate network and performs combined decomposi-
tion and mapping on a general network directly, using a greedy heuristic to
determine the decomposition (Section 3.1.3). It also collapses small net-
works and then redecomposes them by cofactoring to explore alternative
network structures.

The delay minimization version TechMap-L [Sawkar and Thomas 1992],
is similar to the TechMap algorithm, except that in the decomposition
heuristic, priority of grouping a pair of inputs is determined based on the
depth of the resulting node. When small networks are collapsed and
redecomposed, cofactoring is also guided by depth. Subsequently, this
algorithm was improved in TechMap-D [Sawkar and Thomas 1993] with
two major enhancements: combined area and depth minimization by apply-
ing the TechMap algorithm on noncritical nodes, and the TechMap-L
algorithm on critical nodes, and a better cost function that represents the
tradeoff of depth, area, and input size. It also has a placement phase, but is
performed separately after mapping without resynthesis.

5.4 The FlowMap Family

A notable progress in LUT logic synthesis was the development of delay-
optimal technology mapping algorithms for general networks. A number of
algorithms can be included in this family, all related to the FlowMap
algorithm [Cong and Ding 1992, 1994c], which was the first polynomial-
time depth-optimal mapping algorithm for general K-mappable networks.

The predecessor of FlowMap was the DAG-Map algorithm [Cong et al.
1992b]. It first transforms a general network into a depth-minimum
two-bounded simple-gate network using AND-OR and Huffman tree decom-
positions. Then it maps the network using the dag-map algorithm (Section
4.3.1). Finally, it improves the mapping solution using two postprocessing
operations, namely, gate decomposition (Section 3.5.1) and predecessor
packing (Section 4.3.2), to minimize the number of LUTs based on a
maximum matching formulation.

The original FlowMap algorithm [Cong and Ding 1992, 1994c] goes
through the same logic optimization steps as DAG-Map, but uses the
flowmap procedure (Section 4.3.1) for mapping, and includes one more
postprocessing step using the flowpack operation (Section 4.3.2). The
minimum height K-feasible cut computation used in flowmap guarantees

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 189

depth-optimal mapping for general K-bounded networks. The FlowMap
mapping results were shown to be superior to those of Chortle-d, DAG-Map,
and MIS-pga(delay)—these algorithms use 9-50% more LUTs with up to 7%
larger depth on average compared to FlowMap [Cong and Ding 1992].

The FlowMap algorithm has inspired a number of follow-up algorithms
with various enhancements. The CutMap algorithm [Cong and Hwang
1995a] considers area minimization during depth-optimal mapping. It
replaces the minimum height K-feasible cuts computed by FlowMap with
minimum-cost K-feasible cuts of bounded heights, where the cost of a cut
measures the potential area increase (Section 4.3.2). A 13% area reduction
was reported in Cong and Hwang [1995a] compared with FlowMap. In a
different approach, the FlowMap-r algorithm [Cong and Ding 1993a, 1994b]
enhances FlowMap with more powerful postprocessing operations. After the
mapping solution is obtained using the flowmap procedure, FlowMap-r
identifies the critical paths according to a given depth constraint, and then
partially or fully undoes the depth-optimal mapping along the noncritical
paths without violating the depth constraints using a set of depth relax-
ation heuristics. The resulting network is then remapped using the dupli-
cation-free df-map algorithm (Section 4.2) followed by the FlowMap post-
processing steps to further exploit beneficial logic duplication. The
FlowMap-r algorithm saves an average of 10% LUTs compared to FlowMap
without compromising depth optimality [Cong and Ding 1993a]. Another
interesting feature of FlowMap-r is that it can produce a spectrum of
mapping solutions for a given design by gradually relaxing the depth
constraint and producing an area-minimized solution for each depth bound.
This provides area-depth tradeoff in the selection of mapping solutions.
Also using the relaxation concept, the Sweep algorithm [Shin and Kim
1995] first uses Lawler’s labeling (i.e., dag-map) to determine the node
labels and perform the initial mapping. Then it goes through a number of
sweeping iterations to change the node labels (and thus the mapping
solution) in order to reduce the cost of the mapping solution, which is
measured by a heuristic function of the total number of LUTs and the total
number of LUT inputs. Finally a greedy packing procedure is used as
postprocessing.

Improving FlowMap from a different angle, the FlowSYN algorithm [Cong
and Ding 1993b] aims at further enhancement of the depth minimization
by incorporating logic optimization into the technology mapping procedure.
When computing the node label of v, if the largest node label in N, is p and
N, does not have a K-feasible cut of height p — 1, flowmap would assign
l(v) = p + 1 (Section 4.4.1). However, FlowSYN finds a cut C; = (X;, X;) of
height p — i (where 2 =i = p — 1), and tries to redecompose X; in such a
way that after the decomposition, the distance from any node w €
input(X;) to v will be no more than p — I(w). Such a decomposition, if it
exists, will give a mapping solution of depth p for N, and we can still have
l(v) = p. FlowSYN tries the redecomposition in the orderi = 2,3, ...,p —
1, and uses the OBDD based functional decomposition with the preference
of choosing the bound set from the nodes with smaller depths. For area

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

190 . J. Cong and Y. Ding

minimization, a redecomposition that will reduce the area but not the
depth is also accepted as long as it does not increase the critical path depth.
A saving of 20% in area and 13% in depth compared with FlowMap was
reported in Cong and Ding [1993b].

Another direction of improving FlowMap is to extend the delay model
from unit delay to general delays. First, general static net-delay models
were used in the FlowMap-d algorithm [Cong et al. 1993, 1994]. It uses
binary search to determine the minimum height K-feasible cut. The delay
assignment can be determined by an iterative mapping and placement
procedure [Gao et al. 1993] that estimates the delay of each net after
placement. A pseudodynamic delay assignment procedure was proposed in
Cong and Ding [1995] based on the nominal delay model. The FlowMap
algorithm has also been generalized to static edge-delay models. The
Bias-Clus algorithm in Mathur and Liu [1994] computes K-feasible cuts
according to a biased topological order that puts nodes on longer paths
closer to v, so that they are more likely covered by LUT,. But Bias-Clus
does not guarantee the optimality of its mapping under the edge-delay
model. Later on, this problem was optimally solved by the Edge-Map
algorithm [Yang and Wong 1994], which modifies the node-splitting opera-
tion in the flow network construction of FlowMap-d so that each node can
carry multiple labels during the cut computation.

The Huffman-tree based decomposition was used by FlowMap and its
variations for decomposing input networks when they are not K-mappable.
It minimizes the number of levels in the decomposed network, but not the
depth of the LUT mapping solution. An improved algorithm, named
DOGMA, was developed to compute better structural gate decomposition of
general networks for LUT mapping (Section 3.1.4) [Cong and Hwang 1996].
Because DOGMA considers the depth-optimal node labeling process for
K-mappable networks used in FlowMap, it usually leads to better mapping
results in terms of both depth and LUT count.

The FlowMap algorithm and its successors, including FlowMap-r, CutMap,
and FlowSYN, have been incorporated into a general logic synthesis system
for LUT based FPGAs, named RASP [Cong et al. 1996]. RASP consists of a
core with a set of LUT synthesis algorithms, together with a set of
architecture-specific technology mapping routines to map a generic LUT
network to programmable logic blocks in various LUT based FPGA archi-
tectures, so that it can produce designs optimized for various LUT based
FPGA architectures, and can quickly adapt to new LUT based FPGA
architectures.

5.5 Partitioning-Enumeration Based Mappers

Although many systems and algorithms use enumeration at some steps to
compute intermediate solutions during logic optimization or mapping, two
mappers rely on direct application of branch-and-bound enumeration to
find optimal mapping solutions, often after partitioning a large network
into smaller portions. An early algorithm named Vismap [Woo 1991] uses

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 191

the edge visibility concept to characterize a solution by the edges not
covered inside the logic cells of the target XC3000/ATT3000 CLBs. Once a
set of visible edges is chosen, invisible edges are collapsed to reduce the
network into a mapped one. By enumerating the solutions, it is capable of
finding the area-optimal mapping; but because the number of candidates is
very large even with branch-and-bound pruning, Vismap first partitions the
network into smaller regions, and then finds optimal mapping for each
region.

A more recent MILP approach by Chowdhary and Hayes [1995] uses the
mixed integer linear programming formulation, which can be applied to
area minimization as we introduced in Section 4.3.2, as well as other
objectives such as depth minimization with area constraint. The MILP
formulation was solved using branch-and-bound enumeration. Due to its
high complexity, large networks are first partitioned based on their high-
level structures before each portion is mapped, which was reported to yield
significant speedup with only marginal loss of quality.

5.6 Node Selection Based Heuristic Mappers

In this section we present several heuristic mapping algorithms for area
minimization, which are mostly based on the node selection heuristic in
Section 4.3.2. The common core of most of these algorithms is the marking
procedure that marks visible nodes in topological order, to achieve the
feasibility of the input signal set input(SC,) for each node v (Section 4.3.2).
These algorithms differ in terms of the criteria used for choosing nodes to
mark.

The Level-Map algorithm [Farrahi and Sarrafzadeh 1994b] works on a
K-bounded network, and when node v is processed and |input(SC,)| > K,
the unmarked nodes w in input(v) are marked in decreasing order of the
cost function p(w) = |input(SC,)|+ 8|output(w)|, where § is called the
fanout factor, until SC, becomes K-feasible. This is a generalization of
tree-map (Section 4.1) where 6 = 0. By having 8 > 0, nodes with multiple
fanouts are given higher priority to be marked. (A variation of Level-Map,
called Level-Map-p, was also proposed in Farrahi and Sarrafzadeh [1994a]
for power minimization, where the marking order is based on two cost
functions.)

The same cost function has also been used in the Factor-Map [Hwang et
al. 1994]. It first recursively performs a restricted form of functional
decomposition f(X) = @ 1=;=nf1(X)f,(X,), where X; U X, = X and X; N
X, = J, to make the network a tree of K-feasible XOR and AND gates.
Then a similar marking procedure is applied. The TeXmap algorithm in
Kapoor [1994] marks w €& input(v) for v, in the increasing order of
|I,| —|D,|, where I, is the set of nodes u € output(w) such that
linput(SC,) | increases after w is marked,'* and D, is the set of nodes u €

11 This will happen only when input(SC,) becomes redundant, and can be easily avoided.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

192 . J. Cong and Y. Ding

output(w) such that |input(SC,) | decreases after w is marked (except that
a fanout-free input is marked last.)

Other algorithms also consider the nodes outside input(v) when marking
for node v. The algorithm in Groh [1991] marks a node w € SC, with
minimum cost =, logx (|input(SC,)|), where I,, = { u |input(SC,) > K
after w is marked}, after converting the input network into a NAND2
network. The Xmap algorithm [Karplus 1991] first converts the network
into an ITE, and then marks the ITE in a multiphase approach: it first
marks the nodes w € input(v) with |input(SC,)| > h, where h is a
threshold value. If this is not enough, recursively the nodes u € input(w)
of the nodes w € input(v) with |input(SC,)| > h + 1 are marked, and so
on. Finally, if these are still not enough, the unmarked nodes w € input(v)
are marked in decreasing order of |input(SC,)|.

The three algorithms proposed in Levin and Pinter [1993] use marking
procedures for 4-LUT mapping that do not follow the topological order.
Each of the algorithms first decomposes each infeasible node using mini-
mum tree decomposition on simple gates and cofactoring on complex gates,
then implements each four-input node with a 4-LUT and marks the node
and its inputs. Then unimplemented POs and marked nodes v have their
SC, computed, and each of these algorithms marks nodes in L =
U |inputscy s (SC, — {v}) using a different heuristic. Once a new node is
marked, L is updated. The procedure ends when L = .

Finally, the GAFPGA algorithm [Kommu and Pomeranz 1993] uses a
genetic algorithm to reduce the number of nodes to implement. It performs
both simple-gate decomposition and technology mapping: each mapping
solution by two bit-strings, one for the fully decomposed two-input network
in which selected nodes are marked (by the bits of value 1), and the other
for the record of the decomposition. Crossover and mutation operations are
implemented and invalid offspring are corrected by randomly marking new
nodes.

5.7 Decision Diagram Based Algorithms

The Xmap algorithm [Karplus 1991] presented in the preceding subsection
is the first to use decision diagram representation for LUT mapping. It
converts the input network in an ITE and maps the ITE directly. The
algorithm in Besson et al. [1994] also maps ITE directly. Each node is first
represented by its OBDD (if the OBDD is too large, the node is decomposed
first), which is minimized by variable ordering heuristics based on an
improved lexicalgraphical approach. The OBDDs are then connected to
form an ITE network and mapped into LUTSs. In the algorithm proposed in
Schubert et al. [1994], the Ordered Functional Decision Diagram (OFDD),
based on Davio expansion, is used to represent the node functions, and is
minimized by variable ordering heuristics and inverter insertion. The
connected OFDD network is mapped for depth reduction by visiting each
node in reversed topological order, collapsing its input(s) with largest
level(s) into the node without violating K-feasibility.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 193

Many algorithms use decision diagrams, in particular OBDDs, for logic
optimization. In Sasao [1993], an algorithm was proposed to implement a
function of seven or more variables with a network of 5-LUTs. It decom-
poses an m-input function using up to three (m — 2)-input encoding
functions, so that the base function is five-feasible. If such a decomposition
is impossible after trying all variable partitions, cofactoring with respect to
two variables is used. In either case the (m — 2)-input functions are
recursively decomposed if necessary. The BDD-Syn algorithm in Chang and
Marek-Sadowska [1992] works on a nine-bounded network, using both
OBDD based functional decomposition and OBDD based extraction and
rule based reduction (Section 3.5.2) for logic optimization aiming for
5-LUTs. The resulting five-feasible network is accepted as an LUT network
without an explicit mapping phase. (Another functional decomposition
based algorithm that does not have an explicit mapping phase is the TRADE
algorithm [Wan and Perkowski 1992], which uses extended Ashenhurst
decomposition for incompletely specified, multi-output functions by super-
imposing the partition matrices, properly assigning don’t-cares, and parti-
tion matrix patching, as in Section 3.3.2.)

OBDD based extraction was used in the Catamount algorithm [Stanion
and Sechen 1995] for multilevel decomposition into LUT networks by
enumerating different extraction schemes and accepting the best extrac-
tions at each level according to a cost function that resembles a lower
bound of the final decomposition size if this extraction scheme is accepted
(Section 3.2.3).

The algorithm in Lai et al. [1993a] uses OBDD based functional decom-
position for direct mapping to Xilinx XC4000 CLBs. Each XC4000 CLB
implements a function of the form f(x,, g(yq, ..., ¥4), h(24, ..., 2,))
with at most two of f, g, and h available as the outputs [Xilinx 1994]. The
algorithm tests variable partitions against the XC4000 configuration based
on a set of rules by swapping bound set variables in the OBDD. This is
generalized in the FGMap algorithm [Lai et al. 1993b] to two-layer decom-
position, where for a function that is decomposable in the form f(g(Y),
h(Z), ...) under two bound sets Y and Z, the algorithm looks for a
mergeable pair of encoding functions g(Y) and A(Z) such that they can be
packed to form a single output function p(g(Y), h(Z)). If so, the two
functions can be implemented by an XC4000 CLB. To improve the chance of
such a decomposition, FGMap exploits different encodings of g and A for
each partition Y and Z, based on a set of existence conditions and a greedy
algorithm.

OBDD based multi-output functional decomposition was implemented in
the FGSyn algorithm [Lai et al. 1994], where the outputs are heuristically
partitioned into groups such that each group can share strict-coding type
encoding functions. The IMODEC algorithm [Wurth et al. 1995] also consid-
ers shared nonstrict-coding. It uses a more powerful decomposition method
by enumerating preferable functions to find shared encoding functions
(Section 3.3.2).

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

194 . J. Cong and Y. Ding

A recent system by Sawada et al. [1995], also based on OBDD represen-
tation, uses decomposition and also simplification (in the form of resubsti-
tution, which looks for a permissible function of a node using a given set of
nodes as inputs). For each node function f; that is not K-bounded, it uses
functional decomposition to find a set of K-feasible encoding functions &;.
Then it tries the resubstitution of each & into each f;, which (if successful)
results in a new function g,;. The gain of &, defined by (| input(g;;)
| = | input(f,)]) over all its successful resubstitutions, is computed and the
best @, is chosen. As a result, f;, is decomposed with &,, and each f; that can
be resubstituted with &, is replaced by g,;. The procedure repeats until all
nodes are K-bounded, and each K-bounded node is given an LUT. Option-
ally, resubstitution of each PO into each other PO can also be tried before
the foregoing procedure.

5.8 Mapping Enhancement Algorithms

The objective of these algorithms is not to produce a complete mapping
solution, but to enhance existing algorithms, either by producing a better
initial network, or by further optimization of a mapped LUT network. Two
algorithms were proposed to improve MIS-pga by more effective logic
optimization. The xl-map algorithm in Fujita and Matsunaga [1991] intro-
duces a preprocessing step that uses the minimal dependence set based
simplification (Section 3.5.3) to optimize the input network to MIS-pga. The
AFLO algorithm in Lu et al. [1994] modifies the cost criteria used in MIS-II
to trade off support minimization and literal minimization in simplifica-
tion, extraction, and substitution operations to prepare input for MIS-pga.
Two other algorithms focus on the reduction of a mapped LUT network.
The RENO-FPGA algorithm [Chen 1992] considers fanout-free LUT elimi-
nation and LUT fanin reduction (for further merging) using minimal
dependence set base simplification (Section 3.5.3). The MR algorithm in
Chen and Cong [1992] reduces fanout-free LUTs more systematically by
computing a maximum acyclic independent set of fanout-free LUTSs that can
be simultaneously removed or replaced.

5.9 Library Based Mapping Algorithms

Although the library based mapping approach is generally regarded as not
suitable for LUT based FPGAs due to the potential large size of the library,
efforts have also been made to reduce the library size, by merging equiva-
lent patterns (based on the fact that input signals of an LUT are completely
symmetric) and/or limiting to the most frequently used K-variable func-
tions, and the like. Libraries of manageable size for practical values of K
were constructed in Bhat [1993] and Trevillyan [1993]. One reason for such
an approach (which cannot scale up with K) is to use existing library based
technology mapping tools which are often part of a larger system and are
too costly to replace [Trevillyan 1993].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 195

5.10 Architecture Specific Algorithms

Although most algorithms and systems generate LUT networks as their
results, many also have a postprocessing phase to convert the LUT net-
works as their results, many also have a postprocessing phase to convert
the LUT network into logic cells of a particular type of FPGAs. There are
also algorithms that directly generate such architecture-specific FPGA
logic cells (such as the Vismap algorithm [Woo 1991] in Section 5.5 and the
FGMap algorithms [Lai et al. 1993a,b] in Section 5.7).

Many early mapping algorithms aimed at the XC3000/ATT3000 architec-
ture: Vismap is an example. The Hydra algorithm [Filo et al. 1991] con-
structs a shared-input graph over the nodes in the network where each
edge carries a weight equal to the number of shared inputs of the two
nodes. It is used to guide simple disjunctive decompositions to produce
shared nodes. AND-OR decomposition is also used to make the network
feasible. Finally, the network is reduced by local collapsing and covered by
CLBs. The ALOE-CLB [Dresig et al. 1991] uses functional decomposition to
make the network K-bounded, then greedily covers it with XC3000 CLBs.
An algorithm of similar flavor, but aimed at the XC4000 CLB, was reported
in Weinmann and Rosenstiel [1994], which uses the decomposition methods
of MIS-pga, together with iterative cube partitioning based on the Ker-
nighan-Lin method, and then places the nodes into the CLBs by pattern
matching.

The first routability driven algorithm, the Rmap algorithm [Schlag et al.
1992, 1994], also aims at XC3000 CLB. It first decomposes an AND-OR
network into a ¢-bounded one, ¢t = K, using repeated extraction for
interconnection reduction followed by a balanced tree decomposition. Then
it generates all possible LUT coverings of each node, and finds all potential
pairings for these coverings under the XC3000 CLB constraints. Finally, it
selects the pairs using a heuristic cost function reflecting the pin-to-cell
ratio, a routability estimation.

Several mapping algorithms were developed to facilitate FPGA architec-
ture research. They consider special features of FPGA cells. The TEMPT
algorithm in Chung and Rose [1992] minimizes depth assuming the exis-
tence of hardwires [Chung et al. 1991]. In He and Rose [1994], a heteroge-
neous LUT-mapping algorithm was proposed for cell groups containing
several LUTs of two sizes. Both algorithms are based on Chortle-crf.

5.11 Layout Based Algorithms

As the impact of placement on area, delay, and routability of the network is
significant, a number of algorithms consider layout issues in logic synthe-
sis. For example, MIS-pga(delay) [Murgai et al. 1991a], performs iterative
logic optimization and placement. The Mmap algorithm [Chen et al. 1993]
more tightly couples technology mapping and placement for delay minimi-
zation by direct mapping of a two-bounded network, generated by Roth-
Karp decomposition, into a 2-D grid of LUTSs, using a maximum weighted
matching formulation to assign LUTs to their preferred locations. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

196 . J. Cong and Y. Ding

Plack algorithm [Bhat and Hill 1992] combines placement with technology
mapping for routability optimization. It starts with a mapped network,
places it in a 2-D grid, and then uses simulated annealing to swap logic
among the LUTs based on the impact on a global routing. An integrated
mapping, placement, and routing approach is also used by the Maple
algorithm [Togawa et al. 1994], where repeated bipartitioning is performed
to map the network into a 2-D grid of cells while maintaining routability.
At each iteration the LUTSs along the region boundary have been fixed, and
after a partition is computed, new nodes are chosen (according to their
connection with the boundary LUTs) to be implemented by LUTs and
placed along the cut-line that divides the region into two for the next
iteration.

The two LUT logic synthesis algorithms using the patching approach can
also be viewed as layout based algorithms. The algorithm proposed in
Fujita and Kukimoto [1992] and Kukimoto and Fujita [1992] modifies a
mapped and routed LUT network to accommodate logic changes of the
design by keeping the routing unchanged, and only changing the functions
of the LUTs. It uses permissible function based network simplification
(Section 3.5.3). On the other hand, the algorithm in Chang et al. [1994]
patches the mapped network to improve routability by replacing connec-
tions in congested areas with new connections through less congested
regions based on redundancy addition and removal (Section 3.5.2).

6. CONCLUSION

The increasing popularity of the technology and the unique feature of the
architecture have led to intensive studies on design automation techniques
for LUT based FPGAs. This article summarized various techniques for
combinational logic synthesis of LUT based FPGAs, including logic optimi-
zation techniques, the technology mapping techniques, and their applica-
tions in FPGA synthesis algorithms for area, delay, routability, and power
optimization. These techniques vary considerably in terms of quality and
efficiency, and different ones may be suitable for different types of designs
and/or optimization objectives. We hope our systematic classification and
review of these techniques will help the reader to choose the best combina-
tion of these techniques for a given application, and to develop new
techniques to overcome the limitations in the existing approaches.
Combinational logic synthesis is a very important step in design automa-
tion of the FPGA technology. Its potential is far from being fully exploited
in current commercial CAD tools—there has been a big gap between the
vendor-estimated logic density on an FPGA chip and the usable density
achieved by the CAD tools. Although the estimated density may not be
achievable for all designs, it is certainly true that there is still plenty of
room for logic synthesis tools to improve. We believe that high-quality,
automatic logic synthesis tools will play a more and more important role in
FPGA design systems, especially as the FPGA chip capacity increases, and
when more and more users design the systems at a more abstract level

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 197

using high-level description languages (HDLs). Much work remains to be
done, such as the development of simple but accurate measurements for
FPGA specific logic optimization, better cost models for technology map-
ping, efficient mapping algorithms for constrained optimization (such as
delay minimization with given area and routing constraints), mapping
algorithms for easy adaptation to design and/or architecture specific fea-
tures and constraints, and synthesis for multiple FPGA systems. Better
integration with other steps in the design process, such as high-level
synthesis, sequential logic synthesis, and layout synthesis, is also key to
success.

REFERENCES

AT&T MICROELECTRONICS 1995. AT&T Field-Programmable Gate Arrays Data Book. AT&T
Corp., Berkeley Heights, NJ.

AKERS, S. B. 1978. Binary decision diagrams, IEEE Trans. Comput. 27, 6, 509-516.

ALLEN, D. 1992. Automatic one-hot re-encoding for FPGAs. In Proceedings of the Interna-
tional Workshop on Field Programmable Logic and Applications (Vienna, Austria, Aug.),
71-717.

ALTERA 1994. Programmable Logic Devices Data Book, Altera Corp., San Jose, CA.

ASHENHURST, R. L. 1957. The decomposition of switching functions. In Proceedings of Inter-
national Symposium on Theory of Switching. (Harvard University, MA, Apr.), 74-116.

BECKER, B. AND DRECHSLER, R. 1995. How many decomposition types do we need. In
Proceedings of the European Design and Test Conference, (Paris, March).

Besson, T., Bouzouzou, H., LE, V. V., TIXIER, S., AND SAUCIER, G. 1994. Use of binary
decision diagram for FPGA mapping. Proceedings of ACM /SIGDA International Workshop
on Field Programmable Gate Arrays (Berkeley, CA, Feb.).

BHAT, N. 1993. Library-based mapping for LUT FPGAs revisited. In Proceedings of the
International Workshop on Logic Synthesis (Tahoe City, CA, May), P9b.1-6.

BHAT, N. AND HiLr, D. D. 1992. Routable technology mapping for LUT FPGAs. In Proceed-
ings of the IEEE International Conference on Computer Design (Cambridge, MA, Oct.),
95-98.

Bracg, K., RuDeELL, R. L., AND BryanT, R. E. 1990. Efficient implementation of a BDD
package. In Proceedings of the ACM/IEEE Design Automation Conference (Orlando, FL,
June), 40—-45.

BrayYTON, R. K., HACHTEL, G. D., MCMULLEN, C. T., AND SANGIOVANNI-VINCENTELLI, A. L. 1984.
Logic Minimization Algorithms for VLSI Synthesis, Kluwer, Hingham, MA.

BravyToN, R. K., HACHTEL, G., AND SANGIOVANNI-VINCENTELLI, A. L. 1990. Multilevel logic
synthesis. Proc. IEEE 78, 2, 264-300.

BrayTON, R. K., RUDELL, R., SANGIOVANNI-VINCENTELLI, A. L., AND WANG, A. R. 1987. MIS: A
multiple-level logic optimization system. IEEE Trans. Comput. Aided Des. 6, 6, 1062—1081.

Brown, S. D., Francis, R. J., ROSE, J., AND VRANESIC, Z. G. 1994. Field-Programmable Gate
Arrays. Kluwer, Norwell, MA.

Bryant, R. E. 1995. Binary decision diagrams and beyond: Enabling techniques for formal
verification. In Proceedings of the IEEE International Conference on Computer-Aided Design
(San Jose, CA, Nov.), 236—-243.

Bryant, R. E. 1992. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24, 3, 293-318.

BryanT, R.E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35, 6, 677—691.

ButLEr, K. M., Ross, D. E., Kapur, R., AND MERCER, M. R. 1991. Heuristics to compute
variable orderings for efficient manipulation of ordered binary decision diagrams. In
Proceedings of the ACM/IEEE Design Automation Conference (San Francisco, CA, June),
417-420.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

198 . J. Cong and Y. Ding

CHAN, P. K. AND MOURAD, S. 1994. Digital Design Using Field Programmable Gate Arrays.
PTR Prentice-Hall, Englewood Cliffs, NdJ.

CHaN, P. K., ScHLAG, M. D. F., AND ZIEN, J.Y. 1993. On routability prediction for field-
programmable gate arrays. In Proceedings of the ACM /IEEE Design Automation Conference
(Dallas, TX, June), 326—-330.

CHANG, S.-C. AND MAREK-SADOWSKA, M. 1992. Technology mapping via transformations of
function graphs. In Proceedings of the IEEE International Conference on Computer Design
(Cambridge, MA, Oct.), 159-162.

CHANG, S.-C., CHENG, K.-T., W00, N.-S., AND MAREK-SADOWSKA, M. 1994. Layout driven
logic synthesis for FPGAs. In Proceedings of the ACM/IEEE Design Automation Conference
(San Diego, CA, June), 308-313.

CHEN, C.-S., Tsay, Y.-W., Hwang, T.-T., Wu, A. C. H., anD LiN, Y.-L. 1993. Combining
technology mapping and placement for delay-optimization in FPGA designs. In Proceedings
of the IEEE International Conference on Computer-Aided Design (Santa Clara, CA, Nov.),
123-127.

CHEN, K.-C. 1992. Logic minimization of lookup-table based FPGAs. In Proceedings of the
ACM/SIGDA International Workshop on Field Programmable Gate Arrays (Berkeley, CA,
Feb.) 71-76.

CHEN, K.-C. AND CoNG, J. 1992. Maximal reduction of lookup-table based FPGAs. In
Proceedings of the European Design Automation Conference (Hamburg, Germany, Sept.),
224-229.

CHEN, K.-C., Cong, J., DING, Y., KauNG, A. B., AND TRAJMAR, P. 1992. DAG-map: Graph-
based FPGA technology mapping for delay optimization. IEEE Des. Test Comput. (Sept.),
7-20.

CHEN, K.-C., MATSUNAGA, Y., FuJita, M., AND MUROGA, S. 1991. A resynthesis approach for
network optimization. In Proceedings of the ACM/IEEE Design Automation Conference (San
Francisco, CA, June), 458 -463.

CHOWDHARY, A. AND HAYEs, J.P. 1995. Technology mapping for field-programmable gate
arrays using integer programming. In Proceedings of the IEEE International Conference on
Computer-Aided Design (San Jose, CA, Nov.), 346-352.

CHUNG, K. AND Rosg, J. 1992. TEMPT: Technology mapping for exploration of FPGA
architectures with hard-wired connections. In Proceedings of the ACM/IEEE Design Auto-
mation Conference (Anaheim, CA, June) 361-367.

CaunG, K., SINGH, S., Rosg, J., aND CHOw, P. 1991. Using hierarchical logic blocks to
improve the speed of FPGAs. In Proceedings of the International Workshop on Field
Programmable Logic and Applications (Oxford, England, Sept.) 103-113.

CoNG, J. AND DING, Y. 1995. On nominal delay minimization in LUT-based FPGA technol-
ogy mapping. In Proceedings of the ACM International Symposium on Field Programmable
Gate Arrays (Monterey, CA, Feb.), 82—88.

CONG, J. AND DING, Y. 1994a. On nominal delay minimization in LUT-based FPGA technol-
ogy mapping. Integration—VLSI J. 18, 73-94.

CoNG, J. AND DING, Y. 1994b. On area/depth trade-off in LUT-based FPGA technology
mapping. IEEE Trans. VLSI Syst. 2, 2, 137-148.

CONG, J. AND DING, Y. 1994c. FlowMap: An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs. IEEE Trans. Comput. Aided Des. 13, 1,
1-12.

CONG, J. AND DING, Y. 1993a. On area/depth trade-off in LUT-based FPGA technology
mapping. In Proceedings of the ACM/IEEE Design Automation Conference (Dallas, TX,
June), 213-218.

CoONG, J. AND DING, Y. 1993b. Beyond the combinatorial limit in depth minimization for
LUT-based FPGA designs. In Proceedings of the IEEE International Conference on Com-
puter-Aided Design (Santa Clara, CA, Nov.), 110-114.

CONG, J. AND DING, Y. 1992. An optimal technology mapping algorithm for delay optimiza-
tion in lookup-table based FPGA designs. In Proceedings of the IEEE International Confer-
ence on Computer-Aided Design (Santa Clara, CA, Nov.), 48-53.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 199

CoNg, J., DING, Y., Gao, T., aAND CHEN, K.-C. 1994. LUT-based FPGA technology mapping
under arbitrary net-delay models. Comput. Graph. 18, 4, 137-148.

CoNGg, J., DING, Y., Gao, T., AND CHEN, K.-C. 1993. An optimal performance-driven technol-
ogy mapping algorithm for LUT based FPGAs under arbitrary net-delay models. In
Proceedings of the International Conference on CAD and Computer Graphics (Beijing, China,
Aug.), 599-603.

Cong, J., Ding, Y., KannG, A.B., TrRaJMAR, P., axnD CHEN, K.-C. 1992a. An improved
graph-based FPGA technology mapping for delay optimization. In Proceedings of the IEEE
International Conference on Computer Design (Cambridge, MA, Oct.), 154-158.

CoNg, J. AND HwWANG, Y.-Y. 1996. Structural gate decomposition for depth-optimal technol-
ogy mapping in LUT-based FPGA designs. In Proceedings of the ACM/IEEE Design
Automation Conference (Las Vegas, NV, June), 726-729.

ConG, J. AND HwaNg, Y.-Y. 1995a. Simultaneous depth and area minimization in LUT-
based FPGA mapping. In Proceedings of the ACM International Symposium on Field
Programmable Gate Arrays (Monterey, CA, Feb.), 68—-74.

CoONG, J. AND HWANG, Y.-Y. 1995b. A theory on partially dependent functional decomposi-
tion with application in LUT-based FPGA. UCLA Computer Science Department Tech. Rep.
CSD-950050, Dec.

CONG, dJ., KAHNG, A. B., TRAJMAR, P., AND CHEN, K.-C. 1992b. Graph based FPGA technology
mapping for delay optimization. In Proceedings of the ACM/SIGDA International Workshop
on Field Programmable Gate Arrays (Berkeley, CA, Feb.) 77-82.

CONG, dJ., PECK, J., AND DING, Y. 1996. RASP: A general logic synthesis system for SRAM-
based FPGAs. In Proceedings of the ACM International Symposium on Field Programmable
Gate Arrays (Monterey, CA, Feb.), 137-143.

Curtis, H. A. 1963. Generalized tree circuit—the basic building block of an extended
decomposition theory. J. ACM 10, 3, 562-581.

CurTis, H. A. 1961. A generalized tree circuit. J. ACM 8, 4, 484-496.

DETJENS, E., GANNOT, G., RUDELL, R., SANGIOVANNI-VINCENTELLI, A., AND WANG, A. R. 1987.
Technology mapping in MIS. In Proceedings of the IEEE International Conference on
Computer-Aided Design (Nov.), 116-119.

DEvaDAS, S., GHOSH, A., AND KEUTZER, K. 1994. Logic Synthesis. McGraw-Hill, New York.

DE MicHELL, G. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New
York.

DRESIG, F., RETTIG, O., AND BAITINGER, U. G. 1991. Logic synthesis for universal logic cells.
In Proceedings of the International Workshop on Field Programmable Logic and Applica-
tions (Oxford, England, Sept.), 181-190.

FARRAHI, A. AND SARRAFZADEH, M. 1994a. FPGA technology mapping for power minimiza-
tion. In Proceedings of the International Workshop on Field Programmable Logic and
Applications (Prague, Czech Republic, Aug.), 66-77.

FARRAHI, A. AND SARRAFZADEH, M. 1994b. Complexity of the lookup-table minimization
problem for FPGA technology mapping. IEEE Trans. Comput. Aided Des. 13, 11, 1319-1332.

FiLo, D., YaNnG, J., MaiLHOT, F., AND DE MicHELL, G. 1991. Technology mapping for a
two-output RAM-based field programmable gate arrays. In Proceedings of the European
Conference on Design Automation (Amsterdam, the Netherlands, Feb.), 534-538.

Francis, R. J. 1992. A tutorial on logic synthesis for lookup-table based FPGAs, In Proceed-
ings of the IEEE International Conference on Computer-Aided Design (Santa Clara, CA,
Nov.), 40-47.

Francis, R. J., ROSE, J., AND CHUNG, K. 1990. Chortle: A technology mapping program for
lookup table-based field programmable gate arrays. In Proceedings of the ACM/IEEE
Design Automation Conference (Orlando, FL, June), 613—619.

Francis, R. J., ROSE, J., AND VRANESIC, Z. G. 1991a. Technology mapping of lookup table-
based FPGAs for performance. In Proceedings of the IEEE International Conference on
Computer-Aided Design (Santa Clara, CA, Nov.), 568-571.

Francis, R. J., ROsE, J., AND VRANESIC, Z. G. 1991b. Chortle-crf: Fast technology mapping
for lookup table-based FPGAs. In Proceedings of the ACM/IEEE Design Automation
Conference (San Francisco, CA, June), 227-233.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

200 . J. Cong and Y. Ding

FrIEDMAN, S. J. AND SupowiIT, K. J. 1990. Finding the optimal variable ordering for binary
decision diagrams. IEEE Trans. Comput. 39, 5, 710-713.

Fugita, M. AND MATSUNAGA, Y. 1991. Multi-level logic minimization based on minimal
support and its application to the minimization of look-up table type FPGAs. In Proceedings
of the IEEE International Conference on Computer-Aided Design (Santa Clara, CA, Nov.),
560-563.

Fugita, M. anp KurimoTo, Y. 1992. Patching method for lookup-table type FPGAs. In
Proceedings of the International Workshop on Field Programmable Logic and Applications
(Vienna, Aug.), 61-70.

GaBow, H. 1976. An efficient implementation of Edmonds’ algorithm for maximum match-
ing on graphs. J. ACM 23, (Apr.), 221-234.

Gao, T., CHEN, K.-C., Cong, J., DING, Y., AND Liu, C. L. 1993. Placement and placement-
driven technology mapping for FPGA synthesis. In Proceedings of the IEEE International
ASIC Conference (Rochester, NY, Sept.), 91-94.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computer and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco.

GroH, M. 1991. Technology mapping for look-up table FPGAs. In Proceedings of the
International Workshop on Field Programmable Logic and Applications (Oxford, England,
Sept.), 191-200.

HavaTsis, C. AND GAITANIS, N. 1978. Irredundant normal forms and minimal dependence
sets of a Boolean function. IEEE Trans. Comput. 27, 11, 1064—-1068.

He, J. AND ROSE, J. 1994. Technology mapping for heterogeneous FPGAs. In Proceedings of
the ACM/SIGDA International Workshop on Field Programmable Gate Arrays (Berkeley,
CA, Feb.).

HEe, S. AND TORKELSON, M. 1993. Decomposition of logic functions with partial vertex chart.
In Proceedings of the IEEE International ASIC Conference (Rochester, NY, Sept.), 430-433.

Heapr, M. A., ROGERS, W. A., AND MERCER, M. R. 1992. A synthesis algorithm for two-level
XOR based circuits. In Proceedings of the IEEE International Conference on Computer
Design (Cambridge, MA, Oct.), 459—-462.

Hu, A. J. AND D1, D. L. 1993. Reducing BDD size by exploiting functional dependencies.
In Proceedings of the ACM/IEEE Design Automation Conference (Dallas, TX, June), 266—
271.

Huang, J.-D., Jou, J.-Y., AND SHEN, W.-Z. 1995. Compatible class encoding in Roth-Karp
decomposition for two-output LUT architecture. In Proceedings of the IEEE International
Conference on Computer-Aided Design (San Jose, CA, Nov.), 359-363.

HurrMmaN, D. A. 1952. A method for the construction of minimum-redundancy codes. Proc.
IRE 40, 9, 1098-1101.

Hwang, T.-T., OWENS, R. M., AND IrwIN, M. J. 1992. Efficiently computing communication
complexity for multilevel logic synthesis. IEEE Trans. Comput. Aided Des. 11, 5, 545-554.
Hwang, T.-T., Owens, R. M., Irwin, M. J., aND WaNnG, K.-H. 1994. Logic synthesis for

field-programmable gate arrays. IEEE Trans. Comput. Aided Des. 13, 10, 1280-1287.

JOHNSON, D. S., DEMERS, A., ULLMAN, J. D., GAREY, M. R., AND GRAHAM, R. L. 1974. Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput.
3, 299-325.

KAPOOR, B. 1994. An efficient graph-based technology mapping algorithm for FPGAs using
lookup tables. In Proceedings of the ACM /SIGDA International Workshop on Field Program-
mable Gate Arrays (Berkeley, CA, Feb.).

Karp, R. M. 1963. Functional decomposition and switching circuit design. J. SIAM 11, 2,
291-335.

KarpLus, K. 1991. Xmap: A technology mapper for table-lookup field-programmable gate
arrays. In Proceedings of the ACM/IEEE Design Automation Conference (San Francisco, CA,
June), 240-243.

KarpLus, K. 1989. Using if-then-else DAGs for multi-level logic minimization. In Proceed-
ings of the Decennial Caltech Conference on VLSI (Pasadena, CA, March), 101-118.

KERNIGHAN, B. W. anxD LiN, S. 1970. An efficient heuristic procedure for partitioning of
electrical circuits. Bell Syst. Tech. J. 49, 2, 291-308.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 201

KEeUTZER, K. 1987. DAGON: Technology binding and local optimization by DAG matching.
In Proceedings of the ACM/IEEE Design Automation Conference (Miami Beach, FL, June),
341-347.

KIRKPATRICK, S., GELAT, C.D., AND VEccHI, M. P., JrR. 1983. Optimization by simulated
annealing. Science 220, (May), 671-680.

KomMmu, V. AND POMERANZ, I. 1993. GAFPGA: Genetic algorithm for FPGA technology
mapping. In Proceedings of the European Design Automation Conference (Hamburg, Ger-
many, Sept.), 300-305.

Kukmvmoto, Y. AND Fuagita, M. 1992. Rectification method for lookup-table type FPGA’s. In
Proceedings of the IEEE International Conference on Computer-Aided Design (Santa Clara,
CA, Nov.), 54-61.

La1, Y.-T. AND SASTRY, S. 1992. Edge-valued binary diagrams for multi-level hierarchical
verification. In Proceedings of the ACM/IEEE Design Automation Conference (Anaheim,
CA), 608-613.

Lai, Y.-T., PaN, K.-R. R., AND PEDRAM, M. 1994. FPGA synthesis using function decomposi-
tion. In Proceedings of the IEEE International Conference on Computer Design (Cambridge,
MA, Oct.), 30-35.

Lai, Y.-T., Pan, K.-R. R., PEDRAM, M., AND VRUDHULA, S. 1993b. FGMap: A technology
mapping algorithm for lookup table type FPGAs based on function graphs. In Proceedings of
the International Workshop on Logic Synthesis (Tahoe City, CA, May) 9b.1-4.

La1, Y.-T., PEDRAM, M., AND VRUDHULA, S. 1993a. BDD based decomposition of logic func-
tions with application to FPGA synthesis. In Proceedings of the ACM/IEEE Design Automa-
tion Conference (Dallas, TX, June), 642—647.

Lam, W. K. C. AND BrAYTON, R. K. 1992. On relationship between ITE and BDD. In Proceed-
ings of the IEEE International Conference on Computer Design (Cambridge, MA, Oct.),
448-451.

LAWLER, E. L., LEvITT, K. N., AND TURNER, J. 1969. Module clustering to minimize delay in
digital networks. IEEE Trans. Comput. 18, 1, 47-57.

LecL, C., WurTH, B., AND EckL, K. 1996. An implicit algorithm for support minimization
during functional decomposition. In Proceedings of the European Design and Test Conference
(Paris, March).

LEVIN, I. AND PINTER, R. Y. 1993. Realizing expression graphs using table-lookup FPGAs. In
Proceedings of the European Design Automation Conference (Hamburg, Germany, Sept.),
306-311.

Lu, A., SauL, J., AND DAGLESS, E. 1994. Architecture oriented logic optimization for lookup
table based FPGAs. In Proceedings of the IEEE International Conference on Computer
Design (Cambridge, MA, Oct.), 26-29.

MADRE, J. C. AND BILLON, J. P. 1988. Proving circuit correctness using formal comparison
between expected and extracted behaviour. In Proceedings of the ACM/IEEE Design
Automation Conference (Anaheim, CA), 205-210.

MALIK, S., SENTOVICH, E. M., AND BrayTON, R. K. 1991. Retiming and resynthesis: Optimiz-
ing sequential networks with combinational techniques. IEEE Trans. Comput. Aided Des.
10, 1, 74-84.

MATHUR, A. AND Liu, C. L. 1994. Performance driven technology mapping for lookup-table
based FPGAs. In Proceedings of the ACM /SIGDA International Workshop on Field Program-
mable Gate Arrays (Berkeley, CA, Feb.).

MATSUNAGA, Y. AND FudgiTa, M. 1989. Multi-level logic minimization using binary decision
diagrams. In Proceedings of the IEEE International Conference on Computer-Aided Design
(Santa Clara, CA, Nov.), 556-559.

Muracal, R., BravTon, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1995. Logic Synthesis for
Field-Programming Gate Arrays. Kluwer, Norwell, MA.

Muraal, R., BrRAaYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1994. Optimum functional
decomposition using encoding. In Proceedings of the ACM/IEEE Design Automation Confer-
ence (San Diego, CA, June), 408—-413.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

202 . J. Cong and Y. Ding

MURGAI R., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1993a. Some results on the
complexity of Boolean functions for table look up architectures. In Proceedings of the IEEE
International Conference on Computer Design (Cambridge, MA, Oct.), 505-512.

MUuRrGaAl, R., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1993b. Sequential synthesis
for table look up programmable gate arrays. In Proceedings of the ACM/IEEE Design
Automation Conference (Dallas, TX, June), 224 -229.

Muraalr, R., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1992. An improved synthesis
algorithm for multiplexor-based PGA’s. In Proceedings of the ACM/IEEE Design Automa-
tion Conference (Anaheim, CA, June), 380-386.

MurGaAl, R., NisHIZAKI, Y., SHENOY, N., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A.
1990. Logic synthesis algorithms for programmable gate arrays. In Proceedings of the
ACM/IEEE Design Automation Conference (Orlando, FL, June), 620-625.

Muracal, R., SHENOY, N., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1991a. Perfor-
mance directed synthesis for table look up programmable gate arrays. In Proceedings of the
IEEE International Conference on Computer-Aided Design (Santa Clara, CA, Nov.), 572—
575.

Muraal, R., SHENOY, N., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 1991b. Improved
logic synthesis algorithms for table look up architectures. In Proceedings of the IEEE
International Conference on Computer-Aided Design (Santa Clara, CA, Nov.), 564 -567.

MUROGA, S., KAMBAYASHI, Y., LAI, H. C., AND CULLINEY, J. N. 1989. The transduction meth-
od—design of logic networks based on permissible functions. IEEE Trans. Comput. 38, 10,
1404-1424.

Pan, P. aND Liu, C. L. 1996. Optimal clock period FPGA technology mapping for sequential
circuits. In Proceedings of the ACM/IEEE Design Automation Conference (Las Vegas, NV,
June), 720-725.

PaNDA, S., SOMENZI, F., AND PLESSIER, B. F. 1994, Symmetry detection and dynamic variable
ordering of decision diagrams. In Proceedings of the IEEE International Conference on
Computer-Aided Design (San Jose, CA, Nov.), 628—631.

PapabpivMiTRIOU, C. H. AND STEIGLITZ, K. 1982. Combinatorial Optimization: Algorithm and
Complexity. Prentice-Hall, Englewood Cliffs, NdJ.

RosE, J., EL GAMAL, A., AND SANGIOVANNI-VINCENTELLI, A. 1993. Architectures of field-
programmable gate arrays. Proc. IEEE 81, 7, 1013-1029.

RortH, J. P. AND KARP, R. M. 1962. Minimization over Boolean graphs. IBM J. Res. Dev.
(Apr.) 227-238.

RupeLL, R. 1993. Dynamic variable ordering for ordered binary decision diagrams. In
Proceedings of the IEEE International Conference on Computer-Aided Design (Santa Clara,
CA, Nov.), 42—47.

SANGIOVANNI-VINCENTELLI, A., EL GAMAL, A., AND ROSE, J. 1993. Synthesis methods for field
programmable gate arrays. Proc. IEEE 81, 7, 1057-1083.

Sasao, T. 1993. FPGA design by generalized functional decomposition. In Logic Synthesis
and Optimization, Ed. Sasao, T., Norwell, MA (Jan.), 233-257.

SAUCIER, G., BRASEN, D., AND HioL, J.P. 1993a. Partitioning with cone structures. In
Proceedings of the IEEE International Conference on Computer-Aided Design (Santa Clara,
CA, Nov.), 236-239.

SAUCIER, G., FRON, J., AND ABOUZEID, P. 1993b. Lexicographical expressions of Boolean
functions with application to multilevel synthesis. IEEE Trans. Comput. Aided Des. 12, 11,
1642-1654.

Saur, J. 1991. An algorithm for the multi-level minimization of Reed-Muller representa-
tions. In Proceedings of the IEEE International Conference on Computer Design (Cambridge,
MA, Oct.), 634—637.

Sawapa, H., Suvama, T., AND NAGoyAa, A. 1995. Logic synthesis for look-up table based
FPGAs using functional decomposition and support minimization. In Proceedings of the
IEEE International Conference on Computer-Aided Design (San Jose, CA, Nov.), 353-358.

SAWKAR, P. AND THOMAS, D. 1993. Performance directed technology mapping for look-up
table based FPGAs. In Proceedings of the ACM/IEEE Design Automation Conference
(Dallas, TX, June), 208-212.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

Combinational Logic Synthesis . 203

SAWKAR, P. AND THOMAS, D. 1992. Area and delay mapping for table-look-up based field
programmable gate arrays. In Proceedings of the ACM /IEEE Design Automation Conference
(Anaheim, CA, June), 368-373.

SCHAFER, 1. AND PERKOWSKI, M. A. 1993. Synthesis of multiplexer circuits for incompletely
specified multioutput Boolean functions with mapping to multiplexer based FPGAs. IEEE
Trans. Comput. Aided Des. 12, 11, 1655-1664.

ScHLAG, M., CHAN, P. K., aND Kong, J. 1991. Empirical evaluation of multilevel logic
minimization tools for a field programmable gate array technology. In Proceedings of the
International Workshop on Field Programmable Logic and Applications (Oxford, England,
Sept.), 201-213.

ScHLAG, M., KONG, J., AND CHAN, P. K. 1994. Routability-driven technology mapping for
lookup table-based FPGAs. IEEE Trans. Comput.-Aided Des. 13, 1, 13—-26.

ScHLAG, M., KONG, J., AND CHAN, P. K. 1992. Routability-driven technology mapping for
lookup table-based FPGAs. In Proceedings of the IEEE International Conference on Com-
puter Design (Cambridge, MA, Oct.), 86-90.

ScHUBERT, E., KEBSCHULL, U., AND ROSENSTIEL, W. 1994. Functional decision diagrams for
technology mapping to lookup-table FPGAs. In Proceedings of the ACM/SIGDA Interna-
tional Workshop on Field Programmable Gate Arrays (Berkeley, CA, Feb.).

SHEN, W.-Z., HuaNnG, J.-D., aND CHAO, S.-M. 1995. Lambda set selection in Roth-Karp
decomposition for LUT-based FPGA technology mapping. In Proceedings of the ACM/IEEE
Design Automation Conference (San Francisco, CA, June), 65—69.

SHiN, H. anD Kiv, C. 1995. Performance-oriented technology mapping for LUT-based FP-
GAs. IEEE Trans. VLSI Syst. 3, 2, 323-327.

SoE, S. AND KArpPLUS, K. 1993. Variable ordering heuristics for ordered binary decision
diagrams and canonical if-then-else DAGs. In Proceedings of the International Workshop on
Logic Synthesis (Tahoe City, CA, May), P3d.1-15.

STANION, T. AND SECHEN, C. 1995. A method for finding good Ashenhurst decomposition and
its application to FPGA synthesis. In Proceedings of the ACM/IEEE Design Automation
Conference (San Francisco, CA, June), 60—64.

THAKUR, S. AND WoONG, D. F. 1995. Simultaneous area and delay minimum K-LUT mapping
for K-exact networks. In Proceedings of the IEEE International Conference on Computer
Design (Austin, TX).

THAKUR, S., WoNG, D. F., KRISHNAMOORTHY, S., AND MOCEYUNAS, P. 1995. Delay minimal
decomposition of multiplexers in technology mapping. In Proceedings of the International
Workshop on Logic Synthesis (Tahoe City, CA, May), 1.59-1.68.

Tocawa, N., SATO, M., AND OHTSUKI, T. 1994. Maple: A simultaneous technology mapping,
placement and global routing algorithm for field-programmable gate arrays. In Proceedings
of the IEEE International Conference on Computer-Aided Design (San Jose, CA, Nov.),
156-163.

Touari, H., SHENOY, N., AND SANGIOVANNI-VINCENTELLI, A. 1992. Retiming for table-lookup
field-programmable gate arrays. In Proceedings of the ACM /SIGDA International Workshop
on Field Programmable Gate Arrays (Berkeley, CA, Feb.), 89-93.

TREVILLYAN, L. 1993. An experiment in technology mapping for FPGAs using a fixed
library. In Proceedings of the International Workshop on Logic Synthesis (Tahoe City, CA,
May), P9c.1-6.

TRIMBERGER, S. M. 1994. Field-Programmable Gate Array Technology. Kluwer, Norwell,
MA.

TRIMBERGER, S. M. 1993. A reprogrammable gate array and applications. Proc. IEEE 81, 7,
1030-1041.

WAN, W. AND PERKOWSKI, M. A. 1992. A new approach to the decomposition of incompletely
specified multi-output functions based on graph coloring and local transformations and its
application to FPGA mapping. In Proceedings of the European Design Automation Confer-
ence (Hamburg, Germany, Sept.), 230-235.

WaNG, A. R. 1989. Algorithms for multi-level logic optimization. UC Berkeley Tech. Memor.
UCB/ERL M89/50 (Apr.).

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

204 . J. Cong and Y. Ding

WEINMANN, U. AND ROSENSTIEL, W. 1994. Logic module independent mapping for table-
lookup FPGAs. In Proceedings of the ACM/SIGDA International Workshop on Field Pro-
grammable Gate Arrays (Berkeley, CA, Feb.).

WEINMANN, U. AND ROSENSTIEL, W. 1993. Technology mapping for sequential circuits based
on retiming techniques. In Proceedings of the European Design Automation Conference
(Hamburg, Germany, Sept.), 318-323.

Woo, N.-S. 1991. A heuristic method for FPGA technology mapping based on the edge
visibility. In Proceedings of the ACM/IEEE Design Automation Conference (San Francisco,
CA, June), 248-251.

WurtH, B., Eckr, K., AND ANTREICH, K. 1995. Functional multiple-output decomposition:
Theory and an implicit algorithm. In Proceedings of the ACM/IEEE Design Automation
Conference (San Francisco, CA, June), 54-59.

XILINX. 1994. The Programmable Logic Data Book. Xilinx, Inc., San Jose, CA.

Yang, H. AND WonNG, D. F. 1994. Edge-map: Optimal performance driven technology map-
ping for iterative LUT based FPGA designs. In Proceedings of the IEEE International
Conference on Computer-Aided Design (San Jose, CA, Nov.), 150-155.

Received December 1995; revised February 1996; accepted March 1996

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.

