S Assembly and Assemblers

= What is an assembler?
= Translates from assembly language to machine language

= Assembly language structure
= Tasks of the assembler

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Epoch or time period

Assamike tine

Aszembly language
g rarm et

S Fig C.1 Time Periods of Various Processes in
AL Program Development

v

Pregrarm listing

(Asmerbker ><:

v

Emar rressages

flachire Coefe
rriced Ul (hinary)

Litker

Lirk. titre

Lesad tirre

'

Lesac] rrced vl

!

(Lcsaede=r

Cither rrachire
Coacle e ules

A4 ... o
f el ... Ao

Fun tirre

Computer Systems Design and Architecture Second Edition

L lug e Ly b

A .. oD mlachire
e . Ao T

o4 .. el
ol .. 1 -

LTyl Iy [i
L lu I Ly b
La e I IO ey [
L uy o [y b
La el I ey [

PU

© 2004 Prentice Hall

The Assembler Provides—

Access to all the machine’s resources by the assembled
program. This includes access to the entire instruction set of the
machine.

A means for specifying run-time locations of program and data
In memory.

Provide symbolic labels for the representation of constants and
addresses.

Perform assemble-time arithmetic.

Provide for the use of any synthetic instructions.

Emit machine code in a form that can be loaded and executed.
Report syntax errors and provide program listings

Provide an interface to the module linkers and program loader.
Expand programmer defined macro routines.

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S
D Assembler Syntax and Directives
A
2/e

. Syntax: Label OPCODE Op1, Op2, ... ;Comments

Pseudo Operations (sometimes called “pseudos,” or directives are “Opcodes”
that are actually instructions to the assembler, and that do not result in code
being generated.

Assembler maintains several data structures

= Table that maps text of opcodes to op number and instruction format(s)
= “Symbol Table” that maps defined symbols to their value

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S Table C.1 Assembler Directives

ule linkage

. Val EXTERN

Directive
Type Example Action
Define a sym- MO . equ 11 Set the symbol NOV equal to the constant 11.
bolic constant MAY - equ “May Set the symbol MAY equal to the string “May ™.
Size - 2qu 10 Set the symbol 51ze equal to the constant] 0.
Fix a memory Start .org Ox 2000 Fix the location at which the following program or data word
location _ _ will load to 2000 .
main. 1d r0, 5ize Begin program execution at this location.
Reserve a block | Array: .dch 20 Reserve space for 20 bytes. Base address is Array.
of storage IHIE”" ray: .dch Size Reserve space for 10 halfwords. Base address is Harray.
warray .dec 20 Reserve space for 20 words. Base address is Warray.
Initialize mem- | Minusl: .dch Ox it Reserve a halfword at location Mi nus1; initialize it to the
ory locationi s) _ hexadecimal value THTT.
Colors: .dc 0, 1, 2, 3 Reserve space at location Colors for 4 words, and initialize
: i v | themto O, 1, 2, and 3.
H -deb Hello Reserve space at location H1 for 5 bytes; imit. to "Hello’
Describe’ mod- | Out: PUELIC Make the value of Out available to the linker for linkage to

other assembled modules.
The value of Val is defined externally in another module.

TNotavailable in SRC, but available in production assemblers.

Computer Systems Design and Architecture Second Edition

© 2004 Prentice Hall

- fib.asm.

Figure C.2 Example Program fib.asm

Compute Fibonacci numbers.

- The Fibonacci EEquence 1s defined as follows:

; Fib(1) = 1, fib(2) =
; fib(n) = fib(n-1) +
cnt: .equ 8

.org 0

do 1, 1

.dw cnt

.org O=1000
Tar r3l, loop
Ta r0, ent

Ta r1, 0

saq: :
Ta r2, 4 ;

main:

1d r3, seqg(rl)
add1 ri,
1d rd4, seq(rl)
add r3, r3, rd4 ;
addi r2, r2, 4 ;
st r3, seq(r2)
addis ro,
brnz ri3l,
stop

lToop:
rl, 4 ;

ri,
r{

-1

Computer Systems Design and Architecture Second Edition

: Pgm start.
- Init.
: Init rl to index of seql[0]

F1b{n 2)n = 2.

No. to compute after first two
Store sequence at addr. 0

» Init. the first two Fib. Nos.
: Storage for the next &8 Fib. Nos.

addr. 1000
hranch address

Bagin ass'y. at hex.
Init.
count

Init r2 to index of seq[l]

- Get fib(n-2)

Incrament 1ndex

- Get fib{n-1)

compute fib{n)
fib(n) = fib(n-1) + fib(n-2J

- Store fib(n)

Decrament count

» loop untill done

© 2004 Prentice Hall

wRE '.'-::-‘.'SRC

HexlLoc
00000000
00000000
Q0000000
Q0000000
Q0000000
Q0000000
00000000
00000004
00000008
Q0000028
00001000
00001004
00001008
0000100c¢
00001010
00001014
00001018
1)
0000101c
00001020
00001024
00001028
0000102c
00001030

Figure C.3 Assembler listing file, fib.Ist

Assemblap®# &

Decloc
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000004
0000000008
0000000040
0000004096
0000004100
0000004104
0000004108
0000004112
0000004116
0000004120

0000004124
0000004128
0000004132
0000004136
0000004140
0000004144

MachWord
00000000
00000000
Q0000000
Q0000000
00000000
00000000
00000001
00000001
00000000
Q0000000
37c0000c
28000008
28400000
28800004
08c 20000
68420004
09020000

60c64000
68840004
18c40000
6BOLFTfT
40320003
8000000

Label

cnt:

seq:

main:

lToop:

Computer Systems Design and Architecture Second Edition

(SRCTools Version 2.1.0)

Source Code
Compute Fibonacci numbers.

- fib.asm.

; fib(1)

Comments

1, f1b(2) =

; The Fibonacci sequence 1s defined as follows:

: fib(n)
.equ &
.org 0O
.de 1
.de 1
.dw cnt
.org O=1000
lar r3l, loop
la r0, cnt

la rl1, O

Ta r2, 4

1d r3, seq(ril)
addi rl, rl, 4
1d r4, seq(rl)

add r3, r3, r4
adds r2, r2, 4
st r3, seq(r2)

addir r0, ro, -1

brnz r31, r0
stop

F1b[n l} + wa{n 27 n > 2.

No. to compute after first two

Store sequence at addr. 0
Init the first two numbers

Storage for the next 8 Fib. Nos.
Begin ass'y. at hex. addr. 1000
Pgm start: init branch address
Init. count

Init rl to index of seq[0]

Init r2 to index of seq[1]

Get fib(n-2)

Increment index

Get fib(n-

compute fib(n)

fib(n) = fib(n-1) + fib(n-2)
Store fib(n)

Decrement count

loop untill done

© 2004 Prentice Hall

S The 2-Pass Assembly Process

216" pass 1:

= Init. Location Counter (Assemble-Time “PC”) to O

= Pass over program text: enter all symbols into symbol table
= May not be able to map all symbols on first pass
= (Definition before use is usually allowed)
= Determine size of each instruction, map to a location
= Uses pattern matching to relate opcode to pattern
= Increment location counter by size
= Change Location Counter in response to ORG pseudos.

= Pass?2
= Insert binary code for each opcode and value

= “Fix up” forward references and variable-sizes instructions
= Examples include variable-sized branch offsets and constant fields.

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S Table C.2 Snapshot of the Symbol Table Generated by

D the Assembler During Pass 1 at Address 0x1008
A
2/e

Key Symbol Type Value Defined

0 “cnt” constant 8 defined

1 “seq” label 00000000 defined

2 “main” label 00001000 defined

3 “Toop™ unknown undefined

Computer Systems Design and Architecture Second Edition

© 2004 Prentice Hall

