
S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Assembly and Assemblers

 What is an assembler?
 Translates from assembly language to machine language

 Assembly language structure

 Tasks of the assembler

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig C.1 Time Periods of Various Processes in
Program Development

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

The Assembler Provides—

 Access to all the machine’s resources by the assembled
program. This includes access to the entire instruction set of the
machine.

 A means for specifying run-time locations of program and data
in memory.

 Provide symbolic labels for the representation of constants and
addresses.

 Perform assemble-time arithmetic.

 Provide for the use of any synthetic instructions.

 Emit machine code in a form that can be loaded and executed.

 Report syntax errors and provide program listings

 Provide an interface to the module linkers and program loader.

 Expand programmer defined macro routines.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Assembler Syntax and Directives

• Syntax: Label OPCODE Op1, Op2, ... ;Comments

• Pseudo Operations (sometimes called “pseudos,” or directives are “Opcodes”
that are actually instructions to the assembler, and that do not result in code
being generated.

• Assembler maintains several data structures

 Table that maps text of opcodes to op number and instruction format(s)

 “Symbol Table” that maps defined symbols to their value

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Table C.1 Assembler Directives

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Figure C.2 Example Program fib.asm

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Figure C.3 Assembler listing file, fib.lst

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

The 2-Pass Assembly Process

 Pass 1:
 Init. Location Counter (Assemble-Time “PC”) to 0

 Pass over program text: enter all symbols into symbol table
 May not be able to map all symbols on first pass

 (Definition before use is usually allowed)

 Determine size of each instruction, map to a location
 Uses pattern matching to relate opcode to pattern

 Increment location counter by size

 Change Location Counter in response to ORG pseudos.

 Pass 2
 Insert binary code for each opcode and value

 “Fix up” forward references and variable-sizes instructions
 Examples include variable-sized branch offsets and constant fields.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Table C.2 Snapshot of the Symbol Table Generated by
the Assembler During Pass 1 at Address 0x1008

