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Chapter 4 Topics

 The Design Process

 A 1-bus Microarchitecture for SRC

 Data Path Implementation

 Logic Design for the 1-bus SRC

 The Control Unit

 The 2- and 3-bus Processor Designs

 The Machine Reset Process

 Machine Exceptions
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Abstract and Concrete Register Transfer
Descriptions

 The abstract RTN for SRC in Chapter 2 defines “what,” not
“how”

 A concrete RTN uses a specific set of real registers and buses
to accomplish the effect of an abstract RTN statement

 Several concrete RTNs could implement the same ISA



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

A Note on the Design Process

 In this chapter presents several  SRC designs

 We started in Chap. 2 with an informal description

 In this chapter we will propose several block diagram
architectures to support the abstract RTN, then we will:
 Write concrete RTN steps consistent with the architecture

 Keep track of demands made by concrete RTN on the hardware

 Design data path hardware and identify needed control signals

 Design a control unit to generate control signals
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Fig. 4.1  Block Diagram of 1-bus SRC
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Fig. 4.2  High-Level View of the 1-Bus SRC
Design
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Constraints Imposed by the Microarchitecture

 One bus connecting most registers allows
many different RTs, but only one at a time

 Memory address must be copied into MA
by CPU

 Memory data written from or read into MD

 First ALU operand always in A, result goes
to C

 Second ALU operand always comes from
bus

 Information only goes into IR and MA from
bus

 A decoder (not shown) interprets contents of IR

 MA supplies address to memory, not to CPU bus
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Abstract and Concrete RTN for SRC add
Instruction

Abstract RTN: (IR ← M[PC]: PC ← PC + 4; instruction_execution);
instruction_execution := ( • • •
add (:= op= 12) → R[ra] ← R[rb] + R[rc]:

 Parts of 2 RTs (IR ← M[PC]: PC ← PC + 4;) done in T0
 Single add RT takes 3 concrete RTs (T3, T4, T5)

ALU

A B

C

31                         0

32 32-bit
General
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To memory subsystem
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Step RTN
T0. MA ←  PC:  C ← PC + 4; 
T1. MD ←  M[MA]:  PC ←  C;
T2. IR ← MD;
T3. A ← R[rb];
T4. C ← A + R[rc];
T5. R[ra] ← C;

Tbl 4.1 Concrete RTN for add:

IF
IEx.
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Concrete RTN Gives Information about Sub-
units

 The ALU must be able to add two 32-bit values

 ALU must also be able to increment B input by 4

 Memory read must use address from MA and return data to
MD

 Two RTs separated by : in the concrete RTN, as in T0 and T1,
are operations at the same clock

 Steps T0, T1, and T2 constitute instruction fetch, and will be
the same for all instructions

 With this implementation, fetch and execute of the add
instruction takes 6 clock cycles
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Concrete RTN for Arithmetic Instructions: addi

 Differs from add only in step T4

 Establishes requirement for sign extend hardware

addi (:= op= 13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp.  sign extend} :

Tbl 4.2 Concrete RTN for addi:

Abstract RTN:

Step RTN
T0. MA ←  PC:  C ← PC + 4; 
T1. MD ←  M[MA];  PC ←  C;
T2. IR ← MD;
T3. A ← R[rb];
T4. C ← A +  c2〈16..0〉 {sign ext.};
T5. R[ra] ← C; ALU
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Fig. 4.3   More Complete view of Registers and Buses in 1-bus SRC
Design—Including Some Control Signals

• Concrete RTN lets
us add detail to the
data path

– Instruction register
logic & new paths

– Condition bit flip-flop
– Shift count register

Keep this slide in
mind as we discuss
concrete RTN of
instructions.
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Abstract and Concrete RTN for Load and Store

ld (:= op= 1) → R[ra] ← M[disp] :
st (:= op= 3) → M[disp] ← R[ra] :

where
disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign ext.} :

(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.} ) :

Step       RTN for ld RTN for st
T0-T2 Instruction fetch
T3. A ←  (rb=0 → 0:  rb≠0 → R[rb]);
T4. C ← A + (16@IR〈16〉#IR〈15..0〉);
T5. MA ← C;
T6. MD ← M[MA]; MD ← R[ra];
T7. R[ra] ← MD; M[MA] ← MD;

Tbl 4.3
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Notes for Load and Store RTN

 Steps T0 through T2 are the same as for add and addi, and for
all instructions

 In addition, steps T3 through T5 are the same for ld and st,
because they calculate disp

 A way is needed to use 0 for R[rb] when rb=0
 15 bit sign extension is needed for IR〈16..0〉

 Memory read into MD occurs at T6 of ld

 Write of MD into memory occurs at T7 of st
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Concrete RTN for Conditional Branch

br (:= op= 8) → (cond → PC ← R[rb]):
cond := ( c3〈2..0〉=0 → 0: never

c3〈2..0〉=1 → 1: always
c3〈2..0〉=2 → R[rc]=0: if register is zero
c3〈2..0〉=3 → R[rc]≠0: if register is nonzero
c3〈2..0〉=4 → R[rc]〈31〉=0: if positive or zero
c3〈2..0〉=5 → R[rc]〈31〉=1 ): if negative

Step Concrete RTN
T0-T2 Instruction fetch
T3. CON ← cond(R[rc]);
T4. CON → PC ← R[rb];

Tbl 4.4
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Notes on Conditional Branch RTN

 c3〈2..0〉 are just the low order 3 bits of IR

 cond() is evaluated by a combinational logic circuit having inputs
from R[rc] and c3〈2..0〉

 The one bit register CON is not accessible to the programmer
and only holds the output of the combinational logic for the
condition

 If the branch succeeds, the program counter is replaced by the
contents of a general reg.
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Abstract and Concrete RTN for SRC Shift Right

shr (:= op = 26) → R[ra]〈31..0〉 ← (n @ 0) # R[rb]〈31..n〉 :
n := ( (c3〈4..0〉=0) → R[rc]〈4..0〉 : shift count in reg.

(c3〈4..0〉≠0) → c3〈4..0〉 ): or const. field

Step Concrete RTN
T0-T2 Instruction fetch
T3. n ← IR〈4..0〉;
T4. (n=0) → (n ← R[rc]〈4..0〉);
Τ5. C ← R[rb];
T6. Shr (:= (n≠0)  → (C〈31..0〉 ← 0#C〈31..1〉: n ← n-1; Shr) );
T7. R[ra] ← C;

step T6 is repeated n times

Tbl 4.5
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Notes on SRC Shift RTN

 In the abstract RTN, n is defined with :=

 In the concrete RTN, it is a physical register

 n not only holds the shift count but is used as a counter in step
T6

 Step T6 is repeated n times as shown by the recursion in the
RTN

 The control for such repeated steps will be treated later
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Data Path/Control Unit Separation

 Interface between data path and control consists of gate and
strobe signals

 A gate selects one of several values to apply to a common point,
say a bus

 A strobe changes the values of the flip-flops in a register to
match new inputs

 The type of flip-flop used in regs. has much influence on control
and some on data path
 Latch: simpler hardware, but more complex timing
 Edge triggering: simpler timing, but about 2× hardware
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Reminder on Latch and Edge-Triggered
Operation

 Latch output follows input while strobe is high

D

C

Q

D

C

Q

D Q

C

• Edge triggering samples input at edge time
D

C

Q
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Fig. 4.4  The SRC Register File and Its Control Signals

BA = Base Address

 Rout gates selected reg.
onto bus

 Rin strobed selected reg.
from bus

 BAout differs from Rout by
gating 0 when R[0] is
selected
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 I〈21〉 is the sign bit of C1 that must
be extended

 I〈16〉 is the sign bit of C2 that must
be extended

 Sign bits are fanned out from one to
several bits and gated to bus

Fig. 4.5  Extracting c1, c2, and op from the
Instruction Register
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 MD is loaded
from memory
bus  or from
CPU bus

 MD can drive
CPU bus or
memory bus

Fig. 4.6  CPU to Memory Interface: MA and MD
Registers
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Fig. 4.7  The ALU and Its Associated Registers
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Figure 4.8. A Logic-Level Design for One Bit of
the 1-Bus SRC ALU
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From Concrete RTN to Control Signals: The
Control Sequence

 The register transfers are the concrete RTN

 The control signals that cause the register transfers make
up the control sequence

 Wait prevents the control from advancing to step T3 until
the memory asserts Done

Step Concrete RTN Control Sequence
T0. MA ← PC: C ← PC+4; PCout, MAin, Inc4, Cin
T1. MD ← M[MA]: PC ← C; Read, Cout, PCin, Wait
T2. IR ← MD; MDout, IRin
T3. Instruction_execution

Tbl 4.6—The Instruction Fetch

William D. Richard
Text Box
, MDrd
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Control Steps, Control Signals, and Timing

 Within a given time step, the order in which control signals are
written is irrelevant
 In step T0,    Cin, Inc4, MAin, PCout == PCout, MAin, Inc4, Cin

 The only timing distinction within a step is between gates and
strobes

 The memory read should be started as early as possible to
reduce the wait

 MA must have the right value before being used for the read

 Depending on memory timing, Read could be in T0
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Control Sequence for the SRC add Instruction

 Note the use of Gra, Grb, & Grc to gate the correct 5 bit register
select code to the regs.

 End signals the control to start over at step T0

add (:= op= 12) → R[ra] ← R[rb] + R[rc]:

Step Concrete RTN Control Sequence
T0. MA ← PC: C ← PC+4; PCout, MAin, Inc4, Cin, Read
T1. MD ← M[MA]: PC ← C; Cout, PCin, Wait
T2. IR ← MD; MDout, IRin
T3. A ← R[rb]; Grb, Rout, Ain
T4. C ← A + R[rc]; Grc, Rout, ADD, Cin
T5. R[ra] ← C; Cout, Gra, Rin, End

Tbl 4.7 The Add Instruction 
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Control Sequence for the SRC addi Instruction

 The c2out signal sign extends IR〈16..0〉 and gates it to the
bus

addi (:= op= 13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp., sign ext.} :

Step Concrete RTN Control Sequence
T0. MA ←  PC:  C ← PC + 4; PCout, MAin, Inc4, Cin, Read
T1. MD ←  M[MA];  PC ←  C; Cout, PCin, Wait
T2. IR ← MD; MDout, IRin
T3. A ← R[rb]; Grb, Rout, Ain
T4. C ← A +  c2〈16..0〉 {sign ext.}; c2out, ADD, Cin
T5. R[ra] ← C; Cout, Gra, Rin, End

Tbl 4.8 The addi Instruction 
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Control Sequence for the SRC st Instruction

 Note BAout in T3 compared to Rout in T3 of addi

st (:= op= 3) → M[disp] ← R[ra] :
disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign ext.} :

(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.} ) :

The st Instruction 

Step Concrete RTN Control Sequence
T0-T2 Instruction fetch  Instruction fetch
T3. A ← (rb=0) → 0: rb≠0 → R[rb]; Grb, BAout, Ain
T4. C ← A +  c2〈16..0〉 {sign ext.}; c2out, ADD, Cin
T5. MA ← C; Cout, MAin
T6. MD ← R[ra]; Gra, Rout, MDin, Write
T7. M[MA] ← MD; Wait, End

} address arithmetic
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Fig. 4.9  The Shift Counter

 The concrete RTN for shr  relies upon  a 5 bit register to hold the
shift count

 It must load, decrement, and have an  = 0 test
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Tbl 4.10  Control Sequence for the SRC shr
Instruction—Looping

 Conditional control signals and repeating a control step are new
concepts

Step Concrete RTN Control Sequence
T0-T2 Instruction fetch Instruction fetch
T3. n ← IR〈4..0〉; c1out, Ld
T4. (n=0) → (n ← R[rc]〈4..0〉); n=0 → (Grc, Rout, Ld)
T5. C ← R[rb]; Grb, Rout, C=B, Cin
T6. Shr (:= (n≠0)  → n≠0 → (Cout, SHR, Cin,

(C〈31..0〉 ← 0#C〈31..1〉:     Decr, Goto6)
 n ← n-1; Shr) );

T7. R[ra] ← C; Cout, Gra, Rin, End
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Branching

 This is equivalent to the logic expression

cond := ( c3〈2..0〉=0 → 0:
c3〈2..0〉=1 → 1:
c3〈2..0〉=2 → R[rc]=0:
c3〈2..0〉=3 → R[rc]≠0:
c3〈2..0〉=4 → R[rc]〈31〉=0:
c3〈2..0〉=5 → R[rc]〈31〉=1 ):

cond = (c3〈2..0〉=1) ∨ (c3〈2..0〉=2)∧(R[rc]=0) ∨
      (c3〈2..0〉=3)∧¬(R[rc]=0) ∨ (c3〈2..0〉=4)∧¬R[rc]〈31〉 ∨
      (c3〈2..0〉=5)∧R[rc]〈31〉
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Fig. 4.10   Computation of the Conditional Value
CON

 NOR gate does =0 test of R[rc] on bus
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Tbl 4.11 Control Sequence for SRC Branch Instruction,
br

 Condition logic is always connected to CON, so R[rc] only needs to
be put on bus in T3

 Only PCin is conditional in T4 since gating R[rb] to bus makes no
difference if it is not used

Step Concrete RTN Control Sequence
T0-T2 Instruction fetch Instruction fetch
T3. CON ← cond(R[rc]); Grc, Rout, CONin
T4. CON → PC ← R[rb]; Grb, Rout, CON → PCin, End

br (:= op= 8) → (cond → PC ← R[rb]):
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Summary of the Design Process

Informal description ⇒ formal RTN description ⇒ block diagram
arch. ⇒ concrete RTN steps ⇒ hardware design of blocks ⇒
control sequences ⇒ control unit and timing

 At each level, more decisions must be made
 These decisions refine the design

 Also place requirements on hardware still to be designed

 The nice one way process above has circularity
 Decisions at later stages cause changes in earlier ones

 Happens less in a text than in reality because
 Can be fixed on re-reading

 Confusing to first time student
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Fig. 4.11   Clocking the Data Path: Register
Transfer Timing

 tR2valid is the
period from begin
of gate signal till
inputs to R2 are
valid

 tcomb is delay
through
combinational
logic, such as
ALU or cond logic
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Signal Timing on the Data Path

 Several delays occur in getting data from R1 to R2

 Gate delay through the 3-state bus driver—tg
 Worst case propagation delay on bus—tbp

 Delay through any logic, such as ALU—tcomb

 Set up time for data to affect state of R2—tsu

 Data can be strobed into R2 after this time

tR2valid = tg + tbp + tcomb + tsu

 Diagram shows strobe signal in the form for a latch. It must be
high  for a minimum time—tw

 There is a hold time, th, for data after strobe ends
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Effect of Signal Timing on Minimum Clock Cycle

 A total latch propagation delay is the sum

Tl = tsu + tw + th
 All above times are specified for latch

 th may be very small or zero

 The minimum clock period is determined by finding longest path
from ff output to ff input
 This is usually a path through the ALU

 Conditional signals add a little gate delay

 Using this path, the minimum clock period is

tmin = tg + tbp + tcomb + tl
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Latches Versus Edge Triggered or Master Slave
Flip-Flops

 During the high part of a strobe a latch changes its output

 If this output can affect its input, an error can occur

 This can influence even the kind of concrete RTs that can be
written for a data path

 If the C register is implemented with latches, then
 C ← C + MD;     is not legal

 If the C register is implemented with master-slave or edge
triggered flip-flops, it is OK
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The Control Unit

 The control unit’s job is to generate the control signals in the
proper sequence

 Things the control signals depend on
 The time step Ti

 The instruction op code (for steps other than T0, T1, T2)

 Some few data path signals like CON, n=0, etc.

 Some external signals: reset, interrupt, etc. (to be covered)

 The components of the control unit are: a time state
generator, instruction decoder, and combinational logic to
generate control signals
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Fig. 4.12   Control Unit Detail with Inputs and
Outputs

.
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Synthesizing Control Signal Encoder Logic

Design process:

 Comb through the entire set of  control sequences.

 Find all occurrences of each control signal.

 Write an equation describing that signal.

Example: Gra = T5·(add + addi) + T6·st + T7·shr + ...

Step  Control Sequence
T0. PCout, MAin, Inc4, Cin, Read

T1. Cout, PCin, Wait

T2. MDout, IRin

add
Step  Control Sequence
T3. Grb, Rout, Ain
T4. Grc, Rout, ADD, Cin

T5. Cout, Gra, Rin, End

addi
Step  Control Sequence
T3. Grb, Rout, Ain
T4. c2out, ADD, Cin

T5. Cout, Gra, Rin, End

st
Step  Control Sequence
T3. Grb, BAout, Ain
T4. c2out, ADD, Cin
T5. Cout, MAin

T6. Gra, Rout, MDin, Write

T7. Wait, End

shr
Step  Control Sequence
T3. c1out, Ld

T4. n=0 → (Grc, Rout, Ld)

T5. Grb, Rout, C=B

T6. n≠0 → (Cout, SHR, Cin,
 Decr, Goto7)

T7. Cout, Gra, Rin, End
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Use of Data Path Conditions in Control Signal
Logic

Example: Grc = T4·add + T4·(n=0)·shr + ...

Step  Control Sequence
T0. PCout, MAin, Inc4, Cin, Read

T1. Cout, PCin, Wait

T2. MDout, IRin

add
Step  Control Sequence
T3. Grb, Rout, Ain

T4. Grc, Rout, ADD, Cin

T5. Cout, Gra, Rin, End

addi
Step  Control Sequence
T3. Grb, Rout, Ain
T4. c2out, ADD, Cin
T5. Cout, Gra, Rin, End

st
Step  Control Sequence
T3. Grb, BAout, Ain
T4. c2out, ADD, Cin
T5. Cout, MAin

T6. Gra, Rout, MDin, Write

T7. Wait, End

shr
Step  Control Sequence
T3. c1out, Ld

T4. n=0 → (Grc, Rout, Ld)

T5. Grb, Rout, C=B

T6. n≠0 → (Cout, SHR, Cin,
 Decr, Goto7)
T7. Cout, Gra, Rin, End
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Fig. 4.13   Generation of the logic for Cout and Gra
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Fig. 4.14   Branching in the Control Unit

 3-state gates allow
6 to be applied to
counter input

 Reset will
synchronously
reset counter to
step T0

.
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Fig. 4.15  Clocking Logic: Start, Stop, and Memory
Synchronization

 Mck is master clock oscillator
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Have Completed One-Bus Design  of SRC

 High level architecture block diagram

 Concrete RTN steps

 Hardware design of registers and data path logic

 Revision of concrete RTN steps where needed

 Control sequences

 Register clocking decisions

 Logic equations for control signals

 Time step generator design

 Clock run, stop, and synchronization logic
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Other Architectural designs will require a
different RTN

 More data paths allow more things to be done in one step

 Consider a two bus design

 By separating input and output of ALU on different buses, the C
register is eliminated

 Steps can be saved by strobing ALU results directly into their
destinations
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Fig. 4.16  The 2-bus Microarchitecture

 Bus A carries data
going into registers

 Bus B carries data
being gated out of
registers

 ALU function C=B is
used for all simple
register transfers
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Tbl 4.13  Concrete RTN and Control Sequence
for 2-bus SRC add

 Note the appearance of Grc to gate the output of the register
rc onto the B bus and Sra to select ra to receive data strobed
from the A bus

 Two register select decoders will be needed
 Transparent latches will be required for MA at step T0

Step Concrete RTN Control Sequence
T0. MA ← PC; PCout, C=B, MAin, Read
T1. PC ← PC + 4: MD ← M[MA]; PCout, Inc4, PCin, Wait
T2. IR ← MD; MDout, C=B, IRin
T3. A ← R[rb]; Grb, Rout, C=B, Ain
T4. R[ra] ← A + R[rc]; Grc, Rout, ADD, Sra, Rin, End

William D. Richard
Line

William D. Richard
Text Box
, MDrd, READ
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Performance and Design

%Speedup =
T1 − bus − T 2 − bus

T 2 − bus
× 100

Where
T = Exec'n.Time = IC × CPI × τ
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Speedup Due To Going to 2 Buses

•Assume for now that IC and t don’t change in going from 1 bus to 2 buses
•Naively assume that CPI goes from 8 to 7 clocks.

%Speedup =
T1 − bus −T 2 − bus

T2 − bus
× 100

=
IC × 8 × τ − IC × 7 × τ

IC × 7 × τ
× 100 =

8− 7
7

× 100 = 14%

Class Problem:
How will this speedup change if clock period of 2-bus machine is increased by 10%?
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3-bus Architecture Shortens Sequences Even More

 A 3-bus architecture allows both operand inputs and the output
of the ALU to be connected to buses

 Both the C output register and the A input register are eliminated

 Careful connection of register inputs and outputs can allow
multiple RTs in a step
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Fig. 4.17   The 3-Bus SRC Design

 A-bus is ALU operand
1, B-bus is ALU
operand 2, and C-bus
is ALU output

 Note MA input
connected to the B-
bus



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tbl 4.15  SRC add Instruction for the
3-bus Microarchitecture

 Note the use of 3 register selection signals in step T2: GArc, GBrb,
and Sra

 In step T0, PC moves to MA over bus B and goes through the
ALU Inc4 operation to reach PC again by way of bus C
 PC must be edge triggered or master-slave

 Once more MA must be a transparent latch

Step Concrete RTN Control Sequence
T0. MA ← PC: PC ← PC + 4: PCout, MAin, Inc4, PCin,
   MD ← M[MA];       Read, Wait
T1. IR ← MD; MDout, C=B, IRin
T2. R[ra] ← R[rb] + R[rc]; GArc, RAout, GBrb, RBout,
          ADD, Sra, Rin, End
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Performance and Design

 How does going to three buses affect performance?
 Assume average CPI goes from 8 to 4, while τ increases by 10%:

%Speedup = IC × 8 × τ − IC × 4 × 1.1τ
IC × 4 × 1.1τ

× 100 =
8 − 4.4
4.4

× 100 = 82%
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Processor Reset Function

 Reset sets program counter to a fixed value
 May be a hardwired value, or

 contents of a memory cell whose address is hardwired

 The control step counter is reset

 Pending exceptions are prevented, so initialization code is not
interrupted

 It may set condition codes (if any) to known state

 It may clear some processor state registers

 A “soft” reset makes minimal changes: PC, T (T-step counter)

 A “hard” reset initializes more processor state



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

SRC Reset Capability

 We specify both a hard and soft reset for SRC

 The Strt signal will do a hard reset
 It is effective only when machine is stopped

 It resets the PC to zero

 It resets all 32 general registers to zero

 The Soft Reset signal is effective when the machine is running
 It sets PC to zero

 It restarts instruction fetch

 It clears the Reset signal

 Actions are described in instruction_interpretation
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Abstract RTN for SRC Reset and Start

Processor State
Strt: Start signal
Rst: External reset signal

instruction_interpretation := (
¬Run∧Strt → (Run ← 1: PC, R[0..31] ← 0);

Run∧¬Rst → (IR ← M[PC]: PC ← PC + 4;
instruction_execution):

Run∧Rst → ( Rst ← 0: PC ← 0); instruction_interpretation):
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Resetting in the Middle of Instruction Execution

 The abstract RTN implies that reset takes effect after the current
instruction is done

 To describe reset during an instruction, we must go from
abstract to concrete RTN

• Questions for discussion:

• Why might we want to reset in the middle of an instruction?

• How would we reset in the middle of an instruction?



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tbl 4.17  Concrete RTN Describing Reset
During add Instruction Execution

Step Concrete RTN
T0 ¬Reset → (MA ← PC: C ← PC + 4):
  Reset → (Reset ← 0: PC ← 0: T ←0):
T1 ¬Reset → (MD ← M[MA]: P ← C):
  Reset → (Reset ← 0: PC ← 0: T ← 0):
T2 ¬Reset → (IR ← MD):
  Reset → (Reset ← 0: PC ← 0: T ← 0):
T3 ¬Reset → (A ← R[rb]):
  Reset → (Reset ← 0: PC ← 0: T ← 0):
T4 ¬Reset → (C ← A + R[rc]):
  Reset → (Reset ← 0: PC ← 0: T ← 0):
T5 ¬Reset →  (R[ra ] ← C):
  Reset → (Reset ← 0: PC ← 0: T ← 0):
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Control Sequences Including the Reset
Function

 ClrPC clears the program counter to all zeros, and ClrR
clears the one bit Reset flip-flop

 Because the same reset actions are in every step of every
instruction, their control signals are independent of time
step or op code

Step Control Sequence
T0. ¬Reset → (PCout, MAin, Inc4, Cin, Read):
  Reset → (ClrPC, ClrR, Goto0):
T1 ¬Reset → (Cout, PCin, Wait):
  Reset → (ClrPC, ClrR, Goto0):
      • • •
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General Comments on Exceptions

 An exception is an event that causes a change in the
program specified flow of control

 Because normal program execution is interrupted, they are
often called interrupts

 We will use exception for the general term and use interrupt
for an exception caused by an external event, such as an I/O
device condition

 The usage is not standard. Other books use these words
with other distinctions, or none
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Combined Hardware/Software Response to an
Exception

 The system must control the type of exceptions it will process at
any given time

 The state of the running program is saved when an allowed
exception occurs

 Control is transferred to the correct software routine, or “handler”
for this exception

 This exception, and others of less or equal importance are
disallowed during the handler

 The state of the interrupted program is restored at the end of
execution of the handler
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Hardware Required to Support Exceptions

 To determine relative importance, a priority number is
associated with every exception

 Hardware must save and change the PC, since without it no
program execution is possible

 Hardware must disable the current exception lest is interrupt
the handler before it can start

 Address of the handler is called the exception vector and is a
hardware function of the exception type

 Exceptions must access a save area for PC and other
hardware saved items
 Choices are special registers or a hardware stack
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New Instructions Needed to Support Exceptions

 An instruction executed at the end of the handler must
reverse the state changes done by hardware when the
exception occurred

 There must be instructions to control what exceptions are
allowed
 The simplest of these enable or disable all exceptions

 If processor state is stored in special registers on an
exception, instructions are needed to save and restore
these registers
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Kinds of Exceptions

 System reset

 Exceptions associated with memory access
 Machine check exceptions

 Data access exceptions

 Instruction access exceptions

 Alignment exceptions

 Program exceptions

 Miscellaneous hardware exceptions

 Trace and debugging exceptions

 Non-maskable exceptions

 External exceptions—interrupts
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An Interrupt Facility for SRC

 The exception mechanism for SRC handles external interrupts

 There are no priorities, but only a simple enable and disable
mechanism

 The PC and information about the source of the interrupt are
stored in special registers
 Any other state saving is done by software

 The interrupt source supplies 8 bits that are used to generate
the interrupt vector

 It also supplies a 16 bit code carrying information about the
cause of the interrupt
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SRC Processor State Associated with Interrupts

Processor interrupt mechanism
ireq: interrupt request signal
iack: interrupt acknowledge signal
IE: one bit interrupt enable flag
IPC〈31..0〉: storage for PC saved upon interrupt
II〈15..0〉: info. on source of last interrupt
Isrc_info〈15..0〉: information from interrupt source
Isrc_vect〈7..0〉: type code from interrupt source
Ivect〈31..0〉:= 20@0#Isrc_vect〈7..0〉#4@0:

0000Isrc_vect〈7..0〉000 . . . 0
31 0341112

Ivect〈31..0〉

From Dev.→
To Dev.     →
Internal    →
to CPU      →
    “            →
From Dev.→
From Dev →
Internal    →
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SRC Instruction Interpretation Modified for
Interrupts

instruction_interpretation :=
(¬Run∧Strt → Run ← 1:
Run∧¬(ireq∧IE) → (IR ← M[PC]: PC ← PC + 4; instruction_execution):
Run∧(ireq∧IE) → (IPC ← PC〈31..0〉:

II〈15..0〉 ← Isrc_info〈15..0〉: iack ← 1:
IE ← 0: PC ← Ivect〈31..0〉; iack ← 0); 
instruction_interpretation);

 If interrupts are enabled, PC and interrupt info. are stored in IPC
and II, respectively
 With multiple requests, external priority circuit (discussed in later

chapter) determines which vector & info. are returned

 Interrupts are disabled

 The acknowledge signal is pulsed
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SRC Instructions to Support Interrupts

Return from interrupt instruction
rfi (:= op = 29 ) → (PC ← IPC: IE ← 1):

Save and restore interrupt state
svi (:= op = 16) → (R[ra]〈15..0〉 ← II〈15..0〉: R[rb] ← IPC〈31..0〉):
ri (:= op = 17) → (II〈15..0〉 ← R[ra]〈15..0〉 : IPC〈31..0〉 ← R[rb]):

Enable and disable interrupt system
een (:= op = 10 ) → (IE ← 1):
edi (:= op = 11 ) → (IE ← 0):

 The 2 rfi actions are indivisible, can’t een & branch
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Concrete RTN for SRC Instruction Fetch with
Interrupts

 PC could be transferred to IPC over the bus

 II and IPC probably have separate inputs for the externally supplied
values

 Iack is pulsed, described as ←1; ←0, which is easier as a control
signal than in RTN

Step  ¬(ireq∧IE) Concrete RTN  (ireq∧IE) 
T0.  (¬(ireq∧IE) → (   (ireq∧IE) → (IPC ← PC: II ← Isrc_info:
          MA ← PC: C ← PC+4):    IE ← 0: PC← 20@0#Isrc_vect〈7..0〉#0000:
         Iack←1);
T1.  MD ← M[MA] : PC ← C;  Iack ← 0: End;
T2.  IR ← MD;
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Exceptions During Instruction Execution

 Some exceptions occur in the middle of instructions
 Some CISCs have very long instructions, like string move

 Some exception conditions prevent instruction completion, like
uninstalled memory

 To handle this sort of exception, the CPU must make special
provision for restarting
 Partially completed actions must be reversed so the instruction can

be re-executed after exception handling

 Information about the internal CPU state must be saved so that the
instruction can resume where it left off

 We will see that this problem is acute with pipeline
designs—always in middle of instructions.
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Recap of the Design Process: the Main Topic of
Chap. 4

Informal description

 formal RTN description

block diagram architecture

concrete RTN steps

hardware design of blocks

Control  sequences

control unit and timing

Chapter 2

Chapter 4

SRC
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Chapter 4 Summary

 Chapter 4 has done a non pipelined data path, and a hardwired
controller design for SRC

 The concepts of data path block diagrams, concrete RTN,
control sequences, control logic equations, step counter control,
and clocking have been introduced

 The effect of different data path architectures on the concrete
RTN was briefly explored

 We have begun to make simple, quantitative estimates of the
impact of hardware design on performance

 Hard and soft resets were designed

 A simple exception mechanism was supplied for SRC




