
S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Chapter 7- Memory System Design

 Introduction

 RAM structure: Cells and Chips

 Memory boards and modules

 Two-level memory hierarchy

 The cache

 Virtual memory

 The memory as a sub-system of the computer

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Introduction

So far, we’ve treated memory as an array of words limited in
size
only by the number of address bits. Life is seldom so easy...

Real world issues arise:
•cost
•speed
•size
•power consumption
•volatility
•etc.

What other issues can you think of that will influence memory
design?

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

In This Chapter we will cover–

•Memory components:
•RAM memory cells and cell arrays
•Static RAM–more expensive, but less complex
•Tree and Matrix decoders–needed for large RAM chips
•Dynamic RAM–less expensive, but needs “refreshing”

•Chip organization
•Timing
•Commercial RAM products" SDRAM and DDR RAM

•ROM–Read only memory
•Memory Boards

•Arrays of chips give more addresses and/or wider words
•2-D and 3-D chip arrays

• Memory Modules
•Large systems can benefit by partitioning memory for

•separate access by system components
•fast access to multiple words

–more–

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

In This Chapter we will also cover–

• The memory hierarchy: from fast and expensive to slow and cheap
 Example: Registers->Cache–>Main Memory->Disk
 At first, consider just two adjacent levels in the hierarchy
 The Cache: High speed and expensive

 Kinds: Direct mapped, associative, set associative
 Virtual memory–makes the hierarchy transparent

 Translate the address from CPU’s logical address to the
physical address where the information is actually stored

 Memory management - how to move information back and forth
 Multiprogramming - what to do while we wait
 The “TLB” helps in speeding the address translation process

 Will discuss temporal and spatial locality as basis for success of
cache and virtual memory techniques.

• Overall consideration of the memory as a subsystem.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 7.1 The CPU–Main Memory Interface

Sequence of events:
Read:

1. CPU loads MAR, issues Read, and REQUEST
2. Main Memory transmits words to MDR
3. Main Memory asserts COMPLETE.

Write:
1. CPU loads MAR and MDR, asserts Write, and REQUEST
2. Value in MDR is written into address in MAR.
3. Main Memory asserts COMPLETE.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

The CPU–Main Memory Interface - cont'd.

Additional points:
•if b<w, Main Memory must make w/b b-bit transfers.
•some CPUs allow reading and writing of word sizes <w.

Example: Intel 8088: m=20, w=16,s=b=8.
8- and 16-bit values can be read and written

•If memory is sufficiently fast, or if its response is predictable,
then COMPLETE may be omitted.
•Some systems use separate R and W lines, and omit REQUEST.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Table 7.1 Some Memory Properties

Symbol Definition Intel Intel IBM/Moto.
8088 8086 601

w CPU Word Size 16bits 16bits 64 bits
m Bits in a logical memory address 20 bits 20 bits 32 bits
s Bits in smallest addressable unit 8 8 8
b Data Bus size 8 16 64
2m Memory wd capacity, s-sized wds 220 220 232

2mxs Memory bit capacity 220x8 220x8 232x8

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Big-Endian and Little-Endian
Storage

When data types having a word size larger than the smallest
addressable unit are stored in memory the question arises,

“Is the least significant part of the word stored at the
lowest address (little Endian, little end first) or–

is the most significant part of the word stored at the
lowest address (big Endian, big end first)”?

Example: The hexadecimal 16-bit number ABCDH, stored at address 0:

AB CD
msb ... lsb

AB
CD0

1

AB
CD

0
1

Little Endian Big Endian

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Table 7.2 Memory Performance
Parameters

Symbol Definition Units Meaning

ta Access time time Time to access a memory word

tc Cycle time time Time from start of access to start of next
access

k Block size words Number of words per block
b Bandwidth words/time Word transmission rate
tl Latency time Time to access first word of a sequence

 of words

tbl = Block time Time to access an entire block of words
tl + k/b access time

(Information is often stored and moved in blocks at the cache and disk level.)

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Compo-
nent

Access Random Random Random Direct Sequential

Capa- 64-1024+ 8KB-8MB 64MB-2GB 8GB 1TB
city,
bytes

Latency .4-10ns .4-20ns 10-50ns 10ms 10ms-10s

Block 1 word 16 words 16 words 4KB 4KB
size

Band- System System 10-4000 50MB/s 1MB/s
width clock Clock MB/s

Rate rate-80MB/s

Cost/MB High $10 $.25 $0.002 $0.01

Table 7.3 The Memory Hierarchy, Cost, and
Performance

CPU
Cache Main Memory Disk Memory

Tape
MemorySome

Typical
Values:†

†As of 2003-4. They go out of date immediately.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 7.3 Memory Cells - a conceptual view

Select

DataIn

DataOut

R/W

≡

Select

DataOutDataIn

R/W

Regardless of the technology, all RAM memory cells must provide
these four functions: Select, DataIn, DataOut, and R/W.

This “static” RAM cell is unrealistic.
We will discuss more practical designs later.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 7.4 An 8-bit register as a 1D RAM array

The entire register is selected with one select line, and uses one R/W line

Data bus is bi-directional, and buffered. (Why?)

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 7.5 A 4x8 2D Memory Cell Array

R/W is common
to all.

2-bit
address

Bi-directional 8-bit buffered data bus

2-4 line decoder selects one of the four 8-bit arrays

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 7.6 A 64Kx1 bit static RAM (SRAM) chip

~square array fits IC design
 paradigm

Selecting rows separately
from columns means only
256x2=512 circuit elements
instead of 65536 circuit
elements!

CS, Chip Select, allows chips in arrays to
be selected individually

This chip requires 21 pins including power and ground, and so
will fit in a 22 pin package.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.7 A 16Kx4 SRAM Chip

There is little difference
between this chip and
the previous one, except
that there are 4, 64-1
Multiplexers instead of 1,
256-1 Multiplexer.

This chip requires 24 pins including power and ground, and so will require a 24
pin pkg. Package size and pin count can dominate chip cost.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.8 Matrix and Tree Decoders

3-to-8 line tree decoder constructed
from 2-input gates.

4-to-16 line matrix decoder
constructed from 2-input gates.

•2-level decoders are limited in size because of gate fanin.
Most technologies limit fanin to ~8.
•When decoders must be built with fanin >8, then additional levels
 of gates are required.
•Tree and Matrix decoders are two ways to design decoders with large fanin:

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.9 A 6 Transistor static RAM cell

This is a more practical
design than the 8-gate
design shown earlier.

A value is read by
precharging the bit
lines to a value 1/2
way between a 0 and
a 1, while asserting the
word line. This allows the
latch to drive the bit lines
to the value stored in
the latch.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Figs 7.10 Static RAM Read Timing

Access time from Address– the time required of the RAM array to decode the
address and provide value to the data bus.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Figs 7.11 Static RAM Write Timing

Write time–the time the data must be held valid in order to decode address and
store value in memory cells.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.12 A Dynamic
RAM (DRAM) Cell

Write: place value on bit line
and assert word line.
Read: precharge bit line,
assert word line, sense value
on bit line with sense/amp.

Capacitor will
discharge in 4-15ms.

Refresh capacitor by reading
(sensing) value on bit line,
amplifyingacitor.

This need to refresh the
storage cells of dynamic
RAM chips complicates
DRAM system design.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.13 DRAM Chip
organization

•Addresses are time-
multiplexed on address bus
using RAS and CAS as
strobes of rows and
columns.
•CAS is normally used as
the CS function.

Notice pin counts:
•Without address multiplexing:
27 pins including power and
ground.
•With address multiplexing: 17
pins including power and
ground.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Figs 7.14, 7.15 DRAM Read and Write cycles

Memory
Address

RAS

Data

tA

CAS

tPrechg

Row Addr Col Addr

tC

R/W

tRAS

Memory
Address

RAS

Data

tDHR

CAS

Prechg

Row Addr Col Addr

tC

W

tRAS

Typical DRAM Read operation Typical DRAM Write operation

Access time Cycle time
Notice that it is the bit line precharge
operation that causes the difference
between access time and cycle time.

Data hold from RAS.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

DRAM Refresh and row access

•Refresh is usually accomplished by a “RAS-only” cycle. The row address
 is placed on the address lines and RAS asserted. This refreshed the entire row.
CAS is not asserted. The absence of a CAS phase signals the chip that a
 row refresh is requested, and thus no data is placed on the external data lines.

•Many chips use “CAS before RAS” to signal a refresh. The chip has an internal
counter, and whenever CAS is asserted before RAS, it is a signal to refresh the row
pointed to by the counter, and to increment the counter.

•Most DRAM vendors also supply one-chip DRAM controllers that encapsulate
the refresh and other functions.

•Page mode, nibble mode, and static column mode allow rapid access to
the entire row that has been read into the column latches.

•Video RAMS, VRAMS, clock an entire row into a shift register where it can
be rapidly read out, bit by bit, for display.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.16 A CMOS ROM Chip

Row
Decoder

Address

CS

+V

2-D CMOS ROM Chip

1 0 1 0

00

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tbl 7.4 Kinds of ROM

ROM Type Cost Programmability Time to program Time to erase

Mask pro- Very At the factory Weeks (turn around) N/A
grammed inexpensive

PROM Inexpensive Once, by end Seconds N/A
user

EPROM Moderate Many times Seconds 20 minutes

Flash Expensive Many times 100 us. 1s, large
EPROM block

EEPROM Very Many times 100 us. 10 ms,
expensive byte

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Memory boards and modules

•There is a need for memories that are larger and wider than a single chip
•Chips can be organized into “boards.”

•Boards may not be actual, physical boards, but may consist of
 structured chip arrays present on the motherboard.

•A board or collection of boards make up a memory module.

•Memory modules:
•Satisfy the processor–main memory interface requirements
•May have DRAM refresh capability
•May expand the total main memory capacity
•May be interleaved to provide faster access to blocks of words.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.17 General structure of memory chip

Address
Decoder

Memory
Ce l l
Array

I/O
Multiplexer

m

Address

Chip Selects

s

Data

R/W

s
s

s

CS

Address
R/W

Data

m

s

This is a slightly different view of the memory chip than previous.

Bi-directional data bus.

Multiple chip selects ease the assembly of
chips into chip arrays. Usually provided
by an external AND gate.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.18 Word Assembly from Narrow Chips

CS

Address
R/W

Data

CS

Address
R/W

Data

CS

Address
R/W

Data

Select
Address

R/W

s s s

p×s

All chips have common CS, R/W, and Address lines.

P chips expand word size from s bits to p x s bits.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.19 Increasing the Number of Words by a
Factor of 2k

The additional k address bits are used to select one of 2k chips,
each one of which has 2m words:

Word size remains at s bits.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.20 Chip
Matrix Using Two

Chip Selects

Multiple chip
select lines
are used to
replace the
last level of
gates in this
matrix
decoder
scheme.

This scheme
simplifies the
decoding from
use of a (q+k)-
bit
decoder
to using one
q-bit and one
 k-bit decoder.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.21 A 3-D
DRAM Array

•CAS is used to enable
top decoder in decoder
tree.

•Use one 2-D array for
each bit. Each 2-D array
on separate board.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.22 A Memory Module interface

Must provide–
•Read and Write signals.
•Ready: memory is ready to accept commands.
•Address–to be sent with Read/Write command.
•Data–sent with Write or available upon Read when Ready is asserted.
•Module Select–needed when there is more than one module.

Memory boards
and/or
chips

Address register

Data register

Chip/board
selection

Control
signal
generator

w

k+m
Address

Module
select

Read

Write

Ready

Data

k
m

w

Bus Interface:

Control signal generator:
for SRAM, just strobes
data on Read, Provides
Ready on Read/Write

For DRAM–also provides
CAS, RAS, R/W, multiplexes
address, generates refresh
signals, and provides Ready.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.23 DRAM module with refresh control
.

Board and
chip selects

Address lines

RAS

CAS

R/W Data lines

Dynamic
RAM Array

Address
Multiplexer

Refresh counter

Address Register

2

m/2 m/2 m/2

m/2

Chip/board
selection

k

Refresh
clock and
control

Re
qu

es
t

G
ra

nt

Re
fr

es
h

Data register

w

w

Module
select

Read

Write

Ready

Data

Address
k+m

Memory
timing
generator

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.24 Two Kinds of Memory Module Organization.

Memory Modules
are used to allow
access to more
than one word
simultaneously.
•Scheme (a)
supports filling a
cache line.
•Scheme (b) allows
multiple processes
or processors to
access memory at
once.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.25 Timing of Multiple Modules on a
Bus

If time to transmit information over bus, tb, is < module cycle time, tc,
it is possible to time multiplex information transmission to several
modules;
Example: store one word of each cache line in a separate module.

Word Module No.Main Memory Address:

This provides successive words in successive modules.

Timing: Read module 0
Address

Write module 3
Address & data

Module 0
Data return

Module 0 read

Module 3 write

tb tc tb

Module 0

Module 3

Bus

With interleaving of 2k modules, and tb < tb/2k, it is possible to get a 2k-fold
increase in memory bandwidth, provided memory requests are pipelined.
DMA satisfies this requirement.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Memory system performance

For all accesses:
•transmission of address to memory
•transmission of control information to memory (R/W, Request, etc.)
•decoding of address by memory

For a read:
•return of data from memory
•transmission of completion signal

For a write:
•Transmission of data to memory (usually simultaneous with address)
•storage of data into memory cells
•transmission of completion signal

Breaking the memory access process into steps:

The next slide shows the access process in more detail --

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.26 Static and dynamic RAM timing

“Hidden refresh” cycle. A normal cycle would exclude the
pending refresh step.

-more-

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Example SRAM timings (using unrealistically
long timing)

Approximate values for static RAM Read timing:

•Address bus drivers turn-on time: 40 ns.
•Bus propagation and bus skew: 10 ns.
•Board select decode time: 20 ns.
•Time to propagate select to another board: 30 ns.
•Chip select: 20ns.

PROPAGATION TIME FOR ADDRESS AND COMMAND TO REACH CHIP: 120 ns.

•On-chip memory read access time: 80 ns
•Delay from chip to memory board data bus: 30 ns.
•Bus driver and propagation delay (as before): 50 ns.

TOTAL MEMORY READ ACCESS TIME: 280 ns.

Moral: 70ns chips to not necessarily provide 70ns access time!

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Considering any two adjacent
levels of the memory hierarchy

Some definitions:

Temporal locality: the property of most programs that if a given memory
location is referenced, it is likely to be referenced again, “soon.”

Spatial locality: if a given memory location is referenced, those locations
near it numerically are likely to be referenced “soon.”

Working set: The set of memory locations referenced over a fixed period of
time, or in a time window.

Notice that temporal and spatial locality both work to assure that the contents
of the working set change only slowly over execution time.

CPU Primary
level

Secondary
level• • • • • •

two adjacent levels in the hierarchy

Faster,
smaller

Slower,
larger

Defining the Primary and Secondary levels:

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Figure 7.28 Temporal and Spatial Locality Example

Consider the C for loop:

for ((I=0); I<n; I++)

A[I] = 0;

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Primary and secondary levels
of the memory hierarchy

Primary
level

Secondary
level

•The item of commerce between any two levels is the block.

•Blocks may/will differ in size at different levels in the hierarchy.
Example: Cache block size ~ 16-64 bytes.

Disk block size: ~ 1-4 Kbytes.

•As working set changes, blocks are moved back/forth through the
hierarchy to satisfy memory access requests.

•A complication: Addresses will differ depending on the level.
Primary address: the address of a value in the primary level.
Secondary address: the address of a value in the secondary level.

Speed between levels defined by latency: time to access first word, and
bandwidth, the number of words per second transmitted between levels.

Typical latencies:
cache latency: a few clocks
Disk latency: 100,000 clocks

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Primary and secondary address examples

•Main memory address: unsigned integer

•Disk address: track number, sector number, offset of word in sector.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.29 Addressing and Accessing a 2-Level Hierarchy
The
computer
system, HW
or SW,
must perform
any address
translation
that is
required:

Two ways of forming the address: Segmentation and Paging.
Paging is more common. Sometimes the two are used together,
one “on top of” the other. More about address translation and paging later...

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.30 Primary Address Formation

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Hits and misses; paging;
block placement

Hit: the word was found at the level from which it was requested.

Miss: the word was not found at the level from which it was requested.
(A miss will result in a request for the block containing the word from
the next higher level in the hierarchy.)

Hit ratio (or hit rate) = h = number of hits

Miss ratio: 1 - hit ratio

tp = primary memory access time. ts = secondary memory access time

Access time, ta = h • tp + (1-h) • ts.

Page: commonly, a disk block. Page fault: synonymous with a miss.

Demand paging: pages are moved from disk to main memory only when
a word in the page is requested by the processor.

Block placement and replacement decisions must be made each time a
block is moved.

total number of references

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Virtual memory

a Virtual Memory is a memory hierarchy, usually consisting of at least
main memory and disk, in which the processor issues all memory
references as effective addresses in a flat address space. All translations
to primary and secondary addresses are handled transparently to the
process making the address reference, thus providing the illusion of a flat
address space.

Recall that disk accesses may require 100,000 clock cycles to complete,
due to the slow access time of the disk subsystem. Once the processor
has, through mediation of the operating system, made the proper request
to the disk subsystem, it is available for other tasks.

Multiprogramming shares the processor among independent programs
that are resident in main memory and thus available for execution.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Decisions in designing a
2-level hierarchy

•Translation procedure to translate from system address to primary address.

•Block size–block transfer efficiency and miss ratio will be affected.

•Processor dispatch on miss–processor wait or processor multiprogrammed.

•Primary level placement–direct, associative, or a combination. Discussed later.

•Replacement policy–which block is to be replaced upon a miss.

•Direct access to secondary level–in the cache regime, can the processor
 directly access main memory upon a cache miss?

•Write through–can the processor write directly to main memory upon a cache
 miss?

•Read through–can the processor read directly from main memory upon a
 cache miss as the cache is being updated?

•Read or write bypass–can certain infrequent read or write misses be satisfied
 by a direct access of main memory without any block movement?

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.31 The Cache Mapping Function

The cache mapping function is responsible for all cache operations:
•Placement strategy: where to place an incoming block in the cache
•Replacement strategy: which block to replace upon a miss
•Read and write policy: how to handle reads and writes upon cache misses.

Mapping function must be implemented in hardware. (Why?)

Three different types of mapping functions:
•Associative
•Direct mapped
•Block-set associative

Example: 256KB 16words 32MB

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Memory fields and address translation

Example of processor-issued 32-bit virtual address:
031

32 bits

That same 32-bit address partitioned into two fields, a block field,
and a word field. The word field represents the offset into the block
specified in the block field:

Block Number Word
26 6

226 64 word blocks

00 ••• 001001 001011
Example of a specific memory reference: word 11 in block 9.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.32 Associative mapped caches

*16 bits, while unrealistically small, simplifies the examples

Associative mapped
cache model: any
block from main
memory can be put
anywhere in the
cache.
Assume a 16-bit main
memory.*

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.33 Associative cache mechanism

Because any block can reside anywhere in the cache, an associative, or content
addressable memory is used. All locations are searched simultaneously.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Advantages and disadvantages
of the associative mapped cache.

Advantage
•Most flexible of all–any MM block can go anywhere in the cache.

Disadvantages
•Large tag memory.
•Need to search entire tag memory simultaneously means lots of
 hardware.

Replacement Policy is an issue when the cache is full. –more later–

Q.: How is an associative memory implemented? Hint: Think XNOR gates.

Direct mapped caches simplify the hardware by allowing each MM block
to go into only one place in the cache.

–next–

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.34 The direct mapped cache

Key Idea: all the MM
blocks from a given
group can go into only
one location in the
cache, corresponding to
the group number.

Now the cache needs only examine the single group
that its reference specifies.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.35 Direct Mapped Cache Operation

1. Decode the
group number of
the incoming
MM address to
select the group

2. If Match
AND Valid

3. Then gate out
the tag field

4. Compare
cache tag with
incoming tag

5. If a hit, then
gate out the
cache line, 6. and use the word field to

select the desired word.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Direct mapped caches

•The direct mapped cache uses less hardware, but is
much more restrictive in block placement.

•If two blocks from the same group are frequently
referenced, then the cache will “thrash.” That is,
repeatedly bring the two competing blocks into and out of
the cache. This will cause a performance degradation.

•Block replacement strategy is trivial.

•Compromise - allow several cache blocks in each
group–the Block Set Associative Cache. –next–

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.36 2-Way Set Associative Cache

Example shows 256 groups, a set of two per group.
Sometimes referred to as a 2-way set associative cache.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Getting Specific:
The Intel Pentium Cache

•The Pentium actually has two separate caches–one for instructions and
 one for data. Pentium issues 32-bit MM addresses.

•Each cache is 2-way set associative
•Each cache is 8K=213 bytes in size
•32 = 25 bytes per line.
•Thus there are 64 or 26 bytes per set, and therefore 213/26 or 27=128 groups
•This leaves 32-5-7 = 20 bits for the tag field:

20 7 5

Tag Set (group) Word

31 0

This “cache arithmetic” is important, and deserves your mastery.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Cache Read and Write policies

•Read and Write cache hit policies
•Write-through–updates both cache and MM upon each write.
•Write back–updates only cache. Updates MM only upon block removal.

•“Dirty bit” is set upon first write to indicate block must be written back.

•Read and Write cache miss policies
•Read miss - bring block in from MM

•Either forward desired word as it is brought in, or
•Wait until entire line is filled, then repeat the cache request.

•Write miss
•Write allocate - bring block into cache, then update
•Write - no allocate - write word to MM without bringing block into cache.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Block replacement strategies

•Not needed with direct mapped cache

•Least Recently Used (LRU)
•Track usage with a counter. Each time a block is accessed:

•Clear counter of accessed block
•Increment counters with values less than the one accessed
•All others remain unchanged

•When set is full, remove line with highest count.

•Random replacement - replace block at random.
•Even random replacement is a fairly effective strategy.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Cache performance

Recall Access time, ta = h • tp + (1-h) • ts for Primary and Secondary levels.
For tp = cache and ts = MM,

ta = h • tC + (1-h) • tM
We define S, the speedup, as S= Twithout/Twith for a given process,
where Twithout is the time taken without the improvement, cache in
this case, and Twith is the time the process takes with the improvement.

Having a model for cache and MM access times, and cache line fill time,
the speedup can be calculated once the hit ratio is known.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

•The PPC 601 has a unified cache - that is, a single cache for both instructions and
data.
•It is 32KB in size, organized as 64x8block set associative, with blocks being 8 8-
byte words organized as 2 independent 4 word sectors for convenience in the
updating process
•A cache line can be updated in two single-cycle operations of 4 words each.
•Normal operation is write back, but write through can be selected on a per line
basis via software. The cache can also be disabled via software.

Fig 7.37 Getting Specific: The PowerPC 601 Cache

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Virtual memory

The Memory Management Unit, MMU is responsible for mapping logical
addresses issued by the CPU to physical addresses that are presented to
the Cache and Main Memory.

•Effective Address - an address computed by by the processor while
executing a program. Synonymous with Logical Address

•The term Effective Address is often used when referring to activity
inside the CPU. Logical Address is most often used when referring to
addresses when viewed from outside the CPU.

•Virtual Address - the address generated from the logical address by the
Memory Management Unit, MMU.

•Physical address - the address presented to the memory unit.

A word about addresses:

(Note: Every address reference must be translated.)

CPU Chip

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Virtual addresses - why

The logical address provided by the CPU is translated to
a virtual address by the MMU. Often the virtual address
space is larger than the logical address, allowing program
units to be mapped to a much larger virtual address
space.

Getting Specific: The PowerPC 601
•The PowerPC 601 CPU generates 32-bit logical addresses.
•The MMU translates these to 52-bit virtual addresses, before
the final translation to physical addresses.

•Thus while each process is limited to 32 bits, the main memory
•can contain many of these processes.

•Other members of the PPC family will have different logical
and virtual address spaces, to fit the needs of various members
of the processor family.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Virtual addressing - advantages

•Simplified. Each program unit can be compiled into its own memory space,
beginning at address 0 and potentially extending far beyond the amount of
physical memory present in the system.

•No address relocation required at load time.
•No need to fragment the program to accommodate

•Cost effective use of physical memory.
•Less expensive secondary (disk) storage can replace primary storage.
(The MMU will bring portions of the program into physical memory as
required)

•Access control. As each memory reference is translated, it can be
simultaneously checked for read, write, and execute privileges.

•This allows access/security control at the most fundamental levels.
•Can be used to prevent buggy programs and intruders from causing
damage to other users or the system.

This is the origin of those “bus error” and “segmentation fault" messages

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.39 Memory management by Segmentation

•Notice that each segment’s virtual address and out of physical memory will result
in gaps between segments. This is called external fragmentation.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.40 Segmentation Mechanism

•The computation of physical address from virtual address requires an integer
addition for each memory reference, and a comparison if segment limits are
checked.
•Q: How does the MMU switch references from one segment to another?

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.41 The Intel 8086 Segmentation Scheme

The first popular 16-bit
processor, the Intel 8086
had a primitive segmentation
scheme to “stretch” its 16-bit
logical address to a 20-bit
physical address:

The CPU allows 4 simultaneously active segments,
CODE, DATA, STACK, and EXTRA. There are 4 16-bit segment base
registers.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

•This figure shows the mapping between virtual memory pages, physical memory
pages, and pages in secondary memory. Page n-1 is not present in physical
memory, but only in secondary memory.
•The MMU that manages this mapping. -more-

Fig 7.42 Memory management by paging

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.43 The Virtual to Physical Address Translation
Process

A page fault will result in 100,000 or more cycles passing before the page
has been brought from secondary storage to MM.

•1 table per
user per
program unit
•One
translation per
memory
access
•Potentially
large page
table

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Page Placement and Replacement

Page tables are direct mapped, since the physical page is computed
directly from the virtual page number.

But physical pages can reside anywhere in physical memory.

Page tables such as those on the previous slide result in large page
tables, since there must be a page table entry for every page in the
program unit.

Some implementations resort to hash tables instead, which need have
entries only for those pages actually present in physical memory.

Replacement strategies are generally LRU, or at least employ a “use bit”
to guide replacement.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fast address translation:
regaining lost ground

•The concept of virtual memory is very attractive, but leads to considerable
overhead:

•There must be a translation for every memory reference
•There must be two memory references for every program reference:

•One to retrieve the page table entry,
•one to retrieveMost caches are addressed by physical address, so
there must be a virtual to physical translation before the cache can be
accessed.

The answer: a small cache in the processor that retains the last few virtual
to physical translations: A Translation Lookaside Buffer, TLB.

The TLB contains not only the virtual to physical translations, but also the
valid, dirty, and protection bits, so a TLB hit allows the processor to access
physical memory directly.

The TLB is usually implemented as a fully associative cache. -more-

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.44 TLB Structure and Operation

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.45 Operation of the Memory Hierarchy

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.46 The PowerPC 601 MMU Operation

“Segments” are
actually more
akin to
large (256 MB)
blocks.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 7.47 I/O Connection to a Memory with a Cache

•The memory system is quite complex, and affords many possible tradeoffs.
•The only realistic way to chose among these alternatives is to study a
typical workload, using either simulations or prototype systems.
•Instruction and data accesses usually have different patterns.

•It is possible to employ a cache at the disk level, using the disk hardware.
•Traffic between MM and disk is I/O, and Direct Memory Access, DMA can be
used to speed the transfers:

