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About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such 
as explicit parallelism, predication, speculation and more. The architecture is designed 
to be highly scalable to fill the ever increasing performance requirements of various 
server and workstation market segments. The Itanium architecture features a 
revolutionary 64-bit instruction set architecture (ISA), which applies a new processor 
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key 
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a 
comprehensive description of the programming environment, resources, and instruction 
set visible to both the application and system programmer. In addition, it also describes 
how programmers can take advantage of the features of the Itanium architecture to 
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level 
resources, programming environment, and the IA-32 application interface. This volume 
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.Intel® Itanium® Architecture 
Software Developer’s Manual

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of 
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by 
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of 
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point 
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System 
Environment” describes the operation of IA-32 instructions within the Itanium System 
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® 
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.
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Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” 
provides an overview of the application programming environment for the Itanium 
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control 
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization 
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on 
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in 
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources 
and programming state, interrupt model, and processor firmware interface. This 
volume also provides a useful system programmer's guide for writing high performance 
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment 
designed to support execution of Itanium architecture-based operating systems running 
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural 
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating 
system for virtual to physical address translation, virtual aliasing, physical addressing, 
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a 
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which 
automatically saves and restores the stacked subset (GR32 – GR 127) of the general 
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance 
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.
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Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts 
and intercepts that can occur during IA-32 instruction set execution in the Itanium 
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with 
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium 
System Environment from the perspective of an Itanium architecture-based operating 
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts 
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second 
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing 
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes 
execution around interruptions and what state is preserved and made available to 
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve 
Itanium register contents and state. This chapter also describes system architecture 
mechanisms that allow an operating system to reduce the number of registers that 
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating 
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of 
instruction emulation handlers that Itanium architecture-based operating systems are 
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the 
Itanium architecture handle floating-point numeric exceptions and how the software 
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium 
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt 
architecture with a focus on how external asynchronous interrupt handling can be 
controlled by software. 

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform 
issues and support for the existing IA-32 I/O port space.
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Chapter 12, “Performance Monitoring Support” describes the performance monitor 
architecture with a focus on what kind of support is needed from Itanium 
architecture-based operating systems. 

Chapter 13, “Firmware Overview” introduces the firmware model, and how various 
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system 
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium® 
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium 
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which 
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format 
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules 
that are applicable when generating code for processors based on the Itanium 
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set 
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all 
base IA-32 instructions, organized in alphabetical order by assembly language 
mnemonic.
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Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed 
description of all IA-32 Intel® MMX™ technology instructions designed to increase 
performance of multimedia intensive applications. Organized in alphabetical order by 
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all 
IA-32 SSE instructions designed to increase performance of multimedia intensive 
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be 
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level 
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new 
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports 
the execution of both IA-32 and Itanium architecture-based code.

Itanium Architecture-based Firmware – The Processor Abstraction Layer (PAL) and 
System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor 
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system 
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at 
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual 
for Software Development and Optimization– Document number 308065 
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development 
and Optimization – This document (Document number 251110) describes 
model-specific architectural features incorporated into the Intel® Itanium® 2 
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development – 
This document (Document number 245320) describes model-specific architectural 
features incorporated into the Intel® Itanium® processor, the first processor based 
on the Itanium architecture.
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set 
of manuals describes the Intel 32-bit architecture. They are available from the Intel 
Literature Department by calling 1-800-548-4725 and requesting Document 
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide – 
This document (Document number 245358) defines general information necessary 
to compile, link, and execute a program on an Itanium architecture-based 
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification – 
This document (Document number 245359) specifies requirements to develop 
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at 
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines 
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of 
Revision

Revision 
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and 
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current 
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and 
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.
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August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking 
on interruption messages by processors optional. See Vol 2, Part I, Ch 5 
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers 
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure 
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2, 
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states). 
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for 
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined 
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD 
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY, 
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER, 
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional. 
Undefined behavior for 1-byte accesses to the non-architected regions in the 
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the 
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol 
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in 
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL 
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and 
check_target_register_sof. 
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II, 
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.
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August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2, 
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1; 
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2; 
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3, 
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I, 
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I, 
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s) 
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I, 
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation 
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part 
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the 
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I, 
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2, 
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section 
6.2.5.3).
Load instructions change (Section 4.4.1).
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Revision

Revision 
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Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return 
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new 
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1, 
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow 
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative 
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section 
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications 
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section 
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2, 
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of 
Revision

Revision 
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Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32 
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI 
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the 
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry 
order; SAL needs to initialize all the IA-32 registers properly before making 
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/ 
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.
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Introduction to the Intel® Itanium® 
Architecture 2

The Itanium architecture was designed to overcome the performance limitations of 
traditional architectures and provide maximum headroom for the future. To achieve 
this, the Itanium architecture was designed with an array of innovative features to 
extract greater instruction level parallelism including speculation, predication, large 
register files, a register stack, advanced branch architecture, and many others. 64-bit 
memory addressability was added to meet the increasing large memory footprint 
requirements of data warehousing, e-business, and other high performance server 
applications. The Itanium architecture has an innovative floating-point architecture and 
other enhancements that support the high performance requirements of workstation 
applications such as digital content creation, design engineering, and scientific analysis.

The Itanium architecture also provides binary compatibility with the IA-32 instruction 
set. Processors based on the Itanium architecture can run IA-32 applications on an 
Itanium architecture-based operating system that supports execution of IA-32 
applications. Such processors can run IA-32 application binaries on IA-32 legacy 
operating systems assuming the platform and firmware support exists in the system. 
The Itanium architecture also provides the capability to support mixed IA-32 and 
Itanium architecture-based code execution.

2.1 Operating Environments

The architectural model supports a mixture of IA-32 and Itanium architecture-based 
applications within a single Itanium architecture-based operating system. Table 2-1 
defines the major supported operating environments.
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2.2 Instruction Set Transition Model Overview

Within the Itanium System Environment, the processor can execute either IA-32 or 
Itanium instructions at any time. Three special instructions and interruptions are 
defined to transition the processor between the IA-32 and the Itanium instruction set.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the 
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the 
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to an IA-32 
or Itanium instruction.

• Interrupts transition the processor to the Itanium instruction set for all interrupt 
conditions.

Figure 2-1. System Environment

Table 2-1. Major Operating Environments

System 
Environment

Application 
Environment

Usage

Itanium System 
Environment

IA-32 Protected Mode IA-32 Protected Mode applications in the Intel® Itanium® System 
Environment.

IA-32 Real Mode IA-32 Real Mode applications in the Intel® Itanium® System 
Environment.

IA-32 Virtual Mode IA-32 Virtual 86 Mode applications in the Intel® Itanium® System 
Environment.

Intel® Itanium® 
Instruction Set

Itanium architecture-based applications on Intel® Itanium 
architecture-based operating systems.

 Itanium®IA-32 Instructions

 Segmentation

Intel® Itanium® System Environment

Paging

Instructions

& Interruption

Handling

in the Intel® Itanium®

Architecture



Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:15

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control 
between the instruction sets. These instructions are typically incorporated into “thunks” 
or “stubs” that implement the required call linkage and calling conventions to call 
dynamic or statically linked libraries. See Section 6.2.1, “Instruction Set Modes” for 
additional details.

2.3 Intel® Itanium® Instruction Set Features

Itanium architecture incorporates features which enable high sustained performance 
and remove barriers to further performance increases. The Itanium architecture is 
based on the following principles: 

• Explicit parallelism

• Mechanisms for synergy between the compiler and the processor

• Massive resources to take advantage of instruction level parallelism

• 128 integer and floating-point registers, 64 1-bit predicate registers, 8 branch 
registers

• Support for many execution units and memory ports

• Features that enhance instruction level parallelism

• Speculation (which minimizes memory latency impact).

• Predication (which removes branches).

• Software pipelining of loops with low overhead

• Branch prediction to minimize the cost of branches

• Focused enhancements for improved software performance

• Special support for software modularity

• High performance floating-point architecture

• Specific multimedia instructions

The following sections highlight these important features of the Itanium architecture.

2.4 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the 
same time. The Itanium architecture allows issuing of independent instructions in 
bundles (three instructions per bundle) for parallel execution and can issue multiple 
bundles per clock. Supported by a large number of parallel resources such as large 
register files and multiple execution units, the Itanium architecture enables the 
compiler to manage work in progress and schedule simultaneous threads of 
computation. 

The Itanium architecture incorporates mechanisms to take advantage of ILP. Compilers 
for traditional architectures are often limited in their ability to utilize speculative 
information because it cannot always be guaranteed to be correct. The Itanium 
architecture enables the compiler to exploit speculative information without sacrificing 
the correct execution of an application (see “Speculation” on page 1:16). In traditional 
architectures, procedure calls limit performance since registers need to be spilled and 
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filled. The Itanium architecture enables procedures to communicate register usage to 
the processor. This allows the processor to schedule procedure register operations even 
when there is a low degree of ILP. See “Register Stack” on page 1:18.

2.5 Compiler to Processor Communication

The Itanium architecture provides mechanisms, such as instruction templates, branch 
hints, and cache hints to enable the compiler to communicate compile-time information 
to the processor. In addition, it allows compiled code to manage the processor 
hardware using runtime information. These communication mechanisms are vital in 
minimizing the performance penalties associated with branches and cache misses.

The cost of branches is minimized by permitting code to communicate branch 
information to the hardware in advance of the actual branch.

Every memory load and store in the Itanium architecture has a 2-bit cache hint field in 
which the compiler encodes its prediction of the spatial and/or temporal locality of the 
memory area being accessed. A processor based on the Itanium architecture can use 
this information to determine the placement of cache lines in the cache hierarchy to 
improve utilization. This is particularly important as the cost of cache misses is 
expected to increase.

2.6 Speculation

There are two types of speculation: control and data. In both control and data 
speculation, the compiler exposes ILP by issuing an operation early and removing the 
latency of this operation from critical path. The compiler will issue an operation 
speculatively if it is reasonably sure that the speculation will be beneficial. To be 
beneficial two conditions should hold: (1) it must be statistically frequent enough that 
the probability it will require recovery is small, and (2) issuing the operation early 
should expose further ILP-enhancing optimization. Speculation is one of the primary 
mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore 
tolerating, the latencies of operations.

2.6.1 Control Speculation

Control speculation is the execution of an operation before the branch which guards it. 
Consider the code sequence below:

if (a>b) load(ld_addr1,target1)
else load(ld_addr2, target2)

If the operation load(ld_addr1,target1)were to be performed prior to the 
determination of (a>b), then the operation would be control speculative with respect to 
the controlling condition (a>b). Under normal execution, the operation 
load(ld_addr1,target1) may or may not execute. If the new control speculative load 
causes an exception, then the exception should only be serviced if (a>b) is true. When 
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the compiler uses control speculation, it leaves a check operation at the original 
location. The check verifies whether an exception has occurred and if so it branches to 
recovery code. The code sequence above now translates into:

/* off critical path */
sload(ld_addr1,target1)
sload(ld_addr2,target2)

/* other operations including uses of target1/target2 */
if (a>b) scheck(target1,recovery_addr1)
else scheck(target2, recovery_addr2)

2.6.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and 
that may potentially alias with it. Data speculative loads are also referred to as 
“advanced loads.” Consider the code sequence below:

store(st_addr,data)
load(ld_addr,target)
use(target)

The process of determining at compile time the relationship between memory 
addresses is called disambiguation. In the example above, if ld_addr and st_addr 
cannot be disambiguated, and if the load were to be performed prior to the store, then 
the load would be data speculative with respect to the store. If memory addresses 
overlap during execution, a data-speculative load issued before the store might return a 
different value than a regular load issued after the store. Therefore analogous to 
control speculation, when the compiler data speculates a load, it leaves a check 
instruction at the original location of the load. The check verifies whether an overlap 
has occurred and if so it branches to recovery code. The code sequence above now 
translates into:

/* off critical path */
aload(ld_addr,target)

/* other operations including uses of target */
store(st_addr,data)
acheck(target,recovery_addr)
use(target)

2.6.3 Predication

Predication is the conditional execution of instructions. Conditional execution is 
implemented through branches in traditional architectures. The Itanium architecture 
implements this function through the use of predicated instructions. Predication 
removes branches used for conditional execution resulting in larger basic blocks and the 
elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction

r1 = r2 + r3

when predicated, would be of the form
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if (p5) r1 = r2 + r3

In this example p5 is the controlling predicate that decides whether or not the 
instruction executes and updates state. If the predicate value is true, then the 
instruction updates state. Otherwise it generally behaves like a nop. Predicates are 
assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by 
converting a control dependency to a data dependency. Consider the original code:

if (a>b) c = c + 1
else d = d * e + f

The branch at (a>b) can be avoided by converting the code above to the predicated 
code:

pT, pF = compare(a>b)
if (pT) c = c + 1
if (pF) d = d * e + f

The predicate pT is set to 1 if the condition evaluates to true, and to 0 if the condition 
evaluates to false. The predicate pF is the complement of pT. The control dependency of 
the instructions c = c + 1 and d = d * e + f on the branch with the condition (a>b) 
is now converted into a data dependency on compare(a>b) through predicates pT and 
pF (the branch is eliminated). An added benefit is that the compiler can schedule the 
instructions under pT and pF to execute in parallel. It is also worth noting that there are 
several different types of compare instructions that write predicates in different 
manners including unconditional compares and parallel compares. 

2.7 Register Stack

The Itanium architecture avoids the unnecessary spilling and filling of registers at 
procedure call and return interfaces through compiler-controlled renaming. At a call 
site, a new frame of registers is available to the called procedure without the need for 
register spill and fill (either by the caller or by the callee). Register access occurs by 
renaming the virtual register identifiers in the instructions through a base register into 
the physical registers. The callee can freely use available registers without having to 
spill and eventually restore the caller’s registers. The callee executes an alloc 
instruction specifying the number of registers it expects to use in order to ensure that 
enough registers are available. If sufficient registers are not available (stack overflow), 
the alloc stalls the processor and spills the caller’s registers until the requested 
number of registers are available. 

At the return site, the base register is restored to the value that the caller was using to 
access registers prior to the call. Some of the caller’s registers may have been spilled 
by the hardware and not yet restored. In this case (stack underflow), the return stalls 
the processor until the processor has restored an appropriate number of the caller’s 
registers. The hardware can exploit the explicit register stack frame information to spill 
and fill registers from the register stack to memory at the best opportunity 
(independent of the calling and called procedures).
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2.8 Branching

In addition to removing branches through the use of predication, several mechanisms 
are provided to decrease the branch misprediction rate and the cost of the remaining 
mispredicted branches. These mechanisms provide ways for the compiler to 
communicate information about branch conditions to the processor. 

Branch predict instructions are provided which can be used to communicate an early 
indication of the target address and the location of the branch. The compiler will try to 
indicate whether a branch should be predicted dynamically or statically. The processor 
can use this information to initialize branch prediction structures, enabling good 
prediction even the first time a branch is encountered. This is beneficial for 
unconditional branches or in situations where the compiler has information about likely 
branch behavior.

For indirect branches, a branch register is used to hold the target address. Branch 
predict instructions provide an indication of which register will be used in situations 
when the target address can be computed early. A branch predict instruction can also 
signal that an indirect branch is a procedure return, enabling the efficient use of 
call/return stack prediction structures.

Special loop-closing branches are provided to accelerate counted loops and 
modulo-scheduled loops. These branches and their associated branch predict 
instructions provide information that allows for perfect prediction of loop termination, 
thereby eliminating costly mispredict penalties and a reduction of the loop overhead.

2.9 Register Rotation

Modulo scheduling of a loop is analogous to hardware pipelining of a functional unit 
since the next iteration of the loop starts before the previous iteration has finished. The 
iteration is split into stages similar to the stages of an execution pipeline. Modulo 
scheduling allows the compiler to execute loop iterations in parallel rather than 
sequentially. The concurrent execution of multiple iterations traditionally requires 
unrolling of the loop and software renaming of registers. The Itanium architecture 
allows the renaming of registers which provide every iteration with its own set of 
registers, avoiding the need for unrolling. This kind of register renaming is called 
register rotation. The result is that software pipelining can be applied to a much wider 
variety of loops – both small as well as large with significantly reduced overhead.

2.10 Floating-point Architecture

The Itanium architecture defines a floating-point architecture with full IEEE support for 
the single, double, and double-extended (80-bit) data types. Some extensions, such as 
a fused multiply and add operation, minimum and maximum functions, and a register 
file format with a larger range than the double-extended memory format, are also 
included. 128 floating-point registers are defined. Of these, 96 registers are rotating 
(not stacked) and can be used to modulo schedule loops compactly. Multiple 
floating-point status registers are provided for speculation.
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The Itanium architecture has parallel FP instructions which operate on two 32-bit single 
precision numbers, resident in a single floating-point register, in parallel and 
independently. These instructions significantly increase the single precision 
floating-point computation throughput and enhance the performance of 3D intensive 
applications and games.

2.11 Multimedia Support

The Itanium architecture has multimedia instructions which treat the general registers 
as concatenations of eight 8-bit, four 16-bit, or two 32-bit elements. These instructions 
operate on each element in parallel, independent of the others. They are useful for 
creating high performance compression/decompression algorithms that are used by 
applications which have sound and video. Itanium multimedia instructions are 
semantically compatible with HP’s MAX-2* multimedia technology and Intel’s MMX and 
SSE technology instructions.

2.12 Intel® Itanium® System Architecture Features

2.12.1 Support for Multiple Address Space Operating Systems

Most contemporary commercial operating systems utilize a Multiple Address Space 
(MAS) model with the following characteristics:

Protection is enforced among processes by placing each process within a unique 
address space. Translation Lookaside Buffers (TLBs), which hold virtual to physical 
mappings, often need to be flushed on a process context switch.

Some memory areas may be shared among processes, e.g. kernel areas and shared 
libraries. Most operating systems assume at least one local and one global space.

To promote sharing of data between processes, MAS operating systems aggressively 
use virtual aliases to map physical memory locations into the address spaces of 
multiple processes. Virtual aliases create multiple TLB entries for the same physical 
data leading to reduced TLB efficiency.

The MAS model is supported by dividing the virtual address space into several regions. 
Region identifiers associated with each region are used to tag translations to a given 
address space. On a process switch, region identifiers uniquely identify the set of 
translations belonging to a process, thereby avoiding TLB flushes. Region identifiers 
also provide a unique intermediate virtual address that help avoid thrashing problems 
in virtual-indexed caches and TLBs. Regions provide efficient global/shared areas 
between processes, while reducing the occurrences of virtual aliasing.

2.12.2 Support for Single Address Space Operating Systems

A single address space (SAS) operating system style architecture is the basis for much 
of the current design work on future 64-bit operating systems. As operating systems 
(and other large, complex programs like databases) migrate from monolithic programs 
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into cooperating subsystems, an SAS architecture becomes an important performance 
differentiation in future systems. The SAS or hybrid environments enable a more 
efficient use of hardware resources. 

Common mechanisms are used in both SAS and MAS models such as page level access 
rights to enforce protection, although the reliance on the feature set will differ under 
each model. While most of the architected features are utilized in each model, 
protection keys exist to enable a single global address space operating environment.

2.12.3 System Performance and Scalability

Performance and scalability are achieved through a variety of features. Memory 
attributes, locking primitives, cache coherency, and memory ordering model work 
together to allow the efficient sharing of data in a multiprocessor environment. In 
addition, the Itanium architecture enables low latency fault, trap, and interrupt 
handlers along with light-weight domain crossings. Performance analysis is aided by the 
inclusion of several performance monitors, and mechanisms to support software 
profiling.

2.12.4 System Security and Supportability

Security and supportability result from a number of primitives which provide a very 
powerful runtime and debug environment. The protection model includes four 
protection rings and enables increased system integrity by offering a more 
sophisticated protection scheme than has generally been available. The machine check 
model allows detailed information to be provided describing the type of error involved 
and supports recovery for many types of errors. Several mechanisms are provided for 
debugging both system and application software. 

2.13 Terminology

This following terms are used in the remainder of this document:

• Itanium Instruction Set – The Itanium architecture defines the 64-bit instruction 
set extensions to the IA-32 architecture.

• IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

• Itanium System Environment – System environment that supports the 
execution of both IA-32 and Itanium architecture-based code.

• Platform – Application and operating system resources external to the processor 
such as: memory maps, external devices (e.g. DMA), keyboard controllers, buses 
(e.g. PCI), option cards, interrupt controllers, bridges, etc.

• Itanium architecture-based Firmware – The Processor Abstraction Layer (PAL) 
and System Abstraction Layer (SAL).

• Processor Abstraction Layer (PAL) – The firmware layer which abstracts 
processor features that are implementation dependent.

• System Abstraction Layer (SAL) – The firmware layer which abstracts platform 
features that are implementation dependent.
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Execution Environment 3

The architectural state consists of registers and memory. The results of instruction 
execution become architecturally visible according to a set of execution sequencing 
rules. This chapter describes the application architectural state and the rules for 
execution sequencing. See Chapter 6 for details on IA-32 instruction set execution.

3.1 Application Register State

The following is a list of the registers available to application programs (see 
Figure 3-1): 

• General Registers (GRs) – General purpose 64-bit register file, GR0 - GR127. 
IA-32 integer and segment registers are contained in GR8 - GR31 when executing 
IA-32 instructions.

• Floating-point Registers (FRs) – Floating-point register file, FR0 - FR127. IA-32 
floating-point and multi-media registers are contained in FR8 - FR31 when 
executing IA-32 instructions.

• Predicate Registers (PRs) – Single-bit registers, used in predication and 
branching, PR0 - PR63.

• Branch Registers (BRs) – Registers used in branching, BR0 - BR7.

• Instruction Pointer (IP) – Register which holds the bundle address of the 
currently executing instruction, or byte address of the currently executing IA-32 
instruction.

• Current Frame Marker (CFM) – State that describes the current general register 
stack frame, and FR/PR rotation.

• Application Registers (ARs) – A collection of special-purpose registers.

• Performance Monitor Data Registers (PMD) – Data registers for performance 
monitor hardware.

• User Mask (UM) – A set of single-bit values used for alignment traps, 
performance monitors, and to monitor floating-point register usage.

• Processor Identifiers (CPUID) – Registers that describe processor 
implementation-dependent features.

IA-32 application register state is entirely contained within the larger Itanium 
application register set and is accessible by Itanium instructions. IA-32 instructions 
cannot access the Itanium register set. See Section 6.2.2, “IA-32 Application Register 
State Model” for details on IA-32 register assignments.

3.1.1 Reserved and Ignored Registers and Fields

Registers which are not defined are either reserved or ignored. An access to a 
reserved register raises an Illegal Operation fault. A read of an ignored register 
returns zero. Software may write any value to an ignored register and the hardware will 
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ignore the value written. In variable-sized register sets, registers which are 
unimplemented in a particular processor are also reserved registers. An access to one 
of these unimplemented registers causes a Reserved Register/Field fault.

Within defined registers, fields which are not defined are either reserved or ignored. For 
reserved fields, hardware will always return a zero on a read. Software must always 
write zeros to these fields. Any attempt to write a non-zero value into a reserved field 
will raise a Reserved Register/Field fault. Reserved fields may have a possible future 
use.

For ignored fields, hardware will return a 0 on a read, unless noted otherwise. 
Software may write any value to these fields since the hardware will ignore any value 
written. Except where noted otherwise some IA-32 ignored fields may have a possible 
future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and 
fields.

For defined fields in registers, values which are not defined are reserved. Software 
must always write defined values to these fields. Any attempt to write a reserved 
value will raise a Reserved Register/Field fault. Certain registers are read-only 
registers. A write to a read-only register raises an Illegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future 
processors that software treat these fields as having a future, though unknown effect. 
Software should follow these guidelines when dealing with reserved fields:

• Do not depend on the state of any reserved fields. Mask all reserved fields before 
testing.

• Do not depend on the state of any reserved fields when storing to memory or a 
register.

• Do not depend on the ability to retain information written into reserved or ignored 
fields.

• Where possible reload reserved or ignored fields with values previously returned 
from the same register, otherwise load zeros.

Table 3-1. Reserved and Ignored Registers and Fields

Type Read Write

Reserved register Illegal Operation fault Illegal Operation fault

Ignored register 0 Value written is discarded

Reserved field 0 Write of non-zero causes Reserved Reg/Field fault

Ignored field 0 (unless noted otherwise) Value written is discarded
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3.1.2 General Registers

A set of 128 (64-bit) general registers provide the central resource for all integer and 
integer multimedia computation. They are numbered GR0 through GR127, and are 
available to all programs at all privilege levels. Each general register has 64 bits of 
normal data storage plus an additional bit, the NaT bit (Not a Thing), which is used to 
track deferred speculative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 
are termed the static general registers. Of these, GR0 is special in that it always 
reads as zero when sourced as an operand, and attempting to write to GR 0 causes an 
Illegal Operation fault. General registers 32 through 127 are termed the stacked 
general registers. The stacked registers are made available to a program by 
allocating a register stack frame consisting of a programmable number of local and 
output registers. See “Register Stack” on page 1:47 for a description. A portion of the 
stacked registers can be programmatically renamed to accelerate loops. See 
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-1. Application Register Model
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General registers 8 through 31 contain the IA-32 integer, segment selector and 
segment descriptor registers. See “IA-32 General Purpose Registers” on page 1:117 for 
details on IA-32 register assignments.

3.1.3 Floating-point Registers

A set of 128 (82-bit) floating-point registers are used for all floating-point 
computation. They are numbered FR0 through FR127, and are available to all programs 
at all privilege levels. The floating-point registers are partitioned into two subsets. 
Floating-point registers 0 through 31 are termed the static floating-point registers. 
Of these, FR0 and FR1 are special. FR0 always reads as +0.0 when sourced as an 
operand, and FR 1 always reads as +1.0. When either of these is used as a destination, 
a fault is raised. Deferred speculative exceptions are recorded with a special register 
value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point 
registers. These registers can be programmatically renamed to accelerate loops. See 
“Modulo-scheduled Loop Support” on page 1:75.

Floating-point registers 8 through 31 contain the IA-32 floating-point and multi-media 
registers when executing IA-32 instructions. For details, see “IA-32 Floating-point 
Registers” on page 1:124.

3.1.4 Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of compare 
instructions. These registers are numbered PR0 through PR63, and are available to all 
programs at all privilege levels. These registers are used for conditional execution of 
instructions. 

The predicate registers are partitioned into two subsets. Predicate registers 0 through 
15 are termed the static predicate registers. Of these, PR0 always reads as ‘1’ when 
sourced as an operand, and when used as a destination, the result is discarded. The 
static predicate registers are also used in conditional branching. See “Predication” on 
page 1:54.

Predicate registers 16 through 63 are termed the rotating predicate registers. These 
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled 
Loop Support” on page 1:75.

3.1.5 Branch Registers

A set of 8 (64-bit) branch registers are used to hold branching information. They are 
numbered BR 0 through BR 7, and are available to all programs at all privilege levels. 
The branch registers are used to specify the branch target addresses for indirect 
branches. For more information see “Branch Instructions” on page 1:74.
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3.1.6 Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current 
executing instruction. The IP can be read directly with a mov ip instruction. The IP 
cannot be directly written, but is incremented as instructions are executed, and can be 
set to a new value with a branch. Because instruction bundles are 16 bytes, and are 
16-byte aligned, the least significant 4 bits of IP are always zero. See “Instruction 
Encoding Overview” on page 1:38. For IA-32 instruction set execution, IP holds the 
zero extended 32-bit virtual linear address of the currently executing IA-32 instruction. 
IA-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are 
preserved for IA-32 instruction set execution. See “IA-32 Instruction Pointer” on 
page 1:117 for IA-32 instruction set execution details.

3.1.7 Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker 
describes the state of the general register stack. The Current Frame Marker (CFM) 
holds the state of the current stack frame. The CFM cannot be directly read or written 
(see “Register Stack” on page 1:47). 

The frame markers contain the sizes of the various portions of the stack frame, plus 
three Register Rename Base values (used in register rotation). The layout of the frame 
markers is shown in Figure 3-2 and the fields are described in Table 3-2.

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function 
State register (see Section 3.1.8.12, “Previous Function State (PFS – AR 64)”). A new 
value is written to the CFM, creating a new stack frame with no locals or rotating 
registers, but with a set of output registers which are the caller’s output registers. 
Additionally, all Register Rename Base registers (RRBs) are set to 0. See 
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-2. Frame Marker Format

37 32 31 25 24 18 17 14 13 7 6 0

rrb.pr rrb.fr rrb.gr sor sol sof

6 7 7 4 7 7

Table 3-2. Frame Marker Field Description

Field Bits Description

sof 6:0 Size of stack frame

sol 13:7 Size of locals portion of stack frame

sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers

rrb.fr 31:25 Register Rename Base for floating-point registers

rrb.pr 37:32 Register Rename Base for predicate registers
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3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers 
for application-visible processor functions for both the IA-32 and Itanium instruction set 
architectures. These registers can be accessed by Itanium architecture-based 
applications (except where noted). Table 3-3 contains a list of the application registers.

Table 3-3. Application Registers

Register Name Description
Execution Unit 

Type

AR 0-7 KR 0-7a

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are 
always allowed.

Kernel Registers 0-7 M

AR 8-15 Reserved

AR 16 RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)

AR 18 BSPSTORE Backing Store Pointer for Memory Stores

AR 19 RNAT RSE NaT Collection Register

AR 20 Reserved

AR 21 FCR IA-32 Floating-point Control Register

AR 22 - AR 23 Reserved

AR 24 EFLAGb

b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero. See Section 10.3.2, “IA-32 
System EFLAG Register” on page 2:243 for details.

IA-32 EFLAG register

AR 25 CSD IA-32 Code Segment Descriptor / Compare and 
Store Data register

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLGa IA-32 Combined CR0 and CR4 register

AR 28 FSR IA-32 Floating-point Status Register

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 31 Reserved

AR 32 CCV Compare and Exchange Compare Value Register

AR 33 - AR 35 Reserved

AR 36 UNAT User NaT Collection Register

AR 37 - AR 39 Reserved

AR 40 FPSR Floating-point Status Register

AR 41 - AR 43 Reserved

AR 44 ITC Interval Time Counter

AR 45 RUC Resource Utilization Counter

AR 46 - AR 47 Reserved

AR 48 - AR 63 Ignored M or I

AR 64 PFS Previous Function State I

AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 67 - AR 111 Reserved

AR 112 - AR 127 Ignored M or I



Volume 1, Part 1: Execution Environment 1:29

Application registers can only be accessed by either a M or I execution unit. This is 
specified in the last column of the table. The ignored registers are for future 
backward-compatible extensions.

See Section 10.2, “System Register Model” on page 2:239 for the field definition of 
each IA-32 application register.

3.1.8.1 Kernel Registers (KR 0-7 – AR 0-7)

Eight user-visible 64-bit data kernel registers are provided to convey information from 
the operating system to the application. These registers can be read at any privilege 
level but are writable only at the most privileged level. KR0 - KR2 are also used to hold 
additional IA-32 register state when the IA-32 instruction set is executing. See 
Section 10.1, “Instruction Set Transitions” on page 2:239 for register details when 
calling IA-32 code.

3.1.8.2 Register Stack Configuration Register (RSC – AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the 
operation of the Register Stack Engine (RSE). Refer to Chapter 6, “Register Stack 
Engine” in Volume 2 for details. The RSC format is shown in Figure 3-3 and the field 
description is contained in Table 3-4. Instructions that modify the RSC can never set 
the privilege level field to a more privileged level than the currently executing process.

3.1.8.3 RSE Backing Store Pointer (BSP – AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the 
address of the location in memory which is the save location for GR 32 in the current 
stack frame. See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

Figure 3-3. RSC Format

63 30 29 16 15 5 4 3 2 1 0

rv loadrs rv be pl mode

34 14 11 1 2 2

Table 3-4. RSC Field Description

Field Bits Description

mode 1:0 RSE mode – controls how aggressively the RSE saves and restores register 
frames. Eager and intensive settings are hints and can be implemented as lazy.

Bit Pattern RSE Mode Bit 1:
eager loads

Bit 0:
eager stores

00 enforced lazy disabled disabled

10 load intensive enabled disabled

01 store intensive disabled enabled

11 eager enabled enabled

pl 3:2 RSE privilege level – loads and stores issued by the RSE are at this privilege 
level

be 4 RSE endian mode – loads and stores issued by the RSE use this byte ordering
(0: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point – value used in the loadrs instruction for 
synchronizing the RSE to a tear point

rv 15:5, 63:30 Reserved



1:30 Volume 1, Part 1: Execution Environment

3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE – AR 18)

The RSE Backing Store Pointer for memory stores is a 64-bit register (Figure 3-5). It 
holds the address of the location in memory to which the RSE will spill the next value. 
See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

3.1.8.5 RSE NaT Collection Register (RNAT – AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to 
temporarily hold NaT bits when it is spilling general registers. Bit 63 always reads as 
zero and ignores all writes. See Section 6.1, “RSE and Backing Store Overview” on 
page 2:133.

3.1.8.6 Compare and Store Data register (CSD – AR 25)

The Compare and Store Data register is a 64-bit register that provides data to be 
stored by the Itanium st16 and cmp8xchg16 instructions, and receives data loaded by 
the Itanium ld16 instruction.

For implementations that do not support the ld16, st16 and cmp8xchg16 instructions, 
bits 61:60 may be optionally implemented. This means that on move application 
register instructions the implementation can either ignore writes and return zero on 
reads, or write the value and return the last value written on reads. For 
implementations that do support the ld16, st16 and cmp8xchg16 instructions, all bits of 
CSD are implemented.

For IA-32 execution, this register is the IA-32 Code Segment Descriptor. See 
Section 6.2.2.3, “IA-32 Segment Registers” on page 1:118.

3.1.8.7 Compare and Exchange Value Register (CCV – AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the 
compare value used as the third source operand in the Itanium cmpxchg instruction.

Figure 3-4. BSP Register Format

63 3 2 1 0

pointer 0

61 3

Figure 3-5. BSPSTORE Register Format

63 3 2 1 0

pointer ig

61 3

Figure 3-6. RNAT Register Format

63 0

ig RSE NaT Collection

1 63
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3.1.8.8 User NaT Collection Register (UNAT – AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits 
when saving and restoring general registers with the ld8.fill and st8.spill 
instructions.

3.1.8.9 Floating-point Status Register (FPSR – AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision 
control, flags, and other control bits for Itanium floating-point instructions. FPSR does 
not control or reflect the status of IA-32 floating-point instructions. For more details on 
the FPSR, see “Floating-point Status Register” on page 1:88.

3.1.8.10 Interval Time Counter (ITC – AR 44)

The Interval Time Counter (ITC) is a 64-bit register which counts up at a fixed 
relationship to the input clock to the processor. The ITC may be clocked at a somewhat 
lower frequency than the instruction execution frequency. This clocking relationship is 
described in the PAL procedure PAL_FREQ_RATIOS on page 2:392. The ITC is 
guaranteed to be clocked at a constant rate, even if the instruction execution frequency 
may vary.

A sequence of reads of the ITC is guaranteed to return ever-increasing values (except 
for the case of the counter wrapping back to 0) corresponding to the program order of 
the reads. Applications can directly sample the ITC for time-based calculations.

System software can secure the interval time counter from non-privileged access. 
When secured, a read of the ITC at any privilege level other than the most privileged 
causes a Privileged Register fault. The ITC can be written only at the most privileged 
level. The IA-32 Time Stamp Counter (TSC) is similar to ITC counter. ITC can directly be 
read by the IA-32 rdtsc (read time stamp counter) instruction. System software can 
secure the ITC from non-privileged IA-32 access. When secured, an IA-32 read of the 
ITC at any privilege level other than the most privileged raises an 
IA_32_Exception(GPfault).

3.1.8.11 Resource Utilization Counter (RUC – AR 45)

The Resource Utilization Counter (RUC) is a 64-bit register which counts up at a fixed 
relationship to the input clock to the processor, when the processor is active. RUC 
provides an estimate of the portion of resources used by a logical processor with 
respect to all resources provided by the underlying physical processor.

The Resource Utilization Counter (RUC) is a 64-bit register which provides an estimate 
of the portion of resources used by a logical processor with respect to all resources 
provided by the underlying physical processor.

In a given time interval, the difference in the RUC values for all of the logical processors 
on a given physical processor add up to the difference seen in the ITC on that physical 
processor for that same interval.

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except 
for the case of the counter wrapping back to 0) corresponding to the program order of 
the reads.
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System software can secure the resource utilization counter from non-privileged 
access. When secured, a read of the RUC at any privilege level other than the most 
privileged causes a Privileged Register fault.

The RUC for a logical processor does not count when that logical processor is in 
LIGHT_HALT, unless all logical processors on a given physical processor are in 
LIGHT_HALT, in which case the last logical on a given physical processor to enter 
LIGHT_HALT has its RUC continue to count.

With processor virtualization, the RUC can be used to communicate the portion of 
resources used by a virtual processor. See Section 3.4, “Processor Virtualization” on 
page 2:44 and Section 11.7, “PAL Virtualization Support” on page 2:324 for details on 
virtual processors.

The RUC register is not supported on all processor implementations. Software can 
check CPUID register 4 to determine the availability of this feature. The RUC register is 
reserved when this feature is not supported.

3.1.8.12 Previous Function State (PFS – AR 64)

The Previous Function State register (PFS) contains multiple fields: Previous Frame 
Marker (pfm), Previous Epilog Count (pec), and Previous Privilege Level (ppl). 
Figure 3-7 diagrams the PFS format and Table 3-5 describes the PFS fields. These 
values are copied automatically on a call from the CFM register, Epilog Count Register 
(EC) and PSR.cpl (Current Privilege Level in the Processor Status Register) to accelerate 
procedure calling.

When a br.call or brl.call is executed, the CFM, EC, and PSR.cpl are copied to the 
PFS and the old contents of the PFS are discarded. When a br.ret is executed, the PFS 
is copied to the CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would 
increase the privilege level. For more details on the PSR see Chapter 3, “System State 
and Programming Model” in Volume 2.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7, “Current Frame 
Marker”), and the PFS.pec has the same layout as the EC (see Section 3.1.8.14, “Epilog 
Count Register (EC – AR 66)”). 

Figure 3-7. PFS Format

63 62 61 58 57 52 51 38 37 0

ppl rv pec rv pfm

2 4 6 14 38

Table 3-5. PFS Field Description

Field Bits Description

pfm 37:0 Previous Frame Marker

pec 57:52 Previous Epilog Count

ppl 63:62 Previous Privilege Level

rv 51:38, 61:58 Reserved
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3.1.8.13 Loop Count Register (LC – AR 65)

The Loop Count register (LC) is a 64-bit register used in counted loops. LC is 
decremented by counted-loop-type branches.

3.1.8.14 Epilog Count Register (EC – AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog) 
stages in modulo-scheduled loops. See “Modulo-scheduled Loop Support” on 
page 1:75. A diagram of the EC register is shown in Figure 3-8.

3.1.9 Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to 
be accessible at all privilege levels. Performance monitor data can be directly sampled 
from within the application. The operating system is allowed to secure user-configured 
performance monitors. Secured performance counters return zeros when read, 
regardless of the current privilege level. The performance monitors can only be written 
at the most privileged level. Refer to Chapter 7, “Debugging and Performance 
Monitoring” in Volume 2 for details. Performance monitors can be used to gather 
performance information for the execution of both IA-32 and Itanium instruction sets.

3.1.10 User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to 
application programs. The user mask controls memory access alignment, byte-ordering 
and user-configured performance monitors. It also records the modification state of 
floating-point registers. Figure 3-9 show the user mask format and Table 3-6 describes 
the user mask fields. For more details on the PSR refer to “Processor Status Register 
(PSR)” on page 2:23.

Figure 3-8. Epilog Count Register Format

63 6 5 0

ig epilog count

58 6

Figure 3-9. User Mask Format

5 4 3 2 1 0

mfh mfl ac up be rv

1 1 1 1 1 1

Table 3-6. User Mask Field Descriptions

Field Bit Description

rv 0 Reserved

be 1 Big-endian memory access enable
(controls loads and stores but not RSE memory accesses)
0: accesses are done little-endian 
1: accesses are done big-endian
This bit is ignored for IA-32 data memory accesses. IA-32 data references are always 
performed little-endian.
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3.1.11 Processor Identification Registers

Application level processor identification information is available in a register file 
termed: CPUID. This register file is divided into a fixed region, registers 0 to 4, and a 
variable region, register 5 and above. The CPUID[3].number field indicates the 
maximum number of 8-byte registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from) 
instruction. All registers beyond register CPUID[3].number are reserved and raise a 
Reserved Register/Field fault if they are accessed. Writes are not permitted and no 
instruction exists for such an operation.

Vendor information is located in CPUID registers 0 and 1 and specify a vendor name, in 
ASCII, for the processor implementation (Figure 3-10). All bytes after the end of the 
string up to the 16th byte are zero. Earlier ASCII characters are placed in lower number 
register and lower numbered byte positions.

CPUID register 2 is an ignored register (reads from this register return zero).

CPUID register 3 contains several fields indicating version information related to the 
processor implementation. Figure 3-11 and Table 3-7 specify the definitions of each 
field.

up 2 User performance monitor enable (including IA-32)
0: user performance monitors are disabled 
1: user performance monitors are enabled

ac 3 Alignment check for data memory references (including IA-32)
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: all unaligned data memory references cause an Unaligned Data Reference fault. 

mfl 4 Lower (f2.. f31) floating-point registers written – This bit is set to one when an Intel® 
Itanium® instruction that uses register f2..f31 as a target register, completes. This bit is 
sticky and is only cleared by an explicit write of the user mask. See Section 3.3.2, 
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

mfh 5 Upper (f32.. f127) floating-point registers written – This bit is set to one when an Intel® 
Itanium® instruction that uses register f32..f127 as a target register, completes. This bit 
is sticky and only cleared by an explicit write of the user mask. See Section 3.3.2, 
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

Figure 3-10. CPUID Registers 0 and 1 – Vendor Information

63     0

CPUID[0] byte 0

CPUID[1] byte 15

64

Figure 3-11. CPUID Register 3 – Version Information

63 40 39 32 31 24 23 16 15 8 7 0

rv archrev family model revision number

24 8 8 8 8 8

Table 3-6. User Mask Field Descriptions (Continued)

Field Bit Description
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CPUID register 4 provides general application-level information about processor 
features. As shown in Figure 3-12, it is a set of flag bits used to indicate if a given 
feature is supported in the processor model. When a bit is one the feature is supported; 
when 0 the feature is not supported. The defined feature bits in the current architecture 
are listed in Table 3-8. As new features are added (or removed) from future processor 
models the presence (or removal) of new features will be indicated by new feature bits.

CPUID register 4 is logically split into two halves, both of which contain general feature 
and capability information but which have different usage models and access 
capabilities; this information reflects the status of any enabled or disabled features. 
Both the upper and lower halves of CPUID register 4 are accessible through the move 
indirect register instruction; depending on the implementation, the latency for this 
access can be long and this access method is not appropriate for low-latency code 
versioning using self-selection. In addition, the upper half of CPUID register 4 is also 
accessible using the test feature instruction; the latency for this access is comparable 
to that of the test bit instruction and this access method enables low-latency code 
versioning using self selection.

This register does not contain IA-32 instruction set features. IA-32 instruction set 
features can be acquired by the IA-32 cpuid instruction.

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7:0 The index of the largest implemented CPUID register (one less than the number of 
implemented CPUID registers). This value will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping 
of this processor implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model 
within the processor family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision 
number that the processor implements.

rv 63:40 Reserved.

Figure 3-12. CPUID Register 4 – General Features/Capability Bits

63    34 33 32 31 4 3 2 1 0

rv x2 cz rv ru ao sd lb

30 1 1 28 1 1 1 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description

lb 0 Processor implements the long branch (brl) instructions.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of 
Speculative Load Faults” on page 2:105).

ao 2 Processor implements 16-byte atomic operations (see “ld — Load”, “st — Store” and 
“cmpxchg — Compare and Exchange” instructions in Volume 3).

ru 3 Processor implements the Resource Utilization Counter (AR 45).

rv 31:4 Reserved.

cz 32 Processor implements the clz instruction (see “tf — Test Feature” instruction in 
Volume 3).
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3.2 Memory

This section describes an Itanium architecture-based application program’s view of 
memory. This includes a description of how memory is accessed, for both 32-bit and 
64-bit applications. The size and alignment of addressable units in memory is also 
given, along with a description of how byte ordering is handled. 

The system view of memory and of virtual memory management is given in Chapter 4, 
“Addressing and Protection” in Volume 2 . The IA-32 instruction set view of memory 
and virtual memory management is defined in Section 10.6, “System Memory Model” 
on page 2:259.

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer 
model without a hardware mode is supported architecturally. Pointers which are 32 bits 
in memory are loaded and manipulated in 64-bit registers. Software must explicitly 
convert 32-bit pointers into 64-bit pointers before use. For details on 32-bit addressing, 
refer to “32-bit Virtual Addressing” on page 2:71.

3.2.2 Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned 
boundaries. Hardware and/or operating system software may have support for 
unaligned accesses, possibly with some performance cost. 10-byte floating-point values 
should be stored on 16-byte aligned boundaries.

Bits within larger units are always numbered from 0 starting with the least-significant 
bit. Quantities loaded from memory to general registers are always placed in the 
least-significant portion of the register (loaded values are placed right justified in the 
target general register).

Instruction bundles (three instructions per bundle) are 16-byte units that are always 
aligned on 16-byte boundaries.

3.2.3 Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or 
big-endian byte ordering for Itanium architecture-based code. When the UM.be bit is 0, 
larger-than-byte loads and stores are little endian (lower-addressed bytes in memory 
correspond to the lower-order bytes in the register). When the UM.be bit is 1, 

x2 33 Processor implements mpy4 and mpyshl4 instructions (see “tf — Test Feature” 
instruction in Volume 3).

rv 63:34 Reserved.

Table 3-8. CPUID Register 4 Fields (Continued)

Field Bits Description
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larger-than-byte loads and stores are big endian (lower-addressed bytes in memory 
correspond to the higher-order bytes in the register). Load byte and store byte are not 
affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32 
references, or the RSE. Instructions are always accessed by the processor as 
little-endian units. When instructions are referenced as big-endian data, the instruction 
will appear reversed in a register.

Figure 3-13 shows various loads in little-endian format. Figure 3-14 shows various 
loads in big endian format. Stores are not shown but behave similarly.

Figure 3-13. Little-endian Loads

Figure 3-14. Big-endian Loads
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3.3 Instruction Encoding Overview

Each instruction is categorized into one of six types; each instruction type may be 
executed on one or more execution unit types. Table 3-9 lists the instruction types and 
the execution unit type on which they are executed.

Three instructions are grouped together into 128-bit sized and aligned containers called 
bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template 
field. The format of a bundle is depicted in Figure 3-15.

During execution, architectural stops in the program indicate to the hardware that one 
or more instructions before the stop may have certain kinds of resource dependencies 
with one or more instructions after the stop. A stop is present after each slot having a 
double line to the right of it in Table 3-10. For example, template 00 has no stops, while 
template 03 has a stop after slot 1 and another after slot 2.

In addition to the location of stops, the template field specifies the mapping of 
instruction slots to execution unit types. Not all possible mappings of instructions to 
units are available. Table 3-10 indicates the defined combinations. The three rightmost 
columns correspond to the three instruction slots in a bundle. Listed within each column 
is the execution unit type controlled by that instruction slot.

Table 3-9. Relationship between Instruction Type and Execution Unit Type

Instruction Type Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unit

Figure 3-15. Bundle Format

12
7 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template

41 41 41 5

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unita

05 M-unit L-unit X-unita

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit
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Extended instructions, used for long immediate integer and long branch instructions, 
occupy two instruction slots. Depending on the major opcode, extended instructions 
execute on a B-unit (long branch/call) or an I-unit (all other L+X instructions).

3.4 Instruction Sequencing Considerations

Itanium architecture-based code consists of a sequence of instructions and stops 
packed in bundles. Instruction execution is ordered as follows:

• Bundles are ordered from lowest to highest memory address. Instructions in 
bundles with lower memory addresses are considered to precede instructions in 
bundles with higher memory addresses. The byte order of each bundle in memory 
is little-endian (the template field is contained in byte 0 of a bundle).

• Within a bundle, instructions are ordered from instruction slot 0 to instruction slot 2 
as specified in Figure 3-15 on page 1:38.

Instruction execution consists of four phases:

1. Read the instruction from memory (fetch)

2. Read architectural state, if necessary (read)

3. Perform the specified operation (execute)

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F

a. The MLX template was formerly called MLI, and for 
compatibility, the X slot may encode break.i and nop.i 
in addition to any X-unit instruction.

Table 3-10. Template Field Encoding and Instruction Slot Mapping 

Template Slot 0 Slot 1 Slot 2
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4. Update architectural state, if necessary (update).

An instruction group is a sequence of instructions starting at a given bundle address 
and slot number and including all instructions at sequentially increasing slot numbers 
and bundle addresses up to the first stop, taken branch, Break Instruction fault due to 
a break.b, or Illegal Operation fault due to a Reserved or Reserved if PR[qp] is one 
encoding in the B-type opcode space. For the instructions in an instruction group to 
have well-defined behavior, they must meet the ordering and dependency requirements 
described below.

For the purpose of clarification, the following do not end instruction groups:

• Break instructions other than break.b (break.f, break.i, break.m, break.x)

• Check instructions (chk.s, chk.a, fchkf)

• rfi instructions not followed by a stop

• brl instructions not followed by a stop

• Interruptions other than a Break Instruction fault due to a break.b or an Illegal 
Operation fault due to a Reserved or Reserved if PR[qp] is 1 encoding in the B-type 
opcode space

Thus, even if one of the above causes a change in control flow, the instructions at 
sequentially increasing addresses beyond the location of the change in control flow up 
to the next true end of the instruction group had the change of control flow not 
occurred, can still cause undefined values to be seen at the target of the change of 
control flow, if they cause a dependency violation. There are never, however, any 
dependencies between the instructions at the target of the change in control flow and 
those preceding the change in control flow, even for the above cases. 

If the instructions in instruction groups meet the resource-dependency requirements, 
then the behavior of a program will be as though each individual instruction is 
sequenced through these phases in the order listed above. The order of a phase of a 
given instruction relative to any phase of a previous instruction is prescribed by the 
instruction sequencing rules below. 

• There is no a priori relationship between the fetch of an instruction and the read, 
execute, or update of any dynamically previous instruction. The sync.i and srlz.i 
instructions can be used to enforce a sequential relationship between the fetch of 
all dynamically succeeding instructions and the update of all dynamically previous 
instructions.

• Between instruction groups, every instruction in a given instruction group will 
behave as though its read occurred after the update of all the instructions from the 
previous instruction group. All instructions are assumed to have unit latency. 
Instructions on opposing sides of a stop are architecturally considered to be 
separated by at least one unit of latency.

Some system state updates require more stringent requirements than those 
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Within an instruction group, every instruction will behave as though its read of the 
memory and ALAT state occurred after the update of the memory and ALAT state of 
all prior instructions in that instruction group.

• Within an instruction group, every instruction will behave as though its read of the 
register state occurred before the update of the register state by any instruction 
(prior or later) in that instruction group, except as noted in the Register 
dependencies and Memory dependencies described below. 
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The ordering rules above form the context for register dependency restrictions, 
memory dependency restrictions and the order of exception reporting. These 
dependency restrictions apply only between instructions whose resource reads and 
writes are not dynamically disabled by predication.

• Register dependencies: Within an instruction group, read-after-write (RAW) and 
write-after-write (WAW) register dependencies are not allowed (except as noted in 
“RAW Dependency Special Cases” on page 1:42 and “WAW Dependency Special 
Cases” on page 1:43). Write-after-read (WAR) register dependencies are allowed 
(except as noted in “WAR Dependency Special Cases” on page 1:44). 

These dependency restrictions apply to both explicit register accesses (from the 
instruction’s operands) and implicit register accesses (such as application and 
control registers implicitly accessed by certain instructions). Predicate register PR0 
is excluded from these register dependency restrictions, since writes to PR0 are 
ignored and reads always return 1 (one). 

Some system state updates require more stringent requirements than those 
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory 
dependencies and ALAT dependencies are allowed. A load will observe the results of 
the most recent store to the same memory address. In the event that multiple 
stores to the same address are present in the same instruction group, memory will 
contain the result of the latest store after execution of the instruction group. A 
store following a load to the same address will not affect the data loaded by the 
load. Advanced loads, check loads, advanced load checks, stores, and memory 
semaphore instructions implicitly access the ALAT. RAW, WAW, and WAR ALAT 
dependencies are allowed within an instruction group and behave as described for 
memory dependencies. 

The net effect of the dependency restrictions stated above is that a processor may 
execute all (or any subset) of the instructions within a legal instruction group 
concurrently or serially with the end result being identical. If these dependency 
restrictions are not met, the behavior of the program is undefined (see “Undefined 
Behavior” on page 1:44).

Exceptions are reported in instruction order. The dependency restrictions apply 
independent of the presence or absence of exceptions — that is, restrictions must be 
satisfied whether or not an exception occurs within an instruction group. At the point of 
exception delivery for a correctly formed instruction group, all prior instructions will 
have completed their update of architectural state. All subsequent instructions will not 
have updated architectural state. If an instruction group violates a dependency 
requirement, then the update of architectural state before and after an exception is not 
guaranteed (the fault handler sees an undefined value on the registers involved in a 
dependency violation even if the exception occurs between the first and second 
instructions in the violation). In the event multiple exceptions occur while executing 
instructions from the same instruction group, the exception occurring on the earliest 
instruction will be reported. 

The instruction sequencing resulting from the rules stated above is termed sequential 
execution.
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The ordering rules and the dependency restrictions allow the processor to dynamically 
re-order instructions, execute instructions with non-unit latency, or even concurrently 
execute instructions on opposing sides of a stop or taken branch, provided that correct 
sequencing is enforced and the appearance of sequential execution is presented to the 
programmer. 

IP is a special resource in that reads and writes of IP behave as though the instruction 
stream was being executed serially, rather than in parallel. RAW dependencies on IP are 
allowed, and the reader gets the IP of the bundle in which it is contained. So, each 
bundle being executed in parallel logically reads IP, increments it and writes it back. 
WAW is also allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW 
dependencies to ignored ARs are not allowed. 

For more details on resource dependencies, see Chapter 5, “Resource and Dependency 
Semantics” in Volume 3.

3.4.1 RAW Dependency Special Cases

There are four special cases in which RAW register dependencies within an instruction 
group are permitted. These special cases are the alloc instruction, check load 
instructions, instructions that affect branching, and the ld8.fill and st8.spill 
instructions.

The alloc instruction implicitly writes the Current Frame Marker (CFM) which is 
implicitly read by all instructions accessing the stacked subset of the general register 
file. Instructions that access the stacked subset of the general register file may appear 
in the same instruction group as alloc and will see the stack frame specified by the 
alloc.

Note: Some instructions have RAW or WAW dependencies on resources other than 
CFM affected by alloc and are thus not allowed in the same instruction group 
after an alloc: flushrs, loadrs, move from AR[BSPSTORE], move from 
AR[RNAT], br.cexit, br.ctop, br.wexit, br.wtop, br.call, brl.call, 
br.ia, br.ret, clrrrb, cover, and rfi. See Chapter 5, “Resource and Depen-
dency Semantics” in Volume 3 for details. Also note that alloc is required to be 
the first instruction in an instruction group.

A check load instruction may or may not perform a load since it is dependent upon its 
corresponding advanced load. If the check load misses the ALAT it will execute a load 
from memory. A check load and a subsequent instruction that reads the target of the 
check load may exist in the same instruction group. The dependent instruction will get 
the new value loaded by the check load.

A branch may read branch registers and may implicitly read predicate registers, the LC, 
EC, and PFS application registers, as well as CFM. Except for LC, EC and predicate 
registers, writes to any of these registers by a non-branch instruction will be visible to a 
subsequent branch in the same instruction group. Writes to predicate registers by any 
non-floating-point instruction will be visible to a subsequent branch in the same 
instruction group. RAW register dependencies within the same instruction group are not 
allowed for LC and EC. Dynamic RAW dependencies where the predicate writer is a 
floating-point instruction and the reader is a branch are also not allowed within the 
same instruction group. Branches br.cond, br.call, brl.cond, brl.call, br.ret and 
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br.ia work like other instructions for the purposes of register dependency; i.e., if their 
qualifying predicate is 0, they are not considered readers or writers of other resources. 
Branches br.cloop, br.cexit, br.ctop, br.wexit, and br.wtop are exceptional in 
that they are always readers or writers of their resources, regardless of the value of 
their qualifying predicate. An indirect brp is considered a reader of the specified BR.

The ld8.fill and st8.spill instructions implicitly access the User NaT Collection 
application register (UNAT). For these instructions the restriction on dynamic RAW 
register dependencies with respect to UNAT applies at the bit level. These instructions 
may appear in the same instruction group provided they do not access the same bit of 
UNAT. RAW UNAT dependencies between ld8.fill or st8.spill instructions and mov 
ar= or mov =ar instructions accessing UNAT must not occur within the same instruction 
group.

For the purposes of resource dependencies, CFM is treated as a single resource. 

3.4.2 WAW Dependency Special Cases

There are three special cases in which WAW register dependencies within an instruction 
group are permitted. The special cases are compare-type instructions, floating-point 
instructions, and the st8.spill instruction.

The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, tf, fcmp, 
frsqrta, frcpa, and fclass. Compare-type instructions in the same instruction group 
may target the same predicate register provided:

• The compare-type instructions are either all AND-type compares or all OR-type 
compares (AND-type compares correspond to “.and” and “.andcm” completers; 
OR-type compares correspond to “.or” and “.orcm” completers), or

• The compare-type instructions all target PR0. All WAW dependencies for PR0 are 
allowed; the compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including WAW 
register dependencies with move to PR instructions that access the same predicate 
registers as another writer.

Note: The move to PR instructions only writes those PRs indicated by its mask, but 
the move from PR instructions always reads all the predicate registers. 

Floating-point instructions implicitly write the Floating-point Status Register (FPSR) and 
the Processor Status Register (PSR). Multiple floating-point instructions may appear in 
the same instruction group since the restriction on WAW register dependencies with 
respect to the FPSR and PSR do not apply. The state of FPSR and PSR after executing 
the instruction group will be the logical OR of all writes.

The st8.spill instruction implicitly writes the UNAT register. For this instruction the 
restriction on WAW register dependencies with respect to UNAT applies at the bit level. 
Multiple st8.spill instructions may appear in the same instruction group provided 
they do not write the same bit of UNAT. WAW register dependencies between 
st8.spill instructions and mov ar= instructions targeting UNAT must not occur within 
the same instruction group.
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3.4.3 WAR Dependency Special Cases

The WAR dependency between the reading of predicate register 63 by any B-type 
instruction and the subsequent writing of predicate register 63 by a modulo-scheduled 
loop type branch (br.ctop, br.cexit, br.wtop, or br.wexit) without an intervening 
stop is not allowed. Otherwise, WAR dependencies within an instruction group are 
allowed.

3.4.4 Processor Behavior on Dependency Violations

If a program violates read-after-write, write-after-write or write-after-read resource 
dependency rules within an instruction group, then processor behavior is undefined. 
Constraints on undefined behavior are described in “Undefined Behavior” on page 1:44.

To help debug code that violates the architectural resource dependency rules, some 
processor implementations may provide dependency violation detection hardware that 
may cause an instruction group that contains an illegal dependency to take an Illegal 
Dependency fault (defined in Chapter 5, “Interruptions” in Volume 2 ). However, even 
in implementations that provide such checking, software can not assume the processor 
will catch all dependency violations or even catch the same violation every time it 
occurs.

However, all processor models that provide dependency violation detection hardware 
are required to satisfy the following dependency violation reporting constraints:

• All detected dependency violations must be reported as Illegal Dependency Faults 
(defined in Chapter 5, “Interruptions” in Volume 2 ). When an Illegal Dependency 
fault is taken, the value of the resource subject to the dependency violation is 
undefined. Undetected dependency violations cause undefined program behavior as 
described in “Undefined Behavior” on page 1:44.

• All detected read-after-write and write-after-write dependency violations must be 
delivered as Illegal Dependency Faults on the second operation, i.e. on the reader 
in the RAW case, and on second resource writer in the WAW case.

• All detected write-after-read dependency violations (on predicate register 63) must 
be delivered as Illegal Dependency faults on the second operation, the predicate 
writer.

• Illegal Dependency faults are delivered strictly in program order. If an interruption, 
branch or speculation check are taken between the first and the second operation 
of a dependency violation, then the Illegal Dependency fault is not taken. 

Note: Since an instruction group starts at a given entry point (stop or target of a con-
trol flow transfer), instructions that precede the entry point are not considered 
part of the instruction group and must not take part in any dependency viola-
tion checking. For example, if an rfi is done to slot 1 of a bundle, the instruc-
tion in slot 0 and instructions in bundles with lower memory addresses are not 
part of the new instruction group, and must not take part in any dependency 
violation checking.

3.5 Undefined Behavior

Architecturally undefined behavior that applies to one or more instructions is listed 
below:
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• RAW and WAW register dependencies within the same instruction group are 
disallowed except as noted in Section 3.4, “Instruction Sequencing Considerations” 
on page 1:39. Their behavior within an instruction group is undefined. Undefined 
behavior includes the possibility of an Illegal Operation fault. 

• Reading a register outside of the defined general register stack frame boundaries 
(as determined by the most recent alloc, return, or call) will return an undefined 
result. All processors will not raise an interruption in this situation.

An undefined scenario is an event or sequence of events whose outcome is not defined 
in the architecture. For the behavior of Itanium instructions, refer to Chapter 2, 
“Instruction Reference” in Volume 3. For the behavior of IA32 instructions, refer to 
Volume 4: IA-32 Instruction Set Reference. Therefore, the result of an undefined 
scenario is strictly implementation dependent. User should not rely on these undefined 
behaviors for correct program behavior and compatibility across future 
implementations.

An undefined response (undefined behavior, undefined result) is subject to the following 
restrictions:

• It must not impede forward progress of the processor (i.e., the processor may not 
crash).

• It must not impede forward progress of other processors.

• It must not allow software to gain privileges not available at the current privilege 
level.

• It must not allow software to circumvent memory access rights.

• It must not modify state that cannot be modified by a defined response (e.g., a 
post-increment load instruction that generates an undefined response cannot 
modify any registers other than its target and address registers).

• It is subject to the same NaT/NaTVal propagation rules as a defined response.

• The processor may raise an Illegal Operation fault

§
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Application Programming Model 4

This section describes the architectural functionality from the perspective of the 
application programmer. Itanium instructions are grouped into related functions and an 
overview of their behavior is given. Unless otherwise noted, all immediates are sign 
extended to 64 bits before use. The floating-point programming model is described 
separately in Chapter 5, “Floating-point Programming Model” in Volume 1. Refer to 
Volume 3: Intel® Itanium® Instruction Set Reference for detailed information on 
Itanium instructions. 

The main features of the programming model covered here are:

• General Register Stack

• Integer Computation Instructions

• Compare Instructions and Predication

• Memory Access Instructions and Speculation

• Branch Instructions and Branch Prediction

• Multimedia Instructions

• Register File Transfer Instructions

• Character Strings and Population Count

• Privilege Level Transfer

4.1 Register Stack

As described in “General Registers” on page 1:25, the general register file is divided 
into static and stacked subsets. The static subset is visible to all procedures and 
consists of the 32 registers from GR 0 through GR 31. The stacked subset is local to 
each procedure and may vary in size from zero to 96 registers beginning at GR 32. The 
register stack mechanism is implemented by renaming register addresses as a 
side-effect of procedure calls and returns. The implementation of this rename 
mechanism is not otherwise visible to application programs. The register stack is 
disabled during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to 
software convention. The stacked subset is automatically saved and restored by the 
Register Stack Engine (RSE) without explicit software intervention (for details on the 
RSE see Chapter 6, “Register Stack Engine” in Volume 2). All other register files are 
visible to all procedures and must be saved/restored by software according to software 
convention.

4.1.1 Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register 
stack frame. The frame is further partitioned into two variable-size areas: the local area 
and the output area. Immediately after a call, the size of the local area of the newly 
activated frame is zero and the size of the output area is equal to the size of the caller’s 
output area and overlays the caller’s output area.
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The local and output areas of a frame can be re-sized using the alloc instruction which 
specifies immediates that determine the size of frame (sof) and size of locals (sol).

Note: In the assembly language, alloc uses three immediate operands to determine 
the values of sol and sof: the size of inputs; the size of locals; and the size of 
outputs. The value of sol is determined by adding the size of inputs immediate 
and the size of locals immediate; the value of sof is determined by adding all 
three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current 
procedure; the value of sol specifies the size of the local area. The size of the output 
area is determined by the difference between sof and sol. The values of these 
parameters for the currently active procedure are maintained in the Current Frame 
Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. 
Writing a stacked register outside the current frame will cause an Illegal Operation 
fault. 

When a br.call or brl.call is executed, the CFM is copied to the Previous Frame 
Marker (PFM) field in the Previous Function State application register (PFS), and the 
callee’s frame is created as follows:

• The stacked registers are renamed such that the first register in the caller’s output 
area becomes GR 32 for the callee

• The size of the local area is set to zero

• The size of the callee’s frame (sofb1) is set to the size of the caller’s output area 
(sofa - sola)

Values in the output area of the caller’s register stack frame are visible to the callee. 
This overlap permits parameter and return value passing between procedures to take 
place entirely in registers.

Procedure frames may be dynamically re-sized by issuing an alloc instruction. An 
alloc instruction causes no renaming, but only changes the size of the register stack 
frame and the partitioning between local and output areas. Typically, when a procedure 
is called, it will allocate some number of local registers for its use (which will include the 
parameters passed to it in the caller’s output registers), plus an output area (for 
passing parameters to procedures it will call). Newly allocated registers (including their 
NaT bits) have undefined values.

When a br.ret is executed, CFM is restored from PFM and the register renaming is 
restored to the caller’s configuration. The PFM is procedure local state and must be 
saved and restored by non-leaf procedures. The CFM is not directly accessible in 
application programs and is updated only through the execution of calls, returns, 
alloc, cover, and clrrrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA 
(caller) to procB (callee). The state of the register stack is shown at four points: prior to 
the call, immediately following the call, after procB has executed an alloc, and after 
procB returns to procA.
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The majority of application programs need only issue alloc instructions and 
save/restore PFM in order to effectively utilize the register stack. A detailed knowledge 
of the RSE (Register Stack Engine) is required only by certain specialized application 
software such as user-level thread packages, debuggers, etc. See Chapter 6, “Register 
Stack Engine” in Volume 2.

4.1.2 Register Stack Instructions

The alloc instruction is used to change the size of the current register stack frame. An 
alloc instruction must be the first instruction in an instruction group otherwise the 
results are undefined. An alloc instruction affects the register stack frame seen by all 
instructions in an instruction group, including the alloc itself. If the qualifying 
predicate for alloc is not PR0, an Illegal Operation fault is raised. An alloc does not 
affect the values or NaT bits of the allocated registers. When a register stack frame is 
expanded, newly allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of 
the register stack. These instructions are used in thread and context switching which 
necessitate a corresponding switch of the backing store for the register stack. See 
Chapter 6, “Register Stack Engine” in Volume 2 for details on explicit management of 
the RSE.

Figure 4-1. Register Stack Behavior on Procedure Call and Return
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The flushrs instruction is used to force all previous stack frames out to backing store 
memory. It stalls instruction execution until all active frames in the physical register 
stack up to, but not including the current frame are spilled to the backing store by the 
RSE. A flushrs instruction must be the first instruction in an instruction group; 
otherwise, the results are undefined. A flushrs cannot be predicated.

The cover instruction creates a new frame of zero size (sof = sol = 0). The new frame 
is created above (not overlapping) the present frame. Both the local and output areas 
of the previous stack frame are automatically saved. A cover instruction must be the 
last instruction in an instruction group; otherwise, operation is undefined. A cover 
cannot be predicated.

The loadrs instruction ensures that the specified portion of the register stack is present 
in the physical registers. It stalls instruction execution until the number of bytes 
specified in the loadrs field of the RSC application register have been filled from the 
backing store by the RSE (starting from the current BSP). By specifying a zero value for 
RSC.loadrs, loadrs can be used to indicate that all stacked registers outside the 
current frame must be loaded from the backing store before being used. In addition, 
stacked registers outside the current frame (that have not been spilled by the RSE) will 
not be stored to the backing store. A loadrs instruction must be the first instruction in 
an instruction group otherwise the results are undefined. A loadrs cannot be 
predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 
summarizes the register stack management instructions. Call- and return-type 
branches, which affect the stack, are described in “Branch Instructions” on page 1:74. 

4.2 Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and 
bit-field-manipulation instructions. Additionally, they provide a set of instructions to 
accelerate operations on 32-bit data and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and 
M-units

Table 4-1. Architectural Visible State Related to the Register Stack

Register Description

AR[PFS].pfm Previous Frame Marker field

AR[RSC] Register Stack Configuration application register

AR[BSP] Backing store pointer application register

AR[BSPSTORE] Backing store pointer application register for memory stores

AR[RNAT] RSE NaT collection application register

Table 4-2. Register Stack Management Instructions

Mnemonic Operation

alloc Allocate register stack frame

flushrs Flush register stack to backing store

loadrs Load register stack from backing store

cover Cover current stack frame
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4.2.1 Arithmetic Instructions

Addition and subtraction (add, sub) are supported with regular two input forms and 
special three input forms. The three input addition form adds one to the sum of two 
input registers. The three input subtraction form subtracts one from the difference of 
two input registers. The three input forms share the same mnemonics as the two input 
forms and are specified by appending a “1” as a third source operand.

The immediate form of addition uses a register and a 14-bit immediate; the immediate 
form of subtraction uses a register and an 8-bit immediate. In both cases, the 
immediate is sign-extended before being added or subtracted. The immediate form is 
obtained simply by specifying an immediate rather than a register as the first operand. 
Also, addition can be performed between a register and a 22-bit immediate; however, 
the source register must be GR 0, 1, 2 or 3.

A shift left and add instruction (shladd) shifts one register operand to the left by 1 to 4 
bits and adds the result to a second register operand.

32-bit multiplication is supported with the unsigned integer multiply (mpy4) instruction, 
which takes two 32-bit (unsigned) register operands and produces a 64-bit result. The 
unsigned integer shift left and multiply (mpyshl4) instruction provides a building block 
for doing 64-bit multiplication. It takes a 32-bit operand in the upper half of a first 
register, a 32-bit operand in the lower half of a second register, multiplies them, and 
places the least significant 32-bits of the product in the upper half of the result register, 
with zeros in the lower half.

Table 4-3 summarizes the integer arithmetic instructions.

Note that an integer multiply instruction is defined which uses the floating-point 
registers. See “Integer Multiply and Add Instructions” on page 1:101 for details. 
Integer divide is performed in software similarly to floating-point divide.

4.2.2 Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between 
two registers or between a register and an immediate are defined. The andcm 
instruction performs a logical AND of a register or an immediate with the complement 
of another register. Table 4-4 summarizes the integer logical instructions.

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation

add Addition

add...,1 Three input addition

mpy4 Unsigned integer multiply

mpyshl4 Unsigned integer shift left and multiply

sub Subtraction

sub...,1 Three input subtraction

shladd Shift left and add
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4.2.3 32-bit Addresses and Integers

Support for 32-bit addresses is provided in the form of add instructions that perform 
region bit copying. This supports the virtual address translation model (see “32-bit 
Virtual Addressing” on page 2:71 for details). The add 32-bit pointer instruction (addp) 
adds two registers or a register and an immediate, zeroes the most significant 32-bits 
of the result, and copies bits 31:30 of the second source to bits 62:61 of the result. The 
shladdp instruction operates similarly but shifts the first source to the left by 1 to 4 bits 
before performing the add, and is provided only in the two-register form. 

In addition, support for 32-bit integers is provided through 32-bit compare instructions 
and instructions to perform sign and zero extension. Compare instructions are 
described in “Compare Instructions and Predication” on page 1:54. The sign and zero 
extend (sxt, zxt) instructions take an 8-bit, 16-bit, or 32-bit value in a register, and 
produce a properly extended 64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

4.2.4 Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a 
general register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input 
funnel shift, and special compare operations to test an individual bit within a general 
register. The compare instructions for testing a single bit (tbit), or for testing the NaT 
bit (tnat) are described in “Compare Instructions and Predication” on page 1:54.

The variable shift instructions shift the contents of a general register by an amount 
specified by another general register. The shift right signed (shr) and shift right 
unsigned (shr.u) instructions shift the contents of a register to the right with the 
vacated bit positions filled with the sign bit or zeroes respectively. The shift left (shl) 
instruction shifts the contents of a register to the left.

The fixed shift-and-mask instructions (extr, dep) are generalized forms of fixed shifts. 
The extract instruction (extr) copies an arbitrary bit field from a general register to the 
least-significant bits of the target register. The remaining bits of the target are written 
with either the sign of the bit field (extr) or with zero (extr.u). The length and starting 

Table 4-4. Integer Logical Instructions

Mnemonic Operation

and Logical and

or Logical or

andcm Logical and complement

xor Logical exclusive or

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation

addp 32-bit pointer addition

shladdp Shift left and add 32-bit pointer

sxt Sign extend

zxt Zero extend
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position of the field are specified by two immediates. This is essentially a 
shift-right-and-mask operation. A simple right shift by a fixed amount can be specified 
by using shr with an immediate value for the shift amount. This is just an assembly 
pseudo-op for an extract instruction where the field to be extracted extends all the way 
to the left-most register bit.

The deposit instruction (dep) takes a field from either the least-significant bits of a 
general register, or from an immediate value of all zeroes or all ones, places it at an 
arbitrary position, and fills the result to the left and right of the field with either bits 
from a second general register (dep) or with zeroes (dep.z). The length and starting 
position of the field are specified by two immediates. This is essentially a 
shift-left-mask-merge operation. A simple left shift by a fixed amount can be specified 
by using shl with an immediate value for the shift amount. This is just an assembly 
pseudo-op for dep.z where the deposited field extends all the way to the left-most 
register bit.

The shift right pair (shrp) instruction performs a 128-bit-input funnel shift.  It extracts 
an arbitrary 64-bit field from a 128-bit field formed by concatenating two source 
general registers.  The starting position is specified by an immediate.  This instruction 
can be used to accelerate the adjustment of unaligned data.  A bit rotate operation can 
be performed by using shrp and specifying the same register for both operands.

Table 4-6 summarizes the bit field and shift instructions.

4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For 
constants up to 22 bits in size, the add instruction can be used, or the mov pseudo-op 
(pseudo-op of add with GR0, which always reads 0). For larger constants, the move 
long immediate instruction (movl) is defined to write a 64-bit immediate into a general 
register. This instruction occupies two instruction slots within the same bundle, and is 
the only such instruction.

Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation

shr Shift right signed

shr.u Shift right unsigned

shl Shift left

extr Extract signed (shift right and mask)

extr.u Extract unsigned (shift right and mask)

dep Deposit (shift left, mask and merge)

dep.z Deposit in zeroes (shift left and mask)

shrp Shift right pair

Table 4-7. Instructions to Generate Large Constants

Mnemonic Operation

mov Move 22-bit immediate

movl Move 64-bit immediate
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4.3 Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and 
affect the dynamic execution of instructions. A compare instruction tests for a single 
specified condition and generates a boolean result. These results are written to 
predicate registers. The predicate registers can then be used to affect dynamic 
execution in two ways: as conditions for conditional branches, or as qualifying 
predicates for predication.

4.3.1 Predication

Predication is the conditional execution of instructions. The execution of most 
instructions is gated by a qualifying predicate. If the predicate is true, the instruction 
executes normally; if the predicate is false, the instruction does not modify 
architectural state (except for the unconditional type of compare instructions, 
floating-point approximation instructions and while-loop branches). Predicates are 
one-bit values and are stored in the predicate register file. A zero predicate is 
interpreted as false and a one predicate is interpreted as true (predicate register PR0 is 
hardwired to one).

A few instructions cannot be predicated. These instructions are: allocate stack frame 
(alloc), branch predict (brp), bank switch (bsw), clear rrb (clrrrb), cover stack frame 
(cover), enter privileged code (epc), flush register stack (flushrs), load register stack 
(loadrs), counted branches (br.cloop, br.ctop, br.cexit), and return from 
interruption (rfi).

4.3.2 Compare Instructions

Predicate registers are written by the following instructions: general register compare 
(cmp, cmp4), floating-point register compare (fcmp), test bit and test NaT (tbit, tnat), 
test feature (tf), floating-point class (fclass), and floating-point reciprocal 
approximation and reciprocal square root approximation (frcpa, fprcpa, frsqrta, 
fprsqrta). Most of these compare instructions (all but frcpa, fprcpa, frsqrta and 
fprsqrta) set two predicate registers based on the outcome of the comparison. The 
setting of the two target registers is described below in “Compare Types” on page 1:55. 
Compare instructions are summarized in Table 4-8.

Table 4-8. Compare Instructions

Mnemonic Operation

cmp, cmp4 GR compare

tbit Test bit in a GR

tnat Test GR NaT bit

tf Test feature

fcmp FR compare

fclass FR class

frcpa, fprcpa Floating-point reciprocal approximation

frsqrta, fprsqrta Floating-point reciprocal square root approximation
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The 64-bit (cmp) and 32-bit (cmp4) compare instructions compare two registers, or a 
register and an immediate, for one of ten relations (e.g., >, <=). The compare 
instructions set two predicate targets according to the result. The cmp4 instruction 
compares the least-significant 32-bits of both sources (the most significant 32-bits are 
ignored).

The test bit (tbit) instruction sets two predicate registers according to the state of a 
single bit in a general register (the position of the bit is specified by an immediate). The 
test NaT (tnat) instruction sets two predicate registers according to the state of the 
NaT bit corresponding to a general register.

The test feature (tf) instruction sets two predicate registers according to whether or 
not the selected feature is implemented in the processor.

The fcmp instruction compares two floating-point registers and sets two predicate 
targets according to one of eight relations. The fclass instruction sets two predicate 
targets according to the classification of the number contained in the floating-point 
register source.

The frcpa, fprcpa, frsqrta and fprsqrta instructions set a single predicate target if 
their floating-point register sources are such that a valid approximation can be 
produced, otherwise the predicate target is cleared.

4.3.3 Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional, 
AND, OR, or DeMorgan. The type defines how the instruction writes its target predicate 
registers based on the outcome of the comparison and on the qualifying predicate. The 
description of these types is contained in Table 4-9. In the table, “qp” refers to the 
value of the qualifying predicate of the compare and “result” refers to the outcome of 
the compare relation (one if the compare relation is true and zero if the compare 
relation is false).

The Normal compare type simply writes the compare result to the first predicate target 
and the complement of the result to the second predicate target.

Table 4-9. Compare Type Function

Compare Type Completer
Operation

First Predicate Target Second Predicate Target

Normal none if (qp) {target = result} if (qp) {target =!result}

Unconditional unc
if (qp) {target = result}
else {target = 0}

if (qp) {target =!result}
else {target = 0}

AND
and if (qp &&!result) {target = 0} if (qp &&!result) {target = 0}

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

OR
or if (qp && result) {target = 1} if (qp && result) {target = 1}

orcm if (qp &&!result) {target = 1} if (qp &&!result) {target = 1}

DeMorgan
or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}

and.orcm if (qp &&!result) {target = 0} if (qp &&!result) {target = 1}
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The Unconditional compare type behaves the same as the Normal type, except that if 
the qualifying predicate is 0, both predicate targets are written with 0. This can be 
thought of as an initialization of the predicate targets, combined with a Normal 
compare. Note that compare instructions with the Unconditional type modify 
architectural state when their qualifying predicate is false.

The AND, OR and DeMorgan types are termed “parallel” compare types because they 
allow multiple simultaneous compares (of the same type) to target a single predicate 
register. This provides the ability to compute a logical equation such as 
p5 = (r4 == 0) || (r5 == r6) in a single cycle (assuming p5 was initialized to 0 in 
an earlier cycle). The DeMorgan compare type is just a combination of an OR type to 
one predicate target and an AND type to the other predicate target. Multiple OR-type 
compares (including the OR part of the DeMorgan type) may specify the same predicate 
target in the same instruction group. Multiple AND-type compares (including the AND 
part of the DeMorgan type) may also specify the same predicate target in the same 
instruction group.

For all compare instructions (except for tnat and fclass), if one or both of the source 
registers contains a deferred exception token (NaT or NaTVal – see “Control 
Speculation” on page 1:60), the result of the compare is different. Both predicate 
targets are treated the same, and are either written to 0 or left unchanged. In 
combination with speculation, this allows predicated code to be turned off in the 
presence of a deferred exception. fclass behaves this way as well if NaTVal is not one 
of the classes being tested for. Table 4-10 describes the behavior.

Only a subset of the compare types are provided for some of the compare instructions. 
Table 4-11 lists the compare types which are available for each of the instructions.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation

Normal if (qp) {target = 0}

Unconditional target = 0

AND if (qp) {target = 0}

OR (not written)

DeMorgan (not written)

Table 4-11. Instructions and Compare Types Provided

Instruction Relation Types Provided

cmp, cmp4 a == b, a!= b,
a > 0, a >= 0, a < 0, a <= 0,
0 > a, 0 >= a, 0 < a, 0 <= a

Normal, Unconditional,
AND, OR, DeMorgan

All other relations Normal, Unconditional

tbit, tnat, tf All Normal, Unconditional,
AND, OR, DeMorgan

fcmp, fclass All Normal, Unconditional

frcpa, frsqrta,
fprcpa, fprsqrta

Not Applicable Unconditional
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4.3.4 Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and a general 
register. These instructions operate in a “broadside” manner whereby multiple predicate 
registers are transferred in parallel, such that predicate register N is transferred 
to/from bit N of a general register.

The move to predicates instruction (mov pr=) loads multiple predicate registers from a 
general register according to a mask specified by an immediate. The mask contains one 
bit for each of PR 1 through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16 
through PR63 (the rotating predicates). A predicate register is written from the 
corresponding bit in a general register if the corresponding mask bit is 1; if the mask bit 
is 0 the predicate register is not modified.

The move to rotating predicates instruction (mov pr.rot=) copies 48 bits from an 
immediate value into the 48 rotating predicates (PR 16 through PR 63). The immediate 
value includes 28 bits, and is sign-extended. Thus PR 16 through PR 42 can be 
independently set to new values, and PR 43 through PR 63 are all set to either 0 or 1.

The move from predicates instruction (mov =pr) transfers the entire predicate register 
file into a general register target.

For all of these predicate register transfers, the predicate registers are accessed as 
though the register rename base (CFM.rrb.pr) were 0. Typically, therefore, software 
should clear CFM.rrb.pr before initializing rotating predicates.

4.4 Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer 
data to and from general registers or floating-point registers. The memory address is 
specified by the contents of a general register.

Most load and store instructions can also specify base-address-register update. Base 
update adds either an immediate value or the contents of a general register to the 
address register, and places the result back in the address register. The update is done 
after the load or store operation, i.e., it is performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a 
4K-byte boundary, accesses misaligned with respect to their natural boundaries will 
always fault if UM.ac (alignment check bit in the User Mask register) is 1. If UM.ac is 0, 
then an unaligned access will succeed if it is supported by the implementation; 
otherwise it will cause an Unaligned Data Reference fault. Please see the 
processor-specific documentation for further information. All memory accesses that 
cross a 4K-byte boundary will cause an Unaligned Data Reference fault independent of 
UM.ac. Additionally, all semaphore instructions will cause an Unaligned Data Reference 
fault if the access is not aligned to its natural boundary, independent of UM.ac.

Accesses to memory quantities larger than a byte may be done in a big-endian or 
little-endian fashion. The byte ordering for all memory access instructions is 
determined by UM.be in the User Mask register. All IA-32 memory references are 
performed little-endian.
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Load, store and semaphore instructions are summarized in Table 4-12 and the state 
related to memory reference instructions is summarized in Table 4-13.

4.4.1 Load Instructions

Load instructions transfer data from memory to a general register, a general register 
and the Compare and Store Data register (CSD), a floating-point register or a pair of 
floating-point registers.

For general register loads, access sizes of 1, 2, 4, 8, and 16 bytes are defined. For sizes 
less than eight bytes, the loaded value is zero extended to 64-bits. The 16-byte 
general-register load instructions load two adjacent 8-byte quantities into a general 
register and the CSD register. The 16-byte general-register load instructions cannot 
specify base register update.

For floating-point loads, the following access sizes are defined: single precision (4 
bytes), double precision (8 bytes), double-extended precision (10 bytes), and 
integer/parallel FP (8 bytes). The value(s) loaded from memory are converted into 
floating-point register format (see “Memory Access Instructions” on page 1:91 for 
details).

Table 4-12. Memory Access Instructions

Mnemonic

Operation
General

Floating-point

Normal Load Pair

ld ldf ldfp Load

ld.s ldf.s ldfp.s Speculative load

ld.a ldf.a ldfp.a Advanced load

ld.sa ldf.sa ldfp.sa Speculative advanced load

ld.c.nc, ld.c.clr ldf.c.nc,
ldf.c.clr

ldfp.c.nc,
ldfp.c.clr

Check load

ld.c.clr.acq Ordered check load

ld.acq Ordered load

ld.bias Biased load

ld.fill ldf.fill Register Fill

st stf Store

st.rel Ordered store

st.spill stf.spill Register Spill

cmpxchg Compare and exchange

xchg Exchange memory and GR

fetchadd Fetch and add

Table 4-13. State Relating to Memory Access

Register Function

UM.be User mask byte ordering

UM.ac User mask Unaligned Data Reference fault enable

UNAT GR NaT collection

CCV Compare and Exchange Compare Value application register

CSD Compare and Store Data application register
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The floating-point load pair instructions load two adjacent single precision (4 bytes 
each), double precision (8 bytes each), or integer/parallel FP (8 bytes each) numbers 
into two independent floating-point registers (see the ldfp instruction description for 
restrictions on target register specifiers). Floating-point load pair instructions can 
specify base register update, but only by an immediate value equal to double the data 
size.

Variants of both general and floating-point register loads are defined for supporting 
compiler-directed control and data speculation. These use the general register NaT bits 
and the ALAT. See “Control Speculation” on page 1:60 and “Data Speculation” on 
page 1:63.

Variants are also provided for controlling the memory/cache subsystem. An ordered 
load can be used to force ordering in memory accesses. See “Memory Access Ordering” 
on page 1:73. A biased load provides a hint to acquire exclusive ownership of the 
accessed line. See “Memory Hierarchy Control and Consistency” on page 1:69.

Special-purpose loads are defined for restoring register values that were spilled to 
memory. The ld8.fill instruction loads a general register and the corresponding NaT 
bit (defined for an 8-byte access only). The ldf.fill instruction loads a value in 
floating-point register format from memory without conversion (defined for 16-byte 
access only). See “Register Spill and Fill” on page 1:62.

4.4.2 Store Instructions

Store instructions transfer data from a general register, a general register and the CSD 
register, or floating-point register to memory. Store instructions are always 
non-speculative. Store instructions can specify base-address-register update, but only 
by an immediate value. A variant is also provided for controlling the memory/cache 
subsystem. An ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes 
as their load counterparts. The only exception is that there are no floating-point store 
pair instructions. The 16-byte general-register store instructions store two adjacent 
8-byte quantities from a general register and the CSD register.

Special purpose stores are defined for spilling register values to memory. The 
st8.spill instruction stores a general register and the corresponding NaT bit (defined 
for 8-byte access only). This allows the result of a speculative calculation to be spilled 
to memory and restored. The stf.spill instruction stores a floating-point register in 
memory in the floating-point register format without conversion. This allows register 
spill and restore code to be written to be compatible with possible future extensions to 
the floating-point register format. The stf.spill instruction also does not fault if the 
register contains a NaTVal, and is defined for 16-byte access only. See “Register Spill 
and Fill” on page 1:62.

4.4.3 Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an 
operation and then store a result to the same memory location. Semaphore instructions 
are always non-speculative. No base register update is provided.
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Three types of atomic semaphore operations are defined: exchange (xchg); compare 
and exchange (cmpxchg); and fetch and add (fetchadd).

The xchg target is loaded with the zero-extended contents of the memory location 
addressed by the first source and then the second source is stored into the same 
memory location.

The cmpxchg target is loaded with the zero-extended contents of the memory location 
addressed by the first source; if the zero-extended value is equal to the contents of the 
Compare and Exchange Compare Value application register (CCV), then the second 
source is stored into the same memory location. The cmp8xchg16 instruction loads the 
target with 8 bytes from the memory location addressed by the first source; if this 
value is equal to the contents of the CCV register, then the second source and the CSD 
register are both stored into memory at the 16-byte-aligned address which contains the 
memory location loaded.

The fetchadd instruction specifies one general register source, one general register 
target, and an immediate. The fetchadd target is loaded with the zero-extended 
contents of the memory location addressed by the source and then the immediate is 
added to the loaded value and the result is stored into the same memory location.

4.4.4 Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This 
speculation takes two forms, control speculation and data speculation, with a separate 
mechanism to support each. See also “Data Speculation” on page 1:63.

4.4.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a 
sequence of instructions is executed before it is known that the dynamic control flow of 
the program will actually reach the point in the program where the sequence of 
instructions is needed. This is done with instruction sequences that have long execution 
latencies. Starting the execution early allows the compiler to overlap the execution with 
other work, increasing the parallelism and decreasing overall execution time. The 
compiler performs this optimization when it determines that it is very likely that the 
dynamic control flow of the program will eventually require this calculation. In cases 
where the control flow is such that the calculation turns out not to be needed, its results 
are simply discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no 
exceptions encountered that would be visible to the program can be signalled until it is 
determined that the program’s control flow does require the execution of this 
instruction sequence. For this reason, a mechanism is provided for recording the 
occurrence of an exception so that it can be signalled later if and when it is necessary. 
In such a situation, the exception is said to be deferred. When an exception is deferred 
by an instruction, a special token is written into the target register to indicate the 
existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point 
register files. In general registers, an additional bit is defined for each register called 
the NaT bit (Not a Thing). Thus general registers are 65 bits wide. A NaT bit equal to 1 
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indicates that the register contains a deferred exception token, and that its 64-bit data 
portion contains an implementation-specific value that software cannot rely upon. In 
floating-point registers, a deferred exception is indicated by a specific pseudo-zero 
encoding called the NaTVal (see “Representation of Values in Floating-point Registers” 
on page 1:86 for details).

4.4.4.2 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be 
used speculatively) and non-speculative (instructions which cannot). Non-speculative 
instructions will raise exceptions if they occur and are therefore unsafe to schedule 
before they are known to be executed. Speculative instructions defer exceptions (they 
do not raise them) and are therefore safe to schedule before they are know to be 
executed.

Loads to general and floating-point registers have both non-speculative (ld, ldf, ldfp) 
and speculative (ld.s, ldf.s, ldfp.s) variants. Generally, all computation instructions 
which write their results to general or floating-point registers are speculative. Any 
instruction that modifies state other than a general or floating-point register is 
non-speculative, since there would be no way to represent the deferred exception 
(there are a few exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A 
speculative instruction that reads a register containing a deferred exception token will 
propagate a deferred exception token into its target. Thus a chain of instructions can be 
executed speculatively, and only the result register need be checked for a deferred 
exception token to determine whether any exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation 
is needed, a speculation check (chk.s) instruction is used. This instruction tests for a 
deferred exception token. If none is found, then the speculative calculation was 
successful, and execution continues normally. If a deferred exception token is found, 
then the speculative calculation was unsuccessful and must be re-done. In this case, 
the chk.s instruction branches to a new address (specified by an immediate offset in 
the chk.s instruction). Software can use this mechanism to invoke code that contains a 
copy of the speculative calculation (but with non-speculative loads). Since it is now 
known that the calculation is required, any exceptions which now occur can be signalled 
and handled normally.

Since computational instructions do not generally cause exceptions, the only 
instructions which generate deferred exception tokens are speculative loads. (IEEE 
floating-point exceptions are handled specially through a set of alternate status fields. 
See “Floating-point Status Register” on page 1:88.) Other speculative instructions 
propagate deferred exception tokens, but do not generate them.

4.4.4.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general 
registers or the floating-point registers are non-speculative. The compare (cmp, cmp4, 
fcmp), test bit (tbit), floating-point class (fclass), and floating-point approximation 
(frcpa, frsqrta) instructions are special cases. These instructions read general or 
floating-point registers and write one or two predicate registers.
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For these instructions, if any source contains a deferred exception token, all predicate 
targets are either cleared or left unchanged, depending on the compare type (see 
Table 4-10 on page 1:56). Software can use this behavior to ensure that any dependent 
conditional branches are not taken and any dependent predicated instructions are 
nullified. See “Predication” on page 1:54.

Deferred exception tokens can also be tested for with certain compare instructions. The 
test NaT (tnat) instruction tests the NaT bit corresponding to the specified general 
register and writes two predicate results. The floating-point class (fclass) instruction 
can be used to test for a NaTVal in a floating-point register and write the result to two 
predicate registers. fclass does not clear both predicate targets in the presence of a 
NaTVal input if NaTVal is one of the classes being tested for.

4.4.4.4 Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception 
token will raise a Register NaT Consumption fault. Such instructions can be thought of 
as performing a non-recoverable speculation check operation. In some compilation 
environments, it may be true that the only exceptions that are deferred are fatal errors. 
In such a program, if the result of a speculative calculation is checked and a deferred 
exception token is found, execution of the program is terminated. For such a program, 
the results of speculative calculations can be checked simply by using non-speculative 
instructions.

4.4.4.5 Operating System Control over Exception Deferral

An additional mechanism is defined that allows the operating system to control the 
exception behavior of speculative loads. The operating system has the option to select 
which exceptions are deferred automatically in hardware and which exceptions will be 
handled (and possibly deferred) by software. See Section 5.5.5, “Deferral of 
Speculative Load Faults” on page 2:105.

4.4.4.6 Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and 
preserving any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st8.spill, ld8.fill) are defined to 
save/restore a general register along with the corresponding NaT bit.

The st8.spill instruction writes a general register’s NaT bit into the User NaT 
Collection application register (UNAT), and, if the NaT bit was 0, writes the register’s 
64-bit data portion to memory. If the register’s NaT bit was 1, the UNAT is updated, but 
the memory update is implementation specific. As stated in Section 4.4.4.1, “Control 
Speculation Concepts”, software cannot rely on the 64-bit data portion spilled to 
memory for a NaT'ed GR.  Although guidance is given here for processor 
implementations, other allowed implementation strategies may be added in the future, 
and software should not rely on the implementation guidance.

Processor implementations (hardware and firmware) must consistently follow one of 
two spill behaviors (but software should not count on implementations being limited to 
these behaviors):
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• The st8.spill may write a zero to the specified memory location, or

• The st8.spill may write the register’s 64-bit data portion to memory, only if that 
implementation returns a zero into the target register of all NaTed speculative 
loads, and that implementation also guarantees that all NaT propagating 
instructions perform all computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

The ld8.fill instruction loads a general register from memory taking the 
corresponding NaT bit from the bit in the UNAT register addressed by bits 8:3 of the 
memory address. The UNAT register must be saved and restored by software. It is the 
responsibility of software to ensure that the contents of the UNAT register are correct 
while executing st8.spill and ld8.fill instructions.

The floating-point spill and fill instructions (stf.spill, ldf.fill) are defined to 
save/restore a floating-point register (saved as 16 bytes) without surfacing an 
exception if the FR contains a NaTVal (these instructions do not affect the UNAT 
register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that 
are targets of a speculative instruction and may therefore contain a deferred exception 
token. Note also that transfers between the general and floating-point register files 
cause a conversion between the two deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the 
instructions related to control speculation.

4.4.5 Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions 
across control dependencies, data speculative loads and checks allow the compiler to 
schedule instructions across some types of ambiguous data dependencies. This section 
details the usage model and semantics of data speculation and related instructions.

Table 4-14. State Related to Control Speculation

Register Description

NaT bits 65th bit associated with each GR indicating a deferred exception

NaTVal Pseudo-Zero encoding for FR indicating a deferred exception

UNAT User NaT collection application register

Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation

ld.s, ldf.s, ldfp.s GR and FR speculative loads

ld8.fill, ldf.fill Fill GR with NaT collection, fill FR

st8.spill, stf.spill Spill GR with NaT collection, spill FR

chk.s Test GR or FR for deferred exception token

tnat Test GR NaT bit and set predicate
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4.4.5.1 Data Speculation Concepts

An ambiguous memory dependency is said to exist between a store (or any operation 
that may update memory state) and a load when it cannot be statically determined 
whether the load and store might access overlapping regions of memory. For 
convenience, a store that cannot be statically disambiguated relative to a particular 
load is said to be ambiguous relative to that load. In such cases, the compiler cannot 
change the order in which the load and store instructions were originally specified in the 
program. To overcome this scheduling limitation, a special kind of load instruction 
called an advanced load can be scheduled to execute earlier than one or more stores 
that are ambiguous relative to that load.

As with control speculation, the compiler can also speculate operations that are 
dependent upon the advanced load and later insert a check instruction that will 
determine whether the speculation was successful or not. For data speculation, the 
check can be placed anywhere the original non-data speculative load could have been 
scheduled.

Thus, a data-speculative sequence of instructions consists of an advanced load, zero or 
more instructions dependent on the value of that load, and a check instruction. This 
means that any sequence of stores followed by a load can be transformed into an 
advanced load followed by a sequence of stores followed by a check. The decision to 
perform such a transformation is highly dependent upon the likelihood and cost of 
recovering from an unsuccessful data speculation.

4.4.5.2 Data Speculation and Instructions

Advanced loads are available in integer (ld.a), floating-point (ldf.a), and 
floating-point pair (ldfp.a) forms. When an advanced load is executed, it allocates an 
entry in a structure called the Advanced Load Address Table (ALAT). Later, when a 
corresponding check instruction is executed, the presence of an entry indicates that the 
data speculation succeeded; otherwise, the speculation failed and one of two kinds of 
compiler-generated recovery is performed:

1. The check load instruction (ld.c, ldf.c, or ldfp.c) is used for recovery when 
the only instruction scheduled before a store that is ambiguous relative to the 
advanced load is the advanced load itself. The check load searches the ALAT for a 
matching entry. If found, the speculation was successful; if a matching entry was 
not found, the speculation was unsuccessful and the check load reloads the 
correct value from memory. Figure 4-2 shows this transformation.

2. The advanced load check (chk.a) is used when an advanced load and several 
instructions that depend on the loaded value are scheduled before a store that is 
ambiguous relative to the advanced load. The advanced load check works like the 

Figure 4-2. Data Speculation Recovery Using ld.c

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];; // Advanced load
// Other instructions
st8 [r4] = r12
ld8.c.clr r6 = [r8] // Check load
add r5 = r6, r7;;
st8 [r18] = r5
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speculation check (chk.s) in that, if the speculation was successful, execution 
continues inline and no recovery is necessary; if speculation was unsuccessful, 
the chk.a branches to compiler-generated recovery code. The recovery code 
contains instructions that will re-execute all the work that was dependent on the 
failed data speculative load up to the point of the check instruction. As with the 
check load, the success of a data speculation using an advanced load check is 
determined by searching the ALAT for a matching entry. This transformation is 
shown in Figure 4-3.

Recovery code may use either a normal or advanced load to obtain the correct value for 
the failed advanced load. An advanced load is used only when it is advantageous to 
have an ALAT entry reallocated after a failed speculation. The last instruction in the 
recovery code should branch to the instruction following the chk.a.

4.4.5.3 Detailed Functionality of the ALAT and Related Instructions

The ALAT is the structure that holds the state necessary for advanced loads and checks 
to operate correctly. The ALAT is searched in two different ways: by physical addresses 
and by ALAT register tags. An ALAT register tag is a unique number derived from the 
physical target register number and type in conjunction with other 
implementation-specific state. Implementation-specific state might include register 
stack wraparound information to distinguish one instance of a physical register that 
may have been spilled by the RSE from the current instance of that register, thus 
avoiding the need to purge the ALAT on all register stack wraparounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can 
not rely on ALAT values being preserved across an instruction set transition. On entry to 
IA-32 instruction set, existing entries in the ALAT are ignored. 

4.4.5.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For ldfp.a, a tag is 
computed only for the first target register.)

2. If an entry with a matching ALAT register tag exists, it is removed.

Figure 4-3. Data Speculation Recovery Using chk.a

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];;
// Other instructions
add r5 = r6, r7;;
// Other instructions
st8 [r4] = r12
chk.a.clr r6, recover

back:
st8 [r18] = r5

// Somewhere else in program
recover:
ld8 r6 = [r8];;
add r5 = r6, r7
br back
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3. A new entry is allocated in the ALAT which contains the new ALAT register tag, 
the load access size, and a tag derived from the physical memory address. The 
insertion of the new ALAT entry must occur no later in visibility order than the 
load of the data.

4. The value at the address specified in the advanced load is loaded into the target 
register and, if specified, the base register is updated and an implicit prefetch is 
performed.

Since the success of a check is determined by finding a matching register tag in the 
ALAT, both the chk.a and the target register of a ld.c must specify the same register 
as their corresponding advanced load. Additionally, the check load must use the same 
address and operand size as the corresponding advanced load; otherwise, the value 
written into the target register by the check load is undefined. 

An advanced load check performs the following actions:

1. It looks for a matching ALAT entry and if found, falls through to the next 
instruction.

2. If no matching entry is found, the chk.a branches to the specified address.

An implementation may choose to implement a failing advanced load check directly as a 
branch or as a fault where the fault-handler emulates the branch. Although the 
expected mode of operation is for an implementation to detect matching entries in the 
ALAT during checks, an implementation may fail a check instruction even when an entry 
with a matching ALAT register tag exists. This will be a rare occurrence but software 
must not assume that the ALAT does not contain the entry.

A check load checks for a matching entry in the ALAT. If no matching entry is found, it 
reloads the value from memory and any faults that occur during the memory reference 
are raised. When a matching entry is found, there is flexibility in the actions that a 
processor can perform:

1. The implementation may choose to either leave the target register unchanged or 
to reload the value from memory.

2. If the implementation chooses to leave the target register unchanged and one or 
more exception conditions related to the data access or translation of the check 
load occurs, the implementation may choose to either raise the highest-priority of 
these faults or ignore them all and continue execution. The faults that can be 
ignored are those related to data access and translation (Data Nested TLB fault, 
Alternate Data TLB fault, VHPT Data fault, Data TLB fault, Data Page Not Present 
fault, Data NaT Page Consumption fault, Data Key Miss fault, Data Key Permission 
fault, Data Access Rights fault, Data Dirty Bit fault, Data Access Bit fault, Data 
Debug fault, Unaligned Data Reference fault, Unsupported Data Reference fault). 
See Table 5-6, “Interruption Priorities” on page 2:109.

3. If the implementation chooses to perform a reload, then any faults that occur 
because of the reload can not be ignored.

4. If the size, type, or address fields in the matching ALAT entry do not match that 
provided by a check load, the value returned by the check load is undefined. In 
such cases the implementation may choose to raise a fault or when the “no clear” 
variant of the check load is issued, an implementation may choose to update the 
address, size, or type fields of the matching ALAT entry or to leave the entry 
unchanged. The update of the ALAT entry must occur no later in visibility order 
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than the load of the data.

If the check load was an ordered check load (ld.c.clr.acq), then it is performed with 
the semantics of an ordered load (ld.acq). ALAT register tag lookups by advanced load 
checks and check loads are subject to memory ordering constraints as outlined in 
“Memory Access Ordering” on page 1:73.

In addition to the flexibility described above, the size, organization, matching 
algorithm, and replacement algorithm of the ALAT are implementation dependent. 
Thus, the success or failure of specific advanced loads and checks in a program may 
change: when the program is run on different processor implementations, within the 
execution of a single program on the same implementation, or between different runs 
on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur 
implicitly by events that alter memory state or explicitly by any of the following 
instructions: ld.c.clr, ld.c.clr.acq, chk.a.clr, invala, invala.e. Events that may 
implicitly invalidate ALAT entries include those that change memory state or memory 
translation state such as:

1. The execution of stores, semaphores, or ptc.ga on other processors in the 
coherence domain.

2. The execution of store or semaphore instructions issued on the local processor.

3. Platform-visible removal of a cache line from the processor’s caches.

When one of these events occurs, hardware checks each memory region represented 
by an entry in the ALAT to see if it overlaps with the locations affected by the 
invalidation event. ALAT entries whose memory regions overlap with the invalidation 
event locations are removed. The invalidation of ALAT entries due to the execution of 
stores, semaphores or ptc.ga instructions must occur no later in visibility order than the 
store of the data or the TLB purge. Note that some invalidation events may require that 
multiple entries be removed from the ALAT. For example, the ptc.ga instruction is page 
aligned, thus a ptc.ga from another processor would require that hardware invalidate 
all ALAT entries related to that page. Stores due to RSE spills are not checked for ALAT 
invalidation and do not cause ALAT entries to be removed. See Section 6.9, “RSE and 
ALAT Interaction” on page 2:146. When an external agent can observe that the 
processor has removed a physical address range from its caches, then that address 
range is guaranteed to be invalidated from that processor’s ALAT as well. 

An implementation may invalidate entries over areas larger than explicitly required by a 
specific invalidation event, and more generally, to invalidate any ALAT entry at any 
time. For example, a st1 only accesses one byte, but an implementation could choose 
to invalidate all ALAT entries whose memory region is in the same cache line. An 
implementation may also provide an ALAT with zero entries (i.e., all ld.c/chk.a 
instructions would act as if an ALAT miss had occurred).

Software is responsible for explicitly invalidating all affected ALAT entries whenever:

1. Software explicitly changes the virtual to physical register mapping on rotating 
registers that have been the target of advanced loads (clrrrb).

2. Software changes the virtual to physical memory mapping.
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3. Software accesses the RSE backing store with advanced loads. See Section 6.9, 
“RSE and ALAT Interaction” on page 2:146 (since RSE stores do not invalidate 
ALAT entries).

4. Software explicitly changes the virtual to physical register mapping on stacked 
registers by switching the RSE backing stores. See Section 6.11.3, “Synchronous 
Backing Store Switch” on page 2:148.

4.4.5.4 Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may 
be both control and data speculative. Both control speculative (ld.sa, ldf.sa, 
ldfp.sa) and non-control speculative (ld.a, ldf.a, ldfp.a) variants of advanced 
loads are defined for general and floating-point registers. If a speculative advanced 
load generates a deferred exception token then:

1. Any existing ALAT entry with the same ALAT register tag is invalidated.

2. No new ALAT entry is allocated.

3. If the target of the load was a general-purpose register, its NaT bit is set.

4. If the target of the load was a floating-point register, then NaTVal is written to the 
target register.

If a speculative advanced load does not generate a deferred exception, then its 
behavior is the same as the corresponding non-control speculative advanced load. 

Since there can be no matching entry in the ALAT after a deferred fault, a single 
advanced load check or check load is sufficient to check both for data speculation 
failures and to detect deferred exceptions.

4.4.5.5 Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two 
variants of advanced load checks and check loads are provided: variants with clear 
(chk.a.clr, ld.c.clr, ld.c.clr.acq, ldf.c.clr, ldfp.c.clr) and variants with no 
clear (chk.a.nc, ld.c.nc, ldf.c.nc, ldfp.c.nc). 

The clear variants are used when the compiler knows that the ALAT entry will not be 
used again and wants the entry explicitly removed. This allows software to indicate 
when entries are unneeded, making it less likely that a useful entry will be 
unnecessarily forced out because all entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is 
invalidated independently of whether the address or size fields of the check load and 
the corresponding advanced load match. For chk.a.clr, the entry is guaranteed to be 
invalidated only when the instruction falls through (the recovery code is not executed). 
Thus, a failing chk.a.clr may or may not clear any matching ALAT entries. In such 
cases, the recovery code must explicitly invalidate the entry in question if program 
correctness depends on the entry being absent after a failed chk.a.clr.

Non-clear variants of both kinds of data speculation checks act as a hint to the 
processor that an existing entry should be maintained in the ALAT or that a new entry 
should be allocated when a matching ALAT entry doesn’t exist. Such variants can be 
used within loops to check advanced loads which were presumed loop-invariant and 
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moved out of the loop by the compiler. This behavior ensures that if the check load fails 
on one iteration, then the check load will not necessarily fail on all subsequent 
iterations. Whenever a new entry is inserted into the ALAT or when the contents of an 
entry are updated, the information written into the ALAT only uses information from the 
check load and does not use any residual information from a prior entry. The non-clear 
variant of chk.a, chk.a.nc, does not allocate entries and the ‘nc’ completer acts as a 
hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data 
speculation.

4.4.6 Memory Hierarchy Control and Consistency

4.4.6.1 Hierarchy Control and Hints

Memory access instructions are defined to specify whether the data being accessed 
possesses temporal locality. In addition, memory access instructions can specify which 
levels of the memory hierarchy are affected by the access. This leads to an architectural 
view of the memory hierarchy depicted in Figure 4-1 composed of zero or more levels 
of cache between the register files and memory where each level may consist of two 
parallel structures: a temporal structure and a non-temporal structure. Note that this 
view applies to data accesses and not instruction accesses.

Table 4-16. State Relating to Data Speculation

Structure Function

ALAT Advanced load address table

Table 4-17. Instructions Relating to Data Speculation

Mnemonic Operation

ld.a, ldf.a, ldfp.a GR and FR advanced load

st, st.rel, st.spill, stf, stf.spill GR and FR store

cmpxchg, fetchadd, xchg GR semaphore

ld.c.clr, ld.c.clr.acq, ldf.c.clr, 
ldfp.c.clr

GR and FR check load, clear on ALAT hit

ld.c.nc, ldf.c.nc, ldfp.c.nc GR and FR check load, re-allocate on ALAT miss

ld.sa, ldf.sa, ldfp.sa GR and FR speculative advanced load

chk.a.clr, chk.a.nc GR and FR advanced load check

invala Invalidate all ALAT entries

invala.e Invalidate individual ALAT entry for GR or FR
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The temporal structures cache memory accessed with temporal locality; the 
non-temporal structures cache memory accessed without temporal locality. Both 
structures assume that memory accesses possess spatial locality. The existence of 
separate temporal and non-temporal structures, as well as the number of levels of 
cache, is implementation dependent. Please see the processor-specific documentation 
for further information.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; 
and implicit prefetch. Locality hints are specified by load, store, and explicit prefetch 
(lfetch) instructions. A locality hint specifies a hierarchy level (e.g., 1, 2, all). An 
access that is temporal with respect to a given hierarchy level is treated as temporal 
with respect to all lower (higher numbered) levels. An access that is non-temporal with 
respect to a given hierarchy level is treated as temporal with respect to all lower levels. 
Finding a cache line closer in the hierarchy than specified in the hint does not demote 
the line. This enables the precise management of lines using lfetch and then 
subsequent uses by.nta loads and stores to retain that level in the hierarchy. For 
example, specifying the.nt2 hint by a prefetch indicates that the data should be cached 
at level 3. Subsequent loads and stores can specify.nta and have the data remain at 
level 3.

Locality hints do not affect the functional behavior of the program and may be ignored 
by the implementation. The locality hints available to loads, stores, and explicit prefetch 
instructions are given in Table 4-18. Instruction accesses are considered to possess 
both temporal and spatial locality with respect to level 1.

Figure 4-1. Memory Hierarchy

Table 4-18. Locality Hints Specified by Each Instruction Class

Mnemonic Locality Hint

Instruction Type

Load Store
lfetch, 

lfetch.fault

none Temporal, level 1 x x x

nt1 Non-temporal, level 1 x x

nt2 Non-temporal, level 2 x

nta Non-temporal, all levels x x x
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Temporal
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temporal
Structure

Memory
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Files

Structure
Temporal
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Structure

Structure
Temporal

Non-
temporal
Structure

Level 1 Level 2 Level N

Cache
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Each locality hint implies a particular allocation path in the memory hierarchy. The 
allocation paths corresponding to the locality hints are depicted in Figure 4-2. The 
allocation path specifies the structures in which the line containing the data being 
referenced would best be allocated. If the line is already at the same or higher level in 
the hierarchy no movement occurs. Hinting that a datum should be cached in a 
temporal structure indicates that it is likely to be read in the near future. Hinting that a 
datum should not be cached in a temporal structure indicates that it is not likely to be 
read in the near future.  For stores, the .nta completer also hints that the store may be 
part of a set of streaming stores that would likely overwrite the entire cache line 
without any data in that line first being read, enabling the processor to avoid fetching 
the data.

Explicit prefetch is defined in the form of the line prefetch instruction (lfetch, 
lfetch.fault). The lfetch instructions moves the line containing the addressed byte to 
a location in the memory hierarchy specified by the locality hint. If the line is already at 
the same or higher level in the hierarchy, no movement occurs. Both immediate and 
register post-increment are defined for lfetch and lfetch.fault. The lfetch 
instruction does not cause any exceptions, does not affect program behavior, and may 
be ignored by the implementation. The lfetch.fault instruction affects the memory 
hierarchy in exactly the same way as lfetch but takes exceptions as if it were a 1-byte 
load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, lfetch and 
lfetch.fault. The line containing the post-incremented address is moved in the 
memory hierarchy based on the locality hint of the originating load, store, lfetch or 
lfetch.fault. If the line is already at the same or higher level in the hierarchy then no 
movement occurs. Implicit prefetch does not cause any exceptions, does not affect 
program behavior, and may be ignored by the implementation.

Another form of hint that can be provided on loads is the ld.bias load type. This is a 
hint to the implementation to acquire exclusive ownership of the line containing the 
addressed data. The bias hint does not affect program functionality and may be ignored 
by the implementation.

Figure 4-2. Allocation Paths Supported in the Memory Hierarchy
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The following instructions are defined for flush control: flush cache (fc, fc.i) and flush 
write buffers (fwb). The fc instruction invalidates the cache line in all levels of the 
memory hierarchy above memory. If the cache line is not consistent with memory, then 
it is copied into memory before invalidation. The fc.i instruction ensures the data 
cache line associated with an address is coherent with the instruction caches.  The fc.i 
instruction is not required to invalidate the targeted cache line nor write the targeted 
cache line back to memory if it is inconsistent with memory, but may do so if this is 
required to make the targeted cache line coherent with the instruction caches. The fwb 
instruction provides a hint to flush all pending buffered writes to memory (no indication 
of completion occurs).

Table 4-19 summarizes the memory hierarchy control instructions and hint 
mechanisms.

4.4.6.2 Memory Consistency

In the Itanium architecture, instruction accesses made by a processor are not coherent 
with respect to instruction and/or data accesses made by any other processor, nor are 
instruction accesses made by a processor coherent with respect to data accesses made 
by that same processor. Therefore, hardware is not required to keep a processor’s 
instruction caches consistent with respect to any processor’s data caches, including that 
processor’s own data caches; nor is hardware required to keep a processor’s instruction 
caches consistent with respect to any other processor’s instruction caches. Data 
accesses from different processors in the same coherence domain are coherent with 
respect to each other; this consistency is provided by the hardware. Data accesses 
from the same processor are subject to data dependency rules; see “Memory Access 
Ordering” below. 

The mechanism(s) by which coherence is maintained is implementation dependent. 
Separate or unified structures for caching data and instructions are not architecturally 
visible. Within this context there are two categories of data memory hierarchy control: 
allocation and flush. Allocation refers to movement towards the processor in the 
hierarchy (lower numbered levels) and flush refers to movement away from the 
processor in the hierarchy (higher numbered levels). Allocation and flush occur in 
line-sized units; the minimum architecturally visible line size is 32 bytes (aligned on a 
32-byte boundary). The line size in an implementation may be smaller in which case 
the implementation will need to move multiple lines for each allocation and flush event. 
An implementation may allocate and flush in units larger than 32 bytes.

In order to guarantee that a write from a given processor becomes visible to the 
instruction stream of that same, and other, processors, the affected line(s) must be 
made coherent with instruction caches. Software may use the fc.i instruction for this 

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

Mnemonic Operation

.nt1 and.nta completer on loads Load usage hints

.nta completer on stores Store usage hints

Prefetch line at post-increment address on loads and stores Prefetch hint

lfetch, lfetch.fault with.nt1,.nt2, and.nta hints Prefetch line

fc, fc.i Flush cache

fwb Flush write buffers
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purpose. Memory updates by DMA devices are coherent with respect to instruction and 
data accesses of processors. The consistency between instruction and data caches of 
processors with respect to memory updates by DMA devices is provided by the 
hardware. In case a program modifies its own instructions, the sync.i and srlz.i 
instructions are used to ensure that prior coherency actions are observed by a given 
point in the program. Refer to the description sync.i on page 3:259 in Volume 3: 
Intel® Itanium® Instruction Set Reference for an example of self-modifying code.

4.4.7 Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write 
(WAW), and write-after-read (WAR) data dependencies to the same memory location. 
In addition, memory writes and flushes must observe control dependencies. Except for 
these restrictions, reads, writes, and flushes may occur in an order different from the 
specified program order. Note that no ordering exists between instruction accesses and 
data accesses or between any two instruction accesses. The mechanisms described 
below are defined to enforce a particular memory access order. In the following 
discussion, the terms “previous” and “subsequent” are used to refer to the program 
specified order. The term “visible” is used to refer to all architecturally visible effects of 
performing a memory access (at a minimum this involves reading or writing memory).

Memory accesses follow one of four memory ordering semantics: unordered, release, 
acquire or fence. Unordered data accesses may become visible in any order. Release 
data accesses guarantee that all previous data accesses are made visible prior to being 
made visible themselves. Acquire data accesses guarantee that they are made visible 
prior to all subsequent data accesses. Fence operations combine the release and 
acquire semantics into a bi-directional fence, i.e., they guarantee that all previous data 
accesses are made visible prior to any subsequent data accesses being made visible. 

Explicit memory ordering takes the form of a set of instructions: ordered load and 
ordered check load (ld.acq, ld.c.clr.acq), ordered store (st.rel), semaphores 
(cmpxchg, xchg, fetchadd), and memory fence (mf). The ld.acq and ld.c.clr.acq 
instructions follow acquire semantics. The st.rel follows release semantics. The mf 
instruction is a fence operation. The xchg, fetchadd.acq, and cmpxchg.acq 
instructions have acquire semantics. The cmpxchg.rel, and fetchadd.rel instructions 
have release semantics. The semaphore instructions also have implicit ordering. If 
there is a write, it will always follow the read. In addition, the read and write will be 
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different 
ordering semantics. “O” indicates that the first and second reference are performed in 
order with respect to each other. A “-” indicates that no ordering is implied other than 
data dependencies (and control dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

First Reference
Second Reference

Fence Acquire Release Unordered

 fence O O O O

acquire O O O O

release O – O –

unordered O – O –
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Table 4-21 summarizes memory ordering instructions related to cacheable memory. For 
definitions of the ordering rules related to non-cacheable memory, cache 
synchronization, and privileged instructions, refer to Section 4.4.7, “Sequentiality 
Attribute and Ordering” on page 2:82.

4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets 
are bundle-aligned, which means control is always passed to the first instruction slot of 
the target bundle (slot 0). Branch instructions are not required to be the last instruction 
in an instruction group. In fact, an instruction group can contain arbitrarily many 
branches (provided that the normal RAW and WAW dependency requirements are met). 
If a branch is taken, only instructions up to the taken branch will be executed. After a 
taken branch, the next instruction executed will be at the target of the branch. 

There are three categories of branches: IP-relative branches, long branches, and 
indirect branches. IP-relative branches specify their target with a signed 21-bit 
displacement, which is added to the IP of the bundle containing the branch to give the 
address of the target bundle. The displacement allows a branch reach of 16MBytes. 
Long branches are IP-relative with a 60-bit displacement, allowing the target to be 
anywhere in the 64-bit address space. Because of the long immediate, long branches 
occupy two instruction slots. Indirect branches use the branch registers to specify the 
target address. 

There are several branch types, as shown in Table 4-22. The conditional branch 
br.cond or br is a branch which is taken if the specified predicate is 1, and not-taken 
otherwise. The conditional call branch br.call does the same thing, and in addition, 
writes a link address to a specified branch register and adjusts the general register 
stack (see “Register Stack” on page 1:47). The conditional return br.ret does the 
same thing as an indirect conditional branch, plus it adjusts the general register stack. 
Unconditional branches, calls and returns are executed by specifying PR 0 (which is 
always 1) as the predicate for the branch instruction. The long branches, brl.cond or 
brl, and brl.call are identical to br.cond or br, and br.call, respectively, except for 
their longer displacement. 

Table 4-21. Memory Ordering Instructions

Mnemonic Operation

ld.acq, ld.c.clr.acq Ordered load and ordered check load

st.rel Ordered store

xchg Exchange memory and general register

cmpxchg.acq, cmpxchg.rel Conditional exchange of memory and general register

fetchadd.acq,fetchadd.rel Add immediate to memory

mf Memory ordering fence

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address

br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect

br.call Conditional procedure call Qualifying predicate IP-rel or Indirect

br.ret Conditional procedure return Qualifying predicate Indirect
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The counted loop type (br.cloop) uses the Loop Count (LC) application register. If LC is 
non-zero then it is decremented and the branch is taken. If LC is zero, the branch falls 
through. The modulo-scheduled loop type branches (br.ctop, br.cexit, br.wtop, 
br.wexit) are described in “Modulo-scheduled Loop Support” on page 1:75. The loop 
type branches (br.cloop, br.ctop, br.cexit, br.wtop, br.wexit) are allowed only in 
slot 2 of a bundle. A loop type branch executed in slot 0 or 1 will cause an Illegal 
Operation fault.

Instructions are provided to move data between branch registers and general registers 
(mov =br, mov br=). Table 4-23 and Table 4-24 summarize state and instructions 
relating to branching.

4.5.1 Modulo-scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop 
branch types. Software pipelining of a loop is analogous to hardware pipelining of a 
functional unit. The loop body is partitioned into multiple “stages” with zero or more 
instructions in each stage. Modulo-scheduled loops have three phases: prolog, kernel, 
and epilog. During the prolog phase, new loop iterations are started each time around 
(filling the software pipeline). During the kernel phase, the pipeline is full. A new loop 

br.ia Invoke the IA-32 instruction set Unconditional Indirect

br.cloop Counted loop branch Loop count IP-rel

br.ctop, br.cexit Modulo-scheduled counted loop Loop count and Epilog 
count

IP-rel

br.wtop, br.wexit Modulo-scheduled while loop Qualifying predicate 
and Epilog count

IP-rel

brl.cond or brl Long conditional branch Qualifying predicate IP-rel

brl.call Long conditional procedure call Qualifying predicate IP-rel

Table 4-23. State Relating to Branching

Register Function

BRs Branch registers

PRs Predicate registers

CFM Current Frame Marker

PFS Previous Function State application register

LC Loop Count application register

EC Epilog Count application register

Table 4-24. Instructions Relating to Branching

Mnemonic Operation

br Branch

brl Long branch

brp Provide early hint information about a future branch

mov =br Move from BR to GR

mov br= Move from GR to BR

Table 4-22. Branch Types (Continued)

Mnemonic Function Branch Condition Target Address
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iteration is started, and another is finished each time around. During the epilog phase, 
no new iterations are started, but previous iterations are completed (draining the 
software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that 
stage (this predicate is called the “stage predicate”). To support the pipelining effect of 
stage predicates and registers in a software-pipelined loop, a fixed sized area of the 
predicate and floating-point register files (PR16-PR63 and FR32-FR127), and a 
programmable sized area of the general register file, are defined to “rotate.” The size of 
the rotating area in the general register file is determined by an immediate in the alloc 
instruction. This immediate must be either zero or a multiple of 8. The general register 
rotating area is defined to start at GR32 and overlay the local and output areas, 
depending on their relative sizes. The stage predicates are allocated in the rotating area 
of the predicate register file. For counted loops, PR16 is architecturally defined to be the 
first stage predicate with subsequent stage predicates extending to higher predicate 
register numbers. For while loops, the first stage predicate may be any rotating 
predicate with subsequent stage predicates extending to higher predicate register 
numbers. Software is required to initialize the stage (rotating) predicates prior to 
entering the loop. An alloc instruction may not change the size of the rotating portion of 
the register stack frame unless all rotating register bases (rrb’s) in the CFM are zero. All 
rrb’s can be set to zero with the clrrrb instruction. The clrrrb.pr form can be used to 
clear just the rrb for the predicate registers. The clrrrb instruction must be the last 
instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is 
executed. Registers are rotated towards larger register numbers in a wraparound 
fashion. For example, the value in register X will be located in register X+1 after one 
rotation. If X is the highest addressed rotating register its value will wrap to the lowest 
addressed rotating register. Rotation is implemented by renaming register numbers 
based on the value of a rotating register base (rrb) contained in CFM. An independent 
rrb is defined for each of the three rotating register files: CFM.rrb.gr for the general 
registers, CFM.rrb.fr for the floating-point registers, and CFM.rrb.pr for the predicate 
registers. General registers only rotate when the size of the rotating region is not equal 
to zero. Floating-point and predicate registers always rotate. When rotation occurs, two 
or all three rrb’s are decremented in unison. Each rrb is decremented modulo the size of 
their respective rotating regions (e.g., 96 for rrb.fr). The operation of the rotating 
register rename mechanism is not otherwise visible to software. The instructions that 
modify the rrb’s are listed in Table 4-25.

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation

clrrrb Clears all rrb’s

clrrrb.pr Clears rrb.pr

br.call, brl.call Clears all rrb’s

cover Clears all rrb’s

br.ret Restores CFM.rrb’s from PFM.rrb’s

rfi Restores CFM.rrb’s from IFM.rrb’s if IFM.v==1

br.ctop, br.cexit,
br.wtop, and br.wexit

Decrements all rrb’s
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There are two categories of software-pipelined loop branch types: counted and while. 
Both categories have two forms: top and exit. The “top” variant is used when the loop 
decision is located at the bottom of the loop body. A taken branch will continue the loop 
while a not-taken branch will exit the loop. The “exit” variant is used when the loop 
decision is located somewhere other than the bottom of the loop. A not-taken branch 
will continue the loop and a taken branch will exit the loop. The “exit” variant is also 
used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted 
loop type (ctop or cexit), the value of the loop count application register (LC), and the 
value of the epilog count application register (EC). Note that the counted loop branches 
do not use a qualifying predicate. LC is initialized to one less than the number of 
iterations for the counted loop and EC is initialized to the number of stages into which 
the loop body has been partitioned. While LC is greater than zero, the branch direction 
will continue the loop, LC will be decremented, registers will be rotated (rrb’s are 
decremented), and PR 16 will be set to 1 after rotation. (For each of the loop-type 
branches, PR 63 is written by the branch, and after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. 
While in the epilog and while EC is greater than one, the branch direction will continue 
the loop, EC will be decremented, registers will be rotated, and PR 16 will be set to 0 
after rotation. Execution of a counted loop branch with LC equal to zero and EC equal to 
one signals the end of the loop; the branch direction will exit the loop, EC will be 
decremented, registers will be rotated, and PR 16 will be set to 0 after rotation. A 
counted loop type branch executed with both LC and EC equal to zero will have a 
branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no rotation) 
and PR 63 will be set to 0. LC and EC equal to zero can occur in some types of 
optimized, unrolled software-pipelined loops if the target of a cexit branch is set to the 
next sequential bundle and the loop trip count is not evenly divisible by the unroll 
amount.

The direction of a while loop branch is determined by the specific while loop type (wtop 
or wexit), the value of the qualifying predicate, and the value of EC. The while loop 
branches do not use LC. While the qualifying predicate is one, the branch direction will 
continue the loop, registers will be rotated, and PR 16 will be set to 0 after rotation. 
While the qualifying predicate is zero and EC is greater than one, the branch direction 
will continue the loop, EC will be decremented, registers will be rotated, and PR 16 will 
be set to 0 after rotation. The qualifying predicate is one during the kernel and zero 
during the epilog. During the prolog, the qualifying predicate may be zero or one 
depending upon the scheme used to program the pipelined while loop. Execution of a 
while loop branch with qualifying predicate equal to zero and EC equal to one signals 
the end of the loop; the branch direction will exit the loop, EC will be decremented, 
registers will be rotated, and PR 16 will be set to 0 after rotation. A while loop branch 
executed with a zero qualifying predicate and with EC equal to zero has a branch 
direction to exit the loop. EC and the rrb’s will not be modified (no rotation) and PR 63 
will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the 
pipelined while loop. Often, the first valid condition for the while loop branch is not 
computed until several stages into the prolog. Therefore, software pipelines for while 
loops often have several speculative prolog stages. During these stages, the qualifying 
predicate can be set to zero or one depending upon the scheme used to program the 
loop. If the qualifying predicate is one throughout the prolog, EC will be decremented 
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only during the epilog phase and is initialized to one more than the number of epilog 
stages. If the qualifying predicate is zero during the speculative stages of the prolog, 
EC will be decremented during this part of the prolog, and the initialization value for EC 
is increased accordingly.

4.5.2 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch 
prediction. This information can be encoded in two ways: with branch hints as part of a 
branch instruction (referred to as hints), and with separate Branch Predict instructions 
(brp) where the entire instruction is hint information. Hints and brp instructions do not 
affect the functional behavior of the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

• Whether prediction strategy: This describes (for COND, CALL and RET type 
branches) how the processor should predict the branch condition. (For the loop type 
branches, prediction is based on LC and EC.) The suggested strategies that can be 
hinted are shown in Table 4-26. 

• Sequential prefetch: This indicates how much code the processor should prefetch 
at the branch target (shown in Table 4-27). Please see the processor-specific 
documentation for further information.

• Predictor deallocation: This provides re-use information to allow the hardware to 
better manage branch prediction resources. Normally, prediction resources keep 
track of the most-recently executed branches. However, sometimes the 
most-recently executed branch is not useful to remember, either because it will not 
be re-visited any time soon or because a hint instruction will re-supply the 
information prior to re-visiting the branch. In such cases, this hint can be used to 
free up the prediction resources.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this 
branch.

sptk Static Taken Always predict taken, do not allocate prediction resources for 
this branch.

dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic history 
information exists for this branch, predict not-taken.

dptk Dynamic Taken Use dynamic prediction hardware. If no dynamic history 
information exists for this branch, predict taken.

Table 4-27. Sequential Prefetch Hint on Branches

Completer
Sequential Prefetch 

Hint
Operation

few Prefetch few lines When prefetching code at the branch target, stop prefetching 
after a few (implementation-dependent number of) lines.

many Prefetch many lines When prefetching code at the branch target, prefetch more 
lines (also an implementation-dependent number).
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4.5.3 Branch Predict Instructions

Branch predict instructions are entire instructions whose only purpose is to provide 
early information about future branches. Branch predict instructions provide the 
following pieces of information:

• Location of the branch: A displacement in the brp instruction added to the IP of 
the bundle containing the brp instruction gives the IP of the bundle containing the 
future branch.

• Target of the branch: IP-relative brp instructions specify the target of the future 
branch with a 21-bit displacement (just like in branches). The displacement plus 
the IP of the bundle containing the brp instruction gives the target address. 
Indirect brp instructions specify the branch register which will be used by the future 
branch.

• Branch importance: This hint indicates to hardware that it should employ a very 
fast (but small) prediction structure for this branch (useful on tight loops).

• Whether prediction strategy: Same as the strategy hint on branches, except 
that the available hints are slightly different. Static not-taken is not provided (it’s 
not useful to provide early indication of such branches), and only one form of 
Dynamic prediction is provided. Instead, two strategies are included to indicate that 
the branch will be a “positive” (CLOOP, CTOP, WTOP) or “negative” (CEXIT, WEXIT) 
loop-type.

The move to branch register instruction can also provide this same hint information, 
simplifying the setup for a hinted indirect branch.

4.6 Multimedia Instructions

Multimedia instructions (see Table 4-29) treat the general registers as concatenations 
of eight 8-bit, four 16-bit, or two 32-bit elements. They operate on each element 
independently and in parallel. The elements are always aligned on their natural 
boundaries within a general register. Most multimedia instructions are defined to 
operate on multiple element sizes. Three classes of multimedia instructions are defined: 
arithmetic, shift and data arrangement.

4.6.1 Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed 
saturation (padd.sss, psub.sss), and unsigned saturation (padd.uuu, padd.uus, 
psub.uuu, psub.uus). The modulo forms have the result wraparound the largest or 
smallest representable value in the range of the result element. In the saturating 
forms, results larger than the largest representable value of the range of the result 
element, or smaller than the smallest representable value of the range, are clamped to 
the largest or smallest value in the range of the result element respectively. The signed 

Table 4-28. Predictor Deallocation Hint

Completer Operation

none Don’t deallocate

clr Deallocate branch information
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saturation form treats both sources as signed and clamps the result to the limits of a 
signed range. The unsigned saturation form treats one source as unsigned and clamps 
the result to the limits of an unsigned range. Two variants are defined that treat the 
second source as either signed (.uus) or unsigned (.uuu).

The parallel average instruction (pavg, pavg.raz) adds corresponding elements from 
each source and right shifts each result by one bit. In the simple form of the 
instruction, the carry out of the most-significant bit of each sum is written into the most 
significant bit of the result element. In the round-away-from-zero form, a 1 is added to 
each sum before shifting. The parallel average subtract instruction (pavgsub) performs 
a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshladd) performs a left shift on the 
elements of the first source and then adds them to the corresponding elements from 
the second source. Signed saturation is performed on both the shift and the add 
operations. The parallel shift right and add instruction (pshradd) is similar to pshladd. 
Both of these instructions are defined for 2-byte elements only.

The parallel compare instruction (pcmp) compares the corresponding elements of both 
sources and writes all ones (if true) or all zeroes (if false) into the corresponding 
elements of the target according to one of two relations (== or >).

The parallel multiply right instruction (pmpy.r) multiplies the corresponding two 
even-numbered signed 2-byte elements of both sources and writes the results into two 
4-byte elements in the target. The pmpy.l instruction performs a similar operation on 
odd-numbered 2-byte elements. The parallel multiply and shift right instruction 
(pmpyshr, pmpyshr.u) multiplies the corresponding 2-byte elements of both sources 
producing four 4-byte results. The 4-byte results are shifted right by 0, 7, 15, or 16 bits 
as specified by the instruction. The least-significant 2 bytes of the 4-byte shifted results 
are then stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute 
difference of corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmin.u, pmin) and the parallel maximum (pmax.u, pmax) 
instructions deliver the minimum or maximum, respectively, of the corresponding 
1-byte or 2-byte elements in the target. The 1-byte elements are treated as unsigned 
values and the 2-byte elements are treated as signed values.

Table 4-29. Parallel Arithmetic Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

padd Parallel modulo addition x x x

padd.sss Parallel addition with signed saturation x x

padd.uuu,
padd.uus

Parallel addition with unsigned saturation x x

psub Parallel modulo subtraction x x x

psub.sss Parallel subtraction with signed saturation x x

psub.uuu,
psub.uus

Parallel subtraction with unsigned saturation x x

pavg Parallel arithmetic average x x

pavg.raz Parallel arithmetic average with round away from zero x x

pavgsub Parallel average of a difference x x
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4.6.2 Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first 
source by a count contained in either a general register or an immediate. The parallel 
shift right instruction (pshr) performs an individual arithmetic right shift of each 
element of one source by a count contained in either a general register or an 
immediate. The pshr.u instruction performs an unsigned right shift. Table 4-30 
summarizes the types of parallel shift instructions.

4.6.3 Data Arrangement

The mix right instruction (mix.r) interleaves the even-numbered elements from both 
sources into the target. The mix left instruction (mix.l) interleaves the odd-numbered 
elements. The unpack low instruction (unpack.l) interleaves the elements in the 
least-significant 4 bytes of each source into the target register. The unpack high 
instruction (unpack.h) interleaves elements from the most significant 4 bytes. The pack 
instructions (pack.sss, pack.uss) convert from 32-bit or 16-bit elements to 16-bit or 
8-bit elements respectively. The least-significant half of larger elements in both sources 
are extracted and written into smaller elements in the target register. The pack.sss 
instruction treats the extracted elements as signed values and performs signed 
saturation on them. The pack.uss instruction performs unsigned saturation. The mux 
instruction (mux) copies individual 2-byte or 1-byte elements in the source to arbitrary 
positions in the target according to a specified function. For 2-byte elements, an 8-bit 
immediate allows all possible permutations to be specified. For 1-byte elements the 
copy function is selected from one of five possibilities (reverse, mix, shuffle, alternate, 
broadcast). Table 4-31 describes the various types of parallel data arrangement 
instructions.

pshladd Parallel shift left and add with signed saturation x

pshradd Parallel shift right and add with signed saturation x

pcmp Parallel compare x x x

pmpy.l Parallel signed multiply of odd elements x

pmpy.r Parallel signed multiply of even elements x

pmpyshr Parallel signed multiply and shift right x

pmpyshr.u Parallel unsigned multiply and shift right x

psad Parallel sum of absolute difference x

pmin Parallel minimum x x

pmax Parallel maximum x x

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

pshl Parallel shift left x x

pshr Parallel signed shift right x x

pshr.u Parallel unsigned shift right x x

Table 4-29. Parallel Arithmetic Instructions (Continued)

Mnemonic Operation 1-byte 2-byte 4-byte
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4.7 Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register 
file and the floating-point, branch, predicate, performance monitor, processor 
identification, and application register files. Several of the transfer instructions share 
the same mnemonic (mov). The value of the operand identifies which register file is 
accessed.

Memory access instructions only target or source the general and floating-point register 
files. It is necessary to use the general register file as an intermediary for transfers 
between memory and all other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point 
registers. The first type moves the significand or the sign/exponent (getf.sig, 
setf.sig, getf.exp, setf.exp). The second type moves entire single or double 
precision numbers (getf.s, setf.s, getf.d, setf.d). These instructions also perform 
a conversion between the deferred exception token formats.

Table 4-31. Parallel Data Arrangement Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

mix.l Interleave odd elements from both sources x x x

mix.r Interleave even elements from both sources x x x

mux Arbitrary copy of individual source elements x x

pack.sss Convert from larger to smaller elements with signed saturation x x

pack.uss Convert from larger to smaller elements with unsigned 
saturation

x

unpack.l Interleave least-significant elements from both sources x x x

unpack.h Interleave most significant elements from both sources x x x

Table 4-32. Register File Transfer Instructions

Mnemonic Operation

getf.exp, getf.sig Move FR exponent or significand to GR

getf.s, getf.d Move single/double precision memory format from FR to GR

setf.s, setf.d Move single/double precision memory format from GR to FR

setf.exp, setf.sig Move from GR to FR exponent or significand

mov =br Move from BR to GR

mov br= Move from GR to BR

mov =pr Move from predicates to GR

mov pr=, mov pr.rot= Move from GR to predicates

mov ar= Move from GR to AR

mov =ar Move from AR to GR

mov =psr.um Move from user mask to GR

mov psr.um= Move from GR to user mask

sum, rum Set and reset user mask

mov =pmd[...] Move from performance monitor data register to GR

mov =cpuid[...] Move from processor identification register to GR

mov =ip Move from Instruction Pointer
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Instructions are provided to transfer between the branch registers and the general 
registers. The move to branch register instruction can also optionally include branch 
hints. See “Branch Prediction Hints” on page 1:78.

Instructions are defined to transfer between the predicate register file and a general 
register. These instructions operate in a “broadside” manner whereby multiple predicate 
registers are transferred in parallel (predicate register N is transferred to and from bit N 
of a general register). The move to predicate instruction (mov pr=) transfers a general 
register to multiple predicate registers according to a mask specified by an immediate. 
The mask contains one bit for each of the static predicate registers (PR 1 through PR 15 
– PR 0 is hardwired to 1) and one bit for all of the rotating predicates (PR 16 through 
PR63). A predicate register is written from the corresponding bit in a general register if 
the corresponding mask bit is set. If the mask bit is clear then the predicate register is 
not modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The 
actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate 
instruction (mov =pr) transfers the entire predicate register file into a general register 
target.

In addition, instructions are defined to move values between the general register file 
and the user mask (mov psr.um= and mov =psr.um). The sum and rum instructions set 
and reset the user mask. The user mask is the non-privileged subset of the Process 
Status Register (PSR). 

The mov =pmd[] instruction is defined to move from a performance monitor data (PMD) 
register to a general register. If the operating system has not enabled reading of 
performance monitor data registers in user level then all zeroes are returned. The mov 
=cpuid[] instruction is defined to move from a processor identification register to a 
general register.

The mov =ip instruction is provided for copying the current value of the instruction 
pointer (IP) into a general register.

4.8 Character and Bit Strings

A small set of special instructions accelerate operations on character and bit-field data.

4.8.1 Character Strings

The compute zero index instructions (czx.l, czx.r) treat the general register source as 
either eight 1-byte or four 2-byte elements and write the general register target with 
the index of the first zero element found. If there are no zero elements in the source, 
the target is written with a constant one higher than the largest possible index (8 for 
the 1-byte form, 4 for the 2-byte form). The czx.l instruction scans the source from 
left to right with the left-most element having an index of zero. The czx.r instruction 
scans from right to left with the right-most element having an index of zero. Table 4-33 
summarizes the compute zero index instructions.
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4.8.2 Bit Strings

The population count instruction (popcnt) writes the number of bits that have a value 
of 1 in the source register into the target register.  The count leading zeros instruction 
(clz) writes the number of leading zero bits in the source register into the target 
register; coupled with complement, clz can also perform count leading ones 
functionality as well.

4.9 Privilege Level Transfer

Three instructions may cause a privilege level change: break (break), enter privileged 
code (epc) and branch return (br.ret). The break instruction is defined to cause a 
Break Instruction fault which can be used to transfer privilege levels. The break 
instruction contains an immediate which is made available to a dedicated fault handler. 
The epc instruction increases the privilege level without causing an interruption or a 
control flow transfer. The new privilege level is specified by the TLB entry for the page 
containing the epc, if virtual address translation for instruction fetches is enabled. If the 
privilege level specified by PFS.ppl (in the Previous Function State application register) 
is lower than the current privilege level (as specified by PSR.cpl in the Processor Status 
Register) epc raises an Illegal Operation fault. The br.ret instruction is defined to 
demote the privilege level if PFS.ppl is lower than PSR.cpl. A br.ret will never increase 
privilege level.

§

Table 4-33. String Support Instructions

Mnemonic Operation 1-byte 2-byte

czx.l Locate first zero element, left to right x x

czx.r Locate first zero element, right to left x x

Table 4-34. Bit Support Instructions

Mnemonic Operation

popcnt Count number of ones in source register

clz Count number of leading zeros in source register
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Floating-point Programming Model 5

The floating-point architecture is fully compliant with the ANSI/IEEE Standard for 
Binary Floating-Point Arithmetic (Std. 754-1985). There is full IEEE support for single, 
double, and double-extended real formats. The two IEEE methods for controlling 
rounding precision are supported. The first method converts results to the 
double-extended exponent range. The second method converts results to the 
destination precision. Some IEEE extensions such as fused multiply and add, minimum 
and maximum operations, and a register format with a larger range than the minimum 
double-extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real 
types); 64-bit signed integer, 64-bit unsigned integer, and the 82-bit floating-point 
register format. A “Parallel FP” format where a pair of IEEE single precision values 
occupy a floating-point register’s significand is also supported. A seventh data type, 
IEEE-style quad-precision, is supported by software routines. A future architecture 
extension may include additional support for the quad-precision real type.

5.1.1 Real Types

The parameters for the supported IEEE real types are summarized in Table 5-1.

5.1.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The 
format of data in the floating-point registers is designed to accommodate both of these 
types with no loss of information.

Table 5-1. IEEE Real-type Properties

Single Double Double-Extended Quad-Precision

IEEE Real-Type Parameters

Sign + or  + or  + or  + or 

Emax +127 +1023 +16383 +16383

Emin 126 1022 16382 16382

Exponent bias +127 +1023 +16383 +16383

Precision (bits) 24 53 64 113

IEEE Memory Formats

Total memory format width (bits) 32 64 80 128

Sign field width (bits) 1 1 1 1

Exponent field width (bits) 8 11 15 15

Significand field width (bits) 23 52 64 112
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Real numbers reside in 82-bit floating-point registers in a three-field binary format (see 
Figure 5-1). The three fields are:

• The 64-bit significand field, b63. b62b61 .. b1b0, contains the number's significant 
digits. This field is composed of an explicit integer bit (significand{63}), and 63 bits 
of fraction (significand{62:0}).

• The 17-bit exponent field locates the binary point within or beyond the significant 
digits (i.e., it determines the number's magnitude). The exponent field is biased by 
65535 (0xFFFF). An exponent field of all ones is used to encode the special values 
for IEEE signed infinity and NaNs. An exponent field of all zeros and a significand 
field of all zeros is used to encode the special values for IEEE signed zeros. An 
exponent field of all zeros and a non-zero significand field encodes the 
double-extended real denormals and double-extended real pseudo-denormals.

• The 1-bit sign field indicates whether the number is positive (sign=0) or negative 
(sign=1).

The value of a finite floating-point number, encoded with non-zero exponent field, can 
be calculated using the expression:

The value of a finite floating-point number, encoded with zero exponent field, can be 
calculated using the expression:

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit 
significand field. In their canonical form, the exponent field is set to 0x1003E (biased 
63) and the sign field is set to 0.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed 
below in Table 5-2 (shaded encodings are unsupported). The last two table entries 
contain the values of the constant floating-point registers, FR 0 and FR 1. The constant 
value in FR 1 does not change for the parallel single precision instructions or for the 
integer multiply accumulate instruction.

Figure 5-1. Floating-point Register Format

81 80 64 63 0

sign exponent significand (with explicit integer bit)

1 17 64

(-1)(sign) * 2(exponent - 65535) * (significand{63}.significand{62:0}2)

(-1)(sign) * 2(-16382) * (significand{63}.significand{62:0}2)

Table 5-2. Floating-point Register Encodings

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

 NaNs 0/1 0x1FFFF 1.000...01 through 1.111...11

Quiet NaNs 0/1 0x1FFFF 1.100...00 through 1.111...11

Quiet NaN Indefinitea 1 0x1FFFF 1.100...00

Signaling NaNs 0/1 0x1FFFF 1.000...01 through 1.011...11

Infinity 0/1 0x1FFFF 1.000...00
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Pseudo-NaNs 0/1 0x1FFFF 0.000...01 through 0.111...11 

Pseudo-Infinity 0/1 0x1FFFF 0.000...00

Normalized Numbers
(Floating-point Register Format Normals)

0/1 0x00001
through
0x1FFFE

1.000...00 through 1.111...11

Integers or Parallel FP
(large unsigned or negative signed integers)

0 0x1003E 1.000...00 through 1.111...11

Integer Indefiniteb 0 0x1003E 1.000...00

IEEE Single Real Normals 0/1 0x0FF81
through
0x1007E

1.000...00...(40)0s
through 
1.111...11...(40)0s

IEEE Double Real Normals 0/1 0x0FC01
through
0x103FE

1.000...00...(11)0s
through
1.111...11...(11)0s

IEEE Double-Extended Real Normals 0/1 0x0C001
through
0x13FFE

1.000...00 through 1.111...11

Normal numbers with the same value as 
Double-Extended Real 
Pseudo-Denormals

0/1 0x0C001 1.000...00 through 1.111...11

IA-32 Stack Single Real Normals 
(produced when the computation model 
is IA-32 Stack Single)

0/1 0x0C001
through
0x13FFE

1.000...00...(40)0s
through
1.111...11...(40)0s

IA-32 Stack Double Real Normals 
(produced when the computation model 
is IA-32 Stack Double)

0/1 0x0C001
through
0x13FFE

1.000...00...(11)0s
through
1.111...11...(11)0s

Unnormalized Numbers
(Floating-point Register Format unnormalized 
numbers)

0/1 0x00000 0.000...01 through 1.111...11

0x00001
through
0x1FFFE

0.000...01 through 0.111...11

0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

Integers or Parallel FP
(positive signed/unsigned integers)

0 0x1003E 0.000...00 through 0.111...11

IEEE Single Real Denormals 0/1 0x0FF81 0.000...01...(40)0s
through 
0.111...11...(40)0s

IEEE Double Real Denormals 0/1 0x0FC01 0.000...01...(11)0s
through 
0.111...11...(11)0s

Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11

Unnormal numbers with the same value as 
IEEE Double-Extended Real Denormals

0/1 0x0C001 0.000...01 through 0.111...11

IEEE Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11

IA-32 Stack Single Real Denormals
(produced when computation model is 
IA-32 Stack Single)

0/1 0x00000 0.000...01...(40)0s
through
0.111...11...(40)0s

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)
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All register encodings are allowed as inputs to arithmetic operations. The result of an 
arithmetic operation is always the most normalized register format representation of 
the computed value, with the exponent range limited from Emin to Emax of the 
destination type, and the significand precision limited to the number of precision bits of 
the destination type. Computed values, such as zeros, infinities, and NaNs that are 
outside these bounds are represented by the corresponding unique register format 
encoding. Double-extended real denormal results are mapped to the register format 
exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs and 
Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are 
never produced as a result of an arithmetic operation. 

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one 
exception. Pseudo-zero multiplied by infinity returns the correctly signed infinity instead 
of an Invalid Operation Floating-Point Exception fault (and QNaN). Also, pseudo-zeros 
are classified as unnormalized numbers, not zeros.

5.2 Floating-point Status Register

The Floating-Point Status Register (FPSR) contains the dynamic control and status 
information for floating-point operations. There is one main set of control and status 
information (FPSR.sf0), and three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The 
FPSR layout is shown in Figure 5-2 and its fields are defined in Table 5-3. Table 5-4 
gives the FPSR’s status field description and Figure 5-3 shows their layout.

IA-32 Stack Double Real Denormals
(produced when computation model is 
IA-32 Stack Double)

0/1 0x00000 0.000...01...(11)0s
through
0.111...11...(11)0s

Double-Extended Real Pseudo-Denormals
(IA-32 stack and memory format)

0/1 0x00000 1.000...00 through 1.111...11

Pseudo-Zeros 0/1 0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

NaTValc 0 0x1FFFE 0.000...00

Zero 0/1 0x00000 0.000...00

FR 0 (positive zero) 0 0x00000 0.000...00

FR 1 (positive one) 0 0x0FFFF 1.000...00

a. Created by a masked real invalid operation.
b. Created by a masked integer invalid operation.
c. Created by an unsuccessful speculative memory operation.

Figure 5-2. Floating-point Status Register Format

63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sf1 sf0 traps

6 13 13 13 13 6

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)
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The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if 
the value is used in an arithmetic instruction and in an arithmetic calculation; e.g. 
unorm*NaN doesn’t set this flag. As depicted in Table 5-2 on page 1:86, canonical 
single/double/double-extended denormal, double-extended pseudo-denormal and 
register format denormal encodings are a subset of the floating-point register format 
unnormalized numbers.

Note: The Floating-Point Exception fault/trap occurs only if an enabled floating-point 
exception occurs during the processing of the instruction. Hence, setting a flag 
bit of a status field to 1 in software will not cause an interruption. The status 

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this 
bit is set

traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this 
bit is set

traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is 
set

traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sf1 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved

Figure 5-3. Floating-point Status Field Format

12 11 10 9 8 7 6 5 4 3 2 1 0

FPSR.sfx

flags controls

i u o z d v td rc pc wre ftz

6 7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description

ftz 0 Flush-to-Zero mode

wre 1 Widest range exponent (see Table 5-6)

pc 3:2 Precision control (see Table 5-6)

rc 5:4 Rounding control (see Table 5-5)

td 6 Traps disableda

a. td is a reserved bit in the main status field, FPSR.sf0

v 7 Invalid Operation (IEEE Flag)

d 8 Denormal/Unnormal Operand

z 9 Zero Divide (IEEE Flag)

o 10 Overflow (IEEE Flag)

u 11 Underflow (IEEE Flag)

i 12 Inexact (IEEE Flag)
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fields flags are merely indications of the occurrence of floating-point excep-
tions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” (see “Definition of 
Tininess, Inexact and Underflow” on page 1:106) to be truncated to the correctly 
signed zero. Flush-to-Zero mode can be enabled only if Underflow is disabled. If 
Underflow is enabled then it takes priority and Flush-to-Zero mode is ignored. Note that 
the software exception handler could examine the Flush-to-Zero mode bit and choose 
to emulate the Flush-to-Zero operation when an enabled Underflow exception arises. 
The FPSR.sfx.u and FPSR.sfx.i bits will be set to 1 when a result is flushed to the 
correctly signed zero because of Flush-to-Zero mode. If enabled, an inexact result 
exception is signaled.

A floating-point result is rounded based on the instruction’s.pc completer and the status 
field’s wre, pc, and rc control fields. The result’s significand precision and exponent 
range are determined as described in Table 5-6, “Floating-point Computation Model 
Control Definitions” on page 1:90. If the result isn’t exact, FPSR.sfx.rc specifies the 
rounding direction (see Table 5-5).

Table 5-5. Floating-point Rounding Control Definitions

Nearest
(or even)

- Infinity
(down)

+ Infinity
(up)

Zero
(truncate/chop)

FPSR.sfx.rc 00 01 10 11

Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected

Instruction’s.pc 
Completer

FPSR.sfx’s 
Dynamic pc 

Field

FPSR.sfx’s 
Dynamic wre 

Field

Significand
Precision

Exponent
Range Computational Style

.s ignored 0 24 bits 8 bits IEEE real single

.d ignored 0 53 bits 11 bits IEEE real double

.s ignored 1 24 bits 17 bits Register format range, 
single precision

.d ignored 1 53 bits 17 bits Register format range, 
double precision

none 00 0 24 bits 15 bits IA-32 stack single

none 01 0 N.A. N.A. Reserved

none 10 0 53 bits 15 bits IA-32 stack double

none 11 0 64 bits 15 bits IA-32 double-extended

none 00 1 24 bits 17 bits Register format range, 
single precision

none 01 1 N.A. N.A. Reserved

none 10 1 53 bits 17 bits Register format range, 
double precision

none 11 1 64 bits 17 bits Register format range, 
double-extended precision

not applicablea

a. For parallel FP instructions which have no.pc completer (e.g., fpma).

ignored ignored 24 bits 8 bits A pair of IEEE real singles

not applicableb

b. For non-parallel FP instructions which have no.pc completer (e.g., frcpa).

ignored ignored 64 bits 17 bits Register format range, 
double-extended precision
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The trap disable (sfx.td) control bit allows one to easily set up a local IEEE exception 
trap default environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are 
used. If FPSR.sfx.td is set, the FPSR.traps bits are treated as if they are all set 
(disabled). Note that FPSR.sf0.td is a reserved field which returns 0 when read.

5.3 Floating-point Instructions

This section describes the floating-point instructions. Refer to Volume 3: Intel® 
Itanium® Instruction Set Reference for a detailed description.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, 
double-extended floating-point real data types, and the Parallel FP or signed/unsigned 
integer data type. The addressing modes for floating-point load and store instructions 
are the same as for integer load and store instructions, except for floating-point load 
pair instructions which can have an implicit base-register post increment. The memory 
hint options for floating-point load and store instructions are the same as those for 
integer load and store instructions. (See Section 4.4.6, “Memory Hierarchy Control and 
Consistency” on page 1:69.) Table 5-7 lists the types of floating-point load and store 
instructions. The floating-point load pair instructions require the two target registers to 
be odd/even or even/odd. See “ldfp — Floating-point Load Pair” on page 3:161. The 
floating-point store instructions (stfs, stfd, stfe) require the value in the 
floating-point register to have the same type as the store for the format conversion to 
be correct.

Unsuccessful speculative loads write a NaTVal into the destination register or registers 
(see Section 4.4.4, “Control Speculation”). Storing a NaTVal to memory will cause a 
Register NaT Consumption fault, except for the spill instruction (stf.spill).

Saving and restoring floating-point registers is accomplished by the spill and fill 
instructions (stf.spill, ldf.fill) using a 16-byte memory container. These are the 
only instructions that can be used for saving and restoring the actual register contents 
since they do not fault on NaTVal. They save and restore all types (single, double, 
double-extended, register format and integer or Parallel FP) and will ensure 
compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6, Figure 5-7, Figure 5-8 and Figure 5-9 describe how 
single precision, double precision, double-extended precision, integer/parallel FP, and 
spill/fill data is translated during transfers between floating-point registers and 
memory.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR

Single ldfs ldfps stfs

Integer/Parallel FP ldf8 ldfp8 stf8

Double ldfd ldfpd stfd

Double-extended ldfe stfe

Spill/fill ldf.fill stf.spill
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Figure 5-4. Memory to Floating-point Register Data Translation – Single Precision
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Figure 5-5. Memory to Floating-point Register Data Translation – Double Precision
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Figure 5-6. Memory to Floating-point Register Data Translation – Double Extended, 
Integer, Parallel FP and Fill
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Figure 5-7. Floating-point Register to Memory Data Translation – Single Precision

Figure 5-8. Floating-point Register to Memory Data Translation – Double Precision
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Both little-endian and big-endian byte ordering is supported on floating-point loads and 
stores. For both single and double memory formats, the byte ordering is identical to the 
32-bit and 64-bit integer data types (see Section 3.2.3, “Byte Ordering”). The 
byte-ordering for the spill/fill memory and double-extended formats is shown in 
Figure 5-10.

Figure 5-9. Floating-point Register to Memory Data Translation – Double Extended, 
Integer, Parallel FP and Spill
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5.3.2 Floating-point Register to/from General Register Transfer 
Instructions

The setf and getf instructions (see Table 5-8) transfer data between floating-point 
registers (FR) and general registers (GR). These instructions will translate a general 
register NaT to/from a floating-point register NaTVal. For all other operands, the .s and 
.d variants of the setf and getf instructions translate to/from FR as per Figure 5-4, 
Figure 5-5, Figure 5-7 and Figure 5-8. The memory representation is read from or 
written to the GR. The .exp and .sig variants of the setf and getf instructions 
operate on the sign/exponent and significand portions of a floating-point register, 
respectively, and their translation formats are described in Table 5-9 and Table 5-10.

Figure 5-10.Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats

Table 5-8. Floating-point Register Transfer Instructions

Operations GR to FR FR to GR

Single setf.s getf.s

Double setf.d getf.d

Sign and Exponent setf.exp getf.exp

Significand/Integer setf.sig getf.sig
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5.3.3 Arithmetic Instructions

All arithmetic floating-point instructions, except fcvt.xf (which is always exact), have 
a.sf specifier. This indicates which of the four FPSR’s status fields will both control and 
record the status of the execution of the instruction (see Table 5-11). The status field 
specifies: enabled exceptions, rounding mode, exponent width, precision control, and 
which status field’s flags to update. See “Floating-point Status Register” on page 1:88.

Most arithmetic floating-point instructions can specify the precision and range of the 
result. The precision is determined either statically using a.pc completer or dynamically 
using the.pc field of the FPSR status field. The range is determined similarly except 
the.wre field of the FPSR status field is also used. Normal (non Parallel FP) arithmetic 
instructions that do not have a.pc completer use the floating-point register format 
precision and range. See Table 5-6 for details. 

Table 5-12 lists the arithmetic floating-point instructions and Table 5-13 lists the 
arithmetic pseudo-operation definitions.

Table 5-9. General Register (Integer) to Floating-point Register Data Translation (setf)

General
Register

Floating-Point Register (.sig) Floating-Point Register (.exp)

Class NaT Integer Sign Exponent Significand Sign Exponent Significand

NaT 1 ignore NaTVal NaTVal

integers 0 000...00
through
111...11

0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation (getf)

Floating-Point Register General Register (.sig) General Register (.exp)

Class Sign Exponent Significand NaT Integer NaT Integer

NaTVal 0 0x1FFFE 0.000...00 1 0x0000000000000000 1 0x1FFFE

integers or
parallel FP

0 0x1003E 0.000...00
through

1.111...11

0 significand 0 0x1003E

other any any any 0 significand 0 ((sign<<17) | exponent)

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier .s0 .s1 .s2 .s3

Status field FPSR.sf0 FPSR.sf1 FPSR.sf2 FPSR.sf3

Table 5-12. Arithmetic Floating-point Instructions

Operation Normal FP Mnemonic(s)
Parallel FP

Mnemonic(s)

Floating-point multiply and add fma.pc.sf fpma.sf

Floating-point multiply and subtract fms.pc.sf fpms.sf

Floating-point negate multiply and add fnma.pc.sf fpnma.sf

Floating-point reciprocal approximation frcpa.sf fprcpa.sf

Floating-point reciprocal square root approximation frsqrta.sf fprsqrta.sf

Floating-point compare fcmp.frel.fctype.sf fpcmp.frel.sf
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There are no pseudo-operations for Parallel FP addition, subtraction, negation or 
normalization since FR 1 does not contain a packed pair of single precision 1.0 values. A 
parallel FP addition can be performed by first forming a pair of 1.0 values in a register 
(using the fpack instruction) and then using the fpma instruction. Similarly, an integer 
add operation can be generated by first forming an integer 1 in a floating-point register 
(using the fcvt.fx instruction) and then using the xma instruction.

The fmpy pseudo-operation delivers the IEEE compliant result by rounding the product 
and without performing the addition inherent in the fma. An fma with the addend 
specified as a register other than FR 0, and containing the value +0.0, will not deliver 
the IEEE compliant multiply result in some cases.

5.3.4 Non-arithmetic Instructions

The non-arithmetic floating-point instructions always use the floating-point register 
(82-bit) precision since they do not have a.pc completer nor a.sf specifier.

The fclass instruction is used to classify the contents of a floating-point register. The 
fmerge instruction is used to merge data from two floating-point registers into one 
floating-point register. The fmix, fsxt, fpack, and fswap instructions are used to 
manipulate the Parallel FP data in the floating-point significand. The fand, fandcm, for, 
and fxor instructions are used to perform logical operations on the floating-point 
significand. The fselect instruction is used for conditional selects.

Floating-point minimum fmin.sf fpmin.sf

Floating-point maximum fmax.sf fpmax.sf

Floating-point absolute minimum famin.sf fpamin.sf

Floating-point absolute maximum famax.sf fpamax.sf

Convert floating-point to signed integer fcvt.fx.sf 
fcvt.fx.trunc.sf

fpcvt.fx.sf 
fpcvt.fx.trunc.sf

Convert floating-point to unsigned integer fcvt.fxu.sf 
fcvt.fxu.trunc.sf

fpcvt.fxu.sf 
fpcvt.fxu.trunc.sf

Convert signed integer to floating-point fcvt.xf N.A.

Table 5-13. Arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE)
Parallel FP multiplication

fmpy.pc.sf
fpmpy.sf

fma, using FR 0 for addend
fpma, using FR 0 for addend

Floating-point negate multiplication (IEEE)
Parallel FP negate multiplication

fnmpy.pc.sf
fpnmpy.sf

fnma, using FR 0 for addend
fpnma, using FR 0 for addend

Floating-point addition (IEEE) fadd.pc.sf fma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) fsub.pc.sf fms, using FR 1 for multiplicand

Floating-point normalization fnorm.pc.sf fma, using FR 1 for multiplicand and FR 0 for 
addend

Convert unsigned integer to floating-point fcvt.xuf.pc.sf fma, using FR 1 for multiplicand and FR 0 for 
addend

Table 5-12. Arithmetic Floating-point Instructions (Continued)
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The fneg pseudo-operation (see Table 5-15) simply reverses the sign bit of the operand 
and is therefore not equivalent to the IEEE negation operation. For the IEEE negation 
operation, an fnma using FR 1 as the multiplicand and FR 0 as the addend must be 
used. 

Table 5-14 lists the non-arithmetic floating-point instructions and Table 5-15 lists the 
non-arithmetic pseudo-operation definitions.

5.3.5 Floating-point Status Register (FPSR) Status Field 
Instructions

Speculation of floating-point operations requires that the status flags be stored 
temporarily in one of the alternate status fields (not FPSR.sf0). After a speculative 
execution chain has been committed, a fchkf instruction can be used to update the 
main status field flags (FPSR.sf0.flags). This operation will preserve the correctness of 
the IEEE flags. The fchkf instruction does this by comparing the flags of the status field 

Table 5-14. Non-arithmetic Floating-point Instructions

Operation Mnemonic(s)

Floating-point classify fclass.fcrel.fctype

Floating-point merge sign
Parallel FP merge sign

fmerge.s
fpmerge.s

Floating-point merge negative sign
Parallel FP merge negative sign

fmerge.ns
fpmerge.ns

Floating-point merge sign and exponent
Parallel FP merge sign and exponent

fmerge.se
fpmerge.se

Floating-point mix left fmix.l

Floating-point mix right fmix.r

Floating-point mix left-right fmix.lr

Floating-point sign-extend left fsxt.l

Floating-point sign-extend right fsxt.r

Floating-point pack fpack

Floating-point swap fswap

Floating-point swap and negate left fswap.nl

Floating-point swap and negate right fswap.nr

Floating-point And fand

Floating-point And Complement fandcm

Floating-point Or for

Floating-point Xor fxor

Floating-point Select fselect

Table 5-15. Non-arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point absolute value
Parallel FP absolute value

fabs
fpabs

fmerge.s, with sign from FR 0
fpmerge.s, with sign from FR 0

Floating-point negate
Parallel FP negate

fneg
fpneg

fmerge.ns
fpmerge.ns

Floating-point negate absolute value
Parallel FP negate absolute value

fnegabs
fpnegabs

fmerge.ns, with sign from FR 0
fpmerge.ns, with sign from FR 0
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with the FPSR.sf0.flags and FPSR.traps. If the flags of the alternate status field indicate 
the occurrence of an event that corresponds to an enabled floating-point exception in 
FPSR.traps, or an event that is not already registered in the FPSR.sf0.flags (i.e., the 
flag for that event in FPSR.sf0.flags is clear), then the fchkf instruction branches to 
recovery code. If neither of these cases arise then the fchkf instruction does nothing.

The fsetc instruction allows bit-wise modification of a status field’s control bits. The 
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit 
immediate or-mask to produce the control bits for the status field. The fclrf 
instruction clears all of the status field’s flags to zero.

5.3.6 Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the 
three-operand xma instructions. The operands and result of these instructions are 
floating-point registers. The xma instructions ignore the sign and exponent fields of the 
floating-point register, except for a NaTVal check. The product of two 64-bit source 
significands is added to the third 64-bit significand (zero extended) to produce a 
128-bit result. The low and high versions of the instruction select the appropriate 
low/high 64-bits of the 128-bit result, respectively, and write it into the destination 
register as a canonical integer. The signed and unsigned versions of the instructions 
treat the input multiplicands as signed and unsigned 64-bit integers respectively.

5.4 Additional IEEE Considerations

This section describes the support of the IEEE standard in the areas where specific 
details are left open to implementation.

5.4.1 Floating-point Interruptions

Floating-point interruptions are precise. The exception reporting and handling occurs on 
the instruction which causes the interruption. There are three floating-point 
interruptions: Disabled Floating-Point Register fault, Floating-Point Exception fault, and 
Floating-Point Exception trap (see Chapter 5, “Interruptions” in Volume 2 for more 
details).

Table 5-16. FPSR Status Field Instructions

Operation Mnemonic(s)

Floating-point check flags fchkf.sf

Floating-point clear flags fclrf.sf

Floating-point set controls fsetc.sf

Table 5-17. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma.l xma.h

Unsigned xma.lu (pseudo-op) xma.hu
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Exceptions are processed according to a predetermined precedence. Precedence in 
exception handling means that higher-priority exceptions are flagged first and results 
are delivered according to the requirements of that exception. Lower-priority 
exceptions are not flagged even if they occur. For example, dividing an SNaN by zero 
causes an invalid operation exception (due to the SNaN) and not a zero-divide 
exception; the exception disabled result is the quieted version of the SNaN, not infinity. 
However, an IEEE Inexact Floating-Point Exception trap can accompany an IEEE 
Underflow or Overflow Floating-Point Exception trap.

For instructions that access the floating-point register file, the Disabled Floating-point 
Register fault has the highest priority.

5.4.1.1 Disabled Floating-point Register Fault

Two bits in the PSR, PSR.dfl and PSR.dfh, (see Section 3.3.2, “Processor Status Register 
(PSR)” on page 2:23) can be used by an operating system to enable or disable access 
to two subsets of floating-point registers: FR 2 to FR 31, and FR 32 to FR 127, 
respectively. The Disabled Floating-Point Register fault occurs when an access (read or 
write) is made to a FR which has been disabled. Operating systems can use this fault to 
identify a task as integer or floating-point and optimize the default set of registers 
which get saved on a task switch. If a mainly integer task is able to use only FR 2 to FR 
32 for executing integer multiply and divide operations, then context switch time may 
be reduced by disabling access to the high floating-point registers.

5.4.1.2 Floating-point Exception Fault

A Floating-Point Exception fault occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via 
the Software Assist fault

2. The IEEE Invalid Operation trap is enabled and this condition occurs

3. The IEEE Zero Divide trap is enabled and this condition occurs

4. The Denormal/Unnormal Operand trap is enabled and an unnormalized operand 
(denormals are represented as unnormalized numbers in the register file) is 
encountered by a floating-point arithmetic instruction

If a Floating-Point Exception fault occurs, the only indication of which fault occurred is 
in the ISR.code. The appropriate status flags are not updated in the FPSR.

There is no requirement that the Software Assist Floating-Point Exception fault ever be 
signaled (except for certain operands in the frcpa and the frsqrta instructions), nor is 
there a mode to force its use. If there is no input NaTVal operand, a processor 
implementation may signal a Software Assist Floating-Point Exception fault at any time 
during the operation. In order to ensure maximum floating-point performance, most 
implementations will not use this exception except in difficult situations such as 
operations consuming denormal numbers.

The precedence among Floating-point Exception faults for arithmetic operations is 
depicted in Figure 5-11.
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Figure 5-11.Floating-point Exception Fault Prioritization
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5.4.1.3 Floating-point Exception Trap

A Floating-point Exception trap occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via 
the Software Assist trap

2. The IEEE Overflow trap is enabled and an overflow occurs

3. The IEEE Underflow trap is enabled and an underflow occurs

4. The IEEE Inexact trap is enabled and an inexact result occurs

When an overflow, underflow, or inexact result occurs, the appropriate status flags are 
updated in the FPSR. If enabled, a Floating-Point Exception trap occurs, and an 
indication of which enabled trap occurred is stored in ISR.code and the fpa bit in 
ISR.code (ISR{14}) is set as described in the next paragraph.

ISR.fpa is set to 1 when the magnitude of the delivered result is greater than the 
magnitude of the infinitely precise result. It is set to 0 otherwise. The magnitude of the 
delivered result may be greater if:

• The significand is incremented during rounding, or

• A larger pre-determined value (e.g., infinity) is substituted for the computed result 
(e.g., when overflow is disabled).

There is no requirement that the Software Assist Floating-Point Exception trap ever be 
signaled, nor is there a mode to force its use. In order to ensure maximum 
floating-point performance, most implementations will not use this exception except in 
difficult situations, such as operations creating denormal numbers. The occurrence of a 
Software Assist trap is indicated when a trap bit is set in ISR.code, but that trap is 
disabled. The destination register contains the trap enabled response for that trap.

The precedence among Floating-point Exception traps for arithmetic operations is 
depicted in Figure 5-12.
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5.4.2 Definition of Overflow

The overflow exception can occur whenever the rounded true result would exceed, in 
magnitude, the largest finite number in the destination format. 

The IEEE Overflow Floating-Point Exception trap disabled response for all normal and 
Parallel-FP arithmetic instructions is to either return an infinity or the correctly signed 
maximum finite value for the destination precision. This depends on the rounding 
mode, the sign of the result, and the operation. An inexact result exception is signaled.

The IEEE Overflow Floating-Point Exception trap enabled response for all normal 
arithmetic instructions is to return the true biased exponent value MOD 217 and for all 
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28. 
The value’s significand is rounded to the specified precision and written to the 
destination register. If the rounded value is different from the infinitely-precise value, 

Figure 5-12.Floating-point Exception Trap Prioritization
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then inexactness is signaled. If the significand was rounded by adding a one to its least 
significant bit, then bit fpa in ISR.code is set to 1. Finally, an interruption due to a 
Floating-Point Exception trap will occur.

Note that when rounding to single, double, or double-extended real, the overflow trap 
enabled response for normal (non Parallel FP) arithmetic instructions is not guaranteed 
to be in the range of a valid single, double, or double-extended real quantity, because it 
is in 17-bit exponent format.

5.4.3 Definition of Tininess, Inexact and Underflow

Tininess is detected after rounding, and is said to occur when a non-zero result 
(computed as though the exponent range were unbounded) would lie strictly between 
+2Emin and -2Emin. See Table 5-1 for the values of Emin for each real type. Creation of 
a tiny result may cause an exception later (such as overflow upon division because it is 
so small). 

Inexactness is said to occur when the result differs from what would have been 
computed if both the exponent range and precision were unbounded.

How tininess and inexactness trigger the underflow exception depends on whether the 
Underflow Floating-Point Exception trap is disabled or enabled. If the trap is disabled 
then the underflow exception is signaled when the result is both tiny and inexact. If the 
trap is enabled then the underflow exception is signaled when the result is tiny, 
regardless of inexactness. Note that in the event that the Underflow Floating-Point 
Exception trap is disabled and tininess but not inexactness occurs, then neither 
underflow nor inexactness is signaled, and the result is a denormal.

The IEEE Underflow Floating-Point Exception trap disabled response for all normal and 
Parallel-FP arithmetic instructions is to denormalize the infinitely precise result and then 
round it to the destination precision. The result may be a denormal, zero, or a normal. 
The inexact exception is signaled when appropriate.

The IEEE Underflow Floating-Point Exception trap enabled response for all normal 
arithmetic instructions is to return the true biased exponent value MOD 217and for all 
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28. 
The significand is rounded to the specified precision and written to the destination 
register independent of the possibility of the exponent calculation requiring a borrow. If 
the rounded value is different from the infinitely-precise value, then inexactness is 
signaled. If the significand was rounded by adding a one to its least significant bit, then 
bit fpa in ISR.code is set to 1. Finally, an interruption due to a Floating-Point Exception 
trap will occur.

Note: When rounding to single, double, or double-extended real, the underflow trap 
enabled response for normal (non Parallel FP) arithmetic instructions is not 
guaranteed to be in the range of a valid single, double, or double-extended real 
quantity, because it is in 17-bit exponent format.

When Flush-to-Zero mode is enabled, the behavior for tiny results is different. If an 
instruction would deliver a tiny result, a correctly signed zero is delivered instead and 
the appropriate FPSR.sfx.u and FPSR.sfx.i bits are set. This mode may improve the 
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performance on implementations that do not implement denormal handling in 
hardware. When the Flush-to-Zero mode is enabled, floating-point exception software 
assist traps will not occur when producing tiny results.

5.4.4 Integer Invalid Operations

Floating-point to integer conversions which are invalid (in the IEEE sense) signal an 
Invalid Operation Floating-Point Exception fault. If the IEEE Invalid Operation trap is 
disabled, then the largest magnitude negative integer is the result, even for unsigned 
integer operations.

5.4.5 Definition of Arithmetic Operations

Arithmetic operations are those that compute on the operands by treating each 
operand’s encoding as a value, whereas non-arithmetic operations perform bit 
manipulations on the input operands without regard to the value represented by the 
encoding (except for NaTVal detection). Non-arithmetic instructions do not cause 
Floating-point Exception faults or traps, but can cause the Disabled Floating-point 
Register fault. 

5.4.6 Definition and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet 
NaNs have a one in the most significant fractional bit of the significand. This definition 
of signaling and quiet NaNs easily preserves “NaNness” when converting between 
different precisions. When propagating NaNs in operations that have more than one 
NaN operand, the result NaN is chosen from one of the operand NaNs in the following 
priority based on register encoding fields: first f4, then f2, and lastly f3.

5.4.7 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:

• String to floating-point conversion

• Floating-point to string conversion

• Divide (with help from frcpa or fprcpa instruction)

• Square root (with help from frsqrta or fprsqrta instruction)

• Remainder (with help from frcpa or fprcpa instruction)

• Floating-point to integer valued floating-point conversion

• Correctly wrapping the exponent for single, double, and double-extended overflow 
and underflow values, as recommended by the IEEE standard

5.4.8 Additions beyond the IEEE Standard

• The fused multiply and add (fma, fms, fnma, fpma, fpms, fpnma) operations enable 
efficient software divide, square root, and remainder algorithms.

• The extended range of the 17-bit exponent in the register format allows simplified 
implementation of many basic numeric algorithms by the careful numeric 
programmer.
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• The NaTVal is a natural extension of the IEEE concept of NaNs. It is used to support 
speculative execution.

• Flush-to-Zero mode is an industry standard addition.

• The minimum and maximum instructions allow the efficient execution of the 
common Fortran Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C 
language idioms such as a<b?a:b.

• All mixed precision operations are allowed. The IEEE standard suggests that 
implementations allow lower precision operands to produce higher precision 
results; this is supported. The IEEE standard also suggests that implementations 
not allow higher precision operands to produce lower precision results; this 
suggestion is not followed. When computations with higher precision operands 
produce values beyond the destination precision range, the information provided in 
the ISR.code allows the true result to be unambiguously determined by software. 
The correct wrapping count and the appropriate bias amount can also be computed.

• An IEEE style quad-precision real type that is supported in software.

§
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IA-32 Application Execution Model in an 
Intel® Itanium® System Environment 6

IA-32 application execution on Itanium-based systems may be supported with IA-32 
Execution Layer, an OS-based optimizing binary translator, or processor 
hardware-based execution. The implementation of IA-32 application execution on a 
platform is transparent to IA-32 applications and does not require any application 
modification.

6.1 IA-32 Execution Layer

IA-32 Execution Layer provides operating systems with optimizing dynamic binary 
translation to accelerate legacy IA-32 application performance relative to 
hardware-based execution. When installed, IA-32 Execution Layer supersedes 
hardware-based execution of IA-32 applications.

The operating system loads IA-32 Execution Layer into user space, where it executes 
using application virtual space and privilege level. IA-32 Execution Layer uses the 
native OS for acquiring system resources (memory, synchronization objects, etc.), 
executing 32-bit system calls issued by the IA-32 application, signal handling, 
exceptions, and other system notifications.

IA-32 Execution Layer supports user-mode, 32-bit-flat-protected applications. 
Consistent with Itanium-based operating systems that support legacy IA-32 
applications, 16-bit applications and applications containing 32-bit device drivers are 
not supported.

6.2 Hardware-based IA-32 Application Execution

This section describes the IA-32 execution model from the perspective of an application 
programmer using the Itanium architecture, interfacing with IA-32 code, while 
operating in the Itanium System Environment. The main features covered are:

• IA-32 integer, segment, floating-point, MMX technology, and SSE register state 
mappings

• Instruction set transitions

• IA-32 memory and addressing model overview

This section does not cover the details of IA-32 application programming model, IA-32 
instructions and registers. Refer to the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for details regarding IA-32 application programming model.
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The Itanium architecture can support 16-bit Real Mode, 16-bit VM86, and 16-bit/32-bit 
Protected Mode IA-32 applications in the context of an Itanium architecture-based 
operating system. Whether an IA-32 application is actually supported on specific 
operating systems is determined by the infrastructure provided by that specific 
operating system.

6.2.1 Instruction Set Modes

The processor can be executing either IA-32 or Itanium instructions at any point in 
time. PSR.is (defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:23) 
specifies the currently executing instruction set, where 1 indicates IA-32 instructions 
are executing, and 0 indicates Itanium instructions are executing. Three special 
instructions and interruptions are defined to transition the processor between the IA-32 
and the Itanium instruction sets as shown in Figure 6-1.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the 
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the 
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to either an 
IA-32 or Itanium instruction when resuming from an interruption.

• Interruptions transition the processor to the Itanium instruction set for all 
interruption conditions.

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control 
between the instruction sets. These primitives typically are incorporated into “thunks” 
or “stubs” that implement the required call linkage and calling conventions to call 
dynamic or statically linked libraries.

6.2.1.1 Instruction Set Execution in the Intel® Itanium® Architecture

While the processor executes from the Itanium instruction set (PSR.is is 0):

• Itanium instructions are fetched, decoded and executed by the processor.

• Itanium instructions can access the entire Itanium and IA-32 application register 
state. This includes IA-32 segment descriptors, selectors, general registers, 
physical floating-point registers, MMX technology registers, and SSE registers. See 

Figure 6-1. Instruction Set Transition Model
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Section 6.2.2, “IA-32 Application Register State Model” for a description of the 
register state mapping.

• Segmentation is disabled. No segmentation protection checks are applied nor are 
segment bases added to compute virtual addresses. All computed addresses are 
virtual addresses.

• 264 virtual addresses can be generated and memory management is used for all 
memory and I/O references.

6.2.1.2 IA-32 Instruction Set Execution

While the processor is executing the IA-32 instruction set (PSR.is is 1) within the 
Itanium System Environment, the IA-32 application architecture as defined by the 
Pentium III processor is used, namely:

• IA-32 16/32-bit application level, MMX technology, and SSE instructions are 
fetched, decoded, and executed by the processor. Instructions are confined to 
32/16-bit operations. 

• Only IA-32 application level register state is visible (i.e. IA-32 general registers, 
MMX technology, and SSE registers, selectors, EFLAGS, FP registers and FP control 
registers). Itanium application and control register state is not visible, e.g. branch, 
predicate, application, control, debug, test, and performance monitor registers.

• IA-32, Real Mode, VM86 and Protected Mode segmentation is in effect. Segment 
protection checks are applied and virtual addresses generated according to IA-32 
segmentation rules. GDT and LDT segments are defined to support IA-32 
segmented applications. Segmented 16- and 32-bit code is fully supported.

• Virtual addresses are confined to the lower 4G bytes of virtual region 0. Itanium 
architecture memory management is used to translate virtual to physical addresses 
for all IA-32 instruction set memory and I/O Port references.

• Instruction and Data memory references are forced to be little-endian. Memory 
ordering uses the Pentium III processor memory ordering model.

• IA-32 operating system resources; IA-32 paging, MTRRs, IDT, control registers, 
debug registers and privileged instructions are superseded by resources defined in 
the Itanium architecture. All accesses to these resources result in an interception 
fault.

6.2.1.3 Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed 
instruction description on jmpe (IA-32 instruction) and br.ia (Itanium instruction) 
should be consulted for details.

Operating systems can disable instruction set transitions (jmpe and br.ia) by setting 
PSR.di to one. If PSR.di is one, execution of jmpe or br.ia results in a Disabled 
Instruction Set Transition Fault. System level instruction set transitions due to either 
rfi or an interruption ignore the state of PSR.di (defined in Section 3.3.2, “Processor 
Status Register (PSR)” on page 2:23).

6.2.1.3.1 JMPE Instruction

jmpe reg16/32; jmpe disp16/32 is used to jump and transfer control to the Itanium 
instruction set. There are two forms; register indirect and absolute. The absolute form 
computes the Itanium target virtual address as follows:
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IP{31:0} =disp16/32 + CSD.base
IP{63:32} = 0

The indirect form reads a 16/32-bit register location and then computes the Itanium 
target address as follows:

IP{31:0} = [reg16/32] + CSD.base
IP{63:32} = 0

jmpe targets are forced to be 16-byte aligned, and are constrained to the lower 
4G-bytes of the 64-bit virtual address space due to limited IA-32 addressability. If there 
are any pending IA-32 numeric exceptions, jmpe is nullified, and an IA-32 floating-point 
exception fault is generated.

Transitions into the Itanium instruction set do not change the privilege level of the 
processor. 

6.2.1.3.2 Branch to IA Instruction

The br.ia instruction is used to unconditionally branch to the IA-32 instruction set. 
IA-32 targets are specified by a 32-bit virtual address target (not an effective address). 
The IA-32 virtual address is truncated to 32-bits. The br.ia branch hints should always 
be set to predicted static taken. The processor transitions to the IA-32 instruction set as 
follows:

IP{31:0} = BR[b]{31:0}
IP{63:32} = 0
EIP{31:0} = IP{31:0} - CSD.base

Transitions into the IA-32 instruction set do not change the privilege level of the 
processor. 

Software should ensure the code segment descriptor and selector are properly loaded 
before issuing the branch. If the target EIP value exceeds the code segment limit or has 
a code segment privilege violation, an IA-32 GPFault(0) exception is reported on the 
target IA-32 instruction. 

The processor does not ensure Itanium instruction set generated writes into the IA-32 
instruction stream are observed by the processor. For details, see “Self Modifying Code” 
on page 1:132. Before entering the IA-32 instruction set, Itanium architecture-based 
software must ensure all prior register stack frames have been flushed to memory. All 
registers left in the current and prior register stack frames are left in an undefined state 
after IA-32 instruction set execution. Software can not rely on the value of these 
registers across an instruction set transition. For details, see “Register Stack Engine” on 
page 1:133.

6.2.1.4 IA-32 Operating Mode Transitions

As described in “IA-32 Instruction Set Execution” on page 1:111, jmpe, br.ia, and rfi 
instructions and interruptions can transition the processor between the two instruction 
set modes. Transitions are allowed between the Itanium architecture and all major 
IA-32 modes. As shown in Figure 6-1, br.ia and rfi will transition the processor from 
the Itanium instruction set into IA-32 VM86, Real Mode or Protected Mode. While jmpe 
and interruptions will transition the processor from either IA-32 VM86, Real Mode or 
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Protected Mode into the Itanium instruction set. Mode transitions between IA-32 Real 
Mode, Protected Mode and VM86 definitions are the same as those defined in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium architecture-based interface code is responsible for setting up and loading a 
consistent Protected Mode, Real Mode, or VM86 environment (e.g. loading segment 
selectors and descriptors, etc.) as defined in “Segment Descriptor and Environment 
Integrity” on page 1:119. The processor applies additional segment descriptor checks 
to ensure operations are performed in a consistent manner.

6.2.2 IA-32 Application Register State Model

As shown in Figure 6-2 and Table 6-1, IA-32 general purpose registers, segment 
selectors, and segment descriptors, are mapped into the lower 32-bits of Itanium 
general purpose registers GR8 to GR31. The floating-point register stack, MMX 
technology, and SSE registers are mapped on Itanium floating-point registers FR8 to 
FR31. 

To promote straight-forward parameter passing, integer and IEEE floating-point register 
and memory data types are binary compatible between both IA-32 and Itanium 
instruction sets.

Figure 6-1. Instruction Set Mode Transitions
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Some Itanium registers are modified to an undefined state by hardware as a side-effect 
during IA-32 instruction set execution as noted in Table 6-1 and Figure 6-2. Generally, 
Itanium system state is not affected by IA-32 instruction set execution. Itanium 
architecture-based code can reference all registers (including IA-32), while IA-32 
instruction set references are confined to the IA-32 visible application register state. 

Registers are assigned the following conventions during transitions between IA-32 and 
Itanium instruction sets. 

• IA-32 state: The register contains an IA-32 register during IA-32 instruction set 
execution. Expected IA-32 values should be loaded before switching to the IA-32 
instruction set. After completion of IA-32 instructions, these registers contain the 
results of the execution of IA-32 instructions. These registers may contain any 
value during Itanium instruction execution according to Itanium software 
conventions. Software should follow IA-32 and Itanium calling conventions for 
these registers.

• Undefined: Registers marked as undefined may be used as scratch areas for 
execution of IA-32 instructions by the processor and are not ensured to be 
preserved across instruction set transitions.

Figure 6-2. IA-32 Application Register Model
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• Shared: Shared registers contain values that have similar functionality in either 
instruction set. For example, the stack pointer (ESP) and instruction pointer (IP) 
are shared. 

• Unmodified: These registers are not altered by IA-32 execution. Itanium 
architecture-based code can rely on these values not being modified during IA-32 
instruction set execution. The register will have the same contents when entering 
the IA-32 instruction set and when exiting the IA-32 instruction set.

Table 6-1. IA-32 Application Register Mapping

Intel® Itanium® Reg IA-32 Reg Convention Size Description

General Purpose Integer Registers

GR0 constant 0

GR1-3 undefinedf scratch for IA-32 execution

GR4-7 unmodified Intel® Itanium® preserved registers

GR8 EAX

IA-32 state

32a IA-32 general purpose registers

GR9 ECX

GR10 EDX

GR11 EBX

GR12 ESP

GR13 EBP

GR14 ESI

GR15 EDI

GR16{15:0} DS

64 IA-32 selectors

GR16{31:16} ES

GR16{47:32} FS

GR16{63:48} GS

GR17{15:0} CS

GR17{31:16} SS

GR17{47:32} LDT

GR17{63:48} TSS

GR18-23 undefinedf scratch for IA-32 execution

GR24 ESD IA-32 state 64 IA-32 segment descriptors (register 
format)b

GR25-26 undefinedf scratch for IA-32 execution

GR27 DSD

IA-32 state 64
IA-32 segment descriptors (register 
format)b

GR28 FSD

GR29 GSD

GR30 LDTDc

GR31 GDTD

GR32-127 undefinedd IA-32 code execution space

Process Environment

IP IP shared 64 shared IA-32 and Intel® Itanium® virtual 
Instruction Pointer 

Floating-point Registers

FR0 constant +0.0

FR1 constant +1.0

FR2-5 unmodified Intel® Itanium® preserved registers

FR6-7 undefined IA-32 code execution space
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FR8 MM0/FP0

IA-32 state 64/80

IA-32 Intel MMX technology registers 
(aliased on 64-bit FP mantissa)
IA-32 FP registers (physical registers 
mapping)e

FR9 MM1/ FP1

FR10 MM2/FP2

FR11 MM3/FP3

FR12 MM4/FP4

FR13 MM5/FP5

FR14 MM6/FP6

FR15 MM7/FP7

FR16-17 XMM0

IA-32 state 64

IA-32 SSE registers
low order 64-bits of XMM0 are mapped to 
FR16{63:0}
high order 64-bits of XMM0 are mapped to 
FR17{63:0}

FR18-19 XMM1

FR20-21 XMM2

FR22-23 XMM3

FR24-25 XMM4

FR26-27 XMM5

FR28-29 XMM6

FR30-31 XMM7

FR32-127 undefinedf IA-32 code execution space

Predicate Registers

PR0 constant 1

PR1-63 undefinedf IA-32 code execution space

Branch Registers

BR0-5 unmodified Intel® Itanium® preserved registers

BR6-7 undefined IA-32 code execution space

Application Registers

RSC

unmodified
not used for IA-32 execution
Intel® Itanium® preserved registers

BSP

BSPSTORE

RNAT

CCV undefinedf 64 IA-32 code execution space

UNAT unmodified not used for IA-32 execution, Intel® 
Itanium® preserved register

FPSR.sf0 unmodified Intel® Itanium® numeric status and 
controls register

FPSR.sf1,2,3 undefinedf IA-32 code execution space.

FSR FSW,FTW,
MXCSR

IA-32 state

64 IA-32 numeric status and tag word and 
SSE status

FCR FCW, MXCSR 64 IA-32 numeric and SSE control

FIR FOP, FIP, FCS 64 IA-32 x87 numeric environment opcode, 
code selector and IP

FDR FEA, FDS 64 IA-32 x87 numeric environment data 
selector and offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC) 
and Intel® Itanium® Interval Timer

RUC unmodified 64 RUC continues to count while in IA-32 
execution mode

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description
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6.2.2.1 IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of Itanium general registers GR8 to 
GR15. Values in the upper 32-bits of GR8 to GR15 are ignored on entry to IA-32 
execution. After the IA-32 instruction set completes execution, the upper 32-bits of 
GR8 - GR15 are sign-extended from bit 31.

Based on IA-32 and Itanium calling conventions, the required IA-32 state must be 
loaded in memory or registers by Itanium architecture-based code before entering the 
IA-32 instruction set.

6.2.2.2 IA-32 Instruction Pointer

The processor maintains two instruction pointers for IA-32 instruction set references, 
EIP (32-bit effective address) and IP (a 64-bit virtual address equivalent to the Itanium 
instruction set IP). IP is generated by adding the code segment base to EIP and zero 
extending to 64-bits. IP should not be confused with the 16-bit effective address 
instruction pointer of the 8086. EIP is an offset within the current code segment, while 
IP is a 64-bit virtual pointer shared with the Itanium instruction set. The following 
relationship is defined between EIP and IP while executing IA-32 instructions.

IP{63:32} = 0;
IP{31:0} = EIP{31:0} + CSD.Base;

PFS

unmodified

not used for IA-32 code execution, Prior 
EC is preserved in PFM
Intel® Itanium® preserved registers

LC

EC

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags, 
writes of some bits condition by CPL and 
EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)b

SSD SSD IA-32 stack segment (register format)b

CFLG CR0/CR4 64 IA-32 control flags 
CR0=CFLG{31:0}, CR4=CFLG{63:32}, 
writable at CPL=0 only.

a.  On transitions into the IA-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign 
extended from bit 31.

b. Segment descriptor formats differ from the iA-32 memory format, see “IA-32 Segment Registers” on 
page 1:118 for details. Modification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by Itanium architecture-based user level code
d. All registers in the current and prior registers frames are left in an undefined state after IA-32 execution. 

Software must preserve these values before entering the IA-32 instruction set.
e. IA-32 floating-point register mappings are physical and do not reflect the IA-32 top of stack value.
f. These registers are used by the processor and may be left an undefined state following IA-32 instruction set 

execution. Software should preserve required values before entering IA-32 code.

Figure 6-3. IA-32 General Registers (GR8 to GR15)

63 32 31 0

sign extended EAX.. EDI{31:0}

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description
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EIP is added to the code segment base and zero extended into a 64-bit virtual address 
on every IA-32 instruction fetch. If during an IA-32 instruction fetch, EIP exceeds the 
code segment limit, a GPFault is generated on the referencing instruction. Effective 
instruction addresses (sequential values or jump targets) above 4G-bytes are truncated 
to 32 bits, resulting in a 4-G byte wraparound condition.

6.2.2.3 IA-32 Segment Registers

IA-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26. 
Descriptors are maintained in an unscrambled format shown in Figure 6-5. This format 
differs from the IA-32 scrambled memory descriptor format. The unscrambled register 
format is designed to support fast conversion of IA-32 segmented 16/32-bit pointers 
into virtual addresses by Itanium architecture-based code. IA-32 segment register load 
instructions unscramble the GDT/LDT memory format into the descriptor register 
format on a segment register load. Itanium architecture-based software can also 
directly load descriptor registers provided they are properly unscrambled by software. 
When Itanium architecture-based software loads these registers, no data integrity 
checks are performed at that time if illegal values are loaded in any fields. For a 
complete definition of all bit fields and field semantics refer to the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual.

Figure 6-4. IA-32 Segment Register Selector Format

63 48 47 32 31 16 15 0

GS FS ES DS GR16

TSS LDT SS CS GR17

Figure 6-5. IA-32 Code/Data Segment Register Descriptor Format

63 62 61 60 59 58 57 56 55 52 51 32 31 0

g d/b ig av p dpl s type lim{19:0} base{31:0}

Table 6-2. IA-32 Segment Register Fields

Field Bits Description

selector 15:0 Segment Selector value, see the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for bit definition.

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the 
segment in the 64-bit virtual address space for IA-32 instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within the segment for 
expand up segments for IA-32 instruction set memory references. For expand down 
segments, limit defines the minimum effective address within the segment. See the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual for details and 
segment limit fault conditions. The segment limit is scaled by (lim << 12) | 0xFFF if the 
segment’s g-bit is 1.

type 55:52 Type identifier for data/code segments, including the Access bit (bit 52). See the Intel® 
64 and IA-32 Architectures Software Developer’s Manual for encodings and 
definition.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32 
instruction set memory references.

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an 
IA_32_Exception(GPFault) is generated for data segments (CS, DS, ES, FS, GS) and 
an IA_32_Exception(StackFault) for SS.
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6.2.2.3.1 Data and Code Segments

On the transition into IA-32 code, the IA-32 segment descriptor and selector registers 
(GDT, LDT, DS, ES, CS, SS, FS and GS) must be initialized by Itanium 
architecture-based code to the required values based on IA-32 and Itanium calling 
conventions and the segmentation model used.

Itanium architecture-based code may manually load a descriptor with an 8-byte fetch 
from the LDT/GDT, unscramble the descriptor and write the segment base, limit and 
attribute. Alternately, Itanium architecture-based software can switch to the IA-32 
instruction set and perform the required segment load with an IA-32 Mov Sreg 
instruction. If Itanium architecture-based code explicitly loads the segment descriptors, 
it is responsible for the integrity of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the 
descriptor registers, nor does the processor set segment access bits in the LDT/GDT if 
segment registers are loaded by Itanium instructions.

6.2.2.3.2 Segment Descriptor and Environment Integrity

For IA-32 instruction set execution, most segment protection checks are applied by the 
processor when the segment descriptor is loaded by IA-32 instructions into a segment 
register. However, segment descriptor loads from the Itanium instruction set into the 
general purpose register file perform no such protection checks, nor are segment 
Access-bits updated by the processor. 

If Itanium architecture-based software directly loads a descriptor, it is responsible for 
the validity of the descriptor, and ensuring integrity of the IA-32 Protected Mode, Real 
Mode or VM86 environments. Table 6-3 defines software guidelines for establishing the 
initial IA-32 environment. The processor checks the integrity of the IA-32 environment 
as defined in “IA-32 Environment Runtime Integrity Checks” on page 1:122. On the 

av 60 Ignored – This field is ignored by the processor during IA-32 instruction set execution.  
This field is available for IA-32 software use and there will be no future use for this field.  
For Itanium instructions, implementations which do not support the ld16, st16 and 
cmp8xchg16 instructions can either ignore writes and return zero on reads, or write the 
value and return the last value written on reads. Implementations which do support these 
instructions write the value and return the last value written on reads.

ig 61 Ignored – This field is ignored by the processor during IA-32 instruction set execution.  
This field may have a future use and should be set to zero by IA-32 software. For Itanium 
instructions, implementations which do not support the ld16, st16 and cmp8xchg16 
instructions can either ignore writes and return zero on reads, or write the value and  
return the last value written on reads. Implementations which do support these 
instructions write the value and return the last value written on reads.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are 
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s 
d/b-bit also controls the default operand size for IA-32 instructions. If 1, the default 
operand size is 32-bits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | 0xFFF for 
IA-32 instruction set memory references. This field is ignored for Intel® Itanium® 
instruction set memory references.

Table 6-2. IA-32 Segment Register Fields (Continued)

Field Bits Description
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transitions between IA-32 and Itanium architecture-based code, the processor does 
NOT alter the base, limit or attribute values of any segment descriptor, nor is there a 
change in privilege level.

 Table 6-3. IA-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86 Mode

PSR cpl 0 Privilege Level 3

EFLAG vm 0 0 1

CR0 pe 0 1 1

CS

selector base >> 4a

a. Selectors should be set to 16*base for normal RM 64KB operation.

selector base >> 4

base selector << 4b

b. Segment base should be set to selector/16 for normal RM 64KB operation.

base selector << 4

dpl PSR.cpl (0) PSR.cplc

c. Unless a conforming code segment is specified

PSR.cpl (3)

d-bit 16-bitd

d. Segment size should be set to 16-bits for normal RM 64KB operation.

16/32-bit 16-bit

type data rd/wr, expand up execute data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe

e. Segment limit should be set to 0xFFFF for normal RM 64KB operation. 

limit 0xFFFF

SS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)

d-bit 16-bitd 16/32-bit size 16-bit

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe limit 0xFFFF

DS, ES, 
FS, GS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)

d-bit 16-bitd 16/32-bit 0

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

a-bit 1 1 1

p-bit 1 1/0f

f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

1

g-bit/limit 0xFFFFe limit 0xFFFF

LDT,GDT,
TSS

selector

N/A

selector

base base

dpl dpl >= PSR.cpl

d-bit 0

type ldt/gdt/tss types

s-bit 0

p-bit 1

a-bit 1

g-bit/limit limit
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6.2.2.3.2.1 Protected Mode

Itanium architecture-based software should follow these rules for setting up the 
segment descriptors for Protected Mode environment before entering the IA-32 
instruction set:

• Itanium architecture-based software should ensure the stack segment descriptor 
register’s DPL==PSR.cpl. 

• For DSD, ESD, FSD and GSD segment descriptor registers, Itanium 
architecture-based software should ensure DPL>=PSR.cpl. 

• For CSD segment descriptor register, Itanium architecture-based software should 
ensure DPL==PSR.cpl (except for conforming code segments). 

• Software should ensure that all code, stack and data segment descriptor registers 
do not contain encodings for any system segments.

• Software should ensure the a-bit of all segment descriptor registers are set to 1.

• Software should ensure the p-bit is set to 1 for all valid data segments and to 0 for 
all NULL data segments.

6.2.2.3.2.2 VM86

Itanium architecture-based software should follow these rules when setting up segment 
descriptors for the VM86 environment before entering the IA-32 instruction set:

• PSR.cpl must be 3 (or IPSR.cpl must be 3 for rfi).

• Itanium architecture-based software should ensure the stack segment descriptor 
register’s DPL==PSR.cpl==3 and set to 16-bit, data read/write, expand up. 

• For CSD, DSD, ESD, FSD and GSD segment descriptor registers, Itanium 
architecture-based software should ensure DPL==3, the segment is set to 16-bit, 
data read/write, expand up. 

• Software should ensure that all code, stack and data segment descriptor registers 
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is 
one.

• Software should ensure that the relationship Base = Selector*16, is maintained for 
all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise 
processor operation is unpredictable.

• Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment 
descriptor register’s limit value is set to 0xFFFF, otherwise spurious segment limit 
faults (GPFault or Stack Faults) may be generated.

• Itanium architecture-based software should ensure all segment descriptor registers 
are data read/write, including the code segment. The processor will ignore execute 
permission faults.

6.2.2.3.2.3 Real Mode

Itanium architecture-based software should follow these rules when setting up segment 
descriptors for the Real Mode environments before entering the IA-32 instruction set, 
otherwise software operation is unpredictable. 

• Itanium architecture-based software should ensure PSR.cpl is 0

• Itanium architecture-based software should ensure the stack segment descriptor 
register’s DPL is 0. 



1:122 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

• Software should ensure that all code, stack and data segment descriptor registers 
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is 
one.

• For normal real mode 64K operations, software should ensure that the relationship 
Base = Selector*16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD 
segment descriptor registers.

• For normal real mode 64K operations, software should ensure that the DSD, CSD, 
ESD, SSD, FSD, and GSD segment descriptor register’s limit value is set to 0xFFFF 
and the segment size is set to 16-bit (64K)

• Itanium architecture-based software should ensure all segment descriptor registers 
indicate readable, writable, including the code segment for normal Real Mode 
operation.

6.2.2.3.3 IA-32 Environment Runtime Integrity Checks

Processors in the Itanium processor family perform additional runtime checks to verify 
the integrity of the IA-32 environments. These checks are in addition to the runtime 
checks defined on IA-32 processors and are high-lighted in Table 6-4. Existing IA-32 
runtime checks are listed but not highlighted. Descriptor fields not listed in the table are 
not checked. As defined in the table, runtime checks are performed either on IA-32 
instruction code fetches or on an IA-32 data memory reference to one of the specified 
segment registers. These runtime checks are not performed during transitions from the 
Itanium instruction set to the IA-32 instruction set.

 Table 6-4. IA-32 Environment Runtime Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault

all code fetches

PSR.cpl is not 0 ignored is not 3

Code Fetch Fault 
(GPFault(0))a

EFLAG.vmC
FLG.pe

EFLAG.vm is 1 and CFLG.pe is 0

EFLAG.vif
EFLAG.vip

EFLAG.vip & EFLAG.vif & CFLG.pe & 
PSR.cpl==3 & 

(CFLG.pvi | (EFLAG.vm & CFLG.vme))

all code fetches 
CS

dpl ignored dpl is not 3

Code Fetch Fault 
(GPFault(0))

d-bit is not 16-bit

type ignored (can be exec or data)

 GPFault if data expand down

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory 
references to SS

dpl dpl!=PSR.cpl

Stack Fault

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation
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6.2.2.4 IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags 
(CF, PF, AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, 
VIF, VIP). None of the arithmetic or system flags affect Itanium instruction execution. 
See Table 6-5, “IA-32 EFLAGS Register Fields” on page 1:124 for the behavior on IA-32 
and Itanium instruction reads/writes to this application register. For details on system 
flags in the IA-32 EFLAGS register, see Section 10.3.2, “IA-32 System EFLAG Register” 
on page 2:243.

The arithmetic flags are used by the IA-32 instruction set to reflect the status of IA-32 
operations, control IA-32 string operations, and control branch conditions for IA-32 
instructions. These flags are ignored by Itanium instructions. Flags ID, OF, DF, SF, ZF, 
AF, PF and CF are defined in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual.

data memory 
references to 
DS, ES, FS and GS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory 
references to
 CS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

rd/wr checks are 
ignored

rd and not readable, 
wr and not writeable

rd/wr checks are 
ignored

s, p, a-bits are not 1

g-bit/limit segment limit violation

memory 
references to 
LDT,GDT,
TSS

dpl ignored

GPFault
(Selector/0)b

type ignored

s-bit is not 0

a, d-bits ignored

p-bit is not 1

g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.

Figure 6-1. IA-32 EFLAG Register (AR24)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vip vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)

Table 6-4. IA-32 Environment Runtime Integrity Checks (Continued)

Reference Resource Real Mode Protected Mode VM86Mode Fault
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6.2.2.5 IA-32 Floating-point Registers

IA-32 floating-point register stack, numeric controls and environment are mapped into 
the Itanium floating-point registers FR8 - FR15 and the application register name space 
as shown in Table 6-6.

Table 6-5. IA-32 EFLAGS Register Fields

EFLAGa

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the 
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter 
the behavior of Itanium instruction set execution.

Bits Description

cf 0 IA-32 Carry Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

1 Ignored – For IA-32 instructions, writes are ignored, reads return one. For Itanium 
instructions, the implementation can either ignore writes and return one on reads; or 
write the value, and return the last value written on reads.

3,5,
15

Ignored – For IA-32 instructions, writes are ignored, reads return zero. For Itanium 
instructions, the implementation can either ignore writes and return zero on reads, or 
write the value and return the last value written on reads.

pf 2 IA-32 Parity Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

af 4 IA-32 Aux Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

zf 6 IA-32 Zero Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

sf 7 IA-32 Sign Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

tf 8
See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

if 9

df 10 IA-32 Direction Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

of 11 IA-32 Overflow Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

iopl 13:12

See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

nt 14

rf 16

vm 17

ac 18

vif 19

vip 20

id 21

63:22 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes 
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the 
implementation can either raise Reserved Register/Field fault on non-zero writes and 
return zero on reads, or write the value (no Reserved Register/Field fault), and return the 
last value written on reads.
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6.2.2.5.1 IA-32 Floating-point Stack

IA-32 floating-point registers are defined as follows:

• IA-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit 
IEEE floating-point format. 

• For IA-32 instruction set references, floating-point registers are logically mapped 
into FR8 - FR15 based on the IA-32 top-of-stack (TOS) pointer held in FCR.top. FR8 
represents a physical register after the TOS adjustment and is not necessarily the 
top of the logical floating-point register stack.

• For Itanium instruction set references, the floating-point register numbers are 
physical and not a function of the numeric TOS pointer, e.g. references to FR8 
always return the value in physical register FR8 regardless of the TOS value. 
Itanium architecture-based software cannot necessarily assume that FR8 contains 
the IA-32 logical register ST(0). It is highly recommended that typically IA-32 
calling conventions be used which pass floating-point values through memory.

6.2.2.5.2 Special Cases

For IA-32 floating-point instructions, loading a single or double denormal results in a 
normalized double-extended value placed in the target floating-point register. For 
Itanium instructions, loading a single or double denormal results in an un-normalized 
denormal value placed in the target floating-point register. There are two canonical 
exponent values in the Itanium architecture which indicate single precision and double 
precision denormals.

When transferring floating-point values from Itanium to IA-32 instructions, it is highly 
recommended that typical IA-32 calling conventions be followed which pass 
floating-point values through the memory stack. If software does pass floating-point 
values from IA-32 to Itanium architecture-based code via the floating-point registers, 
software must ensure the following:

• Single or double precision Itanium denormals must be converted into a normalized 
double extended precision value expected by IA-32 instructions. Software can 
convert Itanium denormals by multiplying by 1.0 in double extended precision 
(fma.sfx fr = fr, f1, f0). If an illegal single or double precision denormal is 

Table 6-6. IA-32 Floating-point Register Mappings

Intel® Itanium® 
Reg

IA-32 Reg Size (bits) Description

FR8 ST[(TOS + N)==0]

80

IA-32 numeric register stack

Accesses to FR8 - FR15 by Intel® Itanium® 
instructions ignore the IA-32 TOS adjustment 

IA-32 accesses use the TOS adjustment for a 
given register N

FR9 ST[(TOS + N)==1]

FR10 ST[(TOS + N)==2]

FR11 ST[(TOS + N)==3]

FR12 ST[(TOS + N)==4]

FR13 ST[(TOS + N)==5]

FR14 ST[(TOS + N)==6]

FR15 ST[(TOS + N)==7]

FCR (AR21) FCW, MXCSR 64 IA-32 numeric and SSE control register

FSR (AR28) FSW,FTW, MXCSR 64 IA-32 numeric and SSE status and tag word

FIR (AR29) FOP, FCS, FIP 64 IA-32 numeric instruction pointer

FDR (AR30) FDS, FEA 48 IA-32 numeric data pointer
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encountered in IA-32 floating-point operations, an IA-32 Exception (FPError Invalid 
Operand) fault is generated.

• Floating-point values must be within the range of the IA-32 80-bit (15-bit 
exponent) double extended precision format. The Itanium architecture uses 82 bits 
(17-bit widest range exponent) for intermediate calculations. Software must ensure 
all floating-point register values passed to IA-32 instructions are representable in 
double extended precision 80-bit format, otherwise processor operation is model 
specific and undefined. Undefined behavior can include but is not limited to: the 
generation of an IA_32_Exception (FPError Invalid Operation) fault when used by 
an IA-32 floating-point instruction, rounding of out-of-range values to 
zero/denormal/infinity and possible IA_32_Exception (FPError Overflow/Underflow) 
faults, or float-point register(s) containing out of range values silently converted to 
QNAN or SNAN (conversion could occur during entry to the IA-32 instruction set or 
on use by an IA-32 floating-point instruction). Software can ensure all passed 
floating-point register values are within range by multiplying by 1.0 in double 
extended precision format (with widest range exponent disabled) by using fma.sfx 
fr = fr, f1, f0.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point 
instructions, otherwise processor operation is model specific and undefined. 
Processors may silently convert floating-point register(s) containing NaTVal to a 
SNAN (during entry to the IA-32 instruction set or on a consuming IA-32 
floating-point instruction). Dependent IA-32 floating-point instructions that directly 
or indirectly consume a propagated NaTVal register will either propagate the NaTVal 
indication or generate an IA_32_Exception (FPError Invalid Operand) fault. 
Whether a processor generates the fault or propagates the NaTVal is model specific. 
In no case will the processor allow a NaTVal register to be used without either 
propagating the NaTVal or generating an IA_32_Exception (FPError Invalid 
Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with 
an IA-32 floating-point load instruction, since a NatVal cannot be expressed by 
a 80-bit double extended precision number. 

It is highly recommended that floating-point values be passed on the memory stack per 
typical IA-32 calling conventions to avoid numeric problems with NatVal and Itanium 
denormals.

6.2.2.5.3 IA-32 Floating-point Control Registers

FPSR controls Itanium floating-point instructions control and status bits. FPSR does not 
control IA-32 floating-point instructions or reflect the status of IA-32 floating-point 
instructions. IA-32 floating-point and SSE instructions have separate control and status 
registers, namely FCR (floating-point control register) and FSR (floating-point status 
register).

FCR contains the IA-32 FCW bits and all SSE control bits as shown in Figure 6-1.

FSR contains the IA-32 floating-point status flags FSW, FTW, and SSE status fields as 
shown in Figure 6-2. The Tag fields indicate whether the corresponding IA-32 logical 
floating-point register is empty. Tag encodings for zero and special conditions such as 
Nan, Infinity or Denormal of each IA-32 logical floating-point register are not 
supported. However, IA-32 instruction set reads of FTW compute the additional special 
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conditions of each IA-32 floating-point register. Itanium architecture-based code can 
issue a floating-point classify operation to determine the disposition of each IA-32 
floating-point register.

FCR and FSR collectively hold all IA-32 floating-point control, status and tag 
information. IA-32 instructions that are updated and controlled by MXSCR, FCW, FSW 
and FTAG effectively update FSR and are controlled by FSR. IA-32 reads/writes of 
MXCSR, FSW, FCW and FTW return the same information as reads/writes of FSR and 
FCR by Itanium instructions.

Software must ensure that FCR and FSR are properly loaded for IA-32 numeric 
execution before entering the IA-32 instruction set. For Itanium instructions accessing 
ignored fields, the implementation can either ignore writes and return the specified 
constant on reads, or write the value and return the last value written on reads. For 
Itanium instructions accessing reserved fields, the implementation can either raise 
Reserved Register/Field fault on non-zero writes and return zero on reads, or write the 
value (no Reserved Register/Field fault), and return the last value written on reads.

Figure 6-1. IA-32 Floating-point Control Register (FCR)

IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) IC RC PC 0 1 PM UM OM ZM DM IM

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) FZ RC PM UM OM ZM DM IM rv ignored

IA-32 MXCSR (control)

Figure 6-2. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0} IA-32 FSW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TG7 0 TG6 0 TG5 0 TG4 0 TG3 0 TG2 0 TG1 0 TG0 B C3 TOP C2 C1 C0 ES SF PE UE OE ZE DE IE

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 454443 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) ignored rv PE UE OE ZE DE IE

IA-32 MXCSR (status)

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)

IA-32 State Intel® Itanium® 
State Bits IA-32 Usage Usage in the Intel® 

Itanium® Architecture

FSW, FTW, MXCSR state in the FSR Register
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6.2.2.5.4 IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain 
pending information related to the numeric exception. FDR contains the operand’s 
effective address and segment selector. FIR contains the numeric instruction’s effective 
address, code segment selector, and opcode bits. FSR summaries the type of numeric 
exception in the IE, DE, ZE, OE, UE, PE, SF and ES-bits. The ES-bit summarizes the 
IA-32 floating-point exception status as follows:

• When FSR.es is read by Itanium architecture-based code, the value returned is 
either a summary of any unmasked pending exceptions contained in the FSR, IE, 
DE, ZE, OE, UE, and PE bits or it may be the value that was last written into the 
register depending on the implementation.

FSW.ie FSR.ie 0 Invalid operation Exception

None of these bits reflect 
the status of Intel® 
Itanium® floating-point 
execution.

See the Intel® 64 and 
IA-32 Architectures 
Software Developer’s 
Manual for IA-32 numeric 
flag details

FSW.de FSR.de 1 Denormalized operand 
Exception

FSW.ze FSR.ze 2 Zero divide Exception

FSW.oe FSR.oe 3 Overflow Exception

FSW.ue FSR.ue 4 Underflow Exception

FSW.pe FSR.pe 5 Precision Exception

FSW.sf FSR.sf 6 Stack Fault

FSW.es FSR.esa 7 Error Summary

FSW.c3:0 FSR.c3:0 8:10,14 Numeric Condition codes

FSW.top FSR.top 11:13 Top of IA-32 numeric stack

FSW.b FSR.b 15 IA-32 FPU Busy always 
equals state of FSW.ES

FTW FSR.tg
{7:0}b

16,18,20,22
,24,26,28,30

Numeric Tags 0-NotEmpty, 
1-Emptyc

zeros 17,19,21,23,25,
27,29,31, 39:47

Ignored – Writes are 
ignored, reads return zero

MXCSR.ie FSR.ie 32 SSE Invalid operation 
Exception

Does not reflect the status 
of Intel® Itanium® 
floating-point execution. 

See Intel® 64 and IA-32 
Architectures Software 
Developer’s Manual for 
details.

MXCSR.de FSR.de 33 SSE Denormalized operand 
Exception

MXCSR.ze FSR.ze 34 SSE Zero divide Exception

MXCSR.oe FSR.oe 35 SSE Overflow Exception

MXCSR.ue FSR.ue 36 SSE Underflow Exception

MXCSR.pe FSR.pe 37 SSE Precision Exception

reserved 38, 48:63 Reserved

ignored 39:47 Ignored – Writes are 
ignored, reads return zero

a. Exception Summary bit, see Section 6.2.2.5.4, “IA-32 Floating-point Environment” for details
b. Tag encodings indicate whether each IA-32 numeric register contains an zero, NaN, Infinity or Denormal are 

not supported by reads of FSR by Itanium instructions. IA-32 instruction set reads of the FTW field do return 
zero, Nan, Infinity and Denormal classifications.

c. All MMX technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology instruction 
EMMS sets all Numeric Tags to 1 = Empty.

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR) 

IA-32 State Intel® Itanium® 
State Bits IA-32 Usage Usage in the Intel® 

Itanium® Architecture
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• When FSR.es is set to 1 by Itanium architecture-based code, delayed IA-32 
numeric exceptions are generated on the next IA-32 floating-point instruction, 
regardless of numeric exception information written into FSR bits; IE, DE, ZE, OE, 
UE, and PE.

• When FSR.es is written with inconsistent state with respect to the FSR bits (IE, DE, 
ZE, OE, and PE), subsequent numeric exceptions may report inconsistent 
floating-point status bits. 

For Itanium instructions, the implementation can either raise Reserved Register/Field 
faults on non-zero writes to the reserved fields, or write the value and return the last 
value written on reads. FSR, FDR, and FIR must be preserved across a context switch to 
generate and accurately report numeric exceptions.

6.2.2.6 IA-32 Intel® MMX™ Technology Registers

The eight IA-32 Intel MMX technology registers are mapped on the eight Itanium 
floating-point registers FR8 - FR15 where MM0 is mapped to FR8 and MM7 is mapped to 
FR15. The MMX technology register mapping for the IA-32 floating-point stack view is 
dependent on the floating-point IA-32 Top-of-Stack value. 

• When a value is written to an MMX technology register using an IA-32 MMX 
technology instruction: 

• The exponent field of the corresponding floating-point register (bits 80-64) and 
the sign bit (bit 81) are set to all ones.

• The mantissa (bits 63-0) is set to the MMX technology data value.

• When a value is read from an MMX technology register by an IA-32 MMX technology 
instruction: 

• The exponent field of the corresponding floating-point register (bits 80-64) and 
its sign bit (bit 81) are ignored, including any NaTVal encodings.

As a result of this mapping, the mantissa of a floating-point value written by either 
IA-32 or Itanium floating-point instructions will also appear in an IA-32 MMX technology 
register. An IA-32 MMX technology register will also appear in one of the eight mapped 
floating-point register’s mantissa field.

Figure 6-1. Floating-point Data Register (FDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

operand offset (fea)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) operand selector (fds)

Figure 6-2. Floating-point Instruction Register (FIR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

code offset (fip)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved opcode {10:0} (fop) code selector (fcs)

Figure 6-3. IA-32 Intel® MMX™ Technology Registers (MM0 to MM7)

81 80 64 63 0

1 ones MM0..MM7{31:0} FR8-15



1:130 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

To avoid performance degradation, software programmers are strongly recommended 
not to intermix IA-32 floating and IA-32 MMX technology instructions. See the Intel® 
64 and IA-32 Architectures Software Developer’s Manual for MMX technology 
coding guidelines for details.

6.2.2.7 IA-32 SSE Registers

The eight 128-bit IA-32 SSE registers (XMM0-7) are mapped on sixteen physical 
Itanium floating-point register pairs FR16 - FR31. The low order 64-bits of XMM0 are 
mapped to FR16{63:0}, and the high order 64-bits of XMM0 are mapped to 
FR17{63:0}. 

• When a value is written to an SSE register using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits 
80-64) is set to 0x1003E and the sign bit (bit 81) is set to 0.

• The mantissa (bits 63-0) is set to the XMM data value bits{63:0} for even 
registers and bits{127:64} for odd registers.

• When a SSE register is read using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits 
80-64) and the sign bit (bit 81) are ignored, including any NaTVal encodings.

6.2.3 Memory Model Overview

Virtual addresses within either the Itanium or IA-32 instruction set are defined to 
address the same physical memory location. Itanium instructions directly generate 
64-bit virtual addresses. IA-32 instructions generate 16- or 32-bit effective addresses 
that are then converted into 32-bit virtual addresses by IA-32 segmentation. 32-bit 
virtual addresses are then converted into 64-bit virtual addresses by zero extending to 
64-bits. Zero extension places all IA-32 memory references in the lower 4G-bytes of 
the 64-bit virtual address space within virtual region 0. Virtual addresses generated by 
either instruction set are then translated into physical addresses using memory 
management mechanisms defined in Chapter 4, “Addressing and Protection” in Volume 
2. 

Figure 6-4. SSE Registers (XMM0-XMM7)

81 80 64 63 0

0 0x1003E XMM0-7{127:64} FR17-31, odd

81 80 64 63 0

0 0x1003E XMM0-7{63:0} FR16-30, even
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6.2.3.1 Memory Endianess

Memory integer and floating-point (IEEE) data types are binary compatible between the 
IA-32 and Itanium instruction sets. Itanium architecture-based applications and 
operating systems that interact with IA-32 code should use “little-endian” accesses to 
ensure that memory formats are the same. All IA-32 instruction data and instruction 
memory references are forced to “little-endian.”

6.2.3.2 IA-32 Segmentation

Segmentation is not used for Itanium instruction set memory references. Segmentation 
is performed on IA-32 instruction set memory references based on the state of 
EFLAG.vm and CFLG.pe. Either Real Mode, VM86, or Protected Mode segmentation 
rules are followed as defined in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, specifically: 

• IA-32 Data 16/32-bit Effective Addresses: 16 or 32-bit effective addresses are 
generated, based on CSD.d, SSD.b and prefix overrides, by the addition of a base 
register, scaled index register and 16/32-bit displacement value. Starting effective 
addresses (first byte of multi-byte operands) larger than 16 or 32 bits are truncated 
to 16 or 32-bits. Ending (last byte of multi-byte operands) 16-bit effective 
addresses can extend above the 64K byte boundary, however, ending 32-bit 
effective addresses are truncated to 32-bits and do not extend above the 4G-byte 
effective address boundary. Refer to the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual for complete details on wrap conditions.

• IA-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is 
used as the effective address. Starting EIP values (first byte of multi-byte 
instruction) larger than 16 or 32 bits are truncated to 16 or 32-bits. Ending (last 
byte of multi-byte instruction) 16-bit effective addresses can extend above the 64K 
byte boundary, however, ending 32-bit EIP values are truncated to 32-bits and do 
not extend above the 4G-byte effective address boundary.

• IA-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective 
address is mapped into the 32-bit virtual address space by the addition of a 
segment base. Full segment protection and limit checks are verified as specified by 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual and 
additional checks as specified in this section. Starting 32-bit virtual addresses are 
truncated to 32-bits after the addition of the segment base. Ending virtual address 

Figure 6-5. Memory Addressing Model
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(last byte of a multiple byte operand or instruction) is truncated (wrapped) at the 
4G-byte virtual boundary

• IA-32 64-bit Address Generation: The resultant 32-bit virtual address is 
converted into a 64-bit virtual address by zero extending to 64-bits, this places all 
IA-32 instruction set memory references within the first 4G-bytes of the 64-bit 
virtual address space within virtual region 0.

If IA-32 code is utilizing a flat segmented model (segment bases are set to zero) then 
IA-32 and Itanium architecture-based code can freely exchange pointers after a pointer 
has been zero extended to 64-bits. For segmented IA-32 code, effective address 
pointers must be first transformed into a virtual address before they are shared with 
Itanium architecture-based code. 

6.2.3.3 Self Modifying Code

While operating in the IA-32 instruction set, self modifying code and instruction cache 
coherency (coherency with respect to the local processor’s data cache) is supported for 
all IA-32 programs. Self modifying code detection is directly supported at the same 
level of compatibility as the Pentium processor. Software must insert an IA-32 branch 
instruction between the store operation and the instruction modified for the updated 
instruction bytes to be recognized. 

It is undefined whether the processor will detect a IA-32 self modifying code event for 
the following conditions; 1) PSR.dt or PSR.it is 0, or 2) there are virtual aliases to 
different physical addresses between the instruction and data TLBs. To ensure self 
modifying code works correctly for IA-32 applications, the operating system must 
ensure that there are no virtual aliases to different physical addresses between the 
instruction and data TLBs.

When switching from the Itanium instruction set to the IA-32 instruction set, and while 
executing Itanium instructions, self modifying code and instruction cache coherency are 
not directly supported by the processor hardware. Specifically, if a modification is made 
to IA-32 instructions by Itanium instructions, Itanium architecture-based code must 
explicitly synchronize the instruction caches with the code sequence defined in 
“Memory Consistency” on page 1:72. Otherwise the modification may or may not be 
observed by subsequent IA-32 instructions.

When switching from the IA-32 to the Itanium instruction sets, modification of the local 
instruction cache contents by IA-32 instructions is detected by the processor hardware. 
The processor ensures that the instruction cache is made coherent with respect to the 
modification and all subsequent Itanium instruction fetches see the modification.

6.2.3.4 Memory Ordering Interactions

IA-32 instructions are mapped into the Itanium memory ordering model as follows:

• All IA-32 stores have release semantics

• All IA-32 loads have acquire semantics

• All IA-32 read-modify-write or lock instructions have release and acquire 
semantics (fully fenced).
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Instruction set transitions do not automatically fence memory data references. To 
ensure proper ordering software needs to take into account the following ordering 
rules.

Transitions from Itanium instruction set to IA-32 instruction set

• All data dependencies are honored, IA-32 loads see the results of all prior Itanium 
stores

• IA-32 stores (release) can not pass any prior Itanium load or store

• IA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium 
store to a different address. Itanium architecture-based software can prevent IA-32 
loads from passing prior Itanium loads and stores by issuing an acquire operation 
(or mf) before the instruction set transition.

Transitions from IA-32 instruction set to Itanium instruction set

• All data dependencies are honored, Itanium loads see the results of all prior IA-32 
stores

• Itanium stores or loads can not pass prior IA-32 loads (acquire)

• Itanium unordered stores or any Itanium load can pass prior IA-32 stores (release) 
to a different address. Itanium architecture-based software can prevent Itanium 
loads and stores from passing prior IA-32 stores by issuing a release operation (or 
mf) after the instruction set transition.

6.2.4 IA-32 Usage of Intel® Itanium® Registers

This section lists software considerations for the Itanium general and floating-point 
registers, and the ALAT when interacting with IA-32 code. 

6.2.4.1 Register Stack Engine

Software must ensure that all dirty registers in the register stack have been flushed to 
the backing store using a flushrs instruction before starting IA-32 execution via either 
the br.ia or rfi. Any dirty registers left in the current and prior register stack frames 
are left in an undefined state. Software can not rely on the value of these registers 
across an instruction set transition.

Once IA-32 instruction set execution is entered, the RSE is effectively disabled, 
regardless of any RSE control register enabling conditions.

After exiting the IA-32 instruction set due to a jmpe instruction or interruption, all 
stacked registers are marked as invalid and the number of clean registers is set to zero.

6.2.4.2 ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software 
cannot rely on ALAT state being preserved across an instruction set transition. On entry 
to IA-32 code, existing entries in the ALAT are ignored. For details on the ALAT, refer to 
Section 4.4.5.2, “Data Speculation and Instructions” on page 1:64.
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6.2.4.3 NaT/NaTVal Response for IA-32 Instructions

If Itanium architecture-based code sets a NaT condition in the integer registers or a 
NaTVal condition in a floating-point register, MMX technology, or SSE register before 
switching to the IA-32 instruction set the following conditions can arise:

• When the IA-32 instruction set is entered, NaT values must not be contained in any 
register defined to contain IA-32 state, otherwise processor operation is model 
specific and undefined. Processors may generate a NaT Register Consumption Abort 
on any IA-32 instruction at any time (including the first IA-32 instruction) for all 
IA-32 integer, MMX technology, SSE, or FP instructions regardless of whether not 
that instruction directly (or indirectly) references a register containing a NaT. NaT 
Register Consumption aborts encountered during IA-32 execution may terminate 
IA-32 instructions in the middle of execution with architectural state already 
modified.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point 
instructions, otherwise processor operation is model specific and undefined. 
Processors may convert floating-point register(s) containing NaTVal to a SNAN 
(during entry to the IA-32 instruction set or on a consuming IA-32 floating-point 
instruction). Dependent IA-32 floating-point instructions that directly or indirectly 
consume a propagated NaTVal register will either propagate the NaTVal indication 
or generate an IA_32_Exception (FPError Invalid Operand) fault. Whether a 
processor generates the fault or propagates the NaTVal is model specific. In no case 
will the processor allow a NaTVal register to be used without either propagating the 
NaTVal or generating an IA_32_Exception (FPError Invalid Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with 
an IA-32 floating-point load instruction since a NaTVal cannot be expressed by 
a 80-bit double extended precision number. It is highly recommended that 
floating-point values be passed on the memory stack per typical IA-32 calling 
conventions to avoid problems with NatVal and Itanium denormals.

• IA-32 SSE instructions that directly or indirectly consume a register containing a 
NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s 
mantissa field as a legal data value.

• IA-32 MMX technology instructions that directly or indirectly consume a register 
containing a NaTVal encoding, will ignore the NaTVal encoding and interpret the 
register’s mantissa field as a legal data value.

Software should not rely on the behavior of NaT or NaTVal during IA-32 instruction 
execution, or propagate NaT or NaTVal into IA-32 instructions.

§
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About the Optimization Guide 1

The second portion of this document explains in detail optimization techniques 
associated with the Itanium instruction set. It is intended for those interested in 
furthering their understanding of application architecture features and optimization 
techniques that benefit application performance. Intel and the industry are developing 
compilers to take advantage of these techniques. Application developers are not 
advised to use this as a guide to assembly language programming for the Itanium 
architecture. 

Note: To demonstrate techniques, this guide contains code examples that are not tar-
geted towards a specific processor based on the Itanium architecture, but 
rather a hypothetical implementation. For these code examples, ALU operations 
are assumed to take one cycle and loads take two cycles to return from first 
level cache and that there are two load/store execution units and four ALUs. 
Other latencies and execution unit details are described as needed 

1.1 Overview of the Optimization Guide

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” 
provides an overview of the application programming environment.

Chapter 3, “Memory Reference” discusses features and optimizations related to control 
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization 
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on 
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in 
floating- point applications and features that address these limitations.

§
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Introduction to Programming for the Intel® 
Itanium® Architecture 2

2.1 Overview

The Itanium instruction set is designed to allow the compiler to communicate 
information to the processor to manage resource characteristics such as instruction 
latency, issue width, and functional unit assignment. Although such resources can be 
statically scheduled, the Itanium architecture does not require that code be written for 
a specific microarchitecture implementation in order to be functional.

The Itanium architecture includes a complete instruction set with new features 
designed to: 

• Increase instruction-level parallelism (ILP).

• Better manage memory latencies.

• Improve branch handling and management of branch resources.

• Reduce procedure call overhead.

The architecture also enables high floating-point performance and provides direct 
support for multimedia applications.

Complete descriptions of the syntax and semantics of Itanium instructions can be found 
in Volume 3: Intel® Itanium® Instruction Set Reference. Though this chapter provides 
a high level introduction to application level programming, it assumes prior experience 
with assembly language programming as well as some familiarity with the Itanium 
application architecture. Optimization is explored in other chapters of this guide.

2.2 Registers

The architecture defines 128 general purpose registers, 128 floating-point registers, 64 
predicate registers, and up to 128 special purpose registers. The large number of 
architectural registers enable multiple computations to be performed without having to 
frequently spill and fill intermediate data to memory.

There are 128, 64-bit general purpose registers (r0-r127) that are used to hold 
values for integer and multimedia computations. Each of the 128 registers has one 
additional NaT (Not a Thing) bit which is used to indicate whether the value stored in 
the register is valid. Execution of Itanium speculative instructions can result in a 
register’s NaT bit being set. Register r0 is read-only and contains a value of zero (0). 
Attempting to write to r0 will cause a fault.

There are 128, 82-bit floating-point registers (f0-f127) that are used for 
floating-point computations. The first two registers, f0 and f1, are read-only and read 
as +0.0 and +1.0, respectively. Instructions that write to f0 or f1 will fault.
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There are 64, one-bit predicate registers (p0-p63) that control conditional execution 
of instructions and conditional branches. The first register, p0, is read-only and always 
reads true (1). The results of instructions that write to p0 are discarded.

There are 8, 64-bit branch registers (b0-b7) that are used to specify the target 
addresses of indirect branches. 

There is space for up to 128 application registers (ar0-ar127) that support various 
functions. Many of these register slots are reserved for future use. Some application 
registers have assembler aliases. For example, ar66 is the Epilogue Counter and is 
called ar.ec.

The instruction pointer is a 64-bit register that points to the currently executing 
instruction bundle.

2.3 Using Intel® Itanium® Instructions

Itanium instructions are grouped into 128-bit bundles of three instructions. Each 
instruction occupies the first, second, or third slot of a bundle.   Instruction format, 
expression of parallelism, and bundle specification are described below.

2.3.1 Format

A basic Itanium instruction has the following syntax:

[qp] mnemonic[.comp]   dest=srcs

Where:

qp Specifies a qualifying predicate register. The value of the qualifying 
predicate determines whether the results of the instruction are committed 
in hardware or discarded. When the value of the predicate register is true 
(1), the instruction executes, its results are committed, and any 
exceptions that occur are handled as usual. When the value is false (0), 
the results are not committed and no exceptions are raised. Most Itanium 
instructions can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an Itanium instruction.

comp Specifies one or more instruction completers. Completers indicate optional 
variations on a base instruction mnemonic. Completers follow the 
mnemonic and are separated by periods.

dest Represents the destination operand(s), which is typically the result 
value(s) produced by an instruction.

srcs Represents the source operands. Most Itanium instructions have at least 
two input source operands.

2.3.2 Expressing Parallelism

The Itanium architecture requires the compiler or assembly writer to explicitly indicate 
groups of instructions, called instruction groups, that have no register read after write 
(RAW) or write after write (WAW) register dependencies. Instruction groups are 
delimited by stops in the assembly source code. Since instruction groups have no RAW 
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or WAW register dependencies, they can be issued without hardware checks for register 
dependencies between instructions. Both of the examples below show two instruction 
groups separated by stops (indicated by double semicolons):
ld8 r1=[r5] ;; // First group
add r3=r1,r4 // Second group

A more complex example with multiple register flow dependencies is shown below:
ld8 r1=[r5] // First group
sub r6=r8,r9 ;;// First group
add r3=r1,r4 // Second group
st8 [r6]=r12 // Second group

All instructions in a single instruction group may not necessarily issue in parallel 
because specific implementations may not have sufficient resources to issue all 
instructions in an instruction group.

2.3.3 Bundles and Templates

In assembly code, each 128-bit bundle is enclosed in curly braces and contains a 
template specification and three instructions. Thus, a stop may be specified at the end 
of any bundle or in the middle of a bundle by using one of two special template types 
that implicitly include mid-bundle stops.

Each instruction in a bundle is 41-bits long. Five other bits are used by a template-type 
specification. Bundle templates enable processors based on the Itanium architecture to 
dispatch instructions with simple instruction decoding, and stops enable explicit 
specification of parallelism.

There are five slot types (M, I, F, B, and L), six instruction types (M, I, A, F, B, L), and 
12 basic template types (MII, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB, MMB, 
MFB). Each basic template type has two versions: one with a stop after the third slot 
and one without. Instructions must be placed in slots corresponding to their instruction 
types based on the template specification, except for A-type instructions that can go in 
either I or M slots. For example, a template specification of.MII means that of the 
three instructions in a bundle, the first is a memory (M) or A-type instruction, and the 
next two are ALU integer (I) or A-type instructions:
{ .mii
ld4  r28=[r8] // Load a 4-byte value
add r9=2,r1 // 2+r1 and put in r9
add  r30=1,r1 // 1+r1 and put in r30
}

For readability, most code examples in this book do not specify templates or braces.

Note: Bundle boundaries have no direct correlation with instruction group boundaries 
as instruction groups can extend over an arbitrary number of bundles. Instruc-
tion groups begin and end where stops are set in assembly code, and dynami-
cally whenever a branch is taken or a stop is encountered.
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2.4 Memory Access and Speculation

The Itanium architecture provides memory access only through register load and store 
instructions and special semaphore instructions. The architecture also provides 
extensive support for hiding memory latency via programmer-controlled speculation.

2.4.1 Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in 
memory in little endian byte order, in which the least significant byte appears in the 
lowest addressed byte of a memory location. For data, modes for both big and little 
endian byte order are supported and can be controlled by a bit in the User Mask 
Register.

Integer loads of one, two, and four bytes are zero-extended, since all 64 bits of each 
register are always written. Integer stores write one, two, four, or eight bytes of 
registers to memory as specified.

2.4.2 Speculation

Speculation allows a programmer to break data or control dependencies that would 
normally limit code motion. The two kinds of speculation are called control speculation 
and data speculation. This section summarizes speculation in the Itanium architecture. 
See Chapter 3, “Memory Reference” for more detailed descriptions of speculative 
instruction behavior and application.

2.4.3 Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above 
branches. Support for this is enabled by special NaT bits that are attached to integer 
registers and by special NatVal values for floating-point registers. When a speculative 
load causes an exception, it is not immediately raised. Instead, the NaT bit is set on the 
destination register (or NatVal is written into the floating-point register). Subsequent 
speculative instructions that use a register with a set NaT bit propagate the setting until 
a non-speculative instruction checks for or raises the deferred exception.

For example, in the absence of other information, the compiler for a typical RISC 
architecture cannot safely move the load above the branch in the sequence below:
(p1) br.cond.dptk L1 // Cycle 0
     ld8 r3=[r5];; // Cycle 1
     shr r7=r3,r87 // Cycle 3

Supposing that the latency of a load is 2 cycles, the shift right (shr) instruction will 
stall for 1. However, by using the speculative loads and checks provided in the Itanium 
architecture, two cycles can be saved by rewriting the above code as shown below:
 ld8.s r3=[r5] // Earlier cycle
 // Other instructions

(p1) br.cond.dptk L1;; // Cycle 0
     chk.s r3,recovery // Cycle 1
     shr r7=r3,r87  // Cycle 1



Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:143

This code assumes r5 is ready when accessed and that there are sufficient instructions 
to fill the latency between the ld8.s and the chk.s.

2.4.4 Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory 
references. Advanced loads exclusively refer to data speculative loads. Review the 
order of loads and stores in this assembly sequence:
st8 [r55]=r45 // Cycle 0
ld8 r3=[r5] ;; // Cycle 0
shr r7=r3,r87 // Cycle 2

The Itanium architecture allows the programmer to move the load above the store even 
if it is not known whether the load and the store reference overlapping memory 
locations. This is accomplished using special advanced load and check instructions:
ld8.a r3=[r5] // Advanced load
// Other instructions

st8 [r55]=r45 // Cycle 0
ld8.c r3=[r5] // Cycle 0 - check
shr r7=r3,r87 // Cycle 0

Note: The shr instruction in this schedule could issue in cycle 0 if there were no con-
flicts between the advanced load and intervening stores. If there were a con-
flict, the check load instruction (ld8.c) would detect the conflict and reissue 
the load. 

2.5 Predication

Predication is the conditional execution of an instruction based on a qualifying 
predicate. A qualifying predicate is a predicate register whose value determines 
whether the processor commits the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare 
(cmp) and test bit (tbit). When the value of a qualifying predicate associated with an 
instruction is true (1), the processor executes the instruction, and instruction results 
are committed. When the value is false (0), the processor discards any results and 
raises no exceptions. Consider the following C code:
if (a) {
    b = c + d;
}
if (e) {
    h = i + j;
}
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This code can be implemented in the Itanium architecture using qualifying predicates so 
that branches are removed. The pseudo-code shown below implements the C 
expressions without branches:
cmp.ne p1,p2=a,r0 // p1 <- a!= 0
cmp.ne  p3,p4=e,r0 ;; // p3 <- e != 0
(p1)add b=c,d // If a!= 0 then add
(p3)sub h=i,j // If e!= 0 then sub

See Chapter 4, “Predication, Control Flow, and Instruction Stream” for detailed 
discussion of predication. There are a few special cases where predicated instructions 
read or write architectural resources regardless of their qualifying predicate.

2.6 Architectural Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur 
significant overhead during procedure calls and returns. To address this problem, a 
subset of the Itanium general registers are organized as a logically infinite set of stack 
frames that are allocated from a finite pool of physical registers.

2.6.1 Stacked Registers

Registers r0 through r31 are called global or static registers and are not part of the 
stacked registers. The stacked registers are numbered r32 up to a user-configurable 
maximum of r127.

A called procedure specifies the size of its new stack frame using the alloc instruction. 
The procedure can use this instruction to allocate up to 96 registers per frame shared 
amongst input, output, and local values. When a call is made, the output registers of 
the calling procedure are overlapped with the input registers of the called procedure, 
thus allowing parameters to be passed with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always 
referenced in a procedure starting at r32.

2.6.2 Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the 
Register Stack Engine (RSE). The RSE moves the contents of physical registers between 
the general register file and memory without explicit program intervention. This 
provides a programming model that looks like an unlimited physical register stack to 
compilers; however, saving and restoring of registers by the RSE may be costly, so 
compilers should still attempt to minimize register usage.

2.7 Branches and Hints

Since branches have a major impact on program performance, the Itanium architecture 
includes features to improve their performance by:
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• Using predication to reduce the number of branches in the code. This improves 
instruction fetching because there are fewer control flow changes, decreases the 
number of branch mispredicts since there are fewer branches, and it increases the 
branch prediction hit rates since there is less competition for prediction resources.

• Providing software hints for branches to improve hardware use of prediction and 
prefetching resources.

• Supplying explicit support for software pipelining of loops and exit prediction of 
counted loops.

2.7.1 Branch Instructions

Branching in the Itanium architecture is largely expressed the same way as on other 
microprocessors. The major difference is that branch triggers are controlled by 
predicates rather than conditions encoded in branch instructions. The architecture also 
provides a rich set of hints to control branch prediction strategy, prefetching, and 
specific branch types like loops, exits, and branches associated with software pipelining. 
Targets for indirect branches are placed in branch registers prior to branch instructions.

2.7.2 Loops and Software Pipelining

Compilers sometimes try to improve the performance of loops by using unrolling.   
However, unrolling is not effective on all loops for the following reasons:

• Unrolling may not fully exploit the parallelism available.

• Unrolling is tailored for a statically defined number of loop iterations.

• Unrolling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, the 
Itanium architecture provides architectural support for software pipelining. Software 
pipelining enables the compiler to interleave the execution of several loop iterations 
without having to unroll a loop. Software pipelining is performed using:

• Loop-branch instructions.

• LC and EC application registers.

• Rotating registers and loop stage predicates.

• Branch hints that can assign a special prediction mechanism to important branches.

In addition to software pipelined while and counted loops, the architecture provides 
particular support for simple counted loops using the br.cloop instruction. The cloop 
branch instruction uses the 64-bit Loop Count (LC) application register rather than a 
qualifying predicate to determine the branch exit condition. 

For a complete discussion of software pipelining support, see Chapter 5, “Software 
Pipelining and Loop Support.”

2.7.3 Rotating Registers

Rotating registers enable succinct implementation of software pipelining with 
predication.    Rotating registers are rotated by one register position each time one of 
the special loop branches is executed. Thus, after one rotation, the content of register X 
will be found in register X+1 and the value of the highest numbered rotating register 
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will be found in r32. The size of the rotating region of general registers can be any 
multiple of 8 and is selected by a field in the alloc instruction. The predicate and 
floating-point registers can also be rotated but the number of rotating registers is not 
programmable: predicate registers p16 through p63 are rotated, and floating-point 
registers f32 through f127 are rotated.

2.8 Summary

The Itanium architecture provides features that reduce the effects of traditional 
microarchitectural performance barriers by enabling:

• Improved ILP with a large number of registers and software scheduling of 
instruction groups and bundles.

• Better branch handling through predication.

• Reduced overhead for procedure calls through the register stack mechanism.

• Streamlined loop handling through hardware support of software pipelined loops.

• Support for hiding memory latency using speculation.

§
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Memory Reference 3

3.1 Overview

Memory latency is a major factor in determining the performance of integer 
applications. In order to help reduce the effects of memory latency, the Itanium 
architecture explicitly supports software pipelining, large register files, and 
compiler-controlled speculation. This chapter discusses features and optimizations 
related to compiler-controlled speculation. See Chapter 5, “Software Pipelining and 
Loop Support” for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in the Itanium 
architecture, and general concepts and terminology related to data dependencies. The 
concept of speculation is then introduced, followed by discussions and examples of how 
speculation is used. The remainder of this chapter describes several important 
optimizations related to memory access and instruction scheduling.

3.2 Non-speculative Memory References

The Itanium architecture supports non-speculative loads and stores, as well as explicit 
memory hint instructions.

3.2.1 Stores to Memory

Itanium integer store instructions can write either 1, 2, 4, or 8 bytes and 4, 8, or 10 
bytes for floating-point stores. For example, a st4 instruction will write the first four 
bytes of a register to memory.

Although the Itanium architecture uses a little endian memory byte order by default, 
software can change the byte order by setting the big endian (be) bit of the user mask 
(UM).

3.2.2 Loads from Memory

Itanium integer load instructions can read either 1, 2, 4, or 8 bytes from memory 
depending on the type of load issued. Loads of 1, 2, or 4 bytes of data are 
zero-extended to 64-bits prior to being written into their target registers.

Although loads are provided for various data types, the basic data type is the quadword 
(8 bytes). Apart from a few exceptions, all integer operations are on quadword data. 
This can be particularly important when dealing with signed integers and 32-bit 
addresses, or any addresses that are shorter than 64 bits.
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3.2.3 Data Prefetch Hint

The lfetch instruction requests that lines be moved between different levels of the 
memory hierarchy. Like all hint instructions defined in the Itanium architecture, lfetch 
has no effect on program correctness, and any microarchitecture implementation may 
choose to ignore it.

3.3 Instruction Dependencies

Data and control dependencies are fundamental factors in optimization and instruction 
scheduling. Such dependencies can prevent a compiler from scheduling instructions in 
an order that would yield shorter critical paths and better resource usage since they 
restrict the placement of instructions relative to other instructions on which they are 
dependent.

In general, memory references are the major source of control and data dependencies 
that cannot be broken due to getting a wrong answer (if a data dependency is broken) 
or raising a fault that should not be raised (if a control dependency is broken). This 
section describes:

• Background material on memory reference dependencies.

• Descriptions of how dependencies constrain code scheduling on traditional 
architectures.

Section 3.4 describes memory reference features defined in the Itanium architecture 
that increase the number of dependencies that can be removed by a compiler.

3.3.1 Control Dependencies

An instruction is control dependent on a branch if the direction taken by the branch 
affects whether the instruction is executed. In the code below, the load instruction is 
control dependent on the branch:
(p1)br.cond some_label
ld8 r4=[r5]

The following sections provide overviews of control dependencies and their effects on 
optimization.

3.3.1.1 Instruction Scheduling and Control Dependencies

The code below contains a control dependency at the branch instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23

(p1) br.cond some_label ;;

ld4 r2=[r3];; // Cycle 1
sub r4=r2,r11 // Cycle 3
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A compiler cannot safely move the load instruction before the branch unless it can 
guarantee that the moved load will not cause a fatal program fault or otherwise corrupt 
program state. Since the load cannot be moved upward, the schedule cannot be 
improved using normal code motion. 

Thus, the branch creates a barrier to instructions whose execution depends upon it. In 
Figure 3-1, the load in block B cannot be moved up because of a conditional branch at 
the end of block A.

3.3.2 Data Dependencies

A data dependency exists between an instruction that accesses a register or memory 
location and another instruction that alters the same register or location. 

3.3.2.1 Basics of Data Dependency

The following basic terms describe data dependencies between instructions:

• Write-after-write (WAW)

A dependency between two instructions that write to the same register or memory 
location.

• Write-after-read (WAR)

A dependency between two instructions in which an instruction reads a register or 
memory location that a subsequent instruction writes.

• Read-after-write (RAW)

A dependency between two instructions in which an instruction writes to a register 
or memory location that is read by a subsequent instruction.

• Ambiguous memory dependencies

Dependencies between a load and a store, or between two stores where it cannot 
be determined if the involved instructions access overlapping memory locations. 
Ambiguous memory references include possible WAW, WAR, or RAW dependencies.

• Independent memory references

References by two or more memory instructions that are known not to have 
conflicting memory accesses.

Figure 3-1. Control Dependency Preventing Code Motion
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3.3.2.2 Data Dependency in the Intel® Itanium® Architecture

The Itanium architecture requires the programmer to insert stops between RAW and 
WAW register dependencies to ensure correct code results. For example, in the code 
below, the add instruction computes a value in r4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1
sub r7=r4,r9 // Instruction group 2

The stop after the add instruction terminates one instruction group so that the sub 
instruction can legally read r4.

On the other hand, implementations based on the Itanium architecture are required to 
observe memory-based dependencies within an instruction group. In a single 
instruction group, a program can contain memory-based data dependent instructions 
and hardware will produce the same results as if the instructions were executed 
sequentially and in program order. The pseudo-code below demonstrates a memory 
dependency that will be observed by hardware:

mov r16=1
mov r17=2 ;;
st8 [r15]=r16 
st8 [r14]=r17;;

If the address in r14 is equal to the address in r15, uni-processor hardware guarantees 
that the memory location will contain the value in r17 (2). The following RAW 
dependency is also legal in the same instruction group even if software is unable to 
determine if r1 and r2 overlap:

st8 [r1]=x
ld4 y=[r2]

3.3.2.3 Instruction Scheduling and Data Dependencies

The dependency rules are sufficient to generate correct code, but to generate efficient 
code, the compiler must take into account the latencies of instructions. For example, 
the generic implementation has a two cycle latency to the first level data cache. In the 
code below, the stop maintains correct ordering, but a use of r2 is scheduled only one 
cycle after its load:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3



Volume 1, Part 2: Memory Reference 1:151

Since the latency of a load is two cycles, the sub instruction will stall until cycle three.  
To avoid a stall, the compiler can move the load earlier in the schedule so that the 
machine can perform useful work each cycle:

ld4 r2=[r3] // Cycle 0
add r7=r6,1
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29;; // Cycle 1

sub r4=r2,r11 // Cycle 2

In this code, there are enough independent instructions to move the load earlier in the 
schedule to make better use of the functional units and reduce execution time by one 
cycle.

Now suppose that the original code sequence contained an ambiguous memory 
dependency between a store instruction and the load instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.ne p1,p2=r12,r23;;

st4 [r29]=r13 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3

In this case, the load cannot be moved past the store due to the memory dependency. 
Stores will cause data dependencies if they cannot be disambiguated from loads or 
other stores.

In the absence of other architectural support, stores can prevent moving loads and 
their dependent instructions:  The following C language statements could not be 
reordered unless ptr1 and ptr2 were statically known to point to independent memory 
locations:

*ptr1 = 6;
x = *ptr2;

3.4 Using Speculation in the Intel® Itanium® 
Architecture to Overcome Dependencies

Both data and control dependencies constrain optimization of program code. The 
Itanium architecture provides support for two basic techniques used to overcome 
dependencies:

• Data speculation: Allow a load and possibly its uses to be moved across 
ambiguous memory writes.

• Control speculation: Allows a load and possibly its uses to be moved across a 
branch on which the load is control dependent.

These techniques are used to hide load latencies and reduce execution time.  
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3.4.1 Speculation Model in the Intel® Itanium® Architecture

The limitations imposed by dependencies on instruction scheduling can be solved by 
separating the loading of data from the exception handling or the acknowledgment of 
data conflicts. The Itanium architecture supports special speculative versions of 
instructions to accomplish this:

• Control speculative load instructions defer exceptions.

• Data speculative load instructions save address information.

• Special check instructions check for exceptions or data conflicts.

An Itanium speculative load can be moved above a dependency barrier (shown as a 
dashed line) as shown in Figure 3-2.

The check detects a deferred exception or a conflict with an intervening store and 
provides a mechanism to recover from failed speculation. With this support, speculative 
loads and their uses can be scheduled earlier than non-speculative instructions. As a 
result, the memory latencies of these loads can be hidden more easily than for 
non-speculative loads.

3.4.2 Using Data Speculation in the Intel® Itanium® 
Architecture

Data speculation in the Itanium architecture uses a special load instruction (ld.a) 
called an advanced load instruction and an associated check instruction (chk.a or ld.c) 
to validate data-speculated results.

When the ld.a instruction is executed, an entry is allocated in a hardware structure 
called the Advanced Load Address Table (ALAT).  The ALAT is indexed by physical 
register number and records the load address, the type of the load, and the size of the 
load.

A check instruction must be executed before the result of an advanced load can be used 
by any non-speculative instruction.  The check instruction must specify the same 
register number as the corresponding advanced load.

When a check instruction is executed, the ALAT is searched for an entry with the same 
target physical register number and type.   If an entry is found, execution continues 
normally with the next instruction.

Figure 3-2. Speculation Model in the Intel® Itanium® Architecture
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If no matching entry is found, the speculative results need to be recomputed:

• Use a chk.a if a load and some of its uses are speculated.  The chk.a jumps to 
compiler-generated recovery code to re-execute the load and dependent 
instructions.

• Use a ld.c if no uses of the load are speculated.  The ld.c reissues the load.

Entries are removed from the ALAT due to:

• Stores that write to addresses overlapping with ALAT entries.

• Other advanced loads that target the same physical registers as ALAT entries.

• Implementation-defined hardware or operating system conditions needed to 
maintain correctness.

• Limitations of the capacity, associativity, and matching algorithm used for a given 
implementation of the ALAT.

3.4.2.1 Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions.  In the code 
below, a load and store may access conflicting memory addresses:

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can 
be rewritten using an advanced load and check:

ld8.a r6=[r8] // Cycle -2 or earlier

// Other instructions

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8.c r6=[r8] // Cycle 0: check load
add r5=r6,r7;; // Cycle 0 
st8 [r18]=r5 // Cycle 1

The original load has been turned into a check load, and an advanced load has been 
scheduled above the ambiguous store.  If the speculation succeeds, the execution time 
of the remaining non-speculative code is reduced because the latency of the advanced 
load is hidden.

3.4.2.2 Recovery Code Example

Consider again the non-speculative code from the last section:
st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3
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The compiler could move up not only the load, but also one or more of its uses. This 
transformation uses a chk.a rather than a ld.c instruction to validate the advanced 
load. Using the same example code sequence but now advancing the add as well as the 
ld8 results in:

ld8.a r6=[r8];; // Cycle -3

// other instructions

add r5=r6,r7 // Cycle -1: add that uses r6

// Other instructions

st8 [r4]=r12 // Cycle 0
chk.a r6,recover // Cycle 0: check

back: // Return point from jump to recover
st8 [r18]=r5 // Cycle 0

Recovery code must also be generated:
recover:

ld8 r6=[r8] ;; // Reload r6 from [r8]
add r5=r6,r7 // Re-execute the add 
br back // Jump back to main code

If the speculation fails, the check instruction branches to the label recover where the 
speculated code is re-executed.  If the speculation succeeds, execution time of the 
transformed code is three cycles less than the original code. 

3.4.2.3 Terminology Review

Terms related to speculation, such as advanced loads and check loads, have 
well-defined meanings in the Itanium architecture. The terms below were introduced in 
the preceding sections:

• Data speculative load

A speculative load that is statically scheduled prior to one or more stores upon 
which it may be dependent. The data speculative load instruction is ld.a.

• Advanced load

A data speculative load.

• Check load

An instruction that checks whether a corresponding advanced load needs to be 
re-executed and does so if required. The check load instruction is ld.c.

• Advanced load check

An instruction that takes a register number and an offset to a set of 
compiler-generated instructions to re-execute speculated instructions when 
necessary. The advanced load check instruction is chk.a.

• Recovery code

Program code that is branched to by a speculation check. Recovery code repeats a 
load and chain of dependent instructions to recover from a speculation failure.
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3.4.3 Using Control Speculation in the Intel® Itanium® 
Architecture

The check to determine if control speculation was successful is similar to that for data 
speculation.

3.4.3.1 The NaT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers.  A register 
NaT bit indicates whether the content of a register is valid.  If the NaT bit is set to one, 
the register contains a deferred exception token due to an earlier speculation fault.  In 
a floating-point register, the presence of a special value called the NaTVal signals a 
deferred exception.

During a control speculative load, the NaT bit on the destination register of the load 
may be set if an exception occurs and it is deferred. The exact set of events and 
exceptions that cause an exception to be deferred (thus causing the NaT bit to be set), 
depends in part upon operating system policy. When a speculative instruction reads a 
source register that has its NaT bit set, NaT bits of the target registers of that 
instruction are also set. That is, NaT bits are propagated through dependent 
computations. 

3.4.3.2 Control Speculation Example

When a control speculative load is scheduled, the compiler must insert a speculative 
check, chk.s, along all paths on which results of the speculative load are consumed.  If 
a non-speculative instruction (other than a chk.s) reads a register with its NaT bit set, 
a NaT consumption fault occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of control speculation:
(p1) br.cond some_label // Cycle 0

ld8 r1=[r5];; // Cycle 1
add r2=r1,r3 // Cycle 3

This code can be rewritten using a control speculative load and check. The check can be 
placed in the same basic block as the original load:

ld8.s r1=[r5];; // Cycle -2

// Other instructions

(p1) br.cond some_label // Cycle 0
chk.s r1,recovery // Cycle 0
add r2=r1,r3 // Cycle 0

Until a speculation check is reached dynamically, the results of the control speculative 
chain of instructions cannot be stored to memory or otherwise accessed 
non-speculatively without the possibility of a fault.  If a speculation check is executed 
and the NaT bit on the checked register is set, the processor will branch to recovery 
code pointed to by the check instruction.

It is also possible to test for the presence of set NaT bits and NaTVals using the test NaT 
(tnat) and floating-point class (fclass) instructions.
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Although every speculative computation needs to be checked, this does not mean that 
every speculative load requires its own chk.s. Speculative checks can be optimized by 
taking advantage of the propagation of NaT bits through registers as described in 
Section 3.5.6.

3.4.3.3 Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bits is enabled by st8.spill 
and ld8.fill instructions and the User NaT Collection application register (UNAT).

The “spill general register and NaT” instruction, st8.spill, saves eight bytes of a 
general register to memory and writes its NaT bit into the UNAT. Bits 8:3 of the memory 
address of the store determine which UNAT bit is written with the register NaT value. 
The “fill general register” instruction, ld8.fill, reads eight bytes from memory into a 
general register and sets the register NaT bit according to the value in the UNAT. 
Software is responsible for saving and restoring the UNAT contents to ensure correct 
spilling and filling of NaT bits.

The corresponding floating-point instructions, stf.spill and ldf.fill, save and 
restore floating-point registers in floating-point register format without surfacing 
exceptions due to NaTVals.

3.4.3.4 Terminology Review

The terms below are related to control speculation:

• Control speculative load

A speculative load that is scheduled prior to an earlier controlling branch. 
References to “speculative loads” without qualifiers generally refer to control 
speculative loads and not data speculative loads. Loads using the ld.s instruction 
are control speculative loads.

• Speculation check

An instruction that checks whether a speculative instruction has deferred an 
exception. Speculation check instructions include labels that point to 
compiler-generated recovery code. The speculation check instruction is chk.s.

• Recovery code

Code executed to recover from a speculation failure. Control speculative recovery 
code is analogous to data speculative recovery code.

3.4.4 Combining Data and Control Speculation

A load that is both data and control speculative is called a speculative advanced load. 
The ld.sa instruction performs all the operations of both a speculative load and an 
advanced load. An ALAT entry will not be allocated if this type of load generates a 
deferred exception token, so an advanced load check instruction (chk.a) is sufficient to 
check for both interference from subsequent stores and for deferred exceptions.
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3.5 Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code 
motion than can be performed on traditional architectures. Speculation can increase the 
application of traditional loop optimizations such as invariant code motion and common 
subexpression elimination. The Itanium architecture also offers post-increment loads 
and stores that improve instruction throughput without increasing code size.

Memory reference optimization should take several factors into account including:

• Difference between the execution costs of speculative and non-speculative code.

• Code size.

• Interference probabilities and properties of the ALAT (for data speculation).

The remainder of this chapter discusses these factors and optimizations relating to 
memory accesses.

3.5.1 Speculation Considerations

The use of data speculation requires more attention than the use of control speculation.  
In part this is due to the fact that one control speculative load cannot inadvertently 
cause another control speculative load to fail.  Such an effect is possible with data 
speculative loads since the ALAT has limited capacity and the replacement policy of 
ALAT entries is implementation dependent.   For example, if an advanced load is issued 
and there are no unused ALAT entries, the hardware may choose to invalidate an 
existing entry to make room for a new one.

Moreover, exceptions associated with control speculative calculations are uncommon in 
correct code since they are related to events such as page faults and TLB misses. 
However, excessive control speculation can be expensive as associated instructions fill 
issue slots. 

Although the static critical path of a program may be reduced by the use of data 
speculation, the following factors contribute to the benefit/dynamic cost of data 
speculation:

• The probability that an intervening store will interfere with an advanced load.

• The cost of recovering from a failed advanced load.

• The specific microarchitectural implementation of the ALAT: its size, associativity, 
and matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling 
can help to predict how often ambiguous loads and stores will conflict.

When using advanced loads, there should be case-by-case consideration as to whether 
advancing only a load and using a ld.c might be preferable to advancing both a load 
and its uses, which would require the use of the potentially more expensive chk.a.

Even when recovery code is not executed, its presence extends the lifetimes of 
registers used in data and control speculation, thus increasing register pressure and 
possibly the cost of register movement by the Register Stack Engine (RSE). See 
Section 3.5.3 for information on considerations for recovery code placement.
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3.5.2 Data Interference

Data references with low interference probabilities and high path probabilities can make 
the best use of data speculation.  In the pseudo-code below, assume the probabilities 
that the stores to *p1 and *p2 conflict with var are independent.

*p1 = /* Prob interference = 0.30 */
. . .
*p2 = /* Prob interference = 0.40 */
. . .

    = var /* Load to be advanced */

If the compiler advances the load from var above the stores to pointers p1 and p2, 
then:

Prob that stores to p1 or p2 interfere with var
= 1.0 - (Prob p1 will not interfere with var * 

Prob p2 will not interfere with var)
= 1.0 - (0.70 * 0.60) 
= 0.58 

Given the interference probabilities above, there is a 58% probability at least one of p1 
and p2 will interfere with a load from var if it is advanced above both of them.  A 
compiler can use traditional heuristics concerning data interference and interprocedural 
memory access information to estimate these probabilities.

When advancing loads past function calls, the following should be considered:

• If a called function has many stores in it, it is more likely that actual or aliased ALAT 
conflicts will occur.

• If other advanced loads are executed during the function call, it is possible that 
their physical register numbers will either be identical or conflict with ALAT entries 
allocated from calls in parent functions.

• If it is unknown whether a large number of advanced loads will be executed by the 
called routines, then the possibility that the capacity of that ALAT may be exceeded 
must be considered.

3.5.3 Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible 
increases in code size.  Such consideration is not particular to speculation, but to any 
transformations that cause code to be duplicated, such as loop unrolling, procedure 
inlining, or tail duplication. Techniques to minimize code growth are discussed later in 
this section.

In general, control speculation increases the dynamic code size of a program since 
some of the speculated instructions are executed and their results are never used.  
Recovery code associated with control speculation primarily contributes to the static 
size of the binary since it is likely to be placed out-of-line and not brought into cache 
until a speculative computation fails (uncommon for control speculation).

Data speculation has a similar effect on code size except that it is less likely to compute 
values that are never used since most non-control speculative data speculative loads 
will have their results checked. Also, since control speculative loads only fail in 
uncommon situations such as deferred data related faults (depending on operating 
system configuration), while data speculative loads can fail due to ALAT conflicts, actual 
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memory conflicts, or aliasing in the ALAT, the decision as to where to place recovery 
code for advanced loads is more difficult than for control speculation and should be 
based on the expected conflict rate for each load.

As a general rule, efficient compilers will attempt to minimize code growth related to 
speculation. As an example, moving a load above the join of two paths may require 
duplication of speculative code on every path. The flow graph depicted in Figure 3-3 
and the explanation shows how this could arise.

If the compiler or programmer advanced the load up to block B from its original 
non-speculative position, all speculative code would need to be duplicated in both 
blocks B and C. This duplicated code might be able to occupy NOP slots that already 
exist. But if space for the code is not already available, it might be preferable to 
advance the load to block A since only one copy would be required in this case.

3.5.4 Using Post-increment Loads and Stores

Post-increment loads and stores can improve performance by combining two operations 
in a single instruction.  Although the text in this section mentions only post-increment 
loads, most of the information applies to stores as well.

Post-increment loads are issued on M-units and can increment their address register by 
either an immediate value or by the contents of a general register. The following 
pseudo-code that performs two loads:

ld8 r2=[r1]
add r1=1,r1 ;;
ld8 r3=[r1]

can be rewritten using a post-increment load:
ld8 r2=[r1],1 ;;
ld8 r3=[r1]

Post-increment loads may not offer direct savings in dependency path height, but they 
are important when calculating addresses that feed subsequent loads: 

• A post-increment load avoids code size expansion by combining two instructions 
into one.

• Adds can be issued on either I-units or M-units.  When a program combines an add 
with a load, an I-unit or M-unit resource remains available that otherwise would 
have been consumed.  Thus, throughput of dependent adds and loads can be 
doubled by using post-increment loads.

Figure 3-3. Minimizing Code Size During Speculation
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A disadvantage of post-increment loads is that they create new dependencies between 
post-increment loads and the operations that use the post-increment values. In some 
cases, the compiler may wish to separate post-increment loads into their component 
instructions to improve the overall schedule. Alternatively, the compiler could wait until 
after instruction scheduling and then opportunistically find places where post-increment 
loads could be substituted for separate load and add instructions.

3.5.5 Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like 
invariant code motion.  Examine this pseudo-code:

while (cond) {
    c = a + b; // Probably loop invariant
    *ptr++ = c;// May point to a or b
}

The variables a and b are probably loop invariant; however, the compiler must assume 
the stores to *ptr will overwrite the values of a and b unless analysis can guarantee 
that this can never happen.  The use of advanced loads and checks allows code that is 
likely to be invariant to be removed from a loop, even when a pointer cannot be 
disambiguated:

ld4.a r1 = [&a]
ld4.a r2 = [&b]
add r3 = r1,r2 // Move computation out of loop
while (cond) {
   chk.a.nc r1, recover1

L1: chk.a.nc r2, recover2
L2: *p++ = r3

}

At the end of the module:
recover1: // Recover from failed load of a

ld4.a r1 = [&a]
add r3 = r1, r2
br.sptk L1 // Unconditional branch

recover2: // Recover from failed load of b
ld4.a r2 = [&b]
add r3 = r1, r2
br.sptk L2 // Unconditional branch

Using speculation in this loop hides the latency of the calculation of c whenever the 
speculated code is successful.

Since checks have both a clear (clr) and no clear (nc) form, the programmer must 
decide which to use.  This example shows that when checks are moved out of loops, the 
no clear version should be used.  This is because the clear (clr) version will cause the 
corresponding ALAT entry to be removed (which would cause the next check to that 
register to fail).
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3.5.6 Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size.  The 
propagation of NaT bits and NaTVals via speculative instructions can permit a single 
check of a speculative result to replace multiple intermediate checks.  The code below 
demonstrates this optimization potential:

ld4.s r1=[r10] // Speculatively load to r1
ld4.s r2=[r20] // Speculatively load to r2
add r3=r1,r2;; // Add two speculative values

// Other instructions

chk.s r3,imm21 // Check for NaT bit in r3
st4 [r30]=r1 // Store r1
st4 [r40]=r2 // Store r2
st4 [r50]=r3 // Store r3

Only the result register, r3, needs to be checked before stores of any of r1, r2, or r3.  
If a NaT bit were set at the time of the control speculative loads of r1 or r2, the NaT bit 
would have been propagated to r3 from r1 or r2 via the add instruction.

Another way to reduce the amount of check code is to use control flow analysis to avoid 
issuing extra ld.c or ld.a instructions. For example, the compiler can schedule a 
single check where it is known to be reached by all copies of the advanced load. The 
portion of a flow graph shown in Figure 3-4 demonstrates where this technique might 
be applied.

A single check in the lowermost block shown for all of the advanced loads is correct if 
both of these conditions are met:

• The lowermost block post-dominates all of the blocks with advanced loads from 
location addr.

• The lowermost block precedes any uses of the advanced loads from addr.

Figure 3-4. Using a Single Check for Three Advanced Loads
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3.6 Summary

The examples in this chapter show where the Itanium architecture can take advantage 
of existing techniques like dynamic profiling and disambiguation. Special architectural 
support allows implementation of speculation in common scenarios in which it would 
normally not be allowed. Speculation, in turn, increases ILP by making greater code 
motion possible, thus enhancing traditional optimizations such as those involving loops.

Even though the speculation model can be applied in many different situations, careful 
cost and benefit analysis is needed to insure best performance.

§
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Predication, Control Flow, and Instruction 
Stream 4

4.1 Overview

This chapter is divided into three sections that describe optimizations related to 
predication, control flow, and branch hints as follows:

• The predication section describes if-conversion, predicate usage, and code 
scheduling to reduce the affects of branching.

• The control flow optimization section describes optimizations that collapse and 
converge control flow by using parallel compares, multiway branches, and multiple 
register writers under predicate.

• The branch and prefetch hints section describes how hints are used to improve 
branch and prefetch performance.

4.2 Predication

Predication allows the compiler to convert control dependencies into data 
dependencies. This section describes several sources of branch-related performance 
considerations, followed by a summary of predication mechanism, followed by a series 
of descriptions of optimizations and techniques based on predication.

4.2.1 Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for 
prediction at execution time and by restricting instruction scheduling freedom during 
compilation.

4.2.1.1 Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and 
the logic used to control these resources.  The number of branches that can accurately 
be predicted is limited by the size of the buffers on the processor, and such buffers tend 
to be small relative to the total number of branches executed in a program.

This limitation means that branch intensive code may have a large portion of its 
execution time spent due to contention for prediction resources.  Furthermore, even 
though the size of the predictors is a primary factor in determining branch prediction 
performance, some branches are best predicted with different types of predictors.  For 
example, some branches are best predicted statically while others are more suitably 
predicted dynamically.  Of those predicted dynamically, some are of greater importance 
than others, such as loop branches.
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Since the cost of a misprediction is generally proportional to pipeline length, good 
branch prediction is essential for processors with long instruction pipelines.  Thus, 
optimizing the use of prediction resources can significantly improve the overall 
performance of an application.

Suppose, for instance, that the conditional in the code below is mispredicted 30% of the 
time and branch mispredictions incur a ten cycle penalty.  On average, the mispredicted 
branch will add three cycles to each execution of the code sequence (30% * 10 cycles):

if (r1) 
r2 = r3 + r4;

else
r7 = r6 - r5;

Equivalent Itanium architecture-based code that has not been optimized is shown 
below. It requires five instructions including two branches and executes in two cycles, 
not including potential misprediction or taken-branch penalty cycles:

cmp.eq p1,p2=r1,r0 // Cycle 0
(p1) br.cond else_clause // Cycle 0

add r2=r3,r4 // Cycle 1
br end_if // Cycle 1

else_clause:
sub r7=r6,r5 // Cycle 1

end_if:

Using the information above, this code will take five cycles to execute on average even 
thought the critical path is only two cycles long  (2 cycles + (30% * 10 cycles) = 5).  If  
the branch misprediction penalty could be eliminated (either by reducing contention for 
resources or by removing the branch itself), performance of the code sequence would 
improve by a factor of two.

4.2.1.2 Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state 
or that can raise exceptions, because instructions in a program are control dependent 
on all lexically enclosing branches. In addition to the control dependencies, compound 
conditionals can take several cycles to compute and may themselves require 
intermediate branches in languages like C that require short-circuit evaluation.

Control speculation is the primary mechanism used to perform global code motion for 
Itanium architecture-based compilers. However, when an instruction does not have a 
speculative form or the instruction could potentially corrupt memory state, control 
speculation may be insufficient to allow code motion. Thus, techniques that allow 
greater freedom in code motion or eliminate branches can improve the compiler’s 
ability to schedule instructions.

4.2.2 Predication in the Intel® Itanium® Architecture

Now that the performance implications of branching have been described, this section 
overviews predication in the Itanium architecture – the primary mechanism used by 
optimizations described in this section.
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Almost all Itanium instructions can be tagged with a guarding predicate.   If the value 
of the guarding predicate is false at execution time, then the predicated instruction’s 
architectural updates are suppressed, and the instruction behaves like a nop. If the 
predicate is true, then the instruction behaves as if it were unpredicated. There are a 
small number of instructions such as unconditional compares and floating-point 
square-root and reciprocal approximate instructions whose qualifying predicate do not 
operate as described above. See Part I:, “Application Architecture Guide” for additional 
information.

The following sequence shows a set of predicated instructions:
(p1) add r1=r2,r3
(p2) ld8 r5=[r7]
(p3) chk.s r4,recovery

To set the value of a predict register, the architecture provides compare and test 
instructions such as those as shown below.

cmp.eq p1,p2=r5,r6
tbit p3,p4=r6,5

Additionally, a predicate almost always requires a stop to separate its producing 
instruction and its use:

cmp.eq p1,p2=r1,r2;;
(p1) add r1=r2,r3

The only exception to this rule involves an integer compare or test instruction that sets 
a predicate that is used as the condition for a subsequent branch instruction:

cmp.eq p1,p2=r1,r2   // No stop required
(p1) br.cond some_target

4.2.3 Optimizing Program Performance Using Predication

This section describes predication-related optimizations, their use, and basic 
performance analysis techniques.  Following are descriptions of optimizations including 
if-conversion, misprediction elimination, off-path predication, upward code motion,  and 
downward code motion.

4.2.3.1 Applying if-Conversion

One of the most important optimizations enabled by predication is the complete 
removal of branches from some program sequences.  Without predication, the 
pseudo-code below would require a branch instruction to conditionally jump around the 
if-block code:
if (r4) {

add  r1=r2,r3
ld8  r6=[r5]

}

Using predication, the sequence can be written without a branch:
cmp.ne p1,p0=r4,0 ;;// Set predicate reg

(p1) add r1=r2,r3
(p1) ld8 r6=[r5]
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The process of predicating instructions in conditional blocks and removing branches is 
referred to as if-conversion. Once if-conversion has been performed, instructions can 
be scheduled more freely because there are fewer branches to limit code motion, and 
there are fewer branches competing for issue slots.

In addition to removing branches, this transformation will make dynamic instruction 
fetching more efficient since there are fewer possibilities for control flow changes. 
Under more complex circumstances, several branches can be removed. The following C 
code sequence:

if (r1)
r2 = r3 + r4;

else
r7 = r6 - r5;

can be rewritten in Itanium architecture-based assembly code without branches as:
cmp.ne p1,p2 = r1,0;;

(p1) add r2 = r3,r4
(p2) sub r7 = r6,r5

Since instructions from opposite sides of the conditional are predicated with 
complementary predicates they are guaranteed not to conflict, hence the compiler has 
more freedom when scheduling to make the best use of hardware resources.  The 
compiler could also try to schedule these statements with earlier or later code since 
several branches and labels have been removed as part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there 
will be no pipeline bubbles due to taken branches.  Such effects are significant in many 
large applications, and these transformations can greatly reduce branch-induced stalls 
or flushes in the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above 
shows that:

• Non-predicated code consumes: 2 cycles + (30% * 10 cycles) = 5 cycles.

• Predicated code consumes: 2 cycles.

In this case, predication saves an average of three cycles.

4.2.3.2 Off-path Predication

If a compiler has dynamic profile information, it is possible to form an instruction 
schedule based on the control flow path that is most likely to execute – this path is 
called the main trace. In some cases, execution paths not on the main trace are still 
executed frequently, and thus it may be beneficial to use predication to minimize their 
critical paths as well.

The main trace of a flow graph is highlighted in Figure 4-1. Although blocks A and B are 
not on the main trace, suppose they are executed a significant number of times.
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If some of the instructions in block A or block B can be included in the main trace 
without increasing its critical path, then techniques of upward code motion can be 
applied to reduce the critical path through blocks A and B when they are taken.  An 
example of how to use predication to implement upward code motion is given in the 
next section.

4.2.3.3 Upward Code Motion

When traditional control speculation is inadequate, it may still be possible to predicate 
an instruction and move it up or down in the schedule to reduce dependency height. 
This is possible because predicating an instruction replaces a control dependency with a 
data dependency. If the data dependency is less constraining than the control 
dependency, such a transformation may improve the instruction schedule.

Given the Itanium architecture-based assembly sequence below, the store instruction 
cannot be moved above the enclosing conditional instruction because it could cause an 
address fault or other exception, depending upon the branch direction:
(p1) br.cond some_label // Cycle 0

st4 [r34] = r23 // Cycle 1
ld4 r5 = [r56] // Cycle 1
ld4 r6 = [r57] // Cycle 2:no cycle 1 M’s

One reason why it might be desirable to move the store instruction up is to allow loads 
below it to move up.

Note: Ambiguous stores are barriers beyond which normal loads cannot move.  In this 
case, moving the store also frees up an M-unit slot.  To rewrite the code so that 
the store comes before the branch, p2 has been assigned the complement of 
p1:

(p2) st4 [r34] = r23 // Cycle 0
(p2) ld4 r5 = [r56] // Cycle 0
(p1) br.cond some_label // Cycle 0

ld4 r6 = [r57] // Cycle 1

Since the store is now predicated, no faults or exceptions are possible when the branch 
is taken, and memory state is only updated if and when the original home block of the 
store is entered.  Once the store is moved, it is also possible to move the load 
instruction without having to use advanced or speculative loads (as long as r5 is not 
live on the taken branch path). 

Figure 4-1. Flow Graph Illustrating Opportunities for Off-path Predication

Block A

Block B
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4.2.3.4 Downward Code Motion

As with upward code motion, downward code motion is normally difficult in the 
presence of stores.  The next example shows how code can be moved downward past a 
label, a transformation that is often unsafe without predication:

ld8 r56 = [r45];; // Cycle 0: load
st4 [r23] = r56;; // Cycle 2: store

label_A:
add ... // Cycle 3
add ...
add ...
add ...;;

In the code above, suppose the latency between the load and the store is two clocks. 
Assuming the load instruction cannot be moved upward due to other dependencies, the 
only way to schedule the instructions so that the load latency is covered is to move the 
store downward past the label.

The following code demonstrates the overall idea of using predicates to enable 
downward code motion.  In actual compiler-generated code, the predicates that are 
explicitly computed in this example might already be available in predicate registers 
and not require extra instructions.

// Point which “dominates” label_A
cmp.ne p1,p0 = r0,r0 // Initialize p1 to false

// Other instructions

cmp.eq p1,p0 = r0,r0 // Initialize p1 to true
ld8 r56=[r45];; // Cycle 0 

label_A:
add ... // Cycle 1
add ...
add ...
add ...;; 

(p1) st4     [r23]=r56 // Cycle 2

Here, downward code motion saves one cycle. There are examples of more 
sophisticated situations involving cyclic scheduling, other store-constrained code 
motion, or pulling code from outside loops into them, but they are not described here.

4.2.3.5 Cache Pollution Reduction

Loads and stores with predicates that are false at runtime are generally likely not to 
cause any cache lines to be removed, replaced, or brought in. Also, no extra 
instructions or recovery code are required as would be necessary for control or data 
speculation. Therefore, when the use of predication yields the same critical path length 
as data or control speculation, it is almost always preferable to use predication.

4.2.4 Predication Considerations

Even though predication can have a variety of beneficial effects, there are several cases 
where the use of predication should be carefully considered.  Such cases are usually 
associated with execution paths that have unbalanced total latencies or over-usage of a 
particular resource such as those associated with memory operations.
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4.2.4.1 Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependency height. Suppose that 
non-predicated assembly for this sequence takes two clocks for the if-block and 
approximately 18 clocks if we assume a setf takes 8 clocks, a getf takes 2 clocks, and 
an xma takes 6 clocks:

if (r4) // 2 clocks
r3 = r2 + r1;

else // 18 clocks
r3 = r2 * r1;

f (r3); // An integer use of r3

If-converted Itanium architecture-based code is shown below. The cycle numbers 
shown depend upon the values of p1 and p2 and assume the latencies shown:

// Issue cycle if p2 is:TrueFalse
cmp.ne p1,p2=r4,r0;; // 0 0

(p1) add r3=r2,r1 // 1 1
(p2) setf f1=r1 // 1 1
(p2) setf f2=r2;; // 1 1
(p2) xma.l f3=f1,f2,f0;; // 9 2
(p2) getf r3=f3;; // 15 3
(p2) use of r3 // 17 4

This code takes 18 cycles to complete if p2 is true and five cycles if p2 is false.  When 
analyzing such cases, consider execution weights, branch misprediction probabilities, 
and prediction costs along each path.

In the three scenarios presented below, assume a branch misprediction costs ten 
cycles.  No instruction cache or taken-branch penalties are considered.

4.2.4.2 Case 1

Suppose the if-clause is executed 50% of the time and the branch is never 
mispredicted.  The average number of clocks for:

• Unpredicated code is:  (2 cycles * 50%) + (18 cycles * 50%) = 10 clocks

• Predicated code is:  (5 cycles * 50%) + (18 cycles * 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code. 

4.2.4.3 Case 2

Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if 
the time with mispredicts costing 10 clocks.  The average number of clocks for:

• Unpredicated code is: 

(2 cycles * 70%) + (18 cycles * 30%) + (10 cycles * 10%) = 7.8 clocks

• Predicated code is: 

 (5 cycles * 70%) + (18 cycles * 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.
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4.2.4.4 Case 3

Suppose the if-clause is executed 30% of the time and the branch mispredicts 30% of 
the time.  The average number of clocks for: 

• Unpredicated code is:

 (2  cycles * 30%) + (18 cycles * 70%) + (10 cycles * 30%) = 16.2 clocks

• Predicated code is:

(5 cycles * 30%) + (18 cycles * 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks, 
on average.

4.2.4.5 Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution 
resources consumed by predicated blocks in addition to considering flow-dependency 
height. The resource availability height of a set of instructions is the minimum number 
of cycles taken considering only the execution resources required to execute them.

The code below is derived from an if-then-else statement.  Given the generic machine 
model that has only two load/store (M) units.  If a compiler predicates and combines 
these two blocks, then the resource availability height through the block will be four 
clocks since that is the minimum amount of time necessary to issue eight memory 
operations:
then_clause:

ld r1=[r21] // Cycle 0
ld r2=[r22] // Cycle 0
st [r32]=r3 // Cycle 1
st [r33]=r4 ;;// Cycle 1
br end_if

else_clause:
ld r3=[r23] // Cycle 0
ld r4=[r24] // Cycle 0
st [r34]=r5 // Cycle 1
st [r35]=r6 ;;// Cycle 1

end_if:

As with the example in the previous section, assuming various misprediction rates and 
taken branch penalties changes the decision as to when to predicate and when not to 
predicate. One case is illustrated below.

4.2.4.6 Case 1

Suppose the branch condition mispredicts 10% of the time and that the predicated code 
takes four clocks to execute.  The average number of clocks for:

• Non-predicated code is:  (10 cycles * 10%) + 2 cycles = 3 cycles

• Predicated code is:  4 cycles

Predicating this code would increase execution time even though the flow dependency 
heights of the branch paths are equal.
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4.2.5 Guidelines for Removing Branches

The following if-conversion guidelines apply to cases where only local behavior of the 
code and its execution profile are known:

1. The flow dependency and resource availability heights of both paths must be 
considered when deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code 
sequence, careful analysis using profile or misprediction data must be performed 
to ensure that execution time of the converted code is equivalent to or better 
than unpredicated code.

3. If if-conversion removes a branch that is mispredicted a significant percentage of 
the time, the transformation frequently pays off even if the blocks are 
significantly unbalanced since mispredictions are very expensive.

4. If the flow-dependeny heights of the paths being if-converted are nearly equal 
and there are sufficient resources to execute both streams simultaneously, 
if-conversion is often advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of 
some programs is limited by non-local effects such as overall branch behavior, 
sensitivity to code size, percentage of time spent servicing branch mispredictions, etc. 
In these situations, the decision to use if-convert or perform other speculative 
transformation becomes more involved.

4.3 Control Flow Optimizations

A common occurrence in programs is for several control flows to converge at one point 
or for  multiple control flows to start from one point.  In the first case, multiple flows of 
control are often computing the value of the same variable or register and the join point 
represents the point at which the program needs to select the correct value before 
proceeding.  In the second case, multiple flows may begin at a point where several 
independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex 
compound conditions normally requires a tree-like computation to reduce several 
conditions into one. The Itanium architecture provides special instructions that allow 
such conditions to be computed in fewer tree levels.

A third control-flow related optimization uses predication to improve instruction 
fetching by if-conversion to generate straight-line sequences that can be efficiently 
fetched.  The use and optimization of these cases is described in the remainder of this 
section. 
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4.3.1 Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several 
instructions on processors without special instructions:

if ( rA || rB || rC || rD ) {
/* If-block instructions */

}
/* after if-block */

The pseudo-code below, shows one possible solution uses a sequence of branches:
cmp.ne p1,p0 = rA,0
cmp.ne p2,p0 = rB,0

(p1) br.cond if_block
(p2) br.cond if_block

cmp.ne p3,p0 = rC,0
cmp.ne p4,p0 = rD,0

(p3) br.cond if_block
(p4) br.cond if_block

// after if-block 

On many implementations based on the Itanium architecture, this sequence is likely to 
require at least two cycles to execute if all the conditions are false, plus the possibility 
of more cycles due to one or more branch mispredictions. Another possible sequence 
computes an or-tree reduction:

or r1 = rA,rB
or r2 = rC,rD;;
or r3 = r1,r2;;
cmp.ne p1,p2 = r3,0

(p1) br if_block

This solution requires three cycles to compute the branch condition which can then be 
used to branch to the if-block.

Note: It is also possible to predicate the if-block using p1 to avoid branch mispredic-
tions.

To reduce the cost of compound conditionals, the Itanium architecture has special 
parallel compare instructions to optimize expressions that have and and or operations. 
These compare instructions are special in that multiple and/or compare instructions are 
allowed to target the same predicate within a single instruction group.   This feature 
allows the possibility that a compound conditional can be resolved in a single cycle.

For this usage model to work properly, the architecture requires that the programmer 
ensure that during any given execution of the code, that all instructions that target a 
given predicate register must either:

• Write the same value (0 or 1) or 

• Do not write the target register at all. 

This usage model means that sometimes a parallel compare may not update the value 
of its target registers and thus, unlike normal compares, the predicates used in parallel 
compares must be initialized prior to the parallel compare. Please see Part 
I:, “Application Architecture Guide” for full information on the operation of parallel 
compares.
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Initialization code must be placed in an instruction group prior to the parallel compare. 
However, since the initialization code has no dependencies on prior values, it can 
generally be scheduled without contributing to the critical path of the code.

The instructions below shows how to generate code for the example above using 
parallel compares:

cmp.ne p1,p0 = r0,r0;; // initialize p1 to 0
cmp.ne.or p1,p0 = rA,r0
cmp.ne.or p1,p0 = rB,r0
cmp.ne.or p1,p0 = rC,r0
cmp.ne.or p1,p0 = rD,r0

(p1) br.cond if_block

It is also possible to use p1 to predicate the if-block in-line to avoid a possible 
misprediction.  More complex conditional expressions can also be generated with 
parallel compares:

if ((rA < 0) && (rB == -15) && (rC > 0))
/* If-block instructions */

The assembly pseudo-code below shows a possible sequence for the C code above:
cmp.eq  p1,p0=r0,r0;; // initialize p1 to 1
cmp.ne.and  p1,p0=rB,-15
cmp.ge.and  p1,p0=rA,r0
cmp.le.and  p1,p0=rC,r0

When used correctly, and or compares write both target predicates with the same value 
or do not write the target predicate at all. Another variation on parallel compare usage 
is where both the if and else part of a complex conditional are needed:

if ( rA == 0 || rB == 10 )
r1 = r2 + r3;

else 
r4 = r5 - r6;

Parallel compares have an andcm variant that computes both the predicate and its 
complement simultaneously.

cmp.ne p1,p2 = r0,r0;; // initialize p1,p2
cmp.eq.or.andcmp1,p2 = rA,r0
cmp.eq.or.andcmp1,p2 = rB,10;;

(p1) add r1=r2,r3
(p2) sub r4=r5,r6

Clearly, these instructions can be used in other combinations to create more complex 
conditions.

4.3.2 Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and 
multiple targets, the Itanium architecture has implicit support by allowing multiple 
consecutive B-slot instructions within an instruction group.
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An example uses a basic block with four possible successors. The following Itanium 
architecture-based multi-target branch code uses a BBB bundle template and can 
branch to either block B, block C, block D, or fall through to block A:
label_AA:

... // Instructions in block AA
{ .bbb
(p1) br.cond label_B
(p2) br.cond label_C
(p3) br.cond label_D
}

// Fall through to A
label_A:

... // Instructions in block A

The ordering of branches is important for program correctness unless all branches are 
mutually exclusive, in which case the compiler can choose any ordering desired.

4.3.3 Selecting Multiple Values for One Variable or Register with 
Predication

A common occurrence in programs is for a set of paths that compute different values 
for the same variable to join and then continue. A variant of this is when separate paths 
need to compute separate results but could otherwise use the same registers since the 
paths are known to be complementary. The use of predication can optimize these 
cases.

4.3.3.1 Selecting One of Several Values

When several control paths that each compute a different value of a single variable 
meet, a sequence of conditionals is usually required to select which value will be used 
to update the variable. The use of predication can efficiently implement this code 
without branches: 

switch (rW) 
case 1:

rA = rB + rC;
break;

case 2:
rA = rE + rF;
break;

case 3:
rA = rH - rI;
break;

The entire switch-block above can be executed in a single cycle using predication if all 
of the predicates have been computed earlier. Assume that if rW equals 1, 2, or 3, then 
one of p1, p2, or p3 is true, respectively:
(p1) add rA=rB,rC
(p2) add rA=rE,rF
(p3) sub rA=rH,rI;;

Without this predication capability, numerous branches or conditional move operations 
would be needed to collapse these values.
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The Itanium architecture allows multiple instructions to target the same register in the 
same clock provided that only one of the instructions writing the target register is 
predicated true in that clock. Similar capabilities exist for writing predicate registers, as 
discussed in Section 4.3.1.

4.3.3.2 Reducing Register Usage

In some instances it is possible to use the same register for two separate computations 
in the presence of predication. This technique is similar to the technique for allowing 
multiple writers to store a value into the same register, although it is a register 
allocation optimization rather than a critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be 
predicated with complementary predicates. The contrived sequence below shows 
instructions predicated by p1 and p2, which are known by the compiler to be 
complementary: 
(p1) add r1=r2,r3
(p2) sub r5=r4,r56
(p1) ld8 r7=[r2]
(p2) ld8 r9=[r6];;
(p1) a use of r1
(p2) a use of r5
(p1) a use of r7
(p2) a use of r9

Assuming registers r1, r5, r7, and r9 are used for compiler temporaries, each of which 
is live only until its next use, the preceding code segment can be rewritten as:
(p1) add  r1=r2,r3
(p2) sub  r1=r4,r56 // Reuse r1
(p1) ld8  r7=[r2]
(p2) ld8 r7=[r6];; // Reuse r7
(p1) a use of r1
(p2) a use of r1
(p1) a use of r7
(p2) a use of r7

The new sequence uses two fewer registers. With the 128 registers defined in the 
architecture, this may not seem essential, but reducing register use can still reduce 
program and register stack engine spills and fills that can be common in codes with 
high instruction-level parallelism.

4.3.4 Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large 
blocks with no taken branches. Whenever the instruction pointer needs to be changed, 
the hardware may have to insert bubbles into the pipeline either while the target 
prediction is taking place or because the target address is not computed until later in 
the pipeline.
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By using predication to reduce the number of control flow changes, the fetching 
efficiency will generally improve. The only case where predication is likely to reduce 
instruction cache efficiency is when there is a large increase in the number of 
instructions fetched which are subsequently predicated off. Such a situation uses 
instruction cache space for instructions that compute no useful results.

4.3.4.1 Instruction Stream Alignment

For many processors, when a program branches to a new location, instruction fetching 
is performed on instruction cache lines. If the target of the branch does not start on a 
cache line boundary, then fetching from that target will likely not retrieve an entire 
cache line. This problem can be avoided if a programmer aligns instruction groups that 
cross more than one bundle so that the instruction groups do not span cache line 
boundaries. However, padding all labels would cause an unacceptable increase in code 
size. A more practical approach aligns only tops of loops and commonly entered basic 
blocks when the first instruction group extends across more than one bundle. That is, if 
both of the following conditions are true at some label L, then padding previous 
instruction groups so that L is aligned on a cache line boundary is recommended:

• The label is commonly branched to from out-of-line. Examples include tops of loops 
and commonly executed else clauses.

• The instruction group starting at label L extends across more than one bundle.

To illustrate, assume code at label L in the segment below is not cache-aligned and that 
a cache boundary occurs between the two bundles. If a program were to branch to L, 
then execution may split issue after the third add instruction even though there are no 
resource oversubscriptions or stops:
L:
{ .mii

add r1=r2,r3
add r4=r5,r6
add r7=r8,r9

}
{ .mfb

ld8 r14=[r56] ;;
nop.f
nop.b

}

On the other hand, if L were aligned on an even-numbered bundle, then all four 
instructions at L could issue in one cycle.

4.4 Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to allow the compiler or hand 
coder to provide extra information to the hardware. Compared to hardware, the 
compiler has more time, looks at a wider instruction window (including the source), and 
performs more analysis. Transfer of this knowledge to the processor can help to reduce 
penalties associated with I-cache accesses and branch prediction.
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Two types of branch-related hints are defined by the Itanium architecture: branch 
prediction hints and instruction prefetch hints. Branch prediction hints let the compiler 
recommend the resources (if any) that should be used to dynamically predict specific 
branches. With prefetch hints, the compiler can indicate the areas of the code that 
should be prefetched to reduce demand I-cache misses.

Hints can be specified as completers on branch (br) and move to branch register 
(abbreviated mov2br in this text since the actual mnemonic is mov br=xx).  The hints 
on branch instructions are the easiest to use since the instruction already exists and the 
hint completer just has to be specified. mov2br instructions are used for indirect 
branches. The exact interpretation of these hints is implementation specific although 
the general behavior of hints is expected to be similar between processor generations.

It is also possible to re-write the hint fields on branches later using a binary rewriting 
tools. This can occur statically or at execution time based on profile data without 
changing the correctness of the program. This technique allows static hints to be 
tailored for usage patterns that may not be fully known at compilation time or when the 
binaries are first distributed.

4.5 Hints for Controlling Multi-threading

Some processors support multi-threading; that is, they support the simultaneous 
execution of multiple threads (multiple logical processors) through a common set of 
execution resources (data paths, functional units, TLBs, etc.). Functionally, each of 
these hardware threads fully implements the Itanium architecture; therefore, software 
need not be aware of multi-threading nor do anything special to support it. From 
performance standpoint, there are a few circumstances where it may be beneficial for 
software to provide information about its future resource requirements, which can be 
done with the hint instruction. Such a hint could allow the processor to optimize 
resource allocation among the hardware threads.

Note that, although not all implementations support all types of hint instruction, those 
that do not support them execute the hint instruction as a nop, and hence there is little 
penalty for software to provide these hints.

4.5.1 Wait Loops

Say a thread is waiting for another software thread to complete a task and, during that 
time, doesn't expect to need significant processor resources but would like to receive its 
fair share of resources once the task is complete. In such a situation, the waiting thread 
can communicate this information to the processor as a hint. This encourages the 
processor to allocate more processor resources to other threads of execution while this 
thread is waiting.

Typically, the completion signal in question is a store, by some other software thread, to 
a particular memory location. For example, a software thread may be waiting to acquire 
a spinlock and may have little work to do until such time as it is able to acquire the lock. 
A store to the spinlock in question may be an indication that the lock is now available 
for this software thread to acquire.
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This scenario can be hinted to the processor by executing an advanced load (ld.a or 
ld.sa) to the address that this software thread is waiting on, and then by executing a 
hint @pause instruction (in a subsequent instruction group). This encourages the 
processor to devote more resources to other threads, yet if an entry is invalidated from 
this thread's ALAT, normal processor resource allocation is resumed for this thread.

Resource allocation within the processor eventually reverts to a fair allocation, so 
there's no need for software to hint that it is no longer in a wait loop. Conversely, while 
software is in such a wait loop, it would be best to re-execute the hint @pause as part 
of that loop, to continue to assert the hint for as long as that thread is waiting.

Note that if there is some high likelihood that the ALAT may contain a large number of 
valid entries upon entering into a wait loop, there may be some advantage to removing 
these (e.g., with an invala instruction) prior to executing the advanced load to the 
address to be waited on. This may reduce the restoration of resource allocation to this 
thread in cases where ALAT entries get invalidated other than the one for the address 
being waited on, hence providing more processor resources to other threads.

4.5.2 Idle Loops

Another situation where a software thread expects not to need significant processor 
resources for the next little while is when the software thread is executing an OS-kernel 
idle loop. It can provide this information to the processor also by executing a hint 
@pause instruction. This encourages the processor to allocate more processor resources 
to other threads of execution for the next while.

Resource allocation within the processor eventually reverts to a fair allocation, so 
there's no need for software to hint that it is no longer in an idle loop. Conversely, while 
software is in such an idle loop, it would be best to re-execute the hint @pause as part 
of that loop, to continue to assert the hint for as long as that thread is idle.

Note that if there is some high likelihood that the ALAT may contain a large number of 
valid entries upon entering into an idle loop, there may be some advantage to removing 
these (e.g., with an invala instruction) prior to entering the idle loop. This may reduce 
the restoration of resource allocation to this thread in cases where these ALAT entries 
get invalidated, hence providing more processor resources to other threads.

4.5.3 Critical Sections

The opposite case exists if software expects that, given extra resources for the next 
period of time, overall system performance and throughput would be optimized. For 
example, this software thread may be about to acquire a highly contested spinlock and 
enter a critical section of code, and expeditious progress through that critical section 
and the resultant speedy release of the spinlock may disproportionately benefit overall 
system performance and throughput.

This scenario can be hinted to the processor by executing a hint @priority instruction. 
This encourages the processor to devote more processor resources to this thread (at 
the expense of other threads) for some period of time.
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Resource allocation within the processor eventually reverts to a fair allocation, so 
there's no need for software to hint that it is no longer in a critical section. Processors 
that support this hint also ensure that it cannot be abused to affect overall longer-term 
fairness of processor resource allocation.

4.6 Summary

This chapter has presented a wide variety of topics related to optimizing control flow 
including predication, branch architecture, multiway branches, parallel compares, 
instruction stream alignment, and branch hints. Although such topics could have been 
presented in separate chapters, the interplay between the features is best understood 
by their effects on each other. 

Predication and its interplay on scheduling region formation is central to the 
performance of the Itanium architecture. Unfortunately, discussion of compiler 
algorithms of this nature are far beyond the scope of this document.

§



1:180 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream



Volume 1, Part 2: Software Pipelining and Loop Support 1:181

Software Pipelining and Loop Support 5

5.1 Overview

The Itanium architecture provides extensive support for software-pipelined loops, 
including register rotation, special loop branches, and application registers. When 
combined with predication and support for speculation, these features help to reduce 
code expansion, path length, and branch mispredictions for loops that can be software 
pipelined.

The beginning of this chapter reviews basic loop terminology and instructions, and 
describes the problems that arise when optimizing loops in the absence of architectural 
support. Specific loop support features of the Itanium architecture are then introduced. 
The remainder of this chapter describes the programming and optimization of various 
type of loops.

5.2 Loop Terminology and Basic Loop Support

Loops can be categorized into two types: counted and while. In counted loops, the loop 
condition is based on the value of a loop counter and the trip count can be computed 
prior to starting the loop. In while loops, the loop condition is a more general 
calculation (not a simple count) and the trip count is unknown. Both types are directly 
supported in the architecture.

The Itanium architecture improves the performance of conventional counted loops by 
providing a special counted loop branch (the br.cloop instruction) and the Loop Count 
application register (LC).   The br.cloop instruction does not have a branch predicate. 
Instead, the branching decision is based on the value of the LC register. If the LC 
register is greater than zero, it is decremented and the br.cloop branch is taken. 

5.3 Optimization of Loops

In many loops, there are not enough independent instructions within a single iteration 
to hide execution latency and make full use of the functional units. For example, in the 
loop body below, there is very little ILP:
L1:

ld4 r4 = [r5],4;; // Cycle 0 load postinc 4
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3 store postinc 4
br.cloopL1;; // Cycle 3

In this code, all the instructions from iteration X are executed before iteration X+1 is 
started. Assuming that the store from iteration X and the load from iteration X+1 are 
independent memory references, utilization of the functional units could be improved 
by moving independent instructions from iteration X+1 to iteration X, effectively 
overlapping iteration X with iteration X+1.
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This section describes two general methods for overlapping loop iterations, both of 
which result in code expansion on traditional architectures.   The code expansion 
problem is addressed by loop support features in the Itanium architecture that are 
explored later in this chapter. The loop above will be used as a running example in the 
next few sections.

5.3.1 Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level 
parallelism by making and scheduling multiple copies of the loop body together.   The 
registers in each copy of the loop body are given different names to avoid unnecessary 
WAW and WAR data dependencies. The code below shows the loop from our example 
on page 1:181 after unrolling twice (total of two copies of the original loop body) and 
instruction scheduling, assuming two memory ports and a two cycle latency for loads. 
For simplicity, assume that the loop trip count is a constant N that is a multiple of two, 
so that no exit branch is required after the first copy of the loop body:
L1:

ld4 r4 = [r5],4;; // Cycle 0
ld4 r14 = [r5],4;; // Cycle 1
add r7 = r4,r9;; // Cycle 2
add r17 = r14,r9 // Cycle 3
st4 [r6] = r7,4;; // Cycle 3
st4 [r6] = r17,4 // Cycle 4
br.cloopL1;; // Cycle 4

The above code does not expose as much ILP as possible. The two loads are serialized 
because they both use and update r5. Similarly the two stores both use and update r6. 
A variable which is incremented (or decremented) once each iteration by the same 
amount is called an induction variable. The single induction variable r5 (and similarly 
r6) can be expanded into two registers as shown in the code below:

add r15 = 4,r5
add r16 = 4,r6;;

L1: ld4 r4 = [r5],8 // Cycle 0
ld4 r14 = [r15],8;; // Cycle 0
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] r7,8 // Cycle 3
st4 [r16] = r17,8 // Cycle 3
br.cloopL1;; // Cycle 3

Compared to the original loop on page 1:181, twice as many functional units are 
utilized and the code size is twice as large. However, no instructions are issued in cycle 
1 and the functional units are still under utilized in the remaining cycles.   The 
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utilization can be increased by unrolling the loop more times, but at the cost of further 
code expansion. The loop below is unrolled four times (assuming the trip count is 
multiple of four):

add r15 = 4,r5
add r25 = 8,r5
add r35 = 12,r5
add r16 = 4,r6
add r26 = 8,r6
add r36 = 12,r6;;

L1: ld4 r4 = [r5],16 // Cycle 0
ld4 r14 = [r15],16;; // Cycle 0
ld4 r24 = [r25],16 // Cycle 1
ld4 r34 = [r35],16;; // Cycle 1
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] = r7,16 // Cycle 3
st4 [r16] = r17,16 // Cycle 3
add r27 = r24,r9 // Cycle 3
add r37 = r34,r9;; // Cycle 3
st4 [r26] = r27,16 // Cycle 4
st4 [r36] = r37,16 // Cycle 4
br.cloop L1;; // Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are 
now executed in five cycles verses the two iterations in four cycles for the previous 
version of the loop.

5.3.2 Software Pipelining

Software pipelining is a technique that seeks to overlap loop iterations in a manner that 
is analogous to hardware pipelining of a functional unit. Each iteration is partitioned into 
stages with zero or more instructions in each stage. A conceptual view of a single 
pipelined iteration of the loop from page 1:181 in which each stage is one cycle long is 
shown below:

stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:add r7 = r4,r9
stage 4:st4 [r6] = r7,4

The following is a conceptual view of five pipelined iterations:
 1  2  3  4  5           Cycle
----------------------------------------------------
ld4 X
   ld4 X+1
add ld4 X+2
st4 add ld4 X+3

st4 add     ld4  X+4
st4 add X+5

st4 add  X+6
    st4  X+7

The number of cycles between the start of successive iterations is called the initiation 
interval (II). In the above example, the II is one. Each stage of a pipelined iteration is II 
cycles long.   Most of the examples in this chapter utilize modulo scheduling, which is a 
particular form of software pipelining in which the II is a constant and every iteration of 
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the loop has the same schedule. It is likely that software pipelining algorithms other 
than modulo scheduling could benefit from the loop support features. Therefore the 
examples in this chapter are discussed in terms of software pipelining rather than 
modulo scheduling.

Software pipelined loops have three phases: prolog, kernel, and epilog, as shown 
below:

 1  2  3  4  5            Phase
----------------------------------------------------
ld4
   ld4               Prolog
add  ld4
----------------------------------------------------
st4 add ld4               Kernel

st4 add ld4
------------------------------------------------------    

st4 add
st4 add          Epilog

    st4

During the prolog phase, a new loop iteration is started every II cycles (every cycle for 
the above example) to fill the pipeline. During the first cycle of the prolog, stage 1 of 
the first iteration executes. During the second cycle, stage 1 of the second iteration and 
stage 2 of the first iteration execute, etc. By the start of the kernel phase, the pipeline 
is full. Stage 1 of the fourth iteration, stage 2 of the third iteration, stage 3 of the 
second iteration, and stage 4 of the first iteration execute. During the kernel phase, a 
new loop iteration is started, and another is completed every II cycles. During the 
epilog phase, no new iterations are started, but the iterations already in progress are 
completed, draining the pipeline. In the above example, iterations 3-5 are completed 
during the epilog phase.

The software pipeline is coded as a loop that is very different from the original source 
code loop. To avoid confusion when discussing loops and loop iterations, we use the 
term source loop and source iteration to refer back to the original source code loop, and 
the term kernel loop and kernel iteration to refer to the loop that implements the 
software pipeline.

In the above example, the load from the second source iteration is issued before result 
of the first load is consumed.   Thus, in many cases, loads from successive iterations of 
the loop must target different registers to avoid overwriting existing live values.   In 
traditional architectures, this requires unrolling of the kernel loop and software 
renaming of the registers, resulting in code expansion.    Furthermore, in traditional 
architectures, separate blocks of code are generated for the prolog, kernel, and epilog 
phases, resulting in additional code expansion.

5.4 Loop Support Features in the Intel® Itanium® 
Architecture

The code expansion that results from loop optimizations (such as software pipelining 
and loop unrolling) on traditional architectures can increase the number of instruction 
cache misses, thus reducing overall performance. The loop support features in the 
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Itanium architecture allow some loops to be software pipelined without code expansion. 
Register rotation provides a renaming mechanism that reduces the need for loop 
unrolling and software renaming of registers.   Special software pipelined loop branches 
support register rotation and, combined with predication, reduce the need to generate 
separate blocks of code for the prolog and epilog phases.

5.4.1 Register Rotation

Register rotation renames registers by adding the register number to the value of a 
register rename base (rrb) register contained in the CFM. The rrb register is 
decremented when certain special software pipelined loop branches are executed at the 
end of each kernel iteration. Decrementing the rrb register makes the value in register 
X appear to move to register X+1. If X is the highest numbered rotating register, its 
value wraps to the lowest numbered rotating register. 

A fixed-sized area of the predicate and floating-point register files (p16-p63 and 
f32-f127), and a programmable-sized area of the general register file are defined to 
rotate. The size of the rotating area in the general register file is determined by an 
immediate in the alloc instruction and must be either zero or a multiple of 8, up to a 
maximum of 96 registers. The lowest numbered rotating register in the general register 
file is r32. An rrb register is provided for each of the three rotating register files: 
CFM.rrb.gr for the general registers; CFM.rrb.fr for the floating-point registers; 
CFM.rrb.pr for the predicate registers. The software pipelined loop branches 
decrement all the rrb registers simultaneously.

Below is an example of register rotation. The swp_branch pseudo-instruction 
represents a software pipelined loop branch:
L1: ld4 r35 = [r4],4 // post increment by 4

st4 [r5] = r37,4 // post increment by 4
swp_branchL1 ;;

The value that the load writes to r35 is read by the store two kernel iterations (and two 
rotations) later as r37.   In the meantime, two more instances of the load are executed. 
Because of register rotation, those instances write their result to different registers and 
do not modify the value needed by the store. 

The rotation of predicate registers serves two purposes.   The first is to avoid 
overwriting a predicate value that is still needed. The second purpose is to control the 
filling and draining of the pipeline. To do this, a programmer assigns a predicate to each 
stage of the software pipeline to control the execution of the instructions in that stage. 
This predicate is called the stage predicate.   For counted loops, p16 is architecturally 
defined to be the predicate for the first stage, p17 is defined to be the predicate for the 
second stage, etc. A conceptual view of a pipelined source iteration of the example 
counted loop on page 1:181 is shown below.   Each stage is one cycle long and the 
stage predicates are shown:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

A register rotation takes place at the end of each stage (when the software-pipelined 
loop branch is executed in the kernel loop).   Thus a 1 written to p16 enables the first 
stage and then is rotated to p17 at the end of the first stage to enable the second stage 
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for the same source iteration.   Each one written to p16 sequentially enables all the 
stages for a new source iteration. This behavior is used to enable or disable the 
execution of the stages of the pipelined loop during the prolog, kernel, and epilog 
phases as described in the next section.

5.4.2 Note on Initializing Rotating Predicates

In this chapter, the instruction mov pr.rot = immed is used to initialize rotating 
predicates. This instruction ignores the value of CFM.rrb.pr. Thus, the examples in this 
chapter are written assuming that CFM.rrb.pr is always zero prior to the initialization of 
predicate registers using mov pr.rot = immed.

5.4.3 Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very 
compact code for software-pipelined loops by supporting register rotation and by 
controlling the filling and draining of the software pipeline during the prolog and epilog 
phases.   Generally speaking, each time a software-pipelined loop branch is executed, 
the following actions take place:

1. A decision is made on whether or not to continue kernel loop execution.

2. p16 is set to a value to control execution of the stages of the software pipeline 
(p63 is written by the branch, and after rotation this value will be in p16).

3. The registers are rotated (rrb registers are decremented).

4. The Loop Count (LC) and/or the Epilog Count (EC) application registers are 
selectively decremented.

There are two types of software-pipelined loop branches: counted and while. 

5.4.3.1 Counted Loop Branches

Figure 5-1 shows a flowchart for modulo-scheduled counted loop branches.

During the prolog and kernel phase, a decision to continue kernel loop execution means 
that a new source iteration is started. Register rotation must occur so that the new 
source iteration does not overwrite registers that are in use by prior source iterations 
that are still in the pipeline.   p16 is set to 1 to enable the stages of the new source 
iteration. LC is decremented to update the count of remaining source iterations. EC is 
not modified.

During the epilog phase, the decision to continue loop execution means that the 
software pipeline has not yet been fully drained and execution of the source iterations 
in progress must continue. Register rotation must continue because the remaining 
source iterations are still writing results and the consumers of the results expect 
rotation to occur. p16 is now set to 0 because there are no more new source iterations 
and the instructions that correspond to non-existent source iterations must be disabled. 
EC contains the count of the remaining execution stages for the last source iteration 
and is decremented during the epilog. For most loops, when a software pipelined loop 
branch is executed with EC equal to 1, it indicates that the pipeline has been drained 
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and a decision is made to exit the loop. The special case in which a software-pipelined 
loop branch is executed with EC equal to 0 can occur in unrolled software-pipelined 
loops if the target of the cexit branch is set to the next sequential bundle.

There are two types of software-pipelined loop branches for counted loops. br.ctop is 
taken when a decision to continue kernel loop execution is made, and is not taken 
otherwise. It is used when the loop execution decision is located at the bottom of the 
loop. br.cexit is not taken when a decision to continue kernel loop execution is made, 
and is taken otherwise. It is used when the loop execution decision is located 
somewhere other than the bottom of the loop.

5.4.3.2 Counted Loop Example

A conceptual view of a pipelined iteration of the example counted loop on page 1:181 
with II equal to one is shown below:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

To generate an efficient pipeline, the compiler must take into account the latencies of 
instructions and the available functional units. For this example, the load latency is two 
and the load and add are scheduled two cycles apart. The pipeline below is coded 
assuming there are two memory ports and the loop count is 200.

Figure 5-1. ctop and cexit Execution Flow
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Note: Rotating GRs have now been included in the code (the code directly preceding 
did not). Also, induction variables that are post incremented must be allocated 
to the static portion of the register file:

mov  lc = 199 // LC =loop count - 1
mov  ec = 4 // EC =epilog stages + 1
mov pr.rot = 1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r32 = [r5],4 // Cycle 0
(p18) add r35 = r34,r9 // Cycle 0
(p19) st4 [r6] = r36,4 // Cycle 0

br.ctop L1;; // Cycle 0

The memory ports are fully utilized. Table 5-1 shows a trace of the execution of this 
loop.

In cycle 3, the kernel phase is entered and the fourth iteration of the kernel loop 
executes the ld4, add, and st4 from the fourth, second, and first source iterations 
respectively. By cycle 200, all 200 loads have been executed, and the epilog phase is 
entered. When the br.ctop is executed in cycle 202, EC is equal to 1. EC is 
decremented, the registers are rotated one last time, and execution falls out of the 
kernel loop.

Note: After this final rotation, EC and the stage predicates (p16 - p19) are 0.

It is desirable to allocate variables that are loop variant to the rotating portion of the 
register file whenever possible to preserve space in the static portion for loop invariant 
variables. Induction variables that are post incremented must be allocated to the static 
portion of the register file.

5.4.3.3 While Loop Branches

Figure 5-2 shows the flowchart for while loop branches.

Table 5-1. ctop Loop Trace

Cycle
Port/Instructions State before br.ctop

M I M B p16 p17 p18 p19 LC EC

0 ld4 br.ctop 1 0 0 0 199 4

1 ld4 br.ctop 1 1 0 0 198 4

2 ld4 add br.ctop 1 1 1 0 197 4

3 ld4 add st4 br.ctop 1 1 1 1 196 4

… … … … … … … … … … …

100 ld4 add st4 br.ctop 1 1 1 1 99 4

… … … … … … … … … … …

199 ld4 add st4 br.ctop 1 1 1 1 0 4

200 add st4 br.ctop 0 1 1 1 0 3

201 add st4 br.ctop 0 0 1 1 0 2

202 st4 br.ctop 0 0 0 1 0 1

... 0 0 0 0 0 0



Volume 1, Part 2: Software Pipelining and Loop Support 1:189

There are a few differences in the operation of the while loop branch compared to the 
counted loop branch. The while loop branch does not access LC — a branch predicate 
determines the behavior of this branch instead. During the kernel and epilog phases, 
the branch predicate is one and zero respectively. During the prolog phase, the branch 
predicate may be either zero or one depending on the scheme used to program the 
while loop.   Also, p16 is always set to zero after rotation. The reasons for these 
differences are related to the nature of while loops and will be explained in more depth 
with an example in a later section.

5.4.4 Terminology Review

The terms below were introduced in the preceding sections:

Initiation Interval (II)
The number of cycles between the start of successive source iterations in 
a software pipelined loop. Each stage of the pipeline is II cycles long.

Prolog The first phase of a software-pipelined loop, in which the pipeline is filled.

Kernel The second phase of a software-pipelined loop, in which the pipeline is full. 

Epilog The third phase of a software-pipelined loop, in which the pipeline is 
drained. 

Source Iteration
An iteration of the original source code loop. 

Kernel Iteration
An iteration of the loop that implements the software pipeline.

Register Rotation
A form of register renaming that is visible to software. Registers are 
renamed with respect to a register rename base that is decremented. 

Figure 5-2. wtop and wexit Execution Flow
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Induction Variable
Value that is incremented (or decremented) once per source iteration by 
the same amount.

5.5 Optimization of Loops in the Intel® Itanium® 
Architecture

Register rotation, predication, and the software pipelined loop branches allow the 
generation of compact, yet highly parallel code. Speculation can further increase loop 
performance by removing dependency barriers that limit the throughput of software 
pipelined loops. Register rotation removes the requirement that kernel loops be 
unrolled to allow software renaming of the registers. However in some cases 
performance can be increased by unrolling the source loop prior to software pipelining, 
or by generating explicit prolog and/or epilog blocks. The remainder of this chapter 
discusses loop optimizations.

5.5.1 While Loops

The programming scheme for while loops depends upon the structure of the loop. This 
section discusses do-while loops, in which the loop condition is computed at the bottom 
of the loop. Optimizing compilers often transform while loops (where the condition is 
computed at the top of the loop) into do-while loops by moving the condition 
computation to the bottom of the loop and placing a copy of the condition computation 
prior to the loop to reduce the number of branches in the loop. The remainder of this 
section refers to such loops simply as while loops. Below is a simple while loop:
L1: ld4 r4 = [r5],4;; // Cycle 0

st4 [r6] = r4,4 // Cycle 2
cmp.ne p1,p0 = r4,r0 // Cycle 2

(p1) br L1;; // Cycle 2

A conceptual view of a pipelined iteration of this loop with II equal to one is shown 
below:
stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:st4 [r6]= r4,4

cmp.ne.unc p1,p0 = r4,r0
(p1) br L1

The following is a conceptual view of four overlapped source iterations assuming the 
load and store are independent memory references.   The store, compare, and branch 
instructions in stage two are represented by the pseudo-instruction scb:
 1  2  3  4   Cycle
----------------------------------------------------
ld4 X
   ld4.s X+1
scb ld4.s X+2

scb ld4.s X+3
scb X+4

scb X+5
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Notice that the load for the second source iteration is executed before the compare and 
branch of the first source iteration. That is, the load (and the update of r5) is 
speculative. The loop condition is not computed until cycle X+2, but in order to 
maximize the use of resources, it is desirable to start the second source iteration at 
cycle X+1.   Without the support for control speculation in the Itanium architecture, the 
second source iteration could not be started until cycle X+3. 

The computation of the loop condition for while loops is very different from that of 
counted loops. In counted loops, it is possible to compute the loop condition in one 
cycle using a counted loop branch. This is what a br.ctop instruction does when it sets 
p16. In while loops, a compare must compute the loop condition and set the stage 
predicates. The stages prior to the one containing the compare are called the 
speculative stages of the pipeline, because it is not possible for the compare to 
completely control the execution of these stages. Therefore, the stage predicate set by 
the compare is used (after rotation) to control the first non-speculative stage of the 
pipeline.

The pipelined version of the while loop on page 1:190 is shown below.   A check for the 
speculative load is included:

mov ec = 2
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p18) chk.s r34, recovery // Cycle 0
(p18) cmp.ne p17,p0 = r34,r0 // Cycle 0
(p18) st4 [r6] = r34,4 // Cycle 0
(p17) br.wtop.sptkL1;; // Cycle 0
L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine a 
trace of the execution of the loop (assume there are 200 source iterations) shown in 
Table 5-2.

There is no stage predicate assigned to the load because it is speculative. The compare 
sets p17. This is the branch predicate for the current iteration and, after rotation, the 
stage predicate for the first non-speculative stage (stage three) of the next source 
iteration. During the prolog, the compare cannot produce its first valid result until cycle 
two. The initialization of the predicates provides a pipeline that disables the compare 
until the first source iteration reaches stage two in cycle two.   At that point the 
compare starts generating stage predicates to control the non-speculative stages of the 
pipeline. Notice that the compare is conditional. If it were unconditional, it would 
always write a zero to p17 and the pipeline would not get started correctly.

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC

0 ld4.s br.wtop 1 0 0 2

1 ld4.s br.wtop 0 1 0 1

2 ld4.s cmp chk st4 br.wtop 0 1 1 1
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The executions of br.wtop in the first two cycles of the prolog do not correspond to any 
of the source iterations. Their purpose is simply to continue the kernel loop until the 
first valid loop condition can be produced.   In cycle one, the branch predicate p17 is 
one. For this programming scheme, the branch predicate of the br.wtop is always a 
one during the last speculative stage of the first source iteration. During all the prior 
stages, the branch predicate is zero. If the branch predicate is zero, the br.wtop 
continues the kernel loop only if EC is greater than one. It also decrements EC. Thus EC 
must be initialized to (# epilog stages + # speculative pipeline stages).   In the above 
example, this is 0 + 2 = 2.

In cycle 201, the compare for the 200th source iteration is executed.   Since this is the 
final source iteration, the result of the compare is a zero and p17 is unmodified. The 
zero that was rotated into p17 from p16 causes the br.wtop to fall through to the loop 
exit. EC is decremented and the registers are rotated one last time.

In the above example, there are no epilog stages. As soon as the branch predicate 
becomes zero, the kernel loop is exited.

5.5.2 Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage 
predicates. They continue to be controlled by compare instructions in the loop body. For 
example, the following loop contains predicated instructions:
L1: ldfs f4 = [r5],4

ldfs f9 = [r8],4;;
fcmp.ge.unc p1,p2 = f4,f9;;

(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

br.cloopL1 ;;

3 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

100 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

199 ld4.s cmp chk st4 br.wtop 0 1 1 1

200 ld4.s cmp chk st4 br.wtop 0 1 1 1

201 ld4.s cmp chk st4 br.wtop 0 0 1 1

0 0 0 0

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC



Volume 1, Part 2: Software Pipelining and Loop Support 1:193

Below is a possible pipeline with an II of 2, assuming a floating-point load latency of 9 
cycles:
stage 1:
(p16) ldfs f4 = [r5],4
(p16) ldfs f9 = [r8],4;;

--- // empty cycle
stage 2-4: --- // empty stages
stage 5: --- // empty cycle
(p20) fcmp.ge.unc p1,p2 = f4,f9;;
stage 6: --- // empty cycle
(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

The following is the code to implement the pipeline:
mov lc = 199 // LC = loop count - 1
mov ec = 6 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ldfs f32 = [r5],4
(p16) ldfs f38 = [r8],4;;
(p32) stfs [r9] = f37, 4
(p20) fcmp.ge.uncp31,p32 = f36,f42
(p33) stfs [r9] = f43, 4
L2: br.ctop.sptkL1;;

5.5.3 Multiple-exit Loops

All of the example loops discussed so far have a single exit at the bottom of the loop. 
The loop below contains multiple exits — an exit at the bottom associated with the loop 
closing branch, and an early exit in the middle:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.unc p1,p0 = r9,r7

(p1) br.cond  exit // early exit
add r8 = -1,r8;;
cmp.ge.unc p3,p0 = r8,r0

(p3) br.cond L1;;

Loops with multiple exits require special care to ensure that the pipeline is correctly 
drained when the early exit is taken.There are two ways to generate a pipelined version 
of the above loop: (1) convert it to a single exit loop, or (2) pipeline it with the multiple 
exits explicitly present. 
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5.5.3.1 Converting Multiple Exit Loops to Single Exit Loops

The first is to transform the multiple exit loop into a single exit loop. In the source loop, 
execution of the add, the second compare and the second branch is guarded by the first 
branch. The loop can be transformed into a single exit loop by using predicates to guard 
the execution of these instructions and moving the early exit branch out of the loop as 
shown below:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.uncp1,p2 = r9,r7
add r8 = -1,r8;;

(p2) cmp.ge.unc p3,p0 = r8,r0
(p3) br.cond L1;;
(p1) br.cond exit // early exit if p1 is 1

The computation of p3 determines if either exit of the source loop would have been 
taken. If p3 is zero, the loop is exited and p1 is used to determine which exit was 
actually taken. The add is executed speculatively (it is not guarded by p2) to keep the 
dependency from the cmp.eq to the add from limiting the II. It is assumed that either 
r8 is not live out at the early exit or that compensation code is added at the target of 
the early exit. The pipeline for this loop is shown below with the stage predicate 
assignments but no other rotating register allocation. The compare and the branch at 
the end of stage 4 are not assigned stage predicates because they already have 
qualifying predicates in the source loop:
stage 1:ld4.s r4 = [r5],4;; // II = 2

--- // empty cycle
stage 2:--- // empty cycle

ld4.s r9 = [r4];;
stage 3:--- // empty stage
stage 4:
(p19) add r8 = -1,r8
(p19) cmp.eq.uncp1,p2 = r9,r7;;
(p2) cmp.ge.uncp3,p0 = r8,r0
(p3) br.cond L1;;

The code to implement this pipeline is shown below complete with the chk instruction:
mov ec = 3
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r5],4 // Cycle 0
(p19) chk.s r36, recovery // Cycle 0
(p19) add r8 = -1,r8 // Cycle 0
(p19) cmp.eq.unc p31,p32 = r36,r7;; // Cycle 0

ld4.s r34 = [r33] // Cycle 1
(p32) cmp.ge p18,p0 = r8,r0 // Cycle 1
L2:
(p18) br.wtop.sptk L1;; // Cycle 1
(p32) br.cond exit // early exit if p32 is 1

Note: When the loop is exited, one final rotation occurs, rotating the value in p31 to 
p32. Thus, p32 is used as the branch predicate for the early exit branch.
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5.5.3.2 Pipelining with Explicit Multiple Exits

The second approach is to combine the last three instructions in the loop into a 
br.cloop instruction and then pipeline the loop.   The pipeline using this approach is 
shown below:
stage 1: ld4.s r4 = [r5],4;; // II = 1
stage 4: ld4.s r9 = [r4];;
stage 6: cmp.eq.unc p1,p0 = r9,r7
(p1) br.cond  exit

br.cloop L1;;

There are five speculative stages in this pipeline because a non-speculative decision to 
initiate another loop iteration cannot be made until the br.cond and br.cloop are 
executed in stage 6. The code to implement this pipeline is shown below assuming a 
trip count of 200:

mov lc = 204
mov ec = 1
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p21) chk.s r38, recovery // Cycle 0
(p21) cmp.eq.uncp1,p0 = r38,r7 // Cycle 0

ld4.s r36 = [r35] // Cycle 0
(p1) br.cond exit // Cycle 0
L2: br.ctop.sptkL1; // Cycle 0

When the kernel loop is exited at either the br.cond or the br.ctop, the last source 
iteration is complete. Thus, EC is initialized to 1 and there is no explicit epilog block 
generated for the early exit.   The LC register is initialized to five more than 199 
because there are five speculative stages. The purpose of the first five executions of 
br.ctop is simply to keep the loop going until the first valid branch predicate is 
generated for the br.cond. During each of these executions, LC is decremented, so five 
must be added to the LC initialization amount to compensate.

A smaller II is achieved with the second approach. This pipelined code will also work if 
LC is initialized to 199 and EC is initialized to 6. However, if the early exit is taken, LC 
will have been decremented too many times and will need to be adjusted if it is used at 
the target of the early exit. If there is any epilog when the early exit is taken, that 
epilog must be explicit.

5.5.4 Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline a loop. Software 
pipelining increases the throughput of iterations, but may increase the time required to 
complete a single iteration. As a result, loops with very small trip counts may 
experience decreased performance when pipelined. For example, consider the following 
loop:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4 r7 = [r8],4;; // Cycle 0
st4 [r6] = r4,4 // Cycle 2
st4 [r9] = r7,4 // Cycle 2
br.cloop L1;; // Cycle 2
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The following is a possible pipeline with an II of 2:
stage 1: ld4 r4 = [r5],4 // Cycle 0

ld4  r7 = [r8],4;; // Cycle 0
--- // empty cycle

stage 2: --- // empty cycle
st4 [r6] = r4,4 // Cycle 3
st4 [r9] = r7,4;; // Cycle 3

In the source loop, one iteration is completed every three cycles. In the software 
pipelined loop, it takes four cycles to complete the first iteration. Thereafter, iterations 
are completed every two cycles. If the trip count is two, the execution time of both 
versions of the loop is the same, six cycles. If the average trip count of the loop is less 
than two, the software pipelined version of the loop is slower than the source loop.

In addition, it may not be desirable to pipeline a floating-point loop that contains a 
function call. The number of floating-point registers used by the loop is not known until 
after the loop is pipelined. After pipelining, it may be difficult to find empty slots for the 
instructions needed to save and restore the caller-saved floating-point registers across 
the function call.

5.5.5 Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops, 
thus reducing the resource requirements of the loop. Use of advanced loads also can 
reduce the critical path through the iterations, allowing a smaller II to be achieved. See 
Chapter 3, “Memory Reference” for more information on advanced loads. However, 
caution must be exercised when using advanced loads with register rotation. For this 
discussion, we assume an ALAT with 32 entries.

5.5.5.1 Capacity Limitations

An advanced load with a destination that is a rotating register targets a different 
physical register and allocates a new ALAT entry for each kernel iteration.   For 
example, the simple loop below replaces 32 ALAT entries in 32 iterations:
L1:
(p16) ld4.a r32 = [r8]
(p47) ld4.c r63 = [r8]

br.ctop L1;;

To avoid unnecessary ALAT misses, the check load or advanced load check must be 
executed before a later advanced load causes a replacement of the entry being 
checked. In the simple loop above, the unnecessary ALAT misses do not occur because 
the check load is done within 31 iterations of the advanced load. In the example below, 
an ALAT miss is encountered for every check load because the advanced load replaces 
an entry just before the corresponding check load is executed:
L1:
(p16) ld4.a r32 = [r8]
(p48) ld4.c r64 = [r8]

br.ctop L1;;
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5.5.5.2 Conflicts in the ALAT

Using an advanced load to remove a likely invariant load from a loop while advancing 
another load inside the loop results in poor performance if the latter load targets a 
rotating register. The advanced load that targets the rotating register will eventually 
invalidate the ALAT entry for the loop invariant load. Thereafter, every execution of the 
check load for the loop invariant load will cause an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers 
must be assigned and the register lifetimes controlled so that the check load for a 
particular advanced load X is executed before any of the other advanced loads can 
invalidate the entry allocated by load X. For example, the following loop successfully 
targets rotating registers with two advanced loads without any ALAT misses because 
the two advanced load – check load pairs never create more than 32 simultaneously 
live ALAT entries:
L1:
(p16) ld4.a r32 = [r8]
(p31) ld4.c r47 = [r8]
(p16) ld4.a r48 = [r9]
(p31) ld4.c r63 = [r9]

 br.ctop L1;;

When the code cannot be arranged to avoid ALAT misses, it may be best to assign static 
registers to the destinations of the advanced loads and unroll the loop to explicitly 
rename the destinations of the advanced loads where necessary.   The following 
example shows how to unroll the loop to avoid the use of rotating registers. The loop 
has an II equal to 1 and the check load is executed one cycle (and one rotation) after 
the advanced load:
L1:
(p16) ld4.a r33 = [r8]
(p17) ld4.c r34 = [r8]

br.ctop L1;;

Static registers can be assigned to the destinations of the loads if the loop is unrolled 
twice:
L1:
(p16) ld4.a r3 = [r8]
(p17) ld4.c r4 = [r8]

br.cexit L2;;
(p16) ld4.a r4 = [r8]
(p17) ld4.c r3 = [r8]

br.ctop L1;;
L2: //

Rotating registers could still be used for the values that are not generated by advanced 
loads. The effect of this unrolling on instruction cache performance must be considered 
as part of the cost of advancing a load.
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5.5.6 Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to 
software pipelining. Loops that are resource constrained can be improved by unrolling 
such that the limiting resource is more fully utilized. In the following example if we 
assume the target processor has only two memory units, the loop performance is 
bound by the number of memory units:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4  r9 = [r8],4;; // Cycle 0
add  r7 = r4,r9;; // Cycle 2
st4  [r6] = r7,4 // Cycle 3
br.cloop L1;; // Cycle 3

A pipelined version of this loop must have an II of at least two because there are three 
memory instructions, but only two memory units.   If the loop is unrolled twice prior to 
software pipelining and assuming the store is independent of the loads, an II of 3 can 
be achieved for the new loop. This is an effective II of 1.5 for the original source loop. 
Below is a possible pipeline for the unrolled loop:
stage 1:
(p16) ld4 r4 = [r5],8 // odd iteration
(p16) ld4  r9 = [r8],8;; // odd iteration
stage 2:
(p16) ld4 r14 = [r15],8 // even iteration
(p16) ld4 r19 = [r18],8;; // even iteration

// --- empty cycle
stage 3:(p18) add r7 = r4,r9 // odd iteration
(p17) add  r17 = r14,r19;; // even iteration
stage 4: // --- empty cycle
(p19) st4  [r6] = r7,8 // odd iteration
(p18) st4  [r16] = r17,8;; // even iteration

The unrolled loop contains two copies of the source loop body, one that corresponds to 
the odd source iterations and one that corresponds to the even source iterations.   The 
assignment of stage predicates must take this into account. Recall that each one 
written to p16 sequentially enables all the stages for a new source iteration.   During 
stage one of the above pipeline, the stage predicate for the odd iteration is in p16.   The 
stage predicate for the even iteration does not exist yet. During stage two of the above 
pipeline, the stage predicate for the odd iteration is in p17 and the new stage predicate 
for the even iteration is in p16.   Thus within the same pipeline stage, if the stage 
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predicate for the odd iteration is in predicate register X, the stage predicate for the 
even iteration is in predicate register X-1. The pseudo-code to implement this pipeline 
assuming an unknown trip count is shown below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 4 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L3;; // Cycle 0
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and 
stages 2 and 4 are two cycles each. Also, the length of the epilog phase varies with the 
trip count.   If the trip count is odd, the number of epilog stages is three, starting after 
the br.cexit and ending at the br.ctop. If the trip count is even, the number of epilog 
stages is two, starting after the br.ctop and ending at the br.ctop. The EC must be set 
to account for the maximum number of epilog stages. Thus for this example, EC is 
initialized to four. When the trip count is even, one extra epilog stage is executed and 
br.exit L3 is taken. All of the stage predicates used during the extra epilog stages are 
equal to 0, so nothing is executed.

The extra epilog stage for even trip counts can be eliminated by setting the target of 
the br.cexit branch to the next sequential bundle and initializing EC to three as shown 
below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 3 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L4;; // Cycle 0
L4:
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:
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If the loop trip count is even, two epilog stages are executed and the kernel loop is 
exited at the br.ctop. If the trip count is odd, the first two epilog stages are executed 
and then the br.cexit branch is taken. Because the target of the br.cexit branch is 
the next sequential bundle (L4), a third epilog stage is executed before the kernel loop 
is exited at the br.ctop. This optimization saves one stage at the end of the loop when 
the trip count is even, and is beneficial for short trip count loops.

Although unrolling can be beneficial, there are a few considerations before trying to 
unroll and software pipeline. Unrolling reduces the trip count of the loop that is given to 
the pipeliner, and thus may make pipelining of the loop undesirable since low trip count 
loops sometimes run faster unpipelined. Unrolling also increases the code size, which 
may adversely affect instruction cache performance. Unrolling is most beneficial for 
small loops because the potential performance degradation due to under utilized 
resources is greater and the effect of unrolling on the instruction cache performance is 
smaller compared to large loops.

5.5.7 Implementing Reductions

In the following example, a sum of products is accumulated in register f7:
mov f7 = 0;; // initialize sum

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f7 = f4,f9,f7;; // accumulate
br.cloop L1 ;;

The performance is bound by the latency of the fma instruction which we assume is 5 
cycles for these examples. A pipelined version of this loop must have an II of at least 
five because the fma latency is five.   By making use of register rotation, the loop can 
be transformed into the one below. 

Note that the loop has not yet been pipelined. The register rotation and special loop 
branches are being used to enable an optimization prior to software pipelining.

mov lc = 199 // LC = loop count - 1
mov ec = 1 // Not pipelined, so no epilog
mov f33 = 0 // initialize 5 sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0;;

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f32 = f4,f9,f37;; // accumulate
br.ctop L1 ;;

fadd f10 = f33,f34 // add sums
fadd f11 = f35,f36;;
fadd f12 = f10,f11;;
fadd f7 = f12,f37
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This loop maintains five independent sums in registers f33-f37.   The fma instruction in 
iteration X produces a result that is used by the fma instruction in iteration X+5. 
Iterations X through X+4 are independent, allowing an II of one to be achieved.   The 
code for a pipelined version of the loop assuming two memory ports and a nine cycle 
latency for a floating-point load is shown below:

mov lc = 199 // LC = loop count - 1
mov ec = 10 // EC = epilog stages + 1
mov pr.rot=1<<16 // PR16 = 1, rest = 0
mov f33 = 0 // initialize sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0

L1:
(p16) ldfs f50 = [r5],4 // Cycle 0
(p16) ldfs f60 = [r8],4 // Cycle 0
(p25) fma f41 = f59,f69,f46 // Cycle 0

br.ctop.sptk L1;; // Cycle 0
fadd  f10 = f42,f43 // add sums
fadd f11 = f44,f45 ;;
fadd f12 = f10,f11 ;;
fadd f7 = f12,f46

5.5.8 Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in 
cases where a speculative instruction generates a value that is live across source 
iterations. Consider the following loop:

ld4 r3 = [r5] ;;
L1:

ld4 r6 = [r8],4 // Cycle 0
ld4 r5 = [r9],4 ;; // Cycle 0
add r7 = r3,r6 ;; // Cycle 2
ld4 r3 = [r5] // Cycle 3
and r10 = 3,r7;; // Cycle 3
cmp.ne p1,p0=r10,r11 // Cycle 4

(p1) br.cond L1 ;; // Cycle 4

The following is a possible pipeline for the loop:
stage 1: ld4.s r6 = [r8],4 // II = 2

ld4.s r5 = [r9],4 ;;
--- // empty cycle

stage 2: --- // empty cycle
ld4.s r36 = [r5]
add r7 = r37,r6 ;;

stage 3: (p18) and   r10 = 3,r7 ;;
(p18) cmp.ne p1,p0 = r10,r11
(p1) br.wtop L1 ;;
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Note that, in the code above, the ld4 and the add instructions in stage 2 have been 
reordered. Register rotation has been used to eliminate the WAR register dependency 
from the add to the ld4. The first two stages are speculative. The code to implement 
the pipeline is shown below:

ld4 r36 = [r5]
mov ec = 2
mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39 ;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

The problem with this pipelined loop is that the value written to r36 prior to the loop is 
overwritten before it is used by the add.   The value is overwritten by the load into r36 
in the first kernel iteration. This load is in the second stage of the pipeline, but cannot 
be controlled during the first kernel iteration because it is speculative and does not 
have a stage predicate. This problem can be solved by peeling off one iteration of the 
kernel and excluding from that copy any instructions that are not in the first stage of 
the pipeline as shown below.

Note that the destination register numbers for the instructions in the explicit prolog 
have been increased by one. This is to account for the fact that there is no rotation at 
the end of the peeled kernel iteration.

ld4 r37 = [r5]
mov ec = 1
mov pr.rot = 1<<17;; // PR17 = 1, rest = 0
ld4 r33 = [r8],4
ld4 r35 = [r9],4

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of 
code for all or part of the prolog and/or epilog phase.   It is clear from the execution 
trace of the pipelined counted loop from page 1:188 that the functional units are 
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under-utilized during the prolog and epilog phases.   Part of the prolog and epilog could 
be peeled off and merged with the code preceding and following the loop.   The 
following is a pipelined version of that counted loop with an explicit prolog and epilog:

mov lc = 196
mov ec = 1

prolog:
ld4 r35 = [r5],4;; // Cycle 0
ld4 r34 = [r5],4 ;; // Cycle 1
ld4 r33 = [r5],4 // Cycle 2
add r36 = r35,r9 ;; // Cycle 2

L1:
ld4 r32 = [r5],4
add r35 = r34,r9
st4 [r6] = r36,4

L2: br.ctop L1 ;;
epilog:

add r35 = r34,r9 // Cycle 0
st4 [r6] = r36,4 ;; // Cycle 0
add r34 = r33,r9 // Cycle 1
st4 [r6] = r35,4 ;; // Cycle 1
st4 [r6] = r34,4 // Cycle 2

The entire prolog (first three iterations of the kernel loop) and epilog (last three 
iterations) have been peeled off. No attempt has been made to reschedule the peeled 
instructions. The stage predicates have been removed from the instructions since they 
are not required for controlling the prolog and epilog phases. Removing them from the 
prolog makes the prolog instructions independent of the rotating predicates and 
eliminates the need for software-pipelined loop branches between prolog stages. Thus 
the entire prolog is independent of the initialization of LC and EC that precede it. The 
register numbers in the prolog and epilog have been adjusted to account for the lack of 
rotation between stages during those phases.

Note: This code assumes that the trip count of the source loop is at least four. If the 
minimum trip count is unknown at compile time, then a runtime check of the 
trip count must be added before the prolog. If the trip count is less than four, 
then control branches to a copy of the original loop.

If this pipelined loop is nested inside an outer loop, there exists a further optimization 
opportunity.   The outer  loop could be rotated such that the kernel loop is at the top 
followed by the epilog for the current outer loop iteration and the prolog for the next 
outer loop iteration. A copy of the prolog would also be added prior to the outer loop.

Note: From the earlier trace of the counted loop execution, the functional unit usage 
of the prolog and epilog are complimentary such that they could be very nicely 
overlapped.

The drawback of creating an explicit prolog or epilog is code expansion.
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5.5.9 Redundant Load Elimination in Loops

Unrolling of a loop is sometimes necessary to remove copy operations created by loop 
optimizations. The following is an example of redundant load elimination. In the code 
below, each iteration loads two values, one of which has already been loaded by the 
previous source iteration:

add r8 = r5,4;;
L1: ld4 r4 = [r5],4 // a[i]

ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

The redundant load can be eliminated by adding a copy of the first load prior to the loop 
and changing the load to a copy (mov):

add r8 = r5,4 
ld4 r9 = [r5],4;; // a[i]

L1: mov r4 = r9 // a[i] = previous a[i+1]
ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

In traditional architectures, the mov instruction can only be removed by unrolling the 
loop twice.   One instruction is removed from the loop at the cost of two times code 
expansion. The register rotation feature in the Itanium architecture can be used to 
eliminate the mov instruction without unrolling the loop:

add r8 = r5,4 
ld4 r33 = [r5],4;; // a[i]

L1: ld4 r32 = [r8],4 ;; // a[i+1]
add r7 = r33,r32 ;;
st4 [r6] = r7,4
br.ctop L1 ;;

5.6 Summary

The examples in this chapter show how features in the Itanium architecture can be 
used to optimize loops without the code expansion required with traditional 
architectures. Register rotation, predication, and the software-pipelined loop branches 
all contribute to this capability.   Control speculation increases the overlap of the 
iterations of while loops. Data speculation increases the overlap of iterations of loops 
that have loads and stores that cannot be disambiguated.

§
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Floating-point Applications 6

6.1 Overview

The Itanium floating-point architecture is fully ANSI/IEEE-754 standard compliant and 
provides performance enhancing features such as the fused multiply accumulate 
instruction, the large floating-point register file (with static and rotating sections), the 
extended range register file data representation, the multiple independent 
floating-point status fields, and the high bandwidth memory access instructions that 
enable the creation of compact, high performance, floating-point application code.

The beginning of this chapter reviews some specific performance limitations that are 
common in floating-point intensive application codes. Later, architectural features that 
address these limitations are presented with illustrative code examples. The remainder 
of this chapter highlights the optimization of some commonly used kernels using these 
features.

6.2 FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops 
compute complex calculations on regularly structured data, others simply copy data 
from one place to another, while others perform gather/scatter-type operations that 
simultaneously compute and rearrange data. The following sections describe code 
characteristics that limit performance and how they affect these different kinds of 
loops.

6.2.1 Execution Latency

Loops often contain recurrence relationships. Consider the tri-diagonal elimination 
kernel from the Livermore Fortran Kernel suite.
DO 5 i = 2, N
   5X[i] = Z[i] * (Y[i] - X[i-1])

The dependency between X[i] and X[i-1] limits the iteration time of the loop to be 
the sum of the latency of the subtract and the multiply. The available parallelism can be 
increased by unrolling the loop and can be exploited by replicating computation, 
however the fundamental limitation of the data dependency remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration 
time of the loop is limited by the execution latency of the hardware that executes the 
code. A simple vector divide (shown below) is a typical example:
DO 1 I = 1, N
   1X[i] = Y[i] / Z[i]

Since typical modern microprocessors contain a non-pipelined floating-point unit, the 
iteration time of the loop is the latency of the divide which can be tens of clocks.
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6.2.2 Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the 
availability of the execution resources – or the execution bandwidth of the machine. 
Consider the dense matrix multiply kernel from the BLAS3 library.

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be 
used to increase the available ILP in the inner loop. When this is done, the inner loop 
contains an abundance of independent floating-point computations with a relatively 
small number of memory operations. The performance constraint is then largely the 
floating-point execution bandwidth of the machine (assuming sufficient registers are 
available to hold the accumulators – C[i,j] and the intermediate computations).

6.2.3 Memory Latency

While cycle time disparity between the processor and memory creates a general 
memory latency problem for most codes, there are a few special conditions in 
floating-point codes that exacerbate its impact. 

One such condition is the use of indirect addressing. Gather/scatter codes in general 
and sparse matrix vector multiply code (below) in particular are good examples.
DO 1 ROW = 1, N

R[ROW] = 0.0d0
DO 1 I = ROWEND(ROW-1)+1, ROWEND(ROW)

1 R[ROW] = R[ROW] + A[I] * X[COL[I]]

The memory latency of the access of COL[I] is exposed, since it is used to index into 
the vector X. The access of the element of X, the computation of the product, and the 
summation of the product on R[ROW] are all dependent on the memory latency of the 
access of COL[I].

Another common condition in floating-point codes where memory latency impact is 
exacerbated is the presence of ambiguous memory dependencies. Consider the 
incomplete Cholesky conjugate gradient excerpt kernel, again from the Livermore 
Fortran Kernel suite.

II = n
IPNTP = 0

222 IPNT = IPNTP
IPNTP = IPNTP + II
II = II/2
I = IPNTP + 1

cdir$ ivdep
DO 2 K = IPNT+2, IPNTP, 2

I = I+1
2    X[I] = X[K] - V[K] * X[K-1] - V[K-1] * X[K+1]

IF (II .GT. 1) GO TO 222
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The DO-loop involves an update of X at the index I using X at the indices K, K+1, K-1. 
Since it is difficult for the compiler to establish whether these indices overlap, the loads 
of X[K], X[K+1] or X[K-1] for the next iteration cannot be scheduled until the store of 
X[I] of the current iteration. This exposes the memory latency of access of these 
operands.

6.2.4 Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the 
operands of the computation. The DAXPY kernel from the BLAS1 library is a typical 
example:

DO 1 I = 1, N
1    Y[I] = Y[I] + A * X[I]

The computation requires loading two operands (X[I] and Y[I]) and storing one result 
(Y[I]) for each floating-point multiply and add operation. If the data arrays (X and Y) 
are not in cache, then the performance of this loop on most modern microprocessors 
would be limited by the available memory bandwidth on the machine.

6.3 Floating-point Features in the Intel® Itanium® 
Architecture

This section highlights architectural features that reduce the impact of the performance 
limiters described in Section 6.2 using illustrative examples.

6.3.1 Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units 
generally increases. As latency increases, register pressure due to multiple operations 
in-flight also increases. Furthermore as multiple execution units are added, the register 
pressure increases similarly since even more instructions can be in-flight at any one 
time.

The Itanium architecture provides 128 directly addressable floating-point registers to 
enable data reuse and to reduce the number of load/store operations required due to 
an insufficient number of registers. This reduction in the number of loads and stores 
can increase performance by changing a computation from being memory operation 
(MOP) limited to being floating-point operation (FLOP) limited. Consider the dense 
matrix multiply code below:

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

In the inner loop (k), two loads are required for every multiply and add operation. The 
MOP:FLOP ratio is therefore 1:1. 
L1: ldfd f5 = [r5], 8 // Load A[i,k]

ldfd f6 = [r6], 8 // Load B[k,j]
fma.d.s0 f7 = f5, f6, f7 // *,+ to C[i,j]
br.cloop L1
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Here, three registers are required to hold the operands (f5, f6) and the accumulator 
(f7). By recognizing the reuse of A[i,k] for different B[k,j] as j is varied, and the 
reuse of B[k,j] for different A[i,k] as i is varied, the computation can be restructured 
as:

DO 1 i = 1, N, 2
DO 1 j = 1, P, 2

DO 1 k = 1, M
C[i  ,j  ] = C[i  ,j  ] 

+ A[i  ,k]*B[k,j  ]
C[i+1,j  ] = C[i+1,j  ] 

+ A[i+1,k]*B[k,j  ]
C[i  ,j+1] = C[i  ,j+1] 

+ A[i  ,k]*B[k,j+1]
1 C[i+1,j+1] = C[i+1,j+1] 

+ A[i+1,k]*B[k,j+1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the 
MOP:FLOP ratio to 1:2. However, 8 registers are now required: 4 for the accumulators 
and 4 for the operands. 

add r6 = r5, 8
add r8 = r7, 8

L1: ldfd f5 = [r5], 16 // Load A[i,k]
ldfd f6 = [r6], 16 // Load A[i+1,k]
ldfd f7 = [r7], 16 // Load B[k,j]
ldfd f8 = [r8], 16 // Load B[k,j+1]
fma.s0 f9 = f5, f7, f9 // *,+ on C[i,j]
fma.s0 f10 = f6, f7, f10 // *,+ on C[i+1,j]
fma.s0 f11 = f5, f8, f11 // *,+ on C[i,j+1]
fma.s0 f12 = f6, f8, f12 // *,+ on C[i+1,j+1]
br.cloop L1

With 128 available registers, the outer loops of i and j could be unrolled by 8 each so 
that 64 multiplies and adds can be performed by loading just 16 operands. 

The floating-point register file is divided into two regions: a static region (f0-f31) and a 
rotating region (f32-f127). The register rotation provides the automatic register 
renaming required to create compact kernel-only software-pipelined code. Register 
rotation also enables scheduling software pipelined code with an initiation interval that 
is less than the longest latency operation. For e.g. consider the simple vector add loop 
shown below:

DO 1 i = 1, N
1 A[i] = B[i] + C[i]

The basic inner loop is:
L1: ldf f5 = [r5], 8 // Load B[i]

ldf f6 = [r6], 8 // Load C[i]
fadd f7 = f5, f6 // Add operands
stf [r7] = f7, 8 // Store A[i]
br.cloop L1
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If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory 
operations can be issued per clock, the above loop has to be unrolled by at least six if 
there is no register rotation.

add r8 = r7, 8
L1:
(p18) stf [r7] = f25, 16 // Cycle 17,26...
(p18) stf  [r8] = f26, 16 // Cycle 17,26...
(p17) fadd f25 = f5, f15 // Cycle 8,17,26...
(p16) ldf  f5 = [r5], 8 // Cycle 0,9,18...
(p16) ldf  f15 = [r6], 8 // Cycle 0,9,18...
(p17) fadd f26 = f6, f16;; // Cycle 9,18,27 ...
(p16) ldf  f6 = [r5], 8 // Cycle 1,10,19 ...
(p16) ldf  f16 = [r6], 8 // Cycle 1,10,19 ...
(p18) stf  [r7] = f27, 16 // Cycle 20,29 ...
(p18) stf  [r8] = f28, 16 // Cycle 20,29 ...
(p17) fadd f27 = f7, f17 ;; // Cycle 11,20 ...
(p16) ldf  f7 = [r5], 8 // Cycle 3,12,21 ...
(p16) ldf  f17 = [r6], 8 // Cycle 3,12,21 ...
(p17) fadd f28 = f8, f18 ;; // Cycle 12,21 ...
(p16) ldf  f8 = [r5], 8 // Cycle 4,13,22 ...
(p16) ldf  f18 = [r6], 8 // Cycle 4,13,22 ...
(p18) stf  [r7] = f29, 16 // Cycle 23,32 ...
(p18) stf  [r8] = f30, 16 // Cycle 23,32 ...
(p16) fadd f29 = f9, f19 ;; // Cycle 14,23 ...
(p16) ldf  f9 = [r5], 8 // Cycle 6,15,24 ...
(p16) ldf  f19 = [r6], 8 // Cycle 6,15,24 ...
(p16) fadd f30 = f10, f20 ;; // Cycle 15,24 ...
(p16) ldf  f10 = [r5], 8 // Cycle 7,16,25 ...
(p16) ldf  f20 = [r6], 8 // Cycle 7,16,25 ...

br.ctop L1 ;;

However, with register rotation, the same loop can be scheduled with an initiation 
interval of just 2 clocks without unrolling (and 1.5 clocks if unrolled by 2):
L1:
(p24) stf [r7] = f57, 8 // Cycle 15,17...
(p21) fadd f57  = f37, f47 // Cycle 9,11,13...
(p16) ldf f32  = [r5], 8 // Cycle 0,2,4,6...
(p16) ldf f42  = [r6], 8 // Cycle 0,2,4,6...

 br.ctop L1;;

It is thus often advantageous to modulo schedule and then unroll (if required). Please 
see Chapter 5, “Software Pipelining and Loop Support” for details on how to rewrite 
loops using this transformation.

6.3.1.1 Notes on FP Precision

The floating-point registers are 82 bits wide with 17 bits for exponent range, 64 bits for 
significand precision and 1 sign bit. During computation, the result range and precision 
is determined by the computational model chosen by the user. The computational 
model is indicated either statically in the instruction encoding, or dynamically via the 
precision control (PC) and widest-range-exponent (WRE) bits in the floating-point 
status register. Using an appropriate computational model, the user can minimize the 
error accumulation in the computation. In the above matrix multiply example, if the 
multiply and add computations are performed in full register file range and precision, 
the results (in accumulators) can hold 64 bits of precision and up to 17 bits of range for 
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inputs that might be single precision numbers. With the rounding performed at the 64th 
precision bit (instead of the 24th for single precision) a smaller error is accumulated 
with each multiply and add. Furthermore, with 17 bits of range (instead of 8 bits for 
single precision) large positive and negative products can be added to the accumulator 
without overflow or underflow. In addition to providing more accurate results the extra 
range and precision can often enhance the performance of iterative computations that 
are required to be performed until convergence (as indicated by an error bound) is 
reached.

6.3.2 Multiply-Add Instruction

The Itanium architecture defines the fused multiply-add (fma) as the basic 
floating-point computation, since it forms the core of many computations (linear 
algebra, series expansion, etc.) and its latency in hardware is typically less than the 
sum of the latencies of an individual multiply operation (with rounding) implementation 
and an individual add operation (with rounding) implementation. 

In computational loops that have a loop carried dependency and whose speed is often 
determined by the latency of the floating-point computation rather than the peak 
computational rate, the multiply-add operation can often be used advantageously. 
Consider the Livermore FORTRAN Kernel 9 – General Linear Recurrence Equations:
DO 191 k= 1,n

B5(k+KB5I)= SA(k) + STB5 * SB(k)
STB5= B5(k+KB5I) - STB5

191CONTINUE

Since there is a true data dependency between the two statements on variable 
B5(k+KB5I)) and a loop-carried dependency on variable STB5, the loop number of 
clocks per iteration is entirely determined by the latency of the floating-point 
operations. In the absence of an fma type operation, and assuming that the individual 
multiply and add latencies are 5 clocks each and the loads are 8 cycles, the loop would 
be:
L1:
(p16) ldf f32 = [r5], 8 // Load SA(k)
(p16) ldf f42  = [r6], 8 // Load SB(k)
(p17) fmul f5 = f7, f43;; // tmp,Clk 0,15 ...
(p17) fadd f6 = f33, f5 ;; // B5,Clk 5,20 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 10,25 ..

br.ctop L1 ;;

With an fma, the overall latency of the chain of operations decreases and assuming a 5 
cycle fma, the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).
L1:
(p16) ldf f32  = [r5], 8 // Load SA(k)
(p16) ldf f42 = [r6], 8 // Load SB(k)
(p17) fma f6 = f7, f43, f33;; // B5,Clk 0,10 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 5,15 ..

br.ctop L1 ;;

The fused multiply-add operation also offers the advantage of a single rounding error 
for the pair of computations which is valuable when trying to compute small differences 
of large numbers.
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6.3.3 Software Divide/Square Root Sequence

To perform division or square root operations on the Itanium architecture, a 
software-based sequence of operations is used. The sequence consists of obtaining an 
initial guess (using frcpa/frsqrta instruction) and then refining the guess by 
performing Newton-Raphson iterations until the error is sufficiently small so that it may 
not affect the rounding of the result. Examples of double precision divide and square 
root sequences, optimized for latency and throughput, are provided below.

Note: For reduced precision, square and divide sequences can be completed with 
even fewer instructions.

6.3.3.1 Double Precision – Divide

6.3.3.2 Double Precision – Square Root

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fnma.s1 f9 = f7,f8,f1 ;;
(p6) fma.s1 f8 = f9,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1  f8 = f9 ,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1 f8 = f9,f8,f8 ;;
(p6) fma.d.s1 f9 = f6,f8,f0 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fma.s1 f9 = f6,f8,f0
(p6) fnma.s1 f10 = f7,f8,f1 ;;
(p6) fma.s1 f9 = f10,f9,f9
(p6) fma.s1 f11 = f10,f10,f0
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fma.s1 f9 = f11,f9,f9
(p6) fma.s1 f10 = f11,f11,f0
(p6) fma.s1 f8 = f11,f8,f8 ;;
(p6) fma.d.s1 f9 = f10,f9,f9
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

Square Root (Max Throughput)a

(14 Instructions, 10 Groups)

a. The following value is assumed preset: f10=1/2.

Square Root (Min Latency)b

(17 Instructions, 9 Groups)

b. The following values are assumed preset: f9=1/2, f10=3/2, f11=5/2, f12=63/8, f13=231/16, f14=35/8.

frsqrta.s0 f7,p6=f6 ;;
  (p6) fma.s1 f8=f10,f7,f0
  (p6) fma.s1 f7=f6,f7,f0 ;;
  (p6) fnma.s1 f9=f7,f8,f10 ;;
  (p6) fma.s1 f8=f9,f8,f8
  (p6) fma.s1 f7=f9,f7,f7 ;;
  (p6) fnma.s1 f9=f7,f8,f10 ;;
  (p6) fma.s1 f8=f9,f8,f8
  (p6) fma.s1 f7=f9,f7,f7 ;;
  (p6) fnma.s1 f9=f7,f8,f10 ;;
  (p6) fma.s1 f8=f9,f8,f8
  (p6) fma.d.s1 f7=f9,f7,f7 ;;
  (p6) fnma.s1 f9=f7,f7,f6 ;;
  (p6) fma.d.s0 f7=f9,f8,f7 ;;

frsqrta.s0 f7,p6=f6 ;;
  (p6) fma.s1 f8=f9,f7,f0
  (p6) fma.s1 f7=f6,f7,f0 ;;
  (p6) fnma.s1 f9=f7,f8,f9 ;;
  (p6) fma.s1 f10=f11,f9,f10
  (p6) fma.s1 f11=f9,f9,f0
  (p6) fma.s1 f12=f13,f9,f12 ;;
  (p6) fma.s1 f10=f11,f10,f9
  (p6) fma.s1 f11=f11,f11,f0
  (p6) fma.s1 f9=f9,f12,f14 ;;
  (p6) fma.s1 f12=f10,f7,f7
  (p6) fma.s1 f7=f7,f11,f0
  (p6) fma.s1 f10=f11,f9,f10 ;;
  (p6) fma.d.s1 f7=f9,f7,f12
  (p6) fma.s1 f8=f10,f8,f8 ;;
  (p6) fnma.s1 f9=f7,f7,f6 ;;
  (p6) fma.d.s0 f7=f9,f8,f7 ;;
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For divide, the first instruction (frcpa) provides an approximation (good to 8 bits) of 
the reciprocal of f7 and sets the predicate (p6) to 1, if the ratio f6/f7 can be obtained 
using the prescribed Newton-Raphson iterations. If, however, the ratio f6/f7 is special 
(finite/0, finite/infinite, etc) the final result of f6/f7 is provided in f8 and the predicate 
(p6) is cleared. For certain boundary conditions (when the operand values (f6 and f7) 
are well outside the single precision, double precision and even double-extended 
precision ranges) frcpa will cause a software assist fault and the software handler will 
produce the ratio f6/f7 and return it in f8 and clear the predicate (p6).

The multiple status fields provided in the FPSR are used in these sequences. S0 is the 
main (architectural) status field and it is written to by the first operation (frcpa) to 
signal any faults (V, Z, D), and by the last operation to signal any traps. The conditions 
of all intermediate operations are ignored by writing them to S1. Thus these sequences 
not only obtain the correct IEEE 754 specified result (in f8) but the flags are also set (in 
S0) as per the standard’s requirements. If the divide is part of a speculative chain of 
operations that is using S2 as its status field, then S0 should be replaced with S2 in 
these sequences. S1 can still be used by the intermediate operations of all the divide 
sequences (i.e. those that target S0, S2, or S3) since its flags are all discarded.

When divide and square-root operations appear in vectorizable loops, it is often very 
advantageous to have these operations be performed in software rather than hardware. 
In software, these operations can be pipelined and the overall throughput be improved, 
whereas in hardware these operations are typically not pipelineable.

Another significant advantage of the software-based divide/square-root computations is 
that the accuracy of the result can be controlled by the user and can be traded off for 
speed. This trade-off is often used in graphics codes where the divide accuracy of about 
14-bits suffices and the sequence can be shorter than that used for single or double 
precision.

6.3.4 Computational Models

The Itanium architecture offers complete user control of the computational model. The 
user can select the result’s precision and range, the rounding mode, and the IEEE trap 
response. Appropriately selecting the computational model can result in code that has 
greater accuracy, higher performance, or both.

The register file format is uniform for the three memory data types – single, double and 
double-extended. Since all the computations are performed on registers (regardless of 
the data type of its content) operands of different types can be easily combined. Also 
since the conversion from the memory type to the register file format is done on loads 
automatically no extra operations are required to perform the format conversion.

The C syntax semantics is also easily emulated. Loads convert all input operands into 
the register file format automatically. Data operands of different types, now residing in 
register file format can be operated upon and all intermediate results coerced to double 
precision by statically indicating the result precision in the instruction encoding. The 
computation leading to the final result can specify the result precision and range 
(statically in the instruction encoding for single and double precision, and dynamically 
in the status field bits for double-extended precision). Compliance to the IA-32 FP 
computational style (range=extended, precision=single/double/extended) can also 
achieved using the status field bits. 



Volume 1, Part 2: Floating-point Applications 1:213

6.3.5 Multiple Status Fields

The FPSR is divided into one main (architectural) status field and three additional 
identical status fields. These additional status fields could be used to performance 
advantage.

First, divide and square-root sequences (described in Section 6.3.3) contain operations 
that might cause intermediate results to overflow/underflow or be inexact even if the 
final result may not. In order to maintain correct IEEE flag status the status flags of 
these computations need to be discarded. One of these additional status fields 
(typically status field 1) can be used to discard these flags.

Second, speculating floating-point operations requires maintaining the status flags of 
the speculated operations distinct from the architectural status flags until the 
speculated operations are committed to architectural state (if they ever are). One of 
these additional status fields (typically status fields 2 or 3) can be used for this 
purpose. 

Consider the Livermore FORTRAN kernel 16 – Monte Carlo Search
DO 470 k= 1,n

k2= k2+1
j4= j2+k+k
j5= ZONE(j4)
IF( j5-n      ) 420,475,450

415 IF( j5-n+II   ) 430,425,425
420 IF( j5-n+LB   ) 435,415,415
425 IF( PLAN(j5)-R) 445,480,440
430 IF( PLAN(j5)-S) 445,480,440
435 IF( PLAN(j5)-T) 445,480,440
440 IF( ZONE(j4-1)) 455,485,470
445 IF( ZONE(j4-1)) 470,485,455
450 k3= k3+1

IF( D(j5)-(D(j5-1)*(T-D(j5-2))**2
     , +(S-D(j5-3))**2

, +(R-D(j5-4))**2)) 445,480,440
455 m= m+1

IF( m-ZONE(1) ) 465,465,460
460 m= 1
465 IF( i1-m) 410,480,410
470 CONTINUE
475 CONTINUE
480 CONTINUE
485 CONTINUE

Profiling indicates that the conditional after statement 450 is most frequently executed. 
It is therefore advantageous to speculatively execute the computation in the conditional 
while the conditionals in 415...445 are being evaluated. In the event that any of the 
conditionals in 415...445 cause the control to be moved on beyond 450 the results (and 
flags) of the speculatively computed operations (of the conditional after statement 450) 
can be discarded.
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The availability of multiple additional status fields can allow a user to maintain multiple 
computational environments and to dynamically select among them on an operation by 
operation basis. One such use is in the implementation of interval arithmetic code 
where each primitive operation is required to be computed in two different rounding 
modes to determine the interval of the result.

6.3.6 Other Features

The Itanium architecture offers a number of other architectural constructs to enhance 
the performance of different computational situations.

6.3.6.1 Operand Screening Support

Operand screening is often a required or useful step prior to a computation. The 
operand may be screened to ensure that it is in a valid range (e.g. finite positive or zero 
input to square-root; non-zero divisor for divide) or it may be screened to take an early 
out – the result of the computation is predetermined or could be computed more 
efficiently in another way. The fclass instruction can be used to classify the input 
operand to either be or not be a part of a set of classes. Consider the following code 
used for screening invalid operands for square-root computation:
IF (A.EQ. NATVAL OR 

A.EQ. SNAN OR A.EQ. QNAN OR 
A.EQ. NEG_INF OR A.EQ. POS_INF OR
A.LT. 0.0D0) THEN
WRITE (*, “INVALID INPUT OPERAND”)

ELSE
WRITE (*, “SQUARE-ROOT = “, SQRT(A))

ENDIF

The above conditional can be determined by two fclass instructions as indicated below:
fclass.m p1, p2 = f2, 0x1E3;; // Detect NaTVal, NaN, +Inf or -Inf

(p2) fclass.m p1, p2 = f2, 0x01A // Detect -Norm or -Unorm

The resultant complimentary predicates (p1 and p2) can be used to control the ELSE 
and THEN statements respectively.

6.3.6.2 Min/Max/AMin/AMax

The Itanium architecture provides direct instruction level support for the FORTRAN 
intrinsic MIN(a,b) or the equivalent C idiom: a<b? a: b and the FORTRAN intrinsic 
MAX(b, a) or the equivalent C idiom: a<b? b: a. These instructions can enhance 
performance by avoiding the function call overhead in FORTRAN, and by reducing the 
critical path in C. The instructions are designed to mimic the C statement behavior so 
that they can be generated by the compiler. They are also not commutative. By 
appropriately selecting the input operand order, the user can either ignore or catch 
NaNs.

Consider the problem of finding the minimum value in an array (similar to the 
Livermore FORTRAN kernel 24):

XMIN = X(1)
DO 24  k= 2,n
24 IF(X(k) .LT. XMIN)  XMIN = X(k)
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Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence 
if the above code is implemented as:

ldf f5 = [r5], 8;;
L1: ldf f6 = [r5], 8

fmin f5 = f6, f5
br.cloop L1 ;;

NaNs in the array (X) will be ignored.

If the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) will 
remain unchanged, since the NaN will fail the.LT. comparison and fmin will return the 
second argument – in this case the old minimum value in f5.

However, if the code is implemented as:
ldf f5 = [r5], 8;;

L1: ldf f6 = [r5], 8
fmin f5 = f5, f6
br.cloop L1 ;;

NaNs in the array (X) will reset the minimum value.

Now, if the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) 
will be set to the NaN, since the NaN will fail the.LT. comparison and fmin will return 
the second argument – in this case the NaN in f6. In the next iteration, the new array 
value (loaded in f6) will become the new minimum.

famin/famax perform the comparison on the absolute value of the input operands (i.e. 
they ignore the sign bit) but otherwise operate in the same (non-commutative) way as 
the fmin/fmax instructions.

6.3.6.3 Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point 
representations by simply moving the integer to the significand field of the 
floating-point register using the setf.sig instruction. The resulting floating-point value 
would be in its unnormal representation (unless the unsigned integer was greater than 
263). 

Conversions from signed integers to floating-point and from floating-point to signed or 
unsigned integers are accomplished by fcvt.xf and fcvt.fx/fcvt.fxu instructions 
respectively. However, since signed integers are converted directly to their canonical 
floating-point representations, they do not need to be normalized after conversion.

6.3.6.4 FP Subfield Handling

It is sometimes useful to assemble a floating-point value from its constituent fields. 
Multiplication and division of floating-point values by powers of two, for example, can 
be easily accomplished by appropriately adjusting the exponent. The Itanium 
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architecture provides instructions that allow moving floating-point fields between the 
integer and floating-point register files. Division of a floating-point number by 2.0 is 
accomplished as follows:
getf.exp r5 = f5 // Move S+Exp to int
add r5 = r5, -1 // Sub 1 from Exp
setf.exp f6 = r5 // Move S+Exp to FP
fmerge.se f5 = f6, f5 // Merge S+E w/ Mant

Floating-point values can also be constructed from fields from different floating-point 
registers. 

6.3.7 Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs 
of high bandwidth, the Itanium architecture incorporates many architectural features to 
help manage the memory hierarchy and increase performance. As described in 
Section 6.2, memory latency and bandwidth are significant performance limiters in 
floating-point applications. The architecture offers features to address both these 
limitations.

In order to enhance the core bandwidth to the floating-point register file, the 
architecture defines load-pair instructions. In order to mitigate the memory latency, 
explicit and implicit data prefetch instructions are defined. In order to maximize the 
utilization of caches, the architecture defines locality attributes as part of memory 
access instructions to help control the allocation (and de-allocation) of data in the 
caches. For instances where the instruction bandwidth may become a performance 
limiter, the architecture defines machine hints to trigger relevant instruction prefetches.

6.3.7.1 Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in 
memory to two independent floating-point registers. The target registers are required 
to be odd and even physical registers so that the machine can utilize just one access 
port to accomplish the register update. 

Note: The odd/even pair restriction is on physical register numbers, not logical regis-
ter numbers. A programming violation of this rule will cause an illegal operation 
fault.

For example, suppose a machine that can issue 2 FP instructions per cycle, provides 
sufficient bandwidth from the second level cache (L2) to sustain 2 load-pairs every 
cycle. Then loops that require up to 2 data elements (of 8 bytes each) per floating-point 
instruction can run at peak speeds when the data is resident in L2. A common example 
of such a case is a simple double precision dot product – DDOT:

DO 1 I = 1, N
1 C = C + A(I) * B(I)
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The inner loop consists of two loads (for A and B) and a multiply-add (to accumulate the 
product on C). The loop would run at the latency of the fma due to the recurrence on C. 
In order to break the recurrence on C, the loop is typically unrolled and multiple partial 
accumulators are used.

DO 1 I = 1, N, 8
C1 = C1 + A[I] * B[I]
C2 = C2 + A[I+1] * B[I+1]
C3 = C3 + A[I+2] * B[I+2]
C4 = C4 + A[I+3] * B[I+3]
C5 = C5 + A[I+4] * B[I+4]
C6 = C6 + A[I+5] * B[I+5]
C7 = C7 + A[I+6] * B[I+6]

1 C8 = C8 + A[I+7] * B[I+7]
C = C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and 
8 fmas. If we assume the machine has two memory ports, this loop would be limited by 
the availability of M slots and run at a peak rate of 1 clock per iteration. However, if this 
loop is rewritten using 8 load-pairs (for A[I], A[I+1] and B[I], B[I+1] and A[I+2], 
A[I+3] and B[I+2], B[I+3] and so on) and 8 fmas this loop could run at a peak rate of 
2 iterations per clock (or just 0.5 clocks per iteration) with just two M-units.

6.3.7.2 Data Prefetch

lfetch allows the advance prefetching of a line (defined as 32 bytes or more) of data 
into the cache from memory. Allocation hints can be used to indicate the nature of the 
locality of the subsequent accesses on that data and to indicate which level of cache 
that data needs to be promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the 
load target is never used) lfetches can more effectively reduce the memory latency 
without using floating-point registers as targets of the data being prefetched. 
Furthermore lfetch allows prefetching the data to different levels of caches.

6.3.7.3 Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal, 
spatial/non-spatial), The Itanium architecture allows annotating the data accesses 
(loads/stores) to reflect these attributes. Based on these annotations, the 
implementation can better manage the storage of the data in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the 
various cache levels. (Only two cache levels are architecturally identified). The 
non-temporal hint is best used for data that typically has no reuse with respect to that 
level of cache. The temporal hint is used for all other data (that has reuse).

6.4 Summary

This chapter describes the limiting factors for many scientific and floating-point 
applications: memory latency and bandwidth, functional unit latency, and number of 
available functional units. It also describes the important features of floating-point 
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support in the Itanium architecture beyond the software-pipelining support described in 
Chapter 5, “Software Pipelining and Loop Support” that help to overcome some of these 
performance limiters. Architectural support for speculation, rounding, and precision 
control are also described.

Examples in the chapter include how to implement floating-point division and square 
root, common scientific computations such as reductions, use of features such as the 
fma instruction, and various Livermore kernels.

§
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About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such 
as explicit parallelism, predication, speculation and more. The architecture is designed 
to be highly scalable to fill the ever increasing performance requirements of various 
server and workstation market segments. The Itanium architecture features a 
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor 
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key 
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a 
comprehensive description of the programming environment, resources, and instruction 
set visible to both the application and system programmer. In addition, it also describes 
how programmers can take advantage of the features of the Itanium architecture to 
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level 
resources, programming environment, and the IA-32 application interface. This volume 
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of 
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by 
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of 
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point 
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System 
Environment” describes the operation of IA-32 instructions within the Itanium System 
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® 
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.
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Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” 
provides an overview of the application programming environment for the Itanium 
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control 
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization 
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on 
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in 
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources 
and programming state, interrupt model, and processor firmware interface. This 
volume also provides a useful system programmer's guide for writing high performance 
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment 
designed to support execution of Itanium architecture-based operating systems running 
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural 
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating 
system for virtual to physical address translation, virtual aliasing, physical addressing, 
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a 
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which 
automatically saves and restores the stacked subset (GR32 – GR 127) of the general 
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance 
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.
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Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts 
and intercepts that can occur during IA-32 instruction set execution in the Itanium 
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with 
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium 
System Environment from the perspective of an Itanium architecture-based operating 
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts 
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second 
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing 
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes 
execution around interruptions and what state is preserved and made available to 
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve 
Itanium register contents and state. This chapter also describes system architecture 
mechanisms that allow an operating system to reduce the number of registers that 
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating 
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of 
instruction emulation handlers that Itanium architecture-based operating systems are 
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the 
Itanium architecture handle floating-point numeric exceptions and how the software 
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium 
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt 
architecture with a focus on how external asynchronous interrupt handling can be 
controlled by software. 

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform 
issues and support for the existing IA-32 I/O port space.
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Chapter 12, “Performance Monitoring Support” describes the performance monitor 
architecture with a focus on what kind of support is needed from Itanium 
architecture-based operating systems. 

Chapter 13, “Firmware Overview” introduces the firmware model, and how various 
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system 
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium® 
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium 
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which 
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format 
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules 
that are applicable when generating code for processors based on the Itanium 
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set 
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all 
base IA-32 instructions, organized in alphabetical order by assembly language 
mnemonic.
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Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed 
description of all IA-32 Intel® MMX™ technology instructions designed to increase 
performance of multimedia intensive applications. Organized in alphabetical order by 
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all 
IA-32 SSE instructions designed to increase performance of multimedia intensive 
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be 
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level 
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new 
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports 
the execution of both IA-32 and Itanium architecture-based code.

Itanium Architecture-based Firmware – The Processor Abstraction Layer (PAL) and 
System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor 
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system 
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at 
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual 
for Software Development and Optimization– Document number 308065 
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development 
and Optimization – This document (Document number 251110) describes 
model-specific architectural features incorporated into the Intel® Itanium® 2 
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development – 
This document (Document number 245320) describes model-specific architectural 
features incorporated into the Intel® Itanium® processor, the first processor based 
on the Itanium architecture.
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set 
of manuals describes the Intel 32-bit architecture. They are available from the Intel 
Literature Department by calling 1-800-548-4725 and requesting Document 
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide – 
This document (Document number 245358) defines general information necessary 
to compile, link, and execute a program on an Itanium architecture-based 
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification – 
This document (Document number 245359) specifies requirements to develop 
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at 
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines 
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of 
Revision

Revision 
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and 
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current 
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and 
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.
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August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking 
on interruption messages by processors optional. See Vol 2, Part I, Ch 5 
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers 
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure 
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2, 
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states). 
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for 
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined 
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD 
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY, 
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER, 
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional. 
Undefined behavior for 1-byte accesses to the non-architected regions in the 
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the 
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol 
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in 
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL 
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and 
check_target_register_sof. 
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II, 
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of 
Revision

Revision 
Number Description



2:10 Volume 2, Part 1: About this Manual

August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2, 
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1; 
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2; 
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3, 
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I, 
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I, 
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s) 
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I, 
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation 
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part 
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the 
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I, 
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2, 
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section 
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of 
Revision

Revision 
Number Description
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Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return 
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new 
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1, 
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow 
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative 
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section 
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications 
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section 
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2, 
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of 
Revision

Revision 
Number Description
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§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32 
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI 
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the 
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry 
order; SAL needs to initialize all the IA-32 registers properly before making 
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/ 
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of 
Revision

Revision 
Number Description
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Intel® Itanium® System Environment 2

As described in Section 2.1, “Operating Environments” on page 1:13, the Itanium 
System Environment supports Itanium architecture-based operating systems. The 
architectural model also supports a mixture of IA-32 and Itanium architecture-based 
application code within an Itanium architecture-based operating system.

The system environment determines the set of processor system resources seen by the 
operating system. These resources include: virtual memory management, physical 
memory attributes, external interrupt mechanisms, exception and interrupt delivery, 
machine check architectures, debug, performance monitoring, control registers, and 
the set of privileged instructions.

2.1 Processor Boot Sequence

Figure 2-1 shows the defined boot sequence. Unlike IA-32 processors, which power up 
in 32-bit Real Mode, processors in the Itanium processor family power up in the 
Itanium System Environment running Itanium architecture-based code. Processor 
initialization, testing, memory, and platform initialization/testing are performed by 
processor firmware. Mechanisms are provided to execute Real Mode IA-32 boot BIOSs 
and device drivers during the boot sequence.

Figure 2-1. System Environment Boot Flow
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2.2 Intel® Itanium® System Environment Overview

The Itanium System Environment is designed to support execution of Itanium 
architecture-based operating systems running IA-32 or Itanium architecture-based 
applications. IA-32 applications can interact with Itanium architecture-based operating 
systems, applications and libraries within this environment. Both IA-32 application level 
code and Itanium instructions can be executed by the operating system and user level 
software. The entire machine state, including the IA-32 general registers and 
floating-point registers, segment selectors and descriptors is accessible to Itanium 
architecture-based code. As shown in Figure 2-2, all major IA-32 operating modes are 
fully supported.

In the Itanium system environment, Itanium architecture operating system resources 
supersede all IA-32 system resources. Specifically, the IA-32 defined set of control, 
test, debug, machine check registers, privilege instructions, and virtual paging 
algorithms are replaced by the Itanium architecture system resources. When IA-32 
code is running on an Itanium architecture-based operating system, the processor 
directly executes all performance critical but non-sensitive IA-32 application level 
instructions. Accesses to sensitive system resources (interrupt flags, control registers, 
TLBs, etc.) are intercepted into the Itanium architecture-based operating system. Using 
this set of intervention hooks, an Itanium architecture-based operating system can 
emulate or virtualize an IA-32 system resource for an IA-32 application, OS, or device 
driver.

The Itanium system architecture features are presented in the following chapters:

• Chapter 3, “System State and Programming Model” describes system resources.

• Chapter 4, “Addressing and Protection” describes the virtual memory architecture.

• Chapter 5, “Interruptions” defines the interrupt and exception architecture.

• Chapter 6, “Register Stack Engine” describes the register stack engine.

• Chapter 7, “Debugging and Performance Monitoring” describes debug and 
performance monitoring hooks.

• Chapter 8, “Interruption Vector Descriptions” describes interruption handler entry 
points.

Figure 2-2. Intel® Itanium® System Environment
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Additional support for IA-32 applications in the Itanium system environment is defined 
by chapters:

• Chapter 9 describes IA-32 interruption handler entry points.

• Chapter 10, “Itanium® Architecture-based Operating System Interaction Model 
with IA-32 Applications”describes how IA-32 applications interact with Itanium 
architecture-based operating systems.

§
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System State and Programming Model 3

This chapter describes the architectural state visible only to an operating system and 
defines system state programming models. It covers the functional descriptions of all 
the system state registers, descriptions of individual fields in each register, and their 
serialization requirements. The virtual and physical memory management details are 
described in Chapter 4, “Addressing and Protection.” Interruptions are described in 
Chapter 5, “Interruptions.”

Note: Unless otherwise noted, references to “interruption” in this chapter refer to 
IVA-based interruptions. See “Interruption Definitions” on page 2:95. 

3.1 Privilege Levels

Four privilege levels, numbered from 0 to 3, are provided to control access to system 
instructions, system registers and system memory areas. Level 0 is the most privileged 
and level 3 the least privileged. Application instructions and registers can be accessed 
at any privilege level. System instructions and registers defined in this chapter can only 
be accessed at privilege level 0; otherwise, a Privilege Operation fault is raised. The 
processor maintains a Current Privilege Level (CPL) in the cpl field of the Processor 
Status Register (PSR). CPL can only be modified by controlled entry and exit points 
managed by the operating system. Virtual memory protection mechanisms control 
memory accesses based on the Privilege Level (PL) of the virtual page and the CPL.

3.2 Serialization

For all application and system level resources, apart from the control register file, the 
processor ensures values written to a register are observed by instructions in 
subsequent instruction groups. This is termed data dependency. For example, writes 
to general registers, floating-point and application registers are observed by 
subsequent reads of the same register. (See “Control Registers” on page 2:29 for 
control register serialization requirements.) For modifications of application level 
resources with side effects, the side effects are ensured by the processor to be 
observed by subsequent instruction groups. This is termed implicit serialization. 
Application registers (ARs), with the exception of the Interval Time Counter, the User 
Mask, when modified by sum, rum, and mov to psr.um, and the Current Frame Marker 
(CFM), are implicitly serialized. PMD registers have special serialization requirements as 
described in “Generic Performance Counter Registers” on page 2:156. All other 
application-level resources (GRs, FRs, PRs, BRs, IP, CPUID) have no side effects and so 
need not be serialized. 

To avoid serialization overhead in privileged operating system code, system register 
resources are not implicitly serialized. The processor does not ensure modification of 
registers with side effects are observed by subsequent instruction groups. For system 
register resources other than control registers, the processor ensures data 
dependencies are honored (reads see the results of prior writes to the same register). 
See Section 3.3.3, “Control Registers” and Table 3-3 on page 2:29 for control register 
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serialization requirements. This approach simplifies hardware and allows for more 
efficient software operations. For example, during a low level context switch where 
there is no immediate use of loaded system registers, these registers can be loaded 
without any serialization overhead. To ensure side effects are observed before a 
dependent instruction is fetched or executed, two serialization operations are provided: 
instruction serialization and data serialization.

3.2.1 Instruction Serialization

Instruction serialization ensures that modifications to processor resources are 
observed before subsequent instruction group fetches are re-initiated. Software must 
use an instruction serialization operation before any instruction group that is dependent 
upon the modified system resource. Resource side effects may be observed at any point 
before the explicit serialization operation.

Modification of the following system resources (if the modification affects instruction 
fetching) require instruction serialization: RR, PKR, ITR, ITC, IBR, PMC, PMD, PSR bits 
as defined in “Processor Status Register (PSR)” on page 2:23 and Control Registers as 
defined in “Control Registers” on page 2:29.

The instructions Return from Interruption (rfi) and Instruction Serialize (srlz.i) 
perform explicit instruction serialization.

An interruption performs an implicit instruction serialization operation, so the first 
instruction group in the interruption handler will observe the serialized state. 

Instruction Serialization Example:

mov ibr[reg]= reg // move to instruction debug register
;; // end of instruction group
srlz.i // ensure subsequent instruction fetches observe

// modification
;; // end of instruction group
inst // dependent instruction

Note: The serializing instruction, the instruction to be serialized, and any operations 
dependent on the serialization must be in three separate instruction groups. 

3.2.2 Data Serialization

Data serialization ensures that modifications to processor resources affecting both 
execution and data memory accesses are observed. Software must issue a data 
serialize operation prior to the instruction dependent upon the modified resource. Data 
serialization can be issued within the same instruction group as the dependent 
instruction. Resource side effects may be observed at any point before the explicit 
serialization operation.

Modification of the following system resources require data serialization: RR, PKR, RUC, 
DTR, DTC, DBR, PMC, PMD, PSR bits as defined in “Processor Status Register (PSR)” on 
page 2:23 and Control Registers as defined in “Control Registers” on page 2:29.
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The control registers are different from the general registers and other registers. Most 
control registers require an explicit data serialization between the writing of a control 
register and the reading of that same control register. (See Table 3-3 on page 2:29 for 
serialization requirements for specific control registers.)

The Data Serialize (srlz.d) instruction performs explicit data serialization. Instruction 
serialization operations (rfi, srlz.i, and interruptions) also perform a data 
serialization operation.

Data Serialization Example:

mov rr[reg] = reg //move into region register
;; //end of instruction group
srlz.d //serialize region register modification
ld //perform a dependent load

The serializing instruction and the instruction to be serialized (the one writing the 
resource) must be in two different instruction groups. Operations dependent on the 
serialization and the serialization can be in the same instruction group, but the srlz 
instruction must be before the dependent instruction slot. 

3.2.3 Definition of In-flight Resources

When the value of a resource that requires an explicit instruction or data serialization is 
changed by one or more writers, that resource is said to be in-flight until the required 
serialization is performed. There can be multiple in-flight values if multiple writers have 
occurred since the last serialization.

An instruction that reads an in-flight resource will see one of the in-flight values or the 
state prior to any of the unserialized writers. However, whether such a reader sees the 
original or one of the in-flight values is not predictable.

For a reader of an in-flight resource, this definition includes (but is not limited to) the 
following possible outcomes:

• The reader of an in-flight resource may see the most-recently-serialized value or 
any of the in-flight values each time it is executed – seeing the value from a 
particular writer one time does not guarantee that the same writer’s value will be 
seen by that reader the next time.

• Multiple readers of an in-flight resource may see different values – each may see 
the most-recently-serialized value or any of the in-flight values, independent of 
what other readers may see.

• If a single execution of an instruction reads an in-flight resource more than once 
during its execution, each read may see a different value.

Thus, the only way to guarantee that the latest value is seen by a reader is to perform 
the required serialization. 
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3.3 System State

The architecture provides a rich set of system register resources for process control, 
interruptions handling, protection, debugging, and performance monitoring. This 
section gives an overview of these resources.

3.3.1 System State Overview

Figure 3-1 shows the set of all defined privileged system register resources. Application 
state as defined in “Application Register State” on page 1:23 is also accessible.

• Processor Status Register (PSR) – 64-bit register that maintains control 
information for the currently running process. See “Processor Status Register 
(PSR)” on page 2:23 for complete details.

• Control Registers (CR) – This register name space contains several 64-bit 
registers that capture the state of the processor on an interruption, enable 
system-wide features, and specify global processor parameters for interruptions 
and memory management. See “Control Registers” on page 2:29 for complete 
information.

• Interrupt Registers – These registers provide the capability of masking external 
interrupts, reading external interrupt vector numbers, programming vector 
numbers for internal processor asynchronous events and external interrupt 
sources. For complete information, see “Interrupts” on page 2:114.

• Interval Timer Facilities – A 64-bit interval timer is provided for privileged and 
non-privileged use and as a time base for performance measurements. Timing 
facilities are defined in detail in “Interval Time Counter and Match Register (ITC – 
AR44 and ITM – CR1)” on page 2:32. 

• Resource Utilization Facility – A 64-bit resource utilization counter is provided 
for privileged and non-privileged use. This counts the number of Interval Timer 
cycles consumed by this logical processor.  See Section 3.1.8.11, “Resource 
Utilization Counter (RUC – AR 45)” on page 1:31.

• Debug Breakpoint Registers (DBR/IBR) – 64-bit Data and 64-bit Instruction 
Breakpoint Register pairs (DBR, IBR) can be programmed to fault on reference to a 
range of virtual and physical addresses generated by either Itanium or IA-32 
instructions. See “Debugging” on page 2:151 for details. The minimum number of 
DBR register pairs and IBR register pairs is 4 in any implementation. On some 
implementations, a hardware debugger may use two or more of these register pairs 
for its own use; see “Data and Instruction Breakpoint Registers” on page 2:152 for 
details. 

• Performance Monitor Configuration/Data Registers (PMC/PMD) – Multiple 
performance monitors can be programmed to measure a wide range of user, 
operating system, or processor performance values. Performance monitors can be 
programmed to measure performance values from either IA-32 or Itanium 
instructions. Performance monitors are defined in “Performance Monitoring” on 
page 2:155. The minimum number of generic PMC/PMD register pairs in any 
implementation is 4.

• Banked General Registers – A set of 16 banked 64-bit general purpose registers, 
GR 16-GR 31, are available as temporary storage and register context when 
operating in low level interruption code. See “Banked General Registers” on 
page 2:42 for complete details.
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• Region Registers (RR) – Eight 64-bit region registers specify the identifiers and 
preferred page sizes for multiple virtual address spaces. Refer to “Region Registers 
(RR)” on page 2:58 for complete information.

• Protection Key Registers (PKR) – At least sixteen 64-bit protection key registers 
contain protection keys and read, write, execute permissions for virtual memory 
protection domains. Please see the processor-specific documentation for further 
information on the number of Protection Key Registers implemented on the Itanium 
processor. Refer to “Protection Keys” on page 2:59 for details.

• Translation Lookaside Buffer (TLB) – Holds recently used virtual to physical 
address mappings. The TLB is divided into Instruction (ITLB), Data (DTLB), 
Translation Registers (TR) and Translation Cache (TC) sections. See “Translation 
Lookaside Buffer (TLB)” on page 2:47 for complete details. Translation Registers 
are software managed portions of the TLB and the Translation Cache section of the 
TLB is directly managed by the processor.
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Figure 3-1. System Register Model
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3.3.2 Processor Status Register (PSR)

The PSR maintains the current execution environment. The PSR is divided into four 
overlapping sections (See Figure 3-2): user mask bits (PSR{5:0}), system mask bits 
(PSR{23:0}), the lower half (PSR{31:0}), and the entire PSR (PSR{63:0}). PSR fields 
are defined in Table 3-2 along with serialization requirements for modification of each 
field and the state of the field after an interruption.

The PSR instructions and their serialization requirements are defined in Table 3-1. 
These instructions explicitly read or write portions of the PSR. Other instructions also 
read and write portions of the PSR as described in Table 3-2 and Table 5-2.

The user mask, PSR{5:0}, can be set and cleared by the Set User Mask (sum), Reset 
User Mask (rum) and Move to User Mask (mov psr.um=) instructions at any privilege 
level. For user mask modifications by sum, rum and mov, the processor ensures all side 
effects are observed before subsequent instruction groups.

Figure 3-2. Processor Status Register (PSR)
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Table 3-1. Processor Status Register Instructions

Mnemonic Description Operation
Instr.
Type

Serialization
Required

sum imm Set user mask 
from immediate

PSR{5:0}  PSR{5:0} | imm M implicit

rum imm Reset user 
mask from 
immediate

PSR{5:0}  PSR{5:0} & ~imm M implicit

mov psr.um = r2 Move to user 
mask

PSR{5:0}  GR[r2] M implicit

mov r1 = psr.um Move from user 
mask

GR[r1] PSR{5:0} M none

ssm imm Set system 
mask from 
immediate

PSR{23:0}  PSR{23:0} | imm M data/insta

a. Based upon the resource being serialized, use data or instruction serialization.

rsm imm Reset system 
mask from 
immediate

PSR{23:0}  PSR{23:0} &~imm M data/insta

mov psr.l = r2 Move to lower 
PSR

PSR{31:0}  GR[r2] M data/insta

mov r1 = psr Move from PSR GR[r1] PSR{36:35,31:0}b

b. All other bits of the PSR read as zero.

M none

bsw.0, bsw.1 Bank switch PSR{44} 0or 1 B implicit

vmsw.0, vmsw.1 Virtual machine 
switch

PSR{46} 0or 1 B implicit

rfi Return From 
Interruption

PSR{63:0}  IPSR B implicit

system mask

user mask
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The system mask, PSR{23:0}, can be set and cleared by the Set System Mask (ssm) 
and Reset System Mask (rsm) instructions. Software must issue the appropriate 
serialization operation before dependent instructions. The system mask instructions are 
privileged.

The lower half of the PSR, PSR{31:0}, can be written with the Move to Lower PSR (mov 
psr.l=) instruction. Software must issue the appropriate serialization operation before 
dependent instructions. The Move to Lower PSR instruction is privileged.

The PSR can be read with the Move from PSR (mov =psr) instruction. Only PSR{36:35} 
and PSR{31:0} are written to the target register by Move from PSR. PSR{63:37} and 
PSR{34:32} can only be read after an interruption by reading the state in IPSR. The 
entire PSR is updated from IPSR by the Return from Interruption (rfi) instruction. An 
rfi also implicitly serializes the PSR. Both Move from PSR and Return from Interruption 
are privileged.

Table 3-2. Processor Status Register Fields

Field Bits Description
Interruption

State
Serialization

Required

User Mask = PSR{5:0}

rv 0 reserved

be 1 Big-Endian – When 1, data memory references are 
big-endian. When 0, data memory references are little 
endian. This bit is ignored for IA-32 data references, 
which are always performed little-endian. Instruction 
fetches are always performed little endian. 

DCR.be dataa

up 2 User Performance monitor enable – When 1, 
performance monitors configured as user monitors are 
enabled to count events (including IA-32). When 0, user 
configured monitors are disabled. See “Performance 
Monitoring” on page 2:155 for details.

unchanged dataa

instb

ac 3 Alignment Check – When 1, all unaligned data memory 
references result in an Unaligned Data Reference fault. 
When 0, unaligned data memory references may or 
may not result in a Unaligned Data Reference fault. See 
“Memory Datum Alignment and Atomicity” on page 2:93 
for details. Unaligned semaphore references also result 
in a Unaligned Data Reference fault, regardless of the 
state of PSR.ac. For IA-32 instructions, if PSR.ac is 1 
an unaligned IA-32 data memory reference raises an 
IA_32_Exception(AlignmentCheck) fault. When 0, 
additional IA-32 control bits as defined in Section 
10.6.7, “Memory Alignment” also generate alignment 
checks.

0 dataa

mfl 4 Lower (f2 .. f31) floating-point registers written – This bit 
is set to one when an Intel Itanium instruction 
completes that uses register f2..f31 as a target register. 
This bit is sticky and only cleared by an explicit write of 
the user mask. When leaving the IA-32 instruction set, 
PSR.mfl is set to 1 if PSR.dfl is 0, otherwise PSR.mfl is 
unmodified.

unchanged dataa
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mfh 5 Upper (f32 .. f127) floating-point registers written – This 
bit is set to one when an Intel Itanium instruction 
completes that uses register f32..f127 as a target 
register. This bit is sticky and only cleared by an explicit 
write of the user mask. PSR.mfh is unmodified by IA-32 
instruction set execution.

unchanged dataa

System Mask = PSR{23:0}

ic 13 Interruption Collection – When 1 and an interruption 
occurs, the current state of the processor is loaded in 
IIP, IPSR, IIM and IFS; and additional registers defined 
in “Interruption Vector Descriptions” on page 2:165. 
When 0, IIP, IPSR, IIM and IFS are not modified on an 
interruption (see Table 8-1, “Writing of Interruption 
Resources by Vector” on page 2:166 for details). When 
0, speculative load exceptions result in deferred 
exception behavior, regardless of the state of the DCR 
and ITLB deferral bits. Processor operation is 
undefined if PSR.ic is 0 and a transition is made to 
execute IA-32 code. 

0 inst/datac

i 14 Interrupt Bit – When 1 and executing Intel Itanium 
instructions, unmasked pending external interrupts will 
interrupt the processor by transferring control to the 
external interrupt handler. When 0, pending external 
interrupts do not interrupt the processor. The effect of 
clearing PSR.i via Reset System Mask (rsm) 
instructions is observed by the next instruction. 
Toggling PSR.i from one to zero via Move to PSR.l 
requires data serialization. When executing IA-32 
instructions, external interrupts are enabled if PSR.i 
and (CFLG.if is 0 or EFLAG.if is 1). NMI interrupts are 
enabled if PSR.i is 1 regardless of EFLAG.if.

0 clear: implicit 
serialization
set: datad

pk 15 Protection Key enable – When 1 and PSR.it is 1, 
instruction references (including IA-32) check for valid 
protection keys. When 1 and PSR.dt is 1, data 
references (including IA-32) check for valid protection 
keys. When 1 and PSR.rt is 1, protection key checks 
are enabled for register stack references. When 0, 
neither instruction, data, nor register stack references 
are checked for valid protection keys. When PSR.dt, 
PSR.rt or PSR.it are 0, PSR.pk is ignored for the 
corresponding reference.

unchanged inst/datae

rv 12:6, 
16

reserved

dt 17 Data address Translation – When 1, virtual data 
addresses are translated and access rights checked. 
When 0, data accesses use physical addressing. 
PSR.dt must be 1 when entering IA-32 code, otherwise 
processor operation is undefined.

unchanged/0j inst/datac

dfl 18 Disabled Floating-point Low register set – When 1, a 
read or write access to f2 through f31 results in a 
Disabled Floating-Point Register fault. When 1, all 
IA-32 FP, Intel SSE and Intel MMX technology 
instructions raise a Disabled FP Register fault 
(regardless whether the instruction actually references 
f2-31).

0 data

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required
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dfh 19 Disabled Floating-point High register set – When 1, a 
read or write access to f32 through f127 results in a 
Disabled Floating-Point Register fault. When 1, a 
Disabled FP Register fault is raised on the first IA-32 
target instruction following a br.ia or rfi, regardless 
whether f32-127 are referenced.

0 data

sp 20 Secure Performance monitors – Controls the ability of 
non-privileged code (including IA-32 code) to read 
non-privileged performance monitors. See Table 7-5 on 
page 2:158 for values returned by PMD read 
instructions. Also, when 0, PSR.up can be modified by 
user mask instructions; otherwise, PSR.up is 
unchanged by user mask instructions. When 1 or 
CFLG.pce is 0, non-privileged IA-32 performance 
monitor reads (via rdpmc) raise an 
IA_32_Exception(GPFault).

0 data

pp 21 Privileged Performance monitor enable – When 1, 
monitors configured as privileged monitors are enabled 
to count events (including IA-32 events). When 0, 
privileged monitors are disabled. See “Performance 
Monitoring” on page 2:155 for details.

DCR.pp inst/datae

di 22 Disable Instruction set transition – When 1, attempts to 
switch instruction sets via the IA-32 jmpe or br.ia 
instructions results in a Disabled Instruction Set 
Transition fault. This bit doesn’t restrict instruction set 
transitions due to interruptions or rfi.

0 data

si 23 Secure Interval timer – When 1, the Interval Time 
Counter (ITC) register and the Resource Utilization 
Counter (RUC) are readable only by privileged code; 
non-privileged reads result in a Privileged Register 
fault. When 0, ITC and RUC are readable at any 
privilege level. System software can secure the ITC 
from non-privileged IA-32 access by setting either 
PSR.si or CFLG.tsd to 1. When secured, an IA-32 rdtsc 
(read time stamp counter) instruction at any privilege 
level other than the most privileged raises an 
IA_32_Exception(GPfault) 

0 data

PSR.l = PSR{31:0}

db 24 Debug Breakpoint fault – When 1, data and instruction 
address breakpoints are enabled and can cause an 
Data/Instruction Debug fault. When 1, IA-32 instruction 
address breakpoints are enabled and can cause an 
IA_32_Exception(Debug) fault.When 1, IA-32 data 
address breakpoints are enabled and can cause an 
IA_32_Exception(Debug) Trap.When 0, address 
breakpoint faults and traps are disabled.

0 inst/datae

lp 25 Lower Privilege transfer trap – When 1, a Lower 
Privilege Transfer trap occurs whenever a taken branch 
lowers the current privilege level (numerically 
increases). This bit is ignored during IA-32 instruction 
set execution.

0 data

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required
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tb 26 Taken Branch trap – When 1, the successful completion 
of a taken branch results in a Taken Branch trap. rfi 
and interruptions can not raise a Taken Branch trap. 
When 1, successful completion of a taken IA-32 branch 
results in an IA_32_Exception(Debug) trap.

0 data

rt 27 Register stack Translation – When 1, register stack 
accesses are translated and access rights are checked. 
When 0, register stack accesses use physical 
addressing. PSR.dt is ignored for register stack 
accesses. The register stack engine must be in 
enforced lazy mode (RSC.mode = 00) when modifying 
this bit; otherwise, processor behavior is undefined. 
During IA-32 instruction execution this bit is ignored and 
the register stack is disabled.

unchanged data

rv 31:28 reserved

PSR{63:0}

cplf 33:32 Current Privilege Level –The current privilege level of 
the processor (including IA-32). Controls accessibility to 
system registers, instructions and virtual memory 
pages. A value of 0 is most privileged, a value of 3 is 
least privileged. Written by the rfi, epc, and br.ret 
instructions. PSR.cpl is unchanged by the jmpe and 
br.ia instructions. PSR.cpl cannot be updated by any 
IA-32 instructions.

0 rfig

is 34 Instruction Set – When 0, Intel Itanium instructions are 
executing. When 1, IA-32 instructions are executing. 
Written by the rfi and br.ia instructions and the 
IA-32 jmpe instruction.

0 rfig, br.iah

mc 35 Machine Check abort mask – When 1, machine check 
aborts are masked. When 0, machine check aborts can 
be delivered (including IA-32 instruction set execution). 
Processor operation is undefined if PSR.mc is 1 and a 
transition is made to execute IA-32 code. 

unchanged/1i rfig

it 36 Instruction address Translation – When 1, virtual 
instruction addresses are translated and access rights 
checked. When 0, instruction accesses use physical 
addressing. PSR.it must be 1 when entering IA-32 
code, otherwise processor operation is undefined.

unchanged/0j rfig

id 37 Instruction Debug fault disable – When 1, Instruction 
Debug faults are disabled on the first restart instruction 
in the current bundle.k When PSR.id is 1 or EFLAG.rf is 
1, IA-32 instruction debug faults are disabled for one 
IA-32 instruction. PSR.id and EFLAG.rf are set to 0 after 
the successful execution of each IA-32 instruction.

0 rfig

da 38 Disable Data Access and Dirty-bit faults – When 1, Data 
Access and Dirty-Bit faults are disabled on the first 
restart instruction in the current bundle or for the first 
mandatory RSE reference following the rfi.k IA-32 
Access/Dirty-bit faults are not affected by PSR.da.l

0 rfig

dd 39 Data Debug fault disable – When 1, Data Debug faults 
are disabled on the first restart instruction in the current 
bundle or for the first mandatory RSE reference.k IA-32 
Data Debug traps are not affected by PSR.dd.l

0 rfig

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required
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ss 40 Single Step enable – When 1, a Single Step trap occurs 
following the successful execution of the first restart 
instruction in the current bundle. Instruction slots 0, 1, 
and 2 can be single stepped. When 1 or EFLAG.tf is 1, 
an IA_32_Exception(Debug) trap is taken after each 
IA-32 instruction.

0 rfig

ri 42:41 Restart Instruction – Set on an interruption, indicating 
the next instruction in the bundle to be executed. When 
the next instruction is the L+X instruction of an MLX, 
this field is set to the value 1.
When restarting instructions with rfi, this field in IPSR 
specifies which instruction(s) in the bundle are 
restarted. The specified and subsequent instructions 
are restarted, all instructions prior to the restart point 
are ignored.
0 – restart execution at instruction slot 0
1 – restart execution at instruction slot 1
2 – restart execution at instruction slot 2
3 – reserved
Except at an interruption and for the first restart 
instruction following an rfi, the value of this field is 
undefined.
This field is set to 0 after any interruption from the IA-32 
instruction set and is ignored when IA-32 instructions 
are restarted.

instruction
pointer

rfig

ed 43 Exception Deferral – When 1, if the first restart 
instruction in the current bundle is a speculative load, 
the operation is forced to indicate a deferred exception 
by setting the load target register to NaT or NaTVal. No 
memory references are performed, however any 
address post increments are performed. If the operation 
is a speculative advanced load, the ALAT entry 
corresponding to the load address and target register is 
purged. If the operation is an lfetch instruction, 
memory promotion is not performed, however any 
address post increments are performed. When 0, 
exception deferral is not forced on restarted speculative 
loads. If the first restart instruction is not a speculative 
load or lfetch instruction, this bit is ignored.kl

0 rfig

bn 44 register Bank – When 1, registers GR16 to GR31 for 
bank 1 are accessible. When 0, registers GR16 to 
GR31 for bank 0 are accessible. Written by rfi and 
bsw instructions.

0 implicitm

ia 45 Disable Instruction Access-bit faults – When 1, 
Instruction Access-Bit faults are disabled on the first 
restart instruction in the current bundle.k IA-32 
Access-bit faults are not affected by PSR.ia.l

0 rfig

vm 46 Virtual Machine – When 1, an attempt to execute 
certain instructions results in a Virtualization fault.  
Implementation of this bit is optional. If the bit is not 
implemented, it is treated as a reserved bit. Written by 
the rfi and vmsw instructions.

0 rfi,
vmsw: implicitn

rv 63:47 reserved

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required
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3.3.3 Control Registers

Table 3-3 defines all registers in the control register name space along with serialization 
requirements to ensure side effects are observed by subsequent instructions. However, 
reads of a control register must be data serialized with prior writes to the same register. 
The serialization required column only refers to the side effects of the data value. 

Writes to read-only registers (IVR, IRR0-3) result in an Illegal Operation fault, accesses 
to reserved registers result in a Illegal Operation fault. Accesses can only be performed 
by mov to/from instructions defined in Table 3-4 at privilege level 0; otherwise, a 
Privileged Operation fault is raised.

a. User mask bits are implicitly serialized if accessed via user mask instructions; sum, rum, and move to User 
Mask. If modified with system mask instructions; rsm, ssm and move to PSR.l, software must explicitly 
serialize to ensure side effects are observed before dependent instructions.

b. User mask modification serialization is implicit only for monitoring data execution events. Software should 
issue instruction serialization operations before monitoring instruction events to achieve better accuracy.

c. Requires instruction serialization to guarantee that VHPT walks initiated on behalf of an instruction reference 
observe the new value of this bit. Otherwise, data serialization is sufficient to guarantee that the new value is 
observed. 

d. The effect of masking external interrupts with rsm is observed by the next instruction. However, the processor 
does not ensure unmasking interruptions with ssm is immediately observed. Software can issue a data 
serialization operation to ensure the effects of setting PSR.i are observed before a given point in program 
execution.

e. Requires instruction or data serialization, based on whether the dependent “use” is an instruction fetch access 
or data access.

f. CPL can be modified due to interruptions, Return From Interruption (rfi), Enter Privilege Code (epc), and 
Branch Return (br.ret) instructions.

g. Can only be modified by the Return From Interruption (rfi) instruction. rfi performs an explicit instruction 
and data serialization operation.

h. Modification of the PSR.is bit by a br.ia instruction set is implicitly instruction serialized.
i. PSR.mc is set to 1 after a machine check abort or INIT; otherwise, unmodified on interruptions.
j. After an interruption this bit is normally unchanged, however after a PAL-based interruption this bit is set to 0.
k. This bit is set to 0 after the successful execution of each instruction in a bundle except for rfi which may set 

it to 1.
l. This bit is ignored when restarting IA-32 instructions and set to zero when br.ia or rfi successfully 

complete and before the first IA-32 instruction starts execution.
m. After an interruption, rfi, or bsw the processor ensures register accesses are made to the new register bank. 

For interruptions, rfi and bsw, the processor ensures all register accesses and outstanding loads prior to the 
bank switch operate on the prior register bank.

n. Can be modified by the Return From Interruption (rfi) and Virtual Machine Switch (vmsw) instructions. rfi 
performs an explicit instruction and data serialization operation. Modification of PSR.vm bit by the vmsw 
instruction is implicitly serialized.

Table 3-3. Control Registers

Register Name Description
Serialization

Required

Global
Control
Registers

CR0 DCR Default Control Register inst/data

CR1 ITM Interval Timer Match register dataa

CR2 IVA Interruption Vector Address insta

CR3 reserved

CR4 ITO Interval Timer Offset Register dataa

CR5-7 reserved

CR8 PTA Page Table Address inst/datab

CR9-15 reserved
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Interruption
Control
Registers

CR16 IPSR Interruption Processor Status Register impliedd

CR17 ISR Interruption Status Register impliedc

CR18 reserved

CR19 IIP Interruption Instruction Pointer impliedd

CR20 IFA Interruption Faulting Address impliedd

CR21 ITIR Interruption TLB Insertion Register impliedd

CR22 IIPA Interruption Instruction Previous Address impliedc

CR23 IFS Interruption Function State impliedd,e

CR24 IIM Interruption Immediate register impliedc

CR25 IHA Interruption Hash Address impliedc

CR26 IIB0 Interruption Instruction Bundle 0 impliedc

CR27 IIB1 Interruption Instruction Bundle 1 impliedc

Reserved CR28-63 reserved

Interrupt
Control
Registers

CR64 LID Local Interrupt ID dataa

CR65 IVR External Interrupt Vector Register (read only) dataa

CR66 TPR Task Priority Register dataa

CR67 EOI End Of External Interrupt dataa

CR68 IRR0 External Interrupt Request Register 0 (read only) dataa

CR69 IRR1 External Interrupt Request Register 1 (read only) dataa

CR70 IRR2 External Interrupt Request Register 2 (read only) dataa

CR71 IRR3 External Interrupt Request Register 3 (read only) dataa

CR72 ITV Interval Timer Vector dataa

CR73 PMV Performance Monitoring Vector dataa

CR74 CMCV Corrected Machine Check Vector dataa

CR75-79 reserved reserved

CR80 LRR0 Local Redirection Register 0 dataa

CR81 LRR1 Local Redirection Register 1 dataa

Reserved CR82-127 reserved reserved

a. Serialization is needed to ensure external interrupt masking, new interval timer match values or new 
interruption table addresses are observed before a given point in program execution.

b. Serialization is needed to ensure new values in PTA are visible to the hardware Virtual Hash Page Table 
(VHPT) walker before a dependent instruction fetch or data access.

c. These registers are modified by the processor on an interruption or by an explicit move to these registers. 
There are no side effects when written.

d. These registers are implied operands to the rfi and/or TLB insert instructions. The processor ensures writes in 
previous instruction groups are observed by rfi and/or TLB insert instructions in subsequent instruction 
groups. These registers are also modified by the processor on an interruption, subsequent reads return the 
results of the interruption. There are no other side effects.

e. IFS written by a cover instruction followed by a move-from IFS is implicitly serialized. 

Table 3-4. Control Register Instructions

Mnemonic Description Operation Format

mov cr3 = r2 Move to control register CR[r3]  GR[r2] M

mov r1 = cr3 Move from control register GR[r1]  CR[r3] M

Table 3-3. Control Registers (Continued)

Register Name Description
Serialization

Required



Volume 2, Part 1: System State and Programming Model 2:31

3.3.4 Global Control Registers

3.3.4.1 Default Control Register (DCR – CR0)

The DCR specifies default parameters for PSR values on interruption, some additional 
global controls, and whether speculative load faults can be deferred. Figure 3-3 and 
Table 3-5 define and describe the DCR fields.

srlz.i, rfi Serialize instruction references Ensure side effects are observed by 
the instruction fetch stream

M

srlz.d Serialize data references Ensure side effects are observed by 
the execute and data streams

M

Figure 3-3. Default Control Register (DCR – CR0)

63 15 14 13 12 11 10 9 8 7 3 2 1 0

rv dd da dr dx dk dp dm rv lc be pp 

49 1 1 1 1 1 1 1 5 1 1 1

Table 3-5. Default Control Register Fields

Field Bit Description
Serialization

Required

pp 0 Privileged Performance monitor default – On interruption, DCR.pp is 
loaded into PSR.pp.

data

be 1 Big-Endian default – When 1, Virtual Hash Page Table (VHPT) walker 
accesses are performed big-endian; otherwise, little-endian. On 
interruption, DCR.be is loaded into PSR.be. 

inst

lc 2 IA-32 Lock Check enable – When 1, and an IA-32 atomic memory 
reference is defined as requiring a read-modify-write operation external to 
the processor under an external bus lock, an IA_32_Intercept(Lock) is 
raised. (IA-32 atomic memory references are defined to require an 
external bus lock for atomicity when the memory transaction is made to 
non-write-back memory or are unaligned across an 
implementation-specific non-supported alignment boundary.) When 0, 
and an IA-32 atomic memory reference is defined as requiring a 
read-modify-write operation external to the processor under external bus 
lock, the processor may either execute the transaction as a series of 
non-atomic transactions or perform the transaction with an external bus 
lock, depending on the processor implementation. Intel Itanium 
semaphore accesses ignore this bit. All unaligned Intel Itanium 
semaphore references generate an Unaligned Data Reference fault. All 
aligned Intel Itanium semaphore references made to memory that is 
neither write-back cacheable nor a NaTPage result in an Unsupported 
Data Reference fault.

data

dm 8 Defer TLB Miss faults only (VHPT data, Data TLB, and Alternate Data 
TLB faults) – When 1, and a TLB miss is deferred, lower priority Debug 
faults may still be delivered. A TLB miss fault, deferred or not, precludes 
concurrent Page not Present, Key Miss, Key Permission, Access Rights, 
or Access Bit faults. This bit is ignored by IA-32 instructions.

data

dp 9 Defer Page not Present faults only – When 1, and a Page not Present 
fault is deferred, lower priority Debug faults may still be delivered. A Page 
not Present fault, deferred or not, precludes concurrent Key Miss, Key 
Permission, Access Rights, or Access Bit faults. This bit is ignored by 
IA-32 instructions.

data

Table 3-4. Control Register Instructions (Continued)

Mnemonic Description Operation Format
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For the DCR exception deferral bits, when the bit is 1, and a speculative load results in 
the specified fault condition, and the speculative load’s code page exception deferral bit 
(ITLB.ed) is 1, the exception is deferred by setting the speculative load target register 
to NaT or NaTVal. Otherwise, the specified fault is taken on the speculative load. For a 
description of faults on speculative loads see “Deferral of Speculative Load Faults” on 
page 2:105. 

Since DCR.be also controls byte ordering of VHPT references that are the result of 
instruction misses, DCR.be requires instruction serialization. Other DCR bits require 
data serialization only.

3.3.4.2 Interval Time Counter and Match Register (ITC – AR44 and ITM – CR1)

The Interval Time Counter (ITC) and Interval Timer Match (ITM) register support 
elapsed time notification, see Figure 3-4 and Figure 3-5.

The ITC is a free-running 64-bit counter that counts up at a fixed relationship to the 
input clock to the processor. The ITC may be clocked at a somewhat lower frequency 
than the instruction execution frequency. This clocking relationship is described in the 
PAL procedure PAL_FREQ_RATIOS on page 2:393. The ITC is guaranteed to be clocked 
at a constant rate, even if the instruction execution frequency may vary. The ITC 
counting rate is not affected by power management mechanisms.

dk 10 Defer Key Miss faults only – When 1, and a Key Miss fault is deferred, 
lower priority Access Bit, Access Rights or Debug faults may still be 
delivered. A Key Miss fault, deferred or not, precludes concurrent Key 
Permission faults. This bit is ignored by IA-32 instructions.

data

dx 11 Defer Key Permission faults only – When 1, and a Key Permission fault is 
deferred, lower priority Access Bit, Access Rights or Debug faults may 
still be delivered. This bit is ignored by IA-32 instructions.

data

dr 12 Defer Access Rights faults only – When 1, and an Access Rights fault is 
deferred, lower priority Access Bit or Debug faults may still be delivered. 
This bit is ignored by IA-32 instructions.

data

da 13 Defer Access Bit faults only – When 1, and an Access Bit fault is 
deferred, lower priority Debug faults may still be delivered. This bit is 
ignored by IA-32 instructions.

data

dd 14 Defer Debug faults – When 1, Data Debug faults on speculative loads are 
deferred. This bit is ignored by IA-32 instructions.

data

rv 7:3,
63:15

reserved reserved

Figure 3-4. Interval Time Counter (ITC – AR44)

63 0

ITC

64

Figure 3-5. Interval Timer Match Register (ITM – CR1)

63 0

ITM

64

Table 3-5. Default Control Register Fields (Continued)

Field Bit Description
Serialization

Required
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A sequence of reads of the ITC is guaranteed to return ever-increasing values (except 
for the case of the counter wrapping back to 0) corresponding to the program order of 
the reads. Applications can directly sample the ITC for time-based calculations.

A 64-bit overflow condition can occur without notification. The ITC can be read at any 
privilege level if PSR.si is zero. The timer can be secured from non-privileged access by 
setting PSR.si to one. When secured, a read of the ITC by non-privileged code results in 
a Privileged Register fault. Writes to the ITC can only be performed at privilege level 0; 
otherwise, a Privileged Register fault is raised.

The IA-32 Time Stamp Counter (TSC) is similar to ITC. The ITC can be read by the 
IA-32 rdtsc (read time stamp counter) instruction. System software can secure the ITC 
from non-privileged IA-32 access by setting either PSR.si or CFLG.tsd to 1. When 
secured, an IA-32 read of the ITC at any privilege level other than the most privileged 
raises an IA_32_Exception(GPfault).

When the value in the ITC is equal to the value in the ITM an Interval Timer Interrupt is 
raised. Once the interruption is taken by the processor and serviced by software, the 
ITC may not necessarily be equal to the ITM. The ITM is accessible only at privilege 
level 0; otherwise, a Privileged Operation fault is raised.

The interval counter can be written, for initialization purposes, by privileged code. The 
ITC is not architecturally guaranteed to be synchronized with any other processor’s 
interval time counter in an multiprocessor system, nor is it synchronized with the wall 
clock. Software must calibrate interval timer ticks to wall clock time and periodically 
adjust for drift. In a multiprocessor system, a processor's ITC is not architecturally 
guaranteed to be clocked synchronously with the ITC's on other processors, and may 
not be clocked at the same nominal clock rate as ITC's on other processors.  The 
platform firmware provides information on the clocking of processors in a 
multiprocessor system.

Modification of the ITC or ITM is not necessarily serialized with respect to instruction 
execution. Software can issue a data serialization operation to ensure the ITC or ITM 
updates and possible side effects are observed by a given point in program execution. 
Software must accept a level of sampling error when reading the interval timer due to 
various machine stall conditions, interruptions, bus contention effects, etc. Please see 
the processor-specific documentation for further information on the level of sampling 
error of the Itanium processor. 

3.3.4.3 Resource Utilization Counter (RUC – AR45)

The Resource Utilization Counter (RUC) is a 64-bit counter that counts up at a fixed 
relationship to the input clock to the processor, when the processor is active. Processors 
may be inactive due to hardware multi-threading. Virtual processors may be inactive 
when not scheduled to run by the VMM. (See Section 11.7, “PAL Virtualization Support” 
on page 2:324 for details on virtual processors.)

The RUC is clocked such that, in a given time interval, the difference in the RUC values 
for all of the logical or virtual processors on a given physical processor add up to 
approximately the difference seen in the ITC on that physical processor for that same 
interval.
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A sequence of reads of the RUC is guaranteed to return ever-increasing values (except 
for the case of the counter wrapping back to 0) corresponding to the program order of 
the reads. Applications can directly sample the RUC for active-running-time 
calculations.

A 64-bit overflow condition can occur without notification. The RUC can be read at any 
privilege level if PSR.si is zero. The timer can be secured from non-privileged access by 
setting PSR.si to one. When secured, a read of the RUC by non-privileged code results 
in a Privileged Register fault. Writes to the RUC can only be performed at privilege level 
0; otherwise, a Privileged Register fault is raised.

Modification of the RUC is not necessarily serialized with respect to instruction 
execution. Software can issue a data serialization operation to ensure the RUC updates 
are observed by a given point in program execution. Software must accept a level of 
sampling error when reading the resource utilization counter due to various machine 
stall conditions, interruptions, bus contention effects, etc. Please see the 
processor-specific documentation for further information on the level of sampling error 
of the Itanium processor.

RUC should only be written by Virtual Machine Monitors; other Operating Systems 
should not write to RUC, but should only read it.

The RUC register is not supported on all processor implementations. Software can 
check CPUID register 4 to determine the availability of this feature. The RUC register is 
reserved when this feature is not supported.

3.3.4.4 Interval Timer Offset (ITO – CR4)

The Interval Timer Offset (ITO) register allows virtual machine monitors to specify an 
offset to the Interval Timer Counter (ITC) for the virtual processor. The layout of the 
register is shown in Figure 3-6. For details of the usage of this register in virtual 
environment, please refer to Section 11.7.4.1.3, “Guest MOV-from-AR.ITC 
Optimization” on page 2:337.

The ITO register has no effects on instruction execution when PSR.vm is 0.

The ITO register does not affect the generation of interval timer interrupts, discussed in 
Section 3.3.4.2, “Interval Time Counter and Match Register (ITC – AR44 and ITM – 
CR1)”.

The ITO register is not supported on all processor implementations. Software can call 
either PAL_PROC_GET_FEATURES or PAL_VP_ENV_INFO to determine the availability of 
this feature. The ITO register is reserved when this feature is not supported.

Figure 3-6. Interval Timer Offset Register (ITO – CR4)

63 0

ITO

64
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3.3.4.5 Interruption Vector Address (IVA – CR2)

The IVA specifies the location of the interruption vector table in the virtual address 
space, or the physical address space if PSR.it is 0, see Figure 3-7. The size of the vector 
table is 32K bytes and is 32K byte aligned. The lower 15 bits of the IVA are ignored 
when written, reads return zeros. All upper 49 address bits of IVA must be 
implemented regardless of the size of the physical and virtual address space. If an 
unimplemented virtual or physical address (see “Unimplemented Address Bits” on 
page 2:73) is loaded into IVA, and an interruption occurs, processor behavior is 
unpredictable. See “IVA-based Interruption Vectors” on page 2:113 for a description of 
an interruption table layout.

3.3.4.6 Page Table Address (PTA – CR8)

The PTA anchors the Virtual Hash Page Table (VHPT) in the virtual address space. See 
“Virtual Hash Page Table (VHPT)” on page 2:61 for a complete definition of the VHPT. 
Operating systems must ensure that the table is aligned on a natural boundary; 
otherwise, processor operation is undefined. See Figure 3-8 and Table 3-6 for the PTA 
field definitions.

Figure 3-7. Interruption Vector Address (IVA – CR2)

63     15 14 0

IVA ig

49 15

Figure 3-8. Page Table Address (PTA – CR8)

63 15 14 9 8 7 2 1 0

base rv vf size rv ve

49 6 1 6 1 1

Table 3-6. Page Table Address Fields

Field Bits Description

ve 0 VHPT Enable – When 1, the processor is enabled to walk the VHPT. 

size 7:2 VHPT Size – VHPT table size in power of 2 increments, table size is 2size bytes. Size 
generates a mask that is logically AND’ed with the result of the VHPT hash function. 
Minimum VHPT table size is 32K bytes; otherwise, a Reserved Register/Field fault is 
raised (see “Virtual Hash Page Table (VHPT)” on page 2:61). The maximum size is 261 
bytes for long format VHPTs, and 252 bytes for short format VHPTs.

vf 8 VHPT Format – When 0, 8-byte short format entries are used, when 1, 32-byte long 
format entries are used.

base 63:15 VHPT Base virtual address – Defines the starting virtual address of the VHPT table. Base 
is logically OR’ed with the hash index produced by the VHPT hash function when 
referencing the VHPT. Base must be on 2size boundary otherwise processor operation is 
undefined. All base address bits of PTA must be implemented regardless of the size of 
the physical and virtual address space. If an unimplemented virtual address (see 
“Unimplemented Address Bits” on page 2:73) is used by the processor as a page table 
base, all VHPT walks generate an Instruction/Data TLB miss (see “Translation Searching” 
on page 2:69).

rv 1, 14:9 reserved
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3.3.5 Interruption Control Registers

Registers CR16 - CR27 record information at the time of an interruption (including from 
the IA-32 instruction set) and are used by handlers to process the interruption.

The interruption control registers can only be read or written while PSR.ic is 0; 
otherwise, an Illegal Operation fault is raised. These registers are only guaranteed to 
retain their values when PSR.ic is 0. When PSR.ic is 1, the processor does not preserve 
their contents.

The contents of the interruption control registers are defined only when the PSR.ic bit is 
cleared by an interruption. If the PSR.ic bit is explicitly cleared (e.g., by using rsm, or 
mov to PSR), then the contents of these registers are undefined. If the PSR.ic bit is 
explicitly set (e.g., by using ssm, or mov to PSR), then the contents of these registers 
are undefined until the PSR.ic bit has been serialized and an interruption occurs. 

IIPA has special behavior in case of an rfi to a fault. Refer to “Interruption Instruction 
Previous Address (IIPA – CR22)” on page 2:40. 

3.3.5.1 Interruption Processor Status Register (IPSR – CR16)

On an interruption and if PSR.ic is 1, the IPSR receives the value of the PSR. The IPSR, 
IIP and IFS are used to restore processor state on a Return From Interruption (rfi). 
The IPSR has the same format as PSR, see “Processor Status Register (PSR)” on 
page 2:23 for details.

3.3.5.2 Interruption Status Register (ISR – CR17)

The ISR receives information related to the nature of the interruption, and is written by 
the processor on all interruption events regardless of the state of PSR.ic, except for 
Data Nested TLB faults. The ISR contains information about the excepting instruction 
and its properties such as whether it was doing a read, write, execute, speculative, or 
non-access operation, see Figure 3-9 and Table 3-7. Multiple bits may be concurrently 
set in the ISR, for example, a faulting semaphore operation will set both ISR.r and 
ISR.w, and faults on speculative loads will set ISR.sp and ISR.r. Additional fault- or 
trap-specific information is available in ISR.code and ISR.vector. Refer to Section 8.2, 
“ISR Settings” for complete definition of the ISR field settings.

Figure 3-9. Interruption Status Register (ISR – CR17)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv vector code

8 8 16

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv ed ei so ni ir rs sp na r w x

20 1 2 1 1 1 1 1 1 1 1 1
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3.3.5.3 Interruption Instruction Bundle Pointer (IIP – CR19)

On an interruption and if PSR.ic is 1, the IIP receives the value of IP. IIP contains the 
virtual address (or physical if instruction translations are disabled) of the next 
instruction bundle or the IA-32 instruction to be executed upon return from the 
interruption. For IA-32 instruction addresses, IIP is zero extended to 64-bits and 
specifies a byte granular address. For traps and interrupts, IIP points to the next 
instruction to execute. For faults, IIP points to the faulting instruction. As shown in 

Table 3-7. Interruption Status Register Fields

Field Bits Description

code 15:0 Interruption Code – 16 bit code providing additional information specific to the current 
interruption. For IA-32 specific exceptions and software interrupts, contains the IA-32 
interruption error code or zero.

vector 23:16 IA-32 exception/interception vector number. For IA-32 exceptions and software 
interrupts, contains the IA-32 vector number (e.g., GPFault has a vector number of 
13). See Chapter 9, “IA-32 Interruption Vector Descriptions” for details.

x 32 Execute exception – Interruption is associated with an instruction fetch (including 
IA-32).

w 33 Write exception – Interruption is associated with a write operation. Both ISR.r and 
ISR.w are set for IA-32 read-modify-write instructions.

r 34 Read exception – Interruption is associated with a read operation. Both ISR.r and 
ISR.w are set for IA-32 read-modify-write instructions.

na 35 Non-access exception – See Section 5.5.2, “Non-access Instructions and 
Interruptions” on page 2:103. This bit is always 0 for interruptions taken in the IA-32 
instruction set.

sp 36 Speculative load exception – Interruption is associated with a speculative load 
instruction. This bit is always 0 for interruptions taken in the IA-32 instruction set.

rs 37 Register Stack – Interruption is associated with a mandatory RSE fill or spill. This bit is 
always 0 for interruptions taken in the IA-32 instruction set.

ir 38 Incomplete Register frame – The current register frame is incomplete when the 
interruption occurred. This bit is always 0 for interruptions taken in the IA-32 instruction 
set.

ni 39 Nested Interruption – Indicates that PSR.ic was 0 or in-flight when the interruption 
occurred. This bit is always 0 for interruptions taken in the IA-32 instruction set.

so 40 IA-32 Supervisor Override – Indicates the fault occurred during an IA-32 instruction set 
supervisor override condition (the processor was performing a data memory accesses 
to the IDT, GDT, LDT or TSS segments) or an IA-32 data memory access at a privilege 
level of zero. This bit is always 0 for interruptions taken while executing Intel Itanium 
instructions. 

ei 42:41 Excepting Instruction – 
0 – exception due to instruction in slot 0
1 – exception due to instruction in slot 1
2 – exception due to instruction in slot 2
For faults and external interrupts, ISR.ei is equal to IPSR.ri. For traps, ISR.ei defines 
the slot of the excepting instruction. Traps on the L+X instruction of an MLX set ISR.ei 
to 2. This field is always 0 for interruptions taken in the IA-32 instruction set.

ed 43 Exception Deferral – this bit is set to the value of the TLB exception deferral bit 
(TLB.ed) for the instruction page containing the faulting instruction. If a translation 
does not exist or instruction translation is disabled, or if the interruption is caused by a 
mandatory RSE spill or fill, ISR.ed is set to 0. This bit is always 0 for interruptions taken 
in the IA-32 instruction set.

rv 31:24,
63:44

reserved
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Figure 3-10, all 64-bits of the IIP must be implemented regardless of the size of the 
physical and virtual address space supported by the processor model (see 
“Unimplemented Address Bits” on page 2:73). IIP also receives byte-aligned IA-32 
instruction pointers. The IIP, IPSR and IFS are used to restore processor state on a 
Return From Interruption instruction (rfi). See “Interruption Vector Descriptions” on 
page 2:165 for usages of the IIP.

An rfi to Itanium architecture-based code (IPSR.is is 0) ignores IIP{3:0}, an rfi to 
IA-32 code (IPSR.is is 1) ignores IIP{63:32}. Ignored bits are assumed to be zero.

Control transfers to unimplemented addresses (see “Unimplemented Address Bits” on 
page 2:73) result in an Unimplemented Instruction Address trap or fault. When the trap 
or fault is delivered, IIP is written as follows:

• If the trap is taken for an unimplemented virtual address, IIP is written in one of 
two ways, depending on the implementation: 1) IIP may be written with the 
implemented virtual address bits IP{63:61} and IP{IMPL_VA_MSB:0} only. Bits 
IIP{60:IMPL_VA_MSB+1} are set to IP{IMPL_VA_MSB}, i.e., sign-extended.  2) IIP 
may be written with the full, unimplemented virtual address from IP.

• If the trap is taken for an unimplemented physical address, IIP is written in one of 
two ways, depending on the implementation: 1) IIP may be written with the 
physical addressing memory attribute bit IP{63} and the implemented physical 
address bits IP{IMPL_PA_MSB:0} only. Bits IIP{62:IMPL_PA_MSB+1} are set to 0. 
2) IIP may be written with the full, unimplemented physical address from IP.

When an rfi is executed with an unimplemented address in IIP (an unimplemented 
virtual address if IPSR.it is 1, or an unimplemented physical address if IPSR.it is 0), and 
an Unimplemented Instruction Address trap is taken, an implementation may optionally 
leave IIP unchanged (preserving the unimplemented address in IIP).

Note: Since IP{3:0} are always 0 when executing Itanium architecture-based code, 
IIP{3:0} will always be 0 when any interruption is taken from Itanium architec-
ture-based code, with the exception of an Unimplemented Instruction Address 
trap on an rfi, where IIP may optionally be preserved as whatever value it 
held before executing the rfi.

3.3.5.4 Interruption Faulting Address (IFA – CR20)

On an interruption and if PSR.ic is 1, the IFA receives the virtual address (or physical 
address if translations are disabled) that raised a fault. IFA reports the faulting address 
for both instruction and data memory accesses (including IA-32). For faulting data 
references (including IA-32), IFA points to the first byte of the faulting data memory 
operand. IFA reports a byte granular address. For faulting instruction references 
(including IA-32), IFA contains the 16-byte aligned bundle address (IFA{3:0} are zero) 
of the faulting instruction. For faulting IA-32 instructions, IIP points to the first byte of 
the IA-32 instruction, and is byte granular. In the event of an IA-32 instruction 
spanning a virtual page boundary, IA-32 instruction fetch faults are reported as either 
(1) for faults on the first page, IFA is set to the bundle address (IFA{3:0}=0) of the 

Figure 3-10. Interruption Instruction Bundle Pointer (IIP – CR19)
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faulting instruction and IIP points to the first byte of the faulting instruction, or (2) for 
faults on the second page, IFA contains the bundle address of the second virtual page 
and IIP points to the first byte of the faulting IA-32 instruction.

The IFA also specifies a translation’s virtual address when a translation entry is inserted 
into the instruction or data TLB. See “Interruption Vector Descriptions” on page 2:165 
and “Translation Insertion Format” on page 2:53 for usages of the IFA. As shown in 
Figure 3-11, all 64-bits of the IFA must be implemented regardless of the size of the 
virtual and physical space supported by the processor model (see “Unimplemented 
Address Bits” on page 2:73). In some implementations, a mov to IFA instruction may 
raise an Unimplemented Data Address fault if an unimplemented virtual address is 
used.

3.3.5.5 Interruption TLB Insertion Register (ITIR – CR21)

The ITIR receives default translation information from the referenced virtual region 
register on a virtual address translation fault. See “Interruption Vector Descriptions” on 
page 2:165 for the fault conditions that set the ITIR. The ITIR provides additional 
virtual address translation parameters on an insertion into the instruction or data TLB. 
See “Translation Instructions” on page 2:60 for ITIR usage information. Figure 3-12 
and Table 3-8 define the ITIR fields.

Figure 3-11. Interruption Faulting Address (IFA – CR20)
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Figure 3-12. Interruption TLB Insertion Register (ITIR)
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Table 3-8. ITIR Fields

Field Bits Description

rv/ci 63:32,
1:0

Reserved / Check on Insert – On a read these fields may return zeros or the value last 
written to them. If a non-zero value is written, a Reserved Register/Field fault may be 
raised on the mov to ITIR instruction. If not, a subsequent TLB insert will raise a 
Reserved Register Field fault depending on other parameters to the insert. See 
“Translation Insertion Format” on page 2:53. On an instruction or data translation fault, 
these fields are set to zero.

ps 7:2 Page Size – On a TLB insert, specifies the size of the virtual to physical address 
mapping. If an unsupported page size is written, a Reserved Register/Field fault may be 
raised on the mov to ITIR instruction. If not, a subsequent TLB insert will raise a 
Reserved Register/Field fault. See “Translation Insertion Format” on page 2:53. On an 
instruction or data translation fault, this field is set to the accessed region’s page size 
(RR.ps).

key 31:8 Protection Key – On a TLB insert specifies a protection key that uniquely tags 
translations to a protection domain. If non-zero values are written to unimplemented 
protection key bits, a Reserved Register/Field fault may be raised on the mov to ITIR 
instruction. If not, a subsequent TLB insert will raise a Reserved Register/Field fault 
depending on other parameters to the insert. See “Translation Insertion Format” on 
page 2:53. On an instruction or data translation fault, this field is set to the accessed 
Region Identifier (RR.rid).
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3.3.5.6 Interruption Instruction Previous Address (IIPA – CR22)

For Itanium instructions, IIPA records the last successfully executed instruction bundle 
address. For IA-32 instructions, IIPA records the byte granular virtual instruction 
address zero extended to 64-bits of the faulting or trapping IA-32 instruction. In the 
case of a fault, IIPA does not report the address of the last successfully executed IA-32 
instruction, but rather the address of the faulting IA-32 instruction. IIPA preserves bits 
3:0 for byte aligned IA-32 instruction addresses. 

The IIPA can be used by software to locate the address of the instruction bundle or 
IA-32 instruction that raised a trap or the instruction executed prior to a fault or 
interruption. In the case of a branch related trap, IIPA points to the instruction bundle 
which contained the branch instruction that raised the trap, while IIP points to the 
target of the branch.

When an instruction successfully executes without a fault, and the PSR.ic bit was 1 prior 
to instruction execution, it becomes the “last successfully executed instruction.” On 
interruptions, IIPA contains the address of the last successfully executed instruction 
bundle or IA-32 instruction, if PSR.ic was 1 prior to the interruption. Note that 
execution of an rfi instruction with PSR.ic equal to 0, but which sets PSR.ic to 1 does 
not update IIPA, since PSR.ic was zero prior to instruction execution.

When PSR.ic is one, accesses to IIPA cause an Illegal Operation fault. When PSR.ic is 
zero, IIPA is not updated by hardware and can be read and written by software. This 
permits low-level code to preserve IIPA across interruptions.

If the PSR.ic bit is explicitly cleared, e.g., by using rsm, then the contents of IIPA are 
undefined. Only when the PSR.ic bit is cleared by an interruption is the value of IIPA 
defined. It may point at the instruction which caused a trap, or at the instruction just 
prior to a faulting instruction, at an earlier instruction that became defined by some 
prior interruption, or by a move to IIPA instruction when PSR.ic was zero.

If the PSR.ic bit is explicitly set, e.g., by using ssm, then the contents of IIPA are 
undefined until the PSR.ic bit has been serialized and an interruption occurs.

During instruction set transitions the following boundary cases exist:

• On faults taken on the first IA-32 instruction after a br.ia or rfi, IIPA records the 
faulting IA-32 instruction address. 

• On br.ia traps, IIPA records the address of the trapping instruction bundle.

• On faults taken on the first Itanium instruction after leaving the IA-32 instruction 
set, due to a jmpe or interruption, IIPA contains the address of the jmpe instruction 
or the interrupted IA-32 instruction.

• On jmpe Data Debug, Single Step and Taken Branch traps, IIPA contains the 
address of the jmpe instruction.

As shown in Figure 3-13, all 64-bits of the IIPA must be implemented regardless of the 
size of the physical and virtual address space supported by the processor model (see 
“Unimplemented Address Bits” on page 2:73).

Figure 3-13. Interruption Instruction Previous Address (IIPA – CR22)
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3.3.5.7 Interruption Function State (IFS – CR23)

The IFS register is used to reload the current register stack frame (CFM) on a Return 
From Interruption (rfi). If the IFS is accessed while PSR.ic is 1, an Illegal Operation 
fault is raised. The IFS can only be accessed at privilege level 0; otherwise, a Privileged 
Operation fault is raised. The IFS.v bit is cleared on interruption if PSR.ic is 1. All other 
fields are undefined after an interruption. If PSR.ic is 0, the cover instruction copies 
CFM to IFS.ifm and sets IFS.v to 1. See Figure 3-14 and Table 3-9 for the IFS field 
definitions.

3.3.5.8 Interruption Immediate (IIM – CR24)

If PSR.ic is 1, the IIM (Figure 3-15) records the zero-extended immediate field encoded 
in chk.a, chk.s, fchkf or break instruction faults. The break.b instruction always 
writes a zero value and ignores its immediate field. The IA_32_Intercept vector writes 
all 64-bits of IIM to indicate the cause of the intercept. See Table 8-1 on page 2:166 for 
the value of IIM in other situations. For the purpose of resource dependency, IIM is 
written as a result of the fault, not by the instruction itself.

3.3.5.9 Interruption Hash Address (IHA – CR25)

The IHA (Figure 3-16) is loaded with the address of the Virtual Hash Page Table (VHPT) 
entry the processor referenced or would have referenced to resolve a translation fault. 
The IHA is written on interruptions by the processor when PSR.ic is 1. Refer to “VHPT 
Hashing” on page 2:65 for complete details. See Table 8-1 on page 2:166 for the value 
of IHA in other situations. All upper 62 address bits of IHA must be implemented 
regardless of the size of the virtual address space supported by the processor model 
(see “Unimplemented Address Bits” on page 2:73). The virtual address written to IHA 
by the processor is guaranteed to be an implemented virtual addresses on all processor 
models; however, if the address referenced by the VHPT is an unimplemented virtual 
address, the value of IHA is undefined.

Figure 3-14. Interruption Function State (IFS – CR23)
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Table 3-9. Interruption Function State Fields

Field Bits Description

ifm 37:0 Interruption Frame Marker

v 63 Valid bit, cleared to 0 on interruption if PSR.ic is 1.

rv 62:38 reserved

Figure 3-15. Interruption Immediate (IIM – CR24)
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Figure 3-16. Interruption Hash Address (IHA – CR25)
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3.3.5.10 Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)

On an interruption and if PSR.ic is 1, the IIB registers receive the 16-byte instruction 
bundle corresponding to the interruption. The bundle reported in the IIB registers is the 
bundle exactly as it was fetched for execution of the instruction which raised the 
interruption. Figure 3-17 shows the format of the IIB0 and IIB1 registers. For details on 
instruction bundle format, see Section 3.3, “Instruction Encoding Overview” on 
page 1:38.

If the interruption is a fault, the IIB registers record the instruction bundle pointed to 
by IIP. If the interruption is a trap, the IIB registers record the instruction bundle 
pointed to by IIPA.

The IIB registers only provide valid interruption bundle information on certain 
IVA-based faults and traps. Please refer to Table 8-1, “Writing of Interruption Resources 
by Vector” on page 2:166 and corresponding interruption vector pages in Section 8.3, 
“Interruption Vector Definition” on page 2:166 for information on which faults and traps 
these registers are valid.  For faults and traps that indicate IIB is not valid, updates to 
the register may occur, but the information is undefined.

For IA-32 interruptions, instruction bundle information is not provided and the values in 
IIB registers are undefined.

The IIB registers are not supported on all processor implementations. Software can call 
PAL_PROC_GET_FEATURES to determine the availability of this feature, see 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details. The IIB registers are reserved when this feature is not supported.

3.3.6 External Interrupt Control Registers

The external interrupt control registers (CR64-81) are defined in “External Interrupt 
Control Registers” on page 2:121. They are used to prioritize and deliver external 
interrupts, send inter-processor interrupts to other processors and assign interrupt 
vectors for locally generated processor interrupts.

3.3.7 Banked General Registers

Banked general registers (see Figure 3-18) provide immediate register context for 
low-level interruption handlers (e.g., speculation and TLB miss handlers). Upon 
interruption, the processor switches 16 general purpose registers (GR16 to GR31) to 
register bank 0, register bank 1 contents are preserved.

When PSR.bn is 1, bank 1 for registers GR16 to GR31 is selected; when 0, bank 0 for 
registers GR16 to GR31 is selected. Banks are switched in the following cases:

Figure 3-17.Interruption Instruction Bundle Registers (IIB0-1, – CR26, 27)
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• An interruption selects bank 0, 

• rfi switches to the bank specified by IPSR.bn, or

• bsw switches to the specified bank.

On an interruption or bank switch, the processor ensures all prior register accesses 
(reads and writes) are performed to the prior register bank. Data values in banked 
registers are preserved across bank switches and both banks maintain NaT values when 
loaded from general registers. Registers from both banks cannot be addressed at the 
same time. However, non-banked general registers (GR0-15, and GR32-127) are 
accessible regardless of the state of PSR.bn.

Whether the ALAT register target tracking mechanism (see “Data Speculation” on 
page 1:63) distinguishes between the two register banks is implementation dependent; 
from the ALAT's perspective, GR16 in bank 0 may be the same register as GR16 in bank 
1 in some implementations.

Operating systems should ensure that IA-32 and Itanium architecture-based 
application code is executed within register bank 1. If IA-32 or Itanium 
architecture-based application code executes out of register bank 0, the application 
register state (including IA-32) will be lost on any interruption. During interruption 
processing the operating system uses register bank 0 as the initial working register 
context.

Usage of these additional registers is determined by software conventions. However, 
registers GR24 to GR31, of bank 0, are not preserved when PSR.ic is 1; operating 
system code can not rely on register values being preserved unless PSR.ic is 0. While 
PSR.ic is 1, processor-specific firmware may use these registers for machine check or 
firmware interruption handling at any point regardless of the state of PSR.i. If PSR.ic is 
0, GR24 to GR31 can be used as scratch registers for low-level interruption handlers. 
Registers GR16 to GR23 are always preserved; operating system code can rely on the 
values being preserved.

Figure 3-18. Banked General Registers
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3.4 Processor Virtualization

Processors in the Itanium Processor Family may optionally implement a mechanism to 
support processor virtualization.  This includes an additional PSR.vm bit (see Section 
3.3.2, “Processor Status Register (PSR)”), which, when 1, causes certain instructions to 
take a Virtualization fault (see Section 5.6, “Interruption Priorities” and “Virtualization 
vector (0x6100)” on page 2:209).

The set of instructions which are virtualized by PSR.vm are listed in Table 3-10 below.

Processors which support processor virtualization must provide an 
implementation-dependent mechanism for disabling the vmsw instruction. When 
enabled, the vmsw instruction functions as described on the vmsw instruction page. 
When disabled, the vmsw instruction always raises a Virtualization fault when executed 
at the most privileged level.

Processors which support processor virtualization may provide an 
implementation-dependent mechanism to disable virtual machine features, see 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.

Processor virtualization is largely invisible to system software, and therefore its effects 
on virtualized instructions are not discussed in this document, except on the instruction 
description pages themselves.

§

Table 3-10. Virtualized Instructions

Class Virtualized Instructions

All privileged instructions itc.i, itc.d, itr.i, itr.d, ptc.l, ptc.g, ptc.ga, ptc.e, ptr, 
tak, tpa, mov rr, mov pkr, mov cr, mov ibr, mov dbr, mov pmc, 
mov to pmd, ssm, rsm, mov psr, rfi, bsw

Some non-privileged 
instructions (virtualized at 
all privilege levels)

thash, ttag, mov from cpuid, probea

a. Virtualization of the probe instruction is configurable, see Section 11.7.4.2.8, “Probe Instruction 
Virtualization” on page 2:344 for details.

Some non-privileged 
instructions (virtualized at 
privilege level 0)

cover, probea

Reading AR[ITC] or 
AR[RUC] with PSR.si==1 
(virtualized at all privilege 
levels)

mov from ar.itc, mov from ar.ruc

Instructions which write 
privileged registers

mov to ar.itc, mov to ar.ruc



Volume 2, Part 1: Addressing and Protection 2:45

Addressing and Protection 4

This chapter defines operating system resources to translate 64-bit virtual addresses 
into physical addresses, 32-bit virtual addressing, virtual aliasing, physical addressing, 
memory ordering and properties of physical memory. Register state defined to support 
virtual memory management is defined in Chapter 3, while Chapter 5 provides 
complete information on virtual memory faults.

Note: Unless otherwise noted, references to “interruption” in this chapter refer to 
IVA-based interruptions. See “Interruption Definitions” on page 2:95.

The following key features are supported by the virtual memory model.

• Virtual Regions are defined to support contemporary operating system Multiple 
Address Space (MAS) models of placing each process within a unique address 
space. Region identifiers uniquely tag virtual address mappings to a given process.

• Protection Domain mechanisms support the Single Address Space (SAS) model, 
where processes co-exist within the same virtual address space.

• Translation Lookaside Buffer (TLB) structures are defined to support 
high-performance paged virtual memory systems. Software TLB fill and protection 
handlers are utilized to defer translation policies and protection algorithms to the 
operating system.

• A Virtual Hash Page Table (VHPT) is designed to augment the performance of the 
TLB. The VHPT is an extension of the processor’s TLB that resides in memory and 
can be automatically searched by the processor. A particular operating system page 
table format is not dictated. However, the VHPT is designed to mesh with two 
common translation structures: the virtual linear page table and hashed page table. 
Enabling of the VHPT and the size of the VHPT are completely under software 
control.

• Sparse 64-bit virtual addressing is supported by providing for large translation 
arrays (including multiple levels of hierarchy similar to a cache hierarchy), efficient 
translation miss handling support, multiple page sizes, pinned translations, and 
mechanisms to promote sharing of TLB and page table resources.

4.1 Virtual Addressing

As seen by Itanium architecture-based application programs, the virtual addressing 
model is fundamentally a 64-bit flat linear virtual address space. 64-bit general 
registers are used as pointers into this address space. IA-32 32-bit virtual linear 
addresses are zero extended into the 64-bit virtual address space.

As shown in Figure 4-1, the 64-bit virtual address space is divided into eight 261 byte 
virtual regions. The region is selected by the upper 3-bits of the virtual address. 
Associated with each virtual region is a region register that specifies a 24-bit region 
identifier (unique address space number) for the region. Eight out of the possible 224 
virtual address spaces are concurrently accessible via the 8 region registers. The region 
identifier can be considered the high order address bits of a large 85-bit global address 
space for a single address space model, or as a unique ID for a multiple address space 
model.
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By assigning sequential region identifiers, regions can be coalesced to produce larger 
62-, 63- or 64-bit spaces. For example, an operating system could implement a 62-bit 
region for process private data, 62-bit region for I/O, and a 63-bit region for globally 
shared data. Default page sizes and translation policies can be assigned to each virtual 
region.

Figure 4-2 shows the process of mapping a virtual address into a physical address. 
Each virtual address is composed of three fields: the Virtual Region Number, the Virtual 
Page Number, and the page offset. The upper 3-bits select the Virtual Region Number 
(VRN). The least-significant bits form the page offset. The Virtual Page Number (VPN) 
consists of the remaining bits. The VRN bits are not included in the VPN. The page 
offset bits are passed through the translation process unmodified. Exact bit positions 
for the page offset and VPN bits vary depending on the page size used in the virtual 
mapping.

On a memory reference (any reference other than an insert or purge), the VRN bits 
select a Region Identifier (RID) from 1 of the 8 region registers, the TLB is then 
searched for a translation entry with a matching VPN and RID value. The VRN may 
optionally be used when searching for a matching translation on memory references 
(references other than inserts and purges – see Section 4.1.1.4, “Purge Behavior of TLB 
Inserts and Purges”). If a matching translation entry is found, the entry’s physical page 
number (PPN) is concatenated with the page offset bits to form the physical address. 
Matching translations are qualified by page-granular privilege level access right checks 
and optional protection domain checks by verifying the translation’s key is contained 
within a set of protection key registers and read, write, execute permissions are 
granted.

If the required translation is not resident in the TLB, the processor may optionally 
search the VHPT structure in memory for the required translation and install the entry 
into the TLB. If the required entry cannot be found in the TLB and/or VHPT, the 
processor raises a TLB Miss fault to request that the operating system supply the 
translation. After the operating system installs the translation in the TLB and/or VHPT, 
the faulting instruction can be restarted and execution resumed.

Figure 4-1. Virtual Address Spaces
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Virtual addressing for instruction references are enabled when PSR.it is 1, data 
references when PSR.dt is 1, and register stack accesses when PSR.rt is 1.

4.1.1 Translation Lookaside Buffer (TLB)

The processor maintains two architectural TLBs as shown in Figure 4-3, the Instruction 
TLB (ITLB) and Data TLB (DTLB). Each TLB services translation requests for instruction 
and data memory references (including IA-32), respectively. The Data TLB also services 
translation requests for references by the RSE and the VHPT walker. The TLBs are 
further divided into two sub-sections; Translation Registers (TR) and Translation Cache 
(TC).

In the remainder of this document, the term TLB refers to the combined instruction, 
data, translation register, and translation cache structures.

Figure 4-2. Conceptual Virtual Address Translation for References

Figure 4-3. TLB Organization
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The TLB is a local processor resource; installation of a translation or local processor 
purges do not affect other processor’s TLBs. Global TLB purges are provided to purge 
translations from all processors within a TLB coherence domain in a multiprocessor 
system.

4.1.1.1 Translation Registers (TR)

The Translation Register (TR) section of the TLB is a fully-associative array defined to 
hold translations that software directly manages. Software can explicitly insert a 
translation into a TR by specifying a register slot number. Translations are removed 
from the TRs by specifying a virtual address, page size and a region identifier. 
Translation registers allow the operating system to “pin” critical virtual memory 
translations in the TLB. Examples include I/O spaces, kernel memory areas, frame 
buffers, page tables, sensitive interruption code, etc. Instruction fetches for 
interruption handlers are performed using virtual addresses; therefore, virtual address 
ranges containing software translation miss routines and critical interruption sequences 
should be pinned or else additional TLB faults may occur. Other virtual mappings may 
be pinned for performance reasons.

Entries are placed into a specific TR slot with the Insert Translation Register (itr) 
instruction. Once a translation is inserted, the processor will not replace the translation 
to make room for other translations. Local translations can only be removed by 
software issuing the Purge Translation Register (ptr) instruction.

TR inserts and purges may cause other TR and/or TC entries to be removed (refer to 
Section 4.1.1.4, “Purge Behavior of TLB Inserts and Purges” for details). Prior to 
inserting a TR entry, software must ensure that no overlapping translation exists in any 
TR (including the one being written); otherwise, a Machine Check abort may be raised, 
or the processor may exhibit other undefined behavior. Translation register entries may 
be removed by the processor due to hardware or software errors. In the presence of an 
error, the processor can remove TR entries; notification is raised via a Machine Check 
abort.

There are at least 8 instruction and 8 data TR slots implemented on all processor 
models. Please see the processor-specific documentation for further information on the 
number of translation registers implemented on the Itanium processor. Translation 
registers support all implemented page sizes and must be implemented in a single-level 
fully-associative array. Any register slot can be used to specify any virtual address 
mapping. Translation registers are not directly readable.

In some processor models, translation registers are physically implemented as a 
subsection of the translation cache array. Valid TR slots are ignored for purposes of 
processor replacement on an insertion into the TC. However, invalid TR slots (unused 
slots) may be used as TC entries by the processor. As a result, software inserts into 
previously invalid TR entries may invalidate a TC entry in that slot.

Implementations may also place a floating boundary between TR and TC entries within 
the same structure where any entry above the boundary is considered a TC and any 
entry below the boundary a TR. To maximize TC resources, software should allocate 
contiguous translation registers starting at slot 0 and continuing upwards.
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4.1.1.2 Translation Cache (TC)

The Translation Cache (TC) is an implementation-specific structure defined to hold the 
large working set of dynamic translations for memory references (including IA-32). 
Please see the processor-specific documentation for further information on Itanium 
processor TC implementation details. The processor directly controls the replacement 
policy of all TC entries.

Entries are installed by software into the translation cache with the Insert Data 
Translation Cache (itc.d) and Insert Instruction Translation Cache (itc.i) 
instructions. The Purge Translation Cache Local (ptc.l) instruction purges all ITC/DTC 
entries in the local processor that match the specified virtual address range and region 
identifier. Purges of all ITC/DTC entries matching a specified virtual address range and 
region identifier among all processors in a TLB coherence domain can be globally 
performed with the Purge Translation Cache Global (ptc.g, ptc.ga) instruction. The 
TLB coherence domain covers at least the processors on the same local bus on which 
the purge was broadcast. Propagation between multiple TLB coherence domains is 
platform dependent. Software must handle the case where a purge does not propagate 
to all processors in a multiprocessor system. Translation cache purges do not invalidate 
TR entries.

All the entries in a local processor’s ITC and DTC can be purged of all entries with a 
sequence of Purge Translation Cache Entry (ptc.e) instructions. A ptc.e does not 
propagate to other processors.

In all processor models, the translation cache has at least 1 instruction and 1 data entry 
in addition to the specified 8 instruction and 8 data translation registers. 
Implementations are free to implement translation cache arrays of larger sizes. 
Implementations may also choose to implement additional hierarchies for increased 
performance. At least one translation cache level is required to support all implemented 
page sizes. Additional hierarchy levels may or may not be performance optimized for 
the preferred page size specified by the virtual region, may be set-associative or fully 
associative, and may support a limited set of page sizes. Please see the 
processor-specific documentation for further information on the Itanium processor 
implementation details of the translation cache.

The translation cache is managed by both software and hardware. In general, software 
cannot assume any entry installed will remain, nor assume the lifetime of any entry 
since replacement algorithms are implementation specific. The processor may discard 
or replace a translation at any point in time for any reason (subject to the forward 
progress rules below). TC purges may remove more entries than explicitly requested. 
In the presence of a processor hardware error, the processor may remove TC entries 
and optionally raise a Corrected Machine Check Interrupt.

In order to ensure forward progress for Itanium architecture-based code, the following 
rules must be observed by the processor and software. 

• Software may insert multiple translation cache entries per TLB fault, provided that 
only the last installed translation is required for forward progress.

• The processor may occasionally invalidate the last TC entry inserted. The processor 
must eventually guarantee visibility of the last inserted TC entry to all references 
while PSR.ic is zero. The processor must eventually guarantee visibility of the last 
inserted TC entry until an rfi sets PSR.ic to 1 and at least one instruction is 
executed with PSR.ic equal to 1, and completes without a fault or interrupt. The last 
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inserted TC entry may be occasionally removed before this point, and software 
must be prepared to re-insert the TC entry on a subsequent fault. For example, 
eager or mandatory RSE activity, speculative VHPT walks, or other interruptions of 
the restart instruction may displace the software-inserted TC entry, but when 
software later re-inserts the same TC entry, the processor must eventually 
complete the restart instruction to ensure forward progress, even if that restart 
instruction takes other faults which must be handled before it can complete. If 
PSR.ic is set to 1 by instructions other than rfi, the processor does not guarantee 
forward progress.

• If software inserts an entry into the TLB with an overlapping entry (same or larger 
size) in the VHPT, and if the VHPT walker is enabled, forward progress is not 
guaranteed. See “VHPT Searching” on page 2:62.

• Software may only make references to memory with physical addresses or with 
virtual addresses which are mapped with TRs, or to addresses mapped by the 
just-inserted translation, between the insertion of a TC entry, and the execution of 
the instruction with PSR.ic equal to 1 which is dependent on that entry for forward 
progress. Software may also make repeated attempts to execute the same 
instruction with PSR.ic equal to 1. If software makes any other memory references 
than these, the processor does not guarantee forward progress.

• Software must not defeat forward progress by consistently displacing a required TC 
entry through a global or local translation cache purge.

IA-32 code has more stringent forward progress rules that must be observed by the 
processor and software. IA-32 forward progress rules are defined in Section 10.6.3, 
“IA-32 TLB Forward Progress Requirements” on page 2:261.

The translation cache can be used to cache TR entries if the TC maintains the 
instruction vs. data distinction that is required of the TRs. A data reference cannot be 
satisfied by a TC entry that is a cache of an instruction TR entry, nor can an instruction 
reference be satisfied by a TC entry that is a cache of a data TR entry. This approach 
can be useful in a multi-level TLB implementation.

4.1.1.3 Unified Translation Lookaside Buffers

Some processor models may merge the ITC and DTC into a unified translation cache. 
The minimum number of unified entries is 2 (1 for instruction, and 1 for data). 
Processors may service instruction fetch memory references with TC entries originally 
installed into the DTC and service data memory references with translations originally 
installed in the ITC. To ensure consistent operation across processor implementations, 
software is recommended to not install different translations into the ITC or DTC for the 
same virtual region and virtual address. ITC inserts may remove DTC entries. DTC 
inserts may remove ITC entries. TC purges remove ITC and DTC entries.

Instruction and data translation registers cannot be unified. DTR entries cannot be used 
by instruction references and ITR entries cannot be used by data references. ITR 
inserts and purges do not remove DTR entries. DTR inserts and purges do not remove 
ITR entries.
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4.1.1.4 Purge Behavior of TLB Inserts and Purges

Translations contained in the translation caches (TC) and translation registers (TR) are 
maintained in a consistent state by ensuring that TLB insertions remove existing 
overlapping entries before new TR or TC entries are installed. Similarly, TLB purges that 
partially or fully overlap with existing translations may remove all overlapping entries. 
In this context, “overlap” refers to two translations with the same region identifier (but 
not necessarily identical virtual region numbers), and with partially or fully overlapping 
virtual address ranges (determined by the virtual address and the page size). Examples 
are: two 4K-byte pages at the same virtual address, or an 8K-byte page at virtual 
address 0x2000 and a 4K-byte page at 0x3000.

As described in Section 4.1, “Virtual Addressing” on page 2:45, each TLB may contain a 
VRN field, and virtual address bits {63:61} may be used as part of the match for 
memory references (references other than inserts and purges). This binding of a 
translation to the VRN implies that a lookup of a given virtual address (region 
identifier/VPN pair) in either the translation cache or translation registers may result in 
a TLB miss if a memory reference is made through a different VRN (even if the region 
identifiers in the two region registers are identical). Some processor models may also 
omit the VRN field of the TLB, causing the TLB search on memory references to find an 
entry independent of VRN bits. However, all processor models are required, during 
translation cache purge and insert operations, to purge all possible translations 
matching the region identifier and virtual address regardless of the specified VRN.

A processor may overpurge translation cache entries; i.e., it may purge a larger virtual 
address range than required by the overlap. Since page sizes are powers of 2 in size 
and aligned on that same power of 2 boundary, purged entries can either be a superset 
of, identical to, or a subset of the specified purge range. 

Table 4-1 define the purge behavior of different TLB insert and purge instructions. 
Table 4-2 describes the purge behavior for VHPT inserts.

Figure 4-4. Conceptual Virtual Address Searching for Inserts and Purges
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Note: Please refer to Table 4-1 for footnotes in Table 4-2.

Table 4-1. Purge Behavior of TLB Inserts and Purges

Case Insert? Purge? Machine Check?

it[cr].[id] overlaps [ID]TCa

a. Bracketed notation is intended to specify TC and TR overlaps in the same stream, e.g. itc.i and 
ITC.

Mustb

b. Must Insert: requires that the translation specified by the operation is inserted into a TC or TR as 
appropriate. For itc and VHPT walker inserts, there is no guarantee to software that the entry will 
exist in the future, with the exception of the relevant forward-progress requirements specified in 
Section 4.1.1.2, “Translation Cache (TC)”.

Mustc

c. Must Purge: requires that all partially or fully overlapped translations are removed prior to the insert or 
purge operation.

Must notd

d. Must not Machine Check: indicates that a processor does not cause a Machine Check abort as a 
result of the operation.

it[cr].[id] overlaps [DI]TCe

e. Bracketed notation is intended to specify TC and TR overlaps in the opposite stream, e.g. itc.i and 
DTC.

Must Mayf

f. May Purge: indicates that a processor may remove partially or fully overlapped translations prior to 
the insert or purge operation. However, software must not rely on the purge.

Must not

it[cr].[id] overlaps [ID]TR Mayg

g. May Insert: indicates that the translation specified by the operation may be inserted into a TC. 
However, software must not rely on the insert.

May Musth

h. Must Machine Check: indicates that a processor will cause a Machine Check abort if an attempt is 
made to insert or purge a partially or fully overlapped translation. The Machine Check abort may not 
be delivered synchronously with the TLB insert or purge operation itself, but is guaranteed to be 
delivered, at the latest, on a subsequent instruction serialization operation.

it[cr].[id] overlaps [DI]TR Must Must noti

i. Must not Purge: the processor does not remove (or check for) partially or fully overlapped translations 
prior to the insert or purge operation. Software can rely on this behavior.

Must not

ptc.l overlaps [ID]TC

N/A

Must Must not

ptc.l overlaps [ID]TR May Must

ptc.g (local) overlaps [ID]TCj

j. ptc.g (and ptc.ga): two forms of global TLB purges are distinguished: local and remote. The local 
form indicates that the ptc.g or ptc.ga was initiated on the local processor. The remote form 
indicates that this is an incoming TLB shoot-down from a remote processor.

Must Must not

ptc.g (local) overlaps [ID]TR May Must

ptc.g (remote) overlaps [ID]TC Must Must not

ptc.g (remote) overlaps [ID]TR Must not Must not

ptc.e overlaps [ID]TC Must Must not

ptc.e overlaps [ID]TR Must not Must not

ptr.[id] overlaps [ID]TC Must Must not

ptr.[id] overlaps [DI]TC May Must not

ptr.[id] overlaps [ID]TR Must Must not

ptr.[id] overlaps [DI]TR Must not Must not
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The VHPT walker's inserts into the TC follow purge-before-insert rules similar to those 
for software inserts. VHPT walker inserts into the DTC behave similar to itc.d; VHPT 
walker inserts into the ITC behave similar to itc.i. If an instruction reference results in 
a VHPT walk that misses in the data TLB, the DTC insert for the translation for the VHPT 
acts similar to an itc.d.

As described in Section 4.1, “Virtual Addressing” on page 2:45, processors may 
optionally use VRN bits when searching for a matching translation for a memory 
reference (references other than inserts and purges). In processors which do use VRN 
bits for such searches, VHPT inserts optionally may also use VRN bits in searching for 
overlapping entries. Thus, if a VHPT insertion overlaps a translation in the TC, but the 
VRN of the address being inserted does not match the VRN of the existing TC 
translation, the purge of the existing TC entry is optional. If a VHPT insertion overlaps a 
translation in a TR, but the VRN of the address being inserted does not match the VRN 
of the TR translation, the VHPT insertion is allowed, and a machine check is optional. In 
processors which do not use VRN bits when searching for a matching translation for a 
memory reference, the behavior of VHPT inserts is identical to that of software inserts 
(see Table 4-1, “Purge Behavior of TLB Inserts and Purges” on page 2:52).

If a VHPT insert overlaps with an existing TR entry and the VRN of the insertion 
matches the VRN of the existing TR entry (for example, if the translation being inserted 
is for a large page which overlaps with a small page translation in the TR), the VHPT 
insertion can be done, but a machine check must be raised. Software must not create 
overlapping translations in the VHPT that are larger than a currently existing TR 
translation. The behavior of VHPT inserts is summarized in Table 4-2.

4.1.1.5 Translation Insertion Format

Figure 4-5 shows the register interface to insert entries into the TLB. TLB insertions are 
performed by issuing the Insert Translation Cache (itc.d, itc.i) and Insert 
Translation Registers (itr.d, itr.i) instructions. The first 64-bit field containing the 
physical address, attributes and permissions is supplied by a general purpose register 
operand. Additional protection key and page size information is supplied by the 
Interruption TLB Insertion Register (ITIR). The Interruption Faulting Address register 
(IFA) specifies the virtual address for instruction and data TLB inserts. ITIR and IFA are 
defined in “Control Registers” on page 2:29. The upper 3 bits of IFA (VRN bits{63:61}) 
select a virtual region register that supplies the RID field for the TLB entry. The RID of 
the selected region is tagged to the translation as it is inserted into the TLB.

Reserved fields or encodings are checked as follows:

Table 4-2. Purge behavior of VHPT Inserts

Case

VRN bits used for TLB searching on VHPT insert VRN bits not used for TLB 
searching on VHPT insertVRN Match No VRN Match

Insert? Purge?
Machine
Check?

Insert? Purge?
Machine
Check?

Insert? Purge?
Machine
Check?

[ID]VHPT overlaps [ID]TCa Mustb Mustc Must notd Must May Must not Must Must Must not

[ID]VHPT overlaps [DI]TCe Must Mayf Must not Must May Must not Must May Must not

[ID]VHPT overlaps [ID]TR
Mayg May Musth May Must noti May May

Must 
not

Must

[ID]VHPT overlaps [DI]TR
Must

Must 
not

Must not Must Must not Must not Must
Must 
not

Must not
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• The GR[r] value is checked when a TLB insert instruction is executed, and if 
reserved fields or reserved encodings are used, a Reserved Register/Field fault is 
raised on the TLB insert instruction. If GR[r]{0} is zero (not-present Translation 
Insertion Format), the rest of GR[r] is ignored.

• The RR[vrn] value is checked when a mov to RR instruction is executed, and if 
reserved fields or reserved encodings are used, a Reserved Register/Field fault is 
raised on the mov to RR instruction.

• The ITIR value is checked either when a mov to ITIR instruction is executed, or 
when a TLB insert instruction is executed, depending on the processor 
implementation. If reserved fields or reserved encodings are used, a Reserved 
Register/Field fault is raised on the mov to ITIR or TLB insert instruction. In 
implementations where ITIR is checked on a TLB insert instruction, ITIR{63:32} 
and ITIR{31:8} may be ignored if GR[r]{0} is zero (not-present Translation 
Insertion Format).

• The IFA value is checked either when a mov to IFA instruction is executed, or when 
a TLB insert instruction is executed, depending on the processor implementation. If 
an unimplemented virtual address is used, an Unimplemented Data Address fault is 
raised on the mov to IFA or TLB insert instruction.

Software must issue an instruction serialization operation to ensure installs into the 
ITLB are observed by dependent instruction fetches and a data serialization operation 
to ensure installs into the DTLB are observed by dependent memory data references.

Table 4-3 describes all the translation interface fields.

Figure 4-5. Translation Insertion Format

63 53 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

GR[r] ig ed ci ppn ar pl d a ma ci p

ITIR rv/ci key ps rv/ci

IFA vpn ig

RR[vrn] rv rid ig rv ig

Table 4-3. Translation Interface Fields

TLB
Field

Source
Field

Description

ci GR[r]{1,51:50} Checked on Insert – Checked on a TLB insert instruction. If reserved fields or 
encodings are used, a Reserved Register/Field fault is raised on the TLB 
insert instruction.

rv/ci ITIR{1:0,63:32} Reserved/Checked on Insert – Depending on implementation, may be 
reserved (checked on a mov to ITIR instruction) or checked on a TLB insert 
instruction. If reserved fields or encodings are used, a Reserved 
Register/Field fault is raised on the mov to ITIR or TLB insert instruction. In 
implementations where ITIR is checked on a TLB insert instruction, 
ITIR{63:32} may be ignored if GR[r]{0} is zero (not-present Translation 
Insertion Format).

rv RR[vrn]{1,63:32} Reserved – Checked on a mov to RR instruction. If reserved fields or 
encodings are used, a Reserved Register/Field fault is raised on the mov to 
RR instruction.
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The format in Figure 4-6 is defined for not-present translations (P-bit is zero).

p GR[r]{0} Present bit – When 0, references using this translation cause an Instruction or 
Data Page Not Present fault. Most other fields are ignored by the processor, 
see Figure 4-6 for details. This bit is typically used to indicate that the 
mapped physical page is not resident in physical memory. The present bit 
is not a valid bit. For each TLB entry, the processor maintains an 
additional hidden valid bit indicating if the entry is enabled for matching. 

ma GR[r]{4:2} Memory Attribute – describes the cacheability, coherency, write-policy and 
speculative attributes of the mapped physical page. See “Memory Attributes” 
on page 2:75 for details.

a GR[r]{5} Accessed Bit – When 0 and PSR.da is 0, data references to the page cause a 
Data Access Bit fault. When 0 and PSR.ia is 0, instruction references to the 
page cause an Instruction Access Bit fault. When 0, IA-32 references to the 
page cause an Instruction or Data Access Bit fault. This bit can trigger a fault 
on reference for tracing or debugging purposes. The processor does not 
update the Accessed bit on a reference.

d GR[r]{6} Dirty Bit – When 0 and PSR.da is 0, Intel Itanium store or semaphore 
references to the page cause a Data Dirty Bit fault. When 0, IA-32 store or 
semaphore references to the page cause a Data Dirty Bit fault. The processor 
does not update the Dirty bit on a store or semaphore reference.

pl GR[r]{8:7} Privilege Level – Specifies the privilege level or promotion level of the page. 
See “Page Access Rights” on page 2:56 for complete details.

ar GR[r]{11:9} Access Rights – page granular read, write and execute permissions and 
privilege controls. See “Page Access Rights” on page 2:56 for details.

ppn GR[r]{49:12} Physical Page Number – Most significant bits of the mapped physical address. 
Depending on the page size used in the mapping, some of the least significant 
PPN bits are ignored.

ig GR[r]{63:53} 
IFA{11:0}, 
RR[vrn]{0,7:2}

available – Software can use these fields for operating system defined 
parameters. These bits are ignored when inserted into the TLB by the 
processor.

ed GR[r]{52} Exception Deferral – For a speculative load that results in an exception, the 
speculative load’s instruction page TLB.ed bit is one of the conditions which 
determines whether the exception must be deferred. See “Deferral of 
Speculative Load Faults” on page 2:105 for complete details. This bit is 
ignored in the data TLB for data memory references and for IA-32 memory 
references. 

ps ITIR{7:2} Page Size – Page size of the mapping. For page sizes larger than 4K bytes 
the low-order bits of PPN and VPN are ignored. Page sizes are defined as 2ps 

bytes. See “Page Sizes” on page 2:57 for a list of supported page sizes.

key ITIR{31:8} Protection Key – Uniquely tags the translation to a protection domain. If a 
translation’s Key is not found in the Protection Key Registers (PKRs), access 
is denied and a Data or Instruction Key Miss fault is raised. See “Protection 
Keys” on page 2:59 for complete details. In implementations where ITIR is 
checked on a TLB insert instruction, ITIR{31:8} may be ignored if GR[r]{0} is 
zero (not-present Translation Insertion Format).

vpn IFA{63:12} Virtual Page Number – Depending on a translation’s page size, some of the 
least-significant VPN bits specified are ignored in the translation process. 
VPN{63:61} (VRN) selects the region register.

rid RR[VRN].rid Virtual Region Identifier – On TLB inserts the Region Identifier selected by 
VPN{63:61} (VRN) is used as additional match bits for subsequent accesses 
and purges (much like vpn bits).

Table 4-3. Translation Interface Fields (Continued)

TLB
Field

Source
Field

Description
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4.1.1.6 Page Access Rights

Page granular access controls use 4 levels of privilege. Privilege level 0 is the most 
privileged and has access to all privileged instructions; privilege level 3 is least 
privileged. Access (including IA-32) to a page is determined by the TLB.ar and TLB.pl 
fields, and by the privilege level of the access, as defined in Table 4-4. RSE fills and 
spills obtain their privilege level from RSC.pl; all other accesses (including IA-32) obtain 
their privilege level from PSR.cpl. Within each cell, “–” means no access, “R” means 
read access, “W” means write access, “X” means execute access, and “Pn” means 
promote PSR.cpl to privilege level “n” when an Enter Privileged Code (epc) instruction 
is executed.

Figure 4-6. Translation Insertion Format – Not Present

63 32 31 12 11 8 7 2 1 0

GR[r] ig 0

ITIR rv/ci key ps rv/ci

IFA vpn ig

RR[vrn] rv rid ig rv ig

Table 4-4. Page Access Rights

TLB.ar TLB.pl
Privilege Levela

Description
3 2 1 0

0 3 R R R R read only

2 – R R R

1 – – R R

0 – – – R

1 3 RX RX RX RX read, execute

2 – RX RX RX

1 – – RX RX

0 – – – RX

2 3 RW RW RW RW read, write

2 – RW RW RW

1 – – RW RW

0 – – – RW

3 3 RWX RWX RWX RWX read, write, execute

2 – RWX RWX RWX

1 – – RWX RWX

0 – – – RWX

4 3 R RW RW RW read only / read, write

2 – R RW RW

1 – – R RW

0 – – – RW

5 3 RX RX RX RWX read, execute / read, write, exec

2 – RX RX RWX

1 – – RX RWX

0 – – – RWX
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Software can verify page level permissions by the probe (regular_form probe or 
probe.fault) instruction, which checks accessibility to a given virtual page by verifying 
privilege levels, page level read and write permission, and protection key read and 
write permission.

Execute-only pages (TLB.ar 7) can be used to promote the privilege level on entry into 
the operating system. User level code would typically branch into a promotion page 
(controlled by the operating system) and execute the Enter Privileged Code (epc) 
instruction. When epc successfully promotes, the next instruction group is executed at 
the target privilege level specified by the promotion page. A procedure return branch 
type (br.ret) can demote the current privilege level.

4.1.1.7 Page Sizes

A range of page sizes are supported to assist software in mapping system resources 
and improve TLB/VHPT utilization. Typically, operating systems will select a small range 
of fixed page sizes to implement virtual memory algorithms. Larger pages may be 
statically allocated. For example, large areas of the virtual address space may be 
reserved for operating system kernels, frame buffers, or memory-mapped I/O regions. 
Software may also elect to pin these translations, by placing them in the translation 
registers.

Table 4-5 lists insertable and purgeable page sizes that are supported by all processor 
models. Insertable page sizes can be specified in the translation cache, the translation 
registers, the region registers and the VHPT. Insertable page sizes can also be used as 
parameters to TLB purge instructions (ptc.l, ptc.g, ptc.ga or ptr). Page sizes that 
are purgeable only may only be used as parameters to TLB purge instructions.

Processors may also support additional insertable and purgeable page sizes. Please see 
the processor-specific documentation for further information on the page sizes 
supported by the Itanium processor.

6 3 RWX RW RW RW read, write, execute / read, write

2 – RWX RW RW

1 – – RWX RW

0 – – – RW

7 3 X X X RX exec, promoteb / read, execute

2 XP2 X X RX

1 XP1 XP1 X RX

0 XP0 XP0 XP0 RX

a. RSC.pl, for RSE fills and spills; PSR.cpl for all other accesses.
b. User execute only pages can be enforced by setting PL to 3.

Table 4-4. Page Access Rights (Continued)

TLB.ar TLB.pl
Privilege Levela

Description
3 2 1 0
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Page sizes are encoded in translation entries and region registers as a 6-bit encoded 
page size field. Each field specifies a mapping size of 2N bytes, thus a value of 12 
represents a 4K-byte page. If unimplemented page sizes are specified to an itc, itr or 
mov to region register instruction, a Reserved Register/Field fault is raised. If 
unimplemented page sizes are specified for a TLB purge instruction an implementation 
may raise a Machine Check abort, may under-purge translations up to ignoring the 
request, or may over-purge translations up to removal of all entries from the translation 
cache. If unimplemented page sizes are specified by a ptc.g or ptc.ga broadcast from 
another processor, an implementation may under-purge translations up to ignoring the 
request, or may over-purge translations up to removal of all entries from the translation 
cache. However, it must not raise a Machine Check abort. 

Virtual and physical pages are aligned on the natural boundary of the page. For 
example, 4K-byte pages are aligned on 4K-byte boundaries, and 4 M-byte pages on 4 
M-byte boundaries.

4.1.2 Region Registers (RR)

Associated with each of the 8 virtual regions is a privileged Region Register (RR). Each 
register contains a Region Identifier (RID) along with several other region attributes, 
see Figure 4-7. The values placed in the region register by the operating system can be 
viewed as a collection of process address space identifiers.

Regions support multiple address space operating systems by avoiding the need to 
flush the TLB on a context switch. Sharing between processes is promoted by mapping 
common global or shared region identifiers into the region register working set of 
multiple processes. All IA-32 memory references are through region register 0.

Table 4-6 describes the region register fields. Region Identifier (rid) bits 0 through 17 
must be implemented on all processor models. Some processor models may implement 
additional bits. Additional implemented bits must be contiguous and start at bit 18. 
Unimplemented bits are reserved. Please see the processor-specific documentation for 
further information on the size of the Region Identifier implemented on the Itanium 
processor.

Table 4-5. Architected Page Sizes

Page Sizes

4k 8k 16k 64k 256k 1M 4M 16M 64M 256M 4G

Insertable yes yes yes yes yes yes yes yes yes yes -

Purgeable yes yes yes yes yes yes yes yes yes yes yes

Figure 4-7. Region Register Format

63 32 31 8 7 2 1 0

rv rid ps rv ve

32 24 6 1 1

Table 4-6. Region Register Fields

Field Bits Description

rv 1,63:32 reserved

ve 0 VHPT Walker Enable – When 1, the VHPT walker is enabled for the region. When 0, 
disabled.
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Software must issue an instruction serialization operation to ensure writes into the 
region registers are observed by dependent instruction fetches and issue a data 
serialization operation for dependent memory data references.

4.1.3 Protection Keys

Protection Keys provide a method to restrict permission by tagging each virtual page 
with a unique protection domain identifier. The Protection Key Registers (PKR) 
represent a register cache of all protection keys required by a process. The operating 
system is responsible for management and replacement polices of the protection key 
cache. Before a memory access (including IA-32) is permitted, the processor compares 
a translation’s key value against all keys contained in the PKRs. If a matching key is not 
found, the processor raises a Key Miss fault. If a matching Key is found, access to the 
page is qualified by additional read, write and execute protection checks specified by 
the matching protection key register. If these checks fail, a Key Permission fault is 
raised. Upon receipt of a Key Miss or Key Permission fault, software can implement the 
desired security policy for the protection domain. Figure 4-8 and Table 4-7 describe the 
protection key register format and protection key register fields.

ps 7:2 Preferred page Size – Selects the virtual address bits used in hash functions for 
set-associative TLBs or the VHPT. Encoded as 2ps bytes. The processor may make 
significant performance optimizations for the specified preferred page size for the 
region.a

rid 31:8 Region Identifier – During TLB inserts, the region identifier from the select region 
register is used to tag translations to a specific address space. During TLB/VHPT 
lookups, the region identifier is used to match translations and to distribute hash 
indexes among VHPT and TLB sets. 

a. For more details on the usage of this field, See “VHPT Hashing” on page 2:65.

Figure 4-8. Protection Key Register Format

63 32 31 8 7 4 3 2 1 0

rv key rv xd rd wd v

32 24 4 1 1 1 1

Table 4-7. Protection Register Fields

Field Bits Description

v 0 Valid – When 1, the Protection Register entry is valid and is checked by the 
processor when performing protection checks. When 0, the entry is ignored. 

wd 1 Write Disable – When 1, write permission is denied to translations in the protection 
domain.

rd 2 Read Disable – When 1, read permission is denied to translations in the protection 
domain.

xd 3 Execute Disable – When 1, execute permission is denied to translations in the 
protection domain.

key 31:8 Protection Key – uniquely tags translation to a given protection domain. 

rv 7:4,63:32 reserved

Table 4-6. Region Register Fields (Continued)

Field Bits Description
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Processor models have at least 16 protection key registers, and at least 18-bits of 
protection key. Some processor models may implement additional protection key 
registers and protection key bits. Unimplemented bits and registers are reserved. Key 
registers have at least as many implemented key bits as region registers have rid bits. 
Additional implemented bits must be contiguous and start at bit 18. Please see the 
processor-specific documentation for further information on the number of protection 
key registers and protection key bits implemented on the Itanium processor.

Software must issue an instruction serialization operation to ensure writes into the 
protection key registers are observed by dependent instruction fetches and a data 
serialization operation for dependent memory data references.

The processor ensures uniqueness of protection keys by checking new valid protection 
keys against all protection key registers during the move to PKR instruction. If a valid 
matching key is found in any PKR register, the processor invalidates the matching PKR 
register by setting PKR.v to zero, before performing the write of the new PKR register. 
The other fields in any matching PKR remain unchanged when it is invalidated.

Key Miss and Permission faults are only raised when memory translations are enabled 
(PSR.dt is 1 for data references, PSR.it is 1 for instruction references, PSR.rt is 1 for 
register stack references), and protection key checking is enabled (PSR.pk is one). 

Data TLB protection keys can be acquired with the Translation Access Key (tak) 
instruction. Instruction TLB key values are not directly readable. To acquire instruction 
key values software should make provisions to read memory structures.

4.1.4 Translation Instructions

Table 4-8 lists translation instructions used to manage translations. Region registers, 
protection key registers and the TLBs are accessed indirectly; the register number is 
determined by the contents of a general register. 

The processor does not ensure that modification of the translation resources is 
observed by subsequent instruction fetches or data memory references. Software must 
issue an instruction serialization operation before any dependent instruction fetch and a 
data serialization operation before any dependent data memory reference.

Table 4-8. Translation Instructions

Mnemonic Description Operation
Instr.
Type

Serialization
Requirement

mov rr[r3] = r2 Move to region 
register

RR[GR[r3]] = GR[r2] M data/inst

mov r1 = rr[r3] Move from region 
register

GR[r1] = RR[GR[r3]] M none

mov pkr[r3] = r2 Move to 
protection key 
register

PKR[GR[r3]] = GR[r2] M data/inst

mov r1 = pkr[r3] Move from 
protection key 
register

GR[r1] = PKR[GR[r3]] M none

itc.i r3 Insert instruction 
translation cache

ITC = GR[r3], IFA, ITIR M inst
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4.1.5 Virtual Hash Page Table (VHPT)

The VHPT is an extension of the TLB hierarchy designed to enhance virtual address 
translation performance. The processor’s VHPT walker can optionally be configured to 
search the VHPT for a translation after a failed instruction or data TLB search. The VHPT 
walker provides significant performance enhancements by reducing the rate of flushing 
the processor’s pipelines due to a TLB Miss fault, and by providing speculative 
translation fills concurrent to other processor operations.

The VHPT, resides in the virtual memory space and is configurable as either the primary 
page table of the operating system or as a single large translation cache in memory 
(see Figure 4-9). Since the VHPT resides in the virtual address space, an additional TLB 
miss can be raised when the VHPT is referenced. This property allows the VHPT to also 
be used as a linear page table. 

itc.d r3 Insert data 
translation cache 

DTC = GR[r3], IFA, ITIR M data

itr.i itr[r2] = r3 Insert instruction 
translation 
register

ITR[GR[r2]] = GR[r3], IFA, ITIR M inst

itr.d dtr[r2] = r3 Insert data 
translation 
register

DTR[GR[r2]] = GR[r3], IFA, ITIR M data

probe r1 = r3, r2 Probe data TLB for translation M none

probe.fault r3, imm2 Probe data TLB for translation M none

ptc.l r3, r2 Purge a translation from local processor instruction 
and data translation cache

M data/inst

ptc.g r3, r2 Globally purge a translation from multiple 
processor’s instruction and data translation caches

M data/inst

ptc.ga r3, r2 Globally purge a translation from multiple 
processor’s instruction and data translation caches 
and remove matching entries from multiple 
processor’s ALATs

M data/inst

ptc.e r3 Purge local instruction and data translation cache of 
all entries

M data/inst

ptr.i r3, r2 Purge instruction translation registers M inst

ptr.d r3, r2 Purge data translation registers M data

tak r1 = r3 Obtain data TLB entry protection key M none

thash r1 = r3 Generate translation’s VHPT hash address M none

ttag r1 = r3 Generate translation tag for VHPT M none

tpa r1 = r3 Translate a virtual address to a physical address M none

Table 4-8. Translation Instructions (Continued)

Mnemonic Description Operation
Instr.
Type

Serialization
Requirement
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The processor does not manage the VHPT or perform any writes into the table. 
Software is responsible for insertion of entries into the VHPT (including replacement 
algorithms), dirty/access bit updates, invalidation due to purges and coherency in a 
multiprocessor system. The processor does not ensure the TLBs are coherent with the 
VHPT memory image.

If software needs to control the entries inserted into the TLB more explicitly, or 
programs the VHPT with differing mappings for the same virtual address range, it may 
need to take additional action to ensure forward progress. See “VHPT Searching” on 
page 2:62.

4.1.5.1 VHPT Configuration

The Page Table Address (PTA) register determines whether the processor is enabled to 
walk the VHPT, anchors the VHPT in the virtual address space, and controls VHPT size 
and configuration information. The VHPT can be configured as either a per-region 
virtual linear page table structure (8-byte short format) or as a single large hash page 
table (32-byte long format). No mixing of formats is allowed within the VHPT. 

To implement a per-region linear page table structure an operating system would 
typically map the leaf page table nodes with small backing virtual translations. The size 
of the table is expanded to include all possible virtual mappings, effectively creating a 
large per-region flat page table within the virtual address space.

To implement a single large hash page table, the entire VHPT is typically mapped with a 
single large pinned virtual translation placed in the translation registers and the size of 
the table is reduced such that only a subset of all virtual mappings can be resident 
within the table. Operating systems can tune the size of the hash page table based on 
the size of physical memory and operating system performance requirements.

4.1.5.2 VHPT Searching

When enabled, the processor’s VHPT walker searches the VHPT for a translation after a 
failed instruction or data TLB search. The VHPT walker checks only the specific VHPT 
entry addressed by the short- or the long-format hash function, as selected by PTA.vf. 
If additional TLB misses are encountered during the VHPT access, a VHPT Translation 

Figure 4-9. Virtual Hash Page Table (VHPT)
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fault is raised. If the region-based short-format VHPT entry contains no reserved bits or 
encodings, it is installed into the TLB, and the processor again attempts to translate the 
failed instruction or data reference. If the long-format VHPT entry’s tag specifies the 
correct region identifier and virtual address, and the entry contains no reserved bits or 
encodings, it is installed into the TLB, and the processor again attempts to translate the 
failed instruction or data reference. Otherwise the processor raises a TLB Miss fault. The 
translation is installed into the TLB even if its VHPT entry is marked as not present 
(p=0). Software may optionally search additional VHPT collision chains (associativities) 
or search for translations within the operating system’s primary page tables. 
Performance is optimized by placing frequently referenced translations within the VHPT 
structure directly searched by the processor.

The VHPT walker is optional on a given processor model. Software can neither assume 
the presence of a VHPT walker, nor that the VHPT walker will find a translation in the 
VHPT. The VHPT walker can abort a search at any time for implementation-specific 
reasons, even if the required translation entry is in the VHPT. Operating systems must 
regard the VHPT walker strictly as a performance optimization and must be prepared to 
handle TLB misses if the walker fails.

VHPT walks may be done speculatively by the processor's VHPT walker. Additionally, 
VHPT walks triggered by non-speculatively-executed instructions are not required to be 
done in program order. Therefore, if the walker is enabled and if the VHPT contains 
multiple entries that map the same virtual address range, software must set up these 
entries such that any of them can be used in the translation of any part of this virtual 
address range. Additionally, if software inserts a translation into the TLB which is 
needed for forward progress, and this translation has a smaller page size than the 
translation which would have been inserted on a VHPT walk for the same address, then 
software may need to disable the VHPT walker in order to ensure forward progress, 
since this inserted translation may be displaced by a VHPT walk before it can be used.

4.1.5.3 Region-based VHPT Short Format

The region-based VHPT short format shown in Figure 4-10 uses 8-byte VHPT entries to 
support a per-region linear page table configuration. To use the short-format VHPT, 
PTA.vf must be set to 0. 

See “Translation Insertion Format” on page 2:53 for a description of all fields. The VHPT 
walker provides the following default values when entries are installed into the TLB.

• Virtual Page Number – implied by the position of the entry in the VHPT. The hashed 
short-format entry is considered to be the matching translation.

• Region Identifiers are not specified in the short format. To ensure uniqueness, 
software must provide unique VHPT mappings per region. Region identifiers 
obtained from the referenced region register are tagged with the translation when 
inserted into the TLB.

• Page Size – specified by the accessed region’s preferred page size 
(RR[VA{63:61}].ps)

Figure 4-10. VHPT Short Format

63 53 52 51 50 49 12 11 9 8 7 6 5 4 2 1 0

ig ed rv ppn ar pl d a ma rv p

11 1 2 38 3 2 1 1 3 1 1
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• Protection Key – specified by the accessed region identifier value 
(RR[VA{63:61}].rid). As a result, all implementations must ensure that the number 
of implemented key bits is greater than or equal to the number of implemented 
region identifier bits. 

If a translation is marked as not present, ignored fields are usable by software as noted 
in Figure 4-11.

4.1.5.4 VHPT Long Format

The long-format VHPT uses 32-byte VHPT entries to support a single large virtual hash 
page table. To use the long-format VHPT, PTA.vf must be set to 1. The long format is a 
superset of the TLB insertion format, as noted in Figure 4-12, and specifies full 
translation information (including protection keys and page sizes). Additional fields are 
defined in Table 4-9. The long format is typically used to build the hash page table 
configuration.

If a translation is marked as not present, ignored fields are usable by software as noted 
in Figure 4-13. Also, in some implementations, +8{63:32} and +8{31:8} may be 
ignored as well.

Figure 4-11. VHPT Not-present Short Format

63 1 0

ig 0
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Figure 4-12. VHPT Long Format

offset 63 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

+0 ig ed rv ppn ar pl d a ma rv p

+8 rv key ps rv

+16 ti tag

+24 ig

64

Table 4-9. VHPT Long-format Fields

Field Offset Description

tag +16 Translation Tag – The tag, in conjunction with the VHPT hash index, is used to 
uniquely identify the translation. Tags are computed by hashing the virtual page 
number and the region identifier. See “VHPT Hashing” on page 2:65 for details on tag 
and hash index generation.

ti +16 Tag Invalid Bit – If one, this bit of the tag indicates an invalid tag. On all processor 
implementations, the VHPT walker and the ttag instruction generate tags with the ti 
bit equal to 0. A VHPT entry with the ti bit equal to one will never be inserted into the 
processor’s TLBs. Software can use the ti bit to invalidate long-format VHPT entries in 
memory.

ig +24 available – field for software use, ignored by the processor. Operating systems may 
store any value, such as a link address to extend collision chains on a hash collision.
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For multiprocessor systems, atomic updates of long-format VHPT entries may be 
ensured by software as follows:

• Before making multiple non-atomic updates to a VHPT entry in memory, software is 
required to set its ti bit to one.

• After making multiple non-atomic updates to a VHPT entry in memory, software 
may clear its ti bit to zero to re-enable tag matches.

The updates to the VHPT entry in memory must be constrained to be observable only 
after the store that sets the ti bit to one is observable. This can be accomplished with a 
mf instruction, or by performing the updates to the VHPT entry with release stores. 
Similarly, the clearing of the ti bit must be constrained to be observable only after all of 
the updates to the VHPT entry are observable. This can be accomplished with a mf 
instruction, or by performing the clear of the ti bit with a release store.

4.1.6 VHPT Hashing

The processor provides two methods for software to determine a VHPT entry’s address: 
the Translation Hash (thash) instruction, and the Interruption Hash Address (IHA) 
register defined on page 2:41. The virtual address of the VHPT entry is placed in the 
IHA register when a VHPT Translation or TLB fault is delivered. In the long format, IHA 
can be used as a starting address to scan additional collision chains (associativities) 
defined by the operating system or to perform a search in software. The thash 
instruction is used to generate a VHPT entry’s address outside of interruption handlers 
and provides the same hash function that is used to calculate IHA.

thash produces a VHPT entry’s address for a given virtual address and region identifier, 
depending on the setting of the PTA.vf bit. When PTA.vf=0, thash returns the 
region-based short-format index as defined in “Region-based VHPT Short-format Index” 
on page 2:65. When PTA.vf=1, thash returns the long-format hash as defined in 
“Long-format VHPT Hash” on page 2:66. The ttag instruction is only useful for 
long-format hashing, and generates a 64-bit ti/tag identifier that the processor’s VHPT 
walker will check when it looks up a given virtual address and region identifier. Software 
should use the ttag instruction, and either the thash instruction or the IHA register 
when forming translation tags and hash addresses for the long-format VHPT. These 
resources encapsulate the implementation-specific long-format hashing functionality 
and improve performance.

4.1.6.1 Region-based VHPT Short-format Index

In the region-based short format, the linear page table for each region resides in the 
referenced region itself. As a result, the short-format VHPT consists of separate 
per-region page tables, which are anchored in each region by PTA{60:15}. For regions 

Figure 4-13. VHPT Not-present Long Format

offset 63 32 31 8 7 2 1 0

+0 ig 0

+8 rv key ps rv

+16 ti tag

+24 ig
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in which the VHPT is enabled, the operating system is required to maintain a per-region 
linear page table. As defined in Figure 4-14, the VHPT walker uses the virtual address, 
the region’s preferred page size, and the PTA.size field to compute a linear index into 
the short-format VHPT. 

The size of the short-format VHPT (PTA.size) defines the size of the mapped virtual 
address space. The maximum architectural table size in the short format is 252 bytes 
per region. To map an entire region (261 bytes) using 4Kbyte pages, 2(61-12) = 249 
pages must be mappable. A short-format VHPT entry is 8 bytes = 23 bytes large. As a 
result, the maximum table size is 2(61-12+3) = 252 bytes per region. If the short format 
is used to map an address space smaller than 261, a smaller short-format table 
(PTA.size<52) can be used. Mapping of an address space of 2n with 4KByte pages 
requires a minimum PTA.size of (n-9).

In the short format, the thash instruction returns the region-based short-format index 
defined in Figure 4-14. The ttag instruction is not used with the short format. VHPT 
translation and TLB miss faults write the IHA register with the region-based 
short-format index defined in Figure 4-14. 

4.1.6.2 Long-format VHPT Hash

The long-format VHPT is a single large contiguous hash table that resides in the region 
defined by PTA.base. As defined in Figure 4-15, the VHPT walker uses the virtual 
address, the region identifier, the region’s preferred page size, and the PTA.size field to 
compute a hash index into the long-format VHPT. PTA{63:15} defines the base address 
and the region of the long-format VHPT. PTA.size reflects the size of the hash table, and 
is typically set to a number significantly smaller than 264; the exact number is based on 
operating system performance requirements.

The long-format hash function (tlb_vhpt_hash_long) and long-format tag generation 
function are implementation specific. However, on all processor models the hash and 
tag functions must exclude the virtual region number (virtual address bits VA{63:61}) 
from the hash and tag computations. This ensures that a unique 85-bit global virtual 
address hashes to the same VHPT hash address, regardless of which region the address 
is mapped to. All processor implementations guarantee that the most significant bit of 

Figure 4-14. Region-based VHPT Short-format Index Function

Mask = (1 << PTA.size) - 1;
VHPT_Offset = (VA{IMPL_VA_MSB:0} u>> RR[VA{63:61}].ps) << 3;
VHPT_Addr = (VA{63:61} << 61) |

(((PTA{60:15} & ~Mask{60:15}) | (VHPT_Offset{60:15} & 
Mask{60:15})) << 15) |

VHPT_Offset{14:0};

Figure 4-15. VHPT Long-format Hash Function

Mask = (1 << PTA.size) - 1;
HPN = VA{IMPL_VA_MSB:0} u>> RR[VA{63:61}].ps;
Hash_Index = tlb_vhpt_hash_long(HPN,RR[VA{63:61}].rid);
// model-specific hash function 
VHPT_Offset = Hash_Index << 5;
VHPT_Addr = (PTA{63:61} << 61) |

(((PTA{60:15} & ~Mask{60:15}) | (VHPT_Offset{60:15}
& Mask{60:15})) << 15) | VHPT_Offset{14:0};
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the tag (ti bit) is zero for all valid tags. The hash index and tag together must uniquely 
identify a translation. The processor must ensure that the indices into the hashed table, 
the region’s preferred page size, and the tag specified in an indexed entry can be used 
in a reverse hash function to uniquely regenerate the region identifier and virtual 
address used to generate the index and tag. This must be possible for all supported 
page sizes, implemented virtual addresses and legal values of region identifiers. A hash 
function is reversible if using the hash result and all but one input produces the missing 
input as the result of the reverse hash function. The easiest hash function and reverse 
hash function is a simple XOR of bits. To ensure uniqueness, software must follow these 
rules:

1. Software must use only one preferred page size for each unique region identifier 
at any given time; otherwise, processor operation is undefined.

2. All tags for translations within a given region must be created with the preferred 
page size assigned to the region; otherwise, processor operation is undefined.

3. Software is not allowed to have pages in the VHPT that are smaller than the 
preferred page size for the region; otherwise, processor operation is undefined. 
Software can specify a page with a page size larger than the preferred page size 
in the VHPT, but tag values for the entries representing that page size must be 
generated using the preferred page size assigned to that region.

4. To reuse a region identifier with a different preferred page size, software must 
first ensure that the VHPT contains no insertable translations for that rid, purge 
all translations for that rid from all processors that may have used it, and then 
update the region register with the new preferred page size.

4.1.7 VHPT Environment

The processor’s VHPT walker can optionally be configured to search the VHPT for a 
translation after a failed instruction or data TLB search. The VHPT walker is enabled for 
different types of references under the following conditions:

• Data and non-access references (including IA-32): PTA.ve=1, and 
RR[VA{63:61}].ve=1, and PSR.dt=1.

• Instruction fetches (including IA-32): PTA.ve=1, and RR[VA{63:61}].ve=1, and 
PSR.dt=1, and PSR.it=1, and PSR.ic=1.

• RSE references: PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1, and 
PSR.rt=1.

If the walker is not enabled, and an attempt is made to reference the VHPT, an 
Alternate Instruction/Data TLB Miss fault is raised. The remainder of this section 
assumes that the VHPT is enabled.

Region registers must support all implemented page sizes so software can use IHA, 
thash and ttag to manage the VHPT. thash and ttag are defined to operate on all 
page sizes supported by the translation cache, regardless of the VHPT walker’s 
supported page sizes. The PTA register must be implemented on processor models that 
do not implement a VHPT walker. Software must ensure PTA is initialized and serialized 
before issuing ttag, thash, before enabling the VHPT walker or issuing a reference that 
may cause a VHPT walk. The minimum VHPT size is 32KBytes (PTA.size=15), and 
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operating systems must ensure that the VHPT is aligned on the natural boundary of the 
structure; otherwise, processor operation is undefined. For example, a 64K-byte table 
must be aligned on a 64K-byte boundary.

VHPT walker references to the VHPT are performed at privilege level 0, regardless of 
the state of PSR.cpl. VHPT byte ordering is determined by the state of DCR.be. When 
DCR.be=1, VHPT walker references are performed using big-endian memory formats; 
otherwise, VHPT walker references are little-endian. A long-format VHPT reference is 
matched against the data break-point registers as a 32-byte reference.

The VHPT is accessed by the processor only if the VHPT is virtually mapped into 
cacheable memory areas. The walker may access the VHPT speculatively, i.e., 
references may be performed that are not required by an in-order execution of the 
program. Any VHPT or TLB faults encountered during a VHPT walker’s search are not 
reported until the faulting translation is required by an in-order execution of the 
program. If the VHPT is mapped into non-cacheable memory areas the VHPT is not 
referenced, and all TLB misses result in an Instruction/Data TLB Miss fault.

The VHPT walker will abort the search and deliver an Instruction/Data TLB Miss fault if 
an attempt is made to install translations that have reserved bits or encodings, or if the 
translation mapping the VHPT would have taken one of the following faults: Data Page 
Not Present, Data NaT Page Consumption, Data Key Miss, Data Key Permission, Data 
Access Bit, or Data Debug. The VHPT walker may abort a search and deliver an 
Instruction/Data TLB Miss fault at any time for implementation-specific reasons.

The processor’s VHPT walker is required to read and insert VHPT entries from memory 
atomically (an 8-byte atomic read-and-insert for short format, and a 32-byte atomic 
read-and-insert for long format). Some implementation strategies for achieving this 
atomicity are as follows: 

• If the walker performs its VHPT read with multiple cache accesses which are not 
done as an atomic unit, and if an update to part of the entry that is being installed 
is made in-between these multiple reads, the walker must abort the insert and 
deliver an Instruction/Data TLB Miss.

• If the walker performs its VHPT read and the insertion of the entry into the TLB as 
separate actions, and not as an atomic unit, and if an update to part of the entry 
that is being installed is made in-between the read and the insert, the walker must 
either abort the insert and deliver an Instruction/Data TLB Miss, or ignore the 
update and install the complete old entry.

• If the purge address range of a TLB purge operation (ptc.l, ptc.e, local or remote 
ptc.g or ptc.ga, ptr.i, or ptr.d) overlaps the virtual address the walker is 
attempting to insert, then the walker must either abort the insert and deliver an 
Instruction/Data TLB Miss, or delay the purge operation until after the walker either 
completes the insertion or aborts the walk. 

The RSE can only raise a VHPT fault on a mandatory RSE spill/fill operation as defined 
for successful execution of an alloc, loadrs, flushrs, br.ret or rfi instruction. 
Eager RSE operations may generate speculative VHPT walks provided encountered 
faults are not reported.

Data TLB Miss faults encountered during a VHPT walk are permitted and, when 
PSR.ic=1, are converted into a VHPT Translation fault as defined in the next section.
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4.1.8 Translation Searching

The general sequence of searching the TLB and VHPT is shown in Figure 4-16. On a 
failed TLB search, if the VHPT walker is disabled for the referenced region an Alternate 
Instruction/Data TLB Miss fault is raised. If the VHPT walker is enabled for the 
referenced region, the VHPT is accessed to locate the missing translation. See “VHPT 
Environment” on page 2:67. If additional TLB misses are encountered during the VHPT 
walker’s references, a VHPT Translation fault is raised. If the VHPT walker does not find 
the required translation in the VHPT or the search is aborted, an Instruction/Data TLB 
Miss fault is raised. Otherwise the entry is loaded into the ITC or DTC. Provided the 
above fault conditions are not detected, the processor may load the entry into the ITC 
or DTC even if an in-order execution of the program did not require the translation.

See Table 4-1, “Purge Behavior of TLB Inserts and Purges,” on page 2:52 for the purge 
behavior of VHPT walker inserts.

After the translation entry is loaded, additional TLB faults are checked; these include in 
priority order: Page Not Present, NaT page Consumption, Key Miss, Key Permission, 
Access Rights, Access Bit, and Dirty Bit faults. Table 4-10 describes the TLB and VHPT 
walker related faults.

On a failed TLB/VHPT search, the processor loads interruption registers and translation 
defaults as defined in “Interruption Vector Descriptions” on page 2:165 defining the 
parameters of the translation fault. Provided the operating system accepts the defaults 
provided, only the physical address portion of a TLB entry need be provided on a TLB 
insert.
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Figure 4-16.TLB/VHPT Search
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4.1.9 32-bit Virtual Addressing

32-bit virtual data addressing is supported in the Itanium instruction set architecture by 
three models: zero-extension, sign-extension, and pointer “swizzling.” IA-32 memory 
references use the zero-extension model, all IA-32 32-bit virtual linear addresses are 
zero extended into the 64-bit virtual address space.

The zero-extension model performs address computations with the add and shladd 
instructions while software ensures that the upper 32-bits are always zeros. This model 
constrains 32-bit virtual addressing to virtual region zero. In this model, regions 1 to 7 
are accessible only by 64-bit addressing.

Instruction/Data TLB Miss Raised when the VHPT walker is enabled, but the processor:

• Cannot locate the required VHPT entry, or 

• The processor aborts the VHPT search for 
implementation-specific reasons, or 

• The VHPT walker is not implemented, or 

• The referenced region specifies a non-supported 
VHPT preferred page size, or 

• Reserved fields or unimplemented PPN bits are 
used in the translation, or

• The hash address falls into unimplemented 
virtual address space, or

• The hash address matches a data debug 
register.

Instruction/Data TLB Miss handlers are essentially software walkers 
of the VHPT.

Data Nested TLB Raised when a Data TLB Miss, Alternate Data TLB Miss, or VHPT 
Data Translation fault occurs and PSR.ic is 0 and not in-flight (e.g., 
fault within a TLB miss handler). Data Nested TLB faults enable 
software to avoid overheads for potential data TLB Miss faults.

Instruction/Data Page Not Present The referenced translation’s P-bit is 0.

Instruction/Data NaT Page 
Consumption

A non-speculative load, store, mandatory RSE load/store, execution 
on, or semaphore operation accesses a page marked with the 
physical memory attribute NaTPage. See “Not a Thing Attribute 
(NaTPage)” on page 2:86 for details.

Instruction/Data Key Miss The referenced translation’s permission key is not present in the set 
of valid protection key registers.

Instruction/Data Key Permission The referenced translation is denied read, write, execute permissions 
by the matching protection key registers.

Instruction/Data Access Rights Page granular read, write, execute and privilege level accesses are 
denied.

Data Dirty Bit The referenced translation’s Dirty bit is 0 on a store or semaphore 
operation.

Instruction/Data Access Bit The referenced translation’s Access bit is 0.

Table 4-10. TLB and VHPT Search Faults (Continued)

Fault Description
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In the sign-extension model, software ensures that the upper 32-bits of a virtual 
address are always equal to bit 31. Address computations use the add, shladd, and sxt 
instructions. This model splits the 32 bit address space into two halves that are spread 
into 231 bytes of virtual regions 0 and 7 within the 64-bit virtual address space. In this 
model, regions 2 to 6 are accessible only by 64-bit addressing.

The pointer “swizzling” model performs address computations with the addp4, and 
shladdp4 instructions. These instructions generate a 32-bit address within the 64-bit 
virtual address space as shown in Figure 4-17. The 32-bit virtual address space is 
divided into 4 sections that are spread into 230 bytes of virtual regions 0 to 3 within the 
64-bit virtual address space. In this model, regions 4 to 7 are accessible only by 64-bit 
addressing.

In the pointer “swizzling” model, mappings within each region do not necessarily start 
at offset zero, since the upper 2-bits of a 32-bit address serve both as the virtual region 
number and an offset within each region. Virtual address bits{62:61} do not participate 
in the address addition, therefore some regions may be effectively larger than 230 bytes 
due to the addition of a 32-bit offset and lack of a carry into bits{62:61}. Note that the 
conversion is non-destructive: a converted 64-bit pointer can be used as a 32-bit 
pointer. Flat 31 or 32 bit address spaces can be constructed by assigning the same 
region identifier to contiguous region registers. Branches into another 230-byte region 
are performed by first calculating the target address in the 32-bit virtual space and 
then converting to a 64-bit pointer by addp4. Otherwise, branch targets will extend 
above the 230 byte boundary within the originating region.

4.1.10 Virtual Aliasing

Virtual aliasing (two or more virtual pages mapped to the same physical page) is 
functionally supported for memory references (including IA-32), however performance 
may be degraded on some processor models where the distance between virtual aliases 
is less than 1 MB. To avoid any possible performance degradation, software is advised 
to use aliases whose virtual addresses differ by an integer multiple of 1 MB. The 
processor ensures cache coherency and data dependencies in the presence of an alias. 
Stores using a virtual alias followed by a load with another alias to the same physical 
location see the effects of prior stores to the same physical memory location.

To support advanced loads in the presence of a virtual alias, the processor ensures that 
the Advanced Load Address Table (ALAT) is resolved using physical addresses and is 
coherent with physical memory. For details, please refer to “Detailed Functionality of 
the ALAT and Related Instructions” on page 1:65. 

Figure 4-17. 32-bit Address Generation using addp4
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4.2 Physical Addressing

Objects in memory and I/O occupy a common 63-bit physical address space that is 
accessed using byte addresses. Accesses to physical memory and I/O may be 
performed via virtual addresses mapped to the 63-bit physical address space or by 
direct physical addressing. Current page table formats allow for mapping virtual 
addresses into 50 bits of physical address space (on processor implementations that 
support this many physical address bits). Future extensions to the page table formats 
will allow larger mappings, up to the full 63 bits of physical address space. 

Physical addressing for instruction references (including IA-32) is enabled when PSR.it 
is 0, data references (including IA-32) when PSR.dt is 0, and register stack references 
when PSR.rt is 0.

While software views the physical addressing as being 63-bits, implementations may 
implement between 32 and 63 physical address bits. All processor models must 
implement a contiguous set of physical address bits starting at bit 32 and continuing 
upwards. Please see the processor-specific documentation for further information on 
the number of physical address bits implemented on the Itanium processor. 
Implementations must validate that memory references are performed to implemented 
physical address bits. Instruction references to unimplemented physical addresses 
result either in an Unimplemented Instruction Address trap on the last valid instruction, 
or in an Unimplemented Instruction Address fault on the instruction fetch of the 
unimplemented address. Data references to unimplemented physical addresses result 
in an Unimplemented Data Address fault. Memory references to unpopulated address 
ranges result in an asynchronous Machine Check abort, when the platform signals a 
transaction time-out. Exact machine check behavior is model specific.

4.3 Unimplemented Address Bits

Based on the processor model, some physical and/or virtual address bits may not be 
implemented. Regardless of the number of implemented address bits, all general 
purpose, branch, control and application registers implement all 64 register bits on all 
processors. Similarly, regardless of the number of implemented address bits, data and 
instruction breakpoint registers must implement all 64 address bits and all 56 mask bits 
on all processors.

4.3.1 Unimplemented Physical Address Bits

As shown in Figure 4-18, a 64-bit physical address consists of three fields: physical 
memory attribute (PMA), unimplemented and implemented bits.

All processor models implement at least 32 physical address bits, bits 0 to 31, plus the 
physical memory attribute bit. Additional implemented physical bits must be contiguous 
starting at bit 32. IMPL_PA_MSB is the implementation-specific position of the most 

Figure 4-18. Physical Address Bit Fields
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significant implemented physical address bit. In a processor that implements all 
physical address bits, IMPL_PA_MSB is 62. Please see the processor-specific 
documentation for further information on the number of physical address bits 
implemented on the Itanium processor.

If unimplemented physical address bits are set by software, an Unimplemented Data 
Address fault is raised during the TLB insert instructions (itc, itr). Inserts performed 
by the VHPT walker, as noted in “VHPT Hashing” on page 2:65, abort the VHPT search if 
unimplemented or reserved fields are used. For translations marked as Not-Present 
(TLB.p is 0), the processor does not check the validity of PPN and some reserved bits as 
noted in Figure 4-6.

When a processor model does not implement all physical address bits, the missing bits 
are defined to be zero. Physical addresses in which bits 
PA{62:min(IMPL_PA_MSB+1,62)} are not zero are considered “unimplemented” 
physical addresses on that processor model. Physical addresses are checked for 
correctness on use by ensuring that PA{62:min(IMPL_PA_MSB+1,62)} bits are zero.

4.3.2 Unimplemented Virtual Address Bits

As shown in Figure 4-19, a 64-bit virtual address consists of three fields: virtual region 
number (VRN), unimplemented and implemented bits.

All processor models provide three VRN bits in VA{63:61}. IMPL_VA_MSB is the 
implementation-specific bit position of the most significant implemented virtual address 
bit. In addition to the three VRN bits, all processor models implement at least 54 virtual 
address bits; i.e., the smallest IMPL_VA_MSB is 53. In a processor that implements all 
64 virtual address bits IMPL_VA_MSB is 60. Please see the processor-specific 
documentation for further information on the number of virtual address bits 
implemented on the Itanium processor.

If the PSR.vm bit is implemented, and if PSR.vm is 1, then virtual addresses are treated 
as though one additional virtual address bit were unimplemented.  If the PSR.vm bit is 
implemented, at least 55 virtual address bits must be implemented.

When a processor model does not implement all virtual address bits, the missing bits 
are defined to be a sign-extension of VA{IMPL_VA_MSB}. Virtual addresses in which 
bits VA{60:min(IMPL_VA_MSB+1,60)} do not match VA{IMPL_VA_MSB} are 
considered “unimplemented” virtual addresses on that processor model. Virtual 
addresses are checked for correctness on use by ensuring that 
VA{60:min(IMPL_VA_MSB+1,60)} bits are identical to VA{IMPL_VA_MSB}. 

Figure 4-19. Virtual Address Bit Fields
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4.3.3 Instruction Behavior with Unimplemented Addresses

The use of an unimplemented address affects instruction execution as described in the 
bullet list below. If instruction address translation is enabled, an “unimplemented 
address” refers to an unimplemented virtual address. If instruction address translation 
is disabled, an “unimplemented address” refers to an unimplemented physical address.

• Non-speculative memory references (non-speculative loads, stores, and 
semaphores), the following non-access references: fc, fc.i, tpa, lfetch.fault, 
and probe.fault, and mandatory RSE operations to unimplemented addresses 
result in an Unimplemented Data Address fault.

• Virtual addresses used by instruction and data TLB purge/insert operations are 
checked, and if the base address (register r3 of the purge, IFA for inserts) targets 
an unimplemented virtual address, a Unimplemented Data Address fault is raised. 
The page size of the insert or purge is ignored.

• Speculative loads from unimplemented addresses always return a NaT bit in the 
target register.

• A regular_form probe instruction to an unimplemented address returns zero in the 
target register.

• A tak instruction to an unimplemented address returns one in the target register.

• A non-faulting lfetch to an unimplemented address is silently ignored.

• Eager RSE operations to unimplemented addresses do not fault.

• Execution of a taken branch, taken chk, or an rfi to an unimplemented address, or 
execution of a non-branching slot 2 instruction in a bundle at the upper edge of the 
implemented address space (where the next sequential bundle address would be an 
unimplemented address) results either in an Unimplemented Instruction Address 
trap on the branch, chk, rfi or non-branching slot 2 instruction, or in an 
Unimplemented Instruction Address fault on the fetch of the unimplemented 
address.

• When ptc.g or ptc.ga operations place a virtual address on the bus, the virtual 
address is sign-extended to a full 64-bit format. If an incoming ptc.g or ptc.ga 
presents a virtual address base that targets an unimplemented virtual address, the 
upper (unimplemented) virtual address bits are dropped, and the purge is 
performed with the truncated address.

• The behavior of executing vmsw.1 in a bundle whose address will become 
unimplemented after PSR.vm is set to 1 is undefined.

4.4 Memory Attributes

When virtual addressing is enabled, memory attributes defining the speculative, 
cacheability and write-policies of the virtually mapped physical page are defined by the 
TLB. When physical addressing is enabled, memory attributes are supplied as described 
in “Physical Addressing Memory Attributes” on page 2:76.

4.4.1 Virtual Addressing Memory Attributes

For virtual memory references, the memory attribute field of each virtual translation 
describes physical memory properties as shown in Table 4-11.
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The attribute UCE is identical to UC except when executing an fetchadd instruction. 
UCE enables the exporting of the fetchadd instruction outside the processor. Support 
for UCE is model-specific; see “Effects of Memory Attributes on Memory Reference 
Instructions” on page 2:86 for details.

Insert TLB instructions (itc, itr) that attempt to insert reserved memory attributes 
(Table 4-11) into the TLB raise Reserved Register/Field faults. External system 
operation is undefined if software inserts a memory attribute supported by the 
processor but not supported by the external system.

If software modifies the memory attributes for a page, it must follow the attribute 
transition requirements in Section 4.4.11, “Memory Attribute Transition” on page 2:88.

It is recommended that processor models report a Machine Check abort if the following 
memory attribute aliasing is detected: 

• Cache hit on an uncacheable page, other than as the target of a local or remote 
flush cache (fc, fc.i) instruction (see “Effects of Memory Attributes on Memory 
Reference Instructions” on page 2:86). 

4.4.2 Physical Addressing Memory Attributes

The selection of memory attributes for physical addressing is selected by bit 63 of the 
address contained in the address base register as shown in Figure 4-20 and Table 4-12.

Table 4-11. Virtual Addressing Memory Attribute Encodings

Attribute Mnemonic ma Cacheability Write Policy Speculation
Coherenta with 

Respect to

a. The Coherency column in this table refers to multiprocessor coherence on normal, side-effect free memory. 
The data dependency rules defined in “Memory Access Ordering” on page 1:73 ensure uni-processor 
coherence for the memory attributes listed in each row.

Write Back WB 000 Cacheable Write back
Non-sequential &

speculative

WB, WBL

Write
Coalescing

WC 110

Uncacheable

Coalescing Not MP coherentb

b. WC is not MP coherent w.r.t. any memory attribute, but is uni-processor coherent w.r.t. itself.

Uncacheable UC 100

Non-coalescing
Sequential &

non-speculative
UC, UCEUncacheable

Exported
UCE 101

Reservedc

c. This memory attribute is reserved for Software use.

001

Reserved
010
011

NaTPage NaTPage 111 Cacheable N/A Speculative N/A

Figure 4-20. Physical Addressing Memory
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See “Speculation Attributes” on page 2:79 for a description of physical addressing 
limited speculation. Bit{63} is discarded when forming the physical address, effectively 
creating a write-back name space and an uncached name space as shown in 
Figure 4-21.

Software must use the correct name space when using physical addressing; otherwise, 
I/O devices with side-effects may be accessed speculatively. Physical addressing 
accesses are ordered only if ordered loads or ordered stores are used. Otherwise, 
physical addressing memory references are unordered.

4.4.3 Cacheability and Coherency Attribute

A page can be either cacheable or uncacheable. If a page is marked cacheable, the 
processor is permitted to allocate a local copy of the corresponding physical memory in 
all levels of the processor memory/cache hierarchy. Allocation may be modified by the 
cache control hints of memory reference instructions.

A page which is cached is coherent with memory; i.e., the processor and memory 
system ensure that there is a consistent view of memory from each processor. 
Processors support multiprocessor cache coherence based on physical addresses 
between all processors in the coherence domain (tightly coupled multiprocessors). 
Coherency is supported in the presence of virtual aliases, although software is 
recommended to use aliases which are an integer multiple of 1 MB apart to avoid any 
possible performance degradation.

Processors are not required to maintain coherency between processor local instruction 
and data caches for Itanium architecture-based code; i.e., locally initiated Itanium 
stores may not be observed by the local instruction cache. Processors are required to 

Table 4-12. Physical Addressing Memory Attribute Encodings

Bit{63} Mnemonic Cacheability Write Policy Speculation
Coherenta with

respect to

a. Coherency here refers to multiprocessor coherence on normal, side-effect free memory.

0 WBL Cacheable Write Back Non-sequential &
limited speculation

WBL, WB

1 UC Uncached Non-coalescing Sequential & 
non-speculative

UC, UCE

Figure 4-21. Addressing Memory Attributes
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maintain coherency between processor local instruction and data caches for IA-32 code. 
Instruction caches are also not required to be coherent with multiprocessor Itanium 
instruction set originated memory references. Instruction caches are required to be 
coherent with multiprocessor IA-32 instruction set originated memory references. The 
processor must ensure that transactions from other I/O agents (such as DMA) are 
physically coherent with the instruction and data cache.

For non-cacheable references the processor provides no coherency mechanisms; the 
memory system must ensure that a consistent view of memory is seen by each 
processor. See “Coalescing Attribute” on page 2:78 for a description of coherency for 
the coalescing memory attribute.

4.4.4 Cache Write Policy Attribute

Write-back cacheable pages need only modify the processor’s copy of the physical 
memory location; written data need only be passed to the memory system when the 
processor’s copy is displaced, or a Flush Cache (fc) instruction is issued to flush a 
virtual address. A cache line can only be written back to memory if a store, semaphore 
(successful or not), the ld.bias, a mandatory RSE store, or a .excl hinted lfetch 
instruction targeting that line has executed without a fault. These events enable 
write-backs. A synchronized fc instruction disables subsequent write-backs (after the 
line has been flushed).

As described in “Invalidating ALAT Entries” on page 1:67, platform visible removal of 
cache lines from a processor’s caches (e.g., cache line write-backs or platform visible 
replacements) cause the corresponding ALAT entries to be invalidated. 

4.4.5 Coalescing Attribute

For uncacheable pages, the coalescing attribute informs the processor that multiple 
stores to this page may be collected in a coalescing buffer and issued later as a single 
larger merged transaction. The processor may accumulate stores for an indefinite 
period of time. Multiple pending loads may also be coalesced into a single larger 
transaction which is placed in a coalescing buffer. Coalescing is a performance hint for 
the processor; a processor may or may not implement coalescing. 

A processor with multiple coalescing buffers must provide a flush policy that flushes 
buffers at roughly equal rate even if some buffers are only partially full. The processor 
may make coalesced buffer flushes visible in any order. Furthermore, individual bytes 
within a single coalesced buffer may be flushed and made visible in any order. 

Stores (including IA-32), which are coalesced, are performed out of order; coalescing 
may occur in both the space and time domains. For example, a write to bytes 4 and 5 
and a write to bytes 6 and 7 may be coalesced into a single write of bytes 4, 5, 6, and 
7. In addition, a write of bytes 5 and 6 may be combined with a write of bytes 6 and 7 
into a single write of bytes 5, 6, and 7.

Any release operation (regardless of whether it references a page with a coalescing 
memory attribute), or any fence type instruction, forces write-coalesced data to be 
flushed and made visible prior to the instruction itself becoming visible. (See Table 4-15 
on page 2:83 for a list of release and fence instructions.) Any IA-32 serializing 
instruction, or access to an uncached memory type, forces write-coalesced data to 
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become flushed and made visible prior to itself becoming visible. Even though IA-32 
stores and loads are ordered, the write-coalesced data is not flushed unless the IA-32 
stores or loads are to uncached memory types. 

The Flush Cache (fc, fc.i) instruction flushes all write-coalesced data whose address 
is within at least 32 bytes of the 32-byte aligned address specified by the Flush Cache 
(fc, fc.i) instruction, forcing the data to become visible. The Flush Cache (fc, fc.i) 
instruction may also flush additional write-coalesced data. The Flush Write buffers (fwb) 
instruction is a “hint” to the processor to expedite flushing (visibility) of any pending 
stores held in the coalescing buffer(s), without regard to address.

No indication is given when the flushing of the stores is completed. An fwb instruction 
does not ensure ordering of coalesced stores, since later stores may be flushed before 
prior stores. To ensure prior coalesced stores are made visible before later stores, 
software must issue a release operation between stores.

The processor may at any time flush coalesced stores in any order before explicitly 
requested to do so by software. 

Coalesced pages are not ensured to be coherent with other processors’ coalescing 
buffers or caches, or with the local processor’s caches. Loads to coalesced memory 
pages by a processor see the results of all prior stores by the same processor to the 
same coalesced memory page. Memory references made by the coalescing buffer (e.g., 
buffer flushes) have an unordered non-sequential memory ordering attribute. See 
“Sequentiality Attribute and Ordering” on page 2:82.

Data that has been read or prefetched into a coalescing buffer prior to execution of an 
Itanium acquire or fence type instruction is invalidated by the acquire or fence 
instruction. (See Table 4-15 for a list of acquire and fence instructions.) 

4.4.6 Speculation Attributes

For present pages (TLB.p=1) which are marked with a speculative or a NaTPage 
memory attribute, the processor may prefetch instructions (including IA-32), perform 
address generation and perform load accesses (including IA-32) without resolving prior 
control dependencies, including predicates, branches and interruptions. A page should 
only be marked speculative if accesses to that page have no side-effects. For example, 
many memory-mapped I/O devices have side-effects associated with reads and should 
be marked non-speculative. If a page is marked speculative, a processor can read any 
location in the page at any time independent of a programmer’s intentions or control 
flow changes. As a result, software is required, at all times, to maintain valid page table 
attributes for the ppn, ps and ma fields of all present translations whose memory 
attribute is speculative or NaTPage. (For example, software should not insert into the 
TLB, nor create in the VHPT, mappings whose memory attribute is WB, WC or NaTPage 
unless the entire corresponding physical address range is populated. Placing such 
mappings in the VHPT or inserting such mappings in the TLB could result in machine 
check aborts.) High-performance operation is only attainable on speculative pages. The 
speculative attribute is a hint; a processor may behave non-speculatively.
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Prefetches are enabled if a speculative translation exists. Prefetches are asynchronous 
data and instruction memory accesses that appear logically to initiate and finish 
between some pair of instructions. This access may not be visible to subsequent flush 
cache (fc, fc.i) and/or TLB purge instructions. This behavior is 
implementation-dependent. 

The processor will not initiate memory references (16-byte instruction bundle fetches, 
IA-32 instruction fetches, RSE fills and spills, VHPT references, and data memory 
accesses) to non-speculative pages until all previous control dependencies (predicates, 
branches, and exceptions) are resolved; i.e., the memory reference is required by an 
in-order execution of the program. Additionally, for references to non-speculative 
pages, the processor:

• May not generate any memory access for a control or data speculative data 
reference.

• Will generate exactly one memory access for each aligned, non-speculative data 
reference. (Misaligned data references may cause multiple memory accesses, 
although these accesses are guaranteed to be non-overlapping – each byte will be 
accessed exactly once.)

• May generate multiple 16-byte memory accesses (to the same address) for each 
16-byte instruction bundle fetch reference.

To ensure virtual and physical accesses to non-speculative pages are performed in 
program order and only once per program order occurrence, the rules in Table 4-13 and 
Table 4-14 are defined. Software should also ensure that RSE spill/fill transactions are 
not performed to non-speculative memory that may contain I/O devices; otherwise, 
system behavior is undefined.

Table 4-13. Permitted Speculation

Memory
Attribute

Load
(ld)a

a. Includes the faulting form of line prefetch (lfetch.fault).

Speculative
Load
(ld.s)b

b. Includes the non-faulting form of line prefetch (lfetch), which does not cause a cache fill if the memory 
attribute is non-speculative or limited speculation.

Advanced
Load
(ld.a)

Speculative
Advanced

Load (ld.sa)

Hardware-generated
Speculative
Referencesc

c. Hardware-generated speculative references include non-demand instruction prefetches (including IA-32), 
hardware-generated data prefetch references, and eager RSE memory references.

Speculative Yes Yes Yes Yes Yes

Non-speculative Yes Always Fail Always Fail Always Fail Prohibited

Limited Speculation Yes Always Fail Yes Always Fail Limitedd

d. The processor may only issue hardware-generated speculative references to a 4K-byte physical page if it is a 
verified page.

Table 4-14. Register Return Values on Non-faulting Advanced/Speculative 
Loads

Memory
Attribute

Speculative Load
(ld.s)

Advanced Load
(ld.a)

Speculative Advanced Load
(ld.sa)

Success Failure Success Failure Success Failure

Speculative Value Nata Value N/a Value NaTa

Non-speculative N/A Natb N/A Zeroc N/A NaTb

Limited Speculation N/A Natb Value N/a N/a NaTb
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4.4.6.1 Limited Speculation and the WBL Physical Addressing Attribute

Processors are allowed to reference limited speculation pages (WBL pages) 
speculatively, in order to increase performance, but this speculation is limited to 
prevent speculative references to 4Kbyte physical pages for which there is no actual 
memory (which would cause spurious machine checks).

Processors must not make hardware-generated speculative references to a given WBL 
4Kbyte page until a verified reference has been made.  Processors may optionally 
implement storage to hold the addresses of WBL 4Kbyte pages for which verified 
references have been made, and may make subsequent hardware-generated 
speculative references to these pages.  Such pages are termed verified pages.

A verified reference is an instruction or data reference made to the page by an in-order 
execution of the program; that is, a reference which would have been made had the 
instructions from the program been fetched and executed one at a time. A 
hardware-generated speculative reference does not constitute a verified reference. 
Hardware-generated speculative references include:

• Instruction fetches when the processor has not yet determined whether prior 
branches were predicted correctly

• Instruction fetches when the processor has not yet determined whether prior 
instructions will raise faults or traps

• Data references by instructions when the processor has not yet determined 
whether prior branches were predicted correctly

• Data references by instructions when the processor has not yet determined 
whether prior instructions will raise faults or traps

• Hardware-generated instruction prefetch references

• Hardware-generated data prefetch references

• Eager RSE data references

For an instruction fetch to constitute a verified reference, it must only be determined 
that an in-order execution of the program requires that the IP point to this address, 
independent of whether the instruction at this address will subsequently take a fault or 
interrupt.

For a data reference to constitute a verified reference, the instruction must meet one of 
the following requirements:

• It executes without any fault or interrupt

• It takes an Unaligned Data Reference fault

• It takes a Data Debug fault

a. Speculative or speculative advanced loads that cause deferred exceptions result in failed speculation. The 
processor aborts the reference. If the target of the load is a GR, the processor sets the register’s NaT bit to 
one. If the target of the load is an FR, the processor sets the target FR to NaTVal. The processor performs all 
other side-effects (such as post-increment).

b. Speculative or speculative advanced loads to limited or non-speculative memory pages result in failed 
speculation. The processor aborts the reference. If the target of the load is a GR, the processor sets the 
register’s NaT bit to 1. If the target of the load is an FR, the processor sets the target FR to NaTVal. The 
processor performs all other side-effects (such as post-increment).

c. Advanced loads to non-speculative memory pages always fail. The processor aborts the reference, sets the 
target register to zero, and performs all other side-effects (such as post-increment).
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• It takes an External interrupt, but if it had not taken an External interrupt, it would 
have met one of the above qualifications (execute without fault, take an Unaligned 
Data Reference fault, or take a Data Debug fault)

Data-speculative loads are treated the same as normal loads, and if an in-order 
execution of the program requires the execution of a data speculative load, it 
constitutes a verified reference. Control-speculative loads to limited-speculation pages 
always defer and thus never constitute verified references.

It is not necessary for a processor to determine whether a reference will complete 
without generating a machine check for it to be a verified reference. If software actually 
references a physical address which will cause a machine check, hardware may 
generate multiple speculative references to the same page, potentially causing multiple 
machine checks.

Processors may access verified pages normally, as they would WB pages, including the 
use of caching, pipelining and hardware-generate speculative references to improve 
performance.

Calling the PAL_PREFETCH_VISIBILITY procedure forces the processor to clear the 
storage holding the addresses of verified pages.

4.4.7 Sequentiality Attribute and Ordering

Memory ordering is defined in Section 4.4.7, “Memory Access Ordering” on page 1:73. 
This section defines additional ordering rules for non-cacheable memory, cache 
synchronization (sync.i) and global TLB purge operations (ptc.g, ptc.ga).

As described in Section 4.4.7, “Memory Access Ordering” on page 1:73, 
read-after-write, write-after-write, and write-after-read dependencies to the same 
memory location (memory dependency) are performed in program order by the 
processor. Otherwise, all other memory references may be performed in any order 
unless the reference is specifically marked as ordered. No ordering exists between 
instruction accesses and data accesses or between any two instruction accesses. IA-32 
memory references follow a stronger processor consistency memory model. See “IA-32 
Memory Ordering” on page 2:265. for IA-32 memory ordering details. Explicit ordering 
takes the form of a set of Itanium instructions: ordered load and check load (ld.acq, 
ld.c.clr.acq), ordered store (st.rel), semaphores (cmpxchg, xchg, fetchadd), 
memory fence (mf), synchronization (sync.i) and global TLB purge (ptc.g, ptc.ga). 
The sync.i instruction is used to maintain an ordering relationship between instruction 
and data caches on local and remote processors. The global TLB purge instructions 
maintain multiprocessor TLB coherence.

For VHPT walks, visibility is defined by the memory read(s) which retrieves translation 
information, and the associated insertion of the translation into the TLB. VHPT walks 
are performed asynchronously with respect to program execution, and each walker 
VHPT read (which appears as though it were performed atomically) is made visible at 
some single point in the program order. Ordering constraints from Table 4-15 do not 
prevent VHPT walks from becoming visible.
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Table 4-15 defines a set of “Orderable Instructions” that follow one of four ordering 
semantics: unordered, release, acquire or fence. The table defines the ordering 
semantics and the instructions of each category. Only these Itanium instructions can be 
used to establish multiprocessor ordering relations.

In the following discussion, the terms previous and subsequent are used to refer to 
the program specified order. The term visible is used to refer to all architecturally 
visible effects of performing an instruction. For memory accesses and semaphores this 
involves at least reading or writing memory. For mf.a, visibility is defined by platform 
acceptance of previous memory accesses. Visibility of sync.i is defined by visibility of 
previous flush cache (fc, fc.i) operations. For ALAT lookups (ld.c, chk.a), visibility is 
determination of ALAT hit or miss. For global TLB purge operations, visibility is defined 
by removal of an address translation from the TLBs on all processors in the TLB 
coherence domain. Global TLB purge instructions (ptc.g and ptc.ga) follow release 
semantics on the local processor. They are also broadcast to all other processors in the 
TLB coherence domain. On each such remote processor, a point is chosen in its 
program-order execution and a local TLB purge operation is inserted at that point; this 
local TLB purge operation follows release semantics, except with respect to global purge 
instructions being executed by that remote processor. For local TLB purge operations, 
visibility is defined by removal of an address translation on the local processor. Local 
TLB purge instructions (ptc.l, ptc.e) ensure that all prior stores are made locally 
visible before the actual purge operation is performed.

Itanium memory accesses to sequential pages occur in program order with respect to 
all other sequential pages in the same peripheral domain, but are not necessarily 
ordered with respect to non-sequential page accesses. A peripheral domain is a 
platform-specific collection of uncacheable addresses. An I/O device is normally 
contained in a peripheral domain and all sequential accesses from one processor to that 
device will be ordered with respect to each other. Sequentiality ensures that 
uncacheable, non-coalescing memory references from one processor to a peripheral 
domain reach that domain in program order. Sequentiality does not imply visibility.

Table 4-15. Ordering Semantics and Instructions

Ordering
Semantics

Description Orderable Intel® Itanium® Instructions

Unordered

Unordered instructions may become visible in 
any order.

ld, ld.s, ld.a, ld.sa, ld.fill, 
ldf, ldf.s, ldf.sa, ldf.fill, 
ldfp, ldfp.s, ldfp.sa,
st, st.spill,
stf, stf.spill,
mf.a, sync.i,
ld.c, chk.a

Release
Release instructions guarantee that all 
previous orderable instructions are made 
visible prior to being made visible themselves.

cmp8xchg16.rel, cmpxchg.rel, 
fetchadd.rel, st.rel, ptc.g, 
ptc.ga

Acquire
Acquire instructions guarantee that they are 
made visible prior to all subsequent orderable 
instructions.

cmp8xchg16.acq, cmpxchg.acq, 
fetchadd.acq, xchg, ld.acq, 
ld.c.clr.acq

Fence

Fence instructions combine the release and 
acquire semantics into a bi-directional fence; 
i.e., they guarantee that all previous orderable 
instructions are made visible prior to any 
subsequent orderable instruction being made 
visible.

mf
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Inter-Processor Interrupt Messages (8-byte stores to a Processor Interrupt Block 
address, through a UC memory attribute) are exceptions to the sequential semantics. 
IPI's are not ordered with respect to other IPI's directed at the same processor. Further, 
fence operations do not enforce ordering between two IPI's. See Section 5.8.4.2, 
“Interrupt and IPI Ordering” on page 2:130.

Table 4-16 defines the ordering between unordered, release, acquire and fence type 
operations to sequential and non-sequential pages. Table 4-16 defines the minimal 
ordering requirements; an implementation may enforce more restrictive ordering than 
required by the architecture. The actual mechanism for enforcing memory access 
ordering is implementation dependent.

Table 4-16 establishes an order between operations on a particular processor. For 
operations to cacheable write-back memory the order established by these rules is 
observed by all observers in the coherence domain.

For example, when this sequence is executed on a processor:

st [a]
st.rel [b]

and a second processor executes this sequence:

ld.acq [b]
ld [a]

if the second processor observes the store to [b], it will also observe the store to [a].

Unless an ordering constraint from Table 4-16 prevents a memory read1 from becoming 
visible, the read may be satisfied with values found in a store buffer (or any logically 
equivalent structure). These values need not be globally visible even when the 
operation that created the value was a st.rel. This local bypassing behavior may make 

Table 4-16. Ordering Semantics

Second Operation

First Operation Fence 
Non-sequential Sequentiala

a. Except for IPI.

Acquire Release Unordered Acquire Release Unordered

Fence O O O O O O O

Non-sequential Acquire O O O O O O O

Release O – O – – O –

Unordered O – O – – O –

Sequentiala Acquire O O O O OS OS OS

Release O – O – S OS S

Unordered O – Ob

b. “O” indicates that the first and second operation become visible in program order.

–c

c. A dash indicates no ordering is implied.

Sd

d. “S” indicates that the first and the second operation reach a peripheral domain in program order.

OSe

e. “OS” implies that both “O” and “S” ordering relations apply.

S

1. This includes all types of loads (ld and ld.acq), and RSE memory reads. Note, however, that the
read operation of semaphores cannot be satisfied with values found in a store buffer.
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accesses of different sizes but with overlapping memory references appear to complete 
non-atomically. To ensure that a memory write is globally observed prior to a memory 
read, software must place an explicit fence operation between the two operations.

Aligned st.rel and semaphore operations1 from multiple processors to cacheable 
write-back memory become visible to all observers in a single total order (i.e., in a 
particular interleaving; if it becomes visible to any observer, then it is visible to all 
observers), except that for st.rel each processor may observe (via ld or ld.acq) its 
own update prior to it being observed globally.

The Itanium architecture ensures this single total order only for aligned st.rel and 
semaphore operations to cacheable write-back memory. Other memory operations2 
from multiple processors are not required to become visible in any particular order, 
unless they are constrained w.r.t. each other by the ordering rules defined in 
Table 4-16.

Ordering of loads is further constrained by data dependency. That is, if one load reads a 
value written by an earlier load by the same processor (either directly or transitively, 
through either registers or memory), then the two loads become visible in program 
order.

For example, when this sequence is executed on a processor:

st [a] = data
st.rel [b] = a

and a second processor executes this sequence:

ld x = [b]
ld y = [x]

if the second processor observes the store to [b], it will also observe the store to [a].

Also for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new’

and a second processor executes this sequence:

ld x = [b]
cmp.eq p1 = x, ‘new’

(p1) ld y = [a]

if the second processor observes the store to [b], it will also observe the store to [a].

And for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new’

and a second processor executes this sequence:

1. Both acquire and release semaphore forms
2. e.g. unordered stores, loads, ld.acq, or memory operations to pages with attributes other than

write-back cacheable.
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ld x = [b]
cmp.eq p1 = x, ‘new’

(p1) br target
...

target:
ld y = [a]

if the second processor observes the store to [b], it will also observe the store to [a].

The flush cache (fc, fc.i) instruction follows data dependency ordering. fc and fc.i 
are ordered only with respect to previous and subsequent load, store, or semaphore 
instructions to the same line, regardless of the specified memory attribute. Subsequent 
memory operations to the same line need not wait for prior fc or fc.i completion 
before being globally visible. fc and fc.i are not ordered with respect to memory 
operations to different lines. mf does not ensure visibility of fc and fc.i operations. 
Instead, the sync.i instruction synchronizes fc and fc.i instructions, and the sync.i 
is made visible using an mf instruction.

4.4.8 Not a Thing Attribute (NaTPage)

A NaTPage attribute prevents non-speculative references to a page, and ensures that 
speculative references to the page always defer the Data NaT Page Consumption fault. 
However, as described in “Speculation Attributes” on page 2:79, the processor may 
issue memory references to a NaTPage. As a result, all NaTPages must be backed by a 
valid physical page.

Speculative or speculative advanced loads to pages marked as a NaTPage cause the 
deferred exception indicator (NaT or NaTVal) to be written to the load target register, 
and the memory reference is aborted. However, all other effects of the load instruction 
such as post-increment are performed. Instruction fetches, loads, stores and 
semaphores (including IA-32), but except for Itanium speculative loads, pages marked 
as NaTPage raise a NaT Page Consumption fault.

A speculative reference to a page marked as NaTPage may still take lower priority 
faults, if not explicitly deferred in the DCR. See “Deferral of Speculative Load Faults” on 
page 2:105.

4.4.9 Effects of Memory Attributes on Memory Reference 
Instructions

Memory attributes affect the following Itanium instructions.

• ldfe, stfe: Hardware support for 10-byte memory accesses to a page that is 
neither a cacheable page with write-back write policy nor a NaTPage is optional. On 
processor implementations that do not support such accesses, an Unsupported 
Data Reference Fault is raised when an unsupported reference is attempted.

For extended floating-point loads the fault is delivered only on the normal, 
advanced, and check load flavors (ldfe, ldfe.a, ldfe.c.nc, ldfe.c.clr). Control 
speculative flavors of the ldfe instruction that target pages that are not cacheable 
with write-back policy always defer the fault. Refer to “Deferral of Speculative Load 
Faults” on page 2:105 for details. 

• cmpxchg and xchg: These instructions are only supported to cacheable pages with 
write-back write policy. cmpxchg and xchg accesses to NaTPages causes a Data NaT 
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Page Consumption fault. cmpxchg and xchg accesses to pages with other memory 
attributes cause an Unsupported Data Reference fault. 

• fetchadd: The fetchadd instruction can be executed successfully only if the access 
is to a cacheable page with write-back write policy or to a UCE page. fetchadd 
accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages 
with other memory attributes cause an Unsupported Data Reference fault. When 
accessing a cacheable page with write-back write policy, atomic fetch and add 
operation is ensured by the processor cache-coherence protocol. For highly 
contended semaphores, the cache line transactions required to guarantee atomicity 
can limit performance. In such cases, a centralized “fetch and add” semaphore 
mechanism may improve performance. If supported by the processor and the 
platform, the UCE attribute allows the processor to “export” the fetchadd operation 
to the platform as an atomic “fetch and add.” Effects of the exported fetchadd are 
platform dependent. If exporting of fetchadd instructions is not supported by the 
processor, a fetchadd instruction to a UCE page takes an Unsupported Data 
Reference fault. 

• Flush Cache Instructions – fc instructions must always be “broadcast” to other 
processors, independent of the memory attribute in the local processor. It is legal to 
use an uncacheable memory attribute for any valid address when used as a flush 
cache (fc) instruction target. This behavior is required to enable transitions from 
one memory attribute to another and in case different memory attributes are 
associated with the address in another processor.

• Prefetch instructions – lfetch and any implicit prefetches to pages that are not 
cacheable are suppressed. No transaction is initiated. This allows programs to issue 
prefetch instructions even if the program is not sure the memory is cacheable.

4.4.10 Effects of Memory Attributes on Advanced/Check Loads

The ALAT behavior of advanced and check loads is dependent on the memory attribute 
of the page referenced by the load. These behaviors are required; advanced and check 
load completers are not hints.

All speculative pages have identical behavior with respect to the ALAT. Advanced loads 
to speculative pages always allocate an ALAT entry for the register, size, and address 
tuple specified by the advanced load. Speculative advanced loads allocate an ALAT 
entry if the speculative load is successful (i.e., no deferred exception); if the speculative 
advanced load results in a deferred exception, any matching ALAT entry is removed and 
no new ALAT entry is allocated. Check loads with clear completers (ld.c.clr, 
ld.c.clr.acq, ldf.c.clr) remove a matching ALAT entry on ALAT hit and do not 
change the state of the ALAT on ALAT miss. Check loads with no-clear completers 
(ld.c.nc, ldf.c.nc) allocate an ALAT entry on ALAT miss. On ALAT hit, the ALAT is 
unchanged if an exact ALAT match is found (register, address, and size); a new ALAT 
entry with the register, address, and size specified by the no-clear check load may be 
allocated if a partial ALAT match is found (match on register).

Advanced loads (speculative or non-speculative variants) to non-speculative pages 
always remove any matching ALAT entry. Check loads to non-speculative pages that 
miss the ALAT never allocate an ALAT entry, even in the case of a no-clear check load. 
ALAT hits on check loads to non-speculative pages (which can occur if a previous 
advanced load referenced that page via a speculative memory attribute) result in 
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undefined behavior; when changing an existing page from speculative to 
non-speculative (or vice-versa), software should ensure that any ALAT entries 
corresponding to that page are invalidated.

Limited speculation pages behave like non-speculative pages with respect to 
speculative advanced loads, and behave like speculative pages with respect to all other 
advanced and/or check loads.

Table 4-17 describes the ALAT behavior of advanced and check loads for the different 
speculation memory attributes.

4.4.11 Memory Attribute Transition

If software modifies the memory attributes for a page, it must perform explicit actions 
to ensure that subsequent reads and writes using the new attribute will be coherent 
with prior reads and writes that were performed with the old attribute. Processors may 
have separate buffers for coalescing, uncacheable and cacheable references, and these 
buffers need not be coherent with each other.

4.4.11.1 Virtual Addressing Memory Attribute Transition

To change a virtually-addressed page from one attribute to another, software must 
perform the following sequence. (The address of the page whose attribute is being 
modified is referred to as “X”).

Note: This sequence is ONLY required if the new mapping and the old mapping do not 
have the same memory attribute.

On the processor initiating the transition, perform the following steps 1-3:

1. PTE[X].p = 0 // Mark page as not present

This prevents any processors from reading the old mapping (with the old 
attribute) from the VHPT after this point.

2. ptc.ga [X] ;; // Global shootdown and ALAT invalidate
               // for the entire page

This removes the mapping from all processor TC's in the coherence domain, and 
it forces all processors to flush any pending WC or UC stores from write buffers.

Table 4-17. ALAT Behavior on Non-faulting Advanced/Check Loads

Memory
Attribute

ld.sa
Response ld.a

Response

ld.c.clr,
ld.c.clr.acq,

ldf.c.clr
Response

ld.c.nc,
ldf.c.nc

Response

No NaT NaT
ALAT

Hit
ALAT
Miss

ALAT
Hit

ALAT
Miss

speculative alloc remove alloc remove nop unchangeda

a. May allocate a new ALAT entry if size and/or address are different than the corresponding ld.a or ld.sa whose 
ALAT entry was matched.

alloc

non-speculative N/A remove remove undefined nop undefined must not
alloc

limited speculation N/A remove alloc remove nop unchangeda alloc
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3. mf ;;     // Ensure visibility of ptc.ga to local data stream
srlz.i ;; // Ensure visibility of ptc.ga to local instruction stream

After step 3, no processor in the coherence domain will initiate new memory 
references or prefetches to the old translation. Note, however, that memory 
references or prefetches initiated to the old translation prior to step 2 may still be 
in progress after step 3. These outstanding memory references and prefetches 
may return instructions or data which may be placed in the processor cache 
hierarchy; this behavior is implementation-specific.

If the new memory attribute is an uncacheable attribute, and if the old attribute 
was cacheable (or if it is not known at this point in the code sequence what the 
old attribute was), then software must drain any current prefetches and ensure 
that any cached data from the page is removed from caches. To do this, software 
must perform steps 4-10. If the new memory attribute is cacheable, then 
software may skip steps 4-10, and go straight to step 11.

4. Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to zero 
to indicate that the transition is for virtual memory attributes. The return 
argument from this procedure informs the caller if this procedure call is needed 
on remote processors or not. If this procedure call is not needed on remote 
processors, then software may skip the IPI in step 5 and go straight to step 6 
below.

5. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on 
page 2:128 to reach all processors in the coherence domain, perform step 4 
above on all processors in the coherence domain, and wait for all 
PAL_PREFETCH_VISIBILITY calls to complete on all processors in the coherence 
domain before continuing.

After steps 4 and 5, no more new instruction or data prefetches will be made to 
page “X” by any processor in the coherence domain. However, processor caches 
in the coherence domain may still contain “stale” data or instructions from prior 
prefetch or memory references to page “X.”

6. Insert a temporary UC translation for page “X.”

7. fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for all of page “X” (page size = ps)
fc [X+ps-32] ;;

// Ensure cache flushes are also seen by processors' instruction 
fetch
sync.i ;;

After step 7, all flush cache instructions initiated in step 7 are visible to all 
processors in the coherence domain, i.e., no processor in the coherence domain 
will respond with a cache hit on a memory reference to an address belonging to 
page “X.”

8. Purge the temporary UC translation from the TLB
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9. Call PAL_MC_DRAIN

10. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on 
page 2:128 to reach all processors in the coherence domain, perform step 9 
above on all processors in the coherence domain, and wait for all PAL_MC_DRAIN 
calls to complete on all processors in the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to 
page [X] have been evicted from all caches in the coherence domain and forced 
onto the bus. Note that this operation does not ensure that the cache lines have 
been written back to memory.

11. Insert the new mapping with the new memory attribute

4.4.11.2 Physical Addressing Attribute Transition – Disabling 
Prefetch/Speculation and Removing Cacheability

When a verified reference is made to a physical address with the WBL attribute, the 4K 
page containing that address becomes speculatively accessible. This allows the 
processor that made the verified reference to subsequently make speculative 
references to this page. (See the description of limited speculation in Section 4.4.6.1, 
“Limited Speculation and the WBL Physical Addressing Attribute” on page 2:81.)

If the same physical memory is then to be accessed with the UC attribute, software 
must first cause all such 4K pages to no longer be verified pages and flush any cached 
copies from the cache. Otherwise, an uncacheable reference may hit in cache, causing 
a Machine Check abort.

On the processor initiating the transition, perform the following steps:

1. Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one 
to indicate that the transition is for physical memory attributes. This PAL call 
terminates the processor's rights to make speculative references to any limited 
speculation pages (i.e., it causes all WBL pages to no longer be verified pages – 
see the discussion on limited speculation in Section 4.4.6.1.)

The return argument from this procedure informs the caller if this procedure call 
is needed on remote processors or not. If this procedure call is not needed on 
remote processors, then software may skip the IPI in step 2 and go straight to 
step 3 below.

2. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on 
page 2:128 to reach all processors in the coherence domain, perform step 1 
above on all processors in the coherence domain, and wait for all 
PAL_PREFETCH_VISIBILITY calls to complete on all processors in the coherence 
domain before continuing.

On the processor initiating the disabling process, continue the sequence:

3. fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for all of page “X” (page size = ps)
fc [X+ps-32] ;;
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// Ensure cache flushes are also seen by processors' instruction 
fetch
sync.i ;;

After step 3, all flush cache instructions initiated in step 3 are visible to all 
processors in the coherence domain, i.e., no processor in the coherence domain 
will respond with a cache line hit on a memory reference to an address belonging 
to page “X.”

4. Call PAL_MC_DRAIN.

5. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on 
page 2:128 to reach all processors in the coherence domain, perform step 4 
above on all processors in the coherence domain, and wait for all PAL_MC_DRAIN 
calls to complete on all processors in the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to 
page [X] have been evicted from all caches in the coherence domain and forced 
onto the bus. Note that this operation does not ensure that the cache lines have 
been written back to memory.

This sequence ensures that speculation and prefetch are disabled for all WBL pages, 
that all outstanding prefetches have completed, and that the caches have been flushed. 
It may also be necessary to take additional platform-dependent steps to ensure that all 
cache write-back transactions have completed to memory before re-configuring 
physical memory.

4.4.11.3 Memory OLD Attribute Transition Sequence

In order to safely delete a memory range online (memory OLD), all speculative 
reference and prefetches to that range must be halted and all cache lines returned to 
the memory being deleted. If this is not done, an MCA could occur if data were to be 
delivered back to the memory controller after the memory had been removed. Software 
must perform the sequence shown below to ensure that no MCAs occur.

Before performing the memory OLD sequence shown below, all memory in the range 
being deleted belonging to firmware (PAL and SAL) must be evacuated, and control of 
the range given to the OS. If firmware cannot be evacuated from the range, then OLD 
cannot be done.

On the processor performing the memory OLD operation, perform the following:

1. Remove all mappings to all memory pages in this memory range from the page 
table. (PTE[X].p=0)

2. For each page which has a mapping in TLB, perform one of the following steps:

a. If there are any translations in TRs, perform ptr.d or ptr.i, depending on 
whether the translation is for code or data. If it is not known, do both. (This 
invalidates all TRs, and as a side effect, the mapping from all TCs on the 
processor.)

b. If there are no translations in TRs, perform a ptc.ga. (This removes mapping 
from all TC's and forces processors to flush any pending WC or UC stores 
from write buffers.)
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3. Execute:
mf ;;
srlz.i ;;

(The ensures visibility of ptr.d, ptr.i, or ptc.ga to both data and instruction 
stream, so that no new prefetches will be done to the old translations.)

4. Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one 
to indicate that the transition is for all memory attributes. This PAL call 
terminates the processor's rights to make speculative references to any limited 
speculation pages (i.e., it causes all WBL pages to no longer be verified pages – 
see the discussion on limited speculation in Section 4.4.6.1, “Limited Speculation 
and the WBL Physical Addressing Attribute” on page 2:81.). It also ensure all 
prefetches in flight have been completed. The return argument from this 
procedure informs the caller if this procedure call is needed on remote processors 
or not. If this procedure call is not needed on remote processors, and step 2.b 
was used above, then software may skip the IPI in step 5 and go straight to step 
6 below.

5. If step 2.a was performed, or if the PAL_PREFETCH_VISIBILITY return argument 
indicated the call must be made on other processors in the coherency domain, 
then use the IPI mechanism defined in Section 5.8.4.1, “Inter-processor 
Interrupt Messages” on page 2:128 to reach all processors in the coherency 
domain. If step 2a was performed, then steps 2 through 4 must be performed on 
all processors in the coherency domain. Otherwise, only step 4 must be 
performed. Wait for all PAL_PREFETCH_VISIBILITY calls to complete on all 
processors in the coherency domain before continuing. After step 5, no more new 
instruction or data prefetches will be made to page ''X'' by any processor in the 
coherency domain. However, processor caches in the coherency domain may still 
contain ''stale'' data or instructions from prior prefetch or memory references to 
page ''X.''

6. Perform one of the following steps:

a. Call PAL_CACHE_FLUSH with input parameters cache_type=3 and 
operation.inv=1, or

b. On the processor where the OLD was initiated, perform the sequence:

i. If the sequence is to be executed with PSR.dt=1, then insert a temporary 
translation for the memory range with the ''UC'' memory attribute.

ii. Execute the following instruction sequence:
fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for the memory range being OLDed
fc [X+ps-32] ;;
// Ensure cache flushes are also seen
// by processors' instruction fetch
sync.i ;;

iii. If the sequence had been run with PSR.dt=1, then remove the temporary 
translation inserted in step 6.b.i.

Note: If the memory range being OLDed is much larger than the caches being 
flushed, option 6.a. may be significantly faster.

7. Call PAL_MC_DRAIN.
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8. If PAL_CACHE_FLUSH is used to flush caches, it must also be called on all 
processors in the coherency domain. In any case, PAL_MC_DRAIN must be called 
on all processors. Using the IPI mechanism defined in Section 5.8.4.1, 
“Inter-processor Interrupt Messages” on page 2:128 to reach all processors in 
the coherence domain, perform step 6.a, if necessary, and step 7 above in that 
order on all processors in the coherence domain, and wait for all PAL_MC_DRAIN 
calls to complete on all processors in the coherence domain before continuing. 
This further guarantees that any cache lines containing addresses belonging to 
page [X] have been evicted from all caches in the coherence domain and forced 
onto the platform fabric. Note that this operation does not ensure that the cache 
lines have been written back to memory.

9. Perform whatever platform dependent actions are necessary to flush any platform 
caches of any copies of the memory being OLDed and to force all cache lines back 
to the memory being OLDed. (Note: Refer to platform specific documentation.)

This sequence ensures that speculation and prefetching is disabled for the memory 
range, regardless of WB or WBL attribute, that all in-flight prefetches are completed, 
and that all caches lines are returned to memory.

4.5 Memory Datum Alignment and Atomicity

All Itanium instruction fetches, aligned load, store and semaphore operations (including 
IA-32) are atomic, except for floating-point extended memory references (ldfe, stfe, 
and IA-32 10-byte memory references) to non-write-back cacheable memory. In some 
processor models, aligned 10-byte Itanium floating-point extended memory references 
to non-write-back cacheable memory may raise an Unsupported Data Reference fault. 
See “Effects of Memory Attributes on Memory Reference Instructions” on page 2:86 for 
details. Loads are allowed to be satisfied with values obtained from a store buffer (or 
any logically equivalent structure) where architectural ordering permits, and values 
loaded may appear to be non-atomic. For details, refer to “Sequentiality Attribute and 
Ordering” on page 2:82.

Load pair instructions are performed atomically under the following conditions: a 
16-byte aligned load integer/double pair is performed as an atomic 16-byte memory 
reference. An 8-byte aligned load single pair is performed as an atomic 8-byte memory 
reference.

An aligned ld16 or st16 instruction is performed as an atomic 16-byte memory 
reference. For these instructions, the address specified must be 16-byte aligned. 
Unaligned ld16 and st16 instructions result in an Unaligned Data Reference fault 
regardless of the state of PSR.ac.

Aligned Itanium data memory references never raise an Unaligned Data Reference 
fault. Minimally, each Itanium instruction and its corresponding template are fetched 
together atomically. Itanium unordered loads can use the store buffer for data values. 
See “Sequentiality Attribute and Ordering” on page 2:82 for details.

When PSR.ac is 1, any Itanium data memory reference that is not aligned on a 
boundary the size of the operand results in an Unaligned Data Reference fault; e.g., 1, 
2, 4, 8, 10, and 16-byte datums should be aligned on 1, 2, 4, 8, 16, and 16-byte 
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boundaries respectively to avoid generation of an Unaligned Data Reference fault. 
When PSR.ac is 1, any IA-32 data memory reference that is not aligned on a boundary 
the size of the operand results in an IA_32_Exception(AlignmentCheck) fault.

Note: 10-byte and floating-point load double pair datum alignment is 16-bytes. The 
alignment of long format 32-byte VHPT references is always 32-bytes.

Unaligned Itanium semaphore references (cmpxchg, xchg, fetchadd) result in an 
Unaligned Data Reference fault regardless of the state of PSR.ac. For the cmp8xchg16 
instruction, the address specified must be 8-byte aligned.

When PSR.ac is 0, Itanium data memory references that are not aligned may or may 
not result in an Unaligned Data Reference fault based on the implementation. The level 
of unaligned memory support is implementation specific. However, all implementations 
will raise an Unaligned Data Reference fault if the datum referenced by an Itanium 
instruction spans a 4K aligned boundary, and many implementations will raise an 
Unaligned Data Reference fault if the datum spans a cache line. Implementations may 
also raise an Unaligned Data Reference fault for any other unaligned Itanium memory 
reference. Software is strongly encouraged to align data values to avoid possible 
performance degradation for both IA-32 and Itanium architecture-based code. When 
PSR.ac is 0 and IA-32 alignment checks are also disabled, no fault is raised regardless 
of alignment for IA-32 data memory references.

Unaligned advanced loads are supported, though a particular implementation may 
choose not to allocate an ALAT entry for an unaligned advanced load. Additionally, the 
ALAT may “pessimistically” allocate an entry for an unaligned load by allocating a larger 
entry than the natural size of the datum being loaded, as long as the larger entry 
completely covers the unaligned address range (e.g. a ld4.a to address 0x3 may 
allocate an 8-byte entry starting at address 0x0). Stores (unaligned or otherwise) may 
also pessimistically invalidate unaligned ALAT entries.

§
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Interruptions 5

Interruptions are events that occur during instruction processing, causing the flow 
control to be passed to an interruption handling routine. In the process, certain 
processor state is saved automatically by the processor. Upon completion of 
interruption processing, a return from interruption (rfi) is executed which restores the 
saved processor state. Execution then proceeds with the interrupted instruction.

From the viewpoint of response to interruptions, the processor behaves as if it were not 
pipelined. That is, it behaves as if a single Itanium instruction (along with its template) 
is fetched and then executed; or as if a single IA-32 instruction is fetched and then 
executed. Any interruption conditions raised by the execution of an instruction are 
handled at execution time, in sequential instruction order. If there are no interruptions, 
the next Itanium instruction and its template, or the next IA-32 instruction, are 
fetched. 

This chapter describes both the IA-32 and Itanium interruption mechanisms as well as 
the interactions between them. The descriptions of the Itanium interruption vectors and 
IA-32 exceptions, interruptions, and intercepts are in Chapter 8.

5.1 Interruption Definitions

Depending on how an interruption is serviced, interruptions are divided into: IVA-based 
interruptions and PAL-based interruptions.

• IVA-based interruptions are serviced by the operating system. IVA-based 
interruptions are vectored to the Interruption Vector Table (IVT) pointed to by CR2, 
the IVA control register (see “IVA-based Interruption Vectors” on page 2:113).

• PAL-based interruptions are serviced by PAL firmware, system firmware, and 
possibly the operating system. PAL-based interruptions are vectored through a set 
of hardware entry points directly into PAL firmware (see Chapter 11, “Processor 
Abstraction Layer”). 

Interruptions are divided into four types: Aborts, Interrupts, Faults, and Traps.

• Aborts
A processor has detected a Machine Check (internal malfunction), or a processor 
reset. Aborts can be either synchronous or asynchronous with respect to the 
instruction stream. The abort may cause the processor to suspend the 
instruction stream at an unpredictable location with partially updated register 
or memory state. Aborts are PAL-based interruptions.

• Machine Checks (MCA)
A processor has detected a hardware error which requires immediate action. 
Based on the type and severity of the error the processor may be able to 
recover from the error and continue execution. The PALE_CHECK entry point is 
entered to attempt to correct the error.

• Processor Reset (RESET)
A processor has been powered-on or a reset request has been sent to it. The 
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PALE_RESET entry point is entered to perform processor and system self-test 
and initialization.

• Interrupts
An external or independent entity (e.g., an I/O device, a timer event, or another 
processor) requires attention. Interrupts are asynchronous with respect to the 
instruction stream. All previous instructions (including IA-32) appear to have 
completed. The current and subsequent instructions have no effect on 
machine state. Interrupts are divided into Initialization interrupts, Platform 
Management interrupts, and External interrupts. Initialization and Platform 
Management interrupts are PAL-based interruptions; external interrupts are 
IVA-based interruptions.

• Initialization Interrupts (INIT)
A processor has received an initialization request. The PALE_INIT entry point is 
entered and the processor is placed in a known state.

• Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform error 
handling, memory scrubbing, or power management has been received by a 
processor. The PALE_PMI entry point is entered to service the request. Program 
execution may be resumed at the point of interruption. PMIs are distinguished 
by unique vector numbers. Vectors 0 through 3 are available for platform 
firmware use and are present on every processor model. Vectors 4 through 15 
are reserved for processor firmware use. See Section 11.5, “Platform 
Management Interrupt (PMI)” on page 2:310 for details.

• External Interrupts (INT)
A processor has received a request to perform a service on behalf of the 
operating system. Typically these requests come from I/O devices, although the 
requests could come from any processor in the system including itself. The 
External Interrupt vector is entered to handle the request. External Interrupts 
are distinguished by unique vector numbers in the range 0, 2, and 16 through 
255. These vector numbers are used to prioritize external interrupts. Two 
special cases of External Interrupts are Non-Maskable Interrupts and External 
Controller Interrupts.

• Non-Maskable Interrupts (NMI)
Non-Maskable Interrupts are used to request critical operating system 
services. NMIs are assigned external interrupt vector number 2.

• External Controller Interrupts (ExtINT)
External Controller Interrupts are used to service Intel 8259A-compatible 
external interrupt controllers. ExtINTs are assigned locally within the 
processor to external interrupt vector number 0.

• Faults
The current Itanium or IA-32 instruction which requests an action which cannot or 
should not be carried out, or system intervention is required before the instruction 
is executed. Faults are synchronous with respect to the instruction stream. The 
processor completes state changes that have occurred in instructions prior to 
the faulting instruction. The faulting and subsequent instructions have no 
effect on machine state. Faults are IVA-based interruptions.

• Traps
The IA-32 or Itanium instruction just executed requires system intervention. Traps 
are synchronous with respect to the instruction stream. The trapping instruction 



Volume 2, Part 1: Interruptions 2:97

and all previous instructions are completed. Subsequent instructions have no 
effect on machine state. Traps are IVA-based interruptions.

Figure 5-1 summarizes the above classification.

Unless otherwise indicated, the term “interruptions” in the rest of this chapter refers to 
IVA-based interruptions. PAL-based interruptions are described in detail in Chapter 11.

5.2 Interruption Programming Model

When an interruption event occurs, hardware saves the minimum processor state 
required to enable software to resolve the event and continue. The state saved by 
hardware is held in a set of interruption resources, and together with the interruption 
vector gives software enough information to either resolve the cause of the 
interruption, or surface the event to a higher level of the operating system. Software 
has complete control over the structure of the information communicated, and the 
conventions between the low-level handlers and the high-level code. Such a scheme 
allows software rather than hardware to dictate how to best optimize performance for 
each of the interruptions in its environment. The same basic mechanisms are used in all 
interruptions to support efficient low-level fault handlers for events such as a TLB fault, 
speculation fault, or a key miss fault.

On an interruption, the state of the processor is saved to allow a software handler to 
resolve the interruption with minimal bookkeeping or overhead. The banked general 
registers (see “Efficient Interruption Handling” on page 2:102) provide an immediate 
set of scratch registers to begin work. For low-level handlers (e.g., TLB miss) software 
need not open up register space by spilling registers to either memory or control 
registers.

Figure 5-1. Interruption Classification
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Upon an interruption, asynchronous events such as external interrupt delivery are 
disabled automatically by hardware to allow software to either handle the interruption 
immediately or to safely unload the interruption resources and save them to memory. 
Software will either deal with the cause of the interruption and rfi back to the point of 
the interruption, or it will establish a new environment and spill processor state to 
memory to prepare for a call to higher-level code. Once enough state has been saved 
(such as the IIP, IPSR, and the interruption resources needed to resolve the fault) the 
low-level code can re-enable interruptions by restoring the PSR.ic bit and then the PSR.i 
bit. (See “Re-enabling External Interrupt Delivery” on page 2:120.) Since there is only 
one set of interruption resources, software must save any interruption resource state 
the operating system may require prior to unmasking interrupts or performing an 
operation that may raise a synchronous interruption (such as a memory reference that 
may cause a TLB miss). 

The PSR.ic (interruption state collection) bit supports an efficient nested interruption 
model. Under normal circumstances the PSR.ic bit is enabled. When an interruption 
event occurs, the various interruption resources are overwritten with information 
pertaining to the current event. Prior to saving the current set of interruption resources, 
it is often advantageous in a miss handler to perform a virtual reference to an area 
which may not have a translation. To prevent the current set of resources from being 
overwritten on a nested fault, the PSR.ic bit is cleared on any interruption. This will 
suppress the writing of critical interruption resources if another interruption occurs 
while the PSR.ic bit is cleared. If a data TLB miss occurs while the PSR.ic bit is zero, 
then hardware will vector to the Data Nested TLB fault handler.

For a complete description of interruption resources (IFA, IIP, IPSR, ISR, IIM, IIPA, 
ITIR, IHA, IFS, IIB0-1) see “Control Registers” on page 2:29.

5.3 Interruption Handling during Instruction 
Execution

Execution of Itanium instructions involves calculating the address of the current bundle 
from the region registers and the IP and then fetching, decoding, and executing 
instructions in that bundle. Execution of IA-32 instructions involves calculating the 
64-bit linear address of the current instruction from the EIP, code segment descriptors, 
and region registers and then fetching, decoding, and executing the IA-32 instruction. 
(See Section 3.4).

The execution process involves performing the events listed below. The values of the 
PSR bits are the values that exist before the instruction is executed (except for the case 
of instructions that are immediately preceded by a mandatory RSE load which clears 
the PSR.da and PSR.dd bits). Changes to the PSR bits only affect subsequent 
instructions, and are only guaranteed to be visible by the insertion of the appropriate 
serializing operation. See “Serialization” on page 2:17. Execution flow is shown in 
Figure 5-2.

1. Resets are always enabled, and may occur anytime during instruction execution.

2. If the PSR.mc bit is 0 then machine check aborts may occur.

3. The processor checks for enabled pending INITs and PMIs, and for enabled 
unmasked pending external interrupts.
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4. For Itanium architecture-based code, the processor checks for a valid register 
stack frame. 

• If incomplete and RSE Current Frame Load Enable (RSE.CFLE) is set, then 
perform a mandatory RSE load and start again at step one. The mandatory load 
operation may fault. A non-faulting mandatory RSE load will clear PSR.da and 
PSR.dd.

• If valid, then clear RSE.CFLE.

5. If the processor implements the Unimplemented Instruction Address (UIA) fault, 
instead of a UIA trap, it will check the instruction address and take the UIA fault if 
the instruction pointer (IP) falls outside of the implemented range.

6. For IA-32 code, IA-32 instruction addresses are checked for possible instruction 

Figure 5-2. Interruption Processing
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breakpoint faults. The IA-32 effective instruction address (EIP) is converted into a 
64-bit virtual linear address IP and IA-32 defined code segmentation and code 
fetch faults are checked and may result in a fault.

7. When PSR.is is 0, the bundle is fetched using the IP. When PSR.is is 1, an IA-32 
instruction is fetched using IP. 

• If the PSR.it bit is 1, virtual address translation of the instruction address is 
performed. Address translation may result in a fault.

• If the PSR.pk bit is 1, access key checking is enabled and may result in a fault. 

• For Itanium instructions the IBR registers are checked for possible instruction 
breakpoint faults.

• The fetched instruction is decoded and executed.

• For IA-32 code, the fetched IA-32 instruction is checked to see if the opcode is 
an illegal opcode, results in an instruction intercept or the opcode bytes are 
longer than 15 bytes resulting in an fault.

• If a fault occurs during execution, the processor completes all effects of the 
instructions prior to the faulting instruction, and does not commit the effect of 
the faulting instruction and all subsequent instructions. It then takes the 
interruption for the fault. IIP is loaded with the IP of the bundle or IA-32 
instruction which contains the instruction that caused the fault.

• The PSR.dd, PSR.id, PSR.ia, PSR.da, and PSR.ed bits are set to 0 after an 
Itanium instruction is successfully executed without raising a fault. The PSR.da 
and PSR.dd bits are also set to 0 after the execution of each mandatory RSE 
memory reference that does not raise a fault. PSR.da, PSR.ia, PSR.dd, and 
PSR.ed bits are cleared before the first IA-32 instruction starts execution after a 
br.ia or rfi instruction. EFLAG.rf and PSR.id bits are set to 0 after an IA-32 
instruction is successfully executed.

• If an rfi instruction is in the current bundle, then on the execution of rfi, the 
value from the IIP is copied into the IP, the value from IPSR is copied into the 
PSR, and the RSE.CFLE is set. On an rfi if IFS.v is set, then IFS.pfm is copied 
into CFM and the register stack BOF is decremented by CFM.sof. The following 
Itanium or IA-32 instruction is executed based on the new IP and PSR values.

8. Traps are handled after execution is complete.

• If the processor reports unimplemented instruction addresses with an 
Unimplemented Instruction Address trap (rather than with an Unimplemented 
Instruction Address fault) and the instruction just completed set the instruction 
pointer (IP) to an unimplemented address, an Unimplemented Instruction 
Address trap is taken.

• If the instruction just completed was an Itanium floating-point instruction which 
raised a trap, a Floating-point trap is taken.

• For IA-32 instructions, if Data Breakpoint traps are enabled and one or more 
data breakpoint registers matched during execution of the instruction, a Data 
Breakpoint trap is taken.

• If the PSR.lp bit is 1, and an Itanium branch lowers the privilege level, then a 
Lower-Privilege Transfer trap is taken.

• If the PSR.tb bit is 1 and a branch (including IA-32) occurred during execution, 
then a Taken Branch trap occurs.

• If no other trap was taken and the PSR.ss bit is 1, then a Single Step trap 
occurs.
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• If more than one trap is triggered (such as Unimplemented Instruction Address 
trap, Lower-Privilege Transfer trap, and Single Step trap) the highest priority 
trap is taken. The ISR.code contains a bit vector with one bit set for each trap 
triggered.

A sequential execution model is presented in the preceding description. 
Implementations are free to use a variety of performance techniques such as pipelined, 
speculative, or out-of-order execution provided that, to the programmer, the illusion 
that instructions are executed sequentially is preserved.

5.4 PAL-based Interruption Handling

PAL-based interruption handling requires the processor to transfer control to the PAL 
firmware. The PAL firmware will execute handling code and set up the architected exit 
state before transferring control to the SAL firmware. See Chapter 11, “Processor 
Abstraction Layer” for more details on the architected exit state between the PAL and 
SAL firmware layers for PAL-based interruption handling.

It is strongly recommended that software ensure that, if machine check aborts are 
masked (PSR.mc), external interrupts are also masked (PSR.i). This will avoid cases 
where a corrected machine check interrupt (a lower priority interrupt) is handled before 
a machine check abort, which would cause an escalation in machine check abort 
severity when machine check aborts are unmasked.

5.5 IVA-based Interruption Handling

IVA-based interruption handling is implemented as a fast context switch. On IVA-based 
interruptions, instruction and data translation is left unchanged, the endian mode is set 
to the system default, and delivery of most PSR-controlled interruptions is disabled 
(including delivery of asynchronous events such as external interrupts). The processor 
is responsible for saving only a minimal amount of state in the interruption resource 
registers prior to vectoring to the Itanium architecture-based software handler.

When an interruption occurs, the processor takes the following actions:

1. If PSR.ic is 0:

• IPSR, IIP, IIPA, IIB0-1, and IFS.v are unchanged.

• Interruption-specific resources IFA, IIM, and IHA are unchanged.

If PSR.ic is 1:

• PSR is saved in IPSR. If PSR is in-flight, IPSR will get the most recent in-flight 
value of PSR (i.e., PSR is serialized by the processor before it is written into 
IPSR). For Itanium traps, the value written to IPSR.ri is the next instruction slot 
that would have been executed if there had been no trap. For all other 
interruptions, the value written to IPSR.ri is the instruction slot on which the 
interruption occurred (1 for interruptions on the L+X instruction of an MLX). For 
interruptions in the IA-32 instruction set, IPSR.ri is set to 0.

• IP is written into IIP. For faults and external interrupts, the saved IP is the IP at 
which the interruption occurred. For traps, the saved IP is the value after the 
execution of the IA-32 or Itanium instruction which caused the trap. For 
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branch-related traps, IIP is written with the target of the branch; for all other 
traps, IIP is written with the address of the bundle or IA-32 instruction 
containing the next sequential instruction.

• IIPA receives the IP of the last successfully executed Itanium instruction. For 
IA-32 instructions, IIPA receives the IP of the faulting or trapping IA-32 
instruction.

• The interruption resources IFA, IIB0-1, IIM, IHA, and ITIR are written with 
information specific to the particular fault, trap, or interruption taken. These 
registers serve as parameters to each of the interruption vectors. The IFS valid 
bit (IFS.v) is cleared. All other bits in the IFS are undefined.

If PSR.ic is in-flight:

• Interruption state may or may not be collected in IIP, IPSR, IIPA, ITIR, IFA, IIM, 
IIB0-1 and IHA. 

• The value of IFS (including IFS.v) is undefined.

2. ISR bits are overwritten on all interruptions except for a Data Nested TLB fault. 
The instruction slot which caused the interruption is saved in ISR.ei (2 for traps, 1 
for other interruptions, on the L+X instruction of an MLX). For IA-32 code, ISR.ei 
is set to 0. If PSR.ic is 0 or in-flight when the interruption occurs, ISR.ni is set to 
1. Otherwise, ISR.ni is set to 0. ISR.ni is always 0 for interruptions taken in IA-32 
code.

3. The defined bits in the PSR are set to zero except as follows:

• PSR.up, PSR.mfl, PSR.mfh, PSR.pk, PSR.dt, PSR.rt, PSR.mc, and PSR.it are 
unchanged for all interruptions.

• PSR.be is set to the value of the default endian bit (DCR.be). If DCR.be is 
in-flight at the time of interruption, PSR.be may receive either the old value of 
DCR.be or the in-flight value.

• PSR.pp is set to the value of the default privileged performance monitor bit 
(DCR.pp). If DCR.pp is in-flight at the time of interruption, PSR.pp may receive 
either the old value of DCR.pp or the in-flight value.

Since PSR.cpl is set to zero, the processor will execute at the most privileged level.

4. RSE.CFLE is set to zero.

5. IP gets the appropriate IVA vector for the interruption. If IVA is in-flight at the 
time of interruption, IP receives either the vector specified by the old IVA value or 
the vector specified by the in-flight value.

6. The processor performs an instruction serialization and execution of Itanium 
instructions begins at the IP obtained in step 5 above. The instruction 
serialization event ensures that all previous control register changes and side 
effects due to such changes are visible to the first instruction of the interruption 
handler.

5.5.1 Efficient Interruption Handling

A set of 16 banked registers are provided by the processor to assist in the efficient 
processing of low-level Itanium interruptions and instruction emulation. These registers 
allow a low-level routine to have immediate access to a small set of static registers 
without having to save and restore their contents to memory at the start and end of 
each handler. The extra bank of registers exists in the same name space as the normal 
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registers, overlapping GR16 to GR31. Which set of physical registers are accessed 
through GR16 to GR31 is determined by the PSR.bn bit. On an interruption this bit is 
forced to zero allowing access to the alternate set of 16 registers which can be used as 
scratch space or to hold predetermined values. Software can return to the original set 
of 16 GRs by setting the PSR.bn bit to one with bsw instruction. The rfi instruction may 
also restore the PSR.bn bit to the value at the time of the interruption which is held in 
the IPSR. Eight additional registers (KR0-KR7) can be used to hold latency critical 
information for a handler. These application registers (KR0-KR7) can be read but not 
written by non-privileged code.

When the processor handles an interruption event the current stack frame remains 
unchanged and the IFS valid bit is cleared. The remaining contents of IFS are 
undefined. While the interruption handler is running, the register stack engine (RSE) 
may spill/fill registers to/from the backing store if eager RSE stores/loads are enabled. 
The RSE will not load or store registers in the current frame (except as required on a 
br.ret or rfi in order to load the contents of the frame before continuing execution). 
For most low-level interruptions the current frame will not be modified. 
High-performance interruption handlers will not need to perform any register stack 
manipulation. For example, a TLB miss handler does not need access to any registers in 
the interrupted frame. An rfi instruction after an interruption and before a cover 
operation will also leave the frame marker unchanged (desired behavior for a low-level 
interruption handler). When an interruption handler falls off the fast path it is required 
to issue a cover instruction so that the interrupted frame can become part of backing 
store. See “Switch from Interrupted Context” on page 2:148..

It may be desirable to emulate a faulting instruction in the interruption handler and rfi 
back to the next sequential instruction rather than resuming at the faulting instruction. 
Some Itanium instructions can be emulated without having to read the bundle from 
memory, through knowledge of the vector, software convention, and information from 
the ISR (e.g., emulation of tpa). However, most Itanium instructions will require 
reading the bundle from memory and decoding the operation (e.g., an unaligned load). 
To correctly emulate an unaligned load, the bundle is read from memory using the 
value in the IIP which contains the bundle address. The instruction within the bundle 
that caused the interruption is determined by the ISR.ei field. Once the operation is 
decoded and emulation completes, the effect of the faulting instruction must be 
nullified when control is returned to the point of the fault. 

An Itanium instruction is skipped by adjusting PSR.ri and possibly IIP prior to 
performing the rfi to the interrupted bundle. This is done by incrementing IPSR.ri by 
the number of slots this instruction occupies (usually 1). If the resulting IPSR.ri is 3, 
then reset IPSR.ri to 0 and advance IIP by 1 bundle (16 bytes). Emulating X-unit 
instructions requires setting IPSR.ri to 0 and setting IIP to the next bundle (X-unit 
instructions take up two instruction slots). IPSR, IIP, and IFS.pfm (if valid) will be 
restored on an rfi to the PSR, IP, and CFM registers. 

5.5.2 Non-access Instructions and Interruptions

The non-access Itanium instructions are: fc, fc.i, lfetch, probe, probe.fault, tpa, 
and tak. These instructions reference the TLB but do not directly read or write memory. 
They are distinguished from normal load/store instructions since an operating system 
may wish to handle an interruption raised by a non-access instruction differently.
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These non-access Itanium instructions can cause interruptions: fc, fc.i, 
lfetch.fault, probe, probe.fault, tpa, and tak. (tak can cause interruptions only 
for non-TLB reasons.) ISR.code will be set to indicate which non-access instruction 
caused the interruption. See Table 5-1 for ISR field settings for non-access instructions.

5.5.3 Single Stepping

The processor can single step through a series of instructions by enabling the single 
step PSR.ss bit. This is accomplished by setting the IPSR.ss bit and performing an rfi 
back to the instruction to be single stepped over. When single stepping, the processor 
will execute one IA-32 instruction or one Itanium instruction pointed to by the IPSR.ri 
field.

After single stepping Itanium instruction slot 2 (IPSR.ri = 2) or when the template is 
MLX and single stepping instruction slot 1 (IPSR.ri = 1), the IIP will point to the next 
bundle, and IPSR.ri will point to slot 0.

5.5.4 Single Instruction Fault Suppression

Four bits, PSR.id, PSR.da, PSR.ia, and PSR.dd are defined to suppress faults for one 
Itanium instruction or one mandatory RSE memory operation. The PSR.id bit is used to 
suppress the instruction debug fault for one IA-32 or Itanium instruction. This bit will be 
cleared in the PSR after the first successfully executed instruction. The PSR.ia bit is 
used to suppress the Instruction Access Bit fault for one Itanium instruction. This bit 
will be cleared in the PSR after the first successfully executed instruction. The PSR.da 
and PSR.dd bits are used to suppress Dirty-Bit, Data Access-Bit and Data Debug faults 
for one Itanium instruction, or for one mandatory RSE memory reference. The PSR.da 
and PSR.dd bits will be cleared in the PSR after the first instruction is executed without 
raising a fault, or after the first mandatory RSE memory reference that does not raise a 
fault completes. PSR.da, PSR.ia and PSR.dd are cleared before the first IA-32 
instruction starts execution after a br.ia or rfi instruction. Software may set the 
PSR.id, PSR.da, PSR.ia and PSR.dd bits in the IPSR prior to an rfi. The rfi will restore 
the PSR from the IPSR. By using these disable bits, software may step over a debug or 
dirty/access event and continue execution. 

Table 5-1. ISR Settings for Non-access Instructions

Instruction
ISR Fields

code{3:0} na r w

tpa 0 1 0 0

fc, fc.i 1 1 1 0

probe 2 1 0 or 1a

a. Sets r or w or both to 1 depending on the probe form.

0 or 1a

tak 3 1 0 0

lfetch, lfetch.fault 4 1 1 0

probe.fault 5 1 0 or 1a 0 or 1a
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5.5.5 Deferral of Speculative Load Faults

Speculative and speculative advanced loads can defer fault handling by suppressing the 
speculative memory reference, and by setting the deferred exception indicator (NaT bit 
or NaTVal) of the load target register. Other effects of the instruction (such as post 
increment) are performed. Additionally, software can suppress the memory reference of 
speculative and speculative advanced loads independent of any exception.

Deferral is the process of generating a deferred exception indicator and not performing 
the exception processing at the time of its detection (and potentially never at all). Once 
a deferred exception indicator is generated, it will propagate through all uses until the 
speculation is checked by using either a chk.s instruction, a chk.a instruction (for 
speculative advanced loads), or a non-speculative use. This causes the appropriate 
action to be invoked to deal with the exception.

Three different programming models are supported: no-recovery, recovery and 
always-defer. In the no-recovery model, only fatal exceptional conditions are deferred 
– these are conditions which cannot be resolved without either involving the program’s 
exception-handling code or terminating the program. In the recovery model, 
performance may be increased by deferring additional exceptional conditions. The 
recovery model is used only if the program provides additional “recovery” code to 
re-execute failed speculative computations. When a speculative load is executed with 
PSR.ic equal to 1, and ITLB.ed equal to 0, the no-recovery model is in effect. When 
PSR.ic is 1 and ITLB.ed is 1, the recovery model is in effect. The always-defer model 
is supported for use in system code which has PSR.ic equal to 0. In this model, all 
exceptional conditions which can be deferred are deferred. This permits speculation in 
environments where faulting would be unrecoverable.

In addition to the deferral of exceptional conditions, speculative loads may be deferred 
automatically by hardware based on implementation-dependent criteria, such as the 
detection of a cache miss. Such deferral is referred to as spontaneous deferral, and 
is done in order to increase performance. Spontaneous deferral is allowed only in the 
recovery model.

Speculative load exceptions are categorized into three groups:

• Ones which always raise a fault

• Ones which always defer

• Ones which always raise a fault in the no-recovery model, but can defer based on 
the speculative deferral control bits in the DCR control register, in the recovery 
model.

Table 5-2. Programming Models

PSR.ic PSR.it ITLB.ed Model DCR-based Deferral Spontaneous Deferral

0 x x Always defer No No

1 0 x No recovery No No

1 1 0 No recovery No No

1 1 1 Recovery Yes Yes
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Aborts, external interrupts, RSE or instruction-fetch-related faults that happen to occur 
on a speculative load are always raised (since they are not related to the speculative 
load instruction). Illegal Operation faults and Disabled Floating-point Register faults 
that occur on a speculative load are always raised.

Processing of exception conditions for speculative and speculative advanced loads is 
done in three stages: qualification, deferral and prioritization.

During the execution of a load instruction, multiple exception conditions may be 
detected simultaneously. For non-speculative loads these exception conditions are 
prioritized and only the highest priority one raises a fault. For speculative loads, 
however, some exception conditions may be deferred. As a result, it is possible for 
lower priority exceptions, which are not also deferred, to raise a fault. For some 
exception conditions, though, other lower priority conditions are meaningless, and are 
said to be qualified, or precluded. Exception qualification is described in Table 5-3.

After exception conditions are detected and qualified, the remaining exception 
conditions are checked for deferral. Deferral occurs after fault qualification and 
determines which memory access exceptions raised by speculative loads are 
automatically deferred by hardware.

Table 5-3. Exception Qualification

Exception Condition Precluded by Concurrent Exception Condition

Register NaT Consumption
(NaT’ed address)

none

Unimplemented Data Address Register NaT Consumption

Alternate Data TLB Register NaT Consumption Unimplemented Data Address

VHPT data Register NaT Consumption Unimplemented Data Address

Data TLB Register NaT Consumption Unimplemented Data Address

Data Page Not Present Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB

Data NaT Page Consumption Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Miss Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Permission Register NaT Consumption
Unimplemented Data Address
VHPT data
Data TLB

Alternate Data TLB
Data Page Not Present
Data Key Miss

Data Access Rights Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Access Bit Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Debug Register NaT Consumption Unimplemented Data Address

Unaligned Data Reference Register NaT Consumption Unimplemented Data Address

Unsupported Data Reference Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present
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Deferral is controlled by PSR.ed, PSR.it, PSR.ic, the speculative deferral control bits in 
the DCR, the exception deferral bit of the code page’s instruction TLB entry (ITLB.ed), 
and the memory attribute of the referenced data page. The speculative load and 
speculative advanced load exception deferral conditions are as follows:

• When PSR.ic is 0 and regardless of the state of DCR, and ITLB.ed bits (see 
Table 5-2), all exception conditions related to the data reference are deferred.

• Regardless of the state of DCR, PSR.it, PSR.ic, and ITLB.ed bits, Unimplemented 
Data Address exception conditions and Data NaT Page Consumption exception 
conditions (caused by references to NaTPages) are always deferred.

• When PSR.it and ITLB.ed are both 1, and the appropriate DCR bit is 1 for the 
exception, the speculative load exception is deferred.

• When PSR.it and ITLB.ed are both 1, Unaligned Data Reference exception 
conditions are deferred.

The conditions for deferral are given in Table 5-4. See also “Default Control Register 
(DCR – CR0)” on page 2:31.

The conditions for spontaneous deferral are given in Table 5-5. See the 
PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17) procedure for 
details on enabling/disabling spontaneous deferral.

After checking for deferral, execution of a speculative load instruction proceeds as 
follows:

• When PSR.ed is 1, then a deferred exception indicator (NaT bit or NaTVal) is written 
to the load target register, regardless of whether it has an exception or not and 
regardless of the state of DCR, PSR.it, PSR.ic and the ITLB.ed bits.

• If PSR.ed is 0 and there is at least one exception condition which is neither 
precluded nor deferred, then a fault is taken corresponding to the highest-priority 

Table 5-4. Qualified Exception Deferral

Qualified Exception Deferred If

Register NaT Consumption (NaT’ed address) always

Unimplemented Data Address always

Alternate Data TLB !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

VHPT data !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data TLB !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data Page Not Present !PSR.ic || (PSR.it && ITLB.ed && DCR.dp)

Data NaT Page Consumption always

Data Key Miss !PSR.ic || (PSR.it && ITLB.ed && DCR.dk)

Data Key Permission !PSR.ic || (PSR.it && ITLB.ed && DCR.dx)

Data Access Rights !PSR.ic || (PSR.it && ITLB.ed && DCR.dr)

Data Access Bit !PSR.ic || (PSR.it && ITLB.ed && DCR.da)

Data Debug !PSR.ic || (PSR.it && ITLB.ed && DCR.dd)

Unaligned Data Reference !PSR.ic || (PSR.it && ITLB.ed)

Unsupported Data Reference always

Table 5-5. Spontaneous Deferral

Implementation-dependent condition may optionally be deferred if

(PSR.ic && PSR.it && ITLB.ed && spontaneous_deferral_enabled())
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exception condition which is neither precluded nor deferred. Prioritization of 
non-deferred speculative load faults follows the same interruption priorities as 
non-speculative instruction faults (Table 5-6 on page 2:109). However, deferred 
speculative load faults do not take part in the prioritization. As a result, depending 
on DCR settings, a lower priority fault may be taken, even if a higher priority 
exception condition exists, but is deferred.

• If PSR.ed is 0 and there are exception conditions, but all are either precluded or 
deferred, then a deferred exception indicator (NaT bit or NaTVal) is written to the 
load target register.

• If PSR.ed is 0, and there are no exception conditions, and if the memory attribute 
of the referenced page is uncacheable or limited speculation, then a deferred 
exception indicator (NaT bit or NaTVal) is written to the load target register. See 
“Speculation Attributes” on page 2:79..

• If PSR.ed is 0, and there are no exception conditions, and if spontaneous deferral is 
enabled and permitted by the programming model, then a deferred exception 
indicator (NaT bit or NaTVal) may optionally be written to the load target register.

• Otherwise, the load executes normally.

If automatic hardware deferral is not enabled, software may still choose to defer 
exception processing (for speculative loads) at the time of the fault. If the code page 
has its ITLB.ed bit equal to 1, then the operating system may choose to defer a 
non-fatal exception. It is expected that the operating system will always defer fatal 
exceptions. To assist software in the deferral of non-fatal or fatal exceptions, the 
system architecture provides three additional resources: ISR.sp, ISR.ed, and PSR.ed.

ISR.sp indicates whether the exception was the result of a speculative or speculative 
advanced load. The ISR.ed bit captures the code page ITLB.ed bit, and allows deferral 
of a non-fatal exception due to a speculative load. If both the ISR.sp and ISR.ed bit are 
1 on an interruption, then the operating system may defer a non-fatal exception by 
using the PSR.ed bit to perform the action of hardware deferral for one executed 
instruction. Software may use the same PSR.ed mechanism to defer fatal speculative 
load exceptions. 

5.6 Interruption Priorities

Table 5-6 contains a complete list of the architecture defined interruptions (including 
IA-32), grouped according to type (aborts, interrupts, faults and traps), instruction set, 
and listed in priority order. Interruptions are delivered in priority order. If more than 
one instruction detects an interruption within a bundle, the interruption occurring in the 
lowest numbered instruction slot is raised. Lower priority faults and traps are discarded. 
Lower priority interrupts are held pending.

The shaded interruptions are disabled if the instruction generating the interruption is 
predicated off. All other interruptions are either “bundle related” (so the predicate bits 
do not affect them) or are caused by instructions that cannot be predicated off. 
Incomplete Register frame (IR) faults 7 through 18 are identical in behavior to faults 
45, 51 through 62 (exclusive of 60) except they are of a higher priority. IR faults 7 
through 18 can only be caused by mandatory RSE load operations that result from 
br.ret, or rfi instructions, but not from loadrs instructions (for details see 
Section 6.6, “RSE Interruptions” on page 2:144).
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Table 5-6. Interruption Priorities

Type Instr. Set Interruption Name Vector Name
IA-32

Classa

Aborts
IA-32, 
Intel

Itanium

1 Machine Reset (RESET) PALE_RESET vector
N/A

2 Machine Check (MCA) PALE_CHECK vector

Interrupts 3 Initialization Interrupt (INIT) PALE_INIT vector
N/A

4 Platform Management Interrupt (PMI) PALE_PMI vector

5 External Interrupt (INT) External Interrupt vector

6 Virtual External Interrupt (VINT) Virtual External Interrupt vector N/A

Faults

Intel
Itanium

7 IR Unimplemented Data Address fault General Exception vector

N/A

8 IR Data Nested TLB fault Data Nested TLB vector

9 IR Alternate Data TLB fault Alternate Data TLB vector

10 IR VHPT Data fault VHPT Translation vector

11 IR Data TLB fault Data TLB vector

12 IR Data Page Not Present fault Page Not Present vector

13 IR Data NaT Page Consumption fault NaT Consumption vector

14 IR Data Key Miss fault Data Key Miss vector

15 IR Data Key Permission fault Key Permission vector

16 IR Data Access Rights fault Data Access Rights vector

17 IR Data Access Bit fault Data Access-Bit vector

18 IR Data Debug fault Debug vector

19 Unimplemented Instruction Address faultb Lower-Privilege Transfer Trap vector

Faults IA-32 20 IA-32 Instruction Breakpoint fault IA-32 Exception vector (Debug)

A

21 IA-32 Code Fetch faultc IA-32 Exception vector (GPFault)

IA-32,
Intel

Itanium

22 Alternate Instruction TLB fault Alternate Instruction TLB vector

23 VHPT Instruction fault VHPT Translation vector

24 Instruction TLB fault Instruction TLB vector

25 Instruction Page Not Present fault Page Not Present vector

26 Instruction NaT Page Consumption fault NaT Consumption vector

27 Instruction Key Miss fault Instruction Key Miss vector

28 Instruction Key Permission fault Key Permission vector

29 Instruction Access Rights fault Instruction Access Rights vector

30 Instruction Access Bit fault Instruction Access-Bit vector

Intel
Itanium

31 Instruction Debug fault Debug vector

IA-32
32 IA-32 Instruction Length > 15 bytes IA-32 Exception vector (GPFault)

B
33 IA-32 Invalid Opcode fault IA-32 Intercept vector (Instruction)

34 IA-32 Instruction Intercept fault IA-32 Intercept vector (Instruction)

Intel
Itanium

35 Illegal Operation faultd General Exception vector

36 Illegal Dependency fault General Exception vector

37 Break Instruction fault Break Instruction vector

38 Privileged Operation fault General Exception vector
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IA-32,
Intel

Itanium

39 Disabled Floating-point Register fault Disabled FP-Register vector

B40 Disabled Instruction Set Transition fault General Exception vector

IA-32
41 IA-32 Device Not Available fault IA-32 Exception vector (DNA)

42 IA-32 FP Error faulte IA-32 Exception vector (FPError)
CIA-32,

Intel
Itanium

43 Register NaT Consumption fault NaT Consumption vector

Intel
Itanium

44 Reserved Register/Field fault General Exception vector

45 Unimplemented Data Address fault General Exception vector

46 Privileged Register fault General Exception vector

47 Speculative Operation fault Speculation vector

48 Virtualization fault Virtualization vector

IA-32
49 IA-32 Stack Exception IA-32 Exception vector (StackFault)

C

50 IA-32 General Protection Fault IA-32 Exception vector (GPFault)

Faults

IA-32,
Intel

Itanium

51 Data Nested TLB fault Data Nested TLB vector

52 Alternate Data TLB faultf Alternate Data TLB vector

53 VHPT Data faultf VHPT Translation vector

54 Data TLB faultf Data TLB vector

55 Data Page Not Present faultf Page Not Present vector

56 Data NaT Page Consumption faultf NaT Consumption vector

57 Data Key Miss faultf Data Key Miss vector

58 Data Key Permission faultf Key Permission vector

59 Data Access Rights faultf Data Access Rights vector

60 Data Dirty Bit fault Dirty-Bit vector

61 Data Access Bit faultf Data Access-Bit vector

Intel
Itanium

62 Data Debug faultf Debug vector

63 Unaligned Data Reference faultf Unaligned Reference vector

IA-32

64 IA-32 Alignment Check fault IA-32 Exception vector (AlignmentCheck)

C

65 IA-32 Locked Data Reference fault IA-32 Intercept vector (Lock)

66 IA-32 Segment Not Present fault IA-32 Exception vector (NotPresent)

67 IA-32 Divide by Zero fault IA-32 Exception vector (Divide)

68 IA-32 Bound fault IA-32 Exception vector (Bound)

69 IA-32 SSE Numeric Error fault IA-32 Exception vector (StreamSIMD)

Intel
Itanium

70 Unsupported Data Reference fault Unsupported Data Reference vector

71 Floating-point fault Floating-point Fault vector

Traps

Intel
Itanium

72 Unimplemented Instruction Address trapb,g Lower-Privilege Transfer Trap vector

73 Floating-point trap Floating-point Trap vector

74 Lower-Privilege Transfer trap Lower-Privilege Transfer Trap vector

75 Taken Branch trap Taken Branch Trap vector

76 Single Step trap Single Step Trap vector

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name
IA-32

Classa
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5.6.1 IA-32 Interruption Priorities and Classes

Table 5-6 establishes a well defined priority between faults, traps and interrupts 
(including IA-32). However, IA-32 instruction set generated interruptions are divided 
into interruption classes. While priority among these IA-32 interruption classes is well 
defined by the table (except as noted below), interruption priority within each IA-32 
interruption class is implementation dependent and may vary from processor to 
processor as defined below:

Class A – Faults from fetching an instruction. Priority of IA-32 Instruction Breakpoint, 
IA-32 Code Fetch (GPFault(0)), and Instruction TLB faults (Alternate Instruction TLB 
fault to Instruction Access Bit fault) may vary based on instruction alignment and page 
boundaries in a model-specific way. Faults are prioritized as defined in the table if the 
instruction does not span a virtual page. If an IA-32 instruction spans a virtual page, 
IA-32 Code Fetch faults (IA_32_Exception(GPFault)) due to code segment (CS) Limit 
violations can be raised above or below Instruction TLB faults as defined below:

• If the starting effective address of the IA-32 instruction exceeds the code segment 
limit, then the IA-32 Code Fetch fault has higher priority than any Instruction TLB 
faults. If the starting effective address of the IA-32 instruction is within the code 
segment limit, then Instruction TLB faults have higher priority for the starting 
effective address.

• If the IA-32 instruction spans a virtual page and the code segment limit is equal to 
the page boundary, the IA-32 Code Fetch fault has higher priority than any 
Instruction TLB faults on the second page. Otherwise if the code segment limit is 

IA-32

77 IA-32 System Flag Intercept trap IA-32 Intercept vector (SystemFlag)

D

78 IA-32 Gate Intercept trap IA-32 Intercept vector (Gate)

79 IA-32 INTO trap IA-32 Exception vector (Overflow)

80 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Break)

81 IA-32 Software Interrupt (INT) trap IA-32 Interrupt vector (Vector#)

82 IA-32 Data Breakpoint trap IA-32 Exception vector (Debug)

83 IA-32 Taken Branch trap IA-32 Exception vector (Debug)

84 IA-32 Single Step trap IA-32 Exception vector (Debug)

a. IA-32 Interruption Class, see Section 5.6.1, “IA-32 Interruption Priorities and Classes” on page 2:111 for details
b. Processor implementations may report unimplemented instruction addresses either with an Unimplemented Instruction Address 

trap on the taken branch, taken chk, or an rfi to an unimplemented address, or on a non-branching slot 2 instruction in a 
bundle at the upper edge of the implemented address space (where the next sequential bundle address would be an 
unimplemented address), or with an Unimplemented Instruction Address fault on the fetch of the unimplemented address.

c. IA-32 Code Fetch faults include Code Segment Limit Violation and other Code Fetch checks defined in Section 6.2.2.3.3, “IA-32 
Environment Runtime Integrity Checks” on page 1:122.

d. Illegal Operation faults can be taken for certain predicated off reserved opcodes. For details, refer to Section 4.1, “Format 
Summary” on page 3:294.

e. IA-32 FP Error fault conditions detected on an IA-32 FP instruction are reported as a fault on the next IA-32 FP instruction that 
performs an FWAIT operation.

f. If not deferred.
g. Unimplemented Instruction Address traps on emulated check instructions have a lower priority than Taken Branch trap and 

Single Step trap. See “Speculation vector (0x5700)” on page 2:198.

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name
IA-32

Classa
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greater than the page boundary, any Instruction TLB faults on the second page 
have higher priority than the IA-32 Code Fetch fault.

Class B – Faults from decoding an instruction. Priority of IA-32 Instruction Length, 
IA-32 Invalid Opcode, and IA-32 Instruction Intercept, Disabled Floating Point Register, 
Disabled Instruction Set Transition, and Device Not Available faults are model specific. 
If the IA-32 instruction spans a virtual page, IA-32 Instruction Length >15 byte Faults 
(IA_32_Exception(GPFault)) can have higher priority than Instruction TLB faults as 
defined below:

• If the IA-32 prefix bytes on the first page are >= 15 bytes, an IA-32 Instruction 
>15 byte fault (GPFault) is taken first regardless of any Instruction TLB faults on 
the second page.

• If the IA-32 prefix bytes on the first page are < 15 bytes, Instruction TLB faults on 
the second page may or may not have priority over any possible IA-32 Instruction 
Length fault.

Class C – Faults resulting from executing an instruction. Priority of faults is model 
specific and can vary across processor implementations. Most faults are related to data 
memory references, other fault priorities can vary due to model-specific differences 
across processor implementations. The memory fault priorities (IA-32 Stack Exception 
through Data Access Bit fault) defined in the table only apply to a single IA-32 data 
memory reference that does not cross a virtual page. If an IA-32 instruction requires 
multiple data memory references or a single data memory reference crosses a virtual 
page:

• If any given IA-32 instruction requires multiple data memory references, all 
possible faults are raised on the first data memory reference before any faults are 
checked on subsequent data memory references. This implies lower priority faults 
on an earlier memory reference will be raised before higher priority faults on a later 
data memory reference within a single IA-32 instruction. The order of data memory 
references initiated by an IA-32 instruction is implementation dependent and may 
vary from processor to processor. Software can not assume all higher priority data 
memory faults are raised before all lower priority data memory faults within a 
single IA-32 instruction.

• If a single IA-32 data memory reference crosses a virtual page, the processor 
checks for faults in a model-specific order: Any faults present on one page are 
checked and reported before any faults are checked and reported on the other 
page. This implies that a single data reference that crosses a virtual page can raise 
lower priority data memory faults on one page before higher priority data memory 
faults are raised on the other page. For example, Data Key Miss faults (lower 
priority) on the first page could be raised before a Data TLB Miss Fault (higher 
priority) on the second page. Software can not assume all higher priority data 
memory faults are raised before all lower priority data memory faults within a 
single IA-32 instruction.

Class D – Traps on the current IA-32 instruction. Trap conditions are reported 
concurrently on the same exception vector or via a trap code specifying all concurrent 
traps.
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5.7 IVA-based Interruption Vectors

Table 5-7 contains the processor’s interruption vector table (IVT). The base of the IVT is 
held in the IVA control register. The size of the IVT is 32KB. The first 20 vectors are 
designed to provide more code space by allowing 64 bundles per vector (16 bytes per 
bundle) for performance-critical interruption handlers. The second 48 vectors provide 
16 bundles per vector. Several vectors have more than one interruption associated with 
them. Information provided in the ISR allows the handler to distinguish which fault or 
trap caused the event.

Some vectors require additional software decoding to determine the cause of the 
interruption. Additional information for this decoding is provided in the ISR.code field. 
See Chapter 8, “Interruption Vector Descriptions” for a complete specification of the 
information supplied in the ISR for each of the vectors.

Note: PAL-based interruptions (RESET, MCA, INIT, and PMI) do not reference the IVT.

Table 5-7. Interruption Vector Table (IVT)

Offset Vector Name Interruption(s) Page

0x0000 VHPT Translation vector 10, 23, 53 2:173

0x0400 Instruction TLB vector 24 2:175

0x0800 Data TLB vector 11, 54 2:176

0x0c00 Alternate Instruction TLB vector 22 2:177

0x1000 Alternate Data TLB vector 9, 52 2:178

0x1400 Data Nested TLB vector 8, 51 2:179

0x1800 Instruction Key Miss vector 27 2:180

0x1c00 Data Key Miss vector 14, 57 2:181

0x2000 Dirty-Bit vector 60 2:182

0x2400 Instruction Access-Bit vector 30 2:183

0x2800 Data Access-Bit vector 17, 61 2:184

0x2c00 Break Instruction vector 37 2:185

0x3000 External Interrupt vector 5 2:186

0x3400 Virtual External Interrupt vector 6 2:187

0x3800 Reserved

0x3c00 Reserved

0x4000 Reserved

0x4400 Reserved

0x4800 Reserved

0x4c00 Reserved

0x5000 Page Not Present vector 12, 25, 55 2:188

0x5100 Key Permission vector 15, 28, 58 2:189

0x5200 Instruction Access Rights vector 29 2:190

0x5300 Data Access Rights vector 16, 59 2:191

0x5400 General Exception vector 7, 35, 36, 38, 40, 
44, 45, 46

2:192

0x5500 Disabled FP-Register vector 39 2:195

0x5600 NaT Consumption vector 13, 26, 43, 56 2:196

0x5700 Speculation vector 47 2:198

0x5800 Reserved for software usea
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5.8 Interrupts

This section describes the programming model of the high performance interrupt 
architecture. Interrupts are managed by the processor and by one or more intelligent 
external interrupt controllers or devices in the I/O subsystem. Figure 5-3 shows just 
one example of a high performance interrupt architecture subsystem; other topologies 
are possible. The processor is responsible for queuing and masking interrupts, sending 
and receiving inter-processor interrupt (IPI) messages, receiving interrupt messages 
from external interrupt controller(s), and managing local interrupt sources. This 
document describes the processor’s interrupt control mechanism only; for details on 
external interrupt controllers or I/O devices refer to platform documentation.

0x5900 Debug vector 18, 31, 62 2:200

0x5a00 Unaligned Reference vector 63 2:201

0x5b00 Unsupported Data Reference vector 70 2:202

0x5c00 Floating-point Fault vector 71 2:203

0x5d00 Floating-point Trap vector 73 2:204

0x5e00 Lower-Privilege Transfer Trap vector 72, 74 2:205

0x5f00 Taken Branch Trap vector 75 2:207

0x6000 Single Step Trap vector 76 2:208

0x6100 Virtualization vector 48 2:209

0x6200 Reserved

0x6300 Reserved

0x6400 Reserved

0x6500 Reserved

0x6600 Reserved

0x6700 Reserved

0x6800 Reserved

0x6900 IA-32 Exception vector 20, 21, 32, 41, 42, 
49, 50, 64, 66, 67, 
68, 79, 80, 82, 83, 
84

2:210

0x6a00 IA-32 Intercept vector 33, 34, 65, 77, 78 2:211

0x6b00 IA-32 Interrupt vector 81 2:212

0x6c00 Reserved

 … Reserved

0x7f00 Reserved

a. Unlike the other Reserved IVT vectors, which may defined in future revisions of the architecture, vector 
0x5800 is permanently reserved. Software may use this vector for any purpose, such as placing in this area 
portions of other handlers that don't fit into their assigned vector.

Table 5-7. Interruption Vector Table (IVT) (Continued)

Offset Vector Name Interruption(s) Page
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As defined in “Interruption Definitions” on page 2:95 there are three kinds of 
interrupts: initialization interrupts (INITs), platform management interrupts (PMIs), 
and external interrupts (INTs).

The processors and external interrupt controllers communicate over the processor’s 
system bus with an implementation-specific interrupt messaging protocol. Interrupts 
are generated by a number of different interrupt sources in the system:

• External (I/O) devices – Interrupt messages from any external source can be 
directed to any one processor by an external interrupt controller or by I/O devices 
capable of directly sending interrupt messages. An interrupt message informs the 
processor that an interrupt request is being made, and, in the case of PMIs and 
external interrupts, specifies a unique vector number for the interrupt. Interrupt 
messages are only issued on the “assertion edge” of an interrupt; “deassertion” of 
an interrupt does not result in an interrupt message.

• Locally connected devices – These interrupts originate on the processor’s 
interrupt pins (LINT, INIT, PMI)1, and are always directed to the local processor. The 
LINT pins can be connected directly to an Intel 8259A-compatible external interrupt 
controller. The LINT pins are programmable to be either edge-sensitive or 
level-sensitive, and for the kind of interrupt that gets generated. If programmed 
to generate external interrupts, the vector number is a programmed constant per 
LINT pin. Only the LINT pins connected to the processor can directly generate 
level-sensitive interrupts (See “Edge- and Level-sensitive Interrupts” on 
page 2:131). LINT pins cannot be programmed to generate level-sensitive PMIs or 
INITs. The INIT and PMI pins generate their corresponding interrupts. For PMI pins 
a PMI vector 0 interrupt is generated.

Figure 5-3. Interrupt Architecture Overview

1. Processors are not required to support externally connected interrupt pins. Software can query the
presence of the INIT, PMI, and LINT pins via the PAL_PROC_GET_FEATURES procedure call.
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• Internal processor interrupts – such as interval timer, performance monitoring, 
and corrected machine checks. These are always directed to the local processor. A 
unique vector number can be programmed for each source.

• Other processors – A processor can interrupt any individual processor, including 
itself, by sending an Inter-Processor Interrupt (IPI) message to a specific target 
processor. See “Inter-processor Interrupt Messages” on page 2:128.

The destination of an interrupt message is any one processor in the system, and is 
specified by a unique processor identifier. A different destination can be specified for 
each interrupt. There is no mechanism to “broadcast” a single interrupt to all 
processors in the system.

The following terms are used in the interrupt definition:

• The processor is said to receive an interrupt, if one of the processor’s interrupt 
pins is asserted, the processor detected an interrupt message bus transaction 
containing the processor’s unique identifier, or the processor detected an internal 
interrupt event.

• After receiving an interrupt, the processor internally holds the interrupt pending. 
The interrupt is said to be pended when it is received and held by the processor.

• For edge-sensitive interrupts, an external interrupt is held pending until the 
interrupt is acquired by software at which point it is said to be in-service. INITs and 
PMIs are held pending until the corresponding PAL vector is entered and PAL 
firmware clears the pending indication at which point they are said to be completed. 
For level-sensitive interrupts programmed through the LINT pins, the interrupt is 
held pending as long as the pin is asserted. Deassertion of a level-sensitive 
interrupt removes the pending indication (see “Edge- and Level-sensitive 
Interrupts” on page 2:131).

• The processor maintains an individual interrupt pending indication for INITs. Since 
external interrupts and PMIs are also signified by a unique interrupt vector 
number, the processor maintains individual pending indications per vector. An 
occurrence of an interrupt on a vector that is already marked as pending cannot be 
distinguished from previous interrupts on the same vector because the interrupts 
are pended in the same internal pending bit, and are therefore treated as “the 
same” interrupt occurrence.

• When interrupt delivery is enabled and the highest priority pending interrupt is 
unmasked (as defined below), the processor accepts the pending interrupt, 
interrupts the control flow of the processor and transfers control to the software 
interrupt handler.

• An external interrupt is said to be in-service when software acquires the interrupt 
vector from the processor by reading the IVR register (see “External Interrupt 
Vector Register (IVR – CR65)” on page 2:123). The processor then removes the 
pending indication for the interrupt vector. The processor maintains one in-service 
indicator for each unique vector number. Note that there are no in-service 
indicators for INITs and PMIs.

• Once an external interrupt is in-service it remains so until software indicates 
service for that external interrupt is complete. By writing to the EOI register (see 
“End of External Interrupt Register (EOI – CR67)” on page 2:124) software 
indicates that service for the highest-priority in-service external interrupt is 
complete. The processor then removes the in-service indication for the 
highest-priority external interrupt vector. INITs and PMIs are completed when PAL 
firmware clears the corresponding pending indication.
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• The priority of interrupts is defined in Table 5-8. Entry A is higher priority than 
interrupt B, if entry A appears at a higher location in the table than entry B. 
Interrupt priority is used to select interrupts that require urgent service over less 
urgent interrupt requests.

• Interrupt delivery is enabled when software programs the processor to accept 
any unmasked interrupt. INITs delivery is enabled when PSR.mc is 0. PMIs delivery 
is enabled when PSR.ic is 1. For Itanium architecture-based code execution, 
external interrupts delivery is enabled when PSR.i is 1.

• Masking applies only to external interrupts. Unmasked interrupts are those 
external interrupts of higher priority than the highest priority external interrupt 
vector currently in-service (if any) and whose priority level is higher than the 
current priority masking level specified by the TPR register (see “Task Priority 
Register (TPR – CR66)” on page 2:123). Masking conditions are defined in 
Table 5-8. PSR.i does not affect masking of external interrupts.

Figure 5-4 shows how this terminology is applied to the handling of a PAL-based 
interrupt. Similarly, Figure 5-5 shows the handing of a vectored external interrupt n. 
Both figures show the different states and transitions interrupts go through.

Figure 5-4. PAL-based Interrupt States
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5.8.1 Interrupt Vectors and Priorities

As indicated in Table 5-6 on page 2:109, INITs have higher priority than PMIs, which in 
turn have higher priority than external interrupts. PMIs and external interrupts are 
further prioritized by vector number.

PMIs have a separate vector space from external interrupts. PMI vectors 0-3 can be 
used by platform firmware. PMI vectors 4 through 15 are reserved for use by processor 
firmware. Assertion of the processor’s PMI pin, when present, results in PMI vector 
number 0. PMI vector priorities are described in Section 11.5, “Platform Management 
Interrupt (PMI)” on page 2:310.

Each external interrupt (INT) in the system is distinguished from other external 
interrupts by a unique vector number. There are 256 distinct vector numbers in the 
range 0 - 255. Vector numbers 1 and 3 through 14 are reserved for future use. Vector 
number 0 (ExtINT) is used to service Intel 8259A-compatible external interrupt 
controllers. Vector number 2 is used for the Non-Maskable Interrupt (NMI). The 
remaining 240 external interrupt vector numbers (16 through 255) are available for 
general operating system use. Table 5-8 summarizes the interrupt priority model.

Figure 5-5. External Interrupt States
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NMI (vector 2) has higher interrupt priority than ExtINT (vector 0), which has higher 
priority than external interrupt vectors 16 through 255.

External interrupts vectors 16 through 255 are divided into 15 interrupt priority classes. 
Sixteen different interrupt vectors share a single interrupt priority class, with class 1 
being the lowest priority and class 15 being the highest. For these external interrupts, 
higher number external interrupts have priority over lower number external interrupts, 
including those within the same priority class.

Vector number 15 is used to indicate that the highest priority pending interrupt in the 
processor is at a priority level that is currently masked or there are no pending external 
interrupts. This encoding is referred to as a “spurious” interrupt.

5.8.2 Interrupt Enabling and Masking

Upon receiving an interrupt, the processor holds the interrupt pending internally until 
interrupt delivery is enabled and, in the case of external interrupts, the interrupt is 
unmasked. When all of the interrupt enabling and unmasking conditions are satisfied 
(see Table 5-8), the processor accepts the pending interrupt, interrupts the control flow 
of the processor, and transfers control to the External Interrupt handler for external 
interrupts, or to PAL firmware for INITs and PMIs.

Note: The TPR controls the masking of external interrupts. TPR is described in “Task 
Priority Register (TPR – CR66)” on page 2:123.

Table 5-8. Interrupt Priorities, Enabling, and Masking

Priority
Priority
Class

Interrupt
Vector

Number

Interrupt 
Delivery 
Enabled

Interrupt Unmasked 
Condition

Highest N/A INIT N/A if PSR.mc is 0 Always

PMI 0..3 if PSR.ic is 1 Always

INT 2 (NMI) if PSR.i is 1a

a. For Itanium architecture-based code execution external interrupt delivery is enabled if PSR.i is 1. For IA-32 
code execution external interrupt delivery is enabled if (PSR.i AND (!CFLAG.if OR EFLAG.if)) is true.

Interrupt is higher priority than 
all in-service external interrupts

0 (ExtINT) TPR.mmi is 0, and interrupt is 
higher priority than all in-service 
external interrupts

15 240..255

TPR.mmi is 0, and interrupt is 
higher priority than all in-service 
external interrupts, and Vector 
Number{7:4} > TPR.mic

14 224..239

13 208..223

12 192..207

11 176..191

10 160..175

9 144..159

8 128..143

7 112..127

6 96..111

5 80..95

4 64..79

3 48..63

2 32..47

Lowest 1 16..31
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The processor provides nested interrupt priority support for external interrupt vectors 
0, 2, and 16 through 255 by:

• Automatically masking external interrupts of equal or lower priority than the 
highest priority external interrupt currently in-service. This raises the in-service 
external interrupt masking level when each external interrupt begins service by an 
IVR read.

• Associating EOI writes with the highest priority in-service external interrupt, and 
removing the in-service indication for this external interrupt. This lowers the 
in-service masking level to that of the next highest priority currently in-service 
external interrupt (if any).

This mechanism allows software external interrupt handlers to be interrupted by higher 
priority external interrupts.

For example, assume software acquires an external interrupt vector 45 by reading IVR. 
During the service of this interrupt other external interrupts can still be received and 
are pended. If software sets PSR.i to a 1, pending external interrupts of equal or lower 
priority than 45 are masked. However, a higher priority pending external interrupt can 
be accepted by the processor (provided it is not masked by TPR.mmi or TPR.mic). 
Assuming external interrupt vector 80 is received by the processor, the processor will 
accept the interrupt by interrupting the control flow of the processor. During the service 
of this interrupt, external interrupts of equal or lower priority than vector 80 are 
masked. When EOI is issued by software, the processor will remove the in-service 
indication for external interrupt vector 80. External interrupt masking will then revert 
back to the next highest priority in-service external interrupt, vector 45. External 
interrupt vectors of equal or lower priority than vector 45 would remain masked until 
EOI is issued by software. The in-service indication for vector 45 is then removed by 
the write to EOI.

5.8.2.1 Re-enabling External Interrupt Delivery

When emerging from code in which external interrupt delivery is disabled and 
interruption state collection is turned off, the following minimal code sequence 
describes the architectural method with which to re-enable interruption collection and 
enable external interrupts:

ssm PSR.ic // enable interruption collection
;;
srlz.d // guarantee that interruption collection is enabled
ssm PSR.i // enable external interrupts

The processor does not ensure that enabling external interrupts is immediately 
observed after the ssm PSR.i instruction. Software must perform a data serialization 
operation after ssm PSR.i to ensure that external interrupt delivery is enabled prior to a 
given point in program execution.

5.8.2.2 External Interrupt Sampling

Assuming that external interrupt delivery is currently disabled (PSR.i is 0), the following 
minimal code sequence describes the architectural method with which to briefly open 
the external interrupt window for external interrupt sampling (typically PSR.ic is 1 to 
enable interruption collection):
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ssm PSR.i
;;
srlz.d // external interrupts may be sampled anywhere here
;;
rsm PSR.i

The stop following the srlz.d instruction in the above code sequence is required to 
force the Reset System Mask (rsm) instruction into a subsequent instruction group. The 
stop guarantees that the srlz.d will open the external interrupt window for at least one 
cycle before the rsm instruction closes it again.

Note: In the above code sequence, the effect of disabling interrupts due to the rsm 
instruction is observed on the next instruction following the rsm.

5.8.2.3 Disabling of External Interrupt Delivery and rsm

When the current privilege level is zero, an rsm instruction whose mask includes PSR.i 
may cause external interrupt delivery to be disabled for an implementation-dependent 
number of instructions, even if the qualifying predicate for the rsm instruction is false. 
Architecturally, the extents of this delivery disable “window” are defined as follows:

1. External interrupt delivery may be disabled for any instructions in the same 
instruction group as the rsm, including those that precede the rsm in sequential 
program order, regardless of the value of the qualifying predicate of the rsm 
instruction.

2. If the qualifying predicate of the rsm is true, then external interrupt delivery is 
disabled immediately following the rsm instruction.

3. If the qualifying predicate of the rsm is false, then external interrupt delivery may 
be disabled until the next data serialization operation that follows the rsm 
instruction.

The delivery disable window is guaranteed to be no larger than defined by the above 
criteria, but it may be smaller, depending on the implementation.

When the current privilege level is non-zero, an rsm instruction whose mask includes 
PSR.i may briefly disable external interrupt delivery, regardless of the value of the 
qualifying predicate of the rsm instruction. However, the implementation guarantees 
that non-privileged code cannot lock out external interrupts indefinitely (e.g., via an 
arbitrarily long sequence of rsm PSR.i instructions with zero-valued qualifying 
predicates). 

5.8.3 External Interrupt Control Registers

Software interacts with external interrupts by reading and writing the external interrupt 
control registers (CR64-81). These registers are summarized in Table 5-9, and are used 
to prioritize and deliver external interrupts, and to assign external interrupt vectors for 
processor-internal interrupt sources such as interval timer, performance monitoring, 
and corrected machine check.

The external interrupt control registers can only be accessed at privilege level 0, 
otherwise a Privileged Operation fault is raised.
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5.8.3.1 Local ID (LID – CR64)

The LID register contains the processor’s local interrupt identifier. Two fields (id and 
eid) serve as the processor’s physical name for all interrupt messages (external 
interrupts, INITs, and PMIs). LID is loaded by firmware during platform initialization 
based on the processor’s physical location within the system. Processors receiving an 
interrupt message on the system interconnect may or may not compare their id/eid 
fields with the target address for the interrupt message, depending on the type of 
system interconnect. If this comparison is performed, then a match would indicate that 
the interrupt received was intended for this processor. In case of no comparison, 
processors use other system topology mechanisms to determine the correct target of 
the interrupt message.

The LID register fields are either read-only or read-write. Details of the 
programmability of these fields is communicated by PAL at PALE_RESET handoff (see 
Section 11.2.2, “PALE_RESET Exit State” on page 2:289 for details). Read-only LID bits 
always return a value of 0. Writes to read-only bits are ignored. To ensure that future 
arriving interrupts see the updated LID value by a given point in program execution, 
software must perform a data serialization operation after a LID write and prior to that 
point. The Local ID fields are defined in Figure 5-6 and Table 5-10.

Table 5-9. External Interrupt Control Registers

Register Name Description

CR64 LID Local ID

CR65 IVR External Interrupt Vector Register (read only)

CR66 TPR Task Priority Register

CR67 EOI End Of External Interrupt

CR68 IRR0 External Interrupt Request Register 0 (read only)

CR69 IRR1 External Interrupt Request Register 1 (read only)

CR70 IRR2 External Interrupt Request Register 2 (read only)

CR71 IRR3 External Interrupt Request Register 3 (read only)

CR72 ITV Interval Timer Vector

CR73 PMV Performance Monitoring Vector

CR74 CMCV Corrected Machine Check Vector

CR80 LRR0 Local Redirection Register 0

CR81 LRR1 Local Redirection Register 1

Figure 5-6. Local ID (LID – CR64)

63    32 31 24 23 16 15 0

ignored id eid reserved

32 8 8 16

Table 5-10. Local ID Fields

Field Bits Description

id/eid 31:16 The low order bits of id correspond to a unique, geographically significant address of 
the processor on the local system bus. The eid field and the higher order bits of the id 
field correspond to a unique address of the local system bus within the entire system. 
These fields are initialized by platform firmware to an implementation-dependent value 
and should not be modified by software. The two fields corresponds to physical 
address bits{19:4} of the inter-processor interrupt message.
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5.8.3.2 External Interrupt Vector Register (IVR – CR65)

A read of IVR returns the highest priority, pending, unmasked external interrupt vector, 
independent of the value of PSR.i. The external interrupt vector is an 8-bit encoded 
number. If there are no pending external interrupts or all external interrupts are 
currently masked, IVR returns the “spurious” interrupt indication (vector 15). IVR fields 
are shown in Figure 5-7. See “Interrupt Unmasked Condition” column in Table 5-8 on 
page 2:119 for masking conditions.

IVR reads also have two atomic side effects:

• The interrupt pending bit in IRR is cleared for the reported external interrupt vector. 
Subsequent IVR reads will not report the interrupt as pending unless a new 
interrupt was pended for the specified interrupt vector.

• The processor marks the interrupt vector as being in-service and masks all pending 
external interrupts with equal or lower priority until software writes the 
end-of-interrupt (EOI) register for the in-service interrupt.

To ensure IVR side effects are observed by a given point in program execution (e.g., 
before the next IVR read, EOI write, or PSR.i write to enable external interrupt 
delivery), software must perform a data serialization operation after an IVR read and 
prior to that point. To ensure that the reported external interrupt vector is correctly 
masked before the next IVR read, software must perform a data serialization operation 
after a TPR or EOI write and prior to that IVR read. 

Software must be prepared to service any possible external interrupt if it reads IVR, 
since IVR reads are destructive and removes the highest priority pending external 
interrupt (if any).

IVR is a read-only register; writes to IVR result in a Illegal Operation fault. 

IVR reads do not issue an external INTA cycle. If the interrupt vector must be acquired 
from an Intel 8259A-compatible external interrupt controller, software should perform a 
load from the INTA byte. See “Interrupt Acknowledge (INTA) Cycle” on page 2:130 for 
details.

5.8.3.3 Task Priority Register (TPR – CR66)

The processor’s Task Priority Register (TPR) provides the ability to create additional 
masking of external interrupts based on a “priority class.” The 240 external interrupt 
vectors (16 - 255) are divided into 15 priority classes of 16 numerically contiguous 
interrupt vectors each. The value written in TPR.mic masks all external interrupts of 
equal or lower priority classes.

To ensure that new priority levels are established by a given point in program 
execution, software must perform a data serialization operation after a TPR write and 
prior to that point. For example, if PSR.i is subsequently set to 1, thus enabling 
interrupts, and the new priority levels need to be in place before this enabling, a data 
serialization must be performed prior to the setting of PSR.i. Similarly, if PSR.pp or 

Figure 5-7. External Interrupt Vector Register (IVR – CR65)

63    8 7 0

reserved vector

56 8
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PSR.up is set to 1, potentially enabling performance monitor interrupts, and the new 
priority levels need to be in place before this enabling, a data serialization must be 
performed. (Note that there's no dependence between writing TPR and then changing 
the PSR for any other bits in the PSR than these.) A data serialization operation must 
be performed after TPR is written and before IVR is read to ensure that the reported 
IVR vector is correctly masked. The TPR fields are described in Figure 5-8 and 
Table 5-11.

5.8.3.4 End of External Interrupt Register (EOI – CR67)

A write to the EOI (end-of-external interrupt) register, shown in Figure 5-9, indicates 
that software has finished servicing the highest priority in-service external interrupt. 
The processor removes its internal in-service indication for the highest priority currently 
in-service external interrupt vector. Pending external interrupts are then masked by the 
next highest priority in-service external interrupt (if any).

Writes to EOI affect the local processor only, and do not propagate to other processors 
or external interrupt controllers.

EOI is a read-write register. Reads return 0. Data associated with the EOI writes is 
ignored. 

To ensure that the previous in-service interrupt indication has been cleared by a given 
point in program execution, software must perform a data serialization operation after 
an EOI write and prior to that point. To ensure that the reported IVR vector is correctly 
masked before the next IVR read, software must perform a data serialization operation 
after an EOI write and prior to that IVR read. 

Figure 5-8. Task Priority Register (TPR – CR66)

63    17 16 15 8 7 4 3 0

ignored mmi reserved mic ignored

47 1 8 4 4

Table 5-11. Task Priority Register Fields

Field Bits Description

mic 7:4 Mask Interrupt Class: all external interrupt vectors of equal or lower priority classes 
then the TPR.mic field are masked. For example, if mic field is 4, interrupt priority 
classes 1, 2, 3, and 4 are masked. A TPR.mic value of 0 has no masking effect; a 
value of 15 will mask all external interrupt vectors in the range 16 - 255. TPR.mic has 
no effect on external interrupt vectors 0 and 2, INITs and PMIs. See “Processor 
Interrupt Block” on page 2:127..

mmi 16 Mask Maskable Interrupts: When 1, masks all external interrupts other than NMI 
(vector 2). When 0, external interrupt vectors 16 - 255, are masked by the TPR.mic 
field.

Figure 5-9. End of External Interrupt Register (EOI – CR67)
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5.8.3.5 External Interrupt Request Registers (IRR0-3 – CR68,69,70,71)

Four 64-bit read-only External Interrupt Request Registers (IRR0-3, see Figure 5-10) 
provide the capability for software to determine the set of pending asynchronous 
external interrupts. IRR0 contains vectors <63:0> where vector 0 is in bit position 0, 
IRR1 contains vectors <127:64>, IRR2 contains vectors <191:128>, and IRR3 
contains vectors <255:192>. A bit in the IRR, corresponding to the pending interrupt 
vector number, is set when the processor receives an external interrupt. The IRR bit is 
cleared when software reads the IVR and the vector number corresponding to the IRR 
bit value is returned in the IVR. The IRR bit is also cleared when a level-sensitive 
external interrupt signal is deasserted, effectively removing the pending interrupt.

Since IRR0-3 are read-only registers, writes to these registers result in Illegal 
Operation faults.

5.8.3.6 Interval Timer Vector (ITV – CR72)

ITV specifies the external interrupt vector number for Interval Timer Interrupts. To 
ensure that subsequent interval timer interrupts reflect the new state of the ITV by a 
given point in program execution, software must perform a data serialization operation 
after an ITV write and prior to that point. See Figure 5-11 and Table 5-12 for the 
definitions of the ITV fields.

Figure 5-10. External Interrupt Request Register (IRR0-3 – CR68, 69, 70, 71)

63   16 15 3 2 1 0

IRR0 vectors < 63:16> 00000000 0
   

IRR1 vectors <127:64>
   

IRR2 vectors <191:128>
   

IRR3 vectors <255:192>

64

Figure 5-11. Interval Timer Vector (ITV – CR72)
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ignored m rv ig rv vector
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Table 5-12. Interval Timer Vector Fields

Field Bits Description

vector 7:0 External interrupt vector number to use when generating an Interval Timer interrupt. 
Vector values can be 0, 2 or 16-255. All other vectors are ignored and reserved for future 
use.

m 16 Mask: When 1, occurrences of Interval Timer interrupts are discarded and not pended. 
When 0, occurrences of Interval Timer interrupts are pended.
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5.8.3.7 Performance Monitoring Vector (PMV – CR73)

PMV specifies the external interrupt vector number for Performance Monitoring overflow 
interrupts. To ensure that subsequent performance monitor interrupts reflect the new 
state of PMV by a given point in program execution, software must perform a data 
serialization operation after a PMV write and prior to that point. See Figure 5-12 and 
Table 5-13 for the definitions of the PMV fields.

5.8.3.8 Corrected Machine Check Vector (CMCV – CR74)

CMCV specifies the external interrupt vector number for Corrected Machine Checks. To 
ensure that subsequent corrected machine check interrupts reflect the new state of 
CMCV by a given point in program execution, software must perform a data 
serialization operation after a CMCV write and prior to that point. See Figure 5-13 and 
Table 5-14 for the CMCV field definitions.

5.8.3.9 Local Redirection Registers (LRR0-1 – CR80,81)

Local Redirection Registers (LRR0-1) steer external signal-based interrupts that are 
directly connected to the local processor to a specific external interrupt vector. 
Processors may optionally support two direct external interrupt pins. When supported 
these external interrupt signals (pins) are referred to as Local Interrupt 0 (LINT0) and 
Local Interrupt 1 (LINT1). Software can query the presence of these pins via the 
PAL_PROC_GET_FEATURES procedure call. 

To ensure that subsequent interrupts from LINT0 and LINT1 reflect the new state of 
LRR prior to a given point in program execution, software must perform a data 
serialization operation after an LRR write and prior to that point. In the case when 

Figure 5-12. Performance Monitor Vector (PMV – CR73)
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Table 5-13. Performance Monitor Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Performance Monitor interrupt. Vector values 
can be 0, 2, or 16-255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Performance Monitor interrupts are discarded and not 
pended. When 0, occurrences of Performance Monitor interrupts are pended.

Figure 5-13. Corrected Machine Check Vector (CMCV – CR74)
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Table 5-14. Corrected Machine Check Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Corrected Machine Check. Vector values can 
be 0, 2, or 16 - 255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Corrected Machine Check interrupts are discarded and 
not pended. When 0, occurrences of Corrected Machine Check interrupts are pended.
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LINT0 and LINT1 pins are absent, writes to LRR would have no effect, and reads from 
LRR would return 0. Software can query the presence of the LINT pins via the 
PAL_PROC_GET_FEATURES procedure call. The LRR fields are defined in Figure 5-14 
and Table 5-15.

5.8.4 Processor Interrupt Block

Inter-Processor Interrupt (IPI) messages, Interrupt Acknowledge (INTA) cycles, and 
External Task Priority (XTP) cycles on the processor system bus are initiated by 
software by accessing a special physical memory range known as the “Processor 
Interrupt Block.” Figure 5-15 defines its memory layout. The entire 2 MByte Processor 
Interrupt Block is relocatable by a PAL firmware call and must be aligned on a 2 MByte 
boundary; by default, the block is located at physical address 0x0000 0000 FEE0 0000.

Figure 5-14. Local Redirection Register (LRR – CR80,81)
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Table 5-15. Local Redirection Register Fields

Field Bits Description

vector 7:0 External interrupt vector number to use when generating an interrupt for this entry. For 
INT delivery mode, allowed vector values are 0, 2, or 16-255. All other vectors are 
ignored and reserved for future use. For all other delivery modes this field is ignored.

dm 10:8 000 INT – pend an external interrupt for the vector number specified by the vector 
field in LRR. Allowed vector values are 0, 2, or 16-255. All other vector numbers 
are ignored and reserved for future use.

001 reserved

010 PMI – pend a Platform Management Interrupt Vector number 0 for system 
firmware. The vector field is ignored.

011 reserved

100 NMI – pend a Non-Maskable Interrupt. This interrupt is pended at external 
interrupt vector number 2. The vector field is ignored.

101 INIT – pend an Initialization Interrupt for system firmware. The vector field is 
ignored.

110 reserved

111 ExtINT – pend an Intel 8259A-compatible interrupt. This interrupt is delivered at 
external interrupt vector number 0. For details on servicing ExtINT external 
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:130. The vector 
field is ignored.

ipp 13 Interrupt Pin Polarity – specifies the polarity of the interrupt signal. When 0, the signal is 
active high. When 1, the signal is active low.

tm 15 Trigger Mode – When 0, specifies edge sensitive interrupts. If the m field is 0, assertion 
of the corresponding LINT pin pends an interrupt for the specified vector corresponding 
to the dm field. The pending interrupt indication is cleared by software servicing the 
interrupt. When 1, specifies level sensitive interrupts. If the m field is 0, assertion of the 
corresponding LINT pin pends an external interrupt for the specified vector. Deassertion 
of the corresponding LINT pin clears the pending interrupt indication. The processor has 
undefined behavior if the dm and tm fields specify level sensitive PMIs or INITs.

m 16 Mask – When 1, edge or level occurrences of the local interrupt pins are discarded and 
not pended. When 0, edge or level occurrences of local interrupt pins are pended.



2:128 Volume 2, Part 1: Interruptions

The Inter-Processor Interrupt region occupies the lower half of the Processor Interrupt 
Block; by default its physical address range is 0x0000 0000 FEE0 0000 through 0x0000 
0000 FEEF FFFF. A processor generates Inter-Processor Interrupts by performing an 
aligned 8-byte store to this memory region.

The Processor Interrupt Block does not support all forms of memory operations. 
Unsupported memory accesses result in undefined processor operation. 

• When targeted at the inter-processor interrupt delivery region (lower half of the 
Processor Interrupt Block), the following memory operations are undefined: 
instruction fetch, RSE accesses, or memory read references (only writes are 
permitted), references other than aligned 8-byte accesses, and references through 
any memory attribute other than UC.

• When targeted at the upper half of the Processor Interrupt Block, the following 
memory operations are undefined: instruction fetches, references other than 
1-byte accesses to the XTP byte and 1-byte read access to the INTA byte, and 
references through any memory attribute other than UC.

Any memory operation targeted at the lower half of the Processor Interrupt Block which 
does not correspond to any actual processor is undefined.

5.8.4.1 Inter-processor Interrupt Messages

A processor can interrupt any individual processor, including itself, by issuing an 
inter-processor interrupt message (IPI). A processor generates an IPI by storing an 
8-byte interrupt command to an 8-byte aligned address in the interrupt delivery region 
of the Processor Interrupt Block defined in “Processor Interrupt Block” on page 2:127. 
(If the address is not 8-byte aligned, the processor must either generate an Unaligned 
Data Reference Fault, see Section “Memory Datum Alignment and Atomicity” on 
page 2:93, or have undefined behavior). The address being stored to designates the 
target processor to receive the interrupt. The store address and data format of the 

Figure 5-15. Processor Interrupt Block Memory Layout
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inter-processor interrupt message are defined in Figure 5-16 and Figure 5-17. The data 
fields are defined in Table 5-17. The address processor identifier fields specify the 
target processor and are defined in Table 5-16.

Figure 5-16. Address Format for Inter-processor Interrupt Messages

63    20 19 12 11 4 3 2 0

ib_base id eid un 0

8 8 1 3

Figure 5-17. Data Format for Inter-processor Interrupt Messages

63 11 10 8 7 0

ignored, reserved for future use dm vector

53 3 8

Table 5-16. Address Fields for Inter-processor Interrupt Messages

Field Bits Description

un 3 Unused. This field must be set to 0. Behavior of the inter-processor interrupt (IPI) 
message is undefined if this field is set to 1.

id/eid 19:4 Specify the target processor. See Table 5-10 on page 2:122 for a definition of these 
fields. 

ib_base 63:20 Physical Base address of Processor Interrupt Block. This is a PAL relocatable 
physical address. The default is 0x0000 0000 FEE. See “Processor Interrupt Block” 
on page 2:127. Based on the processor model some of the high order physical 
address bits may be reserved.

Table 5-17. Data Fields for Inter-processor Interrupt Messages

Field Bits Description

vector 7:0 Vector number for the interrupt. For INT delivery, allowed vector values are 0, 2, or 
16-255. All other vectors are ignored and reserved for future use. For PMI delivery, 
allowed PMI vector values are 0-3. All other PMI vector values are reserved for use by 
processor firmware.

dm 10:8 000 INT – pend an external interrupt for the specified vector to the processor listed 
in the destination. Allowed vector values are 0, 2, or 16-255. All other vector 
numbers are ignored and reserved for future use.

001 Reserved

010 PMI – pend a PMI interrupt for the specified vector to the processor listed in the 
destination. Allowed PMI vector values are 0-3. All other PMI vector values are 
reserved for use by processor firmware. See Section 11.5, “Platform 
Management Interrupt (PMI)” on page 2:310 for details.

011 Reserved

100 NMI – pend an external interrupt as an NMI (vector 2) to the processor listed in 
the destination. The vector field is ignored.

101 INIT – pend an Initialization Interrupt for platform firmware on the processor 
listed in the destination. The vector field is ignored.

110 Reserved

111 ExtINT – pend an Intel 8259A-compatible interrupt. This interrupt is delivered at 
external interrupt vector number 0. For details on servicing ExtINT external 
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:130. The vector 
number field is ignored.

ignored 63:11 Ignored, reserved for future use
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5.8.4.2 Interrupt and IPI Ordering

Interrupt messages from external device(s), or external interrupts routed to the 
processor’s LINT pins, when present, may arrive at one or more processors and become 
pending in any order. No ordering is enforced by the processor or the platform.

As observed by a receiving processor, IPIs emitted from the same issuing processor 
may be pended in any order, even when the receiving processor and the issuing 
processor are the same.

As observed by a receiving processor, IPIs are pended after all prior loads and stores 
emitted by the same issuing processor are visible if and only if the IPI is issued with a 
st.rel (or proceeded by an mf), even when the receiving processor and the issuing 
processor are the same. For all other cases, no ordering is implied between IPI 
transactions and prior cacheable or uncached memory references. 

As observed by a receiving processor, no ordering is implied between IPIs and 
subsequent loads/stores from the same issuing processor, even when the receiving 
processor and the issuing processor are the same. Subsequent loads or stores may 
become visible before an IPI is seen as pending. Data or instruction serialization 
operations, memory fences (mf or mf.a), or st.rel do not ensure an IPI is pending at 
the target processor (including self) by a given point in program execution on the local 
processor.

5.8.4.3 Interrupt Acknowledge (INTA) Cycle

Intel 8259A-compatible external interrupt controllers can not issue interrupt messages 
and therefore do not specify an external interrupt vector number when the interrupt 
request is generated. When accepting an external interrupt, software must inspect the 
vector number supplied by the IVR register. If the vector matches the vector number 
assigned to the external controller (can be ExtINT, or any other vector number based 
on software convention), software must acquire the actual external interrupt vector 
number from the external interrupt controller by issuing a 1-byte load from the INTA 
Byte.

The INTA Byte is located within the upper half of the Processor Interrupt Block, at offset 
0x1E0000 from the base. A single byte load from the INTA address causes the 
processor to emit the INTA cycle on the processor system bus. An Intel 
8259A-compatible external interrupt controller must respond with the actual interrupt 
vector number as the data to be loaded. If two INTA cycles are required by the external 
interrupt controller, the platform must provide this functionality. Any memory operation 
to the INTA address other than a single byte load is undefined.

Software must issue an EOI to the local processor, to clear the interrupt in-service 
indication for the vector associated with the external interrupt controller.

5.8.4.4 External Task Priority (XTP) Cycle

Some model-specific system configurations support an External Task Priority Register 
(XTPR) per processor in external bus logic. A processor’s XTPR can be modified by 
storing one byte of data to the processor’s XTP Byte address. This generates a special 
bus transaction required to change the processor’s XTPR within the system. Please refer 
to system-specific documentation for XTPR bit format and field definitions. The 
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processor does not interpret any data stored to the XTP Byte address and all data bits 
are passed to the external system unmodified. Any memory operation to the XTP 
address other than a single byte store is undefined.

XTPR is written by operating system code to notify the system that the processor’s 
current task priority has been changed. Based on this task priority information, system 
implementations can steer interrupt messages from the I/O subsystems to the 
processors that have registered the lowest task priority levels. The XTPR register is a 
system performance hint and need not be updated by operating system code nor be 
implemented in all system configurations. If the system does not implement the XTPR, 
it must still accept a processor’s XTP cycle and discard it. Operating system code can 
issue XTPR updates regardless of external system support.

5.8.5 Edge- and Level-sensitive Interrupts

The processor’s LINT pins, when present, directly support edge and level sensitive 
interrupts, however all other interrupt sources are edge sensitive. A single external 
interrupt messages is issued only on the assertion of an interrupt by external interrupt 
controllers or devices, deassertion of an external interrupt sends no interrupt message 
to the processor. Since the processor removes the pending interrupt when the interrupt 
is serviced, the processor guarantees exactly-one interrupt acceptance for each 
external interrupt message. By definition external interrupt messages are edge 
sensitive.

Level sensitive external interrupts can be supported using edge sensitive interrupt 
messages as follows:

• Software services the external interrupt generated by an edge interrupt message.

• Software removes the external interrupt request from the requesting device, the 
device should then deassert its interrupt request line.

• To avoid spurious external interrupts, it is highly recommended that software issue 
a dummy read from the device to ensure that the interrupt request has been 
actually been removed before the interrupt is resampled in the next step.

• Software issues a command to the external interrupt controller to resample the 
interrupt (typically an external interrupt controller end-of-interrupt command). The 
external interrupt controller must issue another interrupt message back to the 
processor if service is still required by the processor for a given vector number. For 
example, if there are other devices still requiring service that are attached to the 
same level sensitive interrupt request line.

§
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Register Stack Engine 6

The register stack engine (RSE) moves registers between the register stack and the 
backing store in memory without explicit program intervention. The RSE operates 
concurrently with the processor and can take advantage of unused memory bandwidth 
to dynamically issue register spill and fill operations. In this manner, the latency of 
register spill/fill operations can be overlapped with useful program work. The basic 
principles of the register stack are discussed in Section 4.1, “Register Stack” on 
page 1:47. This chapter presents the internal state, the programming model and the 
interruption behavior of the register stack engine.

6.1 RSE and Backing Store Overview

The register stack frames are mapped onto a set of physical registers which operate as 
a circular buffer containing the most recently created frames. The RSE spills and fills 
these physical registers to/from a backing store in memory. The RSE moves registers 
between the physical register stack and the backing store without explicit program 
intervention. As indicated in Figure 6-1, the RSE operates on the physical stacked 
registers outside of the currently active frame (as defined by CFM). These registers 
contain the frames of the parent procedures of the current procedure. 

As shown in Figure 6-1, the backing store is organized as a stack in memory that grows 
from lower to higher addresses. The Backing Store Pointer (BSP) application register 
contains the address of the first (lowest) memory location reserved for the current 
frame (i.e., the location at which GR32 of the current frame will be spilled). RSE spill/fill 
activity occurs at addresses below what is contained in the BSP since the RSE spills/fills 
the frames of the current procedure’s parents. The BSPSTORE application register 
contains the address at which the next RSE spill will occur. The address register which 
corresponds to the next RSE fill operation, the BSP load pointer, is not architecturally 
visible. The addresses contained in BSP and BSPSTORE are always aligned to an 8-byte 
boundary. The backing store contains the local area of each frame. The output area is 
not spilled to the backing store (unless it later becomes part of a callee’s local area). 
Within each stack frame, lower-addressed registers are stored at lower memory 
addresses. RSE spills of NaTed stacked general registers are subject to the same 
memory update constraints as software spills (st8.spill) of NaTed static general 
registers (see “Register Spill and Fill” on page 1:62).

The RSE also spills/fills the NaT bits corresponding to the stacked registers. The NaT 
bits corresponding to the static subset must be spilled/filled as necessary by software. 
The NaT bits are the 65th bit of each general register. The NaT bits for the stacked 
subset are spilled/filled in groups of 63 corresponding to 63 consecutive physical 
stacked registers. When the RSE spills a register to the backing store the corresponding 
NaT bit is copied to the RSE NaT collection (RNAT) application register. Whenever bits 
8:3 of BSPSTORE are all ones, the RSE stores RNAT to the backing store. As shown in 
Figure 6-2, this results in a backing store memory image in which every 63 register 
values are followed by a collection of NaT bits. Bit 0 of the NaT collection corresponds to 
the first (lowest addressed) of the 63 register values; bit 62 corresponds to the 63rd 
register value. Bit 63 of the NaT collection is always written as zero. When the RSE fills 
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a stacked register from the backing store it also fills the register’s NaT bit. Whenever 
bits 8:3 of the RSE backing store load pointer are all ones, the RSE reloads a NaT 
collection from the backing store. Bit 63 of the NaT collection is ignored when read from 
the backing store.

Figure 6-1. Relationship Between Physical Registers and Backing Store

Figure 6-2. Backing Store Memory Format
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The RSE operates concurrently and asynchronously with respect to instruction 
execution by taking advantage of unused memory bandwidth to dynamically perform 
register spill and fill operations. The algorithm employed by the RSE to determine 
whether and when to spill/fill is implementation dependent. Software can not depend 
on the spill/fill algorithm. To ensure that the processor and RSE activities do not 
interfere with each other, software should not access stacked registers outside of the 
current stack frame. The architecture guarantees register stack integrity by faulting on 
writes to out-of-frame registers. Reads from out-of-frame registers may interact with 
RSE operations and return undefined data values. However, out-of-frame reads are 
required to propagate NaT bits. 

The operation of the RSE is controlled by the Register Stack Configuration (RSC) 
application register. Activity between the processor and the RSE is synchronized only 
when alloc, flushrs, loadrs, br.ret, or rfi instructions actually require registers to 
be spilled or filled, or when software explicitly requests RSE synchronization by 
executing a mov to/from RSC, BSPSTORE or RNAT application register instruction.

6.2 RSE Internal State

Table 6-1 describes architectural state that is maintained by the register stack engine. 
The RSE internal state elements described here are not directly exposed to the 
programmer as architecturally visible registers. As a consequence, RSE internal state 
does not need to be preserved across context switches or interruptions. Instead, it is 
modified as the side-effect of register stack-related instructions. To describe the effects 
of these instructions a complete definition of the RSE internal state is essential. To 
distinguish them from architecturally visible resources, all RSE internal state elements 
are prefixed with “RSE.” Other RSE related resources are architecturally visible and are 
exposed to software as application registers: RSC, BSP, BSPSTORE, and RNAT.

Table 6-1. RSE Internal State

Name Description Corresponds To

RSE.N_STACKED_PHYS Number of Stacked Physical registers: 
Implementation dependent size of the stacked 
physical register file.

RSE.BOF Bottom-of-frame register number: Physical 
register number of GR32.

AR[BSP]

RSE.StoreReg RSE Store Register number: Physical register 
number of next register to be stored by RSE.

AR[BSPSTORE]

RSE.LoadReg RSE Load Register number: Physical register 
number one greater than the next register to 
load (modulo the number of stacked physical 
registers).

RSE.BspLoad

RSE.BspLoad Backing Store Pointer for memory loads: 64-bit 
Backing Store Address 8 bytes greater than the 
next address to be loaded by the RSE.

RSE.BspLoad

RSE.RNATBitIndex RSE NaT Collection Bit Index: 6-bit wide RNAT 
Collection Bit Index (defines which RNAT 
collection bit gets updated)

AR[BSPSTORE]{8:3}

RSE.CFLE RSE Current FrameLoad Enable: Control bit 
that permits the RSE to load registers in the 
current frame after a br.ret or rfi.
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6.3 Register Stack Partitions

The processor’s physical register file provides at least 96 stacked registers. The actual 
number of stacked registers (RSE.N_STACKED_PHYS) is implementation dependent 
and must be an even multiple of 16. Figure 6-3 illustrates the circular nature of the 
physical register file, and shows the correspondence of the registers to the backing 
store. Figure 6-3 also shows the four partitions of the stacked register file:

Clean partition (lightly-shaded): registers that contain values from parent 
procedure frames. The registers in this partition have been successfully spilled to 
the backing store by the RSE and their contents have not been modified since they 
were written to the backing store.

Dirty partition (medium-shaded): registers that contain values from parent 
procedure frames. The registers in this partition have not yet been spilled to the 
backing store by the RSE. The number of registers contained in the dirty partition 
(distance between RSE.StoreReg and RSE.BOF) is referred to as RSE.ndirty.

Current frame (shaded dark): stacked registers allocated for computation. The 
position of the current frame in the physical stacked register file is defined by the 
Bottom-of-frame register (RSE.BOF). The number of registers in the current frame 
is defined by the size of frame field in the current frame marker (CFM.sof).

Invalid partition (diagonally striped): registers outside the current frame that do 
not contain values from parent procedure frames. They are immediately available 
for allocation into the current frame or for RSE load operations.

RSE.ndirty Number of dirty registers on the register stack

RSE.ndirty_words Number of dirty words on the register stack plus 
corresponding number of NaT collection 
registers

AR[BSP] - 
AR[BSPSTORE]

Table 6-1. RSE Internal State (Continued)

Name Description Corresponds To
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The boundaries between the four register stack partitions are defined by the current 
frame marker (CFM) and three physical register numbers: a load, store and 
bottom-of-frame register number. As described in Table 6-1 each of these physical 
register numbers has a corresponding 64-bit backing store memory address pointer. 
(For example, AR[BSP] always contains the address where GR[32] of the current frame 
will be stored.)

Figure 6-3 also shows the effects of various instructions on the partition boundaries. 
RSE loads use invalid registers. RSE stores use dirty registers. Eager RSE loads and 
stores grow the clean partition. A br.call, brl.call, or cover instruction can increase 
the bottom-of-frame pointer (RSE.BOF) which moves registers from the current frame 
to the dirty partition. An alloc may shrink or grow the current frame by updating 
CFM.sof. A br.ret or rfi instruction may shrink or grow the current frame by updating 
both the bottom-of-frame pointer (RSE.BOF) and CFM.sof.

6.4 RSE Operation

The register stack backing store is organized as a stack in memory that grows from 
lower addresses towards higher addresses. The top of the backing store stack is defined 
by the Backing Store Pointer (BSP) application register, which points to the first 
memory location reserved for the current frame. The RSE load and store activities take 

Figure 6-3. Four Partitions of the Register Stack
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place at lower addresses, defined relative to BSP by the sizes of the clean and dirty 
partitions. Although the stack is conceptually infinite in both directions, the effective 
base of the stack is expected to be the first memory location of the first page allocated 
to the backing store.

To allow the highest possible degree of concurrent execution, the processor and the 
RSE operate independently of each other during normal program execution. The RSE 
distinguishes between mandatory and eager load/store operations. Mandatory 
load/store operations occur as the result of alloc, flushrs, loadrs, br.ret or rfi 
instructions. Eager operations occur when the RSE is speculatively working ahead of 
program execution, and it is not known whether this register spill/fill is actually 
required by the program.

When the RSE works in the background, it issues eager RSE spill and fill operations to 
extend the size of the clean partition in both directions—by decreasing the RSE load 
pointer and loading values from the backing store into invalid registers (eager RSE 
load), and by saving dirty registers to the backing store and increasing the RSE store 
pointer (eager RSE store). Allocation of a sufficiently large frame (using alloc) or 
execution of a flushrs instruction may cause the RSE to suspend program execution 
and issue mandatory RSE stores until the required number of registers have been 
spilled to the backing store. Similarly a br.ret or rfi back to a sufficiently large frame 
or execution of a loadrs instruction may cause the RSE to suspend program execution 
and issue mandatory RSE loads until the required number of registers have been 
restored from the backing store. The RSE only operates in the foreground and suspends 
program execution whenever forward progress of the program actually requires 
registers to be spilled or filled.

Table 6-2 describes the RSE operation instructions and state modifications.

Table 6-2. RSE Operation Instructions and State Modification

Affected State

Instruction

alloc 
r1=ar.pfs,i,l,
o,ra

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete Register Frame” 
on page 2:146.

br.calla, brl.calla br.reta rfi 
when CR[IFS].v = 1

AR[BSP]{63:3} unchanged AR[BSP]{63:3} + CFM.sol + 
(AR[BSP]{8:3} + CFM.sol)/63

AR[BSP]{63:3} - 
AR[PFS].pfm.sol - 
(62-AR[BSP]{8:3}+
AR[PFS].pfm.sol)/63

AR[BSP]{63:3} - 
CR[IFS].ifm.sof - 
(62-AR[BSP]{8:3}+
CR[IFS].ifm.sof)/63

AR[PFS] unchanged AR[PFS].pfm = CFM
AR[PFS].pec = AR[EC]
AR[PFS].ppl = PSR.cpl

unchanged unchanged

GR[r1] AR[PFS] N/A N/A N/A

CFM CFM.sof = i+l+o
CFM.sol = i+l
CFM.sor = r >> 3

CFM.sof -= CFM.sol
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

AR[PFS].pfm 
or b

CFM.sof = 0
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

b. Normal br.ret instructions restore CFM with AR[PFS].pfm. However, if a bad PFS value is read by the br.ret instruction, all 
CFM fields are set to zero. See “Bad PFS used by Branch Return” on page 2:143.

CR[IFS].ifm
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6.5 RSE Control

The RSE can be controlled at all privilege levels by means of three instructions (cover, 
flushrs, and loadrs) and by accessing four application registers (mov to/from RSC, 
BSP, BSPSTORE and RNAT). This section first presents each of the RSE application 
registers, and then discusses the three RSE control instructions.

6.5.1 Register Stack Configuration Register

The layout of the Register Stack Configuration application register (RSC) is defined in 
Section 3.1.8.2, “Register Stack Configuration Register (RSC – AR 16)” on page 1:29. 
This section describes the semantics of the mode, the privilege level and the byte order 
fields of the RSC. The loadrs field is described as part of the loadrs instruction in 
Section 6.5.4, “RSE Control Instructions” on page 2:142.

RSE Mode: Two mode bits in the RSC register determine when the RSE generates 
register spill or fill operations. When both mode bits are zero (enforced lazy mode) the 
RSE issues only mandatory loads and stores (when an alloc, br.ret, flushrs or rfi 
instruction requires registers to be spilled or filled). Bit 0 of the RSC.mode field enables 
eager RSE stores and bit 1 enables eager RSE loads. Table 6-3 defines all four possible 
RSE modes. Please see the processor-specific documentation for further information on 
the RSE modes implemented by the Itanium processor.

The algorithm that decides whether and when to speculatively perform eager register 
spill or fill operations is implementation dependent. Software may not make any 
assumptions about the RSE load/store behavior when the RSC.mode is non-zero. 
Furthermore, access to the BSPSTORE and RNAT application registers and the 
execution of the loadrs instructions require RSC.mode to be zero (enforced lazy 
mode). If loadrs, move to/from BSPSTORE or move to/from RNAT are executed when 
RSC.mode is non-zero an Illegal operation fault is raised. Eager spill/fill of the RNAT 
register to/from the backing store is only permitted if the RSE is in store/load intensive 
or eager mode. In enforced lazy mode, the RSE may spill/fill the RNAT register only if a 
subsequent mandatory register spill/fill is required.

RSE Privilege Level: When address translation is enabled (PSR.rt is one), the RSE 
operates at a privilege level defined by two privilege level bits in the Register Stack 
Configuration register (RSC.pl). All privilege level checks for RSE virtual accesses are 
performed using the privilege level in RSC.pl. When the RSC is written, the privilege 
level bits are clipped to the current privilege level of the process, i.e., the numerical 
maximum of the current privilege level and the privilege level in the source register is 
written to RSC.pl.

Table 6-3. RSE Modes (RSC.mode)

Mode RSE Loads RSE Stores RSC.mode

Enforced Lazy Mandatory only Mandatory only 00

Store Intensive Mandatory only Eager and Mandatory 01

Load Intensive Eager and Mandatory Mandatory only 10

Eager Eager and Mandatory Eager and Mandatory 11
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Protection is also checked based on the current entries in the data TLB. The RSE always 
remains coherent with respect to the data TLB. If a translation that is being used by the 
RSE is changed or purged, the RSE will immediately begin using the new translation or 
suffer a TLB miss. Only mandatory loads and stores can cause RSE memory related 
faults. Details on RSE fault delivery are described in “RSE Interruptions” Although eager 
RSE loads and stores do not cause interruptions they can, under certain conditions, 
cause a VHPT walk and TLB insert. Details on when RSE loads and stores can cause a 
VHPT walk are described in “VHPT Environment” on page 2:67.

The RSE expects its backing store to be mapped to cacheable speculative memory. If 
RSE spill/fill transactions are performed to non-speculative memory that may contain 
I/O devices, system behavior is unpredictable. 

RSE Byte Order: Because the RSE runs asynchronously with the processor, it may be 
running on behalf of a context with a different byte order from the current one. 
Consequently, the RSE defines its own byte ordering bit: RSC.be. When RSC.be is zero, 
registers are stored in little-endian byte order (least significant bytes to lower 
addresses). When RSC.be is one, registers are stored in big-endian byte order (most 
significant bytes to lower addresses). RSC.be also determines the byte order of NaT 
collections spilled/filled by the RSE. RSC.be may be written by code at any privilege 
level. Changes to RSC.be should only be made by software when RSC.mode is zero. 
Failure to do so results in undefined backing store contents.

6.5.2 Register Stack NaT Collection Register

As described in Section 6.1, “RSE and Backing Store Overview” on page 2:133, the RSE 
is responsible for saving and restoring NaT bits associated with the stacked registers to 
and from the backing store. The RSE writes its NaT collection register (the RNAT 
application register) to the backing store whenever BSPSTORE{8:3} = 0x3F (1 NaT 
collection for every 63 registers). The RNAT acts as a temporary holding area for up to 
63 unsaved NaT bits. The RSE NaT collection bit index (RSE.RNATBitIndex) determines 
which bit of the RNAT register receives the NaT bit of a spilled register as the result of 
an RSE store. The six-bit wide RSE.RNATBitIndex is always equal to BSPSTORE{8:3}. 
As a result, RNAT{x} corresponds to the register saved at 

concatenate(BSPSTORE{63:9},x{5:0},0{2:0}).

The RSE never saves partial NaT collections to the backing store, so software must save 
and restore the RNAT application register when switching the backing store pointer. 
RSE.RNATBitIndex determines which RNAT bits are valid. Bits 
RNAT{RSE.RNATBitIndex:0} contain defined values, and bits 
RNAT{62:RSE.RNATBitIndex+1} contain undefined values. Bit 63 of the RNAT 
application register always reads as zero. Writes to bit 63 of the RNAT application 
register are ignored. The execution of RSE control instructions mov to BSPSTORE and 
loadrs as well as an RSE spill of the RNAT register cause the contents of the RNAT 
register to become undefined. The RNAT application register can only be accessed when 
RSC.mode is zero. If RSC.mode is non-zero, accessing the RNAT application register 
results in an Illegal Operation fault.
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6.5.3 Backing Store Pointer Application Registers

The RSE defines two Backing Store Pointer application registers: BSPSTORE and BSP. 
Since the RSE backing store pointers are always 8-byte aligned, bits {2:0} of the 
backing store pointers always read as zero. When writing the BSPSTORE application 
register, bits {2:0} in the presented address are ignored.

The RSE Backing Store Pointer for memory stores (BSPSTORE) is a 64-bit application 
register that provides the main interface to the three RSE backing store memory 
pointers: BSP, BSPSTORE and RSE.BspLoad. The BSPSTORE application register can 
only be accessed when RSC.mode is zero. If RSC.mode is non-zero, accessing 
BSPSTORE results in an Illegal Operation fault.

Reading BSPSTORE (mov from BSPSTORE application register) returns the address of 
the next RSE store.

Writing BSPSTORE (mov to BSPSTORE application register) has side-effects on all three 
RSE pointers and the NaT collection process. The operation is defined as follows: the 
BSPSTORE and RSE.BspLoad pointers are both set to the address presented, which 
forces the size of the clean partition to zero. Writes to the BSPSTORE application 
register do not change the size of the dirty partition: the BSP pointer is set to the 
address presented plus the size of the dirty partition plus the size of any intervening 
NaT collections. The dirty partition is preserved to allow software to change the backing 
store pointer without having to flush the register stack. Writing BSPSTORE causes the 
contents of the RNAT register to become undefined. Therefore software must preserve 
the contents of RNAT prior to writing BSPSTORE. After writing to BSPSTORE, the NaT 
collection bit index (RSE.RNATBitIndex) is set to bits {8:3} of the presented address. If 
an unimplemented address in BSPSTORE is used by a mandatory RSE spill or fill, an 
Unimplemented Data Address fault is raised. 

The RSE Backing Store Pointer (BSP) is a 64-bit read-only application register. Writing 
BSP (mov to BSP application register) results in an Illegal Operation fault. Reads from 
BSP (mov from BSP application register) return the address of the top of the register 
stack in memory. This location is the backing store address to which the current GR32 
would be written. Reading BSP does not have any side-effect on any of the internal RSE 
pointers or the NaT collection process. Therefore, BSP can be read regardless of the 
RSE mode, i.e., even when RSC.mode is non-zero. Since BSP is determined by 
BSPSTORE and the size of the dirty partition, it is possible for BSPSTORE to contain an 
implemented address and for BSP to contain an unimplemented address. BSP reads 
always return a full 64-bit (possibly unimplemented) address; only a subsequent data 
memory reference with an unimplemented address will cause an Unimplemented Data 
Address fault.

Table 6-4 summarizes the effects of the three instructions that access the backing store 
pointer application registers.
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6.5.4 RSE Control Instructions

This section describes the RSE control instructions: cover, flushrs and loadrs. The 
effects of the three RSE control instructions on the RSE state are summarized in 
Table 6-5.

The cover instruction adds all registers in the current frame to the dirty partition, and 
allocates a zero-size current frame. As a result AR[BSP] is updated. cover clears the 
register rename base fields in the current frame marker CFM. If PSR.ic is zero, the 
original value of CFM is copied into CR[IFS].ifm and CR[IFS].v is set to one. The cover 
instruction must the last instruction in an instruction group; otherwise, operation is 
undefined.

The flushrs instruction spills all dirty registers to the backing store. When it 
completes, RSE.ndirty is defined to be zero, and BSPSTORE equals BSP. Since flushrs 
may cause RSE stores, the RNAT application register is updated. A flushrs instruction 
must be the first instruction in an instruction group otherwise the results are undefined.

The loadrs instruction ensures that a specified portion of the backing store below the 
current BSP is present in the physical stacked registers. The size of the backing store 
section is specified in the loadrs field of the RSC application register (AR[RSC].loadrs). 
After loadrs completes, all registers and NaT collections between the current BSP and 
the tear-point (BSP-(RSC.loadrs{13:3} << 3)), and no more than that, are guaranteed 
to be present and marked as dirty in the stacked physical registers. When loadrs 
completes BSPSTORE and RSE.BspLoad are defined to be equal to the backing store 
tear-point address. All other physical stacked registers are marked invalid.

• If the tear-point specifies an address below RSE.BspLoad, the RSE issues 
mandatory loads to restore registers and NaT collections. All registers between the 
current BSP and the tear-point are marked dirty.

• If the RSE has already loaded registers beyond the tear-point when the loadrs 
instruction executes, the RSE marks clean registers below the tear-point as invalid 
and marks clean registers above the tear-point as dirty.

• If the tear-point specifies an address greater than BSPSTORE, the RSE marks clean 
and dirty registers below the tear-point as invalid (in this case dirty registers are 
lost).

Table 6-4. Backing Store Pointer Application Registers

Affected State

Instruction

Read BSP
mov r1=AR[BSP]

Read BSPSTORE
mov r1=AR[BSPSTORE]

Write BSPSTOREa

mov AR[BSPSTORE]=r2

a. Writing to AR[BSPSTORE] has undefined behavior with an incomplete frame. See “RSE Behavior with an 
Incomplete Register Frame” on page 2:146.

GR[r1] AR[BSP] AR[BSPSTORE] N/A

AR[BSP]{63:3} Unchanged Unchanged (GR[r2]{63:3} + RSE.ndirty) +
((GR[r2]{8:3} + RSE.ndirty)/63)

AR[BSPSTORE]{63:3} Unchanged Unchanged GR[r2]{63:3}

RSE.BspLoad {63:3} Unchanged Unchanged GR[r2]{63:3}

AR[RNAT] Unchanged Unchanged UNDEFINED

RSE.RNATBitIndex Unchanged Unchanged GR[r2]{8:3}
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By specifying a zero RSC.loadrs value loadrs can be used to invalidate all stacked 
registers outside the current frame. loadrs causes the contents of the RNAT register to 
become undefined. The NaT collection index is set to bits {8:3} of the new BSPSTORE. 
A loadrs instruction must be the first instruction in an instruction group otherwise the 
results are undefined. The following conditions cause loadrs to raise an Illegal 
Operation fault:

• If RSC.mode is non-zero.

• If both CFM.sof and RSC.loadrs are non-zero.

• If RSC.loadrs specifies more words to be loaded than will fit in the stacked physical 
register file (RSE.N_STACKED_PHYS).

6.5.5 Bad PFS used by Branch Return

On a br.ret, if the PFS application register defines an output area which is larger than 
the number of implemented stacked registers minus the size of dirty partition 
((AR[PFS].sof - AR[PFS].sol) > (RSE.N_STACKED_PHYS - RSE.ndirty)), the return will 
not restore CFM with AR[PFS].pfm (normal behavior); instead, the return sets all fields 
in the CFM (of the procedure being returned to) to zero.

Typical procedure call and return sequences that preserve PFS values and that do not 
use cover or loadrs instructions will not encounter this situation.

The RSE will detect the above condition on a br.ret, and update its state as follows:

• The register rename base (RSE.BOF), AR[BSP], and AR[BSPSTORE] are updated as 
required by the return.

Table 6-5. RSE Control Instructions

Affected State
Instruction

cover flushrsa

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete 
Register Frame” on page 2:146.

loadrsa

AR[BSP]{63:3} AR[BSP]{63:3}+ CFM.sof +
(AR[BSP]{8:3} + CFM.sof)/63

Unchanged Unchanged

AR[BSPSTORE]{63:3} Unchanged AR[BSP]{63:3} AR[BSP]{63:3} - 
AR[RSC].loadrs{13:3}

RSE.BspLoad{63:3} Unchanged Model specificb

b. In general, eager RSE implementations will preserve RSE.BspLoad during a flushrs. Lazy RSE 
implementations may set RSE.BspLoad to AR[BSPSTORE] after flushrs completes or faults.

AR[BSP]{63:3} -
AR[RSC].loadrs{13:3}

AR[RNAT] Unchanged Updated UNDEFINED

RSE.RNATBitIndex Unchanged AR[BSPSTORE]{8:3} AR[BSPSTORE]{8:3}

CR[IFS] if (PSR.ic == 0) {
CR[IFS].ifm = CFM
CR[IFS].v = 1}

Unchanged Unchanged

CFM CFM.sof = 0
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

Unchanged Unchanged
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• The CFM (after the return) is forced to zero; i.e., all CFM fields (including CFM.sof 
and CFM.sol) are set to zero.

• The registers from the returned-from frame and the preserved registers from the 
returned-to frame are added to the invalid partition of the register stack.

• The dirty partition of the register stack is shrunk by AR[PFS].pfm.sol.

• The clean partition of the register stack remains unchanged. RSE.BspLoad and 
RSE.LoadReg remain unchanged.

• No other indication is given to software.

Since the size of the current frame is set to zero, the contents of some (possibly all) 
stacked GRs may be overwritten by subsequent eager RSE operations or by subsequent 
instructions allocating a new stack frame and then targeting a stacked GR. Therefore, 
explicit register stack management sequences that manipulate PFS, use the cover 
instruction, or use the loadrs instruction must avoid this situation by executing one of 
the two following code sequences prior to a br.ret:

• Use a flushrs instruction prior to the br.ret. This preserves all dirty registers to 
memory, and sets RSE.ndirty to zero, which avoids the condition.

• Use a loadrs instruction with an AR[RSC].loadrs value in the following range:

AR[RSC].loadrs <= 8*(ndirty_max + ((62 - AR[BSP]{8:3} + ndirty_max) / 63)),
where ndirty_max = (RSE.N_STACKED_PHYS - (AR[PFS].sof - AR[PFS].sol))

This adjusts the size of the dirty partition appropriately to avoid the condition. A loadrs 
with RSC.loadrs=0 works on all processor models, regardless of the number of 
implemented stacked physical registers. Note that loadrs may cause registers in the 
dirty partition to be lost.

6.6 RSE Interruptions 

Although the RSE runs asynchronously to processor execution, RSE related 
interruptions are delivered synchronously with the instruction stream. These RSE 
interruptions are a direct consequence of register stack-related instructions such as: 
alloc, br.ret, rfi, flushrs, loadrs, or mov to/from BSP, BSPSTORE, RSC, PFS, IFS, 
or RNAT. Register spills and fills that are executed by the RSE in the background (eager 
RSE loads or stores) do not raise interruptions. If a faulting/trapping register spill or fill 
operation is required for software to make forward progress (mandatory RSE load or 
store) then the RSE will raise an interruption.

Mandatory RSE stores occur in the context of alloc and flushrs instructions only. Any 
faults raised by these instructions are delivered on the issuing instruction. Faults raised 
by mandatory RSE loads caused by a loadrs are delivered on the issuing instruction. 
Mandatory RSE loads which fault while restoring the frame for a br.ret or rfi deliver 
the fault on the target instruction, and the ISR.ir (incomplete register frame) bit is set. 
When a mandatory RSE load faults, AR[BSPSTORE] points to a backing store location 
above the faulting address reported in CR[IFA]. This allows handlers that service RSE 
load faults to use the backing store switch routine described in “Switch from 
Interrupted Context” on page 2:148.

The br.ret and the rfi instructions set the RSE Current Frame Load Enable bit 
(RSE.CFLE) to one if the register stack frame being returned to is not entirely contained 
in the stacked register file. This enables the RSE to restore registers for the current 
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frame of the target instruction. When RSE.CFLE is set, instruction execution is stalled 
until the RSE has completely restored the current frame or an interruption occurs. This 
is the only time that the RSE issues any memory traffic for the current frame. 
Interruption delivery clears RSE.CFLE which allows an interruption handler to execute in 
the presence of an incomplete frame (e.g., to handle the fault raised by the mandatory 
RSE load). The RSE.CFLE bit is RSE internal state and is not architecturally visible.

Table 6-6 summarizes RSE raised interruptions.

Table 6-6. RSE Interruption Summary

Instruction Interruption Description

alloc Illegal Operation fault Malformed alloc immediate.

alloc Reserved Register/Field fault alloc instruction which attempted to change the size 
of the rotating region when one or more of the RRB 
values in CFM were non-zero.

alloc,
flushrs,
loadrs

Unimplemented Data Address fault AR[BSPSTORE] contains an unimplemented address.

Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault AR[BSPSTORE] pointed to a NaTVal data page.

Data Key Miss fault

Data Key Permission fault

Data Access Rights fault

Data Dirty Bit fault

Data Access Bit fault

Data Debug fault

br.call,
brl.call

No RSE related interruptions

br.ret No RSE load related faults RSE load related faults are delivered on target 
instruction.

rfi No RSE related interruptions RSE load related faults are delivered on target 
instruction.

Target of 
br.ret or 
rfi

IR Unimplemented Data Address 
fault

Mandatory RSE load targeted an unimplemented 
address.

IR Data Nested TLB fault br.ret with PSR.ic = 0 or rfi executed when IPSR.ic 
= 0.

IR Alternate Data TLB fault

IR VHPT Data TLB fault

IR Data TLB fault

IR Data Page Not Present fault

IR Data NaT Page Consumption fault RSE.BspLoad pointed at a NaTPage.

IR Data Key Miss fault

IR Data Key Permission fault

IR Data Access Rights fault

IR Data Access Bit fault

IR Data Debug fault
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6.7 RSE Behavior on Interruptions

When the processor raises an interruption, the current register stack frame remains 
unchanged. If PSR.ic is one, the valid bit in the Interruption Function State register 
(IFS.v) is cleared. When the IFS.v bit is clear, the contents of the interruption frame 
marker field (IFS.ifm) are undefined.

While an interruption handler is running and the RSE is in store/load intensive or eager 
mode, the RSE continues spilling/filling registers to/from the backing store on behalf of 
the interrupted context as long as the registers are not part of the current frame as 
defined by CFM.

A sequence of mandatory RSE loads or stores (from alloc, br.ret, flushrs, loadrs 
and rfi) can be interrupted by an external interrupt.

When PSR.ic is 0, faults taken on mandatory RSE operations may not be recoverable.

6.8 RSE Behavior with an Incomplete Register Frame

The current register frame is considered incomplete when one of the mandatory RSE 
loads after a br.ret or a rfi faults, leaving BSPSTORE pointing to a location above BSP 
(i.e., RSE.ndirty_words is negative). The frame becomes complete when 
RSE.ndirty_words becomes non-negative, either by executing a cover instruction, or by 
handling the fault and completing the original sequence of mandatory RSE loads.

When the current frame is incomplete the following instructions have undefined 
behavior: alloc, br.call, brl.call, br.ret, flushrs, loadrs, and move to 
BSPSTORE. Software must guarantee that the current frame is complete before 
executing these instructions.

6.9 RSE and ALAT Interaction

The ALAT (see “Data Speculation” on page 1:63) uses physical register addresses to 
track advanced loads. RSE.BOF may only change as the result of a br.call (by 
CFM.sol), cover (by CFM.sof), br.ret (by AR[PFM].sol) or rfi (by CR[IFS].ifm.sof 
when CR[IFS].v =1). This ensures, for ALAT invalidation purposes, that hardware does 
not update virtual to physical register address mapping, unless explicitly instructed to 
do so by software. 

When software performs backing store switches that could cause program values to be 
placed in different physical registers, then the ALAT must be explicitly invalidated with 
the invala instruction. Typically this happens as part of a process or thread context 
switch, longjmp or call stack unwind, when software re-writes AR[BSPSTORE], but 
cannot guarantee that RSE.BOF was preserved.

A stacked register is said to be deallocated when an alloc, br.ret, or rfi instruction 
changes the top of the current frame such that the register is no longer part of the 
current frame. Once a stacked register is deallocated, its value, its corresponding NaT 
bit, and its ALAT state are undefined. If that register is subsequently made part of the 
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current frame again (either via another alloc instruction, or via a br.ret or rfi to a 
previous frame that contained that register), the value stored in the register, the NaT 
bit for the register, and the corresponding ALAT entry for the register remain undefined. 

RSE stores do not invalidate ALAT entries. Therefore, software cannot use the ALAT to 
trace RSE stores to the backing store.

Note: While an implementation is allowed to remove entries from the ALAT at any 
time, performance considerations strongly encourage not invalidating ALAT 
entries due to RSE stores.

6.10 Backing Store Coherence and Memory Ordering

RSE loads and stores are coherent with respect to the processor’s data cache at all 
times. The backing store below BSPSTORE is defined to be consistent with the register 
stack (the memory image contains consecutive register values and NaT collections). 
Addresses below BSPSTORE are not modified by the RSE until br.ret, rfi or a move to 
BSPSTORE causes BSP to drop below the original BSPSTORE value. The RSE never 
writes to a memory address greater than or equal to BSP.

In order for software to modify a value in the backing store and guarantee that it be 
loaded by the RSE, software must first place the RSE into enforced lazy mode 
(RSC.mode=0), and read BSP and BSPSTORE to determine the location of the RSE 
store pointer. If the location to be modified lies between BSPSTORE and BSP, software 
must issue a flushrs, update the backing store location in memory, and issue a loadrs 
instruction with the RSC.loadrs set to zero (this invalidates the current contents of the 
physical stacked registers, except the current frame, which forces the RSE to reload 
registers from the backing store). If the location to be modified lies below BSPSTORE, 
unnecessary memory traffic can be avoided as follows: software must read the RNAT 
application register, update the backing store location in memory, rewrite BSPSTORE 
with the original value, and then rewrite RNAT.

RSE loads and stores are weakly ordered. The flushrs and loadrs instructions do not 
include an implicit memory fence. Turning on and off the RSE does not affect memory 
ordering. To ensure ordering of RSE loads and stores on a multiprocessor system, 
software is required to issue explicit memory fence (mf) instructions.

6.11 RSE Backing Store Switches

The implementation of system calls, operating system context switches, user-level 
thread packages, debugging software, and certain types of exception handling (e.g., 
setjmp/longjmp, structured exception handling and call stack unwinding) require 
explicit user-level control of the RSE and/or knowledge of the backing store format in 
memory. Therefore, the RSE and the backing store can be controlled at all privilege 
levels.

Three RSE backing store switches are described here:

1. Switching from an interrupted context (as part of exception handler or interrupt 
bubble-up code)

2. Returning to a previously interrupted context
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3. Non-preemptive, synchronous backing store switch (covers system calls, 
user-level thread and operating system context switches)

Failure to follow these sequences may result in undefined RSE and processor behavior.

6.11.1 Switch from Interrupted Context 

To switch from the backing store of an interrupted context to a new backing store:

1. Read and save the RSC and PFS application registers.

2. Issue a cover instruction for the interrupted frame.

3. Read and save the IFS control register.

4. Place RSE in enforced lazy mode by clearing both RSC.mode bits.

5. Read and save the BSPSTORE and RNAT application registers.

6. Write BSPSTORE with the new backing store address.

7. Read and save the new BSP to calculate the number of dirty registers.

8. Select the desired RSE setting (mode, privilege level and byte order).

6.11.2 Return to Interrupted Context 

To return to the backing store of an interrupted context:

1. Allocate a zero-sized frame.

2. Subtract the BSPSTORE value written in step 6 of Section 6.11.1, “Switch from 
Interrupted Context” from the BSP value read in step 7 of Section 6.11.1, “Switch 
from Interrupted Context” on page 2:148, and deposit the difference into 
RSC.loadrs along with a zero into RSC.mode (to place the RSE into enforced lazy 
mode).

3. Issue a loadrs instruction to insure that any registers from the interrupted 
context which were saved on the new stack have been loaded into the stacked 
registers.

4. Restore BSPSTORE from the interrupted context (saved in step 5 of Section 
6.11.1, “Switch from Interrupted Context”).

5. Restore RNAT from the interrupted context (saved in step 5 of Section 6.11.1, 
“Switch from Interrupted Context”).

6. Restore PFS and IFS from the interrupted context (saved in steps 1 and 3 of 
Section 6.11.1, “Switch from Interrupted Context”).

7. Restore RSC from the interrupted context (saved in step 1 of Section 6.11.1, 
“Switch from Interrupted Context”). This restores the setting of the RSE mode 
bits as well as privilege level and byte order.

8. Issue an rfi instruction (IFS.ifm will become CFM).

6.11.3 Synchronous Backing Store Switch 

A non-preemptive, synchronous backing store switch at any privilege level can be 
accomplished as follows:
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1. Read and save the RSC, BSP and PFS application registers.

2. Issue a flushrs instruction to flush the dirty registers to the backing store.

3. Place RSE in enforced lazy mode by clearing both RSC.mode bits.

4. Read and save the RNAT application register.

5. Invalidate the ALAT using the invala instruction when switching from code that 
does not restore RSE.BOF to its original setting. A different RSE.BOF will cause 
program values in the new context to be placed in different physical registers. 
See “RSE and ALAT Interaction” on page 2:146 for details.

6. Write the new context’s BSPSTORE (was BSP after flushrs when switching out).

7. Write the new context’s PFS and RNAT.

8. Write the new context’s RSC which will set the RSE mode, privilege level and byte 
order.

6.12 RSE Initialization

At processor reset the RSE is defined to be in enforced lazy mode, i.e., the RSC.mode 
bits are both zero. The RSE privilege level (RSC.pl) is defined to be zero. RSE.BOF 
points to physical register 32. The values of AR[PFS].pfm and CR[IFS].ifm are 
undefined. The current frame marker (CFM) is set as follows: sof=96, sol=0, sor=0, 
rrb.gr=0, rrb.fr=0, and rrb.pr=0. This gives the processor access to 96 stacked 
registers.

The RSE performs no spill/fill operations until either an alloc, br.ret, rfi, flushrs or 
loadrs require a mandatory RSE operation, or software explicitly enables eager RSE 
operations. Software must provide the RSE with a valid backing store address in the 
BSPSTORE application register prior to causing any RSE spill/fill operations. Failure to 
initialize BSPSTORE results in undefined behavior.

§
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Debugging and Performance Monitoring 7

Processors based on the Itanium architecture provide comprehensive debugging and 
performance monitoring facilities for both IA-32 and Itanium instructions. This chapter 
describes the debug registers, performance monitoring registers and their 
programming models. The debugging facilities include several data and instruction 
break point registers, single step trap, breakpoint instruction fault, taken branch trap, 
lower privilege transfer trap, instruction and data debug faults. The performance 
monitoring facilities include two sets of registers to configure and collect various 
performance-related statistics.

7.1 Debugging

Several Data Breakpoint Registers (DBR) and Instruction Breakpoint Registers (IBR) 
are defined to hold address breakpoint values for data and instruction references. In 
addition the following debugging facilities are supported:

• Single Step trap – When PSR.ss is 1, successful execution of each Itanium 
instruction results in a Single Step trap. When PSR.ss is 1 or EFLAG.tf is 1, 
successful execution of each IA-32 instruction results in an 
IA_32_Exception(Debug) single step trap. After the trap, IIP and IPSR.ri point to 
the next instruction to be executed. IIPA and ISR.ei point to the trapped 
instruction. See “Single Stepping” for complete single stepping behavior.

• Break Instruction fault – execution of a break instruction results in a Break 
Instruction fault. IIM is loaded with the immediate operand from the instruction. 
IIM values are defined by software convention. break can be used for profiling, 
debugging and entry into the operating system (although Enter Privileged Code 
(epc) is recommended since it has lower overhead). Execution of the IA-32 INT 3 
(break) instruction results in a IA_32_Exception(Break) trap.

• Taken Branch trap – When PSR.tb is 1, a Taken Branch trap occurs on every 
taken Itanium branch instruction. When PSR.tb is 1, a IA_32_Exception(Debug) 
taken branch trap occurs on every taken IA-32 branch instruction (CALL, Jcc, JMP, 
RET, LOOP). This trap is useful for debugging and profiling. After the trap, IIP and 
IPSR.ri point to the branch target instruction and IIPA and ISR.ei point to the 
trapping branch instruction.

• Lower Privilege Transfer trap – When PSR.lp bit is 1, and an Itanium branch 
demotes the privilege level (numerically higher), a Lower Privilege Transfer trap 
occurs. This trap allows for auditing of privilege demotions, for example to remove 
permissions which were granted to higher privilege code. After the trap, IIP and 
IPSR.ri point to the branch target and IIPA and ISR.ei point to the trapping branch 
instruction. IA-32 instructions can not raise this trap.

• Instruction Debug faults – When PSR.db is 1, any Itanium instruction memory 
reference that matches the parameters specified by the IBR registers results in an 
Instruction Debug fault. Instruction Debug faults are reported even if Itanium 
instructions are nullified due to a false predicate. If PSR.id is 1, Itanium Instruction 
Debug faults are disabled for one instruction. The successful execution of an 
Itanium instruction clears PSR.id. When PSR.db is 1, any IA-32 instruction memory 
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reference that matches the parameters specified by the IBR registers results in an 
IA_32_Exception(Debug) fault. If PSR.id is 1 or EFLAG.rf is 1, IA-32 Instruction 
Debug faults are disabled for one instruction. The successful execution of an IA-32 
instruction clears the PSR.id and EFLAG.rf bits. 

• Data Debug faults – When PSR.db is 1, any Itanium data memory reference that 
matches the parameters specified by the DBR registers results in a Data Debug 
fault. Data Debug faults are only reported if the qualifying predicate is true. Data 
Debug faults can be deferred on speculative loads by setting DCR.dd to 1. If PSR.dd 
is 1, Data Debug faults are disabled for one instruction or one mandatory RSE 
memory reference. When PSR.db is 1, any IA-32 data memory reference that 
matches the parameters specified by the DBR registers results in a 
IA_32_Exception(Debug) trap. IA-32 data debug events are traps, not faults as 
defined for the Itanium instruction set. The reported trap code returns the match 
status of the first 4 DBR registers that matched during the execution of the IA-32 
instruction. See “IA-32 Trap Code” on page 2:213 for trap code details. Zero, one or 
more DBR registers may be reported as matching.

7.1.1 Data and Instruction Breakpoint Registers

Instruction or data memory addresses that match the Instruction or Data Breakpoint 
Registers (IBR/DBR) shown in Figure 7-1 and Figure 7-2 and Table 7-1 result in an 
Instruction or Data Debug fault. IA-32 Instruction or data memory addresses that 
match the Instruction or Data Breakpoint Registers (IBR/DBR) result in an 
IA_32_Exception(Debug) fault or trap. Even numbered registers contain breakpoint 
addresses, odd registers contain breakpoint mask conditions. At least 4 data and 4 
instruction register pairs are implemented on all processor models. Implemented 
registers are contiguous starting with register 0.

When executing Itanium instructions, instruction and data memory addresses 
presented for matching are always in the implemented address space. Programming an 
unimplemented physical address into an IBR/DBR guarantees that physical addresses 
presented to the IBR/DBR will never match. Similarly, programming an unimplemented 
virtual address into an IBR/DBR guarantees that virtual addresses presented to the 
IBR/DBR will never match. 

Figure 7-1. Data Breakpoint Registers (DBR)

63 62 61 60 59 56 55 0

DBR0,2,4.. addr

DBR1,3,5.. r w ig plm mask

1 1 2 4 56

Figure 7-2. Instruction Breakpoint Registers (IBR)

63 62 61 60 59 56 55 0

IBR0,2,4.. addr

IBR1,3,5.. x ig plm mask

1 3 4 56
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Four privileged instructions, defined in Table 7-2, allow access to the debug registers. 
Register access is indirect, where the debug register number is determined by the 
contents of a general register. DBR/IBR registers can only be accessed at privilege level 
0, otherwise a Privileged Operation fault is raised.

Table 7-1. Debug Breakpoint Register Fields (DBR/IBR)

Field Bits Description

addr 63:0 Match Address – 64-bit virtual or physical breakpoint address. Addresses are interpreted as 
either virtual or physical based on PSR.dt, PSR.it or PSR.rt. Data breakpoint addresses trap 
on load, store, semaphore, and mandatory RSE memory references. For Intel Itanium 
instruction set references, IBR.addr{3:0} is ignored in the address match. For IA-32 
instruction references, IBR.addr{31:0} are used in the match and IBR.addr{63:32} must be 
zero to match. All 64 bits are implemented on all processors regardless of the number of 
implemented address bits.

mask 55:0 Address Mask – determines which address bits in the corresponding address register are 
compared in determining a breakpoint match. Address bits whose corresponding mask bits 
are 1, must match for the breakpoint to be signaled, otherwise the address bit is ignored. 
Address bits{63:56} for which there are no corresponding mask bits are always compared. 
For IA-32 instruction references, IBR.mask{55:32} are ignored. All 56 bits are implemented 
on all processors regardless of the number of implemented address bits.

plm 59:56 Privilege Level Mask – enables data breakpoint matching at the specified privilege level. 
Each bit corresponds to one of the four privilege levels, with bit 56 corresponding to privilege 
level 0, bit 57 with privilege level 1, etc. A value of 1 indicates that the debug match is 
enabled at that privilege level.

w 62 Write match enable – When DBR.w is 1, any non-nullified mandatory RSE store, IA-32 or 
Intel Itanium store, semaphore, probe.w.fault or probe.rw.fault to an address matching the 
corresponding address register causes a breakpoint. 

r 63 Read match enable – When DBR.r is 1, any non-nullified IA-32 or Intel Itanium load, 
mandatory RSE load, semaphore, lfetch.fault, probe.r.fault or probe.rw.fault to an address 
matching the corresponding address register causes a breakpoint. When DBR.r is 1, a VHPT 
access that matches the DBR (except those for a tak instruction) will cause an 
Instruction/Data TLB Miss fault. If DBR.r and DBR.w are both 0, that data breakpoint register 
is disabled.

x 63 Execute match enable – When IBR.x is 1, execution of an IA-32 instruction or Intel Itanium 
instruction in a bundle at an address matching the corresponding address register causes a 
breakpoint. If IBR.x is 0, that instruction breakpoint register is disabled. Instruction 
breakpoints are reported even if the qualifying predicate is false.

ig 62:60 Ignored

Table 7-2. Debug Instructions

Mnemonic Description Operation
Instr
Type

Serialization
Required

mov dbr[r3] = r2 Move to data breakpoint 
register

DBR[GR[r3]]  GR[r2] M data

mov r1 = dbr[r3] Move from data breakpoint 
register

GR[r1]  DBR[GR[r3]] M none

mov ibr[r3] = r2 Move to instruction 
breakpoint register

IBR[GR[r3]]  GR[r2] M inst

mov r1 = ibr[r3] Move from instruction 
breakpoint register

GR[r1]  IBR[GR[r3]] M none

break imm Breakpoint Instruction fault if (PSR.ic) IIM  imm
fault(Breakpoint_Instruction)

B/I/M none
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Changes to debug registers and PSR are not necessarily observed by following 
instructions. Software should issue a data serialization operation to ensure 
modifications to DBR, PSR.db, PSR.tb and PSR.lp are observed before a dependent 
instruction is executed. For register changes to IBR and PSR.db that affect fetching of 
subsequent instructions, software must issue an instruction serialization operation.

On some implementations, a hardware debugger may use two or more of these 
registers pairs for its own use. When a hardware debugger is attached, as few as 2 DBR 
pairs and as few as 2 IBR pairs may be available for software use. Software should be 
prepared to run with fewer than the implemented number of IBRs and/or DBRs if the 
software is expected to be debuggable with a hardware debugger. When a hardware 
debugger is not attached, at least 4 IBR pairs and 4 DBR pairs are available for software 
use.

Any debug registers used by an attached hardware debugger are allocated from the 
highest register numbers first (e.g. if only 2 DBR pairs are available to software, the 
available registers are DBR[0-3]).

Note: When a hardware debugger is attached and is using two or more debug regis-
ters pairs, the processor does not forcibly partition the registers between soft-
ware and hardware debugger use; that is, the processor does not prevent 
software from reading or modifying any of the debug registers being used by 
the hardware debugger. However, if software modifies any of the registers 
being used by the hardware debugger, processor and/or hardware debugger 
operation may become undefined, or the processor and/or hardware debugger 
may crash. 

7.1.2 Debug Address Breakpoint Match Conditions

For virtual memory accesses, breakpoint address registers contain the virtual addresses 
of the debug breakpoint. For physical accesses, the addresses in these registers are 
treated as a physical address. Software should be aware that debug registers 
configured to fault on virtual references, may also fault on a physical reference if 
translations are disabled. Likewise a debug register configured for physical references 
can fault on virtual references that match the debug breakpoint registers.

The range of addresses detected by the DBR and IBR registers for memory references 
by Itanium instructions is defined as:

• Instruction and single or multi-byte aligned data memory references that access 
any memory byte specified by the IBR/DBR address and mask fields results in an 
Instruction/Data Debug fault regardless of datum size. Implementations must only 
report a Debug fault if the specified aligned byte(s) are referenced. 

• Floating-point load double/integer pair, floating-point spill/fill and 10-byte operands 
are treated as 16-byte datums for breakpoint matching, if the accesses are aligned. 
Floating-point load single pair operands are treated as 8-byte datums for 
breakpoint matching, if the accesses are aligned.

• If data memory references are unaligned, multi-byte memory references that 
access any memory byte specified by DBR address and mask fields result in a 
breakpoint Data Debug fault regardless of datum size. Processor implementations 
may also report additional breakpoint Data Debug faults for addresses not 
specifically specified by the DBR registers. Debugging software should perform a 
byte by byte breakpoint analysis of each address accessed by multi-byte unaligned 
datums to detect true breakpoint conditions.
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• The cmp8xchg16 operands are treated as 16-byte datums for both read and write 
breakpoint matching, even though this instruction only reads 8 bytes.

Address breakpoint Data Debug faults are not reported for the Flush Cache (fc, fc.i), 
regular_form probe, non-faulting lfetch, insert TLB (itc, itr), purge TLB (ptc, ptr), 
or translation access (thash, ttag, tak, tpa) instructions. Accesses by the RSE to a 
debug region are checked, but the Data Debug fault is not reported until a subsequent 
alloc, br.ret, rfi, loadrs, or flushrs which requires that the faulting load or store 
actually occur.

The range of addresses detected by the DBR and IBR registers for IA-32 memory 
references is defined as:

• Instruction memory references where the first byte of the IA-32 instruction match 
the IBR address and mask fields results in an IA_32_Exception(Debug) fault. 
Subsequent bytes of a multiple byte IA-32 instruction are not compared against the 
IBR registers for breakpoints. The upper 32-bits of the IBR addr field must be zero 
to detect IA-32 instruction memory references.

• IA-32 single or multi-byte data memory references that access any memory byte 
specified by the DBR address and mask fields results in an 
IA_32_Exception(Debug) trap regardless of datum size and alignment. The 
processor ensures that all data breakpoint traps are precisely reported. Data 
breakpoint traps are reported if and only if any byte in the IA-32 data memory 
reference matches the DBR address and mask fields. No spurious data breakpoint 
events are generated for IA-32 data memory operands that are unaligned, nor are 
breakpoints reported if no bytes of the operand lie within the address range 
specified by the DBR address and mask fields.

7.2 Performance Monitoring

Performance monitors allow processor events to be monitored by programmable 
counters or give an external notification (such as a pin or transaction) on the 
occurrence of an event. Monitors are useful for tuning application, operating system 
and system performance. Two sets of performance monitor registers are defined. 
Performance Monitor Configuration (PMC) registers are used to control the monitors. 
Performance Monitor Data (PMD) Registers either provide data values from the 
monitors, or hold data values used by the PMU. The performance monitors can record 
performance values from either the IA-32 or Itanium instruction set.

As shown in Figure 7-3, all processor implementations provide at least four 
performance counters (PMC/PMD[4]..PMC/PMD[7] pairs), and four performance 
counter overflow status registers (PMC[0]..PMC[3]). Performance monitors are also 
controlled by bits in the processor status register (PSR), the default control register 
(DCR) and the performance monitor vector register (PMV). Processor implementations 
may provide additional implementation-dependent PMC and PMD registers to increase 
the number of “generic” performance counters (PMC/PMD pairs). The remainder of the 
PMC and PMD register set is implementation dependent.

Event collection for implementation-dependent performance monitors is not specified 
by the architecture. Enabling and disabling functions are implementation dependent. 
For details, consult processor-specific documentation.
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Processor implementations may not populate the entire PMC/PMD register space. 
Reading of an unimplemented PMC or PMD register returns zero. Writes to 
unimplemented PMC or PMD registers are ignored; i.e., the written value is discarded. 

Writes to PMD and PMC and reads from PMC are privileged operations. At non-zero 
privilege levels, these operations result in a Privileged Operation fault, regardless of the 
register address. 

Reading of PMD registers by non-zero privilege level code is controlled by PSR.sp. When 
PSR.sp is one, PMD register reads by non-zero privilege level code return zero. 

7.2.1 Generic Performance Counter Registers

Generic performance counter registers are PMC/PMD pairs that contiguously populate 
the PMC/PMD name space starting at index 4. At least 4 performance counter register 
pairs (PMC/PMD[4]..PMC/PMD[7]) are implemented in all processor models. Each 
counter can be configured to monitor events for any combination of privilege levels and 
one of several event metrics. The number of performance counters is implementation 
specific. The figures and tables use the symbol “p” to represent the index of the last 
implemented generic PMC/PMD pair. The bit-width W of the counters is also 
implementation specific.

Figure 7-3. Performance Monitor Register Set
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A counter overflow interrupt occurs when the counter wraps; i.e., a carry out from bit 
W-1 is detected. Counter overflow interrupts are edge-triggered; that is, the event of a 
counter incrementing and causing carry out from bit W-1 thus setting the overflow bit 
and the freeze bit, generates one PMU interrupt. Provided that software does not clear 
the freeze bit, while either or both of PSR.up and pp are 1, without also clearing the 
overflow bit (before or concurrent with the write to the freeze bit), no further interrupts 
are generated based on the fact that the carry out had been earlier detected.

Figure 7-4 and Figure 7-5 show the fields in PMD and PMC respectively, while Table 7-3 
and Table 7-4 describe the fields in PMD and PMC respectively.

Some implementations do not treat the upper, unimplemented bits of PMDs as ignored 
bits on reads, but rather return a copy of bit W-1 in these bit positions so that count 
values appear as if they were sign extended. Subsequent implementations will return 0 
for these bits on reads.

Figure 7-4. Generic Performance Counter Data Registers (PMD[4]..PMD[p])

63 W W-1 0

PMD[4]..PMD[p] ig count

64-W W

Table 7-3. Generic Performance Counter Data Register Fields

Field Bits Description

ig 63:W Writes are ignored. Reads return 0.

count W-1:0 Event Count. The counter is defined to overflow when the count field wraps (carry out 
from bit W-1).

Figure 7-5. Generic Performance Counter Configuration Register 
(PMC[4]..PMC[p])

63 16 15 8 7 6 5 4 3 0

PMC[4]..PMC[p] implementation specific es ig pm oi ev plm

48 8 1 1 1 1 4

Table 7-4. Generic Performance Counter Configuration Register Fields 
(PMC[4]..PMC[p])

Field Bits Description

plm 3:0 Privilege Level Mask – controls performance monitor operation for a specific privilege 
level. Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to 
privilege level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor 
is enabled at that privilege level. Writing zeros to all plm bits effectively disables the 
monitor. In this state, the corresponding PMD register(s) do not preserve values, and 
the processor may choose to power down the monitor.

ev 4 External visibility – When 1, an external notification (such as a pin or transaction) may 
be provided, dependent upon implementation, whenever the monitor overflows. 
Overflow occurs when a carry out from bit W-1 is detected.

oi 5 Overflow interrupt – If 1, when the monitor overflows, a Performance Monitor Interrupt is 
raised and the performance monitor freeze bit (PMC[0].fr) is set. If 0, no interrupt is 
raised and the performance monitor freeze bit (PMC[0].fr) remains unchanged. 
Overflow occurs when a carry out from bit W-1 is detected. See “Performance Monitor 
Overflow Status Registers (PMC[0]..PMC[3])” for details on configuring interrupt 
vectors.
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Event collection is controlled by the Performance Monitor Configuration (PMC) registers 
and the processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and 
PSR.sp) and the performance monitor freeze bit (PMC[0].fr) affect the behavior of all 
generic performance monitor registers. Finer, per monitor, control of generic 
performance monitors is provided by two PMC register fields (PMC[i].plm, PMC[i].pm). 
Event collection for a generic monitor is enabled under the following constraints:

• Generic Monitor Enable[i] =(not PMC[0].fr) and PMC[i].plm[PSR.cpl] and
((not (PMC[i].pm) and PSR.up) or (PMC[i].pm and PSR.pp))

Generic performance monitor data registers (PMD[i]) can be configured to be user 
readable (useful for user level sampling and tracing user level processes) by setting the 
PMC[i].pm bit to 0. All user-configured monitors can be started and stopped 
synchronously by the user mask instructions (rum and sum) by altering PSR.up. 
User-configured monitors can be secured by setting PSR.sp to 1. A user-configured 
secured monitor continues to collect performance values; however, reads of PMD, by 
non-privileged code, return zeros until the monitor is unsecured. 

Monitors configured as privileged (PMC[i].pm is 1) are accessible only at privilege level 
0; otherwise, reads return zeros. All privileged monitors can be started and stopped 
synchronously by the system mask instructions (rsm and ssm) by altering PSR.pp. 
Table 7-5 summarizes the effects of PSR.sp, PMC[i].pm, and PSR.cpl on reading PMD 
registers.

Updates to generic PMC registers and PSR bits (up, pp, is, sp, cpl) require implicit or 
explicit data serialization prior to accessing an affected PMD register. The data 
serialization ensures that all prior PMD reads and writes as well as all prior PMC writes 
have completed.

pm 6 Privileged monitor – When 0, the performance monitor is configured as a user monitor, 
and enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as 
a privileged monitor, enabled by PSR.pp, and the corresponding PMD can only be read 
by privileged software.

ig 7 ignored

es 15:8 Event select – selects the performance event to be monitored. Actual event encodings 
are implementation dependent. Some processor models may not implement all event 
select (es) bits. At least one bit of es must be implemented on all processors. 
Unimplemented es bits are ignored. 

implem.
specific

63:16 Implementation-specific bits – Reads from implemented bits return 
implementation-dependent values. For portability, software should write what was read; 
i.e., software may not use these bits as storage. Hardware will ignore writes to 
unimplemented bits.

Table 7-5. Reading Performance Monitor Data Registers

PSR.sp PMC[i].pm PSR.cpl PMD Reads Return

0 0 0 PMD value

0 1 0 PMD value

1 0 0 PMD value

1 1 0 PMD value

0 0 >0 PMD value

Table 7-4. Generic Performance Counter Configuration Register Fields 
(PMC[4]..PMC[p]) (Continued)

Field Bits Description
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Generic PMD counter registers may be read by software without stopping the counters. 
Under normal counting conditions (PMC[0].fr is zero and has been serialized), the 
processor guarantees that a sequence of reads of a given PMD will return 
non-decreasing values corresponding to the program order of the reads. Under frozen 
count conditions (PMC[0].fr is one and has been serialized), the counters are 
unchanging and ordering is irrelevant. When the freeze bit is in-flight, whether counters 
count events and reads return non-decreasing values is implementation dependent. 
Instruction serialization is required to ensure that the behavior specified by PMC[0].fr is 
observed.

Software must accept a level of sampling error when reading the counters due to 
various machine stall conditions, interruptions, and bus contention effects, etc. The 
level of sampling error is implementation specific. More accurate measurements can be 
obtained by disabling the counters and performing an instruction serialize operation for 
instruction events or data serialize operation for data events before reading the 
monitors. Other (non-counter) implementation-dependent PMD registers can only be 
read reliably when event monitoring is frozen (PMC[0].fr is one).

For accurate PMD reads of disabled counters, data serialization (implicit or explicit) is 
required between any PMD read and a subsequent ssm or sum (that could toggle PSR.up 
or PSR.pp from 0 to 1), or a subsequent epc, demoting br.ret or branch to IA-32 
(br.ia) (that could affect PSR.cpl or PSR.is). Note that implicit post-serialization 
semantics of sum do not meet this requirement.

Table 7-6 defines the instructions used to access the PMC and PMD registers.

0 1 >0 0

1 0 >0 0

1 1 >0 0

Table 7-6. Performance Monitor Instructions

Mnemonic Description Operation
Instr
Type

Serialization
Required

mov pmd[r3] = r2 Move to performance monitor 
data register

PMD[GR[r3]]  GR[r2] M data/inst

mov r1 = pmd[r3] Move from performance monitor 
data register

GR[r1]  PMD[GR[r3]] M nonea

a. When the freeze bit is in-flight, whether counters count events and reads return non-decreasing values is 
implementation dependent. Instruction serialization is required to ensure that the behavior specified by 
PMC[0].fr is observed.

mov pmc[r3] = r2 Move to performance monitor 
configure register

PMC[GR[r3]]  GR[r2] M data/inst

mov r1 = pmc[r3] Move from performance monitor 
configure register

GR[r1]  PMC[GR[r3]] M none

Table 7-5. Reading Performance Monitor Data Registers (Continued)

PSR.sp PMC[i].pm PSR.cpl PMD Reads Return
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7.2.2 Performance Monitor Overflow Status Registers 
(PMC[0]..PMC[3])

Performance monitor interrupts may be caused by an overflow from a generic 
performance monitor or an implementation-dependent event from a model-specific 
monitor. The four performance monitor overflow registers (PMC[0]...PMC[3]) shown in 
Figure 7-6 indicate which monitor caused the interruption.

Each of the 252 overflow bits in the performance monitoring overflow status 
registers(PMC[0]...PMC[3]) corresponds to a generic performance counter pair or to an 
implementation-dependent monitor. For generic performance counter pairs, overflow 
status bit PMC[i/64]{i%64} corresponds to generic counter pair PMC[i]/PMD[i], where 
4<=i<=p, and p is the index of the last implemented generic PMC/PMD pair.

There are currently two criteria for generating a performance monitor interrupt:

1. A generic performance counter pair (PMC[n]/PMD[n]) overflows and its overflow 
interrupt bit (PMC[n].oi) is 1.

2. An implementation-dependent monitor wants to report an event with an 
interruption.

If any of these criteria are met, the processor will:

• Set the corresponding overflow status bit in PMC[0]..PMC[3] to 1, and

• Raise a Performance Monitor interrupt, and

• Set the freeze bit (PMC[0].fr) which suspends event monitoring.

PMU interrupts are generated by events, such as the overflowing of a generic counter 
pair which is configured to interrupt on overflow. Each such event generates one 
interrupt. Provided that software does not clear the freeze bit, while either or both of 
PSR.up and pp are 1, before clearing the overflow bits, writes to PMCs and PMDs by 
software do not generate interrupts, nor cause a monitor which had generated an 
interrupt to generate a second interrupt. (For overflow bits in PMC 0, even if either or 
both of PSR.up and .pp are 1, software may clear the overflow bits and the freeze bit 
with a single write to PMC 0 without causing any additional interrupts to be generated.)

Software may restore PMU state which has the freeze bit equal to 1 and one or more 
overflow bits equal to 1 without generating any interrupts provided that it ensures 
either that:

• both PSR.up and pp are zero during the restore, or

• the freeze bit is a 1 (and serialized) before any overflow bits are set to 1

When the PMU is disabled by writing a 0 into PSR.up and .pp and serializing this write, 
the PMU cannot generate any interrupts and no SW writes to any PMU state can cause 
any interrupts.

When a generic performance counter pair (PMC[n]/PMD[n]) overflows and its overflow 
interrupt bit (PMC[n].oi) is 0, the corresponding overflow status register bit is set to 1. 
However, in this case of counter overflow without interrupt, the freeze bit in the PMC[0] 
is left unchanged, and event monitoring continues.
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If control register bit PMV.m is one, a performance monitoring interrupt is disabled from 
being pended. When PMV.m is zero, the interruption is received and held pending. 
(Further masking by the PSR.i, TPR and in-service masking can keep the interrupt from 
being raised.) Figure 7-6 shows the Performance Monitor Overflow Status registers.

Implementation dependent PMD registers (0-3) cannot report events in the overflow 
registers; those 4 bit positions are used for other purposes.

Under frozen count conditions when PMC[0].fr is one (either by a performance counter 
overflow, or an explicit software write and serialization), the processor suspends all 
event monitoring, i.e. counters do not increment and overflow bits as well as 
model-specific monitoring are frozen. Normal counting conditions are restored by 
software writing a zero to the freeze bit and serializing to resume event monitoring. 
When the freeze bit is in-flight, whether counters count events and reads return 
non-decreasing values is implementation dependent. Instruction serialization is 
required to ensure that the behavior specified by PMC[0].fr is observed.

Figure 7-6. Performance Monitor Overflow Status Registers 
(PMC[0]..PMC[3])

63    4 3 2 1 0

overflow ig fr

60 3 1

overflow

overflow

overflow

Table 7-7. Performance Monitor Overflow Register Fields 
(PMC[0]...PMC[3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit. This bit is volatile 
state, i.e., it is set by the processor whenever:

• a generic performance monitor overflow occurs 
and its overflow interrupt bit (PMC[n].oi) is set 
to one.

• a model-specific performance monitor signals 
an interrupt.

The freeze bit can also be set by software to enable or 
disable all event monitoring.
If the freeze bit is one, event monitoring is disabled.
If the freeze bit is zero, event monitoring is enabled.
If the freeze bit is in-flight, event monitoring behavior is 
implementation dependent.

PMC[0] ig 3:1 Ignored

PMC[0]..PMC[3] overflow implemented
monitors

Bit vector indicating which performance monitor 
overflowed. Overflow status bits are sticky, they are set 
to 1 by the processor if the corresponding PMD 
overflows; otherwise they are left unchanged. Multiple 
overflow status bits may be set, independent of 
whether counter overflow causes an interrupt or not. 

unimplemented
monitors

Ignored
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Multiple overflow bits may be set to 1, if counters overflow concurrently. The overflow 
bits and the freeze bit are sticky; i.e., the processor sets them to 1 but never resets 
them to 0. It is software's responsibility to reset the overflow and freeze bits.

The overflow status bits are populated only for implemented counters. Overflow bits of 
unimplemented counters read as zero and writes are ignored.

7.2.3 Performance Monitor Events

The set of monitored events is implementation-specific. All processor models are 
required to provide at least two events:

1. The number of retired instructions. These are defined as all instructions which 
execute without a fault, including nops and those which were predicated off. 
Generic counters configured for this event count only when the processor is in the 
NORMAL or LOW-POWER state (see Figure 11-8 on page 2:314).

2. The number of processor clock cycles. Generic counters configured for this event 
count only when the processor is in the NORMAL or LOW-POWER state (see 
Figure 11-8 on page 2:314).

Events may be monitorable only by a subset of the available counters. PAL calls provide 
an implementation-independent interface that provides information on the number of 
implemented counters, their bit-width, the number and location of other (non-counter) 
monitors, etc.

7.2.4 Implementation-independent Performance Monitor Code 
Sequences

This section describes implementation-independent code sequences for servicing 
overflow interrupts and context switches of the performance monitors. For forward 
compatibility, the code sequences outlined in Section 7.2.4.1 and Section 7.2.4.2 use 
PAL-provided implementation-specific information to collect/preserve data values for all 
implemented counters.

7.2.4.1 Performance Monitor Interrupt Service Routine

When a generic performance counter pair (PMC[n]/PMD[n]) overflows and its overflow 
interrupt bit (PMC[n].oi) is 1, or an implementation-dependent monitor wants to report 
an event with an interruption, then the processor:

• Sets the corresponding overflow status bit in PMC[0]..PMC[3] to one,

• Raises a Performance Monitor Interrupt, and

• Sets the freeze bit in PMC[0] which suspends event monitoring.

Event monitoring remains frozen until software clears the freeze bit. When the freeze 
bit is in-flight, whether counters count events and reads return non-decreasing values 
is implementation dependent. Instruction serialization is required to ensure that the 
behavior specified by PMC[0].fr is observed. Performance monitor interrupts may be 
caused by an overflow of any of the counters. The processor indicates which 
performance monitor overflowed in the performance monitor overflow status registers 
(PMC[0]...PMC[3]). If multiple counters overflow concurrently, multiple overflow bits 
will be set to one. For forward compatibility, event collection interrupt handlers must 
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follow the implementation-independent overflow interrupt service routine outlined in 
Figure 7-7. Use of alternate context-switch sequences may be incompatible with future 
implementations.

If the outgoing context has an interrupt pending but has not yet invoked the 
performance monitor interrupt service routine, the interrupt may be delivered to the 
incoming context even if it is a non-monitored process. The interrupt service routine 
can recognize this kind of bogus interrupt by noticing that either: the freeze bit is zero 
or the context is not being monitored.

7.2.4.2 Performance Monitor Context Switch

The context switch routine described in Figure 7-8 defines the 
implementation-independent context switching of Itanium performance monitors. Using 
bit masks provided by PAL (PALPMCmask, PALPMDmask) the routine can generically 
save/restore the contents of all implementation-specific performance monitoring 
registers. If the outgoing context is monitored, then all PMC and PMD registers whose 
mask bit is set are preserved by software. But if the outgoing context is monitored and 
the context switch routine determines that the outgoing context has a pending 
performance monitor interrupt (by reading the freeze bit with the knowledge that it was 
not generated by software) then software also preserves the outgoing context's 
overflow status registers (PMC[0]..PMC[3]) before all PMC and PMD registers whose 
mask bit is set. Here, it is explicitly assumed that software tracks monitored processes 
and can determine whether a process is monitored prior to reading the freeze bit. The 
context switch handler then restores the performance monitor freeze bit which resets 
event collection for the new context. Sometime into the incoming (possibly 
unmonitored) context, the performance overflow interrupt service routine will run, but 
by looking at the status of the freeze bit software can determine whether this interrupt 
can be ignored (for details refer to Section 7.2.4.1).

Figure 7-7. Performance Monitor Interrupt Service Routine 
(Implementation Independent)

//Assumes PSR.up and PSR.pp are switched to zero together
if ((PMC[0].fr==1) && (PSR.up == 1) || (PSR.pp == 1)){ 

// freeze bit is set. Search for interrupt.
for (i=0; i< 4; i++) {

if (PMC[i] != 0) {
startbit = (i==0) ? 4 : 0;
for (j=startbit; j < 64 ; j++) {

if (PMC[i]{j}) { 
counter_id = 64*i + j;
if (counter_id > PAL_GENERIC_PMCPMD_PAIRS) {

Implementation_Specific_Update(counter_id);
}
else { // Generic PMC/PMD counter

if (PMC[counter_id].oi)
ovflcount[counter_id] += 1;

}
}

} // scan overflow bits
}

}
}
// Either ignore bogus interrupt or clear PMC[3]..PMC[1]
for (i=3; i>=1; i--) { PMC[i] = 0; }
rfi
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When switching back to the original context (that originally caused the counter 
overflow), the previously saved freeze bit can be inspected. If it was set (meaning there 
was a pending performance monitor interrupt), then the context switch routine posts 
an interrupt message to the incoming context’s processor at the performance monitor 
vector specified by the PMV register (see Section 10.5.8, “Inter-processor Interrupts 
Layout and Example” on page 2:612). This will result in a new performance monitor 
overflow interrupt in the correct context. Essentially, the interrupt message is 
“replaying” the overflow interrupt that was missed because of the context switch.

§

Figure 7-8. Performance Monitor Overflow Context Switch Routine

// in context or thread switch

if (outgoing process is monitored) {
1. Turn-off counting and ignore interrupts for context switch

of counters.
1a) if not already done, raise interrupt priority above

perf. mon overflow vector
1b) read and preserve PSR.up, PSR.pp, PSR.sp
1c) clear PSR.up, clear PSR.pp
1d) srlz.d

2. Preserve PMC/PMD contents
2a)  For each PMC whose PALPMCmask bit is set, preserve PMC.
2b) For each PMD whose PALPMDmask bit is set, preserve PMD. 

}

.... continue context switch ......

// Now in incoming process/thread
if (incoming process is monitored) {

// Event counting is disabled because PSR.up and pp are both
// zero (step 1c above).

3. Restore PMC/PMD contents (inverse of step 4 above)
3a) For each PMC whose PALPMCmask bit is set, reload PMC.
3b) For each PMD whose PALPMDmask bit is set, reload PMD.

4. Restore Interrupt State (inverse of step 2 and 1a above)
4a) if (PMC[0].fr) {

send myself a performance monitor interrupt 
(store to interrupt address)

}
4b) Restore PSR.up and PSR.pp
4c) srlz.d
4d) lower interrupt priority below perf. mon overflow

vector
}
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Interruption Vector Descriptions 8

Chapter 5 describes the interruption mechanism and programming model for the 
Itanium architecture. This chapter describes the IVA-based interruption handlers. 
“Interruption Vector Descriptions” describes all the Itanium IVA-based interruption 
vectors and “IA-32 Interruption Vector Definitions” describes all of the IA-32 interrupt 
vectors. PAL-based interruptions are described in Chapter 11, “Processor Abstraction 
Layer.” Note that unless otherwise noted, references to “interruption” in this chapter 
refer to IVA-based interruptions. See “Interruption Definitions” on page 2:95.

8.1 Interruption Vector Descriptions

The section lists all the Itanium interruption vectors. It describes the interruption 
vectors and the parameters that are defined when the vector is entered. 

If an interruption is independent of the executing instruction set (including IA-32), such 
as an external interrupt or TLB fault, common Itanium interruption vectors are used. 
For exceptions and intercept conditions that are specific to the IA-32 instruction set 
three IA-32 specific vectors are used; IA_32_Exception, IA_32_Interrupt, and 
IA_32_Intercept.

Table 8-1 defines which interruption resources are written, are left unmodified, or are 
undefined for each interruption vector. The individual vector descriptions below list 
interruption-specific resources for each vector. 

See “IVA-based Interruption Handling” on page 2:101 for details on how the processor 
handles an interruption. See “Interruption Control Registers” on page 2:36 for the 
definition of bit fields within the interruption resources. 

8.2 ISR Settings

For each of the interruption vectors, a figure depicts the ISR setting. These figures 
show the value that hardware writes into the ISR for the corresponding interruption.

Table 8-2 provides an overview of ISR settings for all of the interruption vectors.

For some of the vectors, certain bits will always be 0 (or 1) simply because no 
instruction that would set that bit differently can ever end up on that vector. For 
example, ISR.sp is always 0 in the Break Instruction vector because ISR.sp is only set 
by speculative loads, and speculative loads can never take a Break Instruction fault.

After interruption from the IA-32 instruction set, the following ISR bits will always be 
zero: ISR.ni, ISR.na, ISR.sp, ISR.rs, ISR.ir, ISR.ei, and ISR.ed.

ISR.code settings for non-access instructions are described in “Non-access Instructions 
and Interruptions” on page 2:103.

Table 8-3 on page 2:170 provides an overview of ISR.code field on all Itanium traps.
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8.3 Interruption Vector Definition

Table 8-1.Writing of Interruption Resources by Vector

Interruption Resource
IIP, IPSR,

IIPA, IFS.v
IFA ITIR IHA IIM ISR IIB0, IIB1

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Alternate Data TLB vector

Alternate Data TLB fault N/Aa Wb N/A W N/A W N/A xc N/A x N/A W N/A W

IR Alternate Data TLB fault N/A W N/A W N/A W N/A x N/A x N/A W N/A x

Alternate Instruction TLB vector

Alternate Instruction TLB fault -d W - W - W x x x x W W - x

Break Instruction vector

Break Instruction fault - W x x x x x x - W W W - W

Data Access Rights vector

Data Access Rights fault - W - W - W x x x x W W - W

IR Data Access Rights fault - W - W - W x x x x W W - x

Data Access-Bit vector

Data Access Bit fault - W - W - W x x x x W W - W

IR Data Key Miss fault - W - W - W x x x x W W - x

Data Key Miss vector

Data Key Miss fault - W - W - W x x x x W W - W

IR Data Key Miss fault - W - W - W x x x x W W - x

Data Nested TLB vector

Data Nested TLB fault - N/A - N/A - N/A - N/A x N/A - N/A - N/A

IR Data Nested TLB fault - N/A - N/A - N/A - N/A x N/A - N/A - N/A

Data TLB vector

Data TLB fault N/A W N/A W N/A W N/A W N/A x N/A W N/A W

IR Data TLB fault N/A W N/A W N/A W N/A W N/A x N/A W N/A x

Debug vector

Data Debug fault - W - W x x x x x x W W - W

Instruction Debug fault - W - W x x x x x x W W - x

IR Data Debug fault - W - W x x x x x x W W - x

Dirty-Bit vector

Data Dirty Bit fault - W - W - W x x x x W W - W

Disabled FP-Register vector

Disabled Floating-Point 
Register fault

- W x x x x x x x x W W - W

External Interrupt vector

External Interrupt - W x x x x x x x x W W - x

Floating-point Fault vector

Floating-Point Exception fault - W x x x x x x x x W W - W

Floating-point Trap vector

Floating-Point Exception trap - W x x x x x x x x W W - W

General Exception vector

Disabled ISA Transition fault - W x x x x x x x x W W - W

Illegal Dependency fault - W x x x x x x x x W W - W

Illegal Operation fault - W x x x x x x x x W W - W

IR Unimplemented Data 
Address fault

- W x x x x x x x x W W - x

Privileged Operation fault - W x x x x x x x x W W - W

Privileged Register fault - W x x x x x x x x W W - W
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Reserved Register/Field fault - W x x x x x x x x W W - W

Unimplemented Data 
Address fault

- W x x x x x x x x W W - W

IA-32 Exception vector N/A W N/A x N/A x N/A x N/A x N/A W N/A x

IA-32 Intercept vector N/A W N/A x N/A x N/A x N/A W N/A W N/A x

IA-32 Interrupt vector N/A W N/A x N/A x N/A x N/A x N/A W N/A x

Instruction Access Rights vector

Instruction Access Rights 
fault

- W - W - W x x x x W W - x

Instruction Access-Bit vector

Instruction Access Bit fault - W - W - W x x x x W W - x

Instruction Key Miss vector

Instruction Key Miss fault - W - W - W x x x x W W - x

Instruction TLB vector

Instruction TLB fault - W - W - W - W x x W W - x

Key Permission vector

Data Key Permission fault - W - W - W x x x x W W - W

Instruction Key Permission 
fault

- W - W - W x x x x W W - x

IR Data Key Permission fault - W - W - W x x x x W W - x

Lower-Privilege Transfer Trap vector

Unimplemented Instruction 
Address fault

- W x W x x x x x x W W - x

Lower-Privilege Transfer trap - W x x x x x x x x W W - W

Unimplemented Instruction 
Address trap

- W x x x x x x x x W W - W

NaT Consumption vector

Data NaT Page Consumption 
fault

- W - W x x x x x x W W - W

Instruction NaT Page 
Consumption fault

- W - W x x x x x x W W - x

IR Data NaT Page 
Consumption fault

- W - W x x x x x x W W - x

Register NaT Consumption 
fault

- W - x x x x x x x W W - W

Page Not Present vector

Data Page Not Present fault - W - W - W x x x x W W - W

Instruction Page Not Present 
fault

- W - W - W x x x x W W - x

IR Data Page Not Present 
fault

- W - W - W x x x x W W - x

Single Step Trap vector

Single Step trap - W x x x x x x x x W W - W

Speculation vector

Speculative Operation fault - W x x x x x x - W W W - W

Taken Branch Trap vector

Taken Branch trap - W x x x x x x x x W W - W

Unaligned Reference vector

Table 8-1.Writing of Interruption Resources by Vector (Continued)

Interruption Resource
IIP, IPSR,

IIPA, IFS.v
IFA ITIR IHA IIM ISR IIB0, IIB1

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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Unaligned Data Reference 
fault

- W - W x x x x x x W W - W

Unsupported Data Reference vector

Unsupported Data Reference 
fault

- W - W x x x x x x W W - W

VHPT Translation vector

IR VHPT Data fault N/A W N/A W N/A W N/A W N/A x N/A W N/A x

VHPT Data fault N/A W N/A W N/A W N/A W N/A x N/A W N/A W

VHPT Instruction fault N/A W N/A W N/A W N/A W N/A x N/A W N/A x

Virtual External Interrupt vector

Virtual External Interrupt - W x x x x x x x x W W - x

Virtualization vector

Virtualization fault - W x x x x x x x x W W - W

a. “N/A” indicates that this cannot happen.
b. “W” indicates that the resource is written with a new value.
c. “x” indicates that the resource may or may not be written; whether it is written and with what value is 

implementation specific.
d. “-” indicates that the resource is not written.

Table 8-2. ISR Values on Interruption

Vector / Interruption ed eia so nib irc rsd spe naf r w x

Alternate Data TLB vector

Alternate Data TLB fault edk ri so nil 0 rs sp na r w 0

IR Alternate Data TLB fault 0 ri 0 nil 1 1 0 0 1 0 0

Alternate Instruction TLB vector

Alternate Instruction TLB fault 0 ri 0 ni 0 0 0 0 0 0 1

Break Instruction vector

Break Instruction fault 0 ri 0 ni 0 0 0 0 0 0 0

Data Access Rights vector

Data Access Rights fault edk ri so ni 0 rs sp na r w 0

IR Data Access Rights fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Access-Bit vector

Data Access Bit fault edk ri so ni 0 rs sp na r w 0

IR Data Access Bit fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Key Miss vector

Data Key Miss fault edk ri so ni 0 rs sp na r w 0

IR Data Key Miss fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Nested TLB vectorg

Data Nested TLB fault - - - - - - - - - - -

IR Data Nested TLB fault - - - - - - - - - - -

Data TLB vector

Data TLB fault edk ri so nil 0 rs sp na r w 0

IR Data TLB fault 0 ri 0 nil 1 1 0 0 1 0 0

Debug vector

Data Debug fault edk ri 0 ni 0 rs sp na r w 0

Table 8-1.Writing of Interruption Resources by Vector (Continued)

Interruption Resource
IIP, IPSR,

IIPA, IFS.v
IFA ITIR IHA IIM ISR IIB0, IIB1

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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Instruction Debug fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Debug fault 0 ri 0 ni 1 1 0 0 1 0 0

Dirty-Bit vector

Data Dirty Bit fault edk ri so ni 0 rs 0 nah r 1 0

Disabled FP-Register vector

Disabled Floating-Point Register fault 0 ri 0 ni 0 0 sp 0 r w 0

External Interrupt vector

External Interrupt 0 ri 0 ni iri 0 0 0 0 0 0

Floating-point Fault vector

Floating-Point Exception fault 0 ri 0 ni 0 0 0 0 0 0 0

Floating-point Trap vector

Floating-Point Exception trap 0 ei 0 ni 0 0 0 0 0 0 0

General Exception vector

Disabled ISA Transition fault 0 ri 0 ni 0 0 0 0 0 0 0

Illegal Dependency fault 0 ri 0 ni 0 0 0 0 0 0 0

Illegal Operation fault 0 ri 0 ni 0 0 0 0 0 0 0

IR Unimplemented Data Address fault 0 ri 0 ni 1 1 0 0 1 0 0

Privileged Operation fault 0 ri 0 ni 0 0 0 na 0 0 0

Privileged Register fault 0 ri 0 ni 0 0 0 0 0 0 0

Reserved Register/Field fault 0 ri 0 ni 0 0 0 0 0 0 0

Unimplemented Data Address fault 0 ri 0 ni 0 rs 0 naj r w 0

IA-32 Exception vector 0 0 0 0 0 0 0 0 0 0 x

IA-32 Intercept vector 0 0 0 0 0 0 0 0 r w 0

IA-32 Interrupt vector 0 0 0 0 0 0 0 0 0 0 0

Instruction Access Rights vector

Instruction Access Rights fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction Access-Bit vector

Instruction Access Bit fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction Key Miss vector

Instruction Key Miss fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction TLB vector

Instruction TLB fault 0 ri 0 ni 0 0 0 0 0 0 1

Key Permission vector

Data Key Permission fault edk ri so ni 0 rs sp na r w 0

Instruction Key Permission fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Key Permission fault 0 ri 0 ni 1 1 0 0 1 0 0

Lower-Privilege Transfer Trap vector

Unimplemented Instruction Address fault 0 ri 0 ni ir 0 0 0 0 0 1

Lower-Privilege Transfer trap 0 ei 0 ni ir 0 0 0 0 0 0

Unimplemented Instruction Address trap 0 ei 0 ni ir 0 0 0 0 0 0

NaT Consumption vector

Data NaT Page Consumption fault 0 ri so ni 0 rs 0 na r w 0

Instruction NaT Page Consumption fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data NaT Page Consumption fault 0 ri 0 ni 1 1 0 0 1 0 0

Register NaT Consumption fault 0 ri 0 ni 0 0 0 na r w 0

Table 8-2. ISR Values on Interruption (Continued)

Vector / Interruption ed eia so nib irc rsd spe naf r w x
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Table 8-3 provides the definition for the ISR.code field on all Itanium traps. Hardware 
will always deliver the highest priority enabled trap. Software must look at the ISR.code 
bit vector to determine if any lower priority trap occurred at the same time as the trap 
being processed.

Page Not Present vector

Data Page Not Present fault edk ri so ni 0 rs sp na r w 0

Instruction Page Not Present fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Page Not Present fault 0 ri 0 ni 1 1 0 0 1 0 0

Single Step Trap vector

Single Step trap 0 ei 0 ni ir 0 0 0 0 0 0

Speculation vector

Speculative Operation fault 0 ri 0 ni 0 0 0 0 0 0 0

Taken Branch Trap vector

Taken Branch trap 0 ei 0 ni ir 0 0 0 0 0 0

Unaligned Reference vector

Unaligned Data Reference fault ed ri 0 ni 0 0 sp 0 r w 0

Unsupported Data Reference vector

Unsupported Data Reference fault ed ri 0 ni 0 0 0 0 r w 0

VHPT Translation vector

IR VHPT Data fault 0 ri 0 nil 1 1 0 0 1 0 0

VHPT Data fault edk ri so nil 0 rs sp na r w 0

VHPT Instruction fault 0 ri 0 ni 0 0 0 0 0 0 1

Virtual External Interrupt vector

Virtual External Interrupt 0 ri 0 ni irm 0 0 0 0 0 0

Virtualization vector

Virtualization fault 0 ri 0 ni 0 0 0 0 0 0 0

a. ISR.ei is equal to IPSR.ri for all faults and external interrupts (1 for faults and interrupts on the L+X instruction 
of an MLX). For traps, ISR.ei points at the excepting instruction (2 for traps on the L+X instruction of an MLX).

b. If ISR.ni is 1, the interruption occurred either when PSR.ic was 0 or was in-flight.
c. ISR.ir captures the value of RSE.CFLE at the time of an interruption.
d. ISR.rs is 1 for interruptions caused by mandatory RSE fills/spills and 0 for all others.
e. ISR.sp is 1 for interruptions caused by speculative loads and zero for all others.
f. ISR.na is 1 for interruptions caused by non-access instructions and zero for all others.
g. ISR is not written.
h. A faulting probe.w.fault or probe.rw.fault can cause a Dirty Bit fault on a non-access instruction.
i. ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by a br.ret or rfi were 

re-loading the current register stack frame.
j. A faulting lfetch.fault or probe.fault to an unimplemented address will set ISR.na to 1.
k. ISR.ed is 0 if the interruption was caused by a mandatory RSE fill or spill.
l. If PSR.ic was 0 when the interruption was taken, these faults do not occur, but a Data Nested TLB fault is 

taken. 
m. ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by a br.ret or rfi were 

re-loading the current register stack frame.

Table 8-3. ISR.code Fields on Intel® Itanium® Traps

Field Bit Description

fp 0 Floating-Point Exception trap

lp 1 Lower-Privilege Transfer trap

Table 8-2. ISR Values on Interruption (Continued)

Vector / Interruption ed eia so nib irc rsd spe naf r w x
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tb 2 Taken Branch trap

ss 3 Single Step trap

ui 4 Unimplemented Instruction Address trap

fp trap code 7 IEEE O (overflow) exception (Parallel FP-LO)

fp trap code 8 IEEE U (underflow) exception (Parallel FP-LO)

fp trap code 9 IEEE I (inexact) exception (Parallel FP-LO)

fp trap code 10 FPA, Added one to significand when rounding (Parallel FP-LO)

fp trap code 11 IEEE O (overflow) exception (Normal or Parallel FP-HI)

fp trap code 12 IEEE U (underflow) exception (Normal or Parallel FP-HI)

fp trap code 13 IEEE I (inexact) exception (Normal or Parallel FP-HI)

fp trap code 14 FPA, Added one to significand when rounding (Normal or Parallel FP-HI).

Table 8-4. Interruption Vectors Sorted Alphabetically

Vector Name Offset Page

Alternate Data TLB vector 0x1000 2:178

Alternate Instruction TLB vector 0x0c00 2:177

Break Instruction vector 0x2c00 2:185

Data Access Rights vector 0x5300 2:191

Data Access-Bit vector 0x2800 2:184

Data Key Miss vector 0x1c00 2:181

Data Nested TLB vector 0x1400 2:179

Data TLB vector 0x0800 2:176

Debug vector 0x5900 2:200

Dirty-Bit vector 0x2000 2:182

Disabled FP-Register vector 0x5500 2:195

External Interrupt vector 0x3000 2:186

Floating-Point Fault vector 0x5c00 2:203

Floating-Point Trap vector 0x5d00 2:204

General Exception vector 0x5400 2:192

IA-32 Exception vector 0x6900 2:210

IA-32 Intercept vector 0x6a00 2:211

IA-32 Interrupt vector 0x6b00 2:212

Instruction Access Rights vector 0x5200 2:190

Instruction Access-Bit vector 0x2400 2:183

Instruction Key Miss vector 0x1800 2:180

Instruction TLB vector 0x0400 2:175

Key Permission vector 0x5100 2:189

Lower-Privilege Transfer Trap 
vector

0x5e00 2:205

NaT Consumption vector 0x5600 2:196

Page Not Present vector 0x5000 2:188

Single Step Trap vector 0x6000 2:208

Speculation vector 0x5700 2:198

Taken Branch Trap vector 0x5f00 2:207

Unaligned Reference vector 0x5a00 2:201

Table 8-3. ISR.code Fields on Intel® Itanium® Traps (Continued)

Field Bit Description
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Unsupported Data Reference 
vector

0x5b00 2:202

VHPT Translation vector 0x0000 2:173

Virtual External Interrupt vector 0x3400 2:187

Virtualization vector 0x6100 2:209

Table 8-4. Interruption Vectors Sorted Alphabetically (Continued)

Vector Name Offset Page
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Name VHPT Translation vector (0x0000)

Cause The hardware VHPT walker encountered a TLB miss while attempting to reference the 
virtually addressed hashed page table for a memory reference (including IA-32).

Interruptions on this vector:

IR VHPT Data fault
VHPT Instruction fault
VHPT Data fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IHA – The virtual address in the hashed page table which the hardware VHPT walker 
was attempting to reference.

ITIR – The ITIR contains default translation information for the virtual address 
contained in the IHA. The access key field within this register is set to the region id 
value from the region register selected by the virtual address in the IHA. The ITIR.ps 
field is set to the RR.ps field from the selected region register. All other fields are set to 
0.

IIB0, IIB1 – If implemented, for VHPT Data faults, the IIB registers contain the 
instruction bundle pointed to by IIP. The IIB registers are undefined for IR VHPT Data 
and VHPT Instruction faults. Please refer to Section 3.3.5.10, “Interruption Instruction 
Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

If the fault is due to a VHPT data fault for both original instruction and data references: 

• IFA – The faulting address that the hardware VHPT walker was attempting to 
resolve. 

• ISR – The ISR bits are set to reflect the original access on whose behalf the VHPT 
walker was operating. If the original operation was a non-access instruction then 
the ISR.code bits {3:0} are set to indicate the type of the non-access instruction; 
otherwise they are set to 0. For mandatory RSE fill or spill references, ISR.ed is 
always 0. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was taken, and is 
1 if PSR.ic was in-flight. For IA-32 memory references the ISR.code, ni, ed, ei, ir, rs, 
sp, and na bits are always 0. The defined ISR bits are specified below.

If the fault is due to a VHPT instruction fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction 
address zero extended to 64-bits or, if the hardware VHPT walker was attempting to 
resolve a TLB miss, the virtual address of the translation. 

• ISR – The ISR bits are set based on the original instruction fetch that the VHPT 
walker was attempting to resolve. The defined ISR bits are specified below. The 
ISR.ni bit is 0 if PSR.ic was 1 when the interruption was taken, and is 1 if PSR.ic 
was in-flight. For IA-32 memory references the ei and ni bits are always 0.    

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0
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Notes This fault can only occur when PSR.ic is 1 or in-flight, and the VHPT walker is enabled
for the referenced region. Refer to “VHPT Environment” on page 2:67 for details on
VHPT enabling.

The original IFA address will be needed by the operating system page fault handler in 
the case where the page containing the VHPT entry has not yet been allocated. When 
the translation for the VHPT is available the handler must first move the address 
contained in the IHA to the IFA prior to the TLB insert. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Instruction TLB vector (0x0400)

Cause The instruction TLB entry needed by an instruction fetch (including IA-32) is absent, 
and the hardware VHPT walker could not find the translation in the VHPT, or the 
hardware VHPT walker is enabled but not implemented on this processor.

Interruptions on this vector:

Instruction TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IHA – The virtual address of the hashed page table entry which corresponds to the 
reference that raised this fault. 

ITIR – The ITIR contains default translation information for the original instruction 
address. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address 
zero extended to 64-bits. 

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
defined ISR bits are specified below. The ISR.ni bit is 0 if PSR.ic was 1 when the 
interruption was taken, and is 1 if PSR.ic was in-flight. The ISR.ei and ni bits are always 
0 for IA-32 memory references. 

Notes This fault can only occur when PSR.ic is 1 or in-flight, the VHPT hardware walker is
enabled for the referenced region, the PSR.it bit is 1, and the fetched instruction bundle
is to be executed. Refer to “VHPT Environment” on page 2:67 for details on VHPT
enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag 
mismatch, illegal entry, or it may have terminated before reading the data. Software 
must be able to handle the case where the VHPT walker fails.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Data TLB vector (0x0800)

Cause For memory references (including IA-32), the data TLB entry needed by the data access 
is absent, and the hardware VHPT walker could not find the translation in the VHPT, or 
the hardware VHPT walker is not implemented on this processor.

Interruptions on this vector:

IR Data TLB fault
Data TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IHA – The virtual address of the hashed page table entry which corresponds to the 
reference that raised this fault. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, for Data TLB faults, the IIB registers contain the 
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data TLB 
faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – If the interruption was due to a non-access operation then the ISR.code bits 
{3:0} are set to indicate the type of the non-access instruction; otherwise they are set 
to 0. For mandatory RSE fill or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if 
PSR.ic was 1 when the interruption was taken, and is 1 if PSR.ic was in-flight. The 
ISR.code, ed, ei, ir, rs, sp and na bits are always 0 for IA-32 memory references. The 
defined ISR bits are specified below.

Notes The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access
operation when PSR.dt is 1, and the VHPT hardware walker is enabled for the
referenced region. This fault can only occur on a mandatory RSE load/store operation if
PSR.rt is 1, and the VHPT hardware walker is enabled for the referenced region. Refer
to “VHPT Environment” on page 2:67 for details on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag 
mismatch, illegal entry, or it may have terminated before reading the data. Software 
must be able to handle the case where the VHPT walker fails. The Data TLB fault is only 
taken if PSR.ic is 1 or in-flight, otherwise a Data Nested TLB fault is taken. 
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0 0 0 code{3:0}
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0 ed ei so ni ir rs sp na r w 0
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Name Alternate Instruction TLB vector (0x0c00)

Cause The instruction TLB entry needed by an instruction fetch (including IA-32) is absent, 
and the hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

Alternate Instruction TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the original instruction 
address. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the 
referenced region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address 
zero extended to 64-bits. 

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – For Itanium memory references, the ISR.ei bits are set to indicate which 
instruction caused the exception and ISR.ni is set to 0 if PSR.ic was 1 when the 
interruption was taken, and set to 1 if PSR.ic was 0 or in-flight. For IA-32 memory 
references the ISR.ei and ni bits are 0. The defined ISR bits are specified below. 

The ISR.ei bits are set to indicate which instruction caused the exception. The defined 
ISR bits are specified below. 

Notes This fault can only occur when the VHPT walker is disabled for the referenced region,
and the fetched instruction bundle is to be executed. Refer to “VHPT Environment” on
page 2:67 for details on VHPT enabling.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Alternate Data TLB vector (0x1000)

Cause For memory references (including IA-32), the data TLB entry needed by data access is 
absent, and the hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

IR Alternate Data TLB fault
Alternate Data TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, for Alternate Data TLB faults, the IIB registers contain the 
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Alternate 
Data TLB faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle 
Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – If the interruption was due to a non-access operation then the ISR.code bits 
{3:0} are set to indicate the type of the non-access instruction; otherwise they are set 
to 0. For mandatory RSE fill or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if 
PSR.ic was 1 when the interruption was taken, and is 1 if PSR.ic was in-flight. For IA-32 
memory references the ISR.code, ed, ei, ir, rs, sp and na bits are 0. The defined ISR 
bits are specified below.

Notes The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access
operation when PSR.dt is 1, and the VHPT hardware walker is disabled for the
referenced region. This fault can only occur on a mandatory RSE load/store operation if
PSR.rt is 1, and the VHPT hardware walker is disabled for the referenced region. The
Alternate Data TLB fault is only taken if PSR.ic is 1 or in-flight, otherwise a Data Nested
TLB fault is taken. Refer to “VHPT Environment” on page 2:67 for details on VHPT
enabling. 
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0 0 0 code{3:0}
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0 ed ei so ni ir rs sp na r w 0
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Name Data Nested TLB vector (0x1400)

Cause For memory references, the data TLB entry needed for a data reference is absent and 
PSR.ic is 0. Note: Data Nested TLB faults cannot occur during IA-32 instruction set 
execution, since PSR.ic must be 1.

Interruptions on this vector:

IR Data Nested TLB fault
Data Nested TLB fault

Parameters IIP, IPSR, IIPA, IFS, ISR are unchanged from their previous values; they contain 
information relating to the original interruption. 

ITIR – is unchanged from the previous value.

IFA – is unchanged from the previous value and contains the original address of the 
data being referenced.

IIB0, IIB1 – If implemented, the IIB registers are unchanged from their previous 
values. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

Notes This fault occurs when PSR.dt 1 and PSR.ic is 0 on a load, store, semaphore, and
faulting non-access instructions. It also occurs when PSR.dt is 0 and PSR.ic is 0 for a
regular_form probe instruction. Finally it can occur when PSR.rt is 1 and PSR.ic is 0 on
a RSE mandatory load/store operation. Since the operating system is in control of the
code executing at the time of the nested fault, it can by convention know which register
contains the address that raised the nested event. As the PSR.ic bit is 0 on a nested
fault, the IFA contains the original data address if the original interruption was caused
by a data TLB fault. If the translation table entry required by the nested miss handler
has not yet been allocated, then the address in the IFA will be passed to the operating
system page fault handler. If the translation for the entry is available then the general
register containing the nested fault address must be moved to the IFA prior to the
insert. The ISR contains the ISR for the original faulting instruction, and not the ISR for
the instruction that caused the nested fault.
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Name Instruction Key Miss vector (0x1800)

Cause For instruction fetches (including IA-32), the PSR.it bit is 1, the PSR.pk bit is 1, and the 
access key from the TLB entry for the address of the executing instruction bundle does 
not match any of the valid protection keys.

Interruptions on this vector:

Instruction Key Miss fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the original instruction 
address. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address 
zero extended to 64-bits. 

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For 
IA-32 memory references the ISR.ei and ni bits are 0. The defined ISR bits are specified 
below.
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0 0 0
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0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Data Key Miss vector (0x1c00)

Cause For memory references (including IA-32), the PSR.dt bit is 1, the PSR.pk bit is 1, and 
the access key from the TLB entry for the address referenced by a load, store, probe 
(regular_form probe or probe.fault) or semaphore operation does not match any of 
the valid protection keys. The RSE may cause this fault if PSR.rt is 1, the PSR.pk bit is 
1, and the access key from the TLB entry for the address referenced by an RSE 
mandatory load or store operation does not match any of the valid protection keys.

Interruptions on this vector:

IR Data Key Miss fault
Data Key Miss fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, for Data Key Miss faults, the IIB registers contain the 
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Key 
Miss faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – If the interruption was due to a non-access operation then the ISR.code bits 
{3:0} are set to indicate the type of the non-access instruction; otherwise they are set 
to 0. For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory 
references, the ISR.code, ed, ei, ni, ir, rs, sp, and na bits are 0. The value for the ISR 
bits depend on the type of access performed and are specified below.

Notes Probe (regular_form probe or probe.fault) and the faulting variant of lfetch are the
only non-access instructions that will cause a data key miss fault.
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0 0 0 code{3:0}
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0 ed ei so ni ir rs sp na r w 0
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Name Dirty-Bit vector (0x2000)

Cause IA-32 or Itanium store or semaphore operations to a page with the dirty-bit (TLB.d) 
equal to 0 in the data TLB.

Interruptions on this vector:

Data Dirty Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For mandatory RSE spill references, ISR.ed is always 0. For IA-32 
memory references, ISR.ed, ei, ni, and rs are 0. If the interruption was due to a 
non-access operation then the ISR.code bits {3:0} are set to indicate the type of the 
non-access instruction; otherwise they are set to 0.

Notes Dirty Bit fault can only occur in these situations:

• When PSR.dt is 1 on an IA-32 or Itanium store or semaphore operation

• When PSR.dt is 1 on a probe.w.fault or probe.rw.fault

• When PSR.rt is 1 on an RSE mandatory store operation

For probe.w.fault or probe.rw.fault the ISR.na bit is set, and the ISR.code field is 
written with a value of 5.

Only an IA-32 or Itanium semaphore, or probe.rw.fault operation would set ISR.r on 
a dirty bit fault.

Software is invoked to update the dirty bit in the data TLB entry and the Page table. The 
PSR.da bit can be used to suppress this fault for one executed instruction or one 
mandatory RSE store operation.
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0 0 0 code{3:0}
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0 ed ei so ni 0 rs 0 na r 1 0
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Name Instruction Access-Bit vector (0x2400)

Cause For instruction fetches (including IA-32), the access bit (TLB.a) in the TLB entry for this 
page is 0, and an instruction on the page is referenced.

Interruptions on this vector:

Instruction Access Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address 
zero extended to 64-bits. 

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For 
IA-32 memory references the ISR.ei and ni bits are 0. The defined ISR bits are specified 
below.

Notes The fault can only occur when PSR.it is 1 on an instruction reference (including IA-32).
Software uses this fault for memory management page replacement algorithms. The
PSR.ia bit can be used to suppress this fault for one executed instruction. 
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0 0 0
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0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Data Access-Bit vector (0x2800)

Cause For data memory references (including IA-32), the access bit (TLB.a) in the TLB entry 
for this page is 0, and the page is referenced.

Interruptions on this vector:

IR Data Access Bit fault
Data Access Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, for Data Access Bit faults, the IIB registers contain the 
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Access 
Bit faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 
memory references, ISR.code, ed, ei, ni, ir, rs, na and sp are 0. 

Notes These faults can only occur in these situations:

• When PSR.dt is 1 on an IA-32 or Itanium load, store, or semaphore operation

• When PSR.dt is 1 on a probe.fault

• When PSR.dt is 1 on an lfetch.fault

• When PSR.rt is 1 on an RSE mandatory load/store operation

For probe.fault or lfetch.fault the ISR.na bit is set.

Software uses this fault for memory management page replacement algorithms. The 
PSR.da bit can be used to suppress this fault for one executed instruction or one 
mandatory RSE memory reference.
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0 0 0 code{3:0}
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0 ed ei so ni ir rs sp na r w 0
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Name Break Instruction vector (0x2c00)

Cause An attempt is made to execute an Itanium break instruction.

Interruptions on this vector:

Break Instruction fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIM – Is updated with the break instruction immediate value. 

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
defined ISR bits are specified below.

Notes This fault cannot be raised by IA-32 instructions.
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0 0 ei 0 ni 0 0 0 0 0 0 0
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Name External Interrupt vector (0x3000)

Cause There are unmasked external interrupts pending from external devices, other 
processors, or internal processor events and:

• PSR.i is 1, while executing Itanium instructions

• PSR.i is 1 and (CFLAG.if is 0 or EFLAG.if is 1), while executing IA-32 instructions

IPSR.is indicates which instruction set was executing at the time of the interruption.

Interruptions on this vector:

External Interrupt

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IVR – Highest priority unmasked pending external interrupt vector number. If there are 
no unmasked pending interrupts the “spurious” interrupt vector (15) is reported.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction was to be executed when the 
external interrupt event was taken. The defined ISR bits are specified below. For 
external interrupts taken in the IA-32 instruction set, ISR.ei, ni and ir bits are 0. 

Notes: Software is expected to avoid situations which could cause ISR.ni to be 1.
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0 0 0
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0 0 ei 0 ni ir 0 0 0 0 0 0
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Name Virtual External Interrupt vector (0x3400)

Cause The guest highest pending interrupt (GHPI) specified by the VMM is unmasked on the 
virtual processor.

IPSR.is indicates which instruction set was executing at the time of the interruption.

Interruptions on this vector:

Virtual External Interrupt

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction was to be executed when the 
external interrupt event was taken. The defined ISR bits are specified below. For 
external interrupts taken in the IA-32 instruction set, ISR.ei, ni and ir bits are 0. 

Notes: Software is expected to avoid situations which could cause ISR.ni to be 1.
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0 0 0
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0 0 ei 0 ni ir 0 0 0 0 0 0
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Name Page Not Present vector (0x5000)

Cause The bundle or IA-32 instruction being executed resides on a page for which the P-bit 
(TLB.p) in the instruction TLB entry is 0, or the data being referenced resides on a page 
for which the P-bit in the data TLB entry is 0.

Interruptions on this vector:

IR Data Page Not Present fault
Instruction Page Not Present fault
Data Page Not Present fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IIB0, IIB1 – If implemented, for Data Page Not Present faults, the IIB registers contain 
the instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data 
Page Not Present and Instruction Page Not Present faults. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

If the fault is due to a data page not present fault for both instruction and data original 
references: 

• IFA – The virtual address of the data being referenced.

• ISR – If the interruption was due to a non-access operation then the ISR.code bits 
{3:0} are set to indicate the type of the non-access instruction; otherwise they are 
set to 0. The value for the ISR bits depend on the type of access performed and are 
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For 
IA-32 memory references, ISR.code, ed, ei, ni, ir, rs, sp and na bits are 0. 

If the fault is due to an instruction page not present fault: 

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction 
address zero extended to 64-bits. 

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
defined ISR bits are specified below. For IA-32 memory references the ISR.ei and ni 
bits are 0. 

Notes This fault can only occur when PSR.it is 1 on an instruction reference, when PSR.dt is 1
on a load, store, semaphore, or non-access operation, or when PSR.rt is 1 on a RSE
mandatory load/store operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Key Permission vector (0x5100)

Cause Data access (including IA-32): The PSR.dt bit is 1, the PSR.pk bit is 1 and read or write 
permission is disabled by the matching protection register on a load, store, or 
semaphore operation. The RSE may cause this fault if PSR.rt is 1, the PSR.pk bit is 1 
and read or write permission is disabled by the matching protection register on an RSE 
mandatory load/store operation. Instruction access (including IA-32): The PSR.it bit is 
1, the PSR.pk bit is 1 and execute permission is disabled by the matching protection 
register. 

Interruptions on this vector:

IR Data Key Permission fault
Instruction Key Permission fault
Data Key Permission fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register.The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IIB0, IIB1 – If implemented, for Data Key Permission faults, the IIB registers contain 
the instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Key 
Permission and Instruction Key Permission faults. Please refer to Section 3.3.5.10, 
“Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for 
details on the IIB registers.

If the fault is due to a data key permission fault: 

• IFA – Faulting data address.

• ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For 
IA-32 memory references, the ISR.code, ed, ei, ni, ir, rs, sp bits are 0. 

If the fault is due to an instruction key permission fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction 
address zero extended to 64-bits. 

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
defined ISR bits are specified below. For IA-32 memory references, ISR.ei and ni are 
set to 0. 

Notes For probe.fault or lfetch.fault the ISR.na bit is set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Instruction Access Rights vector (0x5200)

Cause For instruction fetches (including IA-32), the PSR.it bit is 1, and the access rights for 
this page do not allow execution or do not allow execution at the current privilege level.

Interruptions on this vector:

Instruction Access Rights fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address 
zero extended to 64-bits. 

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
defined ISR bits are specified below. For IA-32 memory references, ISR.ei and ni bits 
are 0. 

Notes This fault does not occur if PSR.it is 0. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Data Access Rights vector (0x5300)

Cause For memory references (including IA-32), the PSR.dt bit is 1, and the access rights for 
this page do not allow read access or do not allow read access at the current privilege 
level for load and semaphore operations. The PSR.dt bit is 1, and the access rights for 
this page do not allow write access or do not allow write access at the current privilege 
level for store and semaphore operations. 

The PSR.rt bit is 1, and the access rights for this page do not allow read access or do 
not allow read access at the current privilege level for the RSE mandatory load 
operation. The PSR.rt bit is 1, and the access rights for this page do not allow write 
access or do not allow write access at the current privilege level for the RSE mandatory 
store operation.

Interruptions on this vector:

IR Data Access Rights fault
Data Access Rights fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

ITIR – The ITIR contains default translation information for the address contained in the 
IFA. The access key field within this register is set to the region id value from the 
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced 
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, for Data Access Rights faults, the IIB registers contain the 
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Access 
Rights faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle 
Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 
memory references, ISR.code, ed, ei, ni, ir, rs, and sp bits are 0. 

Notes For probe.fault or lfetch.fault the ISR.na bit is set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0
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Name General Exception vector (0x5400)

Cause An attempt is being made to execute an illegal operation, privileged instruction, access 
a privileged register, unimplemented field, unimplemented register, unimplemented 
address, or take an inter-instruction set branch when disabled.

Interruptions on this vector:

IR Unimplemented Data Address fault
Illegal Operation fault
Illegal Dependency fault
Privileged Operation fault
Disabled Instruction Set Transition fault
Reserved Register/Field fault
Unimplemented Data Address fault
Privileged Register fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP for the following faults:

Illegal Operation fault
Illegal Dependency fault
Privileged Operation fault
Disabled Instruction Set Transition fault
Reserved Register/Field fault
Unimplemented Data Address fault
Privileged Register fault

The IIB registers are undefined for IR Unimplemented Data Address faults. Please refer 
to Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For 
IA-32 instruction set faults, ISR.ei, ni, na, sp, rs, ir, ed bits are always 0.

• If the fault was caused by a non-access instruction, ISR.code{3:0} specifies which 
non-access instruction. See “Non-access Instructions and Interruptions” on 
page 2:103.

• ISR.code{7:4} = 0: Illegal Operation fault. Cannot be raised by IA-32 instructions.

• An attempt is being made to execute an illegal operation. Illegal operations 
include:

• Attempts to execute instructions containing reserved major opcodes, 
reserved sub-opcodes, or reserved instruction fields, writing GR 0, FR 0 or 
FR 1, writing a read-only register, or accessing a reserved register.

• Attempts to execute a reserved template encoding. An rfi to a reserved 
template encoding preserves IPSR.ri and will set ISR.ei to IPSR.ri.

• Attempts to execute a bundle of template MLX when PSR.ri == 2. This can 
only be caused by doing an rfi with an improper setting of IPSR.ri. In this 
case, IPSR.ri and ISR.ei will both be 2.

• Attempts to write outside the current register stack frame.

• Attempts to specify the same GR, when the instruction has two GR targets 
(e.g., post-increment).
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• If the instruction has two PR targets, and specifies the same PR for both, 
predicated-off unconditional compare, fclass, tbit, tnat, and tf 
instructions take this fault, even when their qualifying predicate is zero.

• Register bank conflict on a floating-point load pair instruction.

• An access to BSPSTORE or RNAT is performed with a non-zero RSC.mode, 
or a loadrs is performed with a non-zero RSC.mode.

• A loadrs is performed with a non-zero CFM.sof and a non-zero RSC.loadrs, 
or a loadrs causes more registers to be loaded from memory than can fit 
in the physical stacked register file.

• Attempts to predicate a br.ia instruction or to execute br.ia when 
AR[BSPSTORE] != AR[BSP].

• Attempts to execute epc if PFS.ppl is less than PSR.cpl.

• Attempts to access interruption registers if PSR.ic is 1.

• Attempts to execute an itc or itr instruction if PSR.ic is 1.

• Attempts to allocate a stack frame larger than 96 registers, or with the 
rotating region larger than the stack frame, or with the size of locals larger 
than the stack frame, or specifying a qualifying predicate other than PR 0 
on an alloc instruction.

• Attempts to execute instructions that are not supported by the processor.

• Attempts to execute a ldfp instruction with two odd-numbered physical FR 
targets or two even-numbered physical FR targets.

• Attempts to access an application register from the wrong unit type.

• Attempts to execute a br.cloop, br.ctop, br.cexit, br.wtop, or 
br.wexit other than in slot 2 of a bundle.

• Attempts to execute an alloc, flushrs or loadrs as other than the first 
instruction in an instruction group. (The result of such an attempt is 
undefined, and could result in an Illegal Operation fault, depending on the 
processor implementation. See Section 3.5, “Undefined Behavior” on 
page 1:44 for details).

• Attempts to execute a clrrrb, clrrrb.pr, cover, itc.d, itc.i, ptc.g or 
ptc.ga instruction as other than the last instruction in an instruction group. 
(The result of such an attempt is undefined, and may possibly result in an 
Illegal Operation fault, depending on the processor See Section 3.5, 
“Undefined Behavior” on page 1:44 for details).

• ISR.code{7:4} = 1: Privileged Operation fault. Cannot be raised by IA-32 
instructions.

• ISR.code{7:4} = 2: Privileged Register fault. Cannot be raised by IA-32 
instructions.

• ISR.code{7:4} = 3: Reserved Register/Field fault, Unimplemented Data Address 
fault or IR Unimplemented Data Address fault. Cannot be raised by IA-32 
instructions. For Unimplemented Data Address fault:

• If ISR.rs = 0: A data memory reference to an unimplemented address has 
occurred.

• If ISR.rs = 1: A mandatory RSE reference to an unimplemented address has 
occurred.

For details, refer to “Reserved and Ignored Registers and Fields” on page 1:23 and 
“Unimplemented Address Bits” on page 2:73.
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• ISR.code{7:4} = 4: Disabled Instruction Set Transition fault. An instruction set 
transition was attempted while PSR.di was 1. This fault can be raised by either the 
Itanium br.ia instruction or the IA-32 jmpe instruction. IPSR.is indicates the 
faulting instruction set.

• ISR.code{7:4} = 8: Illegal Dependency fault. Cannot be raised by IA-32 
instructions. The processor has detected a resource dependency violation.

If the fault is due to a Disabled ISA Transition fault, Illegal Dependency fault, Illegal 
Operation fault, Privileged Register fault or Reserved Register/Field fault:

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:4} 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:4} code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir rs 0 na r w 0
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Name Disabled FP-Register vector (0x5500)

Cause An attempt is made to reference a floating-point register set that is disabled.

When PSR.dfl is 1, execution of any IA-32 FP, SSE or MMX technology instructions 
raises a Disabled FP Register Low Fault (regardless of whether FR2 - FR31 are actually 
referenced). 

When PSR.dfh is 1, execution of the first IA-32 instruction following a br.ia or rfi 
raises a Disabled FP Register High fault. 

If concurrent IA-32 Disabled FP Register High and Low faults are generated, the 
Disabled FP Register High fault takes precedence and is reported in the ISR code, the 
Disabled FP Register Low fault is discarded and not reported in the ISR code.

Interruptions on this vector:

Disabled Floating-Point Register fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The defined ISR bits are specified below.

• ISR.code{0} = 1: FR2 - FR31 disabled and access attempted.

• ISR.code{1} = 1: FR32 - FR127 disabled and access attempted.

For IA-32 references, ISR.ei, ni, sp, r, and w bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 sp 0 r w 0
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Name NaT Consumption vector (0x5600)

Cause A non-speculative operation (including IA-32) (e.g., load, store, control register access, 
instruction fetch etc.) read a NaT source register, NaTVal source register, or referenced 
a NaTPage.

Interruptions on this vector:

IR Data NaT Page Consumption fault
Instruction NaT Page Consumption fault
Register NaT Consumption fault
Data NaT Page Consumption fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIB0, IIB1 – If implemented, for Register NaT Consumption and Data NaT Page 
Consumption faults, the IIB registers contain the instruction bundle pointed to by IIP. 
The IIB registers are undefined for IR Data NaT Page Consumption and Instruction NaT 
Page Consumption faults. Please refer to Section 3.3.5.10, “Interruption Instruction 
Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

If the fault is due to a Data NaT Page Consumption fault or an IR Data NaT Page 
Consumption fault:

A non-speculative Itanium integer/FP instruction or instruction fetch or IA-32 data 
memory reference accessed a page with the NaTPage memory attribute. 

• IFA – faulting data address.

• ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For 
the IA-32 instruction set, ISR.ed, ei, ni, ir, rs and na bits are 0. For probe.fault or 
lfetch.fault the ISR.na bit is set.

If the fault is due to an Instruction NaT Page Consumption fault:

A non-speculative Itanium integer/FP instruction or instruction fetch accessed a 
page with the NaTPage memory attribute. 

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction 
address zero extended to 64-bits. 

• ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For the IA-32 instruction set, ISR.ni and ei bits are 0.

If the fault is due to an Register NaT Consumption fault:

A non-speculative Itanium instruction reads a NaT’ed GR or an FR containing 
NaTVal. An IA-32 integer instruction reads a NaT’ed GR. For IA-32 instructions 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 2 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei so ni ir rs 0 na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 2 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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behavior of NaT and NaTVal values is model specific, see Section 6.2.4.3, 
“NaT/NaTVal Response for IA-32 Instructions” on page 1:134 for details. 

• ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For the IA-32 instruction set, ISR.ed, ei, ni, ir, rs, r, w, and na bits 
are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 na r w 0
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Name Speculation vector (0x5700)

Cause A chk.a, chk.s, or fchkf instruction needs to branch to recovery code, and the 
branching behavior is unimplemented by the processor. This fault cannot be raised by 
IA-32 instructions.

Interruptions on this vector:

Speculative Operation fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIM – contains the immediate value from the chk.s, chk.a, or fchkf instruction.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
type of instruction which caused the fault is encoded in the lower four bits of the 
ISR.code field. 

• If ISR.code{3:0} = 0: chk.a general register speculation fault.

• If ISR.code{3:0} = 1: chk.s general register speculation fault.

• If ISR.code{3:0} = 2: chk.a floating-point speculation fault.

• If ISR.code{3:0} = 3: chk.s floating-point speculation fault.

• If ISR.code{3:0} = 4: fchkf fault.

The defined ISR bits are specified below.

Notes The Speculative Operation fault handler is required to perform the following steps:

1. Read the predicates and the IIM, IIP, IPSR, and ISR control registers, into scratch 
bank 0 general registers.

2. Copy the IIP value to IIPA.

3. Sign-extend the IIM value (from 21 bits to 64), shift it left by 4 bits, add it to the 
IIP value, and write this value back into IIP.

4. Set the IPSR.ri field to 0.

5. Check whether either IPSR.tb (Taken Branch trap) or IPSR.ss (Single Step 
enable) is 1. If not, emulation is complete, so restore the predicates and rfi. If 
so, then the check instruction would have taken one of these traps instead of 
branching to its target, so this handler needs to branch directly to the appropriate 
trap handler instead of performing the rfi (see steps 6 and 7).

6. If IPSR.tb was 1, then update ISR.code with its tb bit set to 1 and its ss bit also 
set to 1 if IPSR.ss was 1, and all other bits 0.  Restore the predicates, execute a 
srlz.d, and branch to the taken branch vector (IVT offset 0x5f00).

7. If IPSR.ss was 1 (but not IPSR.tb), then update ISR.code with its ss bit set to 1, 
and all other bits 0.  Restore the predicates, execute a srlz.d, and branch to the 
single step vector (IVT offset 0x6000).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
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The Speculative Operation fault handler does not need to check for unimplemented 
instruction addresses. They will be checked automatically by processor hardware when 
the handler executes its rfi. On processors which report unimplemented instruction 
addresses with an Unimplemented Instruction Address (UIA) trap, if an emulated check 
instruction targets an unimplemented address and also needs to take a Single Step trap 
or Taken Branch trap (or both), the UIA trap will not be raised until after the Single Step 
and/or Taken Branch trap has been handled, making it appear that the Unimplemented 
Instruction Address trap has the wrong priority. A Speculative Operation fault handler 
with this behavior is architecturally compliant. On processors which report 
unimplemented instruction addresses with an Unimplemented Instruction Address fault, 
the UIA fault will be taken at the target of the check rather than on the check 
instruction itself, so any Single Step trap and/or Taken Branch trap on the check will 
naturally become visible first.
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Name Debug vector (0x5900)

Cause A debug fault has occurred. Either the instruction address matches the parameters set 
up in the instruction debug registers, or the data address of a load, store, semaphore, 
or mandatory RSE fill or spill matches the parameters set up in the data debug 
registers. All IA-32 instruction set debug events are delivered on the 
IA_32_Exception(Debug) vector; see Chapter 9, “IA-32 Interruption Vector 
Descriptions.” IA-32 instructions can not raise this fault, IA-32 debug events are 
delivered on the IA_32_Exception(Debug) vector.

Interruptions on this vector:

IR Data Debug fault
Instruction Debug fault
Data Debug fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIB0, IIB1 – If implemented, for Data Debug faults, the IIB registers contain the 
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Debug 
and Instruction Debug faults. Please refer to Section 3.3.5.10, “Interruption Instruction 
Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

If the fault is due to a data debug fault or an IR Data Debug fault:

• IFA – The address of the data being referenced.

• ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0.

If the fault is due to an instruction debug fault:

• IFA – Faulting instruction fetch address.

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
defined ISR bits are specified below.

Notes On an instruction reference this fault is suppressed if the PSR.db bit is 0 or if the PSR.id
bit is 1. On a data reference this fault is suppressed if the PSR.db bit is 0 or if the
PSR.dd bit is 1. The only non-access data operations which can cause a debug fault are
the probe.fault and lfetch.fault instructions.

If unaligned accesses are being performed with debug faults enabled, this fault may be 
taken even though there is not a match for the address programmed in the breakpoint 
register.  See Section 7.1.2, “Debug Address Breakpoint Match Conditions” on 
page 2:154.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
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Name Unaligned Reference vector (0x5a00)

Cause If PSR.ac is 1, and the data address being referenced by an Itanium instruction is not 
aligned to the natural size of the load, store, or semaphore operation, or a data 
reference is made to a misaligned datum not supported by the implementation. See 
“Memory Access Instructions” on page 1:57. For IA-32 data memory references, an 
IA_32_Exception(Alignment Check) fault is raised; see Chapter 9, “IA-32 Interruption 
Vector Descriptions.” IA-32 instructions can not raise this fault, IA-32 unaligned events 
are delivered on the IA_32_Exception(Alignment_Check) vector.

If the data reference specified is both unaligned to the natural datum size and 
unsupported, then an Unaligned Data Reference fault is taken.

Interruptions on this vector:

Unaligned Data Reference fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are 
specified below. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni 0 0 sp 0 r w 0
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Name Unsupported Data Reference vector (0x5b00)

Cause  An attempt was made to:

• Execute a fetchadd, cmpxchg, xchg, or unsupported ld16, st16 or 10-byte 
memory reference (ldfe or stfe) instruction to a page that is neither cacheable 
with write-back write policy nor a NaTPage.

• Execute a fetchadd instruction to a page that is an uncacheable exported (UCE) 
page and the processor model does not support exporting of fetchadd instructions.

 See “Effects of Memory Attributes on Memory Reference Instructions” on page 2:86 for 
details. IA-32 instructions can not raise this fault, IA-32 locked faults are delivered on 
the IA_32_Intercept(Lock) vector.

If the data reference specified is both unaligned to the natural datum size and 
unsupported, then an Unaligned Data Reference fault is taken.

IA-32 data memory references that require an external atomic lock when DCR.lc is 1, 
raise an IA_32_Intercept(Lock) fault; see Chapter 9, “IA-32 Interruption Vector 
Descriptions.”

Interruptions on this vector:

Unsupported Data Reference fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are 
specified below.

For ldfe and stfe instructions, the processor may optionally set both ISR.r and ISR.w 
to 1, although this is not recommended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni 0 0 0 0 r w 0
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Name Floating-point Fault vector (0x5c00)

Cause A floating-point exception fault has occurred. IA-32 numeric instructions can not raise 
this fault, IA-32 floating point faults are delivered on the 
IA_32_Exception(Floating-Point) vector.

Interruptions on this vector:

Floating-Point Exception fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the FP exception fault. The ISR.code field has 
eight bits defined. See Chapter 5 for details.

• ISR.code{0} = 1: IEEE V (invalid) exception (Normal or Parallel FP-HI)

• ISR.code{1} = 1: Denormal/Unnormal operand exception (Normal or Parallel 
FP-HI)

• ISR.code{2} = 1: IEEE Z (divide by zero) exception (Normal or Parallel FP-HI)

• ISR.code{3} = 1: Software assist (Normal or Parallel FP-HI)

• ISR.code{4} = 1: IEEE V (invalid) exception (Parallel FP-LO)

• ISR.code{5} = 1: Denormal/Unnormal operand exception (Parallel FP-LO)

• ISR.code{6} = 1: IEEE Z (divide by zero) exception (Parallel FP-LO)

• ISR.code{7} = 1: Software assist (Parallel FP-LO)

The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
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Name Floating-point Trap vector (0x5d00)

Cause A floating-point exception trap has occurred. IA-32 numeric instructions can not raise 
this trap.

Interruptions on this vector:

Floating-Point Exception trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIPA. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the type of FP exception and IEEE information. 
The ISR code field contains a bit vector (see Table 8-3 on page 2:170) for all traps 
which occurred in the just-executed instruction. The defined ISR bits are specified 
below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 fp trap code 0 0 0 ss 0 0 1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
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Name Lower-Privilege Transfer Trap vector (0x5e00)

Cause Two trapping conditions transfer control to this vector:

• An attempt is made to transfer control to an unimplemented address, resulting in 
either an Unimplemented Instruction Address trap or an Unimplemented Instruction 
Address fault. See “Unimplemented Address Bits” on page 2:73.

• The PSR.lp bit is 1, and a branch lowers the privilege level. 

IA-32 instructions can not raise this trap.

Interruptions on this vector:

Unimplemented Instruction Address fault
Unimplemented Instruction Address trap
Lower-Privilege Transfer trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP – CR19)” on page 2:37 
for a further clarification of the IIP value for an unimplemented instruction 
address trap.

IIB0, IIB1 – If implemented, for Lower-Privilege Transfer traps, the IIB registers 
contain the instruction bundle pointed to by IIPA. The IIB registers are undefined for 
Unimplemented Instruction Address faults and traps. Please refer to Section 3.3.5.10, 
“Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for 
details on the IIB registers.

ISR – For Unimplemented Instruction Address trap and Lower-Privilege Transfer trap, 
the ISR.ei bits are set to indicate which instruction caused the exception, and the 
ISR.code contains a bit vector (see Table 8-3 on page 2:170) for all traps which 
occurred in the just-executed instruction.

For Unimplemented Instruction Address fault ISR.fp_trap_code is set to 0.

The defined ISR bits are specified below.

If this vector was entered for an Unimplemented Instruction Address fault:

IFA – Faulting unimplemented instruction address

If this vector was entered for an Unimplemented Instruction Address trap:

If this vector was entered for a Lower-Privilege Transfer trap:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ri 0 ni ir 0 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 fp trap code 0 0 1 ss tb lp fp

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
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Notes The Unimplemented Instruction Address trap can be the result of a taken branch, a
taken chk, an rfi, or the execution of a slot 2 instruction in a bundle at the last
implemented address. The lower privilege transfer trap is only taken on a branch
demotion, and not an rfi return.

Processors may optionally report unimplemented instruction addresses with an 
Unimplemented Instruction Address fault on the fetch of the unimplemented address. 
To system software, this appears the same as if an Unimplemented Instruction Address 
trap had been taken, except that:

• any concurrent traps (Single Step, Taken Branch, Lower-Privilege Transfer, FP) will be 
taken first

• asynchronous interrupts (such as External interrupt) may be taken with IIP pointing 
to the unimplemented address before the Unimplemented Instruction Address fault is 
taken

• incomplete register stack frame interrupts may be taken with IIP pointing to the 
unimplemented address before the Unimplemented Instruction Address fault is taken

• ISR.ei will be equal to the value of PSR.ri at the time of the fault (and therefore will 
not indicate which instruction in the bundle pointed to by IIPA was responsible for the 
transition to an unimplemented address).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 ss tb 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
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Name Taken Branch Trap vector (0x5f00)

Cause A taken branch was executed, and the PSR.tb bit is 1. IA-32 instructions can not raise 
this trap, IA-32 taken branch traps are delivered on the IA_32_Exception(Debug) 
vector.

The Taken Branch trap is not taken on an rfi instruction.

Interruptions on this vector:

Taken Branch trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP – CR19)” on page 2:37 
for a further clarification of the IIP value for an unimplemented instruction 
address trap or fault.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIPA. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
ISR.code contains a bit vector (see Table 8-3 on page 2:170) for all traps which 
occurred in the just-executed instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 ss 1 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
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Name Single Step Trap vector (0x6000)

Cause An instruction was successfully executed, and the PSR.ss bit is 1. For IA-32 instruction 
set, this condition is delivered on the IA_32_Exception(Debug) vector; see Chapter 9, 
“IA-32 Interruption Vector Descriptions.” IA-32 instructions can not raise this trap, 
IA-32 single step events are delivered on the IA_32_Exception(Debug) vector.

The Single Step trap is not taken on an rfi instruction.

Interruptions on this vector:

Single Step trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIPA. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The 
ISR.code contains a bit vector (see Table 8-3 on page 2:170) for all traps which 
occurred in the just-executed instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
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Name Virtualization vector (0x6100)

Cause An attempt is made to execute an instruction which requires virtualization. This fault 
cannot be raised by IA-32 instructions.

Interruptions on this vector:

Virtualization fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description. 

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to 
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers 
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
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Name IA-32 Exception vector (0x6900)

Cause A fault or trap was raised while executing from the IA-32 instruction set.

Interruptions on this vector:

IA-32 Instruction Debug fault
IA-32 Code Fetch fault
IA-32 Instruction Length > 15 bytes fault
IA-32 Device Not Available fault
IA-32 FP Error fault
IA-32 Segment Not Present fault
IA-32 Stack Exception fault
IA-32 General Protection fault
IA-32 Divide by Zero fault
IA-32 Alignment Check fault
IA-32 Bound fault
IA-32 INTO trap
IA-32 Breakpoint (INT 3) trap
IA-32 Data Breakpoint trap
IA-32 Taken Branch trap
IA-32 Single Step trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IFA – is undefined. The faulting IA-32 address is contained in IIPA.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – ISR.vector contains the IA-32 exception vector number. ISR.code contains the 
IA-32 error code for faults or a trap code listing concurrent trap events for traps.

Notes See Chapter 9, “IA-32 Interruption Vector Descriptions” for complete details on each
IA-32 Exception and for error code and trap code definition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 vector error_code/trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 x
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Name IA-32 Intercept vector (0x6a00)

Cause An intercept fault or trap was raised while executing from the IA-32 instruction set. This 
vector handles all the IA-32 intercepts described in Chapter 9, “IA-32 Interruption 
Vector Descriptions.”

Interruptions on this vector:

IA-32 Invalid Opcode fault
IA-32 Instruction Intercept fault
IA-32 Locked Data Reference fault
IA-32 System Flag Intercept trap
IA-32 Gate Intercept trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIM – 64-bit information describing the cause of the intercept.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – ISR.vector contains a number specifying the type of intercept. ISR.code contains 
the IA-32 specific intercept information or a trap code listing concurrent trap events for 
traps.

Notes See Chapter 9, “IA-32 Interruption Vector Descriptions” for complete details on each
IA-32 Intercept and for the intercept code and trap code definition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 intercept_number intercept_code/trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 r w 0
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Name IA-32 Interrupt vector (0x6b00)

Cause An IA-32 software interrupt trap was executed. This vector handles all the IA-32 
software interrupts described in Chapter 9, “IA-32 Interruption Vector Descriptions.”

Interruptions on this vector:

IA-32 Software Interrupt (INT) trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to 
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on 
page 2:42 for details on the IIB registers.

ISR – ISR.vector contains the IA-32 defined interruption vector number. ISR.code 
contains a trap code listing concurrent trap events.

Notes See Chapter 9, “IA-32 Interruption Vector Descriptions” for complete details on this
vector and the trap code definition.

§

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 vector trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0
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IA-32 Interruption Vector Descriptions 9

This section gives detailed description of all possible IA-32 exceptions, interrupts and 
intercepts that can occur during IA-32 instruction set execution in the Itanium System 
Environment. Interruption resources not noted below are undefined after the 
interruption. For all cases where an interruption is taken out of the IA-32 instruction 
set, IPSR.is is set to 1.

9.1 IA-32 Trap Code

The following trap code is defined for concurrent traps reported during IA-32 instruction 
set execution. There is a bit for every possible concurrent trap condition.

9.2 IA-32 Interruption Vector Definitions

Following are the definitions of IA-32 exceptions, interrupts and intercepts that can 
occur during IA-32 instruction set execution in the Itanium system environment.

Figure 9-1. IA-32 Trap Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 b3 b2 b1 b0 ss tb 0

Figure 9-2. IA-32 Trap Code

Bit Name Description

2 tb taken branch trap, set if an IA-32 branch is taken and branch traps are enabled 
(PSR.tb is 1).

3 ss single step trap, set after the successful execution of every IA-32 instruction if PSR.ss 
or EFLAG.tf is 1.

4-7 b0 to b3 Data breakpoint trap due to a match with the corresponding Intel Itanium data 
breakpoint registers. Each bit indicates a match with the corresponding DBR 
registers; b0=DBR0/1, b1=DBR2/3, b2=DBR4/5, b3=DBR6/7. Zero, one or more bits 
may be set. These bits accumulate data breakpoint register matches that occurred 
during the duration of executing one IA-32 instruction. In order to be reported, the 
DBR register address and mask registers must precisely match the IA-32 data 
memory reference address, and the DBR read, write bits match the type of memory 
transaction, and the DBR privilege level mask match the value in PSR.cpl.
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Name IA_32_Exception (Divide) – Divide Fault 

Cause IA-32 IDIV or DIV instruction attempted a divide by zero operation. Refer to the Intel® 
64 and IA-32 Architectures Software Developer’s Manual for a complete 
definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (Debug) – Code Breakpoint Fault

Cause The Itanium architecture debug facilities triggered an IA-32 code breakpoint fault on a 
IA-32 instruction fetch and PSR.id and EFLAG.rf are 0. Refer to the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual for a complete definition of this 
fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 1.

ISR.x – 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 1
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Name IA_32_Exception (Debug) – Data Breakpoint, Single Step, Taken 
Branch Trap

Cause The Itanium architecture debug facilities triggered an IA-32 data breakpoint, 
single-step or branch trap. In the Itanium System Environment, IA-32 Mov SS or Pop 
SS single step and data breakpoint traps are NOT deferred to the next instruction. Refer 
to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for a 
complete definition of this trap.

Parameters IIPA – virtual address of the trapping IA-32 instruction (zero extended to 64-bits) if 
there was a taken branch trap. On jmpe taken branch traps IIPA contains the address of 
the jmpe instruction. For all other trap events, IIPA is undefined.

IIP – next Itanium instruction address or the virtual IA-32 instruction address zero 
extended to 64-bits.

ISR.vector – 1.

ISR.code – Trap Code, indicates Concurrent Single Step, Taken Branch, Data Breakpoint 
Trap events.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (Break) – INT 3 Trap

Cause IA-32 breakpoint instruction (INT 3) triggered a trap. Refer to the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual for a complete definition of this 
trap.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

ISR.vector – 3.

ISR.code –Trap Code, indicates Concurrent Single Step condition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 3 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (Overflow) – Overflow Trap

Cause IA-32 INTO instruction execution when EFLAG.of is set to one. Refer to the Intel® 64 
and IA-32 Architectures Software Developer’s Manual for a complete definition of 
this trap.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

ISR.vector – 4.

ISR.code – Trap Code, indicates Concurrent Single Step.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 4 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (Bound) – Bounds Fault

Cause Failed IA-32 Bound check instruction. Refer to the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 5.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 5 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (InvalidOpcode) – Invalid Opcode Fault

Cause All IA-32 invalid opcode faults are delivered to the IA_32_Intercept(Instruction) 
handler, including IA-32 illegal, unimplemented opcodes, MMX technology and SSE 
instructions if CR0.EM is 1, and SSE instructions if CR4.fxsr is 0. All illegal IA-32 
floating-point opcodes result in an IA_32_Intercept(Instruction) regardless of the state 
of CR0.em.
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Name IA_32_Exception (DNA) – Device Not Available Fault 

Cause The processor executed an IA-32 ESC or floating-point instruction with CR0.em is 1. Or 
an IA-32 WAIT, ESC, floating-point instruction, MMX technology or SSE instruction is 
executed and CR0.ts bit is 1. 

Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for 
a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 7.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 7 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name Double Fault

Cause IA-32 Double Faults (IA-32 vector 8) are not generated by the processor in the Itanium 
System Environment. 
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Name Invalid TSS Fault

Cause IA-32 Invalid TSS Faults (IA-32 vector 10) are not generated in the Itanium System 
Environment.
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Name IA_32_Exception (NotPresent) – Segment Not Present Fault

Cause Generated when the processor detects the Present-bit of the memory segment 
descriptor is zero during an IA-32 segment load or far control transfer instructions. 
Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for 
a complete definition of this fault and error codes. 

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 11.

ISR.code – IA-32 defined error code. See Intel® 64 and IA-32 Architectures 
Software Developer’s Manual.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 11 error_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (StackFault) – Stack Fault

Cause IA-32 defined set of stack segment fault conditions detected during stack segment load 
operations or memory references relative to the stack segment, refer to the Intel® 64 
and IA-32 Architectures Software Developer’s Manual for a complete list of all 
IA-32 faulting conditions. Stack faults can also be generated when the processor 
detects an inconsistent stack segment register descriptor value during an IA-32 stack 
reference instruction (e.g. PUSH, POP, CALL, RET,). See section “Segment Descriptor 
and Environment Integrity” for a list of possible inconsistent register descriptor 
conditions.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 12.

ISR.code – IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is 
detected during a memory reference relative to the stack segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 12 error_code or zero

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (GPFault) – General Protection Fault

Cause IA-32 defined set of data and code segment fault conditions detected during data or 
code segment load operations or memory references relative to code or data segments, 
refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for 
a complete list of all IA-32 General Protection Fault conditions. General Protection faults 
can also be generated when the processor detects an inconsistent code or data 
segment register descriptor value during an IA-32 code fetch or data memory 
reference. See section “Segment Descriptor and Environment Integrity” for a list of 
possible inconsistent register descriptor conditions.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 13.

ISR.code – IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is 
detected during a memory reference relative to a code or data segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 13 error_code or zero

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name Page Fault

Cause IA-32 defined page faults (IA-32 vector 14) can not be generated in the Itanium 
System Environment. 
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Name IA_32_Exception (FPError) – Pending Floating-point Error

Cause An unmasked IA-32 floating-point exception is delivered on the next non-control IA-32 
floating-point, MMX technology, WAIT, or jmpe instruction trigger delivery of this 
exception. Floating-point errors are delivered regardless of the state of CR0.ne in the 
Itanium System Environment. IA-32 numeric exception delivery is not triggered by 
Itanium numeric exceptions or the execution of Itanium numeric instructions. Refer to 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual for a 
complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

FSR, FIR, FDR and FCR contain the IA-32 floating-point environment and exception 
information.

ISR.vector – 16.

. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 16 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Exception (AlignmentCheck) – Alignment Check Fault

Cause An IA-32 instruction performed an unaligned data memory reference while PSR.ac is 1, 
or EFLAG.ac is 1 and CR0.am is 1 and the effective privilege level is 3. Refer to the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual for a complete 
definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IFA – referenced virtual data address (byte granular) zero extended to 64-bits.

ISR.vector – 17.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 17 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name Machine Check

Cause IA-32 Machine Check (IA-32 vector 18) is not generated in the Itanium System 
Environment. 
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Name IA_32_Exception (StreamingSIMD) – SSE Numeric Error Fault

Cause An unmasked IA-32 SSE numeric error occurred. Numeric faults generated on SSE 
instructions are reported precisely on the faulting SSE instruction. SSE instructions do 
NOT trigger the report of any pending IA-32 floating-point exceptions. SSE instructions 
always ignore CR0.ne and the IGNNE pin. Refer to the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 19.

. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 19 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Interrupt (Vector #N) – Software Trap

Cause The IA-32 INT n instruction forces an IA-32 interrupt trap. The IA-32 IDT is not 
consulted nor are any values pushed onto a memory stack.

Parameters IIPA – trapping virtual IA-32 instruction address (points to the INT instruction) zero 
extended to 64-bits.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

ISR.vector – vector number.

ISR.code – TrapCode, Indicates Concurrent Single Step Trap condition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv vector trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Intercept (Instruction) – Instruction Intercept Fault

Cause Execution of unimplemented IA-32 opcodes, illegal opcodes or sensitive privileged 
IA-32 operating system instructions results in an instruction intercept. Intercepted 
opcodes include (but are not limited to); CLTS, HLT, INVD, INVLPG, IRET, LIDT, LGDT, 
LLDT, LMSW, LTR, MOV to CRs, MOV to/from DRs, RDMSR, RSM, SYSENTER, SYSEXIT, 
INT1, SIDT, SGDT, SLDT, SMSW, WBINVD, WRMSR, and all other unimplemented and 
illegal opcode patterns. If CR0.em is 1, execution of all IA-32 Intel MMX technology and 
IA-32 SSE instructions results in this intercept. If CR4.FXSR is 0, execution of all IA-32 
SSE instructions results in this intercept. All illegal IA-32 floating-point opcodes result 
in an IA_32_Intercept(Instruction) regardless of the state of CR0.em. Intercepted 
opcodes are nullified and alter no architectural state.

Parameters IIP – Virtual IA-32 instruction address zero extended to 64-bits, points to the first byte 
of the intercepted IA-32 opcode (including prefixes).

IIPA – Virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IIM – Opcode bytes, contains the first 8-bytes of the IA-32 instruction following all 
prefix bytes. All prefix bytes are decoded and presented as a bitmask in the Intercept 
Code along with the prefix length in bytes. Opcode bytes are loaded into IIM in the 
same format as encountered in memory and as defined in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual. The lowest memory address byte is 
placed in byte 0 of IIM, higher memory address bytes are placed in increasingly higher 
numbered bytes within IIM. 

The 8-byte opcode loaded into IIM is stripped of the following prefixes; lock, repeat, 
address size, operand size, and segment override prefixes (opcode bytes 0xF3, 0xF2, 
0xF0, 0x2E, 0x36, 0x3E, 0x26, 0x64, 0x65, 0x66, and 0x67). The 0x0F opcode series 
prefix is not stripped from the opcode bytes loaded into IIM. The opcode loaded into IIM 
includes all IA-32 opcode components, including 1 to 3 bytes of opcode, mod r/m bytes, 
sib bytes and any possible immediates and/or displacements.

If the opcode loaded in IIM is less than 8-bytes, the remainder higher order numbered 
bytes are set to 0. If the opcode is larger than 8-bytes, bytes after the 8th byte 
(following all stripped prefixes) are not reported. If required, emulation code must 
retrieve the extra opcode bytes by reading from the memory locations specified by IIP.

ISR.vector – 0, indicates instruction intercept.

ISR.code – Intercept Code indicates prefixes and prefix lengths.

Figure 9-3 defines intercept codes for IA-32 instruction set intercepts. Intercept code 
fields are defined by Table 9-1 and Table 9-2 on page 2:234.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

byte3 byte2 byte1 byte0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

byte7 byte6 byte5 byte4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 0 intercept_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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 Figure 9-3. IA-32 Intercept Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

len 0 seg sp np rp lp as os 0

Table 9-1. Intercept Code Definition

Field Bits Description

os 1 Operand Size – (OperandSize Prefix XOR CSD.d bit). When 1, indicates the 
effective operand size is 32-bits, when 0, 16-bits.

as 2 Address Size – (AddressSize Prefix XOR CSD.d bit). When 1, indicates the effective 
address size is 32-bits, when 0, 16-bits.

lp 3 Lock Prefix – If 1, indicates a lock prefix is present.

rp 4 REP or REPE/REPZ Prefix – If 1, indicates a REP/REPE/REPZ prefix is in effect.

np 5 REPNE/REPNZ Prefix – If 1, indicates a REPNE/REPNZ prefix is in effect.

sp 6 Segment Prefix – If 1, indicates a Segment Override prefix is present.

seg 7:9 Segment Value – Segment Prefix Override value, see Figure 9-2 for encodings. If 
there is no segment prefixes this field is undefined.

len 12:15 Length of Prefixes – Length of all prefix (in bytes) stripped from IIM. If there are no 
prefixes this field has a value of zero.

Table 9-2. Segment Prefix Override Encodings

Seg Value Segment Prefix

0 ES Segment Override

1 CS Segment Override

2 SS Segment Override

3 DS Segment Override

4 FS Segment Override 

5 GS Segment Override

6 reserved

7 reserved
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Name IA_32_Intercept (Gate) – Gate Intercept Trap

Cause If an IA-32 control transfer is initiated through a GDT/LDT descriptor that transfers 
control through a Call Gate, Task Gate or Task Segment this interception trap is 
generated.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIP – next sequential virtual IA-32 instruction address zero extended to 64-bits.

IFA – Gate Selector. The gate selector is loaded in IFA{15:0}.

IIM – Gate, Task Gate or Task Segment Descriptor. The descriptor loaded in IIM adheres 
to the IA-32 GDT/LDT memory format, where byte 0 of the descriptor is in IIM{7:0}.

ISR.vector – 1, indicates gate interception.

ISR.code – TrapCode, Indicates Concurrent Data Debug, taken Branch, and Single Step 
Events.

ISR.code{15:14} – indicates whether CALL or JMP generated the trap. See Table 9-3 
for details.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved gate selector

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gate_descriptor{31:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

gate_descriptor{63:32}

Table 9-3. Gate Intercept Trap Code Identifier

Instruction ISR.code{15:14}

CALL 00

JMP 01

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 ident trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Intercept (SystemFlag) – System Flag Trap

Parameters System Flag Intercept Traps are generated for the following conditions:

CLI, STI, POPF, POPFD instructions. If the EFLAG.if bit changes state and CFLG.ii is 
1, or EFLAG.tf or EFLAG.ac change state, a System Flag intercept notification trap is 
delivered after the instruction completes. IIM contains the previous value of EFLAG 
before the trapping instruction executed. If IA-32 code does not have IOPL or CPL 
permission to modify the EFLAG bits, no intercept is generated. This intercept trap 
condition can be used to provide virtual interrupt services, and delay enabling of 
interrupts after the STI instruction.

MOV SS, POP SS instructions. After these instructions complete execution, a System 
Flag intercept notification trap is delivered. This intercept trap condition can be used to 
inhibit interrupts, and code breakpoints between Mov/Pop SS and the next instruction 
and to inhibit Single Step and Data Breakpoint traps on the Mov, or Pop SS instruction.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIM – contains the previous EFLAG value before the trapping instruction.

ISR.vector – 2.

ISR.code – Trap Code, indicates Concurrent Single Step Trap, Debug trap condition.

ISR.code{15:14} indicates which instruction generated the trap.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

old EFLAG

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 9-4. System Flag Intercept Instruction Trap Code Instruction 
Identifier

Instruction ISR.code{15:14}

CLI 00

STI 01

POPF, POPFD 10

MOV/POP SS 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 2 ident trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
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Name IA_32_Intercept (Lock) – Locked Data Reference Fault

Cause For IA-32 locked operations, if the DCR.lc bit is 1, and an atomic operation to made to 
non-write-back memory or to unaligned write-back memory that would result in a 
read-modify-write sequence being performed externally under an external bus lock, the 
processor raises a Locked Data Reference fault.

Parameters IIP – faulting virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IFA – faulting virtual data address (byte granular)   zero extended to 64-bits.

ISR.vector – 4.

ISR.code – 0.

§

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 4 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 1 1 0
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Itanium® Architecture-based Operating 
System Interaction Model with IA-32 
Applications 10

This section describes the IA-32 system execution model from the perspective of an 
Itanium architecture-based operating system interfacing with IA-32 code, while 
operating in the Itanium System Environment. The main features covered are:

• IA-32 system and control register behavior

• IA-32 virtual memory support

• IA-32 fault and trap handling

• IA-32 instruction behavior

10.1 Instruction Set Transitions

Instruction set transitions are defined in Section 6.2.1, “Instruction Set Modes” on 
page 1:110. Operating systems can disable instruction set transitions (jmpe and br.ia) 
by setting PSR.di to one. If PSR.di is one, execution of jmpe or br.ia to IA-32 target 
results in a Disabled Instruction Set Transition Fault, and the operation is nullified.

The processor also transitions into an Itanium architecture-based operating system 
when IA-32 privileged system resources are accessed, on an interruption, or when the 
following conditions are detected:

• Instruction Interception – IA-32 system level privileged instructions are executed

• System Flag Interception – Various EFLAG system flags are modified, (e.g. AC, TF 
and IF-bits)

• Gate Interception – Control transfers are made through call gate, or transfers 
through a task switch (TSS segment or Task Gate).

All software interrupts, external interrupts, faults, traps and machine checks transition 
the processor to the Itanium instruction set, regardless of the state of PSR.di. IA-32 
defined exceptions and software interrupts are delivered to Itanium architecture-based 
interruption handlers. 

10.2 System Register Model

Registers are assigned the following conventions during transitions between IA-32 and 
Itanium instruction sets. 

• IA-32 State: The register contains an IA-32 register during IA-32 instruction set 
execution. Expected IA-32 values should be loaded before switching to the IA-32 
instruction set. After completion of IA-32 instructions, these registers contain the 
results of the execution of IA-32 instructions. These registers may contain any 
value during Itanium instruction execution according to Itanium software 
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conventions. Software should follow IA-32 and Itanium software calling conventions 
for these registers.

• Shared: Shared registers contain values that have similar functionality in either 
instruction set. For example, all Itanium control registers, debug registers are used 
for memory references (including IA-32). The stack pointer (ESP) and instruction 
pointer (IP) are also shared. 

• Unmodified: These registers are not altered by IA-32 execution. Itanium 
architecture-based code can rely on these values not being modified during IA-32 
instruction set execution. The register will have the have the same contents when 
entering the IA-32 instruction set and when exiting the IA-32 instruction set.

• Undefined: Registers marked as undefined may be used as scratch areas for 
execution of IA-32 instructions. Software can not rely on the value of these 
registers across an instruction set transition.

Table 10-1. IA-32 System Register Mapping

Intel® 
Itanium® 

Reg
IA-32 Reg Convention Size Description

Application Registers

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags, 
writes of some bits are conditioned by PSR.cpl and 
EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)

SSD SSD IA-32 stack segment (register format)

CFLG CR0/CR4 64 IA-32 control flags, CR0=CFLG{31:0}, 
CR4=CFLG{63:32}a, writable at PSR.cpl=0 only.

Kernel Registers

KR0 IOBASEb

IA-32 state 64

IA-32 virtual I/O port Base register

KR1 TSSDc IA-32 TSS descriptor (register format)

KR2 CR3/CR2d IA-32 CR2=KR2{63:32}, CR3=KR2{31:0}

KR3-7 unmodified Intel Itanium preserved registers

Banked General Registers

GR16-31 unmodified Preserved for operating system use

Control Registers

DCR unmodified,
shared

Controls instruction set execution (including IA-32)

IFA, IIP, 
IPSR, ISR, 
IIM, IIPA, 
ITIR, IHA, 
IIB0-1, IFS, 
IVA

shared 64

Intel Itanium interruption registers may be overwritten on 
any TLB fault, interruption or exception encountered 
during IA-32 or Intel Itanium instruction set execution.

PTA shared

64

Shared page table base for memory references 
(including IA-32)

ITM shared shared Intel Itanium interruption/timer resources
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10.3 IA-32 System Segment Registers

System Descriptors are maintained in an unscrambled format shown in Figure 10-1 that 
differs from the IA-32 scrambled memory descriptor format. The unscrambled register 
format is designed to support fast conversion of IA-32 segmented 16/32-bit pointers 
into virtual addresses by Itanium architecture-based code. IA-32 segment register load 
instructions unscramble the GDT/LDT memory format into the descriptor register 
format on a segment register load. Itanium architecture-based software can also 
directly load descriptor registers provided they are properly unscrambled by software. 
When Itanium architecture-based software loads these registers, no data integrity 
checks are performed at that time if illegal values are loaded in any fields. For a 
complete definition of all bit fields and field semantics refer to the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual.

LID, IVR, 
TPR, EOI, 
IRR0, IRR1, 
IRR2, IRR3, 
ITV, PMV, 
LRR0, LRR1, 
CMCV

shared 64

Intel Itanium external interrupt control registers are used 
to generate, prioritize and delivery external interrupts 
during IA-32 or Intel Itanium instruction set execution.

Translation Resources

TRs

shared
All Intel Itanium virtual memory registers can be used for 
memory references (including IA-32).

TCs

RRs

PKRs

Debug Registers

IBRs dr0-3, dr7 shared 64 Intel Itanium debug registers are used memory 
references (including IA-32).DBRs dr0-3, dr7

Performance Monitors

PMCs shared 64 Intel Itanium performance monitors measure 
performance events (including IA-32).

PMDs shared 64 reflect performance monitor results of execution 
(including IA-32)

a. IA-32 MOV from CR0 and CR4 return the value in the CFLG register.
b. The IOBase register is used by IN/OUT instructions. If IN/OUT operations are disabled via CFLG.io, this 

register can be used for other values.
c. The TSSD registers are used by IN/OUT instructions for I/O permission via CFLG.io. If access to the TSS is 

disabled, these registers can be used for other values.
d. The Mov from CR2,CR3 instructions return the value contained in KR2.

Figure 10-1. IA-32 System Segment Register Descriptor Format (LDT, GDT, 
TSS)

63 62 60 59 58 57 56 55 52 51 32 31 0

g ig p dpl s stype lim{19:0} base{31:0}

Table 10-1. IA-32 System Register Mapping (Continued)

Intel® 
Itanium® 

Reg
IA-32 Reg Convention Size Description
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System segment selectors and descriptors for GDT and LDT are maintained in Itanium 
general registers to support segment register loads used extensively by segmented 
16-bit code. On the transition into the IA-32 instruction set, GDT/LDT descriptor table 
must be initialized if IA-32 code will perform protected mode segment register loads or 
far control transfers.

Within the IA-32 System Environment, GDT and LDT are considered privileged 
operating system segmentation resources. However, in the Itanium System 
Environment, applications can transition between the IA-32 and Itanium instruction set 
and bypass IA-32 segmentation. Itanium user level instructions can also directly modify 
all selectors and descriptors including GDT and LDT. An operating system should either 
protect memory with virtual memory management mechanisms defined by the Itanium 
architecture or disabled application level instruction set transitions. Within the Itanium 
System Environment, GDT/LDT memory spaces must be mapped into user space, since 
supervisor overrides for accesses to GDT/LDT are disabled.

The TSSD descriptor points to the I/O Permission Bitmap. If CFLG.io is 1, IN, INS, OUT, 
and OUTS consult the TSSD I/O permission bitmap as defined in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual. If CFLG.io is 0, the TSSD I/O 
permission bitmap is not checked. See Section 10.7, “I/O Port Space Model” for details 
on I/O port permission and for TLB-based access control. The TSSD register is not used 
within the Itanium System Environment to support task switches, or interlevel control 
transfers. If the TSSD is used for I/O Permissions, Itanium architecture-based 
operating system software must ensure that a valid 286 or 386 Task State Descriptor is 
loaded, otherwise IN/OUT operations to the TSSD I/O permission bitmap will result in 
undefined behavior.

The IDT descriptor is not supported or defined within the Itanium System Environment. 

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS)

Field Bits Description

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the 
segment in the 64-bit virtual address space for IA-32 instruction set memory references. 
This value is ignored for Intel Itanium instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within the segment. See the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual for details and segment 
limit fault conditions.

stype 55:52 Segment Type identifier. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for encodings and definition.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32 
instruction set memory references.

p 59 Segment Present bit. If 0, and an IA-32 memory reference uses this segment an 
IA_Exception(GPFault) is generated.

ig 62:60 Ignored – For the LDT/GDT/TSS descriptors reads of this field return the last value written 
by Itanium architecture-based code. Reads of this field return zero if written by IA-32 
descriptor loads.This field is ignored by the processor during IA-32 instruction set execution. 
This field may have a future use and should be set to zero by software.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | 0xFFF for IA-32 
instruction set memory references.



Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:243

10.3.1 IA-32 Current Privilege Level

PSR.cpl is the current privilege level of the processor for instruction execution 
(including IA-32). PSR.cpl is used by the processor for all IA-32 descriptor 
segmentation and paging permission checks. PSR.cpl is a secured register. Typical 
IA-32 processors used SSD.dpl as the official privilege level of the processor. Since, 
SSD.dpl is not secured from user modification, processor implementations must base 
all privilege checks and state backups based on PSR.cpl.

10.3.2 IA-32 System EFLAG Register

The EFLAG (AR24) register is made of two major components, user arithmetic flags (CF, 
PF, AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, 
VIP). None of the arithmetic or system flags affect Itanium instruction execution. The 
arithmetic flags are used by the IA-32 instruction set to reflect the status of IA-32 
operations, control IA-32 string operations, and control branch conditions for IA-32 
instructions. System flags are typically managed by an operating system and are used 
to control the overall operations of the processor. System flags are broken into two 
categories, system flags that control IA-32 instruction set execution behavior and 
virtualizable system flags. The NT system flag shown in bold font in Figure 10-2 is 
virtualized.

System flags AC, TF, RF, VIF, VIP, IOPL and VM directly control the execution of IA-32 
instructions. These bits do not control any Itanium instructions. See Table 10-3 for a 
complete definition these bits.

The NT bit does not directly control the execution of any IA-32 or Itanium instructions. 
All IA-32 instructions that modify this bit is intercepted (e.g. IRET, Task Switches)

See Table 10-3, “IA-32 EFLAG Field Definition” for the behavior on IA-32 and Itanium 
instruction reads/writes to this application register.

10.3.2.1 Virtualized Interrupt Flag

To provide for virtualization of IA-32 code, the IF bit is virtualizable in the context of an 
operating system. Interrupts are enabled for IA-32 instructions, if (PSR.i and 
(~CFLG.if or EFLAG.if)) is true. For Itanium architecture-based code, interrupts are 
enabled if PSR.i is 1. 

An optional System Flag intercept trap can be generated if CFLG.ii is 1, and the IF-flag 
changes state due to IA-32 code executing CLI, STI, or POPF. See Section 10.3.3.1, 
“IA-32 Control Registers” on page 2:246 for CFLG details. Using this model, 
virtualization code can set CFLG.if to 0 and CFLG.ii to 0, IA-32 instruction set 
modifications of EFLAG.if does not affect actual interrupt masking, therefore no 
notification events need be sent to virtualizing software. When virtualization code, 
detects and queues an external interrupt for delivery into a virtualized IA-32 operating 

Figure 10-2. IA-32 EFLAG Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vip vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)
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system/application, it can set CFLG.ii to1 to force notification the next time the IF-bit 
changes state, indicating IA-32 code is either opening or closing the interrupt window. 
Setting CFLG.if to 1, allows for direct IA-32 control of interrupt masking.

Virtualization of the IF flag is independent of VME extensions. Both mechanisms can be 
used independently, see the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for the complete VME definition.

Table 10-3. IA-32 EFLAG Field Definition

EFLAGa Bits Description

EFLAG.cf 0 IA-32 Carry Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

1 Ignored – For IA-32 instructions, writes are ignored, reads return one. For Itanium 
instructions, the implementation can either ignore writes and return one on reads; or 
write the value, and return the last value written on reads.

3,5,
15

Ignored – For IA-32 instructions, writes are ignored, reads return zero. For Itanium 
instructions, the implementation can either ignore writes and return zero on reads, or 
write the value and return the last value written on reads.

EFLAG.pf 2 IA-32 Parity Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

EFLAG.af 4 IA-32 Aux Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

EFLAG.zf 6 IA-32 Zero Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

EFLAG.sf 7 IA-32 Sign Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

EFLAG.tf 8 IA-32 Trap Flag- In the Intel Itanium System Environment, IA-32 instruction single 
stepping is enabled when EFLAG.tf is 1 or PSR.ss is 1. EFLAG.tf does not control 
single stepping for Intel Itanium instruction set execution. When single stepping is 
enabled, the processor generates a IA_32_Exception(Debug) trap event after the 
successful execution of each IA-32 instruction. If EFLAG.tf is modified by the POPF 
or POPFD instruction an IA_32_Intercept(SystemFlag) trap is raised. See the Intel® 
64 and IA-32 Architectures Software Developer’s Manual for details on this bit.

EFLAG.if 9 IA-32 Interruption Flag. In the Intel Itanium System Environment, when PSR.i and 
(~CFLG.if or EFLAG.if) is 1, external interrupts are enabled during IA-32 instruction 
set execution, otherwise external interrupts are held pending. If CFLG.if is 1, 
modification of the EFLAG.if directly affects external interrupt enabling. If CFLG.if is 0, 
EFLAG.if does not affect interrupt enabling. The IF-bit does not affect external 
interrupt enabling for Intel Itanium instructions nor NMI interrupts. 
The IF bit can be modified by IA-32 and Itanium architecture-based code only when 
PSR.cpl is less than or equal to EFLAG.iopl. If PSR.cpl is greater than EFLAG.iopl, 
writes to the IF-bit are silently ignored. 
If CFLG.ii is 1, successful modification of the IF-bit by CLI, STI, or POPF results in an 
IA_32_Intercept(SystemFlag) trap, otherwise the IF-bit is modified without 
interception. Modification of this bit by Intel Itanium instructions does not result in an 
intercept. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details on this bit.

EFLAG.df 10 IA-32 Direction Flag. See Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

EFLAG.of 11 IA-32 Overflow Flag. See Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.
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EFLAG.iopl 13:12 IA-32 In/Out Privilege Level, controls accessibility by IA-32 IN/OUT instructions to the 
I/O port space and permission to modify the IF-bit for Intel Itanium and IA-32 
instructions. If PSR.cpl > IOPL, permission is denied for IA-32 IN/OUT instructions, 
and modifications of EFLAG.if by either IA-32 or Intel Itanium instructions are ignored. 
IOPL can only be modified by IA-32 or Intel Itanium instructions executing at privilege 
level 0, otherwise modifications of this bit are silently ignored. This bit is supported in 
both the IA-32 and Intel Itanium System Environments. See the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for details on this bit.

EFLAG.nt 14 IA-32 Nested Task switch. In the IA-32 System Environment, indicates a nested task 
flag when chaining interrupted and called IA-32 tasks. IA-32 task switches are not 
directly supported in the Intel Itanium System Environment, since IRET, interruptions, 
calls, and jumps through task gates are always intercepted. EFLAG.nt can be 
modified by the POPF or POPFD instruction in both system environments. 
Modification of EFLAG.nt by POPF and POPFD does not result in a System Flag 
Intercept. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details on this bit.

EFLAG.rf 16 IA-32 Resume Flag. In the Intel Itanium System Environment, when EFLAG.rf or 
PSR.id is 1, code breakpoint faults are temporarily disabled for one IA-32 instruction, 
so that IA-32 instructions can be restarted after a code breakpoint fault without 
causing another code breakpoint fault. EFLAG.rf does not affect Intel Itanium 
Instruction Debug faults. After the successful execution of each IA-32 instruction, 
PSR.id and EFLAG.rf are cleared to zero. On entry into the IA-32 instruction set via 
rfi or br.ia, EFLAG.rf and PSR.id is not cleared until the successful completion of 
the first (target) IA-32 instruction. jmpe clears the PSR.id and the EFLAG.rf bit. 
EFLAG.rf is set to 1 if a repeat string sequence (REP MOVS, SCANS, CMPS, LODS, 
STOS, INS, OUTS) takes an external interrupt, trap or fault before the final iteration. 
EFLAG.rf and PSR.id are set to 0 after the last iteration. For all other cases, external 
interrupts, faults, traps, and intercept conditions EFLAG.rf is unmodified.
The RF-bit can be modified by Intel Itanium instructions running at any privilege level. 
IA-32 instructions cannot directly modify the RF-bit or PSR.id. Specifically, POPF 
cannot modify the RF-bit and execution of IRET is always intercepted in the Intel 
Itanium System Environment. See the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for details on this bit.

EFLAG.vm 17 IA-32 Virtual Mode 86. When 1, IA-32 instructions execute in the VM86 environment. 
This bit can only be modified by IA-32 or Intel Itanium instructions executing at 
privilege ring 0, otherwise modifications of this bit by Intel Itanium or IA-32 
instructions is silently ignored. Itanium architecture-based software is responsible for 
initializing the processor with the required VM86 register state before transferring to 
IA-32 VM86 environment. This bit is supported in both the IA-32 and Intel Itanium 
System Environments. See the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for complete details of the VM86 environment. Software must 
ensure the processor is in IA-32 Protected Mode when setting the VM bit.

EFLAG.ac 18 IA-32 Alignment Check. In the Intel Itanium System Environment, IA-32 instructions 
raise an IA_32_Exception(AlignmentCheck) fault if an unaligned reference is 
performed and PSR.ac is 1 or (CFLG.am is 1 and EFLAG.ac is 1 and memory is 
accessed at an effective privilege level of 3). Neither EFLAG.ac, CR0.am nor privilege 
level affect alignment check faults for Intel Itanium instructions. See Section 10.6.7, 
“Memory Alignment” on page 2:263 for details on alignment conditions. This bit can 
be modified by IA-32 and Intel Itanium instructions at any privilege level. Modification 
of this bit by the POPF instructions results in an IA_32_Intercept(SystemFlag) trap. 
See the Intel® 64 and IA-32 Architectures Software Developer’s Manual for 
details on this bit.

Table 10-3. IA-32 EFLAG Field Definition (Continued)

EFLAGa Bits Description
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10.3.3 IA-32 System Registers

IA-32 system registers such as CR3, CR2, debug registers, performance counters. 
IA-32 control registers do not affect execution of Itanium instructions. All IA-32 
privileged instructions that access prior IA-32 system registers are intercepted.

10.3.3.1 IA-32 Control Registers

IA-32 control registers CR0 and CR4 are mapped into the Itanium application register 
CFLG (AR27). IA-32 control bits, shown in Figure 10-3, only control execution of the 
IA-32 instruction set. Additional CR0 bits are defined in CFLG to control virtualization of 
IA-32 code (namely the IO and IF bits) as shown in Figure 10-3. CFLG is readable by 
Itanium architecture-based code at all privilege levels but can only be written at 
privilege level 0, otherwise a Privileged Register fault is generated. When Itanium 
architecture-based software loads this application register (AR24), a Reserved 
Register/Field fault will be raised if a non-zero value is written into bits listed as 
reserved.

• State in italics is virtualized. This state has no impact on a IA-32 or Itanium 
instruction set execution.

• State in bold only affects IA-32 instruction set execution, Itanium instruction 
execution is not affected.

EFLAG.vif 19 IA-32 Virtual Interrupt Flag. See VME extensions in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for details. Affects execution of POPF, 
PUSHF, CLI and STI. This bit is supported in both the IA-32 and Intel Itanium System 
Environments. A IA-32 Code Fetch fault (GPFault(0)) is generated on every IA-32 
instruction (including the target of rfi and br.ia), if the following condition is true:
EFLAG.vip & EFLAG.vif & CFLG.pe & PSR.cpl==3 & (CFLG.pvi | (EFLAG.vm & 
CFLG.vme))

EFLAG.vip 20 IA-32 Virtual Interrupt Pending. See VME extensions in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for programming details. Affects 
execution of POPF, PUSHF, CLI and STI. This bit is supported in both the IA-32 and 
Intel Itanium System Environments. 

EFLAG.id 21 IA-32 Identifier bit, can be written and read by IA-32 instructions, indicates IA-32 
CPUID instruction is supported. This bit is supported in both the IA-32 and Intel 
Itanium System Environments. 

63:22 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes 
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the 
implementation can either raise Reserved Register/Field fault on non-zero writes and 
return zero on reads, or write the value (no Reserved Register/Field fault), and return 
the last value written on reads.

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the 
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits 
alter the behavior of Itanium instruction set execution.

Figure 10-3. Control Flag Register (CFLG, AR27)

31 30 29 28272625242322212019 18 17 16 1514131211 10 9 8 7 6 5 4 3 2 1 0

PGCDNW ignored (set to 0) AM ig WP ignored (set to 0) II IF IO NE ET TS EM MP PE

63 62 61 60595857565554535251 50 49 48 4746454443 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) MMXEX FXSR PCEPGEMCEPAEPSEDETSDPVIVME

Table 10-3. IA-32 EFLAG Field Definition (Continued)

EFLAGa Bits Description
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Table 10-4 defines all IA-32 control register state and the behavior of each bit in the 
Itanium System Environment.

Table 10-4. IA-32 Control Register Field Definition

Field Intel® Itanium® State Bits Description

CR0 CFLG{31:0} CR0: IA-32 Mov to CR0 result in a instruction 
interception fault. Mov from CR0 returns the value 
contained in CFLG{31:0}. Modification of 
CFLG{31:0} by Intel Itanium instructions only alters 
the CR0 state, no side effects (such as TLB flushes) 
occur.

CR0.PE CFLG.pe 0 Protected Mode Enable: This bit determines 
whether the processor operates in IA-32 Protected 
Mode or Real Mode. This bit affects only IA-32 
instruction set execution, Intel Itanium operations 
are not affected by this bit. Modification of this bit by 
Itanium architecture-based code does have NOT 
any side effects such as flushing the TLBs. This bit 
is supported in both the IA-32 and Intel Itanium 
System Environments. See Intel® 64 and IA-32 
Architectures Software Developer’s Manual for 
details on this bit and the Protected Mode 
environment.

CR0.MP CFLG.mp 1 Monitor co-Processor: When CFLG.ts is 1 and 
CFLG.mp is 1, execution of IA-32 FWAIT/WAIT 
instructions results in an Device Not Available fault. 
This bit is ignored by Intel Itanium floating-point 
instructions. This bit is supported in both IA-32 and 
Intel Itanium System Environments. See the Intel® 
64 and IA-32 Architectures Software 
Developer’s Manual for details on this bit.

CR0.EM CFLG.em 2 Emulation: When CFLG.em is set, execution of 
IA-32 ESC and floating-point instructions generates 
an IA_32_Exception(DNA) fault. When CFLG.em is 
1, execution of IA-32 MMX technology or SSE 
instructions results in an IA_32_Intercept 
(Instruction) fault. This bit does not affect Intel 
Itanium floating-point instructions.   This bit is 
supported in both the IA-32 and Intel Itanium 
System Environments. See Intel® 64 and IA-32 
Architectures Software Developer’s Manual for 
details on this bit.

CR0.TS CFLG.ts 3 Task Switched: When CFLG.ts is 1, execution of an 
IA-32 ESC, floating-point instruction, MMX 
technology or SSE instruction results in a 
IA_32_Exception(DNA) fault. When CFLG.ts is 1 
and CFLG.mp is 1, execution of IA-32 FWAIT/WAIT 
instructions results in an IA_32_Exception(DNA) 
fault. This bit is ignored by Intel Itanium instructions. 
This bit is supported in both the IA-32 and Intel 
Itanium System Environments. See Intel® 64 and 
IA-32 Architectures Software Developer’s 
Manual for details on this bit.

CR0.ET CFLG.et 4 Extension Type: ET is ignored since i387 
co-processor instructions are supported. This bit is 
reserved on all Pentium processors. Reads always 
return 1. This bit is supported in both the IA-32 and 
Intel Itanium System Environments. 
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CR0.NE CFLG.ne 5 Numeric Error: Numeric errors are always enabled 
in the Intel Itanium System Environment. The NE bit 
and the IGNNE# pin are ignored by the processor 
and the FERR# pin is not asserted for any numeric 
errors on IA-32 or Intel Itanium floating-point 
instructions. 
In the IA-32 System Environment, this bit is 
supported as defined in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual.

-- CFLG.io 6 I/O Enable: If CFLG.io is 1 and CPL>IOPL, IA-32 
IN, INS, OUT, OUTS instructions consulted the TSS 
for I/O permission. If CFLG.io is 0 or CPL<=IOPL, 
permission is granted regardless of the state of the 
TSS I/O permission bitmap (the bitmap is not 
referenced). This bit always returns zero when read 
by the IA-32 Mov from CR0 instruction. This bit is 
not defined in the IA-32 System Environment.

-- CFLG.if 7 IF Enable: When CFLG.if is 1, EFLAG.if can be 
used to enabled or disable external interrupts for 
IA-32 instructions. If CFLG.if is 0, EFLAG.if does not 
control external interrupt enabling. External 
interrupts are enabled for the IA-32 instruction set 
by if PSR.i and (~CLFG.if or EFLAG.if). This bit 
always returns zero when read by the IA-32 Mov 
from CR0 instruction. This bit is not defined in the 
IA-32 System Environment.

-- CFLG.ii 8 IF Intercept: When CFLG.ii is 1, successful 
modification of the EFLAG.if bit by IA-32 CLI, STI or 
POPF instructions result in a 
IA_32_Intercept(SystemFlag) trap. This bit always 
returns zero when read by the IA-32 Mov from CR0 
instruction. This bit is not defined in the IA-32 
System Environment.

ignored 9:15, 17, 19:28 Ignored – This field is ignored by the processor 
during IA-32 instruction set execution. This field 
may have a future use and should be set to zero by 
IA-32 software. For Itanium instructions, the 
implementation can either ignore the writes and 
return zero on reads, or write the value and return 
the last value written on reads.

CR0.WP CFLG.wp 16 Write Protect: This bit is ignored in the Itanium 
System Environment. In the IA-32 System 
Environment, WP controls supervisor 
write-protection for IA-32 paging. See Intel® 64 and 
IA-32 Architectures Software Developer’s 
Manual for details on this bit.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description



Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:249

CR0.AM CFLG.am 18 Alignment Mask: For IA-32 instructions an 
IA_32_Exception(AlignmentCheck) fault is 
generated on a reference to an unaligned data 
memory operand if PSR.ac is 1 or (CFLG.am is 1 
and EFLAG.ac is 1 and memory is accessed at an 
effective privilege level of 3). Neither EFLAG.ac, 
CR0.am nor privilege level affect alignment check 
faults for Itanium instructions. This bit is supported 
in both the IA-32 and Itanium System 
Environments. See the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for 
details on this bit.

CR0.NW CFLG.nw 29 Not Write-through and Cache Disable: These bits 
are ignored in the Itanium System Environment. 
Cacheability is controlled virtual memory attributes. 
These bits are provided as storage for compatibility 
purposes.

CR0.CD CFLG.cd 30

CR0.PG CFLG.pg 31 Paging Enable: In the Intel Itanium System 
Environment, this bit is ignored for IA-32 and Intel 

Itanium memory references. Virtual translations are 
enabled via PSR.it and PSR.dt. This bit is provided 
as storage for compatibility purposes. Modification 
of this bit by Itanium architecture-based code does 
NOT have any side effects such as flushing the 
TLBs. This bit is supported as defined in the Intel® 
64 and IA-32 Architectures Software 
Developer’s Manual for the IA-32 System 
Environment.

CR2 KR2{63:32} IA-32 Page Fault Virtual Address: IA-32 Mov to CR2 
result in an interception fault. Mov from CR2 returns 
the value contained in KR2{63:32}. CR2 is replaced 
by IFA in the Intel Itanium System Environment.

CR3 KR2{31:0} IA-32 Page Table Address: IA-32 Mov to CR3 result 
in an interception fault. Mov from CR3 return the 
value contained in KR2{31:0}. CR3 is replaced by 
PTA in the Intel Itanium System Environment. 
Modification of KR2{31:0} by Itanium 
architecture-based code does NOT have the side 
effect of flushing the TLBs.

CR3.PWT KR4.pwt Page Write-Through and Cache Disabled: In the 
Intel Itanium System Environment, these bits are 
ignored. This bit are provided as storage for 
compatibility purposes. These bits are supported as 
defined in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual for the IA-32 
System Environment.

CR3.PCD KR4.pcd

CR4 CFLG{63:32} CR4: A-32 Mov to CR4 result in an instruction 
interception fault. Mov from CR4 returns the value 
contained in CFLG{63:32}. Modification of 
CFLG{63:32} by Intel Itanium instructions only 
alters the register state, no side effects (such as 
TLB flushes) occur.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description



2:250 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

CR4.VME CFLG.vme 32 IA-32 Virtual Machine Extension and Protected 
Mode Virtual Interrupt Enable: These bits control 
the VM86 VME extensions and Protected Mode 
Virtual Interrupt extensions defined in the Intel® 64 
and IA-32 Architectures Software Developer’s 
Manual for STI, CLI and PUSHF. These bits have 
no effect on Intel Itanium instructions. This bit is 
supported in both the IA-32 and Intel Itanium 
System Environments.   

CR4.PVI CFLG.pvi 33

CR4.TSD CFLG.tsd 34 Time Stamp Disable: IA-32 RDTSC user level reads 
of the Time Stamp Counter are enabled when 
CR4.tsd when zero. Otherwise execution of the 
RDTSC instruction results in a GPFault. CFLG.tsd 
is ignored by Intel Itanium instructions. This bit is 
supported in both the IA-32 and Intel Itanium 
System Environments.   See the Intel® 64 and 
IA-32 Architectures Software Developer’s 
Manual for details on these bits. 

CR4.DE CFLG.de 25 Debug Extensions: In the Intel Itanium System 
Environment, this bit is ignored by IA-32 or Intel 
Itanium references to the I/O port space. This bit is 
provided as storage for compatibility purposes. This 
bit is supported as defined in the Intel® 64 and 
IA-32 Architectures Software Developer’s 
Manual for the IA-32 System Environment.

CR4.PSE CFLG.pse 36 Page Size Extensions: In the Intel Itanium System 
Environment, this bit is ignored by IA-32 or Intel 
Itanium references. In the IA-32 System 
Environment, this bit enables 4M-byte page 
extensions for IA-32 paging. Modification of this bit 
by Itanium architecture-based code does have any 
side effects such as flushing the TLBs.

CR4.PAE CFLG.pae 37 Physical Address Extensions: In the IA-32 System 
Environment, this bit enables IA-32 Physical 
Address Extensions for IA-32 paging This bit is 
ignored in the Intel Itanium System Environment. 
Modification of this bit by Itanium 
architecture-based code does have any side effects 
such as flushing the TLBs.

CR4.MCE CFLG.mce 38 Machine Check Enable: This bit is ignored in the 
Intel Itanium System Environment. This bit is 
provided as storage for compatibility purposes. This 
bit is supported as defined in the Intel® 64 and 
IA-32 Architectures Software Developer’s 
Manual for the IA-32 System Environment.

CR4.PGE CFLG.pge 39 Paging Global Enable: This bit is ignored in the Intel 
Itanium System Environment. This bit is provided as 
storage for compatibility purposes. This bit is 
supported as defined in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for 
the IA-32 System Environment, where this bit 
enables global pages for the IA-32 paging. 
Modification of this bit by Itanium 
architecture-based code does have any side effects 
such as flushing the TLBs.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description
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10.3.3.2 IA-32 Debug Registers

Within the Itanium System Environment, the IA-32 debug registers (DR0 - DR7) are 
superseded by the Itanium debug registers DBR0-7 and IBR0-7, see Section 10.8.1, 
“Data Breakpoint Register Matching” on page 2:274 for details. Accesses to the IA-32 
debug registers result in an interception fault. 

The Itanium debug registers are designed to facilitate debugging of both IA-32 and 
Itanium architecture-based code. Specifically, instruction and data breakpoints can be 
programmed by loading 64-bit virtual addresses into IBR and DBR along with an 
address mask. Itanium defined single stepping mechanisms, and taken branch traps 
are also defined to trap on IA-32 instructions. See Section 10.8.1, “Data Breakpoint 
Register Matching” on page 2:274 for details on IA-32 instruction set behavior with 
respect to the debug facilities defined by the Itanium architecture.

CR4.PCE CFLG.pce 40 Performance Counter Enable: IA-32 RDPMC user 
level reads of the performance counters are 
enabled when CR4.pce is 1. Otherwise execution of 
the RDPMC instruction results in a GPFault. 
CFLG.pce is ignored by Intel Itanium instructions. 
This bit is supported in both the IA-32 and Intel 
Itanium System Environments.   See the Intel® 64 
and IA-32 Architectures Software Developer’s 
Manual for details on these bits. 

CR4.FXSR CFLG.FXSR 41 SSE FXSR Enable. When 1, enables the SSE 
register context. When 0, execution of all SSE 
instructions results in an 
IA_32_Intercept(Instruction) fault. This bit does not 
control the behavior of Intel Itanium instructions. 
This bit is supported in both the IA-32 and Intel 
Itanium System Environments.   See the Intel® 64 
and IA-32 Architectures Software Developer’s 
Manual for details on these bits. 

CR4.MMXEX CFLG.MMXEX 42 SSE Exception Enable: When 1, enables SSE 
unmasked exceptions. When 0, all SSE Exceptions 
are masked. This bit does not control the behavior 
of Intel Itanium instructions. This bit is supported in 
both the IA-32 and Intel Itanium System 
Environments.   See the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for 
details on these bits. 

reserved 43:63 This field is reserved for IA-32 instructions – reads 
return zeros and non-zero writes causes 
IA_32_Exception (General Protection) faults. For 
Itanium instructions, the implementation can either 
raise Reserved Register/Field fault on non-zero 
writes and return zero on reads, or write the value 
(no Reserved Register/Field fault) and return the 
last value written on reads.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description
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10.3.3.3 IA-32 Memory Type Range Registers (MTRRs)

Within the Itanium System Environment, IA-32 MTRR registers are superseded by 
physical memory attributes supplied by the TLB, as defined in Section 4.4.3, 
“Cacheability and Coherency Attribute” on page 2:77. IA-32 instruction references to 
the MTRRs in the MSR register space results in an instruction intercept fault. 

10.3.3.4 IA-32 Model Specific and Test Registers

Within the Itanium System Environment, the IA-32 Model Specific Register space 
(MSRs) are superseded by the PAL firmware interface. Cache testing, initialization, 
processor configuration should be performed through the PAL interface. See 
Section 11.10, “PAL Procedures” on page 2:353 for a complete definition of the PAL 
functions and interfaces. Accesses to the IA-32 Model Specific Register space result in 
an instruction interception fault.

10.3.3.5 IA-32 Performance Monitor Registers

Within the Itanium System Environment, the Itanium performance monitors are 
designed to measure IA-32 and Itanium instructions, and system performance through 
a unified performance monitoring facility. Itanium architecture-based code can program 
the performance monitors for IA-32 and/or Itanium events by configuring the PMC 
registers. Count values are accumulated in the PMD registers for both IA-32 and 
Itanium events. See implementation-specific documentation for the list of supported 
events and encodings. 

IA-32 code can sample the performance counters by issuing the RDPMC instruction. 
RDPMC returns count values from the specified Itanium performance monitor. 
Operating systems can secure the monitors from being read by IA-32 code by setting 
PSR.sp to 1, or setting CR4.pce to 0, or setting the performance monitor’s pm-bit. 
Reads of a secured counter by RDPMC return a IA_32_Exception(GPFault(0)). IA-32 
code cannot write or configure the performance monitors, all writes to the MSR register 
space are intercepted.

10.3.3.6 IA-32 Machine Check Registers

Within the Itanium System Environment, IA-32 machine check registers are 
superseded by the Itanium machine check architecture. See Section 11.3, “Machine 
Checks” on page 2:296 for details. IA-32 accesses to the Pentium III Processor machine 
check registers results in an instruction intercept.

10.4 Register Context Switch Guidelines for IA-32 Code

The following section gives operating system performance guidelines to minimize the 
amount of register context that must be saved and restored for IA-32 processes during 
a context switch.
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10.4.1 Entering IA-32 Processes

High FP registers (FR32-127) – The processor requires access to all high FP registers 
during the execution of IA-32 instructions. It is recommended on entering an IA-32 
process, that the OS save the high FP registers belonging to a prior context and then 
enable the high FP registers (PSR.dfh is 0). Otherwise, the processor will immediately 
raise a Disabled FP Register fault on the first IA-32 instruction executed in the IA-32 
process. Performing the state save of the prior high FP register context during the 
context switch avoids the unnecessary generation of the Disabled FP Register fault.

Low FP registers (FR2-31) – The processor does not require access to the low FP 
registers unless executing IA-32 FP, MMX technology or SSE instructions. It is 
recommended on entry to an IA-32 process, that the OS disable the low FP registers 
by setting PSR.dfl to 1. PSR.dfl set to 0 indicates that there was a possibility that IA-32 
FP, MMX technology or SSE instruction could execute and write FR8-31. If the low FP 
registers are enabled on entry to an IA-32 process (PSR.dfl is 0), all low FP registers 
will appear to be dirty on IA-32 process exit.

High Integer Registers (GR32-127) – Since the processor leaves all high registers in the 
register stack in an undefined state, these registers must be saved by the RSE before 
entering an IA-32 process.

Low Integer registers (GR1-31) – These registers must be explicitly saved before 
entering an IA-32 process.

10.4.2 Exiting IA-32 Processes

High FP registers (FR32-127) – PSR.mfh is unmodified when leaving the IA-32 
instruction set. IA-32 instruction set execution leaves FR32-127 in an undefined state. 
Software can not rely on register values being preserved across an instruction set 
transition. These registers do NOT need to be preserved across a context switch.

Low FP registers (FR2-31) – PSR.mfl indicates there is a possibility that FR8-31 were 
modified by IA-32 FP, MMX technology, or SSE instruction. The modify bit is set by the 
processor when leaving the IA-32 instruction set, if PSR.dfl is 0, otherwise PSR.mfl is 
unmodified. During the state save of the outbound IA-32 process, it is recommended 
that the OS save FR2-31 if and only if the lower FP registers are marked as modified.

High Integer Registers (GR32-127) – Since the processor leaves all high registers 
undefined across an instruction set transition, these registers do NOT need to be 
preserved across an IA-32 context switch.

Low Integer registers (GR1-31) – These registers must be explicitly preserved across a 
context switch.

10.5 IA-32 Instruction Set Behavior Summary

Table 10-5 summarizes IA-32 instruction behavior within the Itanium System 
Environment. All IA-32 instructions are unchanged from the Intel® 64 and IA-32 
Architectures Software Developer’s Manual except where noted. IA-32 instructions 
can also generate additional Itanium register and memory faults as defined in 
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Table 5-6. Please refer to the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for the behavior of all IA-32 instructions in the IA-32 System 
Environment.

For all listed and unlisted IA-32 instructions in Table 10-5 the following relationships 
hold:

• Writes of any IA-32 general purpose, floating-point or MMX technology or SSE 
registers by IA-32 instructions are reflected in the Itanium registers defined to hold 
that IA-32 state when the IA-32 instruction set completes execution.

• Reads of any IA-32 general purpose, floating-point or MMX technology or SSE 

registers by IA-32 instructions see the state of the Itanium registers defined to hold 
the IA-32 state after entering the IA-32 instruction set.

• IA-32 numeric instructions are controlled by and reflect their status in FCW, FSW, 
FTW, FCS, FIP, FOP, FDS and FEA. On exit from the IA-32 instruction set, Itanium 
registers defined to hold IA-32 state reflect the results of all IA-32 prior numeric 
instructions (FSR, FCR, FIR, FDR). Itanium numeric status and control resources 
defined to hold IA-32 state are honored by IA-32 numeric instructions when 
entering the IA-32 instruction set.

In Table 10-5 unchanged indicates there is no change in behavior with respect to the 
IA-32 System Environment.

 Table 10-5. IA-32 Instruction Summary

IA-32 Instruction
Intel® Itanium® System 

Environment 
Comments

AAA, AAD. AAM, AAS

unchanged

ADC, ADD, AND, 

ADDPS, ADDSS, 
ANDNPS, ANDPS

ARPL

BOUND

BSF, BSR

BSWAP

BT, BTC, BTS, BTR

CALL near: no change
far: no change
gate more privilege: Gate 
Intercept
gate same privilege: Gate 
Intercept
task gate: Gate Intercept
+ additional taken branch trap

Intercept if through a call or task gate

If PSR.tb is 1, raise a taken branch trap.

CBW, CWDE, CDQ
unchanged

CLC, CLD

CLI Optional System Flag 
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1

CLTS Instruction Intercept IA-32 privileged instruction

CMC

unchanged

CMOV

CMP

CMPPS, CMPSS, 
COMISS

CMPS
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CMPXCHG, 8B Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor 
external lock transaction is required

CPUID

unchanged

CWD, CDQ

CVTPI2PS, CVTPS2PI, 
CVTSI2SS, CVTSS2SI, 
CVTTPS2PI, CVTTSS2SI

DAA, DAS

DEC

DIV

DIVPS, DIVSS

ENTER

EMMS

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System 

Environment 
Comments
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F2XM1

unchanged

IA-32 numeric instructions manipulate the IA-32 
numeric register stack contained in f8-f15, status is 
reflected in FSR. Modification of the IA-32 numeric 
environment changes FIR, FDR FCR and FSR.

FABS

FADD, FADDP, FIADD

FBLD

FBSTP

FCHS

FCLEX, FNCLEX

FCMOV

FCOM, FCOMPP

FCOMI, FCOMIP

FUCOMI, FUCOMIP

FCOS

FDECSTP

FDIV, FDIVP, FIDIV

FDIVR, FDIVRP, FDIVR

FFREE

FICOM, FICOMP

FILD

FINCSTP

FINIT, FNINIT

FIST, FISTP

FLD

FLD constant

FLDCW

FLDENV

FMUL, FMULP, FIMUL

FNOP

FPATAN, FPTAN

FPREM, FPREM1

FRNDINT

FRSTOR

FSAVE, FNSAVE

FSCALE

FSIN, FSINCOS

FSQRT

FST, FSTP

FSTCW, FNSTCW

FSTENV, FNSTENV

FSTSW, FNSTSW

FSUB, FSUBP, FISUB

FSUBR, FSUBRP, 
FISUBR

FTST

FUCOM, FUCOMP

FWAIT

FXAM

FXCH

FXTRACT

FXRSTOR, FXSAVE

FYL2X, FYL2XP1

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System 

Environment 
Comments
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HLT Instruction Intercept IA-32 privileged instruction

IDIV unchanged

IMUL

IN, INS unchanged + I/O ports are 
mapped virtually

If CFLG.io is 0, the TSS I/O permission bitmap is 
not consulted. Intel Itanium TLB faults control 
accessibility to I/O ports.

INC unchanged

INT 3, INTO Mandatory Exception vector 
#

Delivered as an IA_32_Interrupt

INT n Mandatory Interruption vector 
#

Delivered as an IA_32_Exception

INVD Instruction Intercept IA-32 privilege instruction

INVLPG

IRET, IRETD Real Mode: Instruction 
Intercept
to VM86: Instruction Intercept
from VM86: Instruction 
Intercept
same privilege: Instruction 
Intercept
less privilege: Instruction 
Intercept
different task: Instruction 
Intercept

All forms of IRET result in an instruction intercept

Jcc additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

JMP near: no change
far: no change
gate task: Gate Intercept
call gate: Gate Intercept
additional taken branch trap

Intercept fault if through a call or task gate

If PSR.tb is 1, raise a taken branch trap.

JMPE Jumps to the Intel Itanium instruction set

LAHF

unchanged

LAR

LDMXCSR

LDS, LES, LFS, LGS, 
LSS

LEA

LEAVE

LGDT, LLDT

Instruction Intercept IA-32 privileged register resourceLIDT

LMSW

Lock prefix Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor 
external lock transaction is required

LODS unchanged

LOOP, LOOPcc additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

LSL unchanged User level instruction

LTR Instruction Intercept IA-32 privileged register

MASKMOVQ

unchanged
MAXPS, MAXSS, MINPS, 
MINSS

MOV

MOVNTPS, MOVNTQ

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System 

Environment 
Comments
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MOV from CR unchanged

MOV to CR Instruction Intercept IA-32 privileged system registers

MOV to/from DR

Mov SS System Flag Intercept Trap System Flag Intercept Trap after instruction 
completes

MOVAPS, MOVHPS, 
MOVLPS. MOVMSKPS, 
MOVSS, MOVUPS

unchanged

MOVD, MOVQ

MOVS

MOVSX, MOVZX

MUL

MULPS, MULSS

NEG

NOP

NOT

OR

ORPS

OUT, OUTS unchanged + I/O ports are 
mapped virtually

If CFLG.io is 0, the TSS I/O permission bitmap is 
not consulted. Intel Itanium TLB faults control 
accessibility to I/O ports.

PACKSS, PACKUS

unchanged

PADD, PADDS, PADDUS

PAND, PANDN

PCMPEQ, PCMPGT

PEXTRW, PINSRW

PMADD

PMULHW, PMULLW, 
PMULHUW

PMOVMSKB

POP, POPA

POP SS System Flag Intercept System Flag Intercept Trap after instruction 
completes

POPF, POPFD Optional System Flag 
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept if EFLAG.ac, or tf change state.

POR

unchanged

PREFETCH

PSHUFW

PSLL, PSRA, PSRL

PSUB, PSUBS, PSUBUS

PUNPCKH, PUNPCKL

PXOR

PUSH, PUSA

unchanged
PUSHF, PUSHFD Pushes value in EFLAG, no intercept

RCL, RCR, ROL, ROR

RCPPS, RSQRTPS

RDMSR Instruction Intercept IA-32 privileged system register space

RDTSC Optional GPFault No longer faults in VM86, GPFault if secured by 
PSR.si or CFLG.tsd.RDPMC

REP, REPcc prefix unchanged

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System 

Environment 
Comments
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10.6 System Memory Model

Within the Itanium System Environment, a unified memory model is presented to the 
programmer. Applications and the operating system see the same 64-bit virtual 
memory space and virtual addressing mechanisms regardless of the referencing 
instruction set. A virtual address points to the same physical storage location from both 
IA-32 and Itanium instruction sets. 

RET near: no change
far: no change
less privilege: no change
same privilege: no change
+ additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

RSM Instruction Intercept IA-32 privileged instruction

SAHF

unchanged

SAL, SAR, SHL, SHR

SBB

SCAS

SFENCE

SETcc

SGDT, SLDT Instruction Intercept IA-32 privileged instruction

SHLD, SHRD unchanged

SHUFPS, SQRTPS, 
SQRTSS

SIDT Instruction Intercept IA-32 privileged instructions

SMSW

STC, STD unchanged

STI Optional System Flag 
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1

STMXCSR unchanged

STOS

STR Instruction Intercept IA-32 privileged instruction

SUB unchanged

SUBPS, SUBSS

SYSENTER, SYSEXIT Instruction Intercept

TEST

unchangedUCOMISS

UNPCKHPS, UNPCKLPS

UD2 Instruction Intercept Reserved undefined opcodes

VERR, VERW unchanged User level instruction

WAIT

WBINVD Instruction Intercept IA-32 privileged instructions

WRMSR

XADD Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor 
external lock transaction is required than a Lock 
Intercept.

XCHG

XLAT, XLATB

unchangedXOR

XORPS

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System 

Environment 
Comments
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Itanium architecture-based operating systems must not use IA-32 segmentation as a 
protected system resource. An Itanium architecture-based operating system must use 
virtual memory management defined by the Itanium architecture to secure IA-32 and 
Itanium architecture-based applications, memory and I/O devices. The Itanium 
architecture is defined to be unsegmented architecture and all Itanium memory 
references bypass IA-32 segmentation and protection checks. In addition, Itanium 
architecture-based user level code can directly modify IA-32 segment selector and 
descriptor values for all segments (including GDT and LDT). If operating systems do not 
rely on segmentation for protection, there are no security concerns for exposing IA-32 
segment registers and descriptors to Itanium architecture-based user level applications

IA-32 instruction and data reference addresses are generated as 16/32-bit effective 
addresses as shown in Figure 10-2. IA-32 segmentation is then applied to map 32-bit 
effective addresses into 32-bit virtual addresses, the processor then converts the 
address into a 64-bit virtual address by zero extension from 32 to 64-bits. Itanium 
instructions bypass all of these steps and directly generate addresses within the 64-bit 
virtual address space. 

For both IA-32 and Itanium instruction set memory references, virtual memory 
management defined by the Itanium architecture is used to map a given virtual address 
into a physical address. Itanium architecture-based virtual memory management 
hardware does not distinguish between Itanium and IA-32 instruction set generated 
memory references during the conversion from a virtual to physical address.

10.6.1 Virtual Memory References

In the Itanium System Environment the following virtual memory options are available 
for supporting IA-32 and Itanium memory references.

• Software TLB fills (TLBs are enabled, but the VHPT is disabled).

• 8-byte short format VHPT, see Section 4.1.5, “Virtual Hash Page Table (VHPT)” on 
page 2:61 for details.

• 32-byte long format VHPT.

Itanium virtual memory resources can be used by the operating system for all IA-32 
memory references. These resources include virtual Region Registers (RR), Protection 
Key Registers (PKR), the Virtual Hash Page Table (VHPT), all supported range of page 
sizes, Translation Registers (ITR, DTR), the Translation Cache (ITC, DTC) and the 
complete set of Itanium virtual memory management faults defined in Chapter 5. 

Figure 10-4. Virtual Memory Addressing
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10.6.2 IA-32 Virtual Memory References

By definition, IA-32 instruction and data memory references are confined to 32-bits of 
virtual addressing, the first 4 G-bytes of virtual region 0. However, IA-32 memory 
references can be mapped anywhere within the implemented physical address space by 
operating system code. 

Virtual addresses are converted into physical addresses through the process defined in 
Section 4.1, “Virtual Addressing” on page 2:45. IA-32 references use the Itanium TLB 
resources as follows.

• Region Identifiers – Operating systems can place IA-32 processes within virtual 
region 0, and use the entire 224 region identifier name space. By using region 
identifiers there is no requirement to flush IA-32 mappings on a context switch. 

• Protection Keys – Operating systems can place mappings used by IA-32 
processes within any number of protection domains. If PSR.pk is 1, all IA-32 
references search the Protection Key Registers (PKR) for matching keys. If a key is 
not found, a Key Miss fault is generated. Otherwise, key read, write, execute 
permissions are verified.

• TLB Access Bit – If this bit is zero, an Access Bit fault is generated during Itanium 
or IA-32 instruction set memory references. Note: the processor does not 
automatically set the Access bit in the VHPT on every reference to the page. Access 
bit updates are controlled by the operating system.

• TLB Dirty Bit – If this bit is zero, a Dirty bit fault is generated during any Itanium 
or IA-32 instruction that stores to a dirty page. Note: the processor does not 
automatically set the Dirty bit in the VHPT on every write. Dirty bit updates are 
managed by the operating system.

10.6.3 IA-32 TLB Forward Progress Requirements

To ensure forward progress while executing IA-32 instructions, additional TLB resources 
and replacement policies must be defined over and above the definition given in 
Section 4.1.1.2, “Translation Cache (TC)” on page 2:49. IA-32 instructions and data 
accesses may not be aligned resulting in a worst case scenario for two possible pages 
being referenced for every memory datum referenced during the execution of an IA-32 
instruction. Furthermore, the worst case non-intercepted IA-32 opcode can reference 
up to 4 independent data pages.

The Translation Cache’s (TC) are required to have the following minimum set of 
resources to ensure forward progress. Given that software TLB fills can be used to 
insert entries into the TLB and a hardware page table walker is not necessarily used, 
the following requirements must be satisfied by the processor:

• Instruction Translation Cache – at least 1 way set associative with 2 sets, or 2 
entries in a fully associative design. Replacement algorithms must not consistently 
displace the last 2 entries installed by software.

• Data Translation Cache – at least 4 way set associative with 2 sets, or 8 entries in a 
fully associative design. Replacement algorithms must not consistently displace the 
last 8 entries installed by software or the last 8 translations referenced by an IA-32 
instruction.
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• Unified Translation Cache – at least 5 way set associative with 2 sets, or 10 entries 
in a fully associative design. The processor must not consistently displace the last 
10 entries installed or the last 10 translations referenced by an IA-32 instruction.

The processor must ensure that the minimum number of entries can co-exist in the 
TLB, and TC replacement algorithms allow software insertion of the required entries 
such that the required number of translations can be co-resident in the TLB. 

The processor cannot ensure forward progress unless translations mapping the Itanium 
architecture-based TLB Miss handlers are statically mapped by the Instruction 
Translation Registers.

10.6.4 Multiprocessor TLB Coherency

Global TLB purges can not occur on another processor unless that processor is at an 
interruptible point. For IA-32 instruction set execution, interruptible points are defined 
as; 1) when the processor is between instructions (regardless of the state of PSR.i and 
EFLAG.if), and 2) each iteration of an IA-32 string instruction, regardless of the state of 
PSR.i and EFLAG.if

The processor may delay in its response and acknowledgment to a broadcast purge TC 
transaction until the processor executing an IA-32 instruction has reached a point (e.g. 
an IA-32 instruction boundary) where it is safe to process the purge TC request. The 
amount of the delay is implementation specific and can vary depending on the receiving 
processor and what instructions or operations are executing when it receives the purge 
request.

10.6.5 IA-32 Physical Memory References

When running IA-32 code, virtual addressing must be utilized by setting PSR.dt to 1 
and PSR.it to 1, otherwise processor operation is undefined. Undefined behavior can 
include, but is not limited to: machine check abort on entry to IA-32 code, and 
unpredictable behavior for IA-32 self modifying code.

Operating systems must ensure PSR.dt and PSR.it are 1 before invoking IA-32 code. 
From a practical standpoint, the TLBs must be enabled so IA-32 code can access the 
virtual address space, and access memory areas other than WB (e.g. UC or the I/O port 
space).

Figure 10-5. Physical Memory Addressing
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10.6.6 Supervisor Accesses

If the processor is operating in the Itanium System Environment, supervisor override is 
disabled, and LDT, GDT, TSS references are performed at the privilege level specified by 
PSR.cpl. Unaligned processor references to LDT, GDT, and TSS segments will never 
generate an EFLAG.ac enabled IA-32 Exception (AlignmentCheck) fault, even if PSR.cpl 
equals 3 and supervisor override is disabled.

Operating systems must ensure that the GDT/LDT are mapped to pages with user level 
read/write access. 

Write permission is required if GDT, or LDT memory descriptor Access-bits are zero 
regardless of supervisor override conditions. If all GDT/LDT descriptor Access-bits are 
one, write permission can be removed. Otherwise, Access Rights, Key Miss or Key Miss 
faults can be generated during all segment descriptor referencing instructions.

If a fault is generated during a supervisory access, the ISR.so bit indicates that CPL is 
zero or a supervisor override condition was in effect (reference as made to GDT, LDT or 
TSS).

10.6.7 Memory Alignment

Depending on software conventions, memory structures may have different alignment 
or padding restrictions for the IA-32 and Itanium instruction sets. IA-32 and Itanium 
architecture-based software should use aligned memory operands as much as possible 
to avoid possible severe performance degradation associated with un-aligned values 
and extra over-head for unaligned data memory fault handlers.

The processor provides full functional support for all cases of un-aligned IA-32 data 
memory references. If PSR.ac is 1 or EFLAG.ac is 1 and CR0.am is 1and the effective 
privilege level is 3, unaligned IA-32 memory references result in an IA-32 Exception 
(AlignmentCheck) fault. Unaligned processor references to LDT, GDT, and TSS 
segments will never generate an EFLAG.ac enabled IA-32 Exception (AlignmentCheck) 
fault, even if the effective privilege level is 3 and supervisor override is disabled. 

Alignment conditions for Itanium memory references are not affected by the EFLAG.ac, 
CFLG.am bits. 

If EFLAG.ac and CFLG.am are 1 and the reference is done at privilege level 3, IA-32 
instruction set unaligned conditions are; 2-byte references not a 2-byte boundary, 
4-byte references not on a 4-byte boundary, 8-byte references not on a 8-byte 
boundary, and 10-byte references not on a 8-byte boundary. 

If PSR.ac is 1, IA-32 instruction set unaligned conditions are; 2-byte references not a 
2-byte boundary, 4-byte references not on a 4-byte boundary, 8-byte references not on 
a 8-byte boundary, and 10-byte references not on a 16-byte boundary. 

The processor exhibits the following behavior when accesses are made to un-aligned 
data operands that span virtual page boundaries:

• IA-32 instruction set – If either page contains a fault, no memory location is 
modified. For reads, the destination register is not modified.

• Itanium instruction set – All page crossers result in an unaligned reference fault. 
Memory contents and register contents are not modified.
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10.6.8 Atomic Operations

All Itanium load/stores and IA-32 non-locked memory references up to 64-bits that are 
aligned to their natural data boundaries are atomic.

Both IA-32 and Itanium atomic semaphore operations can be performed on the same 
shared memory location. The processor ensures IA-32 locked read-modify-write 
opcodes and Itanium semaphore operations are performed atomically even if the 
operations are initiated from the other instruction set by the same processors, or 
between multiple processors in an multiprocessing system.   

There are some restrictions placed on Itanium atomic operations that may prevent 
Itanium architecture-based code from manipulating IA-32 semaphores in some rare 
cases:

• Unaligned Itanium semaphore operations result in an Unaligned Data Reference 
fault. Itanium architecture-based code manipulation of an IA-32 semaphore can 
only be performed if the IA-32 semaphore is aligned.

• Itanium semaphore operations to memory which is neither write-back cacheable 
nor a NaTPage result in an Unsupported Data Reference fault (regardless of the 
state of the DCR.lc). Itanium architecture-based code manipulation of an IA-32 
semaphore can only be performed if the IA-32 semaphore is allocated in aligned 
write-back cacheable memory.

If an IA-32 locked atomic operation is defined as requiring a read-modify-write 
operation external to the processor under external bus lock and if DCR.lc is set to 1, an 
IA_32_Intercept(Lock) fault is generated. (IA-32 atomic memory references are 
defined to require an external bus lock for atomicity when the memory transaction is 
made to non-write-back memory or are unaligned across an implementation-specific 
non-supported alignment boundary.) If DCR.lc is set to 0, the processor may either 
execute the transaction as a series of non-atomic transactions or perform the 
transaction with an external bus lock, depending on the processor implementation. For 
processor implementations that do support external bus locks, software must ensure 
that the Bus Lock Mask bit is set to one, in order to ensure atomicity of these IA-32 
operations when DCR.lc=0. The Bus Lock Mask bit is a feature controllable by the 
PAL_BUS_SET_FEATURES procedure. (See Table 11-63 on page 2:368 for more 
information).

If the processor supports external bus locks, unaligned IA-32 atomic references are 
supported, but their usage is strongly discouraged since they are typically performed 
outside the processor's cache which can severely degrade performance of the system. 
IA-32 external bus locks are not supported on all processor implementations.

For IA-32 semaphores, atomicity to uncached memory areas (UC) is platform specific, 
atomicity can only be ensured by the platform design and can not be enforced by the 
processor.

10.6.9 Multiprocessor Instruction Cache Coherency

The processor and platform ensure the processor’s instruction cache is coherent for the 
following conditions:
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• For all processors in the coherence domain, local and remote instruction cache 
coherency on all processors is enforced for any store generated by any processor 
running the IA-32 instruction set.

• For all processors in the coherence domain, instruction cache coherency on all 
processors is enforced for all coherent I/O traffic. (For non-coherent I/O, a 
processor may or may not see the results of an I/O operation.)

• For all processors in the coherence domain, instruction cache coherency is not 
enforced for stores generated by any processor running the Itanium instruction set. 
To ensure instruction cache coherency, Itanium architecture-based code must use 
the code sequence defined in Section 4.4.6.2, “Memory Consistency” on page 1:72.

10.6.10 IA-32 Memory Ordering

IA-32 memory ordering follows the Pentium III defined processor ordered model for 
cacheable and uncacheable memory. IA-32 processor ordered memory references are 
mapped onto the Itanium memory ordering model as follows:

• All IA-32 stores have release semantics. Except for IA-32 stores to 
write-coalescing memory that are unordered. Subsequent loads are allowed to 
bypass buffered local store data before it is globally visible. The amount of store 
buffering is model specific and can vary across processor generations. 

• All IA-32 loads have acquire semantics. Some high performance processor 
implementations may speculatively issue acquire loads into the memory system for 
speculative memory types, if and only if the loads do not appear to pass other loads 
as observed by the program. If there is a coherency action that would result in the 
appearance to the program of a load bypassing other load, the processor will 
reissue the load operation(s) in program order.

• All IA-32 read-modify-write or locked instructions have memory fence semantics. 
All buffered stores are flushed.

• IA-32 IN, OUT and serializing operations (as defined in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual) have memory fence semantics. 
In addition, the processor will wait for completion (acceptance by the platform) of 
the IN or OUT before executing the next instruction. All buffered stores are flushed 
before the IN or OUT operation.

• IA-32 SFENCE has release semantics and will flush all buffered stores.

Table 10-6. Instruction Cache Coherency Rules

Originating
Instruction Set

Local Processor External Processor Coherent, I/O Non-Coherent I/O

IA-32 Coherent Coherent

Coherent

Maybe
Non-CoherentIntel Itanium May be 

Non-coherent
May be
Non-coherent

Table 10-7. IA-32 Load/Store Sequentiality and Ordering

IA-32 Memory 
Reference

Uncacheable
Write

Coalescing
Cacheable

store sequential
releasea

non-sequential
unordered

non-sequential
releaseb

load sequential
acquirea

non-sequential
unordered 

non-sequential
acquireb
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Per Table 10-7, IA-32 memory references can be expressed in terms of acquire, 
release, fence and sequential ordering rules defined by the Itanium architecture. IA-32 
data memory references follow the same ordering relationships as defined for Itanium 
architecture-based code as defined in Section 4.4.7, “Sequentiality Attribute and 
Ordering” on page 2:82. The following additional clarifications need to be made for 
IA-32 instruction set execution:

• IA-32 loads and instruction fetches to speculative memory can occur randomly. 
Read accesses to speculative memory can occur at arbitrary times even if the 
in-order execution of the program does not require a read or instruction fetch from 
a given memory location.

• IA-32 instruction fetches and loads to non-speculative memory occur in program 
order. IA-32 instruction cache line fetch accesses to uncached memory occur in the 
order specified by an in-order execution of the program. Note however that the 
same cache line may be fetched multiple times by the processor as multiple 
instructions within the cache line are executed. The size of a cache line and number 
of instruction fetches is model specific. 

• IA-32 instruction fetches are not perceived as passing prior IA-32 stores. IA-32 
stores into the IA-32 instruction stream are observed by the processor’s self 
modifying code logic. Speculative instruction fetches may be emitted by the 
processor before a store is seen to the instruction stream and then discarded. Self 
modifying code due to Itanium stores is not detected by the processor.

• IA-32 instruction fetches can pass prior loads or memory fence operations from the 
same processor. Data memory accesses, and memory fences are not ordered with 
respect to IA-32 instruction fetches.

• IA-32 instruction fetches can not pass any serializing instructions, including Itanium 
srlz.i and IA-32 CPUID. For speculative memory types the processor may 
prefetch ahead of a serialization operation and then discard the prefetched 
instructions.

• IA-32 serializing operations wait for all previous stores and loads to complete, and 
for all prior stores buffered by the processor to become visible. IA-32 serializing 
instructions include CPUID.

• IA-32 OUT instructions may be buffered, however the processor will not start 
execution of the next IA-32 instruction until the OUT has completed (been accepted 
by the platform).

• The processor does not begin execution of the next IA-32 instruction until the IN or 
OUT has been completed (accepted) by the platform. This statement does not apply 

locked 
or read-modify-write 
operation

sequential
fence
flush prior stores

non-sequential
fence
flush prior stores

non-sequential
fence
flush prior stores

IN, INS, OUT, OUTS sequential
fence
flush prior stores

undefined undefined

IA-32 Serialization fence, flush prior stores

SFENCE release, flush prior stores

a. However, IA-32 loads/stores to uncacheable memory flush the write coalescing buffers.
b. However, IA-32 load/stores to cacheable memory do not flush the write coalescing buffers.

Table 10-7. IA-32 Load/Store Sequentiality and Ordering (Continued)

IA-32 Memory 
Reference

Uncacheable
Write

Coalescing
Cacheable
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for Itanium memory references to the I/O port space. The processor may issue 
instruction fetches and VHPT walks ahead of an IN or OUT.

• VHPT Walks are speculative and can occur at any time. VHPT walks can pass all 
prior IA-32 loads, stores, instruction fetches, I/O operations and serializing 
instructions.

10.6.10.1 Instruction Set Transitions

Instruction set transitions do not automatically fence memory data references. To 
ensure proper ordering software needs to take into account the following ordering 
rules.

10.6.10.1.1 Transitions from Intel® Itanium® Instruction Set to IA-32 
Instruction Set

• All data dependencies are honored, IA-32 loads see the results of all prior Itanium 
and IA-32 stores.

• IA-32 stores (release) can not pass any prior Itanium load or store.

• IA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium 
store to a different address. Itanium architecture-based software can prevent IA-32 
loads from passing prior Itanium loads and stores by issuing an acquire operation 
(or mf) before the instruction set transition.

10.6.10.1.2 Transitions from IA-32 Instruction Set to Intel® Itanium® 
Instruction Set

• All data dependencies are honored, Itanium loads see the results of all prior 
Itanium and IA-32 stores.

• Itanium stores or loads can not pass prior IA-32 loads (acquire).

• Itanium unordered stores or any Itanium load can pass prior IA-32 stores (release) 
to a different address. Itanium architecture-based software can prevent Itanium 
loads and stores from passing prior IA-32 stores by issuing a release operation (or 
mf) after the instruction set transition.

10.7 I/O Port Space Model

A consistent unified addressing model is used for both IA-32 and Itanium references to 
the I/O port space. On prior IA-32 processors two I/O models exist; memory mapped 
I/O and the 64KB I/O port space. On processors based on the Itanium instruction set, 
the 64KB I/O port space defined by IA-32 processors is effectively mapped into the 
64-bit virtual address space of the processor, producing a single memory mapped I/O 
model as shown in Figure 10-1. This model allows Itanium normal load and store 
instructions to also access the I/O port space.

Itanium architecture-based operating system code can directly control IA-32 IN, OUT 
instruction and accessibility by IA-32 or Itanium load/store instructions to blocks of 4 
virtual I/O ports using the TLBs. The entire range of virtual memory mechanisms 
defined by the Itanium architecture: access rights, dirty, access bits, protection keys, 
region identifiers can be used to control permission and addressability.
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In the Itanium System Environment, the virtual location of the 64 MB I/O port space is 
determined by operating system. For IA-32 IN and OUT instructions, the operating 
system can specify the virtual base location via the I/O base register. 

Any IA-32 or Itanium load or store within the virtual region mapped by the operating 
system to the platform’s physical 64 MB I/O port block, directly accesses physical I/O 
devices within the I/O port space. The location of the 64 MB I/O port block within the 
263 byte physical address space is determined by platform conventions, see 
Section 10.7.2, “Physical I/O Port Addressing” on page 2:270 for details. 

10.7.1 Virtual I/O Port Addressing

The IA-32 defined 64-KB I/O port space is expanded into 64 MB. This effectively places 
4 I/O ports per each 4KB virtual and physical page. Since there are 4 ports per virtual 
page, the TLBs can be used port address translation, and permission checks as shown 
in Figure 10-2.

Figure 10-1. I/O Port Space Model
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For IA-32 IN and OUT instructions a port’s virtual address is computed as:

port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

This address computation places 4 ports on each 4K page and expands the space to 
64MB, with the ports being at a relative offset specified by port{11:0} within each 
4K-byte virtual page. IOBase is a kernel register (KR) maintained by the operating 
system that points to the base of the 64MB Virtual I/O port space. The value in IOBase 
must be aligned on a 64MB boundary otherwise port address aliasing will occur and 
processor operation is undefined.

For Itanium load and stores accesses to the I/O port space, a port’s virtual address can 
be computed in the same manner, specifically.

port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

In practice this address is a constant for any given physical I/O device. 

Note: In the generation of the I/O port virtual address, software MUST ensure that 
port_virtual_address{11:2} are equal to port{11:2} bits. Otherwise, some pro-
cessors implementations may place the port data on the wrong bytes of the 
processor’s bus and the port will not be correctly accessed. 

IA-32 IN and OUT instructions and Itanium or IA-32 load/store instructions can 
reference I/O ports in 1, 2, or 4-byte transactions. References to the legacy I/O port 
space cannot be performed with greater than 4 byte transactions due to bus limitations 
in most systems. Since an IA-32 IN/OUT instruction can access up to 4 bytes at port 
address 0xFFFF, the I/O port space effectively extends 3 bytes beyond the 64KB 
boundary. Operating systems can; 1) not map the excess 3 bytes, resulting in denial of 
permission for the excess 3 bytes, or 2) map via the TLB the excess 3 bytes back to 
port address 0 effectively wrapping the I/O port space at 64KB.

Operating system code can map each virtual I/O port space page anywhere within the 
physical address space using the Data Translation Registers or the Data Translation 
Cache. Large page translations can be used to reduce the number of mappings required 
in the TLB to map the I/O port space. For example, one 64MB translation is sufficient to 
map the entire expanded 64MB I/O port space. The UC memory attribute must be 
used for all I/O port space mappings to avoid speculative processor references to I/O 
devices, otherwise processor and platform operation is undefined.

Figure 10-2. I/O Port Space Addressing
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Operating System Warning: Operating system code can not remap a given port to 
another port address within the I/O port space, such that 
port_physical_address{21:12} != port_physical_address{11:2}. Otherwise, based on 
the processor model, I/O port data may be placed on the wrong bytes of the 
processor’s bus and the port will not be correctly accessed. 

I/O port space breakpoints can be configured by loading the address and mask fields 
with the virtual address defined by the operating system to correspond to the I/O port 
space.

The processor (as defined in the next section) ensures that load, store references will 
not result in references to I/O devices for which permission was not granted.

All memory related faults defined in Chapter 5, “Interruptions” can be generated by 
IA-32 IN and OUT references to the I/O port space, including IA_32_Exception(Debug) 
traps for data address breakpoints and IA_32_Exception(AlignmentCheck) for 
unaligned references. (EFLAG.ac enabled unaligned port references are not detected by 
the processor). Itanium Data Breakpoint registers (DBRs) can be configured to 
generate debug traps for references into the I/O port space by either IA-32 IN/OUT 
instructions or by IA-32 or Itanium load/store instructions.

10.7.2 Physical I/O Port Addressing

Some processors implementations will provide an M/IO pin or bus indication by 
decoding physical addresses if references are within the 64MB physical I/O block. If so 
the 64MB I/O port space is compressed back to 64KB. Subsequent processor 
implementations may drop the M/IO pin (or bus indication) and rely on platform or 
chip-set decoding of a range of the 64MB physical address space. 

Through the PAL firmware interface, the 64MB physical I/O block can be programmed 
to any arbitrary physical location. It is suggested that to be compatible with IA-32 
based platforms, the platform physical location of the physical I/O block be 
programmed above 4G-bytes and above all useful DRAM, ROM and existing memory 
mapped I/O areas. See PAL_PLATFORM_ADDR on page 2:442 for details.

Based on the platform design, some platforms can accept addresses for the expanded 
64MB I/O block, while other platforms will require that the I/O port space be 
compressed back to 64KB by the processor. If the I/O port space needs to be 
compressed either the processor or platform (based on the implementation) will 
perform the following operation for all memory references within the physical I/O block.

IO_address{1:0} = PA{1:0}
IO_address{15:2} = PA{25:12}// byte strobes are generated

// from the lower I/O_address bits

The processor ensures that the bus byte strobes and bus port address are derived from 
PA{25:12,1:0}. Thus allowing an operating system to control security of each 4 ports 
via TLB management of PA{25:12}. 
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10.7.2.1 I/O Port Addressing Restrictions

For the 64MB physical I/O port block the following operations are undefined and may 
result in unpredictable processor operation; references larger than 4-bytes, instruction 
fetch references, references to any memory attribute other than UC, or semaphore 
references which require an atomic lock. To ensure I/O ports accesses are not granted 
for which the TLB has not been consulted, the processor ensures:

• All byte addresses within the same 4KB page alias to the 4 ports defined by the 
mapped physical I/O port page. 

• All IA-32 and Itanium unaligned loads and stores that cross a 4-byte boundary to 
the processor’s physical I/O port block are truncated. That is the bus transaction to 
the area before the 4-byte boundary is performed (the number of bytes emitted is 
model specific). No bus transaction is performed for the bytes that are beyond the 
4-byte boundary. 4-byte crosser loads while return some undefined data. 4-byte 
crosser stores will not write all intended bytes.

• For IA-32 IN/OUT accesses that cross a 4-port boundary the processor will break 
the operation into smaller 1, 2, or 3 byte I/O port transactions within each 4KB 
virtual page. 

10.7.3 IA-32 IN/OUT instructions

IA-32 I/O instructions (IN, OUT, INS, OUTS) defined in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual are augmented as follows:

• I/O instructions first check for IOPL permission. If PSR.cpl<=EFLAG.iopl, access 
permission is granted. Otherwise the TSS I/O permission bitmap may be consulted 
as defined below. If the Bitmap denies permission or is not consulted an 
IA_32_Exception(GPFault) is generated.

• If IOPL permission is denied and CFLG.io is 1, the TSS I/O permission bitmap is 
consulted for access permission. If the corresponding bit(s) for the I/O port(s) is 1, 
indicating permission is denied, a GPFault is generated. Otherwise access 
permission is granted. The TSS I/O permission bitmap provides 1 port permission 
control at the expense of additional processor data memory references. This 
mechanism can be used in the Itanium System Environment, but is not 
recommended since TLB access controls defined by the Itanium architecture are 
faster and provide a consistent control mechanism for both IA-32 and Itanium 
architecture-based code. Whereas, the TLB mechanism provides a control 
mechanism for both IA-32 and Itanium memory references.

• If CFLG.io is 0, the TSS I/O permission bitmap is not consulted and if the IOPL 
check failed an IA_32_Exception(GPFault) is generated. By setting CFLG.io to 0, 
operating system code can disable all processor references to the TSS. By setting 
IOPL<PSR.cpl and setting CFLG.io to 0, operating system code can block all user 
level execution of IA-32 I/O instructions, no TSS needs to be allocated or defined by 
the operating system.

• I/O port references generate a virtual port address relative to the IOBase register 
as defined in Section 10.7.1, “Virtual I/O Port Addressing” on page 2:268.

• If data translations are enabled, the TLB is consulted for the required virtual to 
physical mapping. If the required mapping is not present a VHPT Translation, Data 
TLB Miss or Alternative Data TLB Miss fault is generated.

• If data translations are enabled, Access Rights, Permission Keys, Access, Dirty and 
Present bits are checked and faults generated.
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• If data translations are disabled (PSR.dt is 0) or the referenced I/O port is mapped 
to an unimplemented virtual address (via the IOBase register), a GPFault is raised 
on the referencing IA-32 IN, OUT, INS, or OUTS instruction. 

• Alignment and Data Address breakpoints are also checked and may result in an 
IA_32_Exception(AlignmentCheck)   fault (if PSR.ac is 1) or 
IA_32_Exception(Debug) trap.

• If an IA-32 IN/OUT I/O port Accesses cross a 4-port boundary the processor will 
break the operation into smaller 1, 2, or 3 byte transactions. 

• Assuming no faults, a physical transaction is emitted to the mapped or specified 
physical address. 

The processor ensures that IA-32 IN, INS, OUT, OUTS references are fully ordered and 
will not allow prior or future data memory references to pass the I/O operation as 
defined in Section 10.6.10, “IA-32 Memory Ordering” on page 2:265. The processor will 
wait for acceptance for IN and OUT operations before proceeding with subsequent 
externally visible bus transactions.

10.7.4 I/O Port Accesses by Loads and Stores

If an access is made to the I/O port block using IA-32 or Itanium loads and stores the 
following differences in behavior should be noted; EFLAG.iopl permission is not 
checked, TSS permission bitmap is not checked, and stores and loads do not honor IN 
and OUT memory ordering and acceptance semantics (the processor will not 
automatically wait for a store to be accepted by the platform).

Virtual addresses for the I/O port space should be computed as defined in 
Section 10.7.1, “Virtual I/O Port Addressing” on page 2:268 If data translations are 
enabled, the TLB is consulted for mappings and permission, and the resulting mapped 
physical address used to address the physical I/O device.

If IA-32 ordering semantics are required to a particular I/O port device (or memory 
mapped I/O device), IA-32 or Itanium architecture-based software must enforce 
ordering to the I/O device. Software can either perform a memory ordering fence 
before and after the transaction, or use an load acquire or store release 

To ensure the processor does not speculatively access an I/O device, all I/O devices 
must be mapped by the UC memory attribute.

If IA-32 acceptance semantics are required (i.e. additional data memory transactions 
are not initiated until the I/O transaction is completed), Itanium architecture-based 
code can issue a memory acceptance fence. Conversely, if certain I/O devices do not 
require IA-32 IN/OUT ordering or acceptance semantics, Itanium architecture-based 
code can relax ordering and acceptance requirements as shown below.

OUT

[mf]//Fence prior memory references, if required

add port_addr = IO_Port_Base, Expanded_Port_Number
st.rel (port_addr), data
[mf.a] //Wait for platform acceptance, if required
[mf] //Fence future memory operations, if required
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IN

[mf] //Fence prior memory references, if required
add port_addr = IO_Port_Base, Expanded_Port_Number
ld.acq data, (port_addr)
[mf.a] //Wait for platform acceptance, if required
[mf] //Fence future memory references, if required

10.8 Debug Model

The debug facilitates defined by the Itanium architecture are designed to support 
debugging of both the Itanium and IA-32 instruction set. The following debug events 
can be triggered during IA-32 instruction set execution by Itanium debug resources.

• Single Step trap – When PSR.ss is 1 (or EFLAG.tf is 1), successful execution of 
each IA-32 instruction, results in an IA_32_Exception(Debug) trap. After the single 
step trap, IIP points to the next IA-32 instruction to be executed.

• Breakpoint Instruction trap – execution of INT 3 (breakpoint) instruction results 
in a IA_32_Exception(Debug) trap. 

• Instruction Debug fault – When PSR.db is 1 and PSR.id is 0 and EFLAG.rf is 0, 
any IA-32 instruction fetch that matches the parameters specified by the IBR 
registers results in an IA_32_Exception(Debug) fault. After servicing a Debug fault, 
debuggers can set PSR.id (or EFLAG.rf for IA-32 instructions) before restarting the 
faulting instruction. If PSR.id is 1, Instruction Debug faults are temporarily disabled 
for one Itanium instruction. If PSR.id is 1 or EFLAG.rf is 1, Instruction Debug faults 
are temporarily disabled for one IA-32 instruction. The successful execution of an 
IA-32 instruction clears both PSR.id and EFLAG.rf bits. The successful execution of 
an Itanium instruction only clears PSR.id.

• Data Debug traps – When PSR.db is 1, any IA-32 data memory reference that 
matches the parameters specified by the DBR registers results in a 
IA_32_Exception(Debug) trap. IA-32 data debug events are traps, not faults as 
defined for Itanium instruction set data debug events. Trap behavior is required 
since any given IA-32 instruction can access several memory locations during its 
execution. The reported trap code returns the match status of the first four DBR 
registers that matched during the execution of the IA-32 instruction. Zero, one or 
DBR registers may be reported as matching.

• Taken Branch trap – When PSR.tb is 1, a IA_32_Exception(Debug) trap occurs on 
every IA-32 taken branch instruction (CALL, Jcc, JMP, RET, LOOP). After the trap, 
IIP points to the branch target.

• Lower Privilege Transfer trap – Does not occur during IA-32 instruction set 
execution.

For virtual memory accesses, breakpoint address registers contain the virtual addresses 
of the debug breakpoint. For physical accesses, the addresses in these registers are 
treated as a physical address. Software should be aware that debug registers 
configured to fault on virtual references, may also fault on a physical reference if 
translations are disabled. Likewise a debug register configured for physical references 
can fault on virtual references that match the debug breakpoint registers.
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10.8.1 Data Breakpoint Register Matching

Each Itanium data breakpoint register has the following matching behavior for IA-32 
instruction set data memory references:

• DBR.addr – IA-32 single or multi-byte data memory references that access ANY 
memory byte specified by the DBR address and mask fields results in a debug 
breakpoint trap regardless of datum size and alignment. The upper 32-bits of 
DBR.addr must be zero to detect IA-32 data memory references. Since IA-32 data 
breakpoints are traps, all processor implementations ensure data breakpoint traps 
are precise. Traps are only reported if any byte in the data memory reference 
ANDed with the DBR mask bitwise matches the DBR address field ANDed with the 
DBR mask. No spurious data breakpoint faults are generated for IA-32 data 
memory operands that are unaligned, nor are matches reported if no bytes of the 
operand lie within the address range specified by the DBR address and mask fields. 
Note, Itanium instruction set generated unaligned data memory references may 
result in spurious imprecise breakpoint faults.

• DBR.mask – by programming the mask a breakpoint range of 1, 2, 4, 8, or any 
power of 2 combination can be supported. Mask bits above bit 31 are checked by 
the processor during IA-32 data memory references

• Trap code B bits – are set indicating a match with the corresponding data 
breakpoint register DBR0-3. For IA-32 data debug traps, any number of B-bits can 
be set indicating a match. 

The B-bits are only set and a data breakpoint trap generated if 1) the breakpoint 
register precisely matches the specified DBR address and mask, 2) it is enabled by the 
DBR read or write bits for the type of the memory transaction, 3) the DBR privilege field 
matches PSR.cpl, 4) PSR.db is 1, and 5) no other higher priority faults are taken. 

I/O port space breakpoints can be configured by loading the address and mask fields 
with the virtual address defined by the operating system to correspond to the I/O port 
space.

10.8.2 Instruction Breakpoint Register Matching

Each Itanium instruction breakpoint register has the following matching behavior for 
IA-32 instruction set memory fetches:

• IBR.addr – an IBR register matches an IA-32 instruction fetch address, if the first 
byte of an IA-32 instruction address ANDed with the IBR mask bitwise matches the 
IBR address field ANDed with the IBR mask. Note that only the first byte is 
analyzed. The upper 32-bits of IBR.addr must be zero to detect IA-32 instruction 
fetches.

• IBR.mask – by programming the mask a breakpoint range of 1, 2, 4, 8, or any 
power of 2 combination can be supported. Mask bits above bit 31 are ignored 
during IA-32 instruction fetches.

The instruction breakpoint fault is generated if 1) the breakpoint register precisely 
matches the specified IBR address and mask, 2) it is enabled by the IBR execute bit, 3) 
the IBR privilege field matches PSR.cpl, 4) PSR.db is 1, 5) PSR.id is 0, and 6) no other 
higher priority faults are taken. 
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10.9 Interruption Model

Within the Itanium System Environment, all interruptions originating out of the IA-32 or 
Itanium instruction sets are delivered to Itanium architecture-based Interruption 
Handlers within the Itanium architecture-based operating system. Virtual memory 
management faults, machine checks, and external interrupts are always delivered to 
Itanium architecture-based interruption handlers regardless of the instruction set 
running at the time of the interruption. IA-32 exceptions, control transfers through 
gates, task switches, and accesses to sensitive IA-32 system resources are intercepted 
into Itanium architecture-based interruption handlers. Using these intercepts, Itanium 
architecture-based software can implement specific policies with regard to that 
resource. Policies may include virtualization, emulation of an IA-32 opcode or memory 
access, or various permission policies. 

In general, if an interruption is independent of the executing instruction set (such as an 
external interruption or TLB fault) common Itanium architecture-based handlers are 
invoked. For classes of exceptions and intercept conditions that are specific to the IA-32 
instruction set, three special Itanium architecture-based software handlers are invoked 
to deal with IA-32 instruction set interruptions. Table 10-8 shows the three interruption 
handlers defined to support IA-32 events. See Section 9.2, “IA-32 Interruption Vector 
Definitions” on page 2:213 for details on these interruption handlers.

This grouping of interruption handlers simplifies software handlers such that they do 
not need to be concerned with behavior of both IA-32 and Itanium instruction sets.

Interruption registers (defined in Chapter 3) record the state of IA-32 execution at the 
point of interruption. For IA-32 exceptions, ISR contains IA-32 defined error codes and 
vector numbers as defined by the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual. IA-32 instruction set related exceptions and software 
interruptions vector directly through the interruption mechanism defined by the 
Itanium architecture without consulting the IA-32 IDT or performing any memory stack 
pushes.

10.9.1 Interruption Summary

Table 10-9 summarizes the set of all IA-32 interruptions and how they are mapped to 
Itanium architecture-based interruption handlers within the Itanium System 
Environment. See Chapter 9 and Chapter 8 for a detailed definition of each interruption.

 

Table 10-8. IA-32 Interruption Vector Summary

Handler Description

IA_32_Intercept Intercepted IA-32 instructions, I/O, system flag manipulation and gate transfers.

IA_32_Exception IA-32 instruction set generated exceptions.

IA_32_Interrupt IA-32 instruction set generated software interrupts

Table 10-9. IA-32 Interruption Summary

IA-32 
Vector

Itanium®Architecture-based 
Interruption Handler

ISR
Vector

ISR 
Code

Description

IA-32 Defined Interruptions

0 IA_32_Exception (Divide) 0 0 IA-32 divide by zero fault.
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1 IA_32_Exception (Debug) 1 0 IA-32 instruction breakpoint fault.

1 IA_32_Exception (Debug) 1 TrapCode IA-32 debug events. The Trap 
Code indicates concurrent taken 
branch, data breakpoint and single 
step trap conditions.

2 External Interrupt 0 0 NMI is delivered through the Intel 
Itanium External Interrupt vector.

3 IA_32_Exception(Break) 3 TrapCode IA-32 INT 3 instruction.

4 IA_32_Exception(INTO) 4 TrapCode IA-32 INTO detected overflow trap.

5 IA_32_Exception (Bound) 5 0 IA-32 BOUND range exceeded 
fault.

6 IA_32_Intercept(Inst) 0 InterceptCode All IA-32 unimplemented and 
illegal opcodes.

7 IA_32_Exception(DNA) 7 0 IA-32 Device not available fault.

8 -- N/A IA-32 Double fault can not be 
generated in the Intel Itanium 
System Environment, Intel 
reserved.

9 -- N/A Intel reserved

10 -- N/A IA-32 Invalid TSS fault can not 
generated in the Intel Itanium 
System Environment, Intel 
reserved, 

11 IA_32_Exception(NotPresent) 11 ErrorCodea IA-32 Segment Not present fault.

12 IA_32_Exception (Stack) 12 ErrorCode IA-32 Stack Exception fault.

13 IA_32_Exception (GPFault) 13 ErrorCode IA-32 General Protection fault.

14 Intel Itanium TLB faults see Data TLB
faults below

IA-32 Page fault can not be 
generated in the Intel Itanium 
System Environment, replaced by 
Intel Itanium TLB faults, Intel 
reserved, 

15 -- N/A Intel reserved.

16 IA_32_Exception (FPError) 16 0 IA-32 floating-point fault.

17 IA_32_Exception(AlignCheck) 17 0 IA-32 un-aligned data references.

18 Corrected MCHK N/A IA-32 Machine Check can not be 
generated in the Intel Itanium 
System Environment, replaced by 
the PAL Machine Check 
Architecture, Intel reserved.

19 IA_32_Exception (StreamSIMD) 19 0 IA-32 SSE Numeric Error fault.

20-31 -- N/A Intel reserved.

0-255 External Interrupt 0 0 External interrupts are delivered 
through the Intel Itanium External 
lnterrupt vector. Software must 
read the IVR register to determine 
the vector number.

0-255 IA_32_Interrupt (vector #) Vect# TrapCode IA-32 Software Interrupt trap. ISR 
contains the vector number.

IA-32 Interceptions

Table 10-9. IA-32 Interruption Summary (Continued)

IA-32 
Vector

Itanium®Architecture-based 
Interruption Handler

ISR
Vector

ISR 
Code

Description
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10.9.2 IA-32 Numeric Exception Model

IA-32 numeric instructions follow the IA-32 delayed floating-point exception model. 
Specifically IA-32 numeric exceptions are held pending until the next IA-32 numeric or 
MMX technology instruction as defined in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual. Numeric faults generated on SSE instructions are 
reported precisely on the faulting SSE instruction. SSE instructions do NOT trigger the 
report of pending IA-32 numeric exceptions.

For voluntary transitions out of the IA-32 instruction, an implicit FWAIT operation is 
performed by the jmpe instruction to ensure all pending numeric exceptions are 
reported. For involuntary transitions out of the IA-32 instruction set (external 
interruptions, TLB faults, exceptions, etc.) the processor does not perform a FWAIT 
operation. However, every IA-32 numeric instruction that generates a pending numeric 
exception loads the application registers FSR, FIR, and FDR with the IA-32 
floating-point state on the instruction that generating the exception. This state contains 
information defined by the IA-32 FSTENV and FLDENV instructions. During a process 
context switch, the operating system must save and restore FSR, FIR, and FDR 
(effectively performing an FSTENV and FLDENV) to ensure numeric exceptions are 
correctly reported across a process switch.

10.10 Processor Bus Considerations for IA-32 
Application Support

The section briefly discusses bus and platform considerations when supporting IA-32 
applications in the Itanium System Environment.

Itanium architecture-based code does not assert the SPLCK and LOCK pins. The LOCK 
pin is used by IA-32 code to signal an external atomic bus transaction for which 
atomicity cannot be enforced within the processor's caches, whereas, SPLCK indicates if 
an unaligned external bus lock requires a split lock operation and hence several bus 

IA_32_Intercept(Inst) 0 InterceptCode Intercept for unimplemented, illegal 
or privileged IA-32 opcodes.

IA_32_Intercept(Gate) 1 TrapCode Intercept for control transfers 
through a Call Gate, Task gate or 
Task Segment.

IA_32_Intercept(SystemFlag) 2 TrapCode Intercept for modification of system 
flag values.

IA_32_Intercept(Lock) 4 0 IA-32 semaphore operation 
requires an external bus lock when 
DCR.lc is 1.

3,5-25
5

-- Intel reserved

a. The IA-32 Error Code is defined as a Selector Index, and TI, IDT and EXT bits are set based on the 
exception. See Intel® 64 and IA-32 Architectures Software Developer’s Manual for the complete 
definition.

Table 10-9. IA-32 Interruption Summary (Continued)

IA-32 
Vector

Itanium®Architecture-based 
Interruption Handler

ISR
Vector

ISR 
Code

Description
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transactions. For IA-32 code, if the platform does not support LOCK or SPLCK, the 
operating system must disable external bus lock transactions by setting DCR.lc to 1. 
When DCR.lc is 1, any IA-32 atomic reference not serviced internally in the processor’s 
caches results in an IA_32_Intercept(Lock) fault. See Section 3.3.4.1, “Default Control 
Register (DCR – CR0)” on page 2:31 for details. When DCR.lc is 0, operating system 
code is responsible for emulation of the IA-32 instruction and ensuring atomicity (if 
required).

The A20M and IGNE pins are ignored in the Itanium System Environment. FERR is not 
asserted in the Itanium System Environment.

In both IA-32 and Itanium System Environments, the M/IO pin (or an external bus 
indication) is asserted by any memory reference to the 64MB I/O port block range of 
the physical address space. See Section 10.7, “I/O Port Space Model” on page 2:267 
for details.

SMI and the SMM environment are not supported on processors based on the Itanium 
architecture. The PMI interrupt and PAL firmware environment replace them. See 
Section 11.5, “Platform Management Interrupt (PMI)” on page 2:310 for details.

10.10.1 IA-32 Compatible Bus Transactions

Within the Itanium System Environment, the following bus transactions are initiated:

• INTA – Interrupt Acknowledge - emitted by the operating system (via a read to the 
INTA byte in the processor’s Interrupt Block) to acquire the interrupt vector number 
from an external interrupt controller.

• HALT – Emitted when the processor has entered the halt state due to the operating 
system/platform firmware calling PAL_HALT or PAL_HALT_LIGHT.

• SHUTDOWN – Emitted when the processor has entered the shutdown state. This 
can only be generated when the processor has entered into the IA-32 System 
Environment by calling PAL_ENTER_IA_32_ENV procedure call.

• STPACK – Stop Acknowledge. Emitted by calling an implementation-specific PAL 
firmware procedure. See the processor-specific firmware guide for more 
information.

• FLUSH – Emitted when the WBINVD or INVD instruction is executed when running 
in the IA-32 System Environment entered by calling PAL_ENTER_IA_32_ENV 
procedure call. Indicates that external caches (if any) should be invalidated.

• SYNC – Emitted when the WBINVD instruction is executed when running in the 
IA-32 System Environment entered by calling PAL_ENTER_IA_32_ENV procedure 
call. Indicates that external caches (if any) should copy all modified cache lines 
back to main memory.

§
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Processor Abstraction Layer 11

This chapter defines the architectural requirements for the Processor Abstraction 
Layer (PAL) for all processors based on the Itanium architecture. It is intended for 
processor designers, firmware/BIOS designers, system designers, and writers of 
diagnostic and low level operating system software.

PAL is part of the Itanium processor architecture and its goal is to provide a consistent 
firmware interface to abstract processor implementation-specific features.

The objectives of this chapter are to define:

• The architectural behavior and interface requirements for processor testing, 
configuration and error recovery. This includes the hardware entrypoints into PAL 
and the PAL interfaces to platform firmware and system software.

• A set of boot and runtime PAL procedures to access processor 
implementation-specific hardware and to return information about processor 
implementation-dependent configuration.

• A computing environment for both PAL entrypoints and procedures such that:

• Memory used by PAL procedures is allocated by the caller of PAL procedures.

• PAL code runs little endian.

• PAL interface is as endian neutral as possible.

• PAL is Itanium architecture-based code.

• PAL code runs at privilege level 0.

• PAL procedures can be called without backing store, except where 
memory-based parameters are returned.

• The processor and platform hardware requirements for PAL. This includes 
minimizing PAL dependencies on platform hardware and clearly stating where those 
dependencies exist.

• A PAL interface and requirements to support firmware update and recovery.

11.1 Firmware Model

As shown in Figure 11-1, Itanium architecture-based firmware consists of several major 
components: Processor Abstraction Layer (PAL), System Abstraction Layer (SAL), 
Unified Extensible Firmware Interface (UEFI) and Advanced Configuration and Power 
Interface (ACPI). PAL, SAL, UEFI and ACPI together provide processor and system 
initialization for an operating system boot. PAL and SAL provide machine check abort 
handling. PAL, SAL, UEFI and ACPI provide various run-time services for system 
functions which may vary across implementations. The interactions of the various 
services that PAL, SAL, UEFI and ACPI provide are illustrated in Figure 11-1.

In the context of this model and throughout the rest of this chapter, the System 
Abstraction Layer (SAL) is a firmware layer which isolates operating system and other 
higher level software from implementation differences in the platform, while PAL is the 
firmware layer that abstracts the processor implementation.
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11.1.1 Processor Abstraction Layer (PAL) Overview

The purpose of the Processor Abstraction Layer, is to provide a firmware abstraction 
between the processor hardware implementation and system software and platform 
firmware, so as to maintain a single software interface for multiple implementations of 
the processor hardware. PAL is defined to be independent of the number of processors 
on a platform.

Figure 11-1. Firmware Model
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PAL encapsulates those processor functions that are likely to change on an 
implementation to implementation basis so that SAL firmware and operating system 
software can maintain a consistent view of the processor. These include 
non-performance critical functions dealing such as processor initialization, configuration 
and error handling.

PAL consists of two main components:

• Entrypoints, which are invoked directly by hardware events such as reset, init and 
machine checks. These interruption entrypoints perform functions such as 
processor initialization and error recovery.

• Procedures, which may be called by higher level firmware and software to obtain 
information about the identification, configuration, and capabilities of the processor 
implementation; to perform implementation-dependent functions such as cache 
initialization; or to allow software to interact with the hardware through such 
functions as power management or enabling/disabling processor features.

11.1.2 Firmware Entrypoints

Figure 11-2. Firmware Entrypoints Logical Model
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11.1.3 PAL Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:

• Power-on/reset

• Hardware errors (both correctable and uncorrectable)

• Initialization event (via external interrupt bus message or processor pin)

• Platform management interrupt (via external interrupt bus message or processor 
pin)

These hardware events trigger the execution of one of the following PAL entrypoints (as 
shown in Figure 11-2):

• PALE_RESET – Initializes and tests the processor following power-on or reset and 
then branches to SALE_ENTRY to determine whether to perform firmware recovery 
update, or to boot the machine for OS use. See Section 11.1.4, “SAL Entrypoints” 
on page 2:282.

• PALE_CHECK – Determines if errors are processor related, saves processor related 
error information and corrects errors where possible (for example, by flushing a 
corrupted instruction cache line and marking the cache line as unusable). In all 
cases, PALE_CHECK branches to SALE_ENTRY to complete the error logging, 
correction, and reporting.

• PALE_INIT – Saves the processor state, places the processor in a known state, and 
branches to SALE_ENTRY. PALE_INIT is entered as a response to an initialization 
event.

• PALE_PMI – Saves the processor state and branches to SALE_PMI. PALE_PMI is 
entered as a response to a platform management interrupt.

11.1.4 SAL Entrypoints

There are two entrypoints from PAL into SAL:

• SALE_ENTRY – PAL branches to this SAL entrypoint after a power-on, reset, 
machine check, or initialization event. If SALE_ENTRY was invoked by a machine 
check or initialization event, SALE_ENTRY branches to the appropriate routine:

• SAL_CHECK is invoked after a machine check.

• SAL_INIT is invoked after an initialization event.

If SALE_ENTRY was invoked by a reset or power on, it checks to determine if a 
firmware recovery condition exists. If it does, SALE_ENTRY performs the firmware 
update, then performs a RESET operation to invoke PAL_RESET. If a recovery 
condition does not exist, SAL_ENTRY returns to PAL_RESET to complete processor 
self-test. PAL_RESET then branches back to SALE_ENTRY, which, in turn, branches 
to SAL_RESET.

• SALE_PMI – platform management interrupt. PALE_PMI branches to this SAL 
entrypoint after saving processor state in response to the platform management 
interrupt.
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11.1.5 OS Entrypoints

There are several entrypoints from SAL into an operating system (or equivalent 
software). Entrypoints from SAL into the operating system are expected to meet the 
following model:

• OS_BOOT – Operating System Boot interface.

• OS_MCA – Operating System Machine Check Abort Handler.

• OS_INIT – Operating System Initialization Handler. 

• OS_RENDEZ – Operating System Multiprocessor Rendezvous interface.

11.1.6 Firmware Address Space

The firmware address space occupies the 16 MB region between 4 GB - 16 MB and 4 GB 
(addresses 0xFF00_0000 through 0xFFFF_FFFF). There are two primary layouts of this 
address space. The first version is shown in Figure 11-3 and the second version is 
shown in Figure 11-4. The first version has one PAL_A component. This layout allows 
for robust recovery of PAL_B and SAL_B components. This layout is useful for cases 
where PAL_A will not need to be upgraded. The second version splits the PAL_A block 
into two components. The first component is referred to as the generic PAL_A and the 
second component is the processor-specific PAL_A. Splitting the PAL_A up in this 
manner allows for a robust upgrade of the processor-specific PAL_A firmware as well as 
the PAL_B and SAL_B components. This is very useful if a platform is designed to 
support multiple processor generations which would require a PAL_A upgrade when the 
new processor generation is released. The generic PAL_A which resides in the Protected 
Boot Block will work across processor generations for a given platform. The 
processor-specific PAL_A resides outside the Protected Boot Block and works for a 
specific processor generation.
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Figure 11-3.Firmware Address Space
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The firmware address space is shared by SAL and PAL. Some of the SAL/PAL boundaries 
are implementation dependent. The address space contains the following regions and 
locations.

• The 16 bytes at 0xFFFF_FFF0 (4GB-16) contain IA-32 Reset Code.

• The 8 bytes at 0xFFFF_FFE8 (4GB-24) contain the physical address of the 
SALE_ENTRY entrypoint.

Figure 11-4.Firmware Address Space with Processor-specific PAL_A Components
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• The 8 bytes at 0xFFFF_FFE0 (4GB-32) contain the physical address of the Firmware 
Interface Table.

• The 16 bytes at 0xFFFF_FFD0 (4GB-48) contain the FIT entry for the PAL_A (or 
generic PAL_A in the split PAL_A model) code provided by the processor vendor. 
The format of this FIT entry is described in Figure 11-6.

• The 8 bytes at 0xFFFF_FFC8 (4GB-56) contains the physical address of the 
alternate Firmware Interface Table. This pointer is optional and is only needed if the 
firmware contains an alternate FIT table. If no alternate FIT table it provided a 
value of 0x0 should be encoded in this entry. 

• The 8 bytes at 0xFFFF_FFC0 (4GB-64) are zero-filled and reserved for future use.

• PAL_A code (also known as generic PAL_A code in split PAL_A model) resides below 
0xFFFF_FFC0. This area contains the hardware-triggered entrypoints PALE_RESET, 
PALE_INIT, and PALE_CHECK. In the model where PAL_A is not split, the PAL_A 
code will perform any processor-specific initialization needed in order for SAL to 
perform a firmware recovery. In the split PAL_A model, the generic PAL_A will 
search the FIT table(s) to find the first compatible and error-free processor-specific 
PAL_A code. It will then branch to this code to perform the processor-specific 
initialization needed in order for SAL to perform a firmware recovery. The PAL_A 
code area is a multiple of 16 bytes in length.

• SAL_A code occupies the region immediately below the PAL_A code. This area 
contains the SALE_ENTRY entrypoint as well as optional 
implementation-independent firmware update code. The SAL_A code area is a 
multiple of 16 bytes in length.

• The collection of regions above from the beginning of the SAL_A code to 4GB is 
called the Protected Bootblock. The size of the Protected Bootblock is SAL_A size + 
PAL_A size + 64.

• The Firmware Interface Table (FIT) comprises of 16-byte entries containing starting 
address and size information for the firmware components. The FIT is generated at 
build time, based on the size and location of the firmware components. Optionally, 
an alternate FIT may be included in the firmware. The alternate FIT will only be 
used if the primary FIT failed its checksum. In the split PAL_A model, this allows the 
generic PAL_A firmware to find the processor-specific PAL_A component(s), even if 
the primary FIT is corrupt. This feature allows hand-off to the SAL recovery code, 
even if there is a primary FIT checksum failure.

• The processor-specific PAL_A contains the code that is required to be run before 
handing off to SAL for a firmware recovery check. This component is only available 
on processors that support a split PAL_A firmware model. One processor-specific 
PAL_A is architecturally required in this model. The firmware may optionally contain 
two or more processor-specific PAL_A components.

• The PAL_B block is comprised of code that is not required to be executed for SAL to 
perform a firmware recovery update. The PAL_B code area is a multiple of 16 bytes 
in length. The PAL_B block must be aligned on a 32K byte boundary or a 64K byte 
boundary depending on the implementation. Processor specific documentation 
provides the requirement for alignment. An OEM can choose to have more than one 
PAL_B block in the firmware image.

• The remainder of the firmware address space is occupied by SAL_B code. SAL_B 
may include IA-32 BIOS code. The location of the SAL_B and IA-32 BIOS code 
within the firmware address space is implementation dependent. 
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At a minimum, all of the PAL firmware components, pointers at the top of the firmware 
address space, FIT tables and the portion of the SAL code that is executed at the 
RECOVERY CHECK hand-off must be accessible from the processor without any special 
system fabric initialization sequence. This implies that the system fabric is implicitly 
initialized at power on for accessing the portions of the firmware address space listed 
above or that the special hardware which contains the firmware code and data is 
implemented on the processor and not accessed across the system fabric. The entire 
firmware code and data area can also be implicitly initialized at power on from the 
processor as well, but the minimum set is listed above.

The Firmware Interface Table (FIT) contains starting addresses and sizes for the 
different firmware components. Because these code blocks may be compiled at 
different times and places, code in one block (such as PAL_A) cannot branch to code in 
another block (such as PAL_B) directly. The FIT allows code in one block to find 
entrypoints in another. Figure 11-5 below shows the FIT layout.

Each FIT entry contains information for the corresponding firmware component. The 
first entry contains size and checksum information for the FIT itself. The order of the 
following FIT entries must be arranged in ascending order by the type field, otherwise 
execution of firmware code will be unpredictable. Multiple FIT entries of the same type 
are allowed as shown in Figure 11-5.

When multiple entries of the same type exist for PAL components, PAL searches the FIT 
table in ascending order looking for the first entry that is compatible and error free for 
the processor it is currently executing on.

Figure 11-5. Firmware Interface Table
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• Size – A 3-byte field containing the size of the component in bytes divided by 16.

• Reserved – All fields listed as reserved must be zero filled.

• Version – A 2-byte field containing the component’s version number.

• Type – A 7-bit field containing the type code for the element. Types are defined in 
Table 11-1.

OEMs may define unique types for one or more blocks of SAL_B, IA-32 BIOS, etc., 
within the OEM-defined type range of 0x10 to 0x7E.

• C_V – A 1-bit flag indicating whether the component has a valid checksum. If this 
field is zero, the value in the Chksum field is not valid.

• Chksum – A 1-byte field containing the component’s checksum. The modulo sum of 
all the bytes in the component and the value in this field (Chksum) must add up to 
zero. This field is only valid if the C_V flag is non-zero. If the checksum option is 
selected for the FIT, in the FIT Header entry (FIT type 0), the modulo sum of all the 
bytes in the FIT table must add up to zero.

Note: The PAL_A FIT entry is not part of the FIT table checksum.
• Address – An 8-byte field containing the base address of the component. For the 

FIT header, this field contains the ASCII value of “_FIT_<sp><sp><sp>” (<sp> 
represents the space character).

The FIT allows simpler firmware updates. Different components may be updated 
independently. This address layout can also support firmware images spanning multiple 
storage devices. FIT entries must be arranged in ascending order by the type field, 
otherwise execution of firmware code will be unpredictable.

Figure 11-6. Firmware Interface Table Entry

Table 11-1. FIT Entry Types

Type Meaning

0x00 FIT Header

0x01 PAL_B (required)

0x02-0x0D Reserved

0x0E Processor-specific PAL_A

0x0F PAL_A (also generic PAL_A)a

a. The PAL_A FIT entry is located at 0xFFFF_FFDO (4GB-48) and is not 
part of the actual FIT table.

0x10-0x7E OEM-defined

0x7F Unused Entry

Address (8 bytes)

Chksum

Start of entry

Start + 16

Start + 8
Reserved (3 bytes)C Size

V

063 56 55 32 31 24 23

(2 bytes)

48 47

VersionType

54
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11.2 PAL Power On/Reset

11.2.1 PALE_RESET

The purpose of PALE_RESET is to initialize and test the processor. Upon receipt of a 
power-on/reset event the processor begins executing code from the PALE_RESET 
entrypoint in the firmware address space. PALE_RESET initializes the processor and 
may perform a minimal processor self test. PAL may optionally perform authentication 
of the PAL firmware to ensure data integrity. If the authentication code runs cacheable 
by default, then a processor-specific mechanism will be provided to disable caching for 
diagnostic purposes.

PALE_RESET then branches to SALE_ENTRY to determine if a recovery condition exists, 
which would require an update of the firmware. If it does, SALE_ENTRY performs the 
update and resets the system. If no firmware recovery is needed, SAL returns to 
PALE_RESET to perform the processor self-tests and initialization. SAL can control the 
length and coverage of the PAL processor self-test by examining and modifying the 
self-test control word passed to SAL at the firmware recovery hand-off state. Please see 
Section 11.2.3, “PAL Self-test Control Word” for more information on the self-test 
control word.

The PAL processor self-tests are split into two phases. The first phase is written to test 
processor features that do not require external memory to be present to execute 
correctly. These tests are automatically run when SAL returns to PAL after the branch to 
SALE_ENTRY for a firmware recovery check. This section is referred to as phase one of 
processor self-test and they are generally run early during the processor boot process. 
The second phase is written requiring that external memory is available to execute 
correctly. These tests are run when a call to the PAL procedure PAL_TEST_PROC is 
made with the correct parameters set up. These tests are referred to as phase two of 
processor self-test since they are usually run later in the processor boot process after 
external memory has been initialized on the platform.

PAL may execute IA-32 instructions to fully test and initialize the processor. This IA-32 
code will not generate any special IA-32 bus transactions nor will it require any special 
platform features to correctly execute. PAL then branches to SALE_ENTRY to conduct 
platform initialization and testing before loading the operating system software.

11.2.2 PALE_RESET Exit State

• GRs: The contents of all general registers are undefined except the following:

• GR20 (bank 1) contains the SALE_ENTRY State Parameter as defined in 
Figure 11-7. For the function field of the SALE_ENTRY State Parameter, only the 
values 3, RECOVERY CHECK, for the first call to SALE_ENTRY, and 0, RESET, for 
the second call to SALE_ENTRY are valid.

• GR32 contains 0 indicating that SALE_ENTRY was entered from PALE_RESET.

• GR33 contains information about the geographically significant unique 
processor ID, and a mask that indicates which bits in the LID register (CR64) 
are read-only. Firmware should write the processor's local interrupt identifier in 
the programmable portion of the LID register. Writes to the read-only bits are 
ignored. See Figure 11-8 for the definition of this parameter.
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• GR34 contains the physical address for making a PAL procedure call. If the call 
is for RECOVERY CHECK, only the subset of PAL procedures needed for 
SALE_ENTRY to perform firmware recovery will be available. These procedures 
are:

• PAL_FREQ_RATIOS

• PAL_LOGICAL_TO_PHYSICAL

• PAL_PLATFORM_ADDR

• An implementation-specific PAL procedure for PAL authentication.

• GR35 contains the Self Test State Parameter as defined in Figure 11-9.

• GR36 contains the PAL_RESET return address for SALE_ENTRY to return to if a 
recovery condition does not exist. When PAL_RESET calls SALE_ENTRY the 
second time to initialize the system for operating system use, this register will 
contain the physical address for making an implementation-specific PAL 
procedure call for PAL authentication.

Note: For all other PAL procedure calls, the physical address at GR34 should 
be used.

• GR37 contains the self-test control word as defined in Figure 11-10. This 
control word is processor implementation-specific and informs SAL if self-test 
control is implemented and the number of controllable bits. If self-test control is 
implemented, PAL will read this value when SAL returns to PAL after firmware 
recovery check. If the self-test control is not supported, this register will be 
ignored when SAL returns to PAL after firmware recovery check.

• GR38 – Indicates if the PAL_MEMORY_BUFFER procedure is required to be 
called on this processor implementation for correct behavior. Also indicates the 
minimum buffer size required for the PAL_MEMORY_BUFFER procedure. 
Table 11-2 defines the layout of this register.

• Banked GRs: All bank 0 general registers are undefined.

• FRs: The contents of all floating-point registers are undefined. The floating-point 
registers are enabled unless the state field of the Self Test State Parameter is 
FUNCTIONALLY RESTRICTED and the floating-point unit failed self test. Then, the 
floating-point registers are disabled. Refer to Section 11.2.2.3, “Definition of Self 
Test State Parameter” for the definition of FUNCTIONALLY RESTRICTED.

• Predicates: The contents of all predicate registers are undefined.

• BRs: The contents of all branch registers are undefined.

• ARs: The contents of all application registers are undefined except the following:

• RSC: All fields in the register stack configuration register are 0, which places 
the RSE in enforced lazy mode.

• CFM: The CFM is set up so that all stacked registers are accessible, CFM.sof = 96 
and all other CFM fields are 0.

Table 11-2. GR38 Reset Layout

Bit Field Description

31:0 Unsigned integer denoting the minimum number of bytes required by the PAL_MEMORY_BUFFER 
procedure.

32:62 Reserved

63 Indicates if the PAL_MEMORY_BUFFER procedure is required by this processor implementation. A 
value of 1 indicates that it is required, a value of 0 indicates that it is not required.
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• PSR: PSR.bn is 1; PSR.df1 and PSR.dfh are 1 if the floating-point unit failed self 
test. All other PSR bits are 0. PSR.ic and PSR.i are zero to ensure external 
interrupts, NMI and PMI interrupts are disabled.

• CRs: The contents of all control registers are undefined except the following:

• DCR: contains the value 0.

• IVA: contains the physical address of an interruption vector table previously 
set up by PAL. SAL may choose to change this value. The IVA will be 0 when 
the SALE_ENTRY State Parameter function is RECOVERY CHECK.

• RRs: The contents of all region registers are undefined.

• PKRs: The contents of all protection key registers are undefined.

• DBRs: The contents of all data breakpoint registers are undefined

• IBRs: The contents of all instruction breakpoint registers are undefined.

• PMCs: The contents of all performance monitor control registers are undefined. 

• PMDs: The contents of all performance monitor data registers are undefined.

• Cache: The processor internal caches are enabled and invalidated. Unless directed 
otherwise by the self-test control word, phase one of the processor self-test verifies 
the caches themselves and the paths from the caches to the processor core. The 
path from external memory to the caches cannot be tested until phase two of the 
processor self-test.

Note: All cache contents will be invalidated when SAL returns to PAL after the 
RECOVERY_CHECK hand-off. If the SAL uses the caches in their 
RECOVERY_CHECK code, it is SAL's responsibility to write back any 
modified data in the caches before returning to PAL

• TLB: The TRs and TCs are initialized with all entries having been invalidated. The 
TLB is disabled because PSR.it=PSR.dt=PSR.rt=0. The TLBs cannot be fully tested 
until phase two of the processor self-test.

Prior to passing control to SALE_ENTRY, PALE_RESET must ensure that the processor 
Interrupt block pointer is set to point to address 0x0000_0000_FEE0_0000.

11.2.2.1 Definition of SALE_ENTRY State Parameter

• function – An 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

Figure 11-7. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved status function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

min-state_size reserved

Table 11-3. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition
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• status – A function-dependent 8-bit field indicating the firmware status on entry to 
SALE_ENTRY. If the function value is RESET or RECOVERY_CHECK, the status 
values are:

Table 11-4. status Field Values

Status Value Description

Normal 0 Normal reset.

FIT Header Failure 1 FIT header for FIT and alternate FIT (if supported) is 
incorrect

FIT Checksum Failure 2 FIT checksum for FIT and alternate FIT (if supported) is 
incorrect

PAL_B Checksum Failure 3 PAL_B checksum (for all compatible PAL_B's found) is 
incorrect

PAL_A Authentication Failure 4 PAL_A (generic in split model) failed authentication

PAL_B Authentication Failure 5 PAL_B (for all compatible PAL_B's found) failed 
authentication

PAL_B Not Found 6 FIT Entry for PAL_B missing from the FIT and alternate 
FIT (if supported)

Incompatible 7 No PAL_B was found in the FIT and alternate FIT (if 
supported) that is compatible with the processor 
stepping

32K Unaligned 8 No PAL_B was found in the FIT and alternate FIT (if 
supported) that was correctly aligned to a 32KB 
boundary

PAL_A_Spec Not Found /
FIT Checksum Failure

9 No compatible processor-specific PAL_A was found in 
the FIT because of a FIT checksum failure and no 
compatible processor-specific PAL_A was found in the 
alternate FIT (if supported)

PAL_A_Spec Found / FIT Checksum Failure 10 A compatible processor-specific PAL_A was found in 
the alternate FIT. No compatible processor-specific 
PAL_A was found in the FIT due to a FIT checksum 
failure.

PAL_A_Spec Failure /
Good PAL_A_Spec found in FIT

11 One or more compatible processor-specific PAL_A's 
found in the FIT failed its checksum or authentication. 
Another compatible processor-specific PAL_A was 
found in the FIT that passed its checksum and 
authentication.

PAL_A_Spec Auth Failure 12 No compatible processor-specific PAL_A's were found 
in the FIT or alternate FIT (if supported) that passed its 
checksum and authentication

PAL_A_Spec Auth Failure /
Good PAL_A_Spec found in AF

13 One or more compatible processor-specific PAL_A's 
found in the FIT or alternate FIT (if supported) failed its 
checksum and authentication. Another compatible 
processor-specific PAL_A was found in the alternate 
FIT that passed its checksum and authentication.

PAL_A_Spec Not Found 14 No compatible processor-specific PAL_A was found in 
the FIT or alternate FIT (if supported)

PAL_A_Spec Not Found in FIT /
Good PAL_A_Spec found in AF

15 No compatible processor-specific PAL_A was found in 
the FIT. A compatible processor-specific PAL_A was 
found in the alternate FIT.
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All other values of status are reserved.

Definitions of status values for other values of function are listed in the machine 
check and init sections.

For the case of RECOVERY CHECK, authentication of PAL_A and PAL_B should be 
completed before call to SALE_ENTRY.

• min-state_size – An 8-bit field indicating the size in kilobytes (KB) of the min-state 
save area required for this implementation. A value of zero indicates a size of 4KB. 
A value greater than zero indicates the actual size in KB of the min-state save area 
required for this implementation. Values of 1-4 are reserved. For more information 
about the min-state save area, please refer to Section 11.3.2.4, “Processor 
Min-state Save Area Layout” on page 2:302.

11.2.2.2 Definition of Geographically Significant Processor Identifier Parameter

11.2.2.3 Definition of Self Test State Parameter

PAL_B Auth Failure / Good PAL_B found 16 One or more compatible PAL_B's failed authentication 
and checksum. Another compatible PAL_B was found 
that passed authentication and checksum.

64K Unaligned 17 No PAL_B was found in the FIT and alternate FIT (if 
supported) that was correctly aligned to a 64KB 
boundary.

Figure 11-8. Geographically Significant Processor Identifier

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved proc_id

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved eid_mask id_mask

Table 11-5. Geographically Significant Processor Identifier Fields

Field Bits Description

proc_id 15:0 Geographically significant processor ID. The value returned in this field is the 
same as that returned by PAL_FIXED_ADDR.

Reserved 31:16 Reserved

id_mask 39:32 Mask indicating which bits in id are programmable:
0 = Programmable
1 = Read-only

eid_mask 47:40 Mask indicating which bits in eid are programmable:
0 = Programmable
1 = Read-only

Reserved 63:48 Reserved

Figure 11-9. Self Test State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved mf fp ia vm reserved te state

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_status

Table 11-4. status Field Values (Continued)

Status Value Description
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• state – A 2-bit field indicating the state of the processor after self-test. If SAL 
directed PAL to skip some self-tests by modifying the self-test control word, failures 
related to these self-tests will not be reflected in this state.

To further qualify FUNCTIONALLY RESTRICTED, the following requirements will be 
met:

• The processor has detected and isolated the failing component so that it will not 
be used.

• The processor must have at least one functioning memory unit, ALU, shifter, 
and branch unit.

• The floating-point unit may be disabled.

• The RSE is not required to work, but register renaming logic must work 
properly.

• The paths between the processor controlled caches and the register files have 
been shown to work. The path between the processor caches and memory 
cannot be validated until phase two of the processor self-test invoked by the 
PAL_TEST_PROC procedure. 

• Loads and stores to firmware address space must work correctly.

Additional information about the failure can be obtained by examining the 
test_status field of the Self Test State Parameter.

For the case of FUNCTIONALLY RESTRICTED, it is required that higher level 
firmware or OS not use failing functional units during their execution. PAL will not 
prevent failing functional units from being used.

• te – A 1-bit field indicating whether testing has occurred. If this field is zero, the 
processor has not been tested, and no other fields in the Self Test State Parameter 
are valid. The processor can be tested prior to entering SALE_ENTRY for both 
RECOVERY CHECK and RESET functions.

If the state field indicates that the processor is functionally restricted, then the 
fields vm, ia & fp specify additional information about the functional failure.

• vm – a 1-bit field, if set to 1, indicating that virtual memory features are not 
available

• ia – a 1-bit field, if set to 1, indicating that IA-32 execution is not available

• fp – a 1-bit field, if set to 1, indicating that floating-point unit is not available

• mf – a 1-bit field, if set to 1, indicating miscellaneous functional failure other 
than vm, ia, or fp. The test_status field provides additional information about 
this failure on an implementation-specific basis.

Table 11-6. state Field Values

State Value Description

Catastrophic Failure N/A The processor is not capable of continuing. In this case it does not 
branch to SALE_ENTRY.

Healthy 00 No hardware failures have occurred in testing that would affect either 
the performance or functionality of the processor.

Performance Restricted 01 A hardware failure has occurred in testing that does not affect the 
functionality of the processor, but performance may be degraded.

Functionally Restricted 10 A hardware failure has occurred in testing that affects the 
functionality of the processor, but firmware code can still be run. The 
processor may also be performance restricted.
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• test_status – An unsigned 32-bit-field providing additional information on test 
failures when the state field returns a value of PERFORMANCE RESTRICTED or 
FUNCTIONALLY RESTRICTED. The value returned is implementation dependent.

11.2.3 PAL Self-test Control Word

The PAL self-test control word is a 48-bit value. This bit field is defined in Figure 11-10.

• test_control – This is an ordered implementation-specific control word that allows 
the user control over the length and runtime of the processor self-tests. This control 
word is ordered from the longest running tests up to the shortest running tests with 
bit 0 controlling the longest running test.

PAL may not implement all 47-bits of the test_control word. PAL communicates if a 
bit provides control by placing a zero in that bit. If a bit provides no control, PAL will 
place a one in it.

PAL will have two sets of test_control bits for the two phases of the processor 
self-test.

PAL provides information about implemented test_control bits at the hand-off from 
PAL to SAL for the firmware recovery check. These test_control bits provide control 
for phase one of processor self-test. It also provides this information via the PAL 
procedure call PAL_TEST_INFO for both the phase one and phase two processor 
tests depending on which information the caller is requesting.

PAL interprets these bits as input parameters on two occasions. The first time is 
when SAL passes control back to PAL after the firmware recovery check. The 
second time is when a call to PAL_TEST_PROC is made. When PAL interprets these 
bits it will only interpret implemented test_control bits and will ignore the values 
located in the unimplemented test_control bits.

PAL interprets the implemented bits such that if a bit contains a zero, this indicates 
to run the test. If a bit contains a one, this indicates to PAL to skip the test.

If the cs bit indicates that control is not available, the test_control bits will be 
ignored or generate an illegal argument in procedure calls if the caller sets these 
bits.

• cs – Control Support: This bit defines if an implementation supports control of the 
PAL self-tests via the self-test control word. If this bit is 0, the implementation does 
not support control of the processor self-tests via the self-test control word. If this 
bit is 1, the implementation does support control of the processor self-tests via the 
self-test control word.

If control is not supported, GR37 will be ignored at the hand-off between SAL and 
PAL after the firmware recovery check and the PAL procedures related to the 
processor self-tests may return illegal arguments if a user tries to use the self-test 
control features.

Figure 11-10. Self-test Control Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

test_control

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved cs test_control



2:296 Volume 2, Part 1: Processor Abstraction Layer

11.3 Machine Checks

11.3.1 PALE_CHECK

When a machine check abort (MCA) occurs, PALE_CHECK is responsible for saving 
minimal processor state to a uncacheable platform-specific memory location previously 
registered with PAL via the PAL_MC_REGISTER_MEM procedure. This platform location 
is called the Minimal State Save Area (min-state save area) and is described in 
Section 11.3.2.4, “Processor Min-state Save Area Layout” on page 2:302. PALE_CHECK 
is also responsible for correcting processor related errors whenever possible. 
PALE_CHECK terminates either by returning to the interrupted context or by branching 
to SALE_ENTRY, passing the state of the processor at the time of the error. The level of 
recovery provided by PALE_CHECK is implementation dependent and is beyond the 
scope of this specification.

At the hand-off from PALE_CHECK to SALE_ENTRY, error information is passed in the 
Processor State Parameter described in Section 11.3.2.1, “Processor State Parameter 
(GR 18)” on page 2:299. After exit from PALE_CHECK, more detailed error information 
is available by calling the PAL_MC_ERROR_INFO procedure. Information about 
implementation-dependent state is available by calling the PAL_MC_DYNAMIC_STATE 
procedure. The interrupted process may be resumed by calling the PAL_MC_RESUME 
procedure. See Section 11.3.3, “Returning to the Interrupted Process” for more 
information on returning to the interrupted context and Section 11.10, “PAL 
Procedures” on page 2:353 for detailed descriptions of all these procedure calls. 

Code for handling machine checks must take into consideration the possibility that 
nested machine checks may occur. A nested machine check is a machine check that 
occurs while a previous machine check is being handled.

PALE_CHECK is entered in the following conditions:

• When PSR.mc = 0 and an error occurs which results in a machine check, or

• When PSR.mc changes from 1 to 0 and there is a pending machine check from an 
earlier error.

PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. When PALE_CHECK 
branches to SALE_ENTRY, PSR.mc remains set (PSR.mc is restored to its original value 
if PALE_CHECK terminates by returning to the interrupted context). SAL must not clear 
PSR.mc to 0 before all the information from the current machine check is logged. If SAL 
enables machine checks (by setting PSR.mc=0) during the SAL MCA handling, there is 
a potential for the error logs in the processor and the min-state save area to be 
overwritten by a subsequent MCA event.

The error information logged will reflect the state at the time the error occurred. State 
information from a different point in time will NOT be logged. If complete information is 
not available a code is logged which indicates that the information is not available.

• The processor state information used to resume a process for which an error has 
been corrected will reflect the state at the time the machine check interruption 
occurred and will be sufficient to resume the interrupted process.

• When a single error is signalled multiple times (for example, multiple operations to 
a single bad cache line), hardware and firmware will be able to perform the same 
logging and recovery as if the error had been signalled once.
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For testing and configuration purposes, it may be necessary for software to 
intentionally generate a machine check. In this case PALE_CHECK will log the error 
information, but not attempt recovery before branching to SALE_ENTRY. To allow for 
this, the PAL_MC_EXPECTED procedure call is defined to indicate that PALE_CHECK 
should not to attempt recovery.

11.3.1.1 Resources Required for Machine Check and Initialization Event 
Recovery

While the level of recovery from machine checks is implementation dependent, for each 
particular level of recovery there is a set of architecturally required resources. The 
following paragraphs define the required and optional resources needed to support 
firmware and software recovery of machine checks and initialization events.

• Minimal resources required to allow software recovery of machines checks when 
PSR.ic=1:

• XR0 register: memory pointer to min-state save area previously registered with 
PAL via the PAL_MC_REGISTER_MEM procedure. The layout of this memory 
area is described in Section 11.3.2.4, “Processor Min-state Save Area Layout” 
on page 2:302.

• Bank zero registers GR 24 through GR 31. These registers are not preserved 
across interruptions and may be used as scratch registers by machine check 
recovery code. See Section 3.3.7, “Banked General Registers” on page 2:42 for 
the definition of the bank 0 registers.

• Additional resources required to allow software recovery of machine checks when 
PSR.ic=0. The presence of these resources is processor implementation specific. 
The PAL_PROC_GET_FEATURES procedure described on page 2:440 returns 
information on the existence of these optional resources. 

• XIP, XPSR, XFS: interruption resources implemented to store information about 
the IIP, IPSR and IFS when the machine check occurred. A model-specific 
version of the rfi instruction must also be implemented to restore the machine 
context from these resources.

• XR1-XR3: scratch registers implemented to preserve bank 0 GR 24 through GR 
31. 

Each of the registers described above should be accessed only by PAL in order to 
support firmware and software recovery of machine checks. 

11.3.2 PALE_CHECK Exit State

The state of the processor on exiting PALE_CHECK is listed below. For registers 
described as being saved to the min-state save area and available for use, the actual 
values in these registers are undefined unless specifically stated otherwise.

• GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static 
registers and bank one static registers (GR16-31) at the time of the MCA have been 
saved in the min-state save area and are available for use.

• If recovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are 
undefined and their contents have been lost. In this case, recovery is not 
possible. See Section 11.3.1.1, “Resources Required for Machine Check and 
Initialization Event Recovery” for details.
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• GR16 through GR20 (bank 0) contain parameters which PALE_CHECK passes to 
SALE_ENTRY for diagnostic and recovery purposes:

• GR16 contains the address to the first available location in the min-state 
save area for use by SAL. The address is 8-byte aligned.

• GR17 contains the value of the min-state save area address stored in XR0.

• GR18 contains the Processor State Parameter, as defined in Figure 11-11.

• GR19 contains the PALE_CHECK return address for rendezvous, or 0 if no 
return is expected. (See Section 11.3.2.2, “Multiprocessor Rendezvous 
Requirements for Handling Machine Checks”)

• GR20 contains the SALE_ENTRY State Parameter as defined in Figure 11-4.

• FRs: The contents of all floating-point registers are unchanged from the time of the 
MCA.

• Predicates: All predicate registers have been saved in the min-state save area and 
are available for use.

• BRs: The contents of all branch registers are unchanged from the time of the MCA, 
except the following.

• BR0 and BR1 have been saved to the min-state save area and are available for 
use. Either register may have been changed from the time of entry into 
PALE_CHECK.

• ARs: The contents of all application registers are unchanged from the time of the 
MCA, except the RSE control register (RSC), the RSE backing store pointer (BSP), 
and the ITC and RUC counters. The RSC register is unchanged, except that the 
RSC.mode field will be set to 0 (enforced lazy mode) and the RSC register at the 
time of the MCA has been saved in the min-state save area. A cover instruction is 
executed in the PALE_CHECK handler which allocates a new stack frame of zero 
size. BSP will be modified to point to a new location, since all the registers from the 
current frame at the time of interruption were added to the RSE dirty partition by 
the allocation of a new stack frame. The ITC register will not be directly modified by 
PAL, but will continue to count during the execution of the MCA handler. The RUC 
register will not be directly modified by PAL, but will continue to count during the 
execution of the MCA handler while the processor is active.

• CFM: The CFM register points to a zero-size current frame and all the rotating 
register bases are set to zero. The CFM register at the time of the MCA has been 
saved to the min-state save area in either the IFS or XFS slot depending on the 
implementation.

• RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time 
of the MCA.

• PSR: PSR.mc is 1; PSR.mfl, PSR.mfh, and PSR.pk are unchanged; all other bits are 
0. The PSR at the time of the MCA is saved in the min-state save area.

• CRs: The contents of all control registers are unchanged from the time of the MCA 
with the exception of interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the MCA.

• PKRs: The contents of all protection key registers are unchanged from the time of 
the MCA.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of 
the MCA.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the 
MCA. The contents of the PMD registers are not modified by PAL code, but may be 
modified if events it is monitoring are encountered.
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• Cache: The processor internal cache is enabled and is unchanged from the time of 
the MCA except for any lines that were invalidated to correct the error.

• TLB: The TCs may be initialized and the TRs are unchanged from the time of the 
MCA.

• Interruption Resources:

• IRR: PALE_CHECK may not change the IRR, but interrupts may have arrived 
asynchronously, changing the contents of the IRRs.

• The contents of IIP, IPSR and IFS at the time of the MCA are saved to the 
min-state save area and are available for use. 

11.3.2.1 Processor State Parameter (GR 18)

Figure 11-11. Processor State Parameter

The term “valid” in Table 11-7 indicates that the registers are either unchanged from 
the time of interruption or that the values have been preserved in the min-state save 
area.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gr b0 b1 fp pr br ar rr tr dr pc cr ex cm rs in dy pm pi mi tl hd us ci co sy mn me ra rz rsvd

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

uc rc bc tc cc reserved se dsize

Table 11-7. Processor State Parameter Fields

Field Bits Description

rsvd 1:0 Reserved

rz 2 The attempted processor rendezvous was successful if set to 1.

ra 3 A processor rendezvous was attempted if set to 1.

me 4 Distinct multiple errors have occurred, not multiple occurrences of a single error. 
Software recovery may be possible if error information has not been lost.

mn 5 Min-state save area has been registered with PAL if set to 1.

sy 6 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to 
the instruction on which the machine check occurred completed successfully, and that 
no loads or stores beyond that point occurred. See Table 11-8.

co 7 Continuable. A value of 1 indicates that all in-flight operations from the processor 
where the machine check occurred were either completed successfully (such as a 
load), were tagged with an error indication (such as a poisoned store), or were 
suppressed and will be re-issued if the current instruction stream is restarted. This bit 
can only be set if the architectural state saved on a machine check is all valid. If this bit 
is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-8.

ci 8 Machine check is isolated. A value of 1 indicates that the error has been isolated by the 
system, it may or may not be recoverable. If 0, the hardware was unable to isolate the 
error within the CPU and memory hierarchy. The error may have propagated off the 
system (to persistent storage or the network). If ci = 0 then us will be set to 1, and co 
and sy are cleared to 0. See Table 11-8.

us 9 Uncontained storage damage. A value of 1 indicates the error is contained within the 
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is 
set to 1, then co and sy will always be cleared to 0. See Table 11-8.

hd 10 Hardware damage. A value of 1 indicates that as a result of the machine check some 
non essential hardware is no longer available causing this processor to execute with 
degraded performance (no functionality has been lost).
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tl 11 Trap lost. A value of 1 indicates the machine check occurred after an instruction was 
executed but before a trap that resulted from the instruction execution could be 
generated.

mi 12 More information. A value of 1 indicates that more error information about the machine 
check event is available by making the PAL_MC_ERROR_INFO procedure call.

pi 13 Precise instruction pointer. A value of 1 indicates that the machine logged the 
instruction pointer to the bundle responsible for generating the machine check.

pm 14 Precise min-state save area. A value of 1 indicates that the min-state save area 
contains the state of the machine for the instruction responsible for generating the 
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 Processor Dynamic State is valid. (1=valid, 0=not valid) See the 
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 Interruption caused by INIT. (0=machine check, 1=INIT)

rs 17 The RSE is valid. (1=valid, 0=not valid)

cm 18 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 A machine check was expected. (1=expected, 0=not expected)

cr 20 Control registers are valid. (1=valid, 0=not valid)

pc 21 Performance counters are valid. (1=valid, 0=not valid)

dr 22 Debug registers are valid. (1=valid, 0=not valid)

tr 23 Translation registers are valid. (1=valid, 0=not valid)

rr 24 Region registers are valid. (1=valid, 0=not valid)

ar 25 Application registers are valid. (1=valid, 0=not valid)

br 26 Branch registers are valid. (1=valid, 0=not valid)

pr 27 Predicate registers are valid. (1=valid, 0=not valid)

fp 28 Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

se 48 Shared Error. Machine check corresponds to structure shared by multiple logical 
processors.

rsvd 58:49 Reserved

cc 59 Cache check. A value of 1 indicates that a cache related machine check occurred. See 
the PAL_MC_ERROR_INFO procedure call for more information. This bit must not be 
set for non-cacheable transaction errors.

tc 60 TLB check. A value of 1 indicates that a TLB related machine check occurred. See the 
PAL_MC_ERROR_INFO procedure call for more information.

bc 61 Bus check. A value of 1 indicates that a bus related machine check occurred. See the 
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 Register file check. A value of 1 indicates that a register file related machine check 
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 Uarch check. A value of 1 indicates that a micro-architectural related machine check 
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

Table 11-7. Processor State Parameter Fields (Continued)

Field Bits Description
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11.3.2.1.1 Using Processor State Parameter to Determine if Software 
Recovery of a Machine Check is Possible

The us, ci, co, and sy bits in the Processor State Parameter are valid only if the error 
has not been previously corrected in hardware or firmware (cm bit is 0). Even then, 
only the bit combinations shown in Table 11-8 are valid. If the multiple error bit is set 
(me=1) both the co and sy bits must be 0. The us and ci bits will be set according to 
the worst case of the errors that occurred.

11.3.2.2 Multiprocessor Rendezvous Requirements for Handling Machine 
Checks

When PALE_CHECK has determined that an error has occurred which could cause a 
multiprocessor system to lose error containment, it must rendezvous the other 
processors in the system before proceeding with further processing of the machine 
check. This is accomplished by branching to SALE_ENTRY with a non-zero return vector 
address in GR19. It is then the responsibility of SAL to rendezvous the other processors 
and return to PALE_CHECK through the address in GR19. If the rendezvous was 
successful GR19 must be set to 0 before return.

At the time PALE_CHECK makes the rendezvous call to SALE_ENTRY, the processor 
state is exactly the same as defined in See “PALE_CHECK Exit State” on page 2:297. 
with the following requirement on the use of registers by SAL:

Any processor state not listed below must be either unchanged or restored by SAL 
before returning to PALE_CHECK.

• SAL will preserve the values in GR4-GR7 and GR17-GR18.

• SAL will return to PALE_CHECK via the address in GR19.

• SAL will set up GR19 to indicate the success of the rendezvous before returning to 
PAL. 

• GR19 is zero to indicate the rendezvous was successful. 

• GR19 is non zero to indicate that the rendezvous was unsuccessful.

• All other non-banked (GR1-3, GR8-15), bank 0 GRs (GR20-GR31) and BR0 are 
undefined and available for use by SAL.

Table 11-8. Software Recovery Bits in Processor State Parameter

cm us ci co sy Description

1 x x x x The machine check is corrected. The us, ci, co, and sy bits are not valid.

0 1 0 0 0 The error was not isolated. Software must reset system. Data on disk may be 
corrupt.

0 1 1 0 0 The error was isolated but not contained. Corrupt data was not written to I/O, but 
may remain in the CPU or memory untagged. Software must reset system.

0 0 1 0 0 The error was isolated and contained, but is not continuable. The current 
instruction stream cannot be restarted without loss of information. Partial 
recovery may be possible.

0 0 1 1 0 The error was isolated, contained, and is continuable. If software can correct the 
error the current instruction stream can be continued with no loss of information.

0 0 1 1 1 The error was isolated, contained, and is continuable. The instruction pointer 
points to the instruction where the error occurred. If software can correct the error 
the current instruction stream can be continued with no loss of information.
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After return from the SAL rendezvous call, PALE_CHECK will complete processing the 
machine check if the rendezvous was successful and then branch to SALE_ENTRY with 
GR19 set to zero. The processor state when transferring to SAL is as defined in 
Section 11.3.2, “PALE_CHECK Exit State” on page 2:297. If the rendezvous failed 
PALE_CHECK will simply construct the Processor State Parameter and branch to 
SALE_ENTRY.

Any further discussion of multiprocessor rendezvous, including platform requirements 
and implications, is beyond the scope of this specification. See the relevant SAL/Error 
handling documents for further information.

11.3.2.3 Unconsumed Data-Poisoning Event Handling

If, during the transfer/access of information between levels of the cache/memory 
hierarchy, there is data found to have an uncorrectable error and is marked poison, 
error reporting events may be raised. If such an error event is sent to a processor that 
doesn't consume the corrupted data, then the error is termed an unconsumed 
data-poisoning event.

Unconsumed data-poisoning events are by default reported as a CMC and can 
optionally be promoted to an MCA via bit 53 of feature_set 0 of 
PAL_PROC_SET_FEATURES. When they are signaled as a CMC the PSP.cm is set to 1 to 
indicate that the error has been corrected (in the sense that the line has been marked 
poison, preventing any silent data corruption).

If bit 53 is 1, unconsumed data-poisoning events are reported as MCAs. To immediately 
report unconsumed data-poisoning events as uncorrected errors (in the sense that 
the data in question has been lost), the caller can set bit 53 to 1. PSP settings for a 
data-poisoning event with bit 53 equal to 1 are given in the table below. See also 
Table 11-8.

When promotion is enabled (bit 53 is 1), and a continuable data-poisoning event is 
indicated (i.e., the PSP bits are set as in the above table, and either cache_check.dp, 
bus_check.dp or both are 1), and if no other MCAs occur at the same time (i.e., no 
other errors are indicated in the error information from PAL_MC_ERROR_INFO), the 
interrupted process is always continuable. Promotion to MCA with bit 53 allows the OS 
to take proactive measures to recover from the poisoned data, but this is not required 
for the interrupted process to be continuable.

11.3.2.4 Processor Min-state Save Area Layout

The processor min-state save area is minimally 4KB in size, but an implementation may 
require larger sizes. The reset hand-off state indicates if a size greater than 4KB is 
required and also provides the required size. Please refer to Section 11.2.2.1, 
“Definition of SALE_ENTRY State Parameter” on page 2:291 for more information on 
the reset hand-off state. The required size is referred to as MIN_STATE_REQ. The 
min-state save area is required to be in an uncacheable region. The first 1KB of this 

Table 11-9. PSP Bit Settings for Unconsumed Data-poisoning Events on 
MCA

cm us ci co sy

0 0 1 1 0
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area is architectural state needed by the PAL code to resume during MCA and INIT 
events (architected min-state save area + reserved). The remaining space in the buffer 
is a scratch space reserved exclusively for PAL use, therefore SAL and OS must not use 
this area. The layout of the processor min-state save area is shown in Figure 11-1.

The processor min-state save area is 4KB in size and must be in an uncacheable region. 
The first 1KB of this area is architectural state needed by the PAL code to resume 
during MCA and INIT events (architected min-state save area + reserved). The 
remaining 3KB is a scratch buffer reserved exclusively for PAL use, therefore SAL and 
OS must not use this area. The layout of the processor min-state save area is shown in 
Figure 11-1.

The layout for the processors portion of the architectural 1KB processor min-state save 
area is shown in Figure 11-2. When SAL registers the area with PAL, it passes in a 
pointer to offset zero of the area. When PALE_CHECK is entered as a result of a 
machine check, it fills in processor state, processes the machine check, and branches to 
SALE_ENTRY with a pointer to the first available memory location that SAL can use in 
GR16. SAL may allocate a variable sized area above the address passed in GR16 up to 
the 1KB architectural limit, but this is internal to SAL and not known to PAL. 

The base address of the min-state save area must minimally be aligned to a 512-byte 
boundary, but larger alignments are allowed. All saves and restores to and from the 
min-state save area are made using 8-byte wide load and store instructions. If the 
processor min-state save area is not registered via the PAL_MC_REGISTER_MEM 
procedure prior to the machine check, software recovery is not possible.

Figure 11-1. Processor Min-state Save Area Layout
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Figure 11-2. Processor State Saved in Min-state Save Area
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The NaT bits stored in the first entry of the min-state save area have the following 
layout.

The value passed in GR16 to SAL may point beyond the defined processor state shown 
in Figure 11-2. PAL may use this area for implementation-dependent processor state 
that needs to be saved and restored.

11.3.2.5 Definition of SALE_ENTRY State Parameter

• function – An 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

11.3.3 Returning to the Interrupted Process

The PAL_MC_RESUME procedure is defined to return to the interrupted context after 
handling a machine check or initialization event. See page 2:436 for a description of 
the PAL_MC_RESUME procedure. If software attempts to return to the interrupted 
context without using this procedure, processor behavior is undefined. 

Figure 11-3. NaT Bits for Saved GRs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NaT bits for Bank 0 GR16 to GR31 NaT bits for GR15 to GR1 UD

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Undefined (not used) NaT bits for Bank 1 GR16 to GR31

Table 11-10. NaT Bits for Saved GRs

Bits Description

0 Undefined (not used)

15:1 NaT bits for GR15 to GR1. Bit 1 represents GR1 and subsequent bits follow the ascending pattern.

31:16 NaT bits for Bank 0 GR16 to GR31. Bit 16 represents Bank 0 GR16 and subsequent bits follow the 
ascending pattern.

47:32 NaT bits for Bank 1 GR16 to GR31. Bit 32 represents Bank 1 GR16 and subsequent bits follow the 
ascending pattern.

63:48 Undefined (not used)

Figure 11-4. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-11. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition in SAL
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There are certain error cases that may require returning to a new context in order to 
recover from the machine check. If this occurs a new context can be returned to via the 
PAL_MC_RESUME procedure with the new_context flag set. The caller needs to set up 
the new processor min-state save area as shown in Figure 11-2 for all the listed 
register states. If the caller wants to return to a context where PSR.ic is zero (i.e., an 
interruption handler) the IIP, IPSR and IFS values in the min-state save area must be 
set up with the first level return values. These are the values for the IP, PSR and CFM of 
the interruption handler it wishes to return to. The XIP, XPSR, XFS values in the 
min-state save area must be set up with the second level return values. These are the 
IP, PSR and CFM values for where the interruption handler will return to. If the caller 
wants to return to a context where PSR.ic is one, it must set up the IIP, IPSR, IFS and 
the XIP, XPSR, and XFS both to contain the new instruction pointer, PSR value, and CFM 
values.

When returning to a new context, the memory area from BR1 up to the 1KB 
architectural limit is ignored by the PAL_MC_RESUME procedure. The software 
constructing the new context min-state save area does not have to worry filling in this 
memory area with any values. When a new context is returned to, the state originally 
saved in the min-state save area (old context) shall be discarded and never used again.

In order to return to the interrupted context without loss of any architectural state, the 
caller must restore all register state that is not stored in the processors min-state save 
area before making the PAL_MC_RESUME procedure call. Since BR0 and BR1 are the 
only two branch registers saved in the min-state save area, the caller must only use 
these two branch registers when making the PAL_MC_RESUME procedure call.

11.4 PAL Initialization Events

11.4.1 PALE_INIT

PALE_INIT is entered when an initialization event (INIT) occurs, as a result of the 
assertion on an INIT signal to the processor or an INIT interruption occurring. If 
PSR.mc = 1, the initialization event is held pending until PSR.mc becomes 0. The 
purpose of PALE_INIT is to save the architecturally defined processor state to the 
Minimal State Save Area (min-state save area) and to branch to SALE_ENTRY. The code 
sequence interrupted by the initialization event can be restarted via PAL_MC_RESUME if 
PSR.ic = 1. The code sequence interrupted by the initialization event can be restarted if 
PSR.ic = 0 and the processor has implemented the optional recovery resources 
described in Section 11.3.1.1, “Resources Required for Machine Check and Initialization 
Event Recovery” on page 2:297. If PSR.ic = 0 and the optional recovery resources have 
not been implemented, then the initialization event is not recoverable.

11.4.2 PALE_INIT Exit State

The state of the processor on exiting PALE_INIT is listed below. For registers described 
as being saved to the min-state save area and available for use, the actual values in 
these registers are undefined unless specifically stated otherwise.

• GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static 
registers and bank one static registers (GR16-31) at the time of the INIT have been 
saved in the min-state save area and are available for use.
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• If recovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are 
undefined and their contents have been lost. In this case, recovery is not 
possible. See Section 11.3.1.1, “Resources Required for Machine Check and 
Initialization Event Recovery” for details.

• GR16 through GR20 (bank 0) contain parameters which PALE_INIT passes to 
SALE_ENTRY for diagnostic and recovery purposes:

• GR16 contains the address to the first available location in the min-state 
save area for use by SAL. The address is 8-byte aligned.

• GR17 contains the value of the min-state save area address stored in XR0.

• GR18 contains the Processor State Parameter, as defined in Figure 11-5 on 
page 2:308.

• GR19 contains the PALE_INIT return address for rendezvous, or 0 if no 
return is expected. (See Section 11.3.2.2, “Multiprocessor Rendezvous 
Requirements for Handling Machine Checks”)

• GR20 contains the SALE_ENTRY state as defined in Figure 11-4.

• FRs: The contents of all floating-point registers are unchanged from the time of the 
INIT.

• Predicates: All predicate registers have been saved in the min-state save area and 
are available for use.

• BRs: The contents of all branch registers are unchanged from the time of the INIT 
except the following:

• BR0 and BR1 have been saved to the min-state save area and are available for 
use. Either register may have been changed from the time of entry into 
PALE_CHECK.

• ARs: The contents of all application registers are unchanged from the time of the 
INIT, except the RSE control register (RSC), the RSE backing store pointer (BSP), 
and the ITC and RUC counters. The RSC register is unchanged, except that the 
RSC.mode field will be set to 0 (enforced lazy mode) and the RSC register at the 
time of the INIT has been saved in the min-state save area. A cover instruction is 
executed in the PALE_INIT handler which allocates a new stack frame of zero size. 
BSP will be modified to point to a new location, since all the registers from the 
current frame at the time of interruption were added to the RSE dirty partition by 
the allocation of a new stack frame. The ITC register will not be directly modified by 
PAL, but will continue to count during the execution of the INIT handler. The RUC 
register will not be directly modified by PAL, but will continue to count during the 
execution of the INIT handler while the processor is active.

• CFM: The CFM register points to a zero-size current frame and all the rotating 
register bases are set to zero. The CFM register at the time of the INIT has been 
saved to the min-state save area in either the IFS or XFS slot depending on the 
implementation.

• RSE: The RSE is in enforced lazy mode, and all stacked registers are unchanged 
from the time of the INIT.

• PSR: PSR.mc is 1; PSR.mfl, PSR.mfh, and PSR.pk are unchanged; all other bits are 
0. The PSR at the time of the INIT is saved in the min-state save area.

• CRs: The contents of all control registers are unchanged from the time of the INIT 
with the exception of the interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the INIT.

• PKRs: The contents of all protection key registers are unchanged from the time of 
the INIT.
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• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of 
the INIT.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the 
INIT. The contents of the PMD registers are not modified by PAL code, but may be 
modified if events it is monitoring are encountered.

• Cache: The contents of the caches are unchanged from the time of the INIT.

• TLB: The TCs may be initialized and the TRs are unchanged from the time of the 
INIT.

• Interruption Resources:

• IRR: PALE_INIT may not change the IRR, but interrupts may have arrived 
asynchronously, changing the contents of the IRRs.

• The contents of IIP, IPSR and IFS at the time of INIT are saved to the min-state 
save area and are available for use. 

11.4.2.1 Processor State Parameter (GR18)

Figure 11-5. Processor State Parameter

The term “valid” in Table 11-7 indicates that the registers are either unchanged from 
the time of interruption or that the values have been preserved in the min-state save 
area.
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gr b0 b1 fp pr br ar rr tr dr pc cr ex cm rs in dy pm pi mi tl hd us ci co sy mn me ra rz rsvd

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

uc rc bc tc cc reserved se dsize

Table 11-12. Processor State Parameter Fields

Field Bits
INIT

value
Description

rsvd 1:0 Reserved

rz 2 xa The attempted processor rendezvous was successful if set to 1.

ra 3 xa A processor rendezvous was attempted if set to 1.

me 4 0 Distinct multiple errors have occurred, not multiple occurrences of a single error. 
Software recovery may be possible if error information has not been lost.

mn 5 xa Min-state save area has been registered with PAL if set to 1.

sy 6 0 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to 
the instruction on which the machine check occurred completed successfully, and 
that no loads or stores beyond that point occurred. See Table 11-8.

co 7 1 Continuable. A value of 1 indicates that all in-flight operations from the processor 
where the machine check occurred were either completed successfully (such as a 
load), were tagged with an error indication (such as a poisoned store), or were 
suppressed and will be re-issued if the current instruction stream is restarted. This bit 
can only be set if the architectural state saved on a machine check is all valid. If this 
bit is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-8.

ci 8 1 Machine check is isolated. A value of 1 indicates that the error has been isolated by 
the system, it may or may not be recoverable. If 0, the hardware was unable to isolate 
the error within the CPU and memory hierarchy. The error may have propagated off 
the system (to persistent storage or the network). If ci = 0 then us will be set to 1, and 
co and sy are cleared to 0. See Table 11-8.
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us 9 0 Uncontained storage damage. A value of 1 indicates the error is contained within the 
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is 
set to 1, then co and sy will always be cleared to 0. See Table 11-8.

hd 10 0 Hardware damage. A value of 1 indicates that as a result of the machine check some 
non essential hardware is no longer available causing this processor to execute with 
degraded performance (no functionality has been lost).

tl 11 0 Trap lost. A value of 1 indicates the machine check occurred after an instruction was 
executed but before a trap that resulted from the instruction execution could be 
generated.

mi 12 0 More information. A value of 1 indicates that more error information about the 
machine check event is available by making the PAL_MC_ERROR_INFO procedure 
call.

pi 13 0 Precise instruction pointer. A value of 1 indicates that the machine logged the 
instruction pointer to the bundle responsible for generating the machine check.

pm 14 0 Precise min-state save area. A value of 1 indicates that the min-state save area 
contains the state of the machine for the instruction responsible for generating the 
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 xa Processor Dynamic State is valid. (1=valid, 0=not valid) See the 
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 1 Interruption caused by INIT. (0=machine check, 1=INIT)

rs 17 xa The RSE is valid. (1=valid, 0=not valid)

cm 18 0 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 0 A machine check was expected. (1=expected, 0=not expected)

cr 20 xa Control registers are valid. (1=valid, 0=not valid)

pc 21 xa Performance counters are valid. (1=valid, 0=not valid)

dr 22 xa Debug registers are valid. (1=valid, 0=not valid)

tr 23 xa Translation registers are valid. (1=valid, 0=not valid)

rr 24 xa Region registers are valid. (1=valid, 0=not valid)

ar 25 xa Application registers are valid. (1=valid, 0=not valid)

br 26 xa Branch registers are valid. (1=valid, 0=not valid)

pr 27 xa Predicate registers are valid. (1=valid, 0=not valid)

fp 28 xa Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 xa Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 xa Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 xa General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 xa Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

se 48 0 Shared Error. Machine check corresponds to structure shared by multiple logical 
processors.

rsvd 58:49 Reserved

cc 59 0 Cache check. A value of 1 indicates that a cache related machine check occurred. 
See the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 0 TLB check. A value of 1 indicates that a TLB related machine check occurred. See 
the PAL_MC_ERROR_INFO procedure call for more information.

bc 61 0 Bus check. A value of 1 indicates that a bus related machine check occurred. See the 
PAL_MC_ERROR_INFO procedure call for more information.

Table 11-12. Processor State Parameter Fields (Continued)

Field Bits
INIT

value
Description
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11.4.2.2 Definition of SALE_ENTRY State Parameter

• function – An 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

11.5 Platform Management Interrupt (PMI)

11.5.1 PMI Overview

PMI is an asynchronous interrupt that encapsulates a collection of platform-specific 
interrupts. Platform Management Interrupts occur during instruction processing, 
causing the flow of control to be passed to the PAL PMI handler. In the process, state is 
saved in the interruption registers (IIP, IPSR) by the processor hardware and the 
processor starts executing instructions at the PALE_PMI entrypoint. The PAL code will 
save some additional state in the bank 0 registers. The PAL will either handle the PMI if 
it is PAL related PMI or transition to the SAL PMI code if it is a SAL related PMI. Upon 
completion of processing, the SAL PMI code returns to PAL PMI code to restore the 
interrupted processor state and to resume execution at the interrupted instruction.

As shown in Figure 11-7, PMI code consists of two major components, namely the PAL 
PMI handler which handles all processor-specific processing, and the SAL PMI handler 
which handles all platform-related processing. The location of the PALE_PMI and 
SALE_PMI handlers are programmable. The location of the PALE_PMI handler can be 
programmed by the PAL_COPY_PAL procedure described on page 2:389. The SALE_PMI 
handler can be programmed by the PAL_PMI_ENTRYPOINT procedure described on 
page 2:443. If a PMI is taken very early in the boot sequence before PAL has a chance 

rc 62 0 Register file check. A value of 1 indicates that a register file related machine check 
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 0 Uarch check. A value of 1 indicates that a micro-architectural related machine check 
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

a. The values of the fields marked with x are set by the PAL INIT handler based on the INIT handling.

Figure 11-6. SALE_ENTRY State Parameter
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Table 11-13. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition in SAL

Table 11-12. Processor State Parameter Fields (Continued)

Field Bits
INIT

value
Description



Volume 2, Part 1: Processor Abstraction Layer 2:311

to register its PALE_PMI entrypoint, processor operation is undefined. If a SAL related 
PMI is seen before the SAL PMI handler is registered, the PAL PMI code will just return 
to the interrupted context

The hardware events that can cause the PMI request are referred to as PMI events. PMI 
events are asynchronous interrupts higher priority than all external interrupts and are 
only maskable when the system software is processing very critical tasks with 
PSR.ic=0. When PSR.ic is 1, PMI events are unmasked. PSR.i has no effect on PMI 
events. All PMI events are internally latched into an array of implementation-specific 
latches in the processor. The PAL PMI handler reads the latches to determine what PMI 
vector requests are pending and dispatches them in priority order. Table 11-14 lists the 
PMI events and their priority.

PMI messages can be delivered by an external interrupt controller, or as an 
inter-processor interrupt using delivery mode 010. Table 11-15 shows the PMI message 
vector assignments. Vectors 4-15 are reserved for PAL, and within these PAL vectors, a 
higher vector number has higher priority. Vectors 1-3 are available for SAL to use, and 
within these SAL vectors, a higher vector number has higher priority. A PMI pin event, 
when the PMI pin1 is present, is indicated by vector 0. The PMI vector number is passed 
to the SAL PMI handler in GR 24.

Figure 11-7. PMI Entrypoints

Table 11-14. PMI Events and Priorities

PMI Events Priority

PMI message for PAL (vectors 4-15) High

PMI message for SAL (vectors 1-3)

PMI pina (vector 0)

a. PMI pin is not required to be present on all systems.

Low

1. PMI pin is not required to be present. Software can query the presence of PMI pin via the
PAL_PROC_GET_FEATURES procedure call.

Table 11-15. PMI Message Vector Assignments

Priority Vector Description
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11.5.2 PALE_PMI Exit State

The state of the processor on exiting PALE_PMI is:

• GRs: The contents of non-banked general registers are unchanged from the time of 
the interruption.

• Bank 1 GRs: The contents of all bank one general registers are unchanged from 
the time of the interruption.

• Bank 0:GR16-23: The contents of these bank zero general registers are 
unchanged from the time of the interruption.

• Bank 0:GR24-31: contain parameters which PALE_PMI passes to SALE_PMI:

• GR24 contains the value decoded as follows:

• Bits 7-0: PMI Vector Number

• Bit 63-8: Reserved

• GR25 contains the value of the min-state save area address stored in XR0.

• GR26 contains the value of saved RSC. The contents of this register shall be 
preserved by SAL PMI handler.

• GR27 contains the value of saved B0. The contents of this register shall be 
preserved by SAL PMI handler.

• GR28 contains the value of saved B1. The contents of this register shall be 
preserved by SAL PMI handler.

• GR29 contains the value of the saved predicate registers. The contents of 
this register shall be preserved by SAL PMI handler

• GR30-31 are scratch registers available for use. 

• FRs: The contents of all floating-point registers are unchanged from the time of the 
interruption.

• Predicates: The contents of all predicate registers are undefined and available for 
use.

• BRs: The contents of all branch registers are unchanged, except the following which 
contain the defined state.

• BR1 is undefined and available for use.

4

PAL Reserved

5

6

7

8

9

10

11

12

13 IA-32 Machine Check Rendezvous

14 PAL Reserved

15

Table 11-15. PMI Message Vector Assignments

Priority Vector Description
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• BR0 PAL PMI return address.

• ARs: The contents of all application registers are unchanged from the time of the 
interruption, except the RSE control register (RSC) and the ITC and RUC counters. 
The RSC.mode field will be set to 0 (enforced lazy mode) while the other fields in 
the RSC are unchanged. The ITC register will not be directly modified by PAL, but 
will continue to count during the execution of the PMI handler. The RUC register will 
not be directly modified by PAL, but will continue to count during the execution of 
the PMI handler while the processor is active.

• CFM: The contents of the CFM register is unchanged from the time of the 
interruption.

• RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time 
of the interruption.

• PSR: PSR.mc, PSR.mfl, PSR.mfh, and PSR.pk are unchanged; all other bits are 0.

• CRs: The contents of all control registers are unchanged from the time of the 
interruption with the exception of interruption resources, which are described 
below.

• RRs: The contents of all region registers are unchanged from the time of the 
interruption.

• PKRs: The contents of all protection key registers are unchanged from the time of 
the interruption.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of 
the interruption.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the 
PMI. The contents of the PMD registers are not modified by PAL code, but may be 
modified if events it is monitoring are encountered

• Cache: The processor internal cache is not specifically modified by the PMI handler 
but may be modified due to normal cache activity of running the handler code.

• TLB: The TCs are not modified by the PALE_PMI handler and the TRs are unchanged 
from the time of the interruption.

• Interruption Resources:

• IRRs: The contents of IRRs are unchanged from the time of the interruption.

• IIP and IPSR contain the value of IP and PSR. The IFS.v bit is reset to 0. 

11.5.3 Resume from the PMI Handler

To return to the instruction that was interrupted by the PMI event, SAL PMI must 
branch to the PAL PMI target address in BR0. All register contents must be preserved as 
specified in Section 11.5.2, “PALE_PMI Exit State” on page 2:312.

11.6 Power Management

This section describes the architecturally supported set of required and optional power 
states that may be implemented to reduce power consumption in implementations 
where this is a design goal. In addition, the PAL interfaces required to manage these 
states are described.
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Figure 11-8 shows state transitions for the various power states and the software 
interfaces required for the transitions.

• NORMAL – The normal, fully functional, highest power state.

• LOW-POWER – An implementation may choose to dynamically reduce power via 
microarchitectural low power techniques. The operation of interrupts, snoops, etc., 
in low-power mode will be identical to those in normal-power mode. This dynamic 
power reduction is optional for an implementation to support. The PAL procedures 
PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES returns whether an 
implementation supports dynamic power reduction. If an implementation supports 
dynamic power reduction then this procedure will allow the caller to enable or 
disable this feature. 

The following software controllable low power states may be provided. They are 
described below.

• LIGHT_HALT – Entered by calling PAL_HALT_LIGHT. This state reduces power by 
stopping instruction execution, but maintains cache and TLB coherence in response 
to external requests. The processor transitions from this state to the NORMAL state 
in response to any unmasked external interrupt (including NMI), machine check, 
reset, PMI or INIT. An unmasked external interrupt is defined to be an interrupt that 
is permitted to interrupt the processor based on the current setting of the TPR.mic 
and TPR.mmi fields. This state is a required state.

• HALT 1 – Entered by calling PAL_HALT with a power state argument equal to one. 
This implementation-dependent low-power state will maintain the processor caches 
but will ignore any coherency bus traffic. This state is optional for a processor to 

Figure 11-8. Power States

HALT 1

PAL_HALT

LIGHT HALT

NORMAL/

Cache 
coherent, but no 

instruction 
execution

Cache not 
coherent, no 
instruction 
execution

LOW-POWER
PAL_HALT_LIGHT

HALT 2 - 7

No instruction 
execution. 

Implementation-
dependent state.

PAL_HALT

Unmasked external 
interrupts, Machine 
check, Reset, PMI 

and INIT

Unmasked external 
Interrupts, Machine 
check, Reset, PMI 

and INIT

Unmasked external 
Interrupts, Machine 
check, Reset, PMI 

and INIT



Volume 2, Part 1: Processor Abstraction Layer 2:315

implement. It is the responsibility of the caller to ensure cache coherency in this 
state.

• HALT 2 - 7 – These are optional implementation-dependent states entered by 
calling PAL_HALT with a power state argument in the range of 2-7. Before making 
this procedure call, the operating system software should first ascertain that the 
states are implemented by calling PAL_HALT_INFO. The information returned from 
the PAL_HALT_INFO procedure will also specify the coherency of caches and TLBs 
for each of these low-power states.

The interval timer within the processor will function at a constant frequency in all the 
power states as long as the input clock to the processor is maintained. If all logical 
processors on the physical processor are in a halt state, the resource utilization counter 
for the last logical processor to enter a halt state will function at a constant frequency 
as long as the input clock to the processor is maintained. However, the performance 
monitor event that counts the number of processor clock cycles will only increment in 
either the NORMAL or LOW-POWER state.

The PAL procedure PAL_HALT_INFO returns information about the power states 
implemented in a particular processor. This information allows the caller to decide which 
low power states are implemented and which ones to call based on the callers 
requirements.

11.6.1 Power/Performance States (P-states)

This section describes the power/performance states (hence to be referred to as 
P-states) supported by the Itanium architecture. P-states enable the caller to adjust the 
power/performance characteristics of the processor in response to changing workload 
requirements. This allows for implementation of a processor-level power management 
policy which is driven by system demand and response time requirements.

The P-states are defined within the context of the active/executing processor state. At 
the highest performing P-state (referred to as the P0 state), the processor uses its 
maximum performance capability and may consume maximum power. In the next 
P-state (P1), the processor performance capability is limited below the maximum 
performance, and it consumes less than the maximum power. Successive P-states 
continue to have reduced performance capabilities and reduced power consumption. 
The Itanium architecture supports a maximum of 16 P-states, with the highest 
numbered P-state that is available on an implementation providing the least possible 
performance capability and minimal power consumption while remaining in a non-HALT 
state.
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P-states can be utilized by software to implement a demand-based dynamic power 
management policy where it would continuously try to adapt the processor 
performance to the current workload characteristics. This allows software to achieve 
power savings at the system level, while allowing it to quickly respond to changing 
workload requirements.

The example in Figure 11-10 assumes four P-states (P0, P1, P2 and P3), and a software 
policy that transitions between the states depending on the current system utilization. 
During times of high utilization, the software migrates the processor towards 
lower-numbered P-states, which increases processor performance and increases the 
dissipated power. When system utilization is low, the software policy migrates the 
processor towards higher-numbered P-states, thereby reducing the processor 
performance and reducing dissipated power. The figure also shows the HALT state, 
which the software can transition to at any time from a given P-state.

Figure 11-9. Power and Performance Characteristics for P-states
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11.6.1.1 Power Dependency Domains

The concept of P-states applies to each logical processor, and this gives software the 
required granularity to individually control the power/performance characteristics for 
each available thread of execution in the system. In the most simplistic case, the 
processor package has only one thread of execution, and this allows software to apply 
the same P-state policy at the package-level as well as at the logical processor level. 
However, with implementations that support multithreading and multiple cores, a single 
package can have multiple logical processors (threads of execution). These may have 
P-state dependencies among them, which may not allow for individual P-state control 
flexibility at the software level. For example, these logical processors may be sharing 
the same clock and power delivery network. In such circumstances, software would 
need to know which logical processors have dependencies and what the nature of the 
dependencies is, so that appropriate coordination techniques can be applied. To allow 
the architecture definition to comprehend multi-threaded/multi-core designs, we define 
the concept of dependency domain and coordination mechanisms.

A dependency domain is comprised of logical processors that share a common set of 
implementation-dependant domain parameters that affect power consumption and 
performance for all logical processors in that domain. As an example, a processor 
package comprised of two cores controlled by the same clock and power distribution 
network are part of the same dependency domain, since changing either the operating 
frequency or voltage will affect power consumption and performance for both cores. 
Alternatively, if these two cores on the processor package had independent distribution 
networks for clocks and power, then a change in the parameters for one core would not 
have any effect on the other core, and in that case, the cores would not belong to the 
same dependency domain. Software can utilize P-states to effect changes in the domain 

Figure 11-10. Example of a P-state Transition Policy
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parameters. Each P-state maps to a set of values for the domain parameters, and 
hence a P-state transition results in a change in the underlying power/performance 
characteristics for the logical processor.

The Itanium architecture supports different types of dependency domains, which 
enables software to have different degrees of control for P-state changes affecting 
logical processors in the domain.

A software-coordinated dependency domain (SCDD) relies on the software to 
coordinate P-state changes among the processors in that dependency domain. 
Software will have knowledge about logical processors belonging to that domain, and 
will decide when it is appropriate to request the P-state transition. The software policy 
has to be aware that a P-state change on any logical processor will change the P-state 
for all logical processors in that domain. As an example, let us assume that the SCDD 
consisted of two cores with the same clock and power distribution networks and the 
intent of the software policy was to lower power/performance only when the workload 
utilization was low on both cores. Software could then monitor utilization on both cores, 
and when both cores were under-utilized (i.e., were running at a higher performance 
P-state than required by the current system demand), it could migrate one of the cores 
to a lower performance P-state. This transition would simultaneously reduce 
performance and power dissipation for both cores, and would result in both cores 
operating at the same lower P-state.

A hardware-coordinated dependency domain (HCDD) relies on hardware-based 
mechanisms to synchronize P-state changes. Software can make independent P-state 
change requests on individual processors, recognizing that hardware is responsible for 
the required coordination with other processors in the same HCDD. Hardware-based 
coordination mechanisms would be implemented to allow for changes to the logical 
processor's power and performance local parameters (which are 
implementation-dependant), in addition to the existing domain parameters. Hardware 
would use a combination of changes to both of these parameters to satisfy the 
software-initiated P-state change request. This type of coordination mechanism is 
effective when it is desired to have individual control over all logical processors, and 
when the hardware has local parameters for power/performance at the logical 
processor level. The local parameters allow for fine-grained control (affecting only the 
logical processor power/performance), whereas the domain parameters allow for 
coarse-grained control (affecting all logical processors). Domain parameters are set by 
hardware according to the highest requested power/performance level (i.e., the lowest 
numbered P-state) of the logical processors in the power domain. As an example, let us 
assume that the HCDD consisted of two cores with the same clock and power 
distribution networks, and that there were also some other techniques to affect power 
and performance which were local to each logical processor. Let us also assume that 
software has initially set both cores to the P0 state. When software initiates a P-state 
transition to P1 (which is a lower power/performance level) on the first core, hardware 
would use only the local parameters to carry out the request, and the domain 
parameters would remain at P0. Suppose software on the second core then initiates a 
P-state transition to P3. Hardware would then set the local parameters for the second 
core to reflect this request, undo the changes to the local parameters for the first core 
plus initiate changes to the domain parameters to transition the domain to the P1 state 
(the highest requested power/performance level of the two cores).
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A hardware-independent dependency domain (HIDD) is a self-contained domain 
that typically means that every logical processor is the only logical processor in that 
domain, and its domain parameters are individually controllable. Since there are no 
dependencies with any other logical processors, there is no P-state coordination needed 
for such domains. Software can make P-state change requests independently on that 
logical processor.

11.6.1.2 Platform Power-Cap and P-states

Some processor implementations include mechanisms which allow the platform 
hardware and firmware to temporarily decrease the operating frequency of logical 
processors, to implement fast-response power capping. This is referred to as a 
Platform Power-Cap. In such implementations, the P-state requested by software is 
not changed by the platform power-cap. Software is able to change its P-state request 
during platform power-caps; when the platform power-cap is removed, the processor 
operating frequency returns to the frequency determined by software's most recent 
P-state settings.

Platform power caps are meant to have a very short duration and very low duty cycle so 
they do not significantly affect software methods for managing power through P-states. 
Platform power-caps do not affect the instantaneous operating P-state observed by 
software, but do affect the weighted-average performance index reported to software 
by PAL, so that software may take into account any small effects. (See the 
PAL_GET_PSTATE procedure for details.)

11.6.1.3 PAL Interfaces for P-states

The PAL procedure PAL_PROC_GET_FEATURES returns whether an implementation 
supports P-states. If an implementation supports P-states then the 
PAL_PROC_SET_FEATURE procedure will allow the caller to enable or disable this 
feature.

The Itanium architecture provides three PAL procedures to enable P-state functionality.

PAL_PSTATE_INFO: This procedure returns information about the P-states 
implemented on a particular processor. For details on the information returned by this 
procedure, please refer to the procedure description on page 2:396. The Itanium 
architecture supports a maximum of 16 P-states.

PAL_SET_PSTATE: This procedure allows the caller to request the transition of the 
processor to a new P-state. The procedure can either return with transition success 
(request was accepted) or transition failure (request was not accepted) depending on 
hardware capabilities, implementation-specific event conditions, and the spacing 
between successive PAL_SET_PSTATE procedure calls.

If hardware has the ability to either preempt a previous in-progress P-state transition, 
or to queue successive P-state requests while the first request is in transition, then the 
implementation has a pre-emptive policy for P-state request handling. The architecture 
also allows for a non-preemptive policy for P-state request handling, whereby a new 
PAL_SET_PSTATE request is not accepted if a previous P-state transition is already in 
progress. The PAL_SET_PSTATE procedure returns different status values 
corresponding to the accepted and not accepted cases for P-state requests. If the 
transition is not accepted, no P-state transition is initiated by the PAL_SET_PSTATE 



2:320 Volume 2, Part 1: Processor Abstraction Layer

procedure, and the caller is expected to make another PAL_SET_PSTATE request to 
transition to the desired P-state. The transition_latency_2 field in the pstate_buffer 
returned by PAL_PSTATE_INFO indicates the time interval the caller needs to wait to 
have a reasonable chance of success when initiating another PAL_SET_PSTATE call.

Implementation-specific event conditions may prevent a PAL_SET_PSTATE request from 
being accepted (e.g., due to a thermal protection mechanism), in which case the PAL 
procedure returns a status of transition failure. Such events are expected to be rare 
and to happen only in abnormal situations.

It should be noted that platform power-caps do not cause a PAL_SET_PSTATE request 
to fail. The requested P-state is registered with PAL, and the procedure returns a status 
of transition success.

SCDD: If the logical processor belongs to a software-coordinated dependency domain, 
the PAL_SET_PSTATE procedure will change the domain parameters resulting in a 
transition to the requested P-state for all logical processors in that domain.

HCDD: If the logical processor belongs to a hardware-coordinated dependency domain, 
the PAL_SET_PSTATE procedure will attempt to change the power/performance 
characteristics for that logical processor. Since the power/performance characteristics 
for the domain depend on the P-state settings of the other logical processors in the 
domain, a PAL_SET_PSTATE call on one logical processor may result in either partial or 
complete transition to the requested P-state. In case of partial transition (see 
Figure 11-11, “Computation of performance_index” on page 2:321 for an example, 
where the logical processor transitions from state P0 to state P3 in partial increments), 
the logical processor may attempt to perform changes at a later time to the local 
parameters and/or domain parameters to transition to the originally requested P-state 
based on P-state transition requests on other logical processors. Software can also 
approximate the behavior of a SCDD by forcing P-state transitions. See the description 
of the PAL_SET_PSTATE procedure for more details.

HIDD: If the logical processor belongs to a hardware-independent dependency domain, 
the PAL_SET_PSTATE procedure will attempt to change the domain parameters, which 
will transition the logical processor in that domain to the requested P-state.

PAL_GET_PSTATE: This procedure returns the performance index of the logical 
processor, relative to the highest available P-state (P0). A value of 100 in P0 represents 
the minimum processor performance in the P0 state. For example, if the value returned 
by the procedure is 80, this indicates that the performance of the logical processor over 
the last time period was 20% lower than the minimum P0 performance. For processors 
that support variable P-states, it is possible for a processor to report a number greater 
than 100, representing that the processor is running at a performance level greater 
than the minimum P0 performance. For example, if the value returned by the processor 
is 120, it indicates that the performance of the logical processor over the last time 
period was 20% higher than the minimum P0 performance. The performance index is 
measured over the time interval since the last PAL_GET_PSTATE call with a type 
operand of 1. If the processor supports variable P-state performance then the 
PAL_PROC_SET_FEATURE procedure can be used to enable or disable this feature. 
Software may choose, on each invocation of the PAL_GET_PSTATE procedure, whether 
to reset the internal performance measurement logic; resetting the measurement logic 
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initiates a new performance_index count, which is reported when the next 
PAL_GET_PSTATE procedure call is made. A call to PAL_GET_PSTATE with a type 
operand of 1 resets the performance measurement logic.

SCDD: If the logical processor belongs to a software-coordinated dependency domain, 
the performance index returned (for either type=0 or 3) corresponds to the target 
P-state requested by the most recent successful PAL_SET_PSTATE procedure call. No 
weighted average (type=1 or 2) is computed by PAL; calling PAL_GET_PSTATE with 
type=1 or 2 on a SCDD logical processor is undefined.

HCDD: If the logical processor belongs to a hardware-coordinated dependency domain, 
the performance index returned (type=1 or 2) will be a weighted-average sum of the 
performance_index values corresponding to the different P-states that the logical 
processor was operating in since performance measurement was last reset. Note that 
this return value may not necessarily correspond to the performance index of the target 
P-state requested by the most recent PAL_SET_PSTATE procedure call. For example, 
let's assume that the previous PAL_GET_PSTATE procedure was called at time t0, when 
the processor was operating in state P0. The previous PAL_SET_PSTATE procedure 
requested a transition from P0 to P3. The transition happened over a period of time, 
such that the logical processor went through states P1 at time t1, P2 at time t2 and P3 
at time t3, and was in state P3 at time t4 when the current PAL_GET_PSTATE procedure 
was called. The performance_index returned is calculated as:

performance_index =
((time spent in P0 after the previous PAL_GET_PSTATE) * (performance_index for P0)+
(time spent in P1) * (performance_index for P1) +
(time spent in P2) * (performance_index for P2) +
(time spent in P3 up to the current PAL_GET_PSTATE) * (performance_index for P3)) /
(time interval between previous and current PAL_GET_PSTATE) =

Figure 11-11. Computation of performance_index
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As seen above, for a HCDD, the PAL_GET_PSTATE procedure allows the caller to get 
feedback on the dynamic performance of the processor over a software-controlled time 
period. The caller can use this information to get better system utilization over a 
subsequent time period by changing the P-state in correlation with the current 
workload demand. The caller can also use PAL_GET_PSTATE to see the most recent 
P-state set for this logical processor (type=0) and the instantaneous current P-state 
that the domain parameters are set to (type=3). Platform power-caps do not affect 
either of these return values.

HIDD: If the logical processor belongs to a hardware-independent dependency domain, 
a weighted-average performance index can be returned by PAL_GET_PSTATE (type=1 
or 2). Since software could calculate the performance index based on P-states it set, 
the weighted-average performance index is only of value when factoring in the effect of 
platform power-caps.

Note that P-state transitions typically do not happen instantaneously. An 
implementation-specific amount of time is required for a given transition to complete. 
The computation of the weighted-average performance_index may not take into 
account the fact that transitions of power/performance are gradual, but may be done as 
though they were instantaneous at the point when the transition starts. The 
expectation is that any errors in computing the performance_index due to 
non-instantaneous transitions to higher and lower P-states will tend to cancel out, and 
to the extent that they do not, will be insignificant.

11.6.1.4 Variable P-state Performance

Some processors support variable P-state performance which allows the frequency to 
vary within a given P-state in order to achieve the maximum performance for that 
P-state's power budget. The PAL_PROC_GET_FEATURES procedure indicates whether 
the processor supports variable P-state performance (see “PAL_PROC_GET_FEATURES 
– Get Processor Dependent Features (17)” on page 2:446 for details).

Since the frequency within a P-state can vary, the performance index calculation is 
slightly different when a processor supports variable P-state performance. Frequencies 
for a given P-state are represented by an index value Fx,y. The value x is the P-state 
number and y represents a frequency point in the range from 0 to N. A value of 0 
represents the minimum frequency index value for the given P-state. For example:

F0,0 to F0,N – Frequency index values for the P0 state
F1,0 to F1,N – Frequency index values for the P1 state
…etc.

F0,0 is the minimum frequency index for the P0 state and its value is 100. F0,1 
represents a higher frequency point for P0 and will have a value greater than 100. For 
example, if F0,1 frequency is 5% greater than F0,0 it would have a value of 105.

The performance_index equation for P0 is calculated as follows:

((F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+ .. (F0,N * time spent in F0,N)) /
(Total Time spent in P0)
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For example, let's say the minimum frequency of P0 is 1 GHz and the maximum 
frequency of P0 is 1.5 GHz. If we are at 1 GHz for a time period of 4, 1.25 GHz for a 
time period of 16 and 1.5 GHz for a time period of 20, the average performance index 
is:

((100 * 4) + (125 * 16) + (150 * 20)) / (5 + 15 + 20) = 135

The performance_index equation for other P-states can be calculated in a similar manner 
using their respective frequency index values.

The total performance_index equation for a processor with four P-states (P0, P1, P2, P3) 
would be:

((F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+  .. (F0,N * time spent in F0,N)+
(F1,0 * time spent in F1,0) + (F1,1 * time spent in F1,1)+  .. (F1,N * time spent in F1,N)+
(F2,0 * time spent in F2,0) + (F2,1 * time spent in F2,1)+  .. (F2,N * time spent in F2,N)+
(F3,0 * time spent in F3,0) + (F3,1 * time spent in F3,1)+  .. (F3,N * time spent in F3,N)) /
(Total Time)

11.6.1.5 Interaction of P-states with HALT State

It is possible for a logical processor to enter and exit a HALT state between two 
consecutive calls to PAL_GET_PSTATE. Since the logical processor is not executing any 
instructions while in the HALT state, the performance index contribution during this 
period is essentially 0, and will not be accounted for in the performance_index value 
returned when the next PAL_GET_PSTATE procedure call is made.

For example, let us assume that the previous PAL_GET_PSTATE procedure was called at 
time t0, when the processor was operating in state P2.  The previous PAL_SET_PSTATE 
procedure initiated a transition from P2 to P3 at time t1. The processor entered HALT 
state at time th1, and exited the HALT state at time th2, and was in state P3 at time t2 
when the current PAL_GET_PSTATE procedure was called. The performance_index 
returned is calculated as:

performance_index =
((time in P2 after the previous PAL_GET_PSTATE) * (performance_index for P2) +
(time in P3 before entering HALT state) * (performance_index for P3) +
(time in P3 after exiting HALT up to current PAL_GET_PSTATE))) * (performance_index for 
P3)) /
(time interval between previous and current GET, excluding time spent in HALT) =

t1 t0–  pf2 th1 t1–  pf3 t2 th2–  pf3++
t2 t0–  th2 th1– –

----------------------------------------------------------------------------------------------------------------------
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As shown above, the value returned for performance_index does not account for the 
performance during the time spent by the logical processor in the HALT state. This 
provides for better accuracy in the value reported for performance_index, allowing the 
caller to make optimal adjustments to the system utilization even in scenarios where 
we have interactions between P-states and HALT state.

11.7 PAL Virtualization Support

This section describes the PAL architectural support for Itanium processor virtualization.

On processors in the Itanium Processor Family that support processor virtualization, the 
PAL virtualization support described in this document will be available. Itanium 
processor virtualization support can be determined by calling 
PAL_PROC_GET_FEATURES.

The virtualization support in PAL presents an implementation-independent interface to 
enable the VMM to implement software policies to manage/support virtualization of 
Itanium processors.

The PAL extensions for virtualization consist of three main components:

1. A set of procedures to support virtualization operations.  These procedures allow 
the VMM to configure logical processors for virtualization operations and 
suspend/resume virtual processors on logical processors. Details for this 
component are described in Section 11.10, “PAL Procedures” on page 2:353.

2. A set of services to provide low-latency, low-overhead support for 
performance-critical VMM operations. Details for this component are described in 
Section 11.11, “PAL Virtualization Services” on page 2:486.

3. A PAL intercept interface to allow PAL to deliver virtualization events to the VMM 
in a low-latency, low-overhead manner.  This PAL-to-VMM interface also allows 
PAL to provide optimizations for VMM operations. Details for this component are 
described in Section 11.7.3, “PAL Intercepts in Virtual Environment” on 
page 2:332.

Figure 11-12. Interaction of P-states with HALT State
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The VMM is responsible for managing the set of available system resources (CPU, 
memory, peripherals) and implement policies to virtualize these resources. In order to 
support virtual processor operations, the VMM will create a virtual environment and 
associate logical processors with the virtual environment.  A virtual environment 
consists of one or more logical processors plus the memory resource allocated by the 
VMM during PAL_VP_INIT_ENV.

The VMM creates a virtual environment by calling PAL_VP_ENV_INFO to obtain the 
memory requirement for creating a virtual environment, and then by calling 
PAL_VP_INIT_ENV on each logical processor that is to be part of the virtual 
environment.  After a virtual environment is created, the VMM can create and initialize 
virtual processors to run in the environment by calling PAL_VP_CREATE.

The state of a virtual processor belonging to a virtual environment can be 
restored/saved on a logical processor in the environment by calling PAL_VP_RESTORE 
or PAL_VP_SAVE respectively.  The VMM starts virtual processor operations on a logical 
processor by invoking either PAL_VPS_RESUME_NORMAL or 
PAL_VPS_RESUME_HANDLER.

The VMM can add/remove a logical processor from a virtual environment at any time by 
calling PAL_VP_INIT_ENV or PAL_VP_EXIT_ENV respectively.

11.7.1 Virtual Processor Descriptor (VPD)

The Virtual Processor Descriptor (VPD) represents the abstraction of processor 
resources of a single virtual processor. The VPD consists of per-virtual-processor control 
information together with performance-critical architectural state. The VPD is 64K in 
size and the base must be 32K aligned. Table 11-16 shows the fields and layout of the 
VPD. The values in the VPD can be stored in little or big endian format, depending on 
the setting of be field setting in “config_options – Global Configuration Options” during 
PAL_VP_INIT_ENV call. See “PAL_VP_INIT_ENV – PAL Initialize Virtual Environment 
(268)” on page 2:478 for details. The VPD is divided into two classes – the first class 
stores control information and the second class stores the performance-critical 
architectural state of the virtual processor.

The VMM must keep the virtual processor state in the VPD for a particular state entry 
either: always, or only when one or more particular accelerations is enabled, as 
described in the Class columns of Table 11-16, Table 11-17 and Table 11-18. See 
Section 11.7.4.2, “Virtualization Accelerations” on page 2:337 for details.

Note: Not all architectural state of the virtual processor is included in the VPD. The 
VMM is responsible for setting up all the required virtual processor state in the 
architectural registers as well as in the VPD prior to resuming virtual processor 
execution. See Table 11-122, “Virtual Processor Settings in Architectural 
Resources for PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” 
on page 2:489 and Table 11-123, “Processor Status Register Settings for Vir-
tual Processor Execution” on page 2:490 for details.
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Table 11-16. Virtual Processor Descriptor (VPD)

Name Entries Offset Description Class

vac 1 0 Virtualization Acceleration Control – these con-
trol bits enable virtualization acceleration of a 
particular resource or instruction. See 
Section 11.7.1.1, “Virtualization Controls” on 
page 2:329 for details.

Control [always]

vdc 1 8 Virtualization Disable Control – these control 
bits disable the virtualization of a particular 
resource or instruction. See Section 11.7.1.1, 
“Virtualization Controls” on page 2:329 for 
details.

Control [always]

virt_env_vaddr 1 16 PAL Virtual Environment Buffer Address – this 
field stores the host virtual address of the vir-
tual environment which the virtual processor 
belongs to. The value in this field must be the 
same as the vbase_addr field during 
PAL_VP_INIT_ENV call.

Control [always]

Reserved 29 24 Reserved Area – Reserved for future expan-
sion.

Reserved

vhpi 1 256 Virtual Highest Priority Pending Interrupt – 
Specifies the current highest priority pending 
interrupt for the virtual processor. See 
Table 11-124, “vhpi – Virtual Highest Priority 
Pending Interrupt” on page 2:495 for details.

Control [a_int]

Reserved 95 264 Reserved Area – Reserved for future expan-
sion.

Reserved

vgr[16-31] 16 1024 Virtual General Registers – Represent the 
bank 1 general registers 16-31 of the virtual 
processor. When the virtual processor is run-
ning and vpsr.bn is 1, the values in these 
entries are undefined.

Architectural State 
[a_bsw]

vbgr[16-31] 16 1152 Virtual Banked General Registers – Represent 
the bank 0 general registers 16-31 of the virtual 
processor. When the virtual processor is run-
ning and vpsr.bn is 0, the values in these 
entries are undefined.

Architectural State 
[a_bsw]

vnat 1 1280 Virtual General Register NaTs – Bits 0-15 rep-
resent the NaT values corresponding to 
vgr16-31, where the NaT bit for vgr16 is in bit 
0. Bits 16-63 are don’t cares.

Architectural State 
[a_bsw]

vbnat 1 1288 Virtual Banked Register NaTs – Bits 16-31 rep-
resent the NaT values corresponding to 
vbgr16-31, where the NaT bit for vbgr16 is in 
bit 16. Bits 0-15 and 32-63 are don’t cares.

Architectural State 
[a_bsw]

vcpuid[0-4] 5 1296 Virtual CPUID Registers – Represent cpuid 
registers 0-4 of the virtual processor.
NOTE: If a_tf is disabled or not supported, 
vcpuid[0-1] and vcpuid[4]{63:32} must contain 
the same values as the corresponding values 
of the logical processor on which this virtual 
processor is running.
If a_tf is enabled, The VMM may maintain a dif-
ferent VCPUID[4]{63:32} value from the 
CPUID[4]{63:32} value of the logical processor 
on which the virtual processor is running.

Architectural State 
[a_from_cpuid, a_tfa]
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Table 11-17 provides details on which vpsr bits are required to be store in the VPD for 
different accelerations. Two bits, vpsr.ic and vpsr.si are always required to be in the 
VPD.  The remaining vpsr bits are only required to be stored in the VPD if certain 
virtualization accelerations are enabled. Even though some fields are not required to be 
stored in the VPD, the VMM is free to store the entire vpsr in the VPD.

Reserved 11 1336 Reserved Area – Reserved for future expan-
sion.

Reserved

vpsr 1 1424 Virtual Processor Status Register – Represents 
the Processor Status Register of the virtual pro-
cessor.

Architectural State
See Table 11-17 for 
details.

vpr 1 1432 Virtual Predicate Registers – Represents the 
Predicate Registers of the virtual processor. 
The bit positions in vpr correspond to predicate 
registers in the same manner as with the mov 
predicates instruction. The contents in this field 
are undefined except at virtualization intercept 
handoff. The VMM can not rely on the contents 
in this field to be preserved when the virtual 
processor is running.

Architectural State 
[always]

Reserved 76 1440 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to 
hold additional machine-specific processor 
state.

Reserved

vcr[0-127] 128 2048 Virtual Control Registers – Represent the con-
trol registers of the virtual processor. For the 
reserved control registers, the corresponding 
VPD entries are reserved.

Architectural State
See Table 11-18 for 
details.

Reserved 128 3072 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to 
hold additional machine-specific processor 
state

Reserved

Reserved 3456 4096 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to 
hold additional machine-specific processor 
state

Reserved

vmm_avail 128 31744 Available for VMM use. This area is ignored by 
the processor and PAL.

Ignored

Reserved 4096 32768 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to 
hold additional machine-specific processor 
state

Reserved

a. The a_tf acceleration only requires vcpuid[4] be kept in the VPD.

Table 11-16. Virtual Processor Descriptor (VPD) (Continued)

Name Entries Offset Description Class
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Table 11-17. Virtual Processor Descriptor (VPD) – VPSR

Field Bits Class

User Mask = PSR{5:0}

rv 0 Reserved

be 1

No accelerations require these fields.a

a. The user mask is not virtualized. See Section 11.7.4.2.4, “MOV-from-PSR Optimization” on page 2:341 and 
Section 11.7.4.2.10, “Interruption Collection and User Mask Optimization” on page 2:345 for further details.

up 2

ac 3

mfl 4

mfh 5

System Mask = PSR{23:0}

ic 13 Always

i 14 a_int, a_from_psr

pk 15 a_from_psr

rv 12:6, 16 Reserved

dt 17

a_from_psr

dfl 18

dfh 19

sp 20

pp 21

di 22

si 23 Always

PSR.l = PSR{31:0}

db 24

a_from_psr
lp 25

tb 26

rt 27

rv 31:28 Reserved

PSR{63:0}

cpl 33:32
No accelerations require these fields.

is 34

mc 35
a_from_psr

it 36

id 37

No accelerations require these fields.

da 38

dd 39

ss 40

ri 42:41

ed 43

bn 44 a_bsw

ia 45
No accelerations require these fields.

vm 46

rv 63:47 Reserved
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11.7.1.1 Virtualization Controls

The Virtualization Acceleration Control (vac) and Virtualization Disable Control (vdc) 
fields in the VPD contain configuration control bits which define the set of events that 
will cause an intercept from PAL to the VMM. The virtualization controls are divided into 
two categories:

1. Virtualization Acceleration Control – these control bits enable virtualization 
optimization support of a particular resource or instruction. Figure 11-13 and 
Table 11-19 describe these control bits.

2. Virtualization Disable Control – these control bits disable the virtualization of a 
particular resource or instruction. Figure 11-14 and Table 11-20 describe these 
control bits.

The vac and vdc settings are specified by the VMM during virtual processor initialization 
when the PAL_VP_CREATE procedure is called, and cannot be changed until the virtual 
processor is terminated by PAL_VP_TERMINATE.

Table 11-18. Virtual Processor Descriptor (VPD) – VCR[0-127]

Register Name Class

VCR0-15 No accelerations require these virtual control registers.

VCR16 VIPSR
a_from_int_cr, a_to_int_cr

VCR17 VISR

VCR18 No accelerations require this virtual control register.

VCR19 VIIP a_from_int_cr, a_to_int_cr

VCR20 VIFA Always

VCR21 VITIR Always

VCR22 VIIPA a_from_int_cr, a_to_int_cr

VCR23 VIFS a_cover, a_from_int_cr, a_to_int_cr

VCR24 VIIM

a_from_int_cr, a_to_int_cr
VCR25 VIHA

VCR26 VIIB0

VCR27 VIIB1

VCR28-65 No accelerations require these virtual control registers.

VCR66 VTPR a_int

VCR67-127 No accelerations require these virtual control registers.

Figure 11-13. Virtualization Acceleration Control (vac)
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Table 11-19. Virtualization Acceleration Control (vac) Fields

Field Bit Description

a_int 0 Enable the virtual external interrupt optimization. See Section 11.7.4.2.1, “Vir-
tual External Interrupt Optimization” on page 2:338 for details.

a_from_int_cr 1 Enable the interruption control register (CR16-27) read optimization. See 
Section 11.7.4.2.2, “Interruption Control Register Read Optimization” on 
page 2:340 for details.
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a_to_int_cr 2 Enable the interruption control register (CR16-27) write optimization. See 
Section 11.7.4.2.3, “Interruption Control Register Write Optimization” on 
page 2:341 for details.

a_from_psr 3 Enable the processor status register read optimization. See 
Section 11.7.4.2.4, “MOV-from-PSR Optimization” on page 2:341 for details.

a_from_cpuid 4 Enable the CPUID read optimization. See Section 11.7.4.2.5, 
“MOV-from-CPUID Optimization” on page 2:342 for details.

a_cover 5 Enable the cover instruction optimization. See Section 11.7.4.2.6, “Cover 
Optimization” on page 2:343 for details.

a_bsw 6 Enable the bsw instruction optimization. See Section 11.7.4.2.7, “Bank Switch 
Optimization” on page 2:343 for details.

a_all_probes 7 Enable virtualization of probe instructions. See Section 11.7.4.2.8, “Probe 
Instruction Virtualization” on page 2:344 for details.a_select_probes 8

a_tf 9 Enable the test feature optimization. See Section 11.7.4.2.9, “Test Feature 
Optimization” on page 2:345 for details.

a_ic_um 10 Enable the interruption collection and user mask optimization. See 
Section 11.7.4.2.10, “Interruption Collection and User Mask Optimization” on 
page 2:345 for details.

Reserved 63:11 Reserved

Figure 11-14. Virtualization Disable Control (vdc)
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Table 11-20. Virtualization Disable Control (vdc) Fields

Field Bits Description

d_vmsw 0 Disable vmsw instruction – If 1, disables vmsw instruction on the logical pro-
cessor. Execution of the vmsw instruction, independent of the state of 
PSR.vm, will cause a virtualization intercept.

d_extint 1 Disable external interrupt control register virtualization – If 1, accesses 
(reads/writes) of the external interrupt control registers (CR65-71) are not vir-
tualized. Code running with PSR.vm==1 can read and write the external inter-
rupt control registers of the logical processor directly and without handling off 
to the VMM. See Section 11.7.4.3.2, “Disable External Interrupt Control Reg-
ister Virtualization” on page 2:347 for details.

d_ibr_dbr 2 Disable breakpoint register virtualization – If 1, accesses (reads/writes) of the 
data and instruction breakpoint registers (IBR/DBR) are not virtualized. Code 
running with PSR.vm==1 can read and write the data/instruction breakpoint 
registers of the logical processor directly and without handling off to the VMM.
If 0, accesses of the breakpoint registers with PSR.vm==1 result in virtualiza-
tion intercepts.

d_pmc 3 Disable PMC virtualization – If 1, accesses (reads/writes) of the performance 
monitor configuration registers (PMCs) are not virtualized. Code running with 
PSR.vm==1 can read and write the performance monitor configuration regis-
ters of the logical processor directly and without handling off to the VMM.
If 0, accesses of the performance counter configuration registers with 
PSR.vm==1 result in virtualization intercepts.

Table 11-19. Virtualization Acceleration Control (vac) Fields (Continued)

Field Bit Description



Volume 2, Part 1: Processor Abstraction Layer 2:331

11.7.2 Interruption Handling in a Virtual Environment

For logical processors which have been added to a virtual environment through 
PAL_VP_INIT_ENV, all IVA-based interruptions continue to be delivered to the host IVT 
independent of the state of PSR.vm at the time of interruption. All IVA-based 
interruptions are serviced by the host IVT pointed to by the IVA (CR2) control register 
on the logical processor.

IVA-based interruptions that do not represent virtualization events will be delivered to 
the guest IVT by the VMM.  The guest IVT is specified by the VIVA control register in 
the VPD of the virtual processor.

For IVA-based interruption handling during virtual processor operations, PAL provides 
maximum flexibility to the VMM by supporting per-virtual-processor host IVTs. This 
allows the VMM to provide a different host IVT with optimizations specific to a particular 
guest operating system on the virtual processor.  The VMM can also choose to provide 
the same IVT for some or all of the virtual processors in a virtual environment.

Hence, at any time in a virtual environment, the IVA (CR2) control register of the 
logical processor will be pointing to either:

• The per-virtual-processor host IVT

• The generic host IVT not specific to any virtual processor

The per-virtual-processor host IVT for each virtual processor is setup by PAL when the 
virtual processor is first created (PAL_VP_CREATE) or registered (PAL_VP_REGISTER) in 
the virtual environment. The VMM passes a pointer to the host IVT specific to the virtual 
processor as an incoming parameter to the PAL_VP_CREATE or PAL_VP_REGISTER 
procedures. The per-virtual-processor host IVT is setup to perform long branches to the 
corresponding vector of the IVT specified in the incoming parameter for all IVA-based 

d_to_pmd 4 Disable PMD write virtualization – If 1, writes to the performance monitor data 
registers (PMDs) are not virtualized. Code running with PSR.vm==1 can write 
the performance monitor data registers of the logical processor directly and 
without handling off to the VMM.
If 0, writes of the performance counter data registers with PSR.vm==1 result 
in virtualization intercepts.

d_itm 5 Disable ITM virtualization – If 1, writes to the Interval Timer Match (ITM) regis-
ter are not virtualized. Code running with PSR.vm==1 can write the ITM regis-
ter of the logical processor directly and without handling off to the VMM.
If 0, writes of the ITM register with PSR.vm==1 result in virtualization inter-
cepts.

d_psr_i 6 Disable PSR.i virtualization – If 1, accesses (reads/writes) to the interrupt bit 
in processor state register (PSR.i) are not virtualized. Code running with 
PSR.vm==1 can read and write only the interrupt bit via the ssm and rsm 
instructions directly without handling off to the VMM. Attempts to modify other 
PSR bits in addition to the interrupt bit via the ssm and rsm instructions will 
result in virtualization intercepts. Attempts to modify the interrupt bit with the 
mov psr.l instruction will continue to result in virtualization intercepts.
If 0, accesses to the PSR.i bit with PSR.vm==1 result in virtualization inter-
cepts.

Reserved 63:7 Reserved

Table 11-20. Virtualization Disable Control (vdc) Fields (Continued)

Field Bits Description
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interruptions except the Virtualization vector. Virtualization vector will be delivered as 
virtualization intercept in the per-virtual-processor host IVT. See Section 11.7.3, “PAL 
Intercepts in Virtual Environment” on page 2:332 for details on PAL intercepts.

In the virtual environment, the IVA (CR2) control register will be set by PAL 
virtualization-related procedures and services as summarized in Table 11-21.

After successful execution of PAL_VP_RESTORE procedure or PAL_VPS_RESTORE 
service, the IVA control register on the logical processor is set to point to the 
per-virtual-processor host IVT. After successful completion of PAL_VP_RESTORE 
procedure, the VMM must not change the IVA control register on the logical processor 
until after the next invocation of PAL_VP_SAVE or PAL_VPS_SAVE.

On IVA-based interruptions when a virtual processor is running (after 
PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER), the IVA control register 
on the logical processor is unchanged and will continue to point to the 
per-virtual-processor host IVT. On resume execution to the same virtual processor 
through PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER PAL services, the 
VMM must ensure the IVA control register on the logical processor is set to point to the 
per-virtual-processor host IVT at the time of interruption.1

11.7.3 PAL Intercepts in Virtual Environment

When the IVA control register on the logical processor is set to point to the 
per-virtual-processor host IVT, virtualization intercepts will be raised at the 
Virtualization vector or at an optional virtualization intercept handler specified by the 
VMM. By default, virtualization intercepts are delivered to the Virtualization vector of 
the IVT specified by the VMM during PAL_VP_CREATE / PAL_VP_REGISTER. If the VMM 
specified the optional virtualization intercept handler, all virtualization intercepts are 
delivered to that handler (instead of the Virtualization vector.)

Table 11-21. IVA Settings after PAL Virtualization-related Procedures and 
Services

PAL 
Virtualization-related 
Procedure / Service

Description

PAL_VP_CREATE
These procedures do not change the IVA control register.

PAL_VP_ENV_INFO

PAL_VP_EXIT_ENV This procedure sets the IVA control register to point to the IVT specified by the caller.

PAL_VM_INIT_ENV
These procedures do not change the IVA control register.

PAL_VP_REGISTER

PAL_VP_RESTORE /
PAL_VPS_RESTORE

This procedure / service sets the IVA control register to point to the 
per-virtual-processor host IVT.

PAL_VP_SAVE /
PAL_VPS_SAVE

This procedure / service does not change the IVA control register.

PAL_VP_TERMINATE This procedure sets the IVA control register to point to the IVT specified by the caller.

1. In other words, the VMM is allowed to change to another IVT after IVA-based interruptions happen-
ing during virtual processor execution. The VMM must ensure the per-virtual processor IVT is
restored before resuming to the same virtual processor through PAL_VPS_RESUME_NORMAL or
PAL_VPS_RESUME_HANDLER.
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Section 11.7.3.1, “PAL Virtualization Intercept Handoff State” on page 2:333 describes 
the handoff state of the PAL intercepts. For all interruption vectors other than 
Virtualization vector, the architectural state at the corresponding IVA-based interruption 
vector is the same as defined in Chapter 8, “Interruption Vector Descriptions” in Volume 
2.

11.7.3.1 PAL Virtualization Intercept Handoff State

The state of the logical processor at virtualization intercept handoff is:

• GRs: 

• Non-banked GRs: The contents of non-banked general registers are preserved 
from the time of the interruption.

• Bank 1 GRs: The contents of all bank one general registers are preserved from 
the time of the interruption.

• Bank 0: GR16-23: The contents of these bank zero general registers are 
preserved from the time of the interruption.

• Bank 0: GR24-31: Scratch, contains parameters/state for VMM:

• GR24 indicates the cause of virtualization intercept. See Table 11-22, “PAL 
Virtualization Intercept Handoff Cause (GR24)” for details. This field is not 
provided to the VMM if the value of the cause field in the config_options 
parameter passed to PAL_VP_INIT_ENV is 0. If the value of the cause field 
in the config_options parameter passed to PAL_VP_INIT_ENV is 0, the 
value of GR24 on virtualization intercept handoff is undefined.

• GR25 contains the 41-bit opcode in little endian format and the type of the 
instruction which caused the fault, excluding the qualifying predicate (qp) 
field. See Figure 11-15, “PAL Virtualization Intercept Handoff Opcode 
(GR25),” on page 2:335 for details.

• GR26-31 are available for the VMM to use.

• FRs: The contents of all floating-point registers are preserved from the time of the 
interruption.

• Predicates: The contents of all predicate registers are undefined and available for 
use. The original contents are saved in the VPD.

• BRs: The contents of all branch registers are preserved from the time of the 
interruption.

• ARs: The contents of all application registers are preserved from the time of the 
interruption, except the ITC and RUC counters. The ITC register will not be directly 
modified by PAL, but will continue to count during the execution of the virtualization 
intercept handler. The RUC register will not be directly modified by PAL, but will 
continue to count during the execution of the virtualization intercept handler while 
the processor is active.

• CFM: The contents of the CFM register is preserved from the time of the 
interruption.

• RSE: All RSE state is preserved from the time of the interruption.

• PSR: PSR fields are set according to the “Interruption State” column in Table 3-2, 
“Processor Status Register Fields” on page 2:24. PSR.up and pp are set to 0 when 
fr_pmc field in config_options parameter during PAL_VP_INIT_ENV is 1.

• CRs: The contents of all control registers are preserved from the time of the 
interruption with the exception of resources described below.



2:334 Volume 2, Part 1: Processor Abstraction Layer

• IRRs: The contents of IRRs are not changed by PAL. Incoming interruptions 
may change the contents.

• IFS: IFS is unchanged from the time of the interruption.

• IIP: Contains the value of IP at the time of the interruption.

• IPSR: Contains the value of PSR at the time of the interruption.

• RRs: The contents of all region registers are preserved from the time of the 
interruption.

• PKRs: The contents of all protection key registers are preserved from the time of 
the interruption.

• DBRs/IBRs: The contents of all breakpoint registers are preserved from the time of 
the interruption.

• PMCs/PMDs: The contents of the PMC registers are preserved from the time of the 
virtualization intercept. The contents of the PMD registers are not modified by PAL 
code, but may be modified if events being monitored are encountered. The 
performance counters will be frozen if specified by the VMM through a parameter of 
PAL_VP_INIT_ENV procedure.

• Cache: The processor internal cache is not specifically modified by PAL handler but 
may be modified due to normal cache activity of running the handler code.

• TLB: The TRs are unchanged from the time of the interruption.

Table 11-22. PAL Virtualization Intercept Handoff Cause (GR24)

Value Cause Description

1 toAR Due to MOV-to-AR instruction.

2 toARimm Due to MOV-to-AR-imm instruction.

3 fromAR Due to MOV-from-AR instruction.

4 toCR Due to MOV-to-CR instruction.

5 fromCR Due to MOV-from-CR instruction.

6 toPSR Due to MOV-to-PSR instruction.

7 fromPSR Due to MOV-from-PSR instruction.

8 itc_d Due to itc.d instruction.

9 itc_i Due to itc.i instruction.

10 toRR Due to MOV-to-RR instruction.

11 toDBR Due to MOV-to-DBR instruction.

12 toIBR Due to MOV-to-IBR instruction.

13 toPKR Due to MOV-to-PKR instruction.

14 toPMC Due to MOV-to-PMC instruction.

15 toPMD Due to MOV-to-PMD instruction.

16 itr_d Due to itr.d instruction.

17 itr_i Due to itr.i instruction.

18 fromRR Due to MOV-from-RR instruction.

19 fromDBR Due to MOV-from-DBR instruction.

20 fromIBR Due to MOV-from-IBR instruction.

21 fromPKR Due to MOV-from-PKR instruction.

22 fromPMC Due to MOV-from-PMC instruction.

23 fromCPUID Due to MOV-from-CPUID instruction.

24 ssm Due to ssm instruction.

25 rsm Due to rsm instruction.

26 ptc_l Due to ptc.l instruction.
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11.7.4 Virtualization Optimizations

After the PAL_VP_INIT_ENV procedure is called, execution of the virtualized 
instructions listed in Table 3-10, “Virtualized Instructions” on page 2:44 with 
PSR.vm==1 results in virtualization intercepts to the VMM. Virtualization optimizations 
reduce overall virtualization overhead by allowing these instructions to execute, with 
PSR.vm==1, without causing intercepts to the VMM. There are two types of 
virtualization optimizations – global and local. Local virtualization optimizations are 
further divided into virtualization accelerations and virtualization disables.

Global virtualization optimizations are specified during initialization of the virtual 
environment (i.e., during PAL_VP_INIT_ENV). The specified optimizations are 
applicable to all the virtual processors running in the virtual environment. See Section 
11.7.4.1, “Global Virtualization Optimizations” for details on the global virtualization 
optimizations supported in the architecture.

Local virtualization optimizations are specified during the creation of the virtual 
processor (i.e., during PAL_VP_CREATE). The optimization settings were specified in the 
VPD and hence local to each virtual processor. The VMM can specify different local 
optimization settings for different virtual processors. The two classes of local 
virtualization optimizations are:

• Virtualization accelerations – Virtualization accelerations optimize the execution of 
virtualized instructions by supporting fast access to the virtual instance of the 

27 ptc_g Due to ptc.g instruction.

28 ptc_ga Due to ptc.ga instruction.

29 ptr_d Due to ptr.d instruction.

30 ptr_i Due to ptr.i instruction.

31 thash Due to thash instruction.

32 ttag Due to ttag instruction.

33 tpa Due to tpa instruction.

34 tak Due to tak instruction.

35 ptc_e Due to ptc.e instruction.

36 cover Due to cover instruction.

37 rfi Due to rfi instruction.

38 bsw_0 Due to bsw.0 instruction.

39 bsw_1 Due to bsw.1 instruction.

40 vmsw Due to vmsw instruction.

41 probe Due to probe instruction.

All 
other 
values

Reserved Reserved for future expansion.

Figure 11-15. PAL Virtualization Intercept Handoff Opcode (GR25)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode {31:6} Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

b m Reserved Opcode {40:32}

Table 11-22. PAL Virtualization Intercept Handoff Cause (GR24) (Continued)

Value Cause Description
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resource and perform the virtualized operations based on the virtual instance of the 
resource without handling off to the VMM. Section 11.7.4.2, “Virtualization 
Accelerations” on page 2:337 describes the supported Virtualization accelerations 
in the architecture.

• Virtualization disables – Virtualization disables optimize the execution of virtualized 
instructions by disabling virtualization of a particular resource or instruction. 
Accesses to the virtualization-disabled resources or executions of 
virtualization-disabled instructions, even with PSR.vm==1, will not cause intercepts 
to the VMM. Section 11.7.4.3, “Virtualization Disables” on page 2:346 describes the 
supported Virtualization disables in the architecture.

11.7.4.1 Global Virtualization Optimizations

Table 11-23 summarizes the global virtualization optimizations supported in Itanium 
architecture.

Certain global virtualization optimizations have VPD synchronization requirements. 
Please refer to the corresponding section of each global virtualization optimizations for 
more details on these requirements.

11.7.4.1.1 Virtualization Opcode Optimization

Virtualization opcode optimization is always enabled. Opcode information is provided to 
the VMM during PAL intercepts in the virtual environment. In some processor 
implementations, the opcode provided may not be guaranteed to be the opcode that 
triggered the intercept; virtual machine monitors can determine whether this is 
guaranteed from the vp_env_info return value of PAL_VP_ENV_INFO.

Table 11-24 and Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326 
shows the synchronization requirements and the VPD states that will be accessed for 
this optimization.

Table 11-23.Global Virtualization Optimizations Summary

Optimization config_optionsa

a. config_options is a parameter for the PAL_VP_INIT_ENV procedure. See “PAL_VP_INIT_ENV – PAL 
Initialize Virtual Environment (268)” on page 2:478 for details.

Description

Virtualization Opcode Optimization opcode Section 11.7.4.1.1

Virtualization Cause Optimization cause Section 11.7.4.1.2

Guest MOV-from-AR.ITC Optimization gitc Section 11.7.4.1.3

Table 11-24.Synchronization Requirements for Virtualization Opcode Optimi-
zation

VPD Resource Synchronization Required

vpsr.ic Write

vpsr.si Write

vifa Write

vitir Write
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11.7.4.1.2 Virtualization Cause Optimization

Virtualization cause optimization is enabled by the cause bit in the config_options 
parameter of PAL_VP_INIT_ENV. When enabled, the causes of virtualization intercepts 
will be provided to the VMM during PAL intercept handoffs within the virtual 
environment. When disabled, no cause information will be provided during PAL 
intercept handoffs.

This optimization requires no special synchronization.

11.7.4.1.3 Guest MOV-from-AR.ITC Optimization

Guest MOV-from-AR.ITC optimization allows software running with PSR.vm==1 to 
execute MOV-from-AR.ITC instructions without any intercepts to the VMM. The value 
returned will be the sum of the value in the interval timer counter register (ITC) and 
interval timer offset register (ITO), unless a fault condition is detected (see 
Table 11-25, “Behavior of Guest MOV-from-AR.ITC Instruction in Virtual Environment” 
for details). The VMM is responsible for programming the ITO register to provide the 
desired return value for guest execution with PSR.vm = 1 of the MOV-from-ITC 
instruction when this optimization is enabled.

This optimization is enabled by the gitc bit in the config_options parameter of 
PAL_VP_INIT_ENV. The behavior of the guest MOV-from-AR.ITC instruction is affected 
by the settings of psr.ic and vpsr.ic as well, as shown in Table 11-25.

This optimization requires no special synchronization.

This optimization is not supported on all processor implementations. Software can call 
PAL_VP_ENV_INFO to determine the availability of this feature.

11.7.4.2 Virtualization Accelerations

Table 11-26 summarizes the virtualization accelerations supported in Itanium 
architecture.

Table 11-25.Behavior of Guest MOV-from-AR.ITC Instruction in Virtual Envi-
ronment

gitca

a. gitc=0: Optimization disabled; gitc=1: Optimization enabled.

psr.si vpsr.si MOV-from-AR.ITC when PSR.vm==1

0

0 0 No virtualization intercept – guest reads AR.ITC

0 1 Invalid setting – behavior is undefined.

1 0 Virtualization intercept

1 1
If vpsr.cpl is not zero: Privileged Register fault
If vpsr.cpl is zero: Virtualization intercept

1

0 0 No virtualization intercept – guest reads the sum of ITC and ITO

0 1
If vpsr.cpl is not zero: Privileged Register fault
If vpsr.cpl is zero: No Virtualization intercept – guest reads the sum of ITC and ITO

1 0 Virtualization intercept.

1 1
If vpsr.cpl is not zero: Privileged Register fault
If vpsr.cpl is zero: Virtualization intercept
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For each of the accelerations, certain virtual processor control and architectural state is 
managed directly by hardware/firmware, and hence must be maintained in the VPD, 
and synchronization is required when the VMM reads or writes this state in the VPD. 
Some entries must be maintained in the VPD independent of any accelerations. (These 
are marked as [always].) See Table 11-16 for details on which VPD state is used with 
each of the accelerations. See Section 11.11, “PAL Virtualization Services” on 
page 2:486 for a description of the synchronization services.

11.7.4.2.1 Virtual External Interrupt Optimization

The virtual external interrupt optimization allows the VMM to specify the virtual highest 
priority pending interrupt so that a virtual external interrupt is raised on changes of 
vtpr or vpsr.i only when that the virtual highest priority pending interrupt is unmasked. 
For details on virtual external interrupts, see “Virtual External Interrupt vector 
(0x3400)” on page 2:187.

The virtual external interrupt optimization is enabled by the a_int bit in the 
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is 
enabled, the VMM specifies the virtual highest priority pending interrupt (vhpi) through 
the PAL_VPS_SET_PENDING_INTERRUPT service described in Section 11.11.2, “PAL 
Virtualization Service Specifications” on page 2:488. If this optimization is disabled, 
processor behavior is undefined if PAL_VPS_SET_PENDING_INTERRUPT is invoked.

When this optimization is enabled, execution of rsm and ssm instructions1, with 
PSR.vm==1, which modify only vpsr.i will not intercept to the VMM and vpsr.i is 
updated with the new value, unless a fault condition is detected (see Table 11-29 for 
details).

Table 11-26. Virtualization Accelerations Summary

Optimization
Virtualization 
Acceleration 

Control (vac)a

a. The Virtualization Acceleration Control (vac) field resides in the Virtual Processor Descriptor (VPD), see 
Section 11.7.1, “Virtual Processor Descriptor (VPD)” on page 2:325 for details.

Description

Virtual External Interrupt Optimization a_int Section 11.7.4.2.1

Interruption Control Register Read Optimization a_from_int_cr Section 11.7.4.2.2

Interruption Control Register Write Optimization a_to_int_cr Section 11.7.4.2.3

MOV-from-PSR Optimization a_from_psr Section 11.7.4.2.4

MOV-from-CPUID Optimization a_from_cpuid Section 11.7.4.2.5

Cover Optimization a_cover Section 11.7.4.2.6

Bank Switch Optimization a_bsw Section 11.7.4.2.7

Virtualize all probe instructions a_all_probes Section 11.7.4.2.8

Virtualize selected probe instructions a_select_probes

Test Feature Optimization a_tf Section 11.7.4.2.9

Interruption Collection and User Mask Optimization a_ic_um Section 11.7.4.2.10

1. The execution of rsm and ssm instructions with PSR.vm==1 is affected by both the virtual external
interrupt optimization (a_int) and the interruption collection and user mask optimization (a_ic_um).
Software can enable or disable both optimizations together, or enable each optimization indepen-
dently. Section 11.7.4.4.1, “Virtual External Interrupt Optimization and Interruption Collection and
User Mask Optimization” on page 2:349 describes the behavior when both optimizations are
enabled.
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When this optimization is enabled, execution of rsm and ssm instructions1, with 
PSR.vm==1 and system mask equal to zero (0x0), will not intercept to the VMM unless 
a fault condition is detected (see Table 11-29 for details).

A virtual external interrupt is raised if the virtual highest priority pending interrupt 
(vhpi) is unmasked by the new vpsr.i and vtpr. If the virtual highest priority pending 
interrupt (vhpi) is still masked by the new vpsr.i or vtpr, no virtual external interrupt will 
be raised. Note that execution of MOV-to-PSR instructions with PSR.vm==1 always 
results in a virtualization intercept no matter which PSR bits are modified.

When this optimization is enabled, execution of rsm and ssm instructions1, with 
PSR.vm==1, which modify any bits in addition to vpsr.i result in a virtualization 
intercepts. No virtual external interrupts are raised and the VMM is responsible for 
delivering a virtual external interrupt if the virtual highest priority pending interrupt 
(vhpi) is unmasked.

When this optimization is enabled, execution of a MOV-from-CR instruction, with 
PSR.vm==1, targeting vtpr reads the most recent value, unless a fault condition is 
detected (see Table 11-29 for details).

When this optimization is enabled, on execution of MOV-to-TPR instructions with 
PSR.vm==1, vtpr will be updated with the new value without handling off to the VMM, 
unless a fault condition is detected (see Table 11-29 for details). A virtual external 
interrupt is raised if the virtual highest priority pending interrupt (vhpi) is unmasked by 
the new vpsr.i and vtpr. No virtual external interrupt is raised if the virtual highest 
priority pending interrupt is still masked by vpsr.i or vtpr.

When this optimization is enabled, after completion of an instruction with PSR.vm==1 
which modifies vtpr or vpsr.i (if the instruction completes without an intercept), a 
determination is made as to whether the new state unmasks the virtual highest priority 
pending interrupt. If it does, then a virtual external interrupt will be raised and the VMM 
will be entered on the Virtual External Interrupt vector. See Table 11-27 for details on 
the detection of virtual external interrupts.

Synchronization is required when this optimization is enabled, see Table 11-28 for 
details.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Table 11-27. Detection of Virtual External Interrupts

Condition Virtual External Interrupt

vhpi <= (!vpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) No – virtual highest priority pending interrupt 
is still masked.

vhpi > (!vpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) Yes – virtual highest priority pending 
interrupt is unmasked.

Table 11-28. Synchronization Requirements for Virtual External Interrupt 
Optimization

VPD Resource Synchronization Required

vtpr Read, Write

vpsr.i Read, Write

vhpi Write
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Note: This field cannot be enabled together with d_extint or d_psr_i virtualization dis-
ables. If this control is enabled together with any one of described disables, an 
error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER. See 
Section 11.7.4.4, “Virtualization Optimization Combinations” on page 2:349 for 
details.

11.7.4.2.2 Interruption Control Register Read Optimization

The interruption control register read optimization is enabled by the a_from_int_cr bit 
in the Virtualization Acceleration Control (vac) field in the VPD. When this optimization 
is enabled, and vpsr.ic is 0, software running with PSR.vm==1 will be able to read the 
virtual interruption control registers (vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, 
viib0-1) without any intercepts to the VMM, unless a fault condition is detected (see 
Table 11-31 for details).

If this optimization is disabled, a read of the interruption CRs with PSR.vm==1 results 
in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-30 for 
details.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Table 11-29. Interruptions when Virtual External Interrupt Optimization is 
Enabled

Instructions Interruptions

rsm, ssm When the virtual external interrupt optimization is enabled, execution 
of rsm and ssm instructions with PSR.vm==1 which modify only 
vpsr.i, may raise the following faults:

• Privileged Operation fault – if vpsr.cpl is not zero

MOV-from-TPR When the virtual external interrupt optimization is enabled, execution 
of MOV-from-CR instruction targeting vtpr with PSR.vm==1, may 
raise the following faults:

• Illegal Operation fault – if the target operand specifies GR 0 or 
an out-of-frame stacked register

• Privileged Operation fault – if vpsr.cpl is not zero

MOV-to-TPR When the virtual external interrupt optimization is enabled, execution 
of MOV-to-CR instruction targeting vtpr with PSR.vm==1, may raise 
the following faults:

• Privileged Operation fault – if vpsr.cpl is not zero

• Register NaT Consumption fault – if the NaT bit in the source 
register is one

• Reserved Register/Field fault – if the reserved field in the vtpr is 
being written with a non-zero value

Table 11-30. Synchronization Requirements for Interruption Control Register 
Read Optimization

VPD Resource Synchronization Required

vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, viib0-1 Write
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11.7.4.2.3 Interruption Control Register Write Optimization

The interruption control register write optimization is enabled by the a_to_int_cr bit in 
the Virtualization Acceleration Control (vac) field in the VPD. When this optimization is 
enabled, and vpsr.ic is 0, software running with PSR.vm==1 will be able to write the 
virtual interruption control registers (vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, 
viib0-1) without any intercepts to the VMM, unless a fault condition is detected (see 
Table 11-33 for details).

If this optimization is disabled, a write of the interruption control registers with 
PSR.vm==1 results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-32 for 
details.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.2.4 MOV-from-PSR Optimization

The MOV-from-PSR optimization is enabled by the a_from_psr bit in the Virtualization 
Acceleration Control (vac) field in the VPD. When this optimization is enabled, software 
running with PSR.vm==1 will be able to execute MOV-from-PSR instructions to read 

Table 11-31. Interruptions when Interruption Control Register Read 
Optimization is Enabled

Instructions Interruptions

Move from interruption control registers When the interruption control register read optimization is enabled, 
reads of interruption control registers with PSR.vm==1, may raise 
the following faults:

• Illegal Operation fault – if vpsr.ic is not zero or the target 
operand specifies GR 0 or an out-of-frame stacked register

• Privileged Operation fault – if vpsr.cpl is not zero

Table 11-32. Synchronization Requirements for Interruption Control Register 
Write Optimization

VPD Resource Synchronization Required

vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, viib0-1 Read

Table 11-33. Interruptions when Interruption Control Register Write 
Optimization is Enabled

Instructions Interruptions

Move to interruption control registers When the interruption control register write optimization is enabled, 
writes to interruption control registers with PSR.vm==1, may raise 
the following faults:

• Illegal Operation fault – if vpsr.ic is not zero

• Privileged Operation fault – if vpsr.cpl is not zero

• Register NaT Consumption fault – if the NaT bit of the source 
operand is one

• Reserved Register/Field fault – if any reserved field in the 
specified control register is written with a non-zero value

• Unimplemented Data Address fault – if writing to vifa and an 
unimplemented virtual address is specified
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the virtual processor status register without any intercepts to the VMM; and the last 
value written to the vpsr will be returned, unless a fault condition is detected (see 
Table 11-35 for details). The value returned for the fml, mfh, ac, up  and be bits are 
simply the values of those bits in the PSR of the logical processor, since those bits are 
not virtualized.

If this optimization is disabled, execution of a MOV-from-PSR instruction with 
PSR.vm==1 results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-34 for 
details.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Note: This field cannot be enabled together with the d_psr_i virtualization disable 
control (vdc) described in Section 11.7.4.3.7, “Disable PSR Interrupt-bit Virtu-
alization” on page 2:348. If this control is enabled together with the d_psr_i 
control, an error will be returned during PAL_VP_CREATE and 
PAL_VP_REGISTER. See Section 11.7.4.4, “Virtualization Optimization Combi-
nations” on page 2:349 for details.

11.7.4.2.5 MOV-from-CPUID Optimization

The MOV-from-CPUID optimization is enabled by the a_from_cpuid bit in the 
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is 
enabled, software running with PSR.vm==1 will be able to execute MOV-from-CPUID 
instruction to read the virtual CPUID registers without any intercepts to the VMM; and 
the corresponding VCPUID value from the VPD will be returned, unless a fault condition 
is detected (see Table 11-37 for details).

If this optimization is disabled, execution of a MOV-from-CPUID instruction with 
PSR.vm==1 results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-36 for 
details.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Table 11-34. Synchronization Requirements for MOV-from-PSR Optimization

VPD Resource Synchronization Required

vpsr{36:35, 31:6}
See Table 11-17, “Virtual Processor 
Descriptor (VPD) – VPSR” on 
page 2:328 for details.

Write

Table 11-35. Interruptions when MOV-from-PSR Optimization is Enabled

Instructions Interruptions

MOV-from-PSR When the MOV-from-PSR optimization is enabled, MOV-from-PSR 
instructions with PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the target operand specifies GR 0 or 
an out-of-frame stacked register

• Privileged Operation fault – if vpsr.cpl is not zero
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11.7.4.2.6 Cover Optimization

The cover optimization is enabled by the a_cover bit in the Virtualization Acceleration 
Control (vac) field in the VPD. When this optimization is enabled, software running with 
PSR.vm==1 will be able to execute cover instructions without any intercepts to the 
VMM, unless a fault condition is detected (see Table 11-39 for details). The cover 
instruction will execute and vcr.ifs will be updated if vpsr.ic is 0.

If this optimization is disabled, execution of the cover instruction with PSR.vm==1 
results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-38 for 
details.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.2.7 Bank Switch Optimization

The bank switch optimization is enabled by the a_bsw bit in the Virtualization 
Acceleration Control (vac) field in the VPD. When this optimization is enabled, execution 
of the bsw instruction with PSR.vm==1 spills the currently active banked registers and 
the corresponding NaT bits to the VPD, and loads the other banked registers and the 

Table 11-36. Synchronization Requirements for MOV-from-CPUID 
Optimization

VPD Resource Synchronization Required

vcpuid0-4 Write

Table 11-37. Interruptions when MOV-from-CPUID Optimization is Enabled

Instructions Interruptions

MOV-from-CPUID When the MOV-from-CPUID optimization is enabled, 
MOV-from-CPUID instructions with PSR.vm==1, may raise the fol-
lowing faults:

• Illegal Operation fault – if the target operand specifies GR 0 or 
an out-of-frame stacked register

• Register NaT Consumption fault – if the NaT bit in the target 
register is one

• Reserved Register/Field fault – if a reserved CPUID register is 
being read

Table 11-38. Synchronization Requirements for Cover Optimization

VPD Resource Synchronization Required

vifs Read, Write

Table 11-39. Interruptions when Cover Optimization is Enabled

Instructions Interruptions

cover When the cover optimization is enabled, cover instructions with 
PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the instruction is not the last instruction 
in an instruction group
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corresponding NaT bits from the VPD. vpsr.bn is updated to reflect the new register 
bank without any intercepts to the VMM, unless a fault condition is detected (see 
Table 11-46 for details).

If this optimization is disabled, execution of the bsw instruction with PSR.vm==1 
results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-40 for 
details.

Note: This field cannot be enabled together with the d_psr_i virtualization disable 
control (vdc) described in Section 11.7.4.3.7, “Disable PSR Interrupt-bit Virtu-
alization” on page 2:348. If this control is enabled together with the d_psr_i 
control, an error will be returned during PAL_VP_CREATE and 
PAL_VP_REGISTER. See Section 11.7.4.4, “Virtualization Optimization Combi-
nations” on page 2:349 for details.

11.7.4.2.8 Probe Instruction Virtualization

The probe instruction virtualization is controlled by the a_all_probes and 
a_select_probes bits in the Virtualization Acceleration Control (vac) field in the VPD.

When the a_all_probes bit is set to 1, all probe instructions running at all privilege 
levels with PSR.vm==1 will result in virtualization intercepts.

When the a_select_probes bit is set to 1, the following probe instructions will raise 
virtualization intercepts when executed with PSR.vm==1 at the most privileged level 
(VPSR.cpl==0):

• probe instructions in immediate-form, with immediate field equal to privilege level 
0

• All probe instructions in register-form

Please refer to the instruction description page for the probe instruction for details on 
the usage of immediate-form and register-form of the instruction.

Note: Software cannot enable both a_all_probes and a_select_probes bits together - 
an error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER.

The virtualization of probe instructions is not supported on all processor 
implementations. Software can call PAL_VP_ENV_INFO to determine the availability of 
this feature.

Table 11-40. Synchronization Requirements for Bank Switch Optimization

VPD Resource Synchronization Required

vpsr.bn Read, Write

Table 11-41. Interruptions when Bank Switch Optimization is Enabled

Instructions Interruptions

bsw When the bank switch optimization is enabled, bsw instructions with 
PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the instruction is not the last instruction 
in an instruction group

• Privileged Operation fault – if vpsr.cpl is not zero
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There is no synchronization requirement for the virtualization of probe instructions.

11.7.4.2.9 Test Feature Optimization

The test feature optimization is enabled by the a_tf bit in the Virtualization Acceleration 
Control (vac) field in the VPD.

When this optimization is enabled, test feature (tf) instructions running with 
PSR.vm==1 will test the VCPUID[4] register in the VPD. The VMM may maintain a 
different VCPUID[4]{63:32} value from the CPUID[4]{63:32} value of the logical 
processor on which the virtual processor is running.

If the VMM indicates to a guest that an instruction is not supported by clearing the 
corresponding bit in VCPUID[63:32], then guest execution of that instruction, when 
a_tf is enabled, will behave the same as it would in implementations that do not 
implement that instruction. See Table 11-42 for more information.

If this optimization is disabled or not supported, execution of the test feature (tf) 
instruction with PSR.vm==1 will test the CPUID[4] register. The VMM must maintain 
the same VCPUID[4]{63:32} value as the CPUID[4]{63:32} value of the logical 
processor on which the virtual processor is running.

Synchronization is required when this optimization is enabled; see Table 11-43 for 
details.

This optimization is not supported on all processor implementations. Software can call 
PAL_VP_ENV_INFO to determine the availability of this feature.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.2.10 Interruption Collection and User Mask Optimization

The interruption collection and user mask optimization is enabled by the a_ic_um bit in 
the Virtualization Acceleration Control (vac) field in the VPD.

When this optimization is enabled and PSR.vm==1, execution of rsm and ssm 
instructions1 with a mask targeting no fields other than the ic and user mask fields will 
not intercept to the VMM, unless a fault condition is detected (see Table 11-45 for 
details). The ic field in vpsr and user mask bits in PSR targeted by the mask will be 
updated with the new value.

Table 11-42.Impact of clearing VCPUID bits with the a_tf optimization

VCPUID[4] bit Instructions affected Behavior when vCPUID[4] is bit is 0

32 clz Illegal Operation fault

33
mpy4 Illegal Operation fault

mpyshl4 Illegal Operation fault

Table 11-43.Synchronization Requirements for Test Feature Optimization

VPD Resource Synchronization Required

vcpuid[4]{63:32} Write



2:346 Volume 2, Part 1: Processor Abstraction Layer

When this optimization is enabled, execution of rsm and ssm instructions, with 
PSR.vm==1 and system mask equal to zero (0x0), will not intercept to the VMM unless 
a fault condition is detected (see Table 11-45 for details).

When PSR.vm==1, execution of rsm and ssm instructions1, which modify any bits other 
than vpsr.ic and user mask fields will result in virtualization intercepts independent of 
whether this optimization is enabled or not.

Synchronization is required when this optimization is enabled; see Table 11-44 for 
details.

This optimization is not supported on all processor implementations. Software can call 
PAL_VP_ENV_INFO to determine the availability of this feature.

When this optimization is enabled, certain VPD state is accessed, as described in 
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.3 Virtualization Disables

Table 11-26 summarizes the virtualization disables supported in Itanium architecture.

1. The execution of rsm and ssm instructions with PSR.vm==1 is affected by both the virtual external
interrupt optimization (a_int) and the interruption collection and user mask optimization (a_ic_um).
Software can enable or disable both optimizations together, or enable each optimization indepen-
dently. Section 11.7.4.4.1, “Virtual External Interrupt Optimization and Interruption Collection and
User Mask Optimization” on page 2:349 describes the behavior when both optimizations are
enabled.

Table 11-44.Synchronization Requirements for Interrupt Collection and User 
Mask Optimization

VPD Resource Synchronization Required

vpsr.ic Read, Write

Table 11-45.Interruptions when Interrupt Collection and User Mask 
Optimization is Enabled

Instructions Interruptions

rsm, ssm When the interruption collection and user mask optimization is 
enabled, execution of rsm and ssm instructions with PSR.vm==1 
which modify vpsr.ic and any user mask fields, may raise the follow-
ing faults:

•Privileged Operation fault – if vpsr.cpl is not zero

Table 11-46. Virtualization Disables Summary

Disable
Virtualization 

Disable Control 
(vdc)a

Description

Disable VMSW Instruction d_vmsw Section 11.7.4.3.1

Disable External Interrupt Control Register Virtualization d_extint Section 11.7.4.3.2

Disable Breakpoint Register Virtualization d_ibr_dbr Section 11.7.4.3.3

Disable PMC Virtualization d_pmc Section 11.7.4.3.4

Disable MOV-to-PMD Virtualization d_to_pmd Section 11.7.4.3.5
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11.7.4.3.1 Disable VMSW Instruction

The VMSW instruction disable is controlled by the d_vmsw bit in the Virtualization 
Disable Control (vdc) field in the VPD. When this control is set to 1, the vmsw instruction 
is disabled on the logical processor. Execution of the vmsw instruction, independent of 
the state of PSR.vm, results in a virtualization intercept.

If this control is set to 0, the vmsw instruction can be executed by both the VMM and 
guest without virtualization intercepts, if PSR.it is 1 and the vmsw instruction is 
executed on a page with access rights of 7.

11.7.4.3.2 Disable External Interrupt Control Register Virtualization

The external interrupt control register virtualization disable is controlled by the d_extint 
bit in the Virtualization Disable Control (vdc) field in the VPD. When this control is set to 
1, the external interrupt control registers (CR65-71) are not virtualized, and code 
running with PSR.vm==1 can read and write these resources directly without any 
intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the external interruption control 
registers with PSR.vm==1 result in virtualization intercepts.

Note: This field cannot be enabled together with the a_int virtualization acceleration 
control (vac) described in Section 11.7.4.2.1, “Virtual External Interrupt Opti-
mization” on page 2:338. If this control is enabled together with the a_int con-
trol, an error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER. 
See Section 11.7.4.4, “Virtualization Optimization Combinations” on 
page 2:349 for details.

11.7.4.3.3 Disable Breakpoint Register Virtualization

The breakpoint register virtualization disable is controlled by the d_ibr_dbr bit in the 
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1, 
accesses (reads/writes) to the data and instruction breakpoint registers (DBR/IBR) are 
not virtualized, and code running with PSR.vm==1 can read and write these resources 
directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the breakpoint registers with 
PSR.vm==1 result in virtualization intercepts.

Disable ITM Virtualization d_itm Section 11.7.4.3.6

Disable PSR Interrupt-bit Virtualization d_psr_i Section 11.7.4.3.7

a. The Virtualization Disable Control (vdc) field resides in the Virtual Processor Descriptor (VPD), see 
Section 11.7.1, “Virtual Processor Descriptor (VPD)” on page 2:325 for details.

Table 11-46. Virtualization Disables Summary (Continued)

Disable
Virtualization 

Disable Control 
(vdc)a

Description
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11.7.4.3.4 Disable PMC Virtualization

The PMC virtualization disable is controlled by the d_pmc bit in the Virtualization 
Disable Control (vdc) field in the VPD. When this control is set to 1, accesses 
(reads/writes) to the performance monitor configuration registers (PMCs) are not 
virtualized, and code running with PSR.vm==1 can read and write these resources 
directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the performance counter 
configuration registers with PSR.vm==1 result in virtualization intercepts.

11.7.4.3.5 Disable MOV-to-PMD Virtualization

The MOV-to-PMD1 virtualization disable is controlled by the d_to_pmd bit in the 
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1, writes 
to the performance monitor data registers (PMDs) are not virtualized, and code running 
with PSR.vm==1 can write these resources directly without any intercepts to the VMM.

If this control is set to 0, writes to the performance monitor data registers with 
PSR.vm==1 result in virtualization intercepts.

11.7.4.3.6 Disable ITM Virtualization

The ITM virtualization disable is controlled by the d_itm bit in the Virtualization Disable 
Control (vdc) field in the VPD. When this control is set to 1, writes to the Interval Timer 
Match (ITM) register are not virtualized, and code running with PSR.vm==1 can write 
this resource directly without any intercepts to the VMM.

If this control is set to 0, writes to the ITM register with PSR.vm==1 result in 
virtualization intercepts.

11.7.4.3.7 Disable PSR Interrupt-bit Virtualization

The PSR interrupt-bit virtualization disable is controlled by the d_psr_i bit in the 
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1, 
accesses (reads/writes) to the interrupt bit in processor state register (PSR.i) are not 
virtualized. Code running with PSR.vm==1 can read and write to PSR.i through ssm and 
rsm instructions without any intercepts to the VMM. Attempts to modify other PSR bits 
in addition to the interrupt bit via the ssm and rsm instructions will result in 
virtualization intercepts.

This control has no effect on mov psr.l instructions; attempts to modify the interrupt 
bit with the mov psr.l instruction result in virtualization intercepts.

Note: This field cannot be enabled together with a_int, a_from_psr or a_bsw virtual-
ization accelerations. If this control is enabled together with any one of 
described accelerations, an error will be returned during PAL_VP_CREATE and 
PAL_VP_REGISTER. See Section 11.7.4.4, “Virtualization Optimization Combi-
nations” on page 2:349 for details.

1. The MOV-from-PMD instruction is not virtualized. Hence there is no need to provide optimizations for
the MOV-from-PMD instruction.
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11.7.4.4 Virtualization Optimization Combinations

Table 11-47 describes the supported combinations of virtualization accelerations and 
disables.

11.7.4.4.1 Virtual External Interrupt Optimization and Interruption Collection 
and User Mask Optimization

The execution of rsm and ssm instructions with PSR.vm==1 is affected by both of these 
optimizations:

• Virtual External Interrupt Optimization (a_int), described in Section 11.7.4.2.1, 
“Virtual External Interrupt Optimization”, and

• Interruption Collection and User Mask Optimization (a_ic_um), described in Section 
11.7.4.2.10, “Interruption Collection and User Mask Optimization”.

Software can enable or disable both optimizations together, or enable each optimization 
independently.

When both optimizations are enabled and PSR.vm==1, rsm and ssm instructions with a 
mask targeting any fields in i, ic and user mask will not be intercepted to the VMM, 
unless a fault condition is detected, The i and ic fields in vpsr and user mask in PSR will 
be updated with the new value.

When PSR.vm==1, rsm and ssm instructions with a mask targeting any fields other 
than i, ic and user mask fields will result in virtualization intercepts independent of 
whether these two optimizations are enabled or not.

11.7.4.5 Virtualization Synchronizations

When certain virtualization accelerations described in Section 11.7.4.2, “Virtualization 
Accelerations” on page 2:337 are enabled, processor implementations can provide 
implementation-specific control resources to enhance the performance of virtual 
processors. Two PAL services are provided to synchronize the implementation-specific 
control resources and the resources in the VPD.  There are two types of 
synchronizations:

Table 11-47.Supported Virtualization Optimization Combinations

d_vmsw d_extint d_ibr_dbr d_pmc d_to_pmd d_itm d_psr_i

a_int oa

a. “o” indicates the corresponding virtualization acceleration and disable can be enabled together.

xb

b. “x” indicates the corresponding virtualization acceleration and disable cannot be enabled together.

o o o o x

a_from_int_cr o o o o o o o

a_to_int_cr o o o o o o o

a_from_psr o o o o o o x

a_from_cpuid o o o o o o o

a_cover o o o o o o o

a_bsw o o o o o o x

a_all_probes o o o o o o o

a_select_probes o o o o o o o

a_tf o o o o o o o

a_ic_um o o o o o o o
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1. Read synchronization – When a specific acceleration is enabled, after 
interruptions and intercepts that occur when PSR.vm was 1, the VMM must 
invoke PAL_VPS_SYNC_READ to synchronize the related resources before reading 
their values from the VPD.

2. Write synchronization – When a specific acceleration is enabled, the VMM must 
invoke PAL_VPS_SYNC_WRITE to synchronize the related resources after 
modifying their values in the VPD and before resuming the virtual processor.

For details on PAL_VPS_SYNC_READ and PAL_VPS_SYNC_WRITE, see Section 11.11.2, 
“PAL Virtualization Service Specifications” on page 2:488.

Read and/or write synchronizations are required only if the specific acceleration is 
enabled. For the resources that require synchronizations if the acceleration is enabled, 
failure to perform the proper synchronizations will result in undefined processor 
behavior1.

The synchronization requirements of the related resources for each acceleration are 
described in the corresponding sections for each acceleration in Section 11.7.4.2, 
“Virtualization Accelerations” on page 2:337.

No synchronization is required for any of the virtualization disables.

11.8 PAL Glossary

Corrected Error
All errors of this type are corrected by the platform or processor in either hardware or 
firmware. This severity is for logging purposes only. There is no architectural damage 
caused by the detecting and reporting functions. Corrected errors require no operating 
system intervention to correct the error.

Corrected Machine Check (CMC)
A corrected machine check is a machine check that as been successfully corrected by 
hardware and/or firmware. Information about the cause of the error is recorded, and an 
interrupt is set to allow the Operating System software to examine and diagnose the 
error. Return is controlled to the program executing at the time of the error.

Entrypoint
A firmware entrypoint is a piece of code which is triggered by a hardware event, usually 
the assertion of a processor pin, or the receipt of an interruption. If return to the caller 
is done, it is though the RFI instruction. The currently defined PAL entrypoints are 
PALE_RESET, PALE_INIT, PALE_PMI, and PALE_CHECK.

Fatal Error
An uncorrected error which can corrupt state, and the state information is not known. 
These type of errors cannot be corrected by the hardware, firmware, or the operating 
system. The integrity of the system, including the IO devices is not guaranteed and 
may require I/O device initialization and a system reboot to continue. Fatal errors may 
or may not be contained within the processor or memory hierarchy.

1. Virtual machine monitors must perform all the required synchronizations specified. Virtual machine
monitors not conforming to this specification are not guaranteed to work on all processor implemen-
tations.
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Machine Check (MC)
A machine check is a hardware event that indicates that a hardware error or 
architectural violation has occurred that threatens to damage the architectural state of 
the machine, possibly causing data corruption. The occurrence of the error triggers the 
execution of firmware code which records information about the error, and attempts to 
recover when possible.

OLR
On line replacement. The replacement of a computer component while the system is up 
and running without requiring a reboot.

PAL Intercepts
Interfaces where PAL transfers control to the VMM on virtualization events (execution of 
virtualized instructions/operations with PSR.vm==1). For details see Section 11.7.3, 
“PAL Intercepts in Virtual Environment” on page 2:332.

Power-on
The reset event that occurs when the power input to the processor is applied and the 
reset input to the processor is asserted.

Preserved
When applied to an entrypoint, preserved means that the value contained in a register 
at exit from the entrypoint code is the same as the value at the time of the hardware 
event that caused the entrypoint to be invoked. When applied to a procedure, 
preserved means that the value contained in a register at exit from the procedure is the 
same as the value at entry to the procedure. The value may have been changed and 
restored before exit.

Processor Abstraction Layer (PAL)
PAL is firmware that abstracts processor implementation differences and provides a 
consistent interface to higher level firmware and software. PAL has no knowledge of 
platform implementation details.

Procedure
A firmware procedure is a piece of code which is called from other firmware or software, 
and which uses the return mechanism of the Itanium Runtime Calling Conventions to 
return to its caller.

Recoverable Error
An uncorrected error which can corrupt state, but the state information is known. 
Recoverable errors cannot be corrected by either the hardware or firmware. This type of 
error requires operating system analysis and a corrective action to recover. System 
operation/state may be impacted.

Reserved
When applied to a data variable, it means that the variable must not be used to convey 
information. All software passing the variable must place a value of zero in the variable. 
The occurrence of a non-zero value may cause undefined results.

When applied to a value or range of values, any values not defined in the range and 
specified as reserved must not be used. The occurrence of a reserved value may cause 
undefined results.

Reset
The reset event that occurs when the reset input to the processor is asserted.
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Scratch
When applied to either an entrypoint or procedure, scratch means that the contents of 
the register has no meaning and need not be preserved. Further the register is 
available for the storage of local variables. Unless otherwise noted, the register should 
not be relied upon to contain any particular value after exit.

Stacked Calling Convention
The firmware calling convention which adheres fully to the Itanium Runtime Calling 
Conventions. To use this calling convention, the RSE must be working and usable.

Static Calling Convention
The firmware calling convention which adheres to the Itanium Runtime Calling 
Conventions for the static general registers, branch registers, predicate registers, but 
for which all other registers are unused except for the RSE control registers. The RSE is 
placed in enforced lazy mode, and the stacked general registers or memory are not 
referenced.

System Abstraction Layer (SAL)
SAL is firmware that abstracts platform implementation differences for higher level 
software. SAL has no knowledge of processor implementation details.

Unchanged
When applied to an entrypoint, unchanged means that the register referenced has not 
been changed from the time of the hardware event that caused the entrypoint to be 
invoked until it exited to higher level firmware or software. When applied to a 
procedure, unchanged means that the register referenced has not been changed from 
procedure entry until procedure exit. In all cases, the value at exit is the same as the 
value at entry or the occurrence of the hardware event.

Virtual Machine Monitor (VMM)
The VMM is the system software which implements software policies to 
manage/support virtualization of processor and platform resources.

Virtual Processor Descriptor (VPD)
Represents the abstraction of the processor resources of a single virtual processor. The 
VPD consists of per-virtual-processor control information together with 
performance-critical architectural state. See Section 11.7.1, “Virtual Processor 
Descriptor (VPD)” on page 2:325 for details.

Virtual Processor State
A memory data structure which represents the architectural state of a virtual processor. 
Part of the virtual processor state is located in the Virtual Processor Descriptor (VPD), 
and the rest is located in memory data structures maintained by the virtual machine 
monitor.

11.9 PAL Code Memory Accesses and Restrictions

PAL issues load and store operations to memory in the following cases with the 
following memory attributes:

• During machine check/INIT handling to the min-state save area memory region 
registered with PAL using the UC memory attribute.
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• During the execution of PAL procedures to the memory buffer allocated by the 
caller of the procedure using the memory attribute of the address passed by 
the caller.

• PAL may also issue loads from the architected firmware address space and 
loads/stores from the registered min-state save area whenever it is executing a 
PAL procedure or handling PAL-based interruptions (reset, MCA, INIT and PMI). 
PAL code may use either the UC or WBL memory attribute when accessing 
these areas.

PAL code will not send IPIs that require any special support from the platform.

11.10 PAL Procedures

PAL procedures may be called by higher-level firmware and software to obtain 
information about the identification, configuration, and capabilities of the processor 
implementation, or to perform implementation-dependent functions such as cache 
initialization. These procedures access processor implementation-dependent hardware 
to return information that characterizes and identifies the processor or implements a 
defined function on that particular processor.

PAL procedures are implemented by a combination of firmware code and hardware. The 
PAL procedures are defined to be relocatable from the firmware address space. Higher 
level firmware and software must perform this relocation during the reset flow. The PAL 
procedures may be called both before and after this relocation occurs, but performance 
will usually be better after the relocation. In order to ensure no problems occur due to 
the relocation of the PAL procedures, these procedures are written to be position 
independent. All references to constant data done by the procedures is done in an IP 
relative way.

PAL procedures are provided to return information or allow configuration of the 
following processor features:

• Cache and memory features supported by the processor

• Processor identification, features, and configuration

• Machine Check Abort handling

• Power state information and management

• Processor self test

• Firmware utilities

PAL procedures are implemented as a single high level procedure, named PAL_PROC, 
whose first argument is an index which specifies which PAL procedure is being called. 
Indices are assigned depending on the nature of the PAL procedure being referenced, 
according to Table 11-48.
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The assignment of indices for all architected procedures is controlled by this document. 
The assignment of indices for implementation-specific procedures is controlled by the 
specific processor for which the procedures are implemented. No 
implementation-specific procedure calls are required for the correct operation of a 
processor. No SAL or operating system code should ever have to call an 
implementation-specific procedure call for normal activity. They are reserved for 
diagnostic and bring-up software and the results of such calls may be unpredictable.

Architected procedures may be designated as required or optional. If a procedure is 
designated as optional, a unique return code will be returned to indicate the procedure 
is not present in this PAL implementation. It is the caller’s responsibility to check for 
this return code after calling any optional PAL procedure

In addition to the calling conventions described below, PAL procedure calls may be 
made in physical mode (PSR.it=0, PSR.rt=0, and PSR.dt=0) or virtual mode (PSR.it=1, 
PSR.rt=1, and PSR.dt=1). All PAL procedures may be called in physical mode. Only 
those procedures specified later in this chapter may be called in virtual mode. PAL 
procedures written to support virtual mode, and the caller of PAL procedures written in 
virtual mode must obey the restrictions documented in this chapter, otherwise the 
results of such procedure calls may be unpredictable.

11.10.1 PAL Procedure Summary

The following tables summarize the PAL procedures by application area. Included are 
the name of the procedure, the index of the procedure, the class of the procedure 
(whether required or optional), the calling convention used for the procedure (static or 
stacked), and whether the procedure can be called in physical mode only, virtual mode 
only, or both physical and virtual modes.

On processor implementations with multiple logical processors in a physical processor 
package, calling a certain PAL procedures may affect resources shared by the logical 
processors. In the following tables, procedures that may affect resources on multiple 
processors are marked next to the corresponding procedure names; procedures that 
are not marked have no effects on other logical processors.

Table 11-48. PAL Procedure Index Assignment

Index Description

0 Reserved

1 - 255 Architected procedures; static register calling conventions

256 - 511 Architected procedures; stacked register calling conventions

512 - 767 Implementation-specific procedures; static registers calling conventions

768 - 1023 Implementation-specific procedures; stacked register calling conventions

1024 + Reserved

Table 11-49.PAL Cache and Memory Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_CACHE_FLUSHa 1 Req. Static Both No Flush the instruction or data caches.

PAL_CACHE_INFO 2 Req. Static Both No Return detailed instruction or data cache 
information.

PAL_CACHE_INITa 3 Req. Static Phys. No Initialize the instruction or data caches.
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PAL_CACHE_PROT_INFO 38 Req. Static Both No Return instruction or data cache protection 
information.

PAL_CACHE_SHARED_INFO 43 Opt. Static Both No Returns information on which logical processors 
share caches.

PAL_CACHE_SUMMARY 4 Req. Static Both No Return a summary of the cache hierarchy.

PAL_MEM_ATTRIB 5 Req. Static Both No Return a list of supported memory attributes.

PAL_PREFETCH_VISIBILITY 41 Req. Static Both No Used in architected sequence to transition 
pages from a cacheable, speculative attribute to 
an uncacheable attribute. See Section 4.4.11.2, 
“Physical Addressing Attribute Transition – 
Disabling Prefetch/Speculation and Removing 
Cacheability” on page 2:90.

PAL_PTCE_INFO 6 Req. Static Both No Return information needed for ptc.e 
instruction to purge entire TC.

PAL_VM_INFO 7 Req. Static Both No Return detailed information about virtual 
memory features supported in the processor.

PAL_VM_PAGE_SIZE 34 Req. Static Both No Return virtual memory TC and hardware walker 
page sizes supported in the processor.

PAL_VM_SUMMARY 8 Req. Static Both No Return summary information about virtual 
memory features supported in the processor.

PAL_VM_TR_READ 261 Req. Stacked Phys. No Read contents of a translation register.

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals 
for details.

Table 11-50.PAL Processor Identification, Features, and Configuration Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_BRAND_INFO 274 Opt. Stacked Both No Provides processor branding information.

PAL_BUS_GET_FEATURES 9 Req. Static Phys. No Return configurable processor bus interface 
features and their current settings.

PAL_BUS_SET_FEATURESa 10 Req. Static Phys. No Enable or disable configurable features in 
processor bus interface.

PAL_DEBUG_INFO 11 Req. Static Both No Return the number of instruction and data 
breakpoint registers.

PAL_FIXED_ADDR 12 Req. Static Both No Return the fixed component of a processor’s 
directed address.

PAL_FREQ_BASE 13 Opt. Static Both No Return the frequency of the output clock for use 
by the platform, if generated by the processor.

PAL_FREQ_RATIOS 14 Req. Static Both No Return ratio of processor, bus, and interval time 
counter to processor input clock or output clock 
for platform use, if generated by the processor.

PAL_GET_HW_POLICY 48 Opt. Static Both Dep. Get current hardware resource sharing policy.

PAL_LOGICAL_TO_PHYSICAL 42 Opt. Static Both No Return information on which logical processors 
map to a physical processor package.

PAL_PERF_MON_INFO 15 Req. Static Both No Return the number and type of performance 
monitors.

PAL_PLATFORM_ADDRa 16 Req. Static Both No Specify processor interrupt block address and 
I/O port space address.

PAL_PROC_GET_FEATURES 17 Req. Static Phys. No Return configurable processor features and 
their current setting.

Table 11-49.PAL Cache and Memory Procedures (Continued)

Procedure Idx Class Conv. Mode Buffer Description
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PAL_PROC_SET_FEATURESa 18 Req. Static Phys. No Enable or disable configurable processor 
features.

PAL_REGISTER_INFO 39 Req. Static Both No Return AR and CR register information.

PAL_RSE_INFO 19 Req. Static Both No Return RSE information.

PAL_SET_HW_POLICYa 49 Opt. Static Both Dep. Set current hardware resource sharing policy.

PAL_VERSION 20 Req. Static Both No Return version of PAL code.

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals 
for details.

Table 11-51.PAL Machine Check Handling Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_MC_CLEAR_LOGa

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals 
for details.

21 Req. Static Both No Clear all error information from processor error 
logging registers.

PAL_MC_DRAIN 22 Req. Static Both No Ensure that all operations that could cause an 
MCA have completed.

PAL_MC_DYNAMIC_STATE 24 Opt. Static Both No Return Processor Dynamic State for logging by 
SAL.

PAL_MC_ERROR_INFO 25 Req. Static Both No Return Processor Machine Check Information 
and Processor Static State for logging by SAL.

PAL_MC_ERROR_INJECTa 276 Opt. Stacked Both Dep. Injects the requested processor error or returns 
information on the supported injection 
capabilities for this particular processor 
implementation.

PAL_MC_EXPECTED 23 Req. Static Phys. No Set/Reset Expected Machine Check Indicator.

PAL_MC_HW_TRACKING 51 Opt. Static Both Dep. Query which hardware structures are 
performing hardware status tracking

PAL_MC_REGISTER_MEM 27 Req. Static Phys. No Register min-state save area with PAL for 
machine checks and inits.

PAL_MC_RESUME 26 Req. Static Phys. No Restore minimal architected state and return to 
interrupted process.

Table 11-52.PAL Power Information and Management Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_GET_PSTATE 262 Opt. Stacked Both Dep. Returns information on the performance index 
of the processor.

PAL_HALT 28 Opt. Static Phys No Enter the low-power HALT state or an 
implementation-dependent low-power state.

PAL_HALT_INFO 257 Req. Stacked Both No Return the low power capabilities of the 
processor.

PAL_HALT_LIGHT 29 Req. Static Both No Enter the low power LIGHT HALT state.

PAL_PSTATE_INFO 44 Opt. Static Both No Returns information about the P-states 
supported by the processor.

PAL_SET_PSTATEa 263 Opt. Stacked Both Dep. Request processor to enter power/performance 
state.

PAL_SHUTDOWN 45 Opt. Static Phys Dep. Puts the processor in a low power state which 
can be exited only by a reset event.

Table 11-50.PAL Processor Identification, Features, and Configuration Procedures 

Procedure Idx Class Conv. Mode Buffer Description
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a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals 
for details.

Table 11-53.PAL Processor Self Test Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_CACHE_LINE_INITa

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals 
for details.

31 Req. Static Phys. No Initialize tags and data of a cache line for 
processor testing.

PAL_CACHE_READ 259 Opt. Stacked Phys. No Read tag and data of a cache line for diagnostic 
testing.

PAL_CACHE_WRITEa 260 Opt. Stacked Phys. No Write tag and data of a cache for diagnostic 
testing.

PAL_TEST_INFO 37 Req. Static Phys. No Returns alignment and size requirements 
needed for the memory buffer passed to the 
PAL_TEST_PROC procedure as well as 
information on self-test control words for the 
processor self tests.

PAL_TEST_PROCa 258 Req. Stacked Phys. No Perform late processor self test.

Table 11-54.PAL Support Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_COPY_INFO 30 Req. Static Phys. No Return information needed to relocate PAL 
procedures and PAL PMI code to memory.

PAL_COPY_PAL 256 Req. Stacked Phys. No Relocate PAL procedures and PAL PMI code to 
memory.

PAL_MEMORY_BUFFERa

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals 
for details.

277 Opt. Stacked Phys. No Provides cacheable memory to PAL for 
exclusive use during runtime.

PAL_PMI_ENTRYPOINTa 32 Req. Static Phys. No Register PMI memory entrypoints with 
processor.

Table 11-55.PAL Virtualization Support Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_VP_CREATE 265 Opt. Stacked Virt. Dep. Initializes a new VPD for the operation of a new 
virtual processor in the virtual environment.

PAL_VP_ENV_INFO 266 Opt. Stacked Virt. Dep. Returns the parameters needed to enter a 
virtual environment.

PAL_VP_EXIT_ENV 267 Opt. Stacked Virt. Dep. Allows a logical processor to exit a virtual 
environment.

PAL_VP_INFO 50 Opt. Static Phys. No Returns information about virtual processor 
features.

PAL_VP_INIT_ENV 268 Opt. Stacked Virt. Dep. Allows a logical processor to enter a virtual 
environment.

PAL_VP_REGISTER 269 Opt. Stacked Virt. Dep. Register a different host IVT for the virtual 
processor.

PAL_VP_RESTORE 270 Opt. Stacked Virt. Dep. Restore virtual processor state on the logical 
processor.
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11.10.2 PAL Calling Conventions

The following general rules govern the definition of the PAL procedure calling 
conventions.

11.10.2.1 Overview of Calling Conventions

There are two calling conventions supported for PAL procedures: static registers only 
and stacked registers. Any single PAL procedure will support only one of the two calling 
conventions. In addition, PAL procedure may be called in either physical mode 
(PSR.it=0, PSR.rt=0, and PSR.dt=0) or virtual mode (PSR.it=1, PSR.rt=1, and 
PSR.dt=1).

11.10.2.1.1 Static Registers Only

This calling convention is intended for boot time usage before main memory may be 
available or error recovery situations, where memory or the RSE may not be reliable. 
All parameters are passed in the lower 32 static general registers. The stacked registers 
will not be used within the procedure. No memory arguments may be passed as 
parameters to or from PAL procedures written using the static register calling 
convention. To avoid RSE activity, static register PAL procedures must be called with the 
br.cond instruction, not the br.call instruction. Please refer to Table 11-59 for a detailed 
list of the general register usage for static registers only calling convention.

11.10.2.1.2 Stacked Registers

This calling convention is intended for usage after memory has been made available, 
and for procedures which require memory pointers as arguments. The stacked registers 
are also used for parameter passing and local variable allocation. This convention 
conforms to the Itanium Software Conventions and Runtime Architecture Guide. Thus, 
procedures using the stacked register calling convention can be written in the C 
language. There are two exceptions to the runtime conventions. 

1. The first argument to the procedure must also be copied to GR28 prior to making 
the procedure call. This allows procedures written using both static and stacked 
register calling conventions to call a single PAL_PROC entrypoint. This should be 
accomplished by having the stacked register procedures call a stub module which 
copies GR32 to GR28, then call PAL_PROC. It is the responsibility of the caller to 
provide this stub. Please refer to Table 11-60 for a detailed list of the general 
register usage for the stacked register calling convention.

2. Floating point registers 32-127 are preserved (rather than scratch, as in the 
normal Itanium Software Conventions), except on the PAL_TEST_PROC 
procedure. This allows OSs to avoid having to save and restore these registers 
around a stacked-convention PAL procedure call.

PAL_VP_SAVE 271 Opt. Stacked Virt. Dep. Save virtual processor state on the logical 
processor.

PAL_VP_TERMINATE 272 Opt. Stacked Virt. Dep. Terminates operation for the specified virtual 
processor.

Table 11-55.PAL Virtualization Support Procedures (Continued)

Procedure Idx Class Conv. Mode Buffer Description
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11.10.2.1.3 Making PAL Procedure Calls in Physical or Virtual Mode

PAL procedure calls which are made in physical mode must obey the calling conventions 
described in this chapter, but there are no additional restrictions beyond those noted 
above. PAL procedure calls made in virtual mode must have the region occupied by 
PAL_PROC virtually mapped with an ITR. It needs to map this same area with either a 
DTR or DTC using the same translation as the ITR. In addition, it must also provide a 
DTR or DTC mapping for any memory buffer pointers passed as arguments to a 
procedure. It is the responsibility of the caller to provide these mappings.

If the caller chooses to map the PAL_PROC area or any memory pointers with a DTC it 
must call the procedure with PSR.ic = 1 to handle any TLB faults that could occur. The 
PAL_PROC code needs to be mapped with an ITR. Unpredictable results may occur if it 
is mapped with an ITC register.

11.10.2.1.4 Dependence on the PAL Memory Buffer

The PAL_MEMORY_BUFFER procedure must be called to establish a PAL memory buffer 
before calling certain PAL procedures that are dependent on the buffer.

11.10.2.2 Processor State

The PAL procedures are only available to the code running at privilege level 0. They 
must run in physical mode (unless specified as callable in virtual mode). PAL 
procedures are not interruptible by external interrupt or NMI, since PSR.i must be 0 
when the PAL procedure is called. PAL procedures are not interruptible by PMI events, if 
PSR.ic is 0. If PSR.ic is 1, PAL procedures can be interrupted by PMI events. PAL 
procedures can be interrupted by machine checks and initialization events.

Generally PAL procedures will not enable interruptions not already enabled by the caller. 
Any PAL call that might cause interruptions (besides data TLB faults, see Section 
11.10.2.1.3, “Making PAL Procedure Calls in Physical or Virtual Mode”), must install an 
IVA handler to handle them. PAL_TEST_PROC may generate any interruptions it needs 
to test the processor. 

Table 11-56 defines the requirements for the PSR at entry to and at exit from a PAL 
procedure call. The operating system must follow the state requirements for PSR shown 
below. PAL procedure calls made by SAL may impose additional requirements. 
PAL_TEST_PROC may change PSR bits shown as unchanged in order to test the 
processor. These bits will be preserved in this case. PSR bits are described in increasing 
bit number order. Any PSR bit numbers not specified are reserved and unchanged.

Table 11-56. State Requirements for PSR

PSR Bit Description Entry Exit Class

be big-endian memory access enable 0 0 preserved

up user performance monitor enable C C unchanged

ac alignment check C C preserved

mfl floating-point registers f2-f31 written C C preserved

mfh floating-point registers f32-f127 written C C preserved

ic interruption state collection enable 0 0 unchanged

1 1 preserved

i interrupt enable 0 0 unchanged
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11.10.2.2.1 Definition of Terms

The terms used in the definition of the requirements have the following meaning:

pk protection key validation enable C C unchanged

dt data address translation enablea 0 0 unchanged

1 1 preserved

dfl disabled FP register f2 to f31 0 0 unchanged

dfh disabled FP register f32 to f127b 0 0 unchanged

1 1 unchanged

sp secure performance monitors C C unchanged

pp privileged performance monitor enable C C unchanged

di disable ISA transition C C preserved

si secure interval timer C C unchanged

db debug breakpoint fault enable 0 0 unchanged

lp lower-privilege transfer trap enable 0 0 unchanged

tb taken branch trap enable 0 0 unchanged

rt register stack translation enablea 0 0 unchanged

1 1 preserved

cpl current privilege level 0 0 unchanged

is instruction set 0 0 preserved

mc machine check abort maskc 0 0 preserved

1 1 unchanged

it instruction address translation enablea 0 0 unchanged

1 1 preserved

id instruction debug fault disable 0 0 unchanged

da data access and dirty-bit fault disable 0 0 unchanged

dd data debug fault disable 0 0 unchanged

ss single step trap enable 0 0 unchanged

ri restart instruction 0 0 preserved

ed exception deferral 0 0 preserved

bn register bank 1 1 preserved

ia instruction access-bit fault disable 0 0 unchanged

vm processor virtualization 0 0 unchanged

a. PAL procedures which are called in physical mode must remain in physical mode for the duration of the call. 
PAL procedures which are called in virtual mode, may perform specific actions in physical mode, but must 
return to the same virtual mode state before returning from the call.

b. PAL_TEST_PROC and an implementation-specific authentication procedure call need to be called with 
PSR.dfh equal to 0. If they are not they will return invalid argument. All other PAL procedure calls may be 
called with PSR.dfh equal to 0 or 1.

c. Most PAL runtime procedures should be called with PSR.mc = 0 except for code flow involved in handling 
machine checks.

Table 11-57. Definition of Terms

Term Description

entry Start of the first instruction of the PAL procedure.

exit Start of the first instruction after return to caller’s code.

Table 11-56. State Requirements for PSR (Continued)

PSR Bit Description Entry Exit Class
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11.10.2.2.2 System Registers

The PAL_TEST_PROC procedure may change system registers marked as unchanged in 
order to fully test the processor. When this is done, the values of the system registers 
will be preserved.

0 Must be zero at entry to the procedure or on exit from the procedure. If the value at entry is 
not zero, the procedure may return an illegal argument or execute in an undefined manner.

1 Must be one at entry to the procedure or on exit from the procedure. If the value at entry is 
not one, the procedure may return an illegal argument or execute in an undefined manner.

reserved When any input parameter is listed as reserved, this value must be zero. If an input value 
has a range of values, any values outside the range, listed as reserved, must not be used. 
For either case, the PAL procedure may return an illegal argument or execute in an 
undefined manner.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it 
must be the same as the value at entry.

unchanged The PAL procedure must not change these values from their entry values during execution 
of the procedure.

scratch The PAL procedure may modify these values as necessary during execution of the 
procedure. The caller cannot rely on these values.

preserved The PAL procedure may modify these values as necessary during execution of the 
procedure. However, they will be restored to their entry values prior to exit from the 
procedure.

Table 11-58. System Register Conventions

Name Description Class

DCR Default Control Register preserved

ITM Interval Timer Match Register unchanged

IVA Interruption Vector Address preserveda

PTA Page Table Address preserved

GPTA Guest Page Table Address preserved

IPSR Interruption Processor Status Register scratch

ISR Interruption Status Register scratch

IIP Interruption Instruction Bundle Pointer scratch

IFA Interruption Faulting Address scratch

ITIR Interruption TLB Insertion Register scratch

IIPA Interruption Instruction Previous Address scratch

IFS Interruption Function State scratch

IIM Interruption Immediate Register scratch

IHA Interruption Hash Address scratch

IIB0-1 Interruption Instruction Bundle Registers scratch

LID Local Interrupt ID unchanged

IVR Interrupt Vector Register (read only) unchanged

TPR Task Priority Register unchanged

EOI End Of Interrupt unchanged

IRR0-IRR3 Interrupt Request Registers 0-3 (read only) unchanged

ITV Interval Timer Vector unchanged

PMV Performance Monitoring Vector unchanged

Table 11-57. Definition of Terms

Term Description
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11.10.2.2.3 General Registers

PAL will use one of two general register calling conventions described in 
Section 11.10.2.1, “Overview of Calling Conventions” on page 2:358, depending on the 
availability of memory and the stacked registers at the time of the call. The following 
tables describe the contents of the general registers.

CMCV Corrected Machine Check Vector unchanged

LRR0-LRR1 Local Redirection Registers 0-1 unchanged

RR Region Registers preserved

PKR Protection Key Registers preserved

TR Translation Registers unchangedb

TC Translation Cache scratch

IBR/DBR Break Point Registers preservedc

PMC Performance Monitor Control Registers preserved

PMD Performance Monitor Data Registers unchangedd

a. On some implementations, PAL virtualization support procedures may program IVA to a different value. Refer 
to the description of the PAL virtualization procedures for details.

b. If an implementation provides a means to read TRs for PAL, this should be preserved.
c. The PAL_MC_ERROR_INJECT may modify these registers if the caller is using the triggering capability. 

Refer to “PAL_MC_ERROR_INJECT – Inject Processor Error (276)” on page 2:421 for more information.
d. No PAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance 

monitor events during a procedure call. The exception is PAL_TEST_PROC, which tests the performance 
counters.

Table 11-59. General Registers – Static Calling Convention

Register Conventions

GR0 always 0

GR1 preserved

GR2 - GR3 scratch, used with 22 bit immediate add

GR4 - GR7 preserved

GR8 - GR11 scratch, procedure return value

GR12 preserved

GR13 unchanged

GR14 - GR27 scratch

GR28 - GR31 input arguments, scratch (PAL index must be passed in GR28)

Bank 0 Registers
(GR16 - GR23)

preserved

Bank 0 Registers
(GR 24 - GR31)

scratch

GR32 - GR127 unchanged

Table 11-60. General Registers – Stacked Calling Conventions

Register Conventions

GR0 always 0

GR1 preserved

GR2 - GR3 scratch, used with 22 bit immediate add

GR4 - GR7 preserved

Table 11-58. System Register Conventions (Continued)

Name Description Class
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The caller must initialize SP for physical and virtual procedure calls only prior to calling 
a PAL procedure. A minimum 8 KB of room must be available for the stack space of the 
PAL procedure. The caller to a PAL procedure should set up the RSE backing store 
before making any procedure calls using the stacked calling conventions. The backing 
store memory should have a minimum of 8 KB of room for RSE spills. 

PAL shall be called with PSR.bn=1. The GR specifications for GR16 through GR31 are 
for bank one. The bank zero register requirements are specified as a separate line item.

11.10.2.2.4 Floating-point Registers

Floating point registers 32-127 are preserved. PAL must either not use these, or must 
save and restore them, except on the PAL_TEST_PROC procedure, which may overwrite 
these registers without preserving them. The remainder of the floating-point register 
conventions are the same as those of the Itanium Software Conventions and Runtime 
Architecture Guide.

11.10.2.2.5 Predicate Registers

The conventions for the predicate registers follow the Itanium Software Conventions 
and Runtime Architecture Guide.

11.10.2.2.6 Branch Registers

The conventions for the branch registers follow the Itanium Software Conventions and 
Runtime Architecture Guide.

11.10.2.2.7 Application Registers

GR8 - GR11 scratch, procedure return value

GR12 special, stack pointer (sp)

GR13 special, thread pointer (tp)

GR14 - GR27 scratch

GR28 input argument, scratch (PAL Index must be passed in GR28)

GR29-GR31 scratch

Bank 0 Registers
(GR16 - GR23)

preserved

Bank 0 Registers
(GR 24 - GR31)

scratch

GR32 - GR127 stacked registers;
in0 - in95: input arguments (PAL index must be in0)
loc0 - loc95: local variables
out0 - out95: output arguments

Table 11-61. Application Register Conventions

Register Description Class

KR0-7 Kernel Registers unchanged

RSC Register Stack Configuration Register unchanged

BSP Backing Store Pointer (read only) unchangeda

Table 11-60. General Registers – Stacked Calling Conventions (Continued)

Register Conventions
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PAL procedures that use the static calling conventions do not use stacked registers or 
the RSE. Therefore RSE internal state and the CFM are unchanged by these procedures.

11.10.2.3 Return Buffers

Any addresses passed to PAL procedures as buffers for return parameters must be 
8-byte aligned. Unaligned addresses may cause undefined results.

11.10.2.4 Invalid Arguments

The PAL procedure calling conventions specify rules that must be followed. These rules 
specify certain PSR values, they specify that reserved fields and arguments must be 
zero filled and specify that values not defined in a range and defined as reserved must 
not be used.

If the caller of a PAL procedure does not follow these rules, an invalid argument return 
value may be returned or undefined results may occur during the execution of the 
procedure. If the caller passes in a PAL procedure index value that is not defined, PAL 
will return an Unimplemented procedure (-1) status to the caller.

BSPSTORE Backing Store Pointer for Memory Stores unchangeda

RNAT RSE NaT Collection Register unchangeda

FCR IA-32 Floating-point Control Registers preserved

EFLAG IA-32 EFLAG register preserved

CSD IA-32 Code Segment Descriptor preserved

SSD IA-32 Stack Segment Descriptor preserved

CFLG IA-32 Combined CR0 and CR4 Register preserved

FSR IA-32 Floating-point Status Register preserved

FIR IA-32 Floating-point Instruction Register preserved

FDR IA-32 Floating-point Data Register preserved

CCV Compare and Exchange Compare Value Register scratch

UNAT User NaT Collection Register according to GR class

FPSR Floating-point Status Register preserved 

ITC Interval Time Counter unchangedb

RUC Resource Utilization Counter unchangedc

PFS Previous Function State preserved

LC Loop Counter Register preserved

EC Epilog Counter Register preserved

a. BSP, BSPSTORE, and RNAT may not be changed by PAL, but the value at exit may be different due to RSE 
activity. PAL_TEST_PROC is an exception to this rule, and the RSE contents may not be relied on after 
making this procedure call.

b. No PAL procedure writes to the ITC. The value at exit is the value at entry plus the elapsed time of the 
procedure call.

c. No PAL procedure writes to the RUC. The value at exit is the value at entry plus the number of cycles 
provided to the processor during the procedure call.

Table 11-61. Application Register Conventions

Register Description Class
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11.10.3 PAL Procedure Specifications

The following pages provide detailed interface specifications for each of the PAL 
procedures defined in this document. Included in the specification are the input 
parameters, the output parameters, and any required behavior.



2:366 Volume 2, Part 1: Processor Abstraction Layer

PAL_BRAND_INFO

PAL_BRAND_INFO – Provides Processor Branding Information 
(274)

Purpose: Provides processor branding information.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_BRAND_INFO procedure calls are used to ascertain the processor branding 
information.

The info_request input argument for PAL_BRAND_INFO describes which processor 
branding  information is being requested. The info_request values are split into two 
categories: architected and implementation-specific. The architected info_request have 
values from 0-15. The implementation-specific info_request have values 16 and above. 
The architected info_request are described in this document. The  
implementation-specific info_request are described in processor-specific documentation.

This call returns the processor brand information as requested with the info_request 
argument. Table 11-62 describes the values.

This procedure will return an invalid argument if an unsupported info_request argument 
is passed as an input or a -6 if the requested information was not available on the 
current processor.

Argument Description
index Index of PAL_BRAND_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer specifying the information that is being requested. (See Table 11-62)
address Unsigned 64-bit integer specifying the address of the 128-byte block to which the processor 

brand string shall be written.
Reserved 0

Return Value Description
status Return status of the PAL_BRAND_INFO procedure.
brand_info Brand information returned. The format of this value is  dependent on the input values 

passed.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-6 Input argument is not implemented
-9 Call requires PAL memory buffer

Table 11-62. Processor Brand Information Requested

Value Description

0 The ASCII brand identification string will be copied to the address specified in the 
address input argument. The processor brand identification string is defined to be a 
maximum of 128 characters long; 127 bytes will contain characters and the 128th byte 
is defined to be NULL (0). A processor may return less than the 127 ASCII characters 
as long as the string is null terminated. The string length will be placed in the 
brand_info return argument.

All Other Values Reserved
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PAL_BUS_GET_FEATURES

PAL_BUS_GET_FEATURES – Get Processor Bus Dependent 
Configuration Features (9)

Purpose: Provides information about configurable processor bus features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Table 11-63 defines the set of possible bus interface features and their bit position in 
the return vector. Different busses will implement similar features in different ways. For 
example, data error detection may be implemented by ECC or parity. In other cases, 
certain features may be tied together. In this case, enabling any one feature in a group 
will enable all features in the group, and similarly, disabling any one feature in a group 
will disable all features. Caller algorithms should be written to obtain desired results in 
these instances. Only those configuration features for which a 1 is returned in 
feature_control can be changed via PAL_BUS_SET_FEATURES.

For all values in Table 11-63, the Class field indicates whether a feature is required to 
be available (Req.) or is optional (Opt.). The Control field indicates which features are 
required to be controllable. These features will either be controllable through this PAL 
call or through other hardware means like forcing bus pins to a certain value during 
processor reset. The control field applies only when the feature is available. 
PALE_CHECK and PALE_INIT should not modify these features. An operating system 
should not modify bus features without detailed information about the platform it is 
running on.

Argument Description
index Index of PAL_BUS_GET_FEATURES within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_BUS_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-63. (1=implemented, 0=not 

implemented)
feature_status 64-bit vector of current feature settings. See Table 11-63.
feature_control 64-bit vector of features controllable by software. (1=controllable, 0= not controllable)

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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Table 11-63. Processor Bus Features

Bits Class Control Description

63 Opt. Req. Disable Bus Data Error Checking. When 0, bus data errors are detected and 
single bit errors are corrected. When 1, no error detection or correction is done.

62 Opt. Req. Disable Bus Address Error Signalling. When 0, bus address errors are signalled 
on the bus. When 1, no bus errors are signalled on the bus. If Disable Bus 
Address Error Checking is 1, this bit is ignored.

61 Opt. Req. Disable Bus Address Error Checking. When 0, bus errors are detected, single 
bit errors are corrected., and a CMCI or MCA is generated internally to the 
processor. When 1, no bus address errors are detected or corrected.

60 Opt. Req. Disable Bus Initialization Event Signaling. When 0, bus protocol errors (BINIT#) 
are signaled by the processor on the bus. When 1, bus protocol errors (BINIT#) 
are not signaled on the bus. If Disable Bus Initialization Event Checking is 1, 
this bit is ignored.

59 Opt. Req. Disable Bus Initialization Event Checking. When 0, bus protocol errors (BINIT#) 
are detected and sampled and an MCA is generated internally to the processor. 
When 1, the processor will ignore bus protocol error conditions (BINIT#).

58 Opt. Req. Disable Bus Requester Bus Error Signalling. When 0, BERR# is signalled if a 
bus error is detected. When 1, bus errors are not signalled on the bus.

57 Opt. Req. Disable Bus Requester Internal Error Signalling. When 0, BERR# is signalled 
when internal processor requestor initiated bus errors are detected. When 1, 
internal requester bus errors are not signalled on the bus.

56 Opt. Req. Disable Bus Error Checking. When 0, the processor takes an MCA if BERR# is 
asserted. When 1, the processor ignores the BERR# signal.

55 Opt. Req. Disable Response Error Checking. When 0, the processor asserts BINIT# if it 
detects a parity error on the signals which identify the transactions to which this 
is a response. When 1, the processor ignores parity on these signals.

54 Opt. Req. Disable Transaction Queuing. When 0, the in-order transaction queue is limited 
only by the number of hardware entries. When 1, the processor’s in-order 
transactions queue is limited to one entry.

53 Opt. Req. Enable a bus cache line replacement transaction when a cache line in the 
exclusive state is replaced from the highest level processor cache and is not 
present in the lower level processor caches. When 0, no bus cache line 
replacement transaction will be seen on the bus. When 1, bus cache line 
replacement transactions will be seen on the bus when the above condition is 
detected.

52 Opt. Req. Enable a bus cache line replacement transaction when a cache line in the 
shared or exclusive state is replaced from the highest level processor cache 
and is not present in the lower level processor caches. When 0, no bus cache 
line replacement transaction will be seen on the bus. When 1, bus cache line 
replacement transactions will be seen on the bus when the above condition is 
detected.

51:32 N/A N/A Reserved

31 Opt. Opt. Enable Half transfer rate. When 0, the data bus is configured at the 2x data 
transfer rate.When 1, the data bus is configured at the 1x data transfer rate,

30 Opt. Req. Disable Bus Lock Mask. When 0, the processor executes locked transactions 
atomically. When 1, the processor masks the bus lock signal and executes 
locked transactions as a non-atomic series of transactions.

29 Opt. Req. Request Bus Parking. When 0, the processor will deassert bus request when 
finished with each transaction. When 1, the processor will continue to assert 
bus request after it has finished, if it was the last agent to own the bus and if 
there are no other pending requests.

28:0 N/A N/A Reserved
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PAL_BUS_SET_FEATURES – Set Processor Bus Dependent 
Configuration Features (10)

Purpose: Enables/disables specific processor bus features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_BUS_GET_FEATURES should be called to ascertain the implemented processor bus 
configuration features, their current setting, and whether they are software 
controllable, before calling PAL_BUS_SET_FEATURES. The list of possible processor 
features is defined in Table 11-63. Attempting to enable or disable any feature that 
cannot be changed will be ignored.

Argument Description
index Index of PAL_BUS_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_BUS_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error
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PAL_CACHE_FLUSH – Flush Data or Instruction Caches (1)

Purpose: Flushes the processor instruction or data caches.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Flushes the instruction or data caches controlled by the processor as specified by the 
cache_type parameter. Encoding for the cache_type parameter follows:

All other values of cache_type are reserved. If the cache is unified, both instruction and 
data lines are flushed, regardless of the value of cache_type.

Flushing all caches containing instructions, causes the instruction and unified caches to 
be flushed. Flushing all caches containing data, causes all data and unified caches to be 
flushed. Flushing all caches causes all data, instruction, and unified caches to be 
flushed.

When the caller specifies to make local instruction caches coherent with the data 
caches, this procedure will ensure that the instruction caches on the processor that this 
procedure call was made, will see the effects of stores to instruction code performed by 
this processor. This procedure is not required to ensure coherency of instruction caches 
on other processors in the system when this input argument is used.  Refer to 
Section 4.4.3, “Cacheability and Coherency Attribute” on page 2:77 for more 
information on stores and their coherency requirements with local instruction caches.

The effects of flushing data and unified caches is broadcast throughout the coherence 
domain. The effects of flushing instruction caches may or may not be broadcast 

Argument Description
index Index of PAL_CACHE_FLUSH within the list of PAL procedures.
cache_type Unsigned 64-bit integer indicating which cache to flush. See Table 11-64.
operation Formatted bit vector indicating the operation of this call. See Figure 11-1.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.

Return Value Description
status Return status of the PAL_CACHE_FLUSH procedure.
vector Unsigned 64-bit integer specifying the vector number of the pending interrupt.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.
Reserved 0

Status Value Description
2 Call completed without error, but a PMI was taken during the execution of this 

procedure.
1 Call has not completed flushing due to a pending interrupt
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Table 11-64. cache_type Encoding

Value Description

1 Flush all caches containing instructions.

2 Flush all caches containing data.

3 Flush all caches (instruction and data).

4 Make local instruction caches coherent with the data caches.
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throughout the coherence domain. The procedure will perform the necessary 
serialization and synchronization as required by the architecture.

This call does not ensure that data in the processors coalescing buffers are flushed to 
memory. See Section 4.4.5, “Coalescing Attribute” on page 2:78 on how to flush the 
coalescing buffers.

The operation parameter controls how this call will operate. The operation parameter 
has the following format:

Figure 11-1. operation Parameter Layout

• inv – 1 bit field indicating whether to invalidate clean lines in the cache. 

If this bit is 0, all modified cache lines for the specified cache_type are copied back 
to memory. Optimally, modified and non-modified cache lines are left valid in the 
specified cache in a clean (non-modified) state. However, based on the processor 
implementation, cache lines in the specified cache may alternatively be invalidated. 

If this bit is 1, all modified cache lines for the specified cache_type are flushed by 
copying the cache line to memory. All cache lines in the specified cache are then 
invalidated. 

If cache_type is equal to 4 (make local instruction caches coherent with the data 
caches) the inv bit will be ignored.

Table 11-65 will clarify the effects of the inv bit. The modified state represents a 
cache line that contains modified data. The clean state represents a cache line that 
contains no modified data.

• int – 1 bit field indicating if the processor will periodically poll for external interrupts 
while flushing the specified cache_type(s). 

If this bit is a 0, unmasked external interrupts will not be polled. The processor will 
ignore all pending unmasked external interrupts until all cache lines in the specified 
cache_type(s) are flushed. Depending on the size of the processor’s caches, bus 
bandwidth and implementation characteristics, flushing the caches can take a long 
period of time, possibly delaying interrupt response times and potentially causing 
I/O devices to fail. 

If this bit is a 1, external interrupts will be polled periodically and will exit the 
procedure if one is seen. If an unmasked external interrupt becomes pending, this 
procedure will return and allow the caller to service the interrupt before all cache 
lines in the specified cache_type(s) are flushed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved int inv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-65. Cache Line State when inv = 0

Old State New State Comments

Invalid Invalid

Clean Cleana

a. Based on the processor implementation the cache line can be invalidated or left in a model-specific clean 
state

Modified Cleana Modified data is copied back to memory
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The progress_indicator is an unsigned 64-bit integer specifying the starting position of 
the flush operation. Values in this parameter are model specific and will vary across 
processor implementations.

The first time this procedure is called, the progress_indicator must be set to zero. If this 
procedure exits due to an external interrupt and this procedure is then again called to 
resume flushing, the progress_indicator must be set to the value previously returned by 
PAL_CACHE_FLUSH. Software must program no value other than zero or the value 
previously returned by PAL_CACHE_FLUSH otherwise behavior is undefined. 

This procedure makes one flush pass through all caches specified by cache_type and all 
sets and associativities within those caches. The specified cache_type(s) are ensured to 
be flushed only of cache lines resident in the caches prior to PAL_CACHE_FLUSH initially 
being called with the progress_indicator set to 0.

This procedure ensures that prefetches initiated prior to making this call with 
progress_indicator set to 0 are flushed based on the cache_type argument passed.

• If cache_type specifies to flush all instruction caches then the call ensures all prior 
instruction prefetches are flushed.

• If cache_type specifies to flush all data caches then the call ensures all prior data 
prefetches are flushed.

• If cache_type specifies to flush all caches then the call ensures all prior instruction 
and data prefetches are flushed from the caches.

• If cache_type specifies to make local instruction caches coherent with the data 
caches, then the call will ensure all prior instruction prefetches are flushed.

Due to the following conditions, software cannot assume that when this procedure 
completes the entire flush pass that the specified cache_type(s) are empty of all clean 
and/or modified cache lines.

• After an interruption, the flush pass resumes at the interruption point (specified by 
progress_indicator). Due to execution of the interrupt handlers during the flush 
pass, the specified caches may contain new and possibly modified cache lines in 
sections of the caches already flushed. The caller specifies if this procedure should 
poll for interrupts via the int bit of the operation parameter.

• Prior prefetches initiated before this procedure is called are disabled and flushed 
from the cache as described above. However, if a speculative translation exists in 
either the ITLB or DTLB, speculative instruction or data prefetch operation could 
immediately reload a non-modified cache line after it was flushed. To ensure 
prefetches do not occur, software must remove all speculative translation before 

Table 11-66. Cache Line State when inv = 1

Old State New State Comments

Invalid Invalid

Clean Invalid

Modified Invalid Modified data is copied back to memory.
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calling this routine. Alternatively, software can disable the TLBs by setting PSR.it, 
PSR.dt, and PSR.rt to 0.

• The specified caches may also contain PAL firmware code cache entries required to 
flush the cache. 

• The specified caches may contain PAL and SAL PMI code if this call was made with 
PSR.ic = 1 and a PMI interrupt is seen during the execution of the call.

• The specified caches may contain SAL or OS machine check or INIT code if these 
handlers run in a cacheable mode and a machine check or INIT event is seen.

• In a processor that contains multiple logical processors, the specified caches may 
contain new and possibly modified cache lines in sections of the cache already 
flushed due to execution of instructions on other logical processors that share the 
specified caches. Information about how caches are shared among logical 
processors is described in the PAL_CACHE_SHARED_INFO procedure on 
page 2:382. Information about logical processors on the same physical processor 
package are described in the PAL_LOGICAL_TO_PHYSICAL procedure on 
page 2:404.

This procedure does ensure that all cache lines resident in the specified cache_type(s) 
prior to this procedure being initially called are flushed regardless of intervening 
external interrupts. It also ensures that prefetches initiated prior to the initial call to 
this procedure that affect the caches specified in cache_type, as described above, are 
flushed regardless of intervening external interrupts.

To ensure forward progress, PAL_CACHE_FLUSH advances through the cache flush 
sequence at least by one cache line before sampling for pending external interrupts. 
The amount of flushing that occurs before interrupts are polled will vary across 
implementations.

PAL_CACHE_FLUSH will return the following values to indicate to the caller the status of 
the call. 

• status – When the call returns a 1, it indicates that the call did not have any errors 
but is returning due to a pending unmasked external interrupt. To continue flushing 
the caches, the caller must call PAL_CACHE_FLUSH again with the value returned in 
the progress_indicator return value. 

When the call returns a 0, it indicates that the call completed without any errors. All 
cache lines that were present in the cache (when the most recent call to 
PAL_CACHE_FLUSH with a progress_indicator of zero) are flushed and possibly 
invalidated. All intermediate calls must have used the proper progress_indicator, 
otherwise behavior is undefined.

When the call returns a 2, it indicates that the call completed without any errors but 
that a PMI was taken during the execution of this call. This indicates to the caller 
that all cache lines that were present in the cache (when the most recent call to 
PAL_CACHE_FLUSH with a progress_indicator of zero) are flushed but that code 
and data related to handling PMIs may be present in the cache.

• vector – If the return status is 1 and this procedure exited due to a pending 
unmasked external interrupt, this field returns the interrupt vector number. The 
external interrupt will have been removed. The interrupt is considered to be 
“in-service” and software must service this interrupt for the specified vector and 
then issue EOI. If the return status is not 1, the values returned is undefined.

• progress_indicator – When the return status is 1, specifies the current position in 
the flush pass. The value returned is model specific and will vary across processor 
implementations. If the return status is not 1, the value returned is undefined.
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PAL_CACHE_INFO – Get Detailed Cache Information (2)

Purpose: Returns information about a particular processor instruction or data cache at a specified 
level in the cache hierarchy.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call describes in detail the characteristics of a given processor controlled cache in 
the cache hierarchy. It returns information in the config_info_1 and config_info_2 
returns parameters.

The config_info_1 return value has the following structure:

• u – Bit that is 1 if the cache is unified and 0 if the cache is split.

• at - 2-bit field denoting cache memory attributes, as follows:

• associativity – Unsigned 8-bit integer denoting the associativity of the cache. A 
value of 0 indicates a fully associative cache. A value of 1 indicates a direct mapped 
cache.

• line_size – Unsigned 8-bit integer denoting the binary logarithm (log2) of the 
minimum write back size of a flush operation to memory or the line size of the 

Argument Description
index Index of PAL_CACHE_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is 

requested. This value must be between 0 and one less than the value returned in the 
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache. 
All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_CACHE_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-2.
config_info_2 The format of config_info_2 is shown in Figure 11-3.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-2. config_info_1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

stride line_size associativity reserved at u

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

load_hints store_hints load_latency store_latency

Table 11-67. Cache Memory Attributes

Value Description

0 Write through cache

1 Write back cache

2-3 Reserved
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cache if the cache contents never get flushed to memory (for example an 
instruction cache).

• stride – Unsigned 8-bit integer denoting the binary log of the most effective stride 
in bytes for flushing the cache.

• store_latency – Unsigned 8-bit integer denoting the number of cycles after issue 
until the value is written into the cache. If the cache cannot accept a store (like an 
instruction cache) the value returned will be 256 (0xff).

• load_latency – Unsigned 8-bit integer denoting the number of processor cycles after 
issue until the value may be used if it is found in the cache.

• store_hints – 8-bit vector denoting hints implemented by the processor store 
instruction. For instruction caches this bit vector will be zero indicating no store 
hints are supported.

• load_hints – 8-bit vector denoting hints implemented by the processor load 
instruction.

The config_info_2 return value has the following structure:

• cache_size – Unsigned 32-bit integer denoting the size of the cache in bytes.

• alias_boundary – Unsigned 8-bit integer indicating the binary log of the minimum 
number of bytes which must separate aliased addresses in order to obtain the 
highest performance.

• tag_ls_bit – Unsigned 8-bit integer denoting the least-significant address bit of the 
tag.

• tag_ms_bit – Unsigned 8-bit integer denoting the most-significant address bit of the 
tag.

Table 11-68. Cache Store Hints

Bits Description

0 Temporal, level 1

2:1 Reserved

3 Non-temporal, all levels

7:4 Reserved

Table 11-69. Cache Load Hints

Bits Hint

0 Temporal, level 1

1 Non-temporal, level 1

2 Reserved

3 Non-temporal, all levels

7:4 Reserved

Figure 11-3. config_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved tag_ms_bit tag_ls_bit alias_boundary
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PAL_CACHE_INIT – Initialize Caches (3)

Purpose: Initializes the processor controlled caches.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Initializes one or all the processor’s caches. The effect of this procedure is to initialize 
the caches without causing writebacks. This procedure cannot be used where 
coherency is required because any data in the caches will be lost.

The level argument must either be -1, indicating all cache levels, or a non-negative 
number indicating the specific level to initialize. In the latter case, level must be in the 
range from 0 up to one less than the cache_levels return value from 
PAL_CACHE_SUMMARY:

The restrict argument specifies how to handle potential side-effects, where:

All other values of restrict are reserved.

Argument Description
index Index of PAL_CACHE_INIT within the list of PAL procedures.
level Unsigned 64-bit integer containing the level of cache to initialize. If the cache level can be 

initialized independently, only that level will be initialized. Otherwise 
implementation-dependent side-effects will occur.

cache_type Unsigned 64-bit integer with a value of 1 to initialize the instruction cache, 2 to initialize the 
data cache, or 3 to initialize both. All other values are reserved.

restrict Unsigned 64-bit integer with a value of 0 or 1. All other values are reserved. If restrict is 1 
and initializing the specified level and cache_type of the cache would cause side-effects, 
PAL_CACHE_INIT will return -4 instead of initializing the cache.

Return Value Description
status Return status of the PAL_CACHE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-4 Call could not initialize the specified level and cache_type of the cache without side-effects 

and restrict was 1.

Table 11-70. PAL_CACHE_INIT level Argument Values

Value Description

-1 Initializes all cache levels (cache_type and restrict are ignored)

0 to N Initialize only the specified cache level.

Table 11-71. PAL_CACHE_INIT restrict Argument Values

Value Description

0 No restriction: initialize the specified level and cache_type of the cache, even if doing so will 
cause side effects in other caches.

1 Restrict initialization to the specified level and cache_type without side effects to other cache 
levels. If this cannot be done, return -4.



Volume 2, Part 1: Processor Abstraction Layer 2:377

PAL_CACHE_LINE_INIT

PAL_CACHE_LINE_INIT – Initialize a Data Cache Line (31)

Purpose: Initializes the tags and data of a data or unified cache line of a processor controlled 
cache to known values without the availability of backing memory.

Calling Conv: Static

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: A line in the data or unified cache is initialized to the values passed in the arguments of 
this procedure. The physical page number of the line is derived from the address value 
passed. The tags of the line are set to Private, Dirty, and Valid. The cache line is 
initialized using data_value repeated until it fills the line. This procedure replicates 
data_value to a size equal to the largest line size in the processor-controlled cache 
hierarchy.

This procedure call cannot be used where coherency is required.

Argument Description
index Index of PAL_CACHE_LINE_INIT within the list of PAL procedures.
address Unsigned 64-bit integer value denoting the physical address from which the physical page 

number is to be generated. The address must be an implemented physical address, bit 63 
must be zero.

data_value 64-bit data value which is used to initialize the cache line.
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_LINE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error
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PAL_CACHE_PROT_INFO – Get Detailed Cache Protection 
Information (38)

Purpose: Returns protection information about a particular processor instruction or data cache at 
a specified level in the cache hierarchy.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_CACHE_PROT_INFO returns information about the data and tag protection method 
for the specified cache. The three returns compose a six-element array of 32-bit 
protection information structures.

The config_info_1 return value has the following structure:

The config_info_2 return value has the following structure:

The config_info_3 return value has the following structure:

Argument Description
index Index of PAL_CACHE_PROT_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is 

requested. This value must be between 0 and one less than the value returned in the 
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache. 
All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_CACHE_PROT_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-4.
config_info_2 The format of config_info_2 is shown in Figure 11-5.
config_info_3 The format of config_info_3 is shown in Figure 11-6.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-4. config_info_1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[0]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[1]

Figure 11-5. config_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[2]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[3]
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Each cache_protection element has the following structure:

• data_bits – Unsigned 8-bit integer denoting the number of data bits that each unit 
of protection covers. For example, if the cache hardware generates 8 bits of ECC 
per 64 bits of data, data_bits would be 64. This field is only valid if t_d is 0, 2, or 3.

• tagprot_lsb – Unsigned 6-bit integer denoting the least-significant tag address bit 
that this protection method covers. This field is only valid if t_d is 1, 2, or 3.

• tagprot_msb – Unsigned 6-bit integer denoting the most-significant tag address bit 
that this protection method covers. This field is only valid if t_d is 1, 2, or 3.

• prot_bits – Unsigned 6-bit integer denoting the number of protection bits generated 
for the field specified by the t_d element.

• method – Unsigned 4-bit integer denoting the protection method, where:

All other values of method are reserved.

• t_d – 2-bit field denoting whether this protection method applies to the tag, the 
data, or both. If over both, the tag and data unit could be concatenated with the 
tag either to the left (more significant) or to the right (less significant) than a unit 
of data. For the values of 2 and 3, the difference of tagprot_msb and tagprot_lsb 
indicates the number of tag bits that are protected with the data bits. The data bits 
are described by the data_bits field below. This field is encoded as follows:

When obtaining cache information via this call, information for the data cache should be 
obtained first, then if the u bit of the config_info_1 parameter is not set, obtain the 
information for the instruction cache.

Figure 11-6. config_info_3 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[4]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[5]

Figure 11-7. cache_protection Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_d method prot_bits tagprot_msb tagprot_lsb data_bits

Table 11-72. method Values

Value Description

0 no ECC or parity protection

1 odd parity protection

2 even parity protection

3 ECC protection

Table 11-73. t_d Values

Value Description

0 Data protection

1 Tag protection

2 Tag+data protection (tag is more significant)

3 Data+tag protection (data is more significant)
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PAL_CACHE_READ – Read Values from the Processor Cache (259)

Purpose: Reads the data and tag of a processor-controlled cache line for diagnostic testing.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: A value is read from the specified cache line, if present. This procedure allows reading 
cache data, tag, protection, or status bits.

The line_id argument is an 8-byte quantity in the following format:

• cache_type – Unsigned 8-bit integer denoting whether to read from instruction (1) 
or data/unified (2) cache. All other values are reserved.

• level – Unsigned 8-bit integer specifying which cache within the cache hierarchy to 
read. This value must be in the range from 0 up to one less than the cache_levels 
return value from PAL_CACHE_SUMMARY.

• way – Unsigned 8-bit integer denoting within which cache way to read. If the cache 
is direct-mapped this argument is ignored.

• part – Unsigned 8-bit integer denoting which portion of the specified cache line to 
read:

Argument Description
index Index of PAL_CACHE_READ within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to read the data.
address 64-bit 8-byte aligned physical address from which to read the data. The address must be an 

implemented physical address on the processor model with bit 63 set to zero.
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_READ procedure.
data Right-justified value returned from the cache line.
length The number of bits returned in data.
mesi The status of the cache line.

Status Value Description
1 The word at address was found in the cache, but the line was invalid.
0 Call completed without error.

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-5 The word at address was not found in the cache.
-7 The operation requested is not supported for this cache_type and level.

Figure 11-8. Layout of line_id Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

part way level cache_type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved
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All other values of part are reserved.

The data return value contains the value read from the cache. Its contents are 
interpreted according to the line_id.part field as follows:

The length return value contains the number of valid bits returned in data.

The mesi return value contains the status bits of the cache line. Values are defined as 
follows:

All other values of mesi are reserved.

To guarantee correct behavior for this procedure, it is required that there shall be no 
RSE activity that may cause cache side effects.

Table 11-74. part Input Values

Value Description

0 data

1 tag

2 data protection bits

3 tag protection bits 

4 combined protection bits for data and tagsa

a. Note that for this part no data is returned. Only 
protection bits are returned.

Table 11-75. part Input Values and corresponding data Return Values

Part Data

0 64-bit data.

1 right-justified tag of the specified line.

2 right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses 
less than 64-bits of data to generate protection, data will contain more than one value. For 
example if a cache generates parity for every 8-bits of data, this return value would contain 8 
parity values. The PAL_CACHE_PROT_INFO call returns information on how a cache 
generates protection information in order to decode this return value. If a cache uses greater 
than 64-bits of data to generate protection, data will contain the value to use for the portion of 
the cache line indicated by address.

3 right-justified protection bits for the cache line tag.

4 right-justified protection bits for the cache line tag and 64 bits of data at address.

Table 11-76. mesi Return Values

Value Description

0 invalid

1 shared

2 exclusive

3 modified
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PAL_CACHE_SHARED_INFO – Get Information on Caches Shared by 
Logical Processors (43)

Purpose: Returns information on caches shared between logical processors.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure will return information about how the processor caches are shared 
among logical processors (See “PAL_LOGICAL_TO_PHYSICAL – Get Information on 
Logical to Physical Processor Mappings (42)” on page 2:404 for a definition of a logical 
processor). If the caller is only interested in how many logical processors are sharing a 
particular cache level, this procedure will only need to be called once. If the caller is 
interested in identifying which logical processors are sharing the processor caches, this 
procedure will need to be called a number of times equal to the value returned in 
num_shared to gather identification information for all the logical processors sharing 
the particular cache for which information is being requested.

Identification information about the logical processors sharing the cache is in the return 
values proc_n_cache_info1 and proc_n_cache_info2. The format of these return values 
is shown in Figure 11-9 and Figure 11-10.

Argument Description
index Index of PAL_CACHE_SHARED_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is 

requested. This value must be between 0 and one less than the value returned in the 
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified 
cache. All other values are reserved.

proc_number Unsigned 64-bit integer that specifies for which logical processor information is being 
requested. This input argument must be zero for the first call to this procedure and can be a 
maximum value of one less than the number of logical processors sharing this cache, which 
is returned by the num_shared return value.

Return Value Description
status Return status of the PAL_CACHE_SHARED_INFO procedure.
num_shared Unsigned integer that returns the number of logical processors that share the processor 

cache level and type, for which information was requested.
proc_n_cache_info1 The format of proc_n_cache_info1 is shown in Figure 11-9.
proc_n_cache_info2 The format of proc_n_cache_info2 is shown in Figure 11-10.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
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• tid – Thread id: The thread identifier of the logical processor for which information 
is being returned. This value will be unique on a per core basis.

• rv – Reserved   

• cid – Core id: The core identifier of the logical processor for which information is 
being returned. This value will be unique on a per physical processor package basis.

• rv – Reserved

There is no guarantee that the core id's and thread id's will be contiguous on a given 
physical processor package.

• la – Logical address: geographical address of the logical processor for which 
information is being returned. This is the same value that is returned by the 
PAL_FIXED_ADDR procedure when it is called on the logical processor.

• rv – Reserved

This procedure must be supported on all implementations that contain more than one 
logical processor on a physical processor package and returns an unimplemented 
procedure error code otherwise.

Figure 11-9. Layout of proc_n_cache_info1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv cid

Figure 11-10. Layout of proc_n_cache_info2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv la

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv
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PAL_CACHE_SUMMARY – Get Cache Hierarchy Summary (4)

Purpose: Returns summary information about the hierarchy of caches controlled by the 
processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Software is expected to call PAL_CACHE_SUMMARY before calling PAL_CACHE_INFO to 
determine the number of times PAL_CACHE_INFO should be called and the amount of 
storage that must be allocated to hold all of the information returned by 
PAL_CACHE_INFO.

Argument Description
index Index of PAL_CACHE_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_SUMMARY procedure.
cache_levels Unsigned 64-bit integer denoting the number of levels of cache implemented by the 

processor. Strictly, this is the number of levels for which the cache controller is integrated 
into the processor (the cache SRAMs may be external to the processor).

unique_caches Unsigned 64-bit integer denoting the number of unique caches implemented by the 
processor. This has a maximum of 2*cache_levels, but may be less if any of the levels in 
the cache hierarchy are unified caches or do not have both instruction and data caches.

Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_CACHE_WRITE – Write Values into the Processor Cache (260)

Purpose: Writes the data and tag of a processor-controlled cache line for diagnostic testing.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The value of data is written into the specified level, way, and part of the cache. This 
procedure allows writing cache data, tag, protection, or status bits.

This procedure may also be used to seed errors into a cache line. It calculates the 
protection bits based on the value of data, then inverts a specified bit field before 
writing data to the cache. Bit field inversion is only used for writes to the cache data or 
tag.

If seeding an error into the instruction cache or seeding an unrecoverable error, then 
return back to the caller may not be possible.

This procedure call cannot be used where coherency is required.

The line_id argument is an 8-byte quantity in the following format:

• cache_type – Unsigned 8-bit integer denoting whether to write to instruction (1) or 
data/unified (2) cache. All other values are reserved.

• level – Unsigned 8-bit integer specifying which cache within the cache hierarchy to 
write data. This value must be in the range from 0 up to one less than the 
cache_levels return value from PAL_CACHE_SUMMARY.

• way – Unsigned 8-bit integer denoting within which cache way to write data. If the 
cache is direct-mapped this argument is ignored.

• part – Unsigned 8-bit integer denoting where to write data into the cache:

Argument Description
index Index of PAL_CACHE_WRITE within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to write the data.
address 64-bit 8-byte aligned physical address at which the data should be written. The address must 

be an implemented physical address on the processor model with bit 63 set to 0.
data unsigned 64-bit integer value to write into the specified part of the cache.

Return Value Description
status Return status of the PAL_CACHE_WRITE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error.

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-7 The operation requested is not supported for this cache_type and level.

Figure 11-11. Layout of line_id Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

part way level cache_type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

trigger length start mesi
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All other values of part are reserved.

• mesi – Unsigned 8-bit integer denoting whether the line should be written as clean 
or dirty, shared or exclusive. Though there may be multiple calls to 
PAL_CACHE_WRITE to the same cache line, the last call’s mesi will be in effect. 
Values are defined as follows:

All other values of mesi are reserved.

• start – Unsigned 8-bit integer denoting the least-significant bit of the field in data to 
invert. If length is 0 or part is not 0 or 1, this field is ignored.

• length – Unsigned 8-bit integer denoting the number of bits to invert. If length is 0, 
no bits are inverted and start is ignored. If part is not 0 or 1, this field is ignored.

• trigger – Unsigned 8-bit integer denoting whether to trigger the error while in 
procedure. If trigger is 0, the procedure writes data and returns. If trigger is 1 and 
cache_type is data/unified, the procedure writes data and executes a 64-bit load 
from address before returning. If trigger is 1 and cache_type is set to instruction, 
the procedure writes data and branches to the address. All other values are 
reserved.

The data argument contains the value to write into the cache. Its contents are 
interpreted based on the part field as follows:

Table 11-77. part Input Values

Value Description

0 data

1 tag

2 data protection

3 tag protection

4 combined data and tag protection

Table 11-78. mesi Return Values

Value Description

0 invalid

1 shared

2 exclusive

3 modified

Table 11-79. Interpretation of data Input Field

Part Data

0 64-bit data to write to the specified line (with optional bit field inversion).

1 right-justified tag to write into the specified line (with optional bit field inversion).

2 right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses less 
than 64-bits of data to generate protection, data will contain more than one value. For example if a 
cache generates parity for every 8-bits of data, this return value would contain 8 parity values. The 
PAL_CACHE_PROT_INFO call returns information on how a cache generates protection 
information in order to decode this return value. If a cache uses greater than 64-bits of data to 
generate protection, data will contain the value to use for the portion of the cache line indicated by 
address.

3 right-justified protection bits for the cache line tag.

4 right-justified protection bits for the cache line tag and 64 bits of data at address.
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To guarantee correct behavior for this procedure, it is required that there shall be no 
RSE activity that may cause cache side effects.
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PAL_COPY_INFO – Return Parameters to Copy PAL Code to Memory 
(30)

Purpose: Returns the parameters needed to copy relocatable PAL code from the firmware 
address space to memory.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to obtain the information needed to relocate runtime PAL 
procedures and PAL PMI code from the firmware address space to memory. The 
information returned in this call is used by SAL to allocate a memory region on the 
required alignment, and call PAL_COPY_PAL to copy the relocatable PAL code.

The copy_type input argument indicates which type of procedure for which copying 
information is requested. A value of 0 denotes procedures required for SAL, PMI, and 
Itanium architecture-based operating systems. All other values are reserved. If the 
copy_type is 0, then SAL shall call PAL_COPY_PAL call subsequently to copy the PAL 
procedures and PAL PMI code to the allocated memory region.

The buffer_align return value must be a power of two between 4 KB and 1 MB.

Argument Description
index Index of PAL_COPY_INFO within the list of PAL procedures.
copy_type Unsigned integer denoting type of procedures for which copy information is requested.
Reserved 0
mca_proc_state_i
nfo

Unsigned integer denoting the number of bytes that SAL needs for the min-state save area 
for each processor.

Return Value Description
status Return status of the PAL_COPY_INFO procedure.
buffer_size Unsigned integer denoting the number of bytes of PAL information that must be copied to 

main memory.
buffer_align Unsigned integer denoting the starting alignment of the data to be copied.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_COPY_PAL – Copy PAL Code to Memory (256)

Purpose: Copy relocatable PAL code from the firmware address space to memory.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to relocate runtime PAL procedures and PAL PMI code from the 
firmware address space to main memory. A value of 0 for the copy_option indicates that 
the relocation should be performed; a value of 1 indicates that the relocation should not 
be performed. This procedure also updates the PALE_PMI entrypoint in hardware. All 
other values are reserved.

PAL_COPY_INFO should be called first to determine the size and alignment 
requirements of the memory buffer to which the PAL code will be copied. Bit 63 of 
target_addr must be set consistently with the cacheability attribute of the memory 
buffer being copied to. It is PAL's responsibility to ensure that the firmware address 
space contents that are being copied from, are not in any processor caches. It is the 
caller’s responsibility to ensure that the contents of the memory buffer copied to, are 
flushed out of the internal processor's data caches if target_addr has a cacheable 
memory attribute.

If a PAL procedure makes calls to internal PAL functions that execute only out of the 
firmware address space, that portion of code will continue to execute out of the 
firmware address space, even though the main procedure has been copied to RAM. This 
is true only for some PAL procedures that can be called only in physical mode.

PAL_COPY_PAL call is mandatory as part of the system boot process. Higher level 
firmware should guarantee that PAL_COPY_PAL is called on all processors before OS 
launch. This is to guarantee that full processor functionality is available. This procedure 
can be called more than once.

Argument Description
index Index of PAL_COPY_PAL within the list of PAL procedures.
target_addr Physical address of a memory buffer to copy relocatable PAL procedures and PAL PMI code.
alloc_size Unsigned integer denoting the size of the buffer passed by SAL for the copy operation.
copy_option Unsigned integer indicating whether relocatable PAL code and PAL PMI code should be 

copied from firmware address space to main memory.

Return Value Description
status Return status of the PAL_COPY_PAL procedure.
proc_offset Unsigned integer denoting the offset of PAL_PROC in the relocatable segment copied.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_DEBUG_INFO – Get Debug Registers Information (11)

Purpose: Returns the number of instruction and data debug register pairs.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call returns the number of pairs of registers. Even numbered registers contain 
breakpoint addresses and odd numbered registers contain breakpoint mask conditions. 
For example if i_regs is 4, there are 8 instruction debug registers of which 4 are 
breakpoint address registers (IBR0,2,4,6) and 4 are breakpoint mask registers 
(IBR1,3,5,7). The minimum value for both i_regs and d_regs is 4.

On some implementations, a hardware debugger may use two or more debug register 
pairs for its own use. When a hardware debugger is attached, PAL_DEBUG_INFO may 
return a value for i_regs and/or d_regs less than the implemented number of debug 
registers. When a hardware debugger is attached, PAL_DEBUG_INFO may return a 
minimum value of 2 for d_regs and a minimum of 2 for i_regs.

Argument Description
index Index of PAL_DEBUG_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_DEBUG_INFO procedure.
i_regs Unsigned 64-bit integer denoting the number of pairs of instruction debug registers 

implemented by the processor.
d_regs Unsigned 64-bit integer denoting the number of pairs of data debug registers implemented 

by the processor.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_FIXED_ADDR – Get Fixed Geographical Address of Processor 
(12)

Purpose: Returns a unique geographical address of this processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The address return value will contain a unique unsigned integer denoting the position of 
this processor on its system interconnect. This is an arbitrary number which is expected 
to have geographical significance and is unique for the system interconnect to which 
the processor is connected. If the processor is connected to multiple system 
interconnects, the address return value must be unique among all such interconnects. 
The maximum size of the address returned corresponds to the size of the fields (id and 
eid) in the LID register (CR64).

Argument Description
index Index of PAL_FIXED_ADDR call within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FIXED_ADDR procedure.
address Fixed geographical address of this processor.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_FREQ_BASE – Get Processor Base Frequency (13)

Purpose: Returns the frequency of the output clock for use by the platform is generated by the 
processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: If the processor outputs a clock for use by the platform, the base_freq return 
parameter will be the frequency of this output clock in ticks per second. If the processor 
does not generate an output clock for use by the platform, this procedure will return 
with a status of -1.

Argument Description
index Index of PAL_FREQ_BASE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FREQ_BASE procedure.
base_freq Base frequency of the platform if generated by the processor chip.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Can not complete call without error
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PAL_FREQ_RATIOS – Get Processor Frequency Ratios (14)

Purpose: Returns the ratios of the processor frequency, bus frequency, and interval timer to the 
input clock of the processor, if the platform clock is generated externally or to the 
output clock to the platform, if the platform clock is generated by the processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Each of the ratios returned is an unsigned 64-bit value, where the upper unsigned 32 
bits contain the numerator and the lower unsigned 32 bits contain the denominator of 
the ratio, as depicted in Figure 11-12. Each ratio is given by dividing the numerator by 
the denominator.

• denominator – Unsigned 32-bit integer

• numerator – Unsigned 32-bit integer

Argument Description
index Index of PAL_FREQ_RATIOS within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FREQ_RATIOS procedure.
proc_ratio Ratio of the processor frequency to the input clock of the processor, if the platform clock is 

generated externally or to the output clock to the platform, if the platform clock is generated 
by the processor.

bus_ratio Ratio of the bus frequency to the input clock of the processor, if the platform clock is 
generated externally or to the output clock to the platform, if the platform clock is generated 
by the processor.

itc_ratio Ratio of the interval timer counter rate to input clock of the processor, if the platform clock is 
generated externally or to the output clock to the platform, if the platform clock is generated 
by the processor.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error

Figure 11-12. Return values

31 0

denominator

63 32

numerator
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PAL_GET_HW_POLICY – Retrieve Current Hardware Resource 
Sharing Policy (48)

Purpose: Returns the current hardware resource sharing policy of the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure is used to return information on the current hardware resource sharing 
policy. This procedure can also be used to identify which logical processors (see 
“PAL_LOGICAL_TO_PHYSICAL – Get Information on Logical to Physical Processor 
Mappings (42)” on page 2:404 for a definition of a logical processor) are impacted by 
the various hardware sharing policies supported on the processor.

The procedure returns information about the current hardware sharing policy, the total 
number of logical processors impacted by hardware sharing policies and the logical 
address of one of the processors impacted by the hardware sharing policy.

The definition of the hardware sharing policies that can be returned in the cur_policy 
value are defined in Table 11-80.

Argument Description
index Index of PAL_GET_HW_POLICY within the list of PAL procedures.
proc_num Unsigned 64-bit integer that specifies for which logical processor information is being 

requested. This input argument must be zero for the first call to this procedure and can be a 
maximum value of one less than the number of logical processors impacted by the hardware 
resource sharing policy, which is returned by the num_impacted return value.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_GET_HW_POLICY procedure.
cur_policy Unsigned 64-bit integer representing the current hardware resource sharing policy.
num_impacted Unsigned 64-bit integer that returns the number of logical processors impacted by the 

policy input argument.
la Unsigned 64-bit integer containing the logical address of one of the logical processors 

impacted by policy modification.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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The return value num_impacted specifies the number of logical processors impacted by 
the hardware sharing policy. The return value la returns the logical address of one of 
the logical processors impacted by the hardware sharing policy. The return value la is 
the same value and format of that is returned by the PAL_FIXED_ADDR procedure, see 
“PAL_FIXED_ADDR – Get Fixed Geographical Address of Processor (12)” on page 2:391 
for details.

If the caller is interested in identifying all the logical processors impacted by the 
hardware sharing policy, this procedure will need to be called a number of times equal 
to the value returned in num_impacted return value. For each subsequent call it needs to 
increment the 'proc_num' input argument.

The logical processor this procedure is made on can only return information about how 
the hardware sharing policy impacts logical processors it is sharing hardware resources 
with. For example a physical processor package may contain two multi-threaded cores. 
On this example implementation the hardware sharing policy only impacts the two 
threads on the core and this procedure would only return the two la's of the threads on 
that core, but would not return the la's of the threads on the other core. When this 
procedure was made on the other core, then that procedure call would return the la's of 
the two threads on that core.

This procedure is only supported on processors that have multiple logical processors 
sharing hardware resources that can be configured. On all other processor 
implementations, this procedure will return the Unimplemented procedure return 
status.

Table 11-80. Hardware policies returned in cur_policy

Value Name Description

0 Performance The processor has its hardware resources configured to achieve 
maximum performance across all logical processors that share 
hardware with the logical processor the procedure was made on.

1 Fairness The processor has its hardware resources configured to 
approximately achieve equal sharing of competing hardware 
resources among all the logical processors that share hardware 
with the logical processor the procedure was made on.

2 High-priority The processor has its hardware resources configured such that the 
logical processor this procedure was called on has a greater share 
of the competing hardware resources.

3 Exclusive High-priority The processor has its hardware resources configured such that the 
logical processor this procedure was called on has a greater share 
of the competing hardware resources.  See 
“PAL_SET_HW_POLICY – Set Current Hardware Resource 
Sharing Policy (49)” on page 2:456 for differences between 
high-priority and exclusive high priority.

4 Low-priority The processor has its hardware resources configured such that the 
logical processor this procedure was called on has a smaller share 
of the competing hardware resources. This occurs when a 
competing logical processor has itself set as high priority or 
exclusive high priority.

All Other Values Reserved
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PAL_GET_PSTATE – Return Information on the Performance Index 
of the Processor (262)

Purpose: Returns the performance index of the processor.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure returns a performance index of the processor, and is relative to the 
highest available P-state, P0. A value of 100 represents the minimum processor 
performance in the P0 state. For processors that support variable P-state performance, 
it is possible for a processor to report a number greater than 100, representing that the 
processor is running at a performance level greater than the minimum P0 performance. 
The PAL procedure “PAL_PROC_GET_FEATURES – Get Processor Dependent Features 
(17)” on page 2:446 indicates whether the processor supports variable P-state 
performance.

The type argument allows the caller to select the performance_index value that will be 
returned. See Table 11-81 below for details.

Argument Description
index Index of PAL_GET_PSTATE within the list of PAL procedures.
type Type of performance_index value to be returned by this procedure.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_GET_PSTATE procedure.
performance_index Unsigned integer denoting the processor performance for the time duration since the 

last PAL_GET_PSTATE procedure call was made. The value returned is relative to the 
performance index of the highest available P-state.

Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but accuracy of performance index has been impacted by a 

thermal throttling event, or a hardware-initiated event.
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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For SCDD logical processors, or HIDD logical processors that do not support platform 
power-caps, note that the performance_index returned for type=0 and type=3 will have 
identical values. This is because the most recent PAL_SET_PSTATE procedure call that 
returned a status of 0 will always succeed in transitioning to the requested performance 
state for these coordination domains (see PAL_SET_PSTATE procedure description for 
additional details). 

For SCDD logical processors, the PAL_GET_PSTATE procedure should always be called 
with type argument value of 0 or 3. On such processors, calling PAL_GET_PSTATE with 
type argument value of 1 or 2 is undefined. 

For HIDD logical processors, the type argument values of 1 and 2 are supported, since 
such processors can also support platform power-caps, which affect the 
weighted-average performance index.

If there was a thermal-throttling or hardware-initiated event (other than a platform 
power-cap) which affected the processor power/performance for the current time 
period, and the accuracy of the performance_index value has been impacted by the 
event, then the procedure will return with status=1. The performance_index returned in 
this case will still have a value that falls within the range of possible performance_index 
values for this processor implementation (i.e., 0 up to the highest variable p-state 
performance_index value).

The procedure, when called with type=1 or type=2, returns a fixed performance_index 
value of 100 until the procedure has been called with type=1 to reset computation of 
the weighted-average performance_index. For subsequent invocations with type=1 or 

Table 11-81. PAL_GET_PSTATE type Argument

type Description

0 The performance_index returned will correspond to the target P-state requested by software.

• For SCDD (software-coordinated dependency domain) logical processors, this is the 
P-state requested by the most recent PAL_SET_PSTATE procedure call made by any 
logical processor in the domain.

• For HCDD (hardware-coordinated dependency domain) or HIDD (hardware-independent 
dependency domain) logical processors, this is simply the P-state requested by the most 
recent PAL_SET_PSTATE procedure call on this logical processor.

The value returned is not affected by platform power-caps.

1 The performance_index is a weighted-average value of the different P-states that the 
processor was operating in for the time duration between the current PAL_GET_PSTATE 
procedure call, and the previous invocation of PAL_GET_PSTATE with type=1. This allows 
the caller to establish a new starting point for subsequent computation of the 
weighted-average performance_index. See Section 11.6.1, “Power/Performance States 
(P-states)” on page 2:315 for more details on how the weighted average value is derived.

2 The performance_index is a weighted-average value of the different P-states that the 
processor was operating in for the time duration between the current PAL_GET_PSTATE 
procedure call, and the previous invocation of PAL_GET_PSTATE with type=1. This allows 
the caller to sample the current value of the performance_index, without affecting the starting 
point used for computing the weighted-average performance_index.

3 The performance_index returned will correspond to the current instantaneous P-state of the 
dependency domain containing the logical processor, at the time of the procedure call. The 
value returned is not affected by platform power-caps. When variable P-states performance 
is supported, the performance_index may be higher than the P-state requested. Please see 
Section 11.6.1.4, “Variable P-state Performance” on page 2:322 for more information about 
variable P-state performance.

All Other Values Reserved
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type=2, the procedure will return the performance_index value corresponding to the 
processor performance in the time duration between the previous call to 
PAL_GET_PSTATE with type=1 and the current call.

If the processor had transitioned to a HALT state (see Section 11.6.1, 
“Power/Performance States (P-states)” on page 2:315) in between successive 
invocations to the PAL_GET_PSTATE procedure, the performance index computation 
returned will not take into account the performance of the processor during the time 
spent in HALT state (see Section 11.6.1.5, “Interaction of P-states with HALT State” on 
page 2:323 for details).
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PAL_HALT – Halt Processor (28)

Purpose: Causes the processor to enter the HALT state, or one of the implementation-dependent 
low-power states.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call places the processor in a low power state designated by halt_state. This 
procedure can optionally let the platform know it is about to enter the low power state 
via an I/O transaction.

halt_state is an unsigned 64-bit integer denoting the low power state requested. The 
value passed must be a valid halt state in the range from 1 to 7, for which information 
is returned by PAL_HALT_INFO. All other values are reserved. 

The processor informs the platform that it has entered the requested low-power state in 
an implementation-specific manner.

The layout of the information pointed to by the io_detail_ptr is shown Table 11-82.

• I/O size and type information has the format shown in Figure 11-13.

Argument Description
index Index of PAL_HALT within the list of PAL procedures.
halt_state Unsigned 64-bit integer denoting low power state requested.
io_detail_ptr 8-byte aligned physical address pointer to information on the type of I/O (load/store) 

requested.
Reserved 0

Return Value Description
status Return status of the PAL_HALT procedure.
load_return Value returned if a load instruction is requested in the io_detail_ptr
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Table 11-82. I/O Detail Pointer Description

Offset Description

0x0 I/O size and type information

0x8 Address for I/O

0x10 Data value to store

Figure 11-13. I/O Size and Type Information Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved I/O size I/O type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved
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• I/O type is an unsigned 8-bit integer denoting the type of I/O transaction to 
complete.

All other values for I/O type are reserved.

• I/O size is an unsigned 8-bit integer denoting the size of the I/O transaction to 
complete.

All other values for I/O size are reserved.

• Address for the I/O transaction is a physical pointer for the load or store. The 
address passed should be aligned according to the size of the I/O transaction 
requested. The most significant bit (63) of the physical address should be set 
according to the cacheability attribute wanted for the I/O transaction. 

• The data value to store is the value that will be stored out if the io_type is 2. If 
io_type is not equal to a 2, then this value is a don’t care.

If an I/O transaction is requested by the caller, the processor will wait until this 
transaction has been received by the platform before entering the low power state.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt 
(including NMI), PAL transitions the processor to the normal state. An unmasked 
external interrupt is defined to be an interrupt that is permitted to interrupt the 
processor based on the current setting of the TPR.mic and TPR.mmi fields in the TPR 
control register. PAL sets the value in the load_return return parameter if the io_type is 
1, otherwise this value is set to zero. 

If the processor transitions to normal state via an unmasked external interrupt, 
execution resumes to the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if 
PMIs are masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution 
resumes to the caller if machine checks and INITs are masked, otherwise execution will 
resume to the corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will 
reset itself and start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6, “Power 
Management” on page 2:313.

Table 11-83. I/O Type Definition

Value Description

0 No transaction

1 Perform a load

2 Perform a store

Table 11-84. I/O Size Definition

Value Description

0 No transaction

1 1 byte size

2 2 byte size

4 4 byte size

8 8 byte size
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PAL_HALT_INFO – Get Halt State Information for Power 
Management (257)

Purpose: Returns information about the processor’s power management capabilities. 

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The power information requested is returned in the data buffer referenced by 
power_buffer. Power information is returned about the 8 power states. The low power 
states are LIGHT_HALT, HALT, plus 6 other low power states. The LIGHT_HALT state is 
index 0 in the buffer, and the HALT state is index 1. All 8 low power states need not be 
implemented

The information returned is in the format of Figure 11-14. The information about the 
HALT states will be in ascending order of the index values.

• exit latency – 16-bit unsigned integer denoting the minimum number of processor 
cycles to transition to the NORMAL state.

• entry_latency – 16-bit unsigned integer denoting the minimum number of 
processor cycles to transition from the NORMAL state.

• power_consumption – 28-bit unsigned integer denoting the typical power 
consumption of the state, measured in milliwatts.

• im – 1-bit field denoting whether this low power state is implemented or not. A 
value of 1 indicates that the low power state is implemented, a value of 0 indicates 
that it is not implemented. If this value is 0 then all other fields are invalid.

• co – 1-bit field denoting if the low power state maintains cache and TLB coherency. 
A value of 1 indicates that the low power state keeps the caches and TLBs coherent, 
a value of 0 indicates that it does not.

Argument Description
index Index of PAL_HALT_INFO within the list of PAL procedures.
power_buffer 64-bit pointer to a 64-byte buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_HALT_INFO procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-14. Layout of power_buffer Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

entry_latency exit_latency

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv co im power_consumption



2:402 Volume 2, Part 1: Processor Abstraction Layer

PAL_HALT_INFO

The latency numbers given are the minimum number of processor cycles that will be 
required to transition the states. The maximum or average cannot be determined by 
PAL due to its dependency on outstanding bus transactions.

For more information on power management, please refer to Section 11.6, “Power 
Management” on page 2:313.
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PAL_HALT_LIGHT – Cause Processor to Enter Coherent Halt State 
(29)

Purpose: Causes the processor to enter the LIGHT HALT state, where prefetching and execution 
are suspended, but cache and TLB coherency is maintained.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call places the processor in the LIGHT HALT state in an implementation-dependent 
fashion where cache and TLB coherency is maintained, but power consumption is 
minimized. 

The processor acknowledges to the platform that it has entered the LIGHT HALT 
low-power state in an implementation-specific manner.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt 
(including NMI), PAL transitions the processor to the normal state. An unmasked 
external interrupt is defined to be an interrupt that is permitted to interrupt the 
processor based on the current setting of the TPR.mic and TPR.mmi fields in the TPR 
control register.

If the processor transitions to normal state via an unmasked external interrupt, 
execution resumes to the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if 
PMIs are masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution 
resumes to the caller if machine checks and INITs are masked, otherwise execution will 
resume to the corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will 
reset itself and start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6, “Power 
Management” on page 2:313.

Argument Description
index Index of PAL_HALT_LIGHT within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_HALT_LIGHT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_LOGICAL_TO_PHYSICAL – Get Information on Logical to 
Physical Processor Mappings (42)

Purpose: Returns information on the logical to physical processor mapping.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure will return information about the logical processors contained on the 
physical processor package that the procedure call is made on. A physical processor 
package can contain one or more logical processors, organized into threads and cores. 
A logical processor is a compute-capability-centric view of the CPU that allows the 
physical processor package to execute from more than one instruction stream. A 
physical processor package that can execute from n instruction streams has n logical 
processors. Threads are logical processors that share core pipeline execution resources. 
Cores are defined as a collection of hardware that implements the main execution 
pipeline of the processor. Multiple cores on a physical processor package do not share 
core pipeline resources but may share caches and bus interfaces. A core may support 
multiple threads of execution.

The log_overview return value provides an overview of the logical processors on the 
physical processor package this procedure call was made on. The format of the 
log_overview return argument is shown in Figure 11-15.

Argument Description
index Index of PAL_LOGICAL_TO_PHYSICAL within the list of PAL procedures.
proc_number Signed 64-bit integer that specifies for which logical processor information is being 

requested. When this input argument is -1, information is returned about the logical 
processor on which the procedure call is made. This input argument must be in the range of 
-1 up to one less than the number of logical processors returned by num_log in the 
log_overview return value.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_LOGICAL_TO_PHYSICAL procedure.
log_overview The format of log_overview is shown in Figure 11-15.
proc_n_log_info1 The format of proc_n_log_info1 is shown in Figure 11-16.
proc_n_log_info2 The format of proc_n_log_info2 is shown in Figure 11-17.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
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• num_log – Total number of logical processors on this physical processor package 
that are enabled.

• tpc – Threads per core. Number of threads per core.

• rv – Reserved

• cpp – Cores per processor. Total number of cores on this physical processor 
package.

• rv – Reserved

• ppid – Physical processor package ID. Physical processor package identifier which 
was assigned at reset by the platform or bus controller. This value may or may not 
be unique across the entire platform since it depends on the platform vendor's 
policy. 

• rv – Reserved

It is not ensured that num_log will always be equal to cpp multiplied by tpc. This is 
possible if some logical processors are disabled through implementation specific means.

The caller uses the value returned in num_log to gather additional information about 
the other logical processors on the same physical processor package. This procedure 
will need to be called multiple times (equal to the number of logical processors returned 
in num_log) to gather all additional information about the logical processors on the 
physical processor package this procedure call was made on. This procedure may be 
called from any logical processor on the physical processor package to gather 
information about all the logical processors. It may also be called to get information 
about the logical processor on which the procedure is running. Information about the 
logical processors is in the return values proc_n_log_info1 and proc_n_log_info2. The 
format of these return values is shown in Figure 11-16 and Figure 11-17.

• tid – Thread id: The thread identifier of the logical processor for which information 
is being returned. This value will be unique on a per core basis.

• rv – Reserved   

• cid – Core id: The core identifier of the logical processor for which information is 
being returned. This value will be unique on a per physical processor package basis.

• rv – Reserved

There is no guarantee that the core id's and thread id's will be contiguous on a given 
physical processor package.

Figure 11-15. Layout of log_overview Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tpc num_log

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv ppid rv cpp

Figure 11-16. Layout of proc_n_log_info1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv cid
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• la – Logical address: geographical address of the logical processor for which 
information is being returned. This is the same value that is returned by the 
PAL_FIXED_ADDR procedure when it is called on the logical processor.

• rv – Reserved

This procedure must be supported on all implementations that contain more than one 
logical processor on a physical processor package and returns an unimplemented 
procedure error code otherwise.

Figure 11-17. Layout of proc_n_log_info2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv la

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv
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PAL_MC_CLEAR_LOG – Clear Processor Error Logging Registers 
(21)

Purpose: Clears all processor error logging registers and resets the indicator that allows the error 
logging registers to be written. This procedure also checks the pending machine check 
bit and pending INIT bit and reports their states.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to clear processor error logging registers after all error 
information has been obtained. This procedures re-enables the logging registers in the 
case of a subsequent error. It clears any information that would be returned by either 
the PAL_MC_ERROR_INFO or PAL_MC_DYNAMIC_STATE procedures.

This procedure does not clear any pending machine checks. The pending return 
parameter returns a value of 0 if no subsequent event is pending, a 1 in bit position 0, 
if a machine check is pending, and/or a 1 in bit position 1 if an INIT is pending. All other 
values are reserved.

Argument Description
index Index of PAL_MC_CLEAR_LOG within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_CLEAR_LOG procedure.
pending 64-bit vector denoting whether an event is pending.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-18. Pending Return Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved in mc

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-85. Pending Return Parameter Fields

Field Description

mc Pending machine check

in Pending initialization event
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PAL_MC_DRAIN – Complete Outstanding Transactions (22)

Purpose: Ensures that all outstanding transactions in a processor are completed or that any MCA 
due to these outstanding transactions is taken.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call causes all outstanding transactions in the processor to be completed. For 
example:

• Flushes (fc) invalidate the cache, lines that have been modified are written back 
(issued to the fabric) to memory before invalidation.

• Instruction cache coherence flushes (fc.i) invalidate lines and/or write them back 
to main memory, if this is required to make the instruction caches coherent with the 
data caches.

• Loads get their data returned.

• Stores either update the cache or issue transactions to the system fabric.

• Prefetches are either completed or cancelled,

As a result of completing these outstanding transactions Machine Check Aborts (MCAs) 
may be taken. This call is typically issued by code that needs to guarantee that no 
MCAs due to outstanding transactions will occur after a given point.

Argument Description
index Index of PAL_MC_DRAIN within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_DRAIN procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_MC_DYNAMIC_STATE – Returns Dynamic Processor State (24)

Purpose: Returns the Machine Check Dynamic Processor State.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The info_type input argument designates the type of information the procedure will 
return. When info_type is 0, the procedure returns the maximum size (in bytes) of 
processor dynamic state that can be returned for this processor family in the max_size 
return value.

When info_type is 1, the procedure will copy processor dynamic state into memory 
pointed to by the input argument dy_buffer.  This copy will occur using the addressing 
attributes used to make the procedure call (physical or virtual) and the caller needs to 
ensure the dy_buffer input pointer matches this addressing attribute.

The amount of data returned can vary depending on the state of the machine at the 
time the procedure is called, and may not always return the maximum size for every 
call. The amount of data returned is provided in the processor state parameter field 
dsize. Please see Table 11-7 for more information on the processor state parameter. The 
caller of the procedure needs to ensure that the buffer is large enough to handle the 
max_size that is returned by this procedure.

The contents of the processor dynamic state is implementation dependent. Portions of 
this information may be cleared by the PAL_MC_CLEAR_LOG procedure. This procedure 
should be invoked before PAL_MC_CLEAR_LOG to ensure all the data is captured.

Argument Description
index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.
info_type Unsigned 64-bit value indicating the type of information to return
dy_buffer 64-bit pointer to a buffer aligned on an 8-byte boundary
Reserved 0

Return Value Description
status Return status of the PAL_MC_DYNAMIC_STATE procedure.
max_size Maximum size (in bytes) of the data that can be returned by this procedure for this processor 

family.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
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PAL_MC_ERROR_INFO – Get Processor Error Information (25)

Purpose: Returns the Processor Machine Check Information

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure returns error information for machine checks as specified by info_index, 
level_index and err_type_index. Higher level software is informed that additional 
machine check information is available when the processor state parameter mi bit is set 
to one. See Table 11-7, “Processor State Parameter Fields,” on page 2:299 for more 
information on the processor state parameter and the mi bit description.

The info_index argument specifies which error information is being requested. See 
Table 11-86 for the definition of the info_index values.

Argument Description
index Index of PAL_MC_ERROR_INFO within the list of PAL procedures.
info_index Unsigned 64-bit integer identifying the error information that is being requested. (See 

Table 11-86).
level_index 8-byte formatted value identifying the structure to return error information on.(See 

Figure 11-19).
err_type_index Unsigned 64-bit integer denoting the type of error information that is being requested for the 

structure identified in level_index. 

Return Value Description
status Return status of the PAL_MC_ERROR_INFO procedure.
error_info Error information returned. The format of this value is dependant on the input values passed.
inc_err_type If this value is zero, all the error information specified by err_type_index has been returned. If 

this value is one, more structure-specific error information is available and the caller needs to 
make this procedure call again with level_index unchanged and err_type_index, 
incremented.

Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-6 Argument was valid, but no error information was available
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All other values of info_index are reserved. When info_index is equal to 0 or 1, the 
level_index and err_type_index input values are ignored. When info_index is equal to 
2, the level_index and err_type_index define the format of the error_info return value.

The caller is expected to first make this procedure call with info_index equal to zero to 
obtain the processor error map. This error map informs the caller about the processor 
core identification, the processor thread identification and indicates which structure(s) 
caused the machine check. If more than one structure generated a machine check, 
multiple structure bits will be set. The caller then uses this information to make 
sub-sequent calls to this procedure for each structure identified in the processor error 
map to obtain detailed error information. 

The level_index input argument specifies which processor core, processor thread and 
structure for which information is being requested. See Table 11-87 on page 2:412 for 
the definition of the level_index fields. This procedure call can only return information 
about one processor structure at a time. The caller is responsible for ensuring that only 
one structure bit in the level_index input argument is set at a time when retrieving 
information, otherwise the call will return that an invalid argument was passed.

Table 11-86. info_index Values

info_index Error Information Type Description

0 Processor Error Map This info_index value will return the processor 
error map. This return value specifies the 
processor core identification, the processor 
thread identification, and a bit-map indicating 
which structure(s) of the processor generated the 
machine check. This bit-map has the same layout 
as the level_index. A one in the structure bit-map 
indicates that there is error information available 
for the structure. The layout of the level_index is 
described in Figure 11-19, “level_index Layout” 
on page 2:411. 

1 Processor State Parameter This info_index value will return the same 
processor state parameter that is passed at the 
PALE_CHECK exit state for a machine check 
event (provided a valid min-state save area has 
been registered) or will construct a processor 
state parameter for a corrected machine check 
events. This parameter describes the severity of 
the error and the validity of the processor state 
when the machine check or CMCI occurred. This 
procedure will not return a valid PSP for INIT 
events. The Processor State Parameter is 
described in Figure 11-11, “Processor State 
Parameter,” on page 2:299. 

2 Structure-specific Error Information This info_index value will return error information 
specific to a processor structure. The structure is 
specified by the caller using the level_index and 
err_type_index input parameters. The value 
returned in error_info is specific to the structure 
and type of information requested.

Figure 11-19. level_index Layout
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erf ebh edt eit edc eic tid cid
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The convention for levels and hierarchy in the level_index field is such that the least 
significant bit in the error information bit-fields represent the lowest level of the 
structures hierarchy. For example bit 8 if the eic field represents the first level 
instruction cache.

The erf field is 4-bits wide to allow reporting of 4 concurrent register related machine 
checks at one time. One bit would be set for each error. The ems field is 16-bits wide to 
allow reporting of 16-concurrent micro-architectural structures at one time. There is no 
significance in the order of these bits. If only one register file related error occurred, it 
could be reported in any one of the 4-bits. 

The err_type_index specifies the type of information will be returned in error_info for a 
particular structure. See Table 11-88 for the values of err_type_index

rsvd ems

Table 11-87. level_index Fields

Field Bits Description

cid 3:0 Processor core ID (default is 0 for processors with a single core)

tid 7:4 Logical thread ID (default is 0 for processors that execute a single thread)

eic 11:8 Error information is available for 1st, 2nd, 3rd, and 4th level instruction caches

edc 15:12 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified caches

eit 19:16 Error information is available for 1st, 2nd, 3rd, and 4th level instruction TLB

edt 23:20 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified TLB

ebh 27:24 Error information is available for the 1st, 2nd, 3rd, and 4th level processor bus 
hierarchy

erf 31:28 Error information is available on register file structures

ems 47:32 Error information is available on micro-architectural structures

rsvd 63:48 Reserved

Table 11-88. err_type_index Values

err_type_index
value mod 8

Return Value Description

0 Structure-specific error information 
specified by level_index

The information returned in error_info is dependant 
on the structure specified in level_index. See 
Table 11-89 for the error_info return formats. 

1 Target address The target address is a 64-bit integer containing the 
physical address where the data was to be 
delivered or obtained. The target address also can 
return the incoming address for external snoops 
and TLB shoot-downs that generated a machine 
check. The structure-specific error information 
informs the caller if there is a valid target address to 
be returned for the requested structure.

2 Requester identifier The requester identifier is a 64-bit integer that 
specifies the bus agent that generated the 
transaction responsible for generating the machine 
check. The structure-specific error information 
informs the caller if there is a valid requester 
identifier.

Figure 11-19. level_index Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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See Table 11-89 for the format of error_info when structure-specific information is 
requested.

The structure specified by the level_index may have the ability to log distinct multiple 
errors. This can occur if the structure is accessed at the same time by more than one 
instruction and the processor can log machine check information for each access. To 
inform the caller of this occurrence, this procedure will return a value of one in the 
inc_err_type return value. 

It is important to note, that when the caller sees that the inc_err_type return value is 
one, it should make a sub-sequent call with the err_type_index value incremented by 
8. If the structure-specific error information returns that there is a valid target address, 
requester identifier, responder identifier or precise instruction pointer these can be 
returned as well by incrementing the err_type_index value in the same manner. Refer 
to the following example for more information.

For example, to gather information on the first error of a structure that can log multiple 
errors, err_type_index would be called with the value of 0 first. The caller examines the 
information returned in error_info to know if there is a valid target address, requester 
identifier, responder identifier, or precise instruction pointer available for logging. If 
there is, it makes sub-sequent calls with err_type_index equal to 1, 2, 3 and/or 4 
depending on which valid bits are set. Additionally if the inc_err_type return value was 
set to one, the caller knows that this structure logged multiple errors. To get the second 
error of the structure it sets the err_type_index = 8 and the structure-specific 
information is returned in error_info. The caller examines this error_info to know if 
there is a valid target address, requester identifier, responder identifier, or precise 

3 Responder identifier The responder identifier is a 64-bit integer that 
specifies the bus agent that responded to a 
transaction that was responsible for generating the 
machine check. The structure-specific error 
information informs the caller if there is a valid 
responder identifier. 

4 Precise instruction pointer The precise instruction pointer is a 64-bit virtual 
address that points to the bundle that contained the 
instruction responsible for the machine check. The 
structure-specific error information informs the 
caller if there is a valid precise instruction pointer. 

5-7 Reserved Reserved

Table 11-89. error_info Return Format when info_index = 2 and 
err_type_index = 0

level_index
Field Input

error_info Return Format

eic cache_check return format

edc cache_check return format

eit tlb_check return format

edt tlb_check return format

ebh bus_check return format

erf reg_file_check return format

ems uarch_check return format

Table 11-88. err_type_index Values (Continued)

err_type_index
value mod 8

Return Value Description



2:414 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INFO

instruction pointer available for logging on the second error. If there is, it makes 
sub-sequent calls with err_type_index equal to 9, 10, 11, and/or 12 depending on 
which valid bits are set. The caller continues incrementing the err_type_index value in 
this fashion until the inc_err_type return value is zero. 

As shown in Table 11-89, the information returned in error_info varies based on which 
structure information is being requested on. The next sections describe the error_info 
return format for the different structures.

Cache_Check Return Format: The cache check return format is returned in 
error_info when the user requests information on any instruction or data/unified caches 
in the level_index input argument. The cache_check return format must be used to 
report errors in cacheable transactions. These errors may also be reported using the 
bus_check return format if the bus structures can detect these errors. The cache_check 
return format is a bit-field that is described in Figure 11-20 and Table 11-90.

Figure 11-20. cache_check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hlth rsvd dp rv wiv way mv mesi ic dc tl dl rsvd level op
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pi rp rq tv mcc pv pl iv is rsvd index

Table 11-90. cache_check Fields

Field Bits Description

op 3:0 Type of cache operation that caused the machine check:
0 – unknown or internal error
1 – load
2 – store
3 – instruction fetch or instruction prefetch
4 – data prefetch (both hardware and software)
5 – snoop (coherency check)
6 – cast out (explicit or implicit write-back of a cache line) 
7 – move in (cache line fill)
All other values are reserved.

level 5:4 Level of cache where the error occurred. A value of 0 indicates the first level of cache.

rsvd 7:6 Reserved

dl 8 Failure located in the data part of the cache line.

tl 9 Failure located in the tag part of the cache line.

dc 10 Failure located in the data cache

ic 11 Failure located in the instruction cache

mesi 14:12 0 – cache line is invalid.
1 – cache line is held shared.
2 – cache line is held exclusive.
3 – cache line is modified.
All other values are reserved.

mv 15 The mesi field in the cache_check parameter is valid.

way 20:16 Failure located in the way of the cache indicated by this value.

wiv 21 The way and index field in the cache_check parameter is valid.

rsvd 22 Reserved

dp 23 An uncorrectable (typically multiple-bit) error was detected and data was poisoned for the 
corresponding cache line, without any corrupted data being consumed (i.e., no corrupted 
data has been copied to processor registers).
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TLB_Check Return Format: The tlb_check return format is returned in error_info 
when the user requests information on any instruction or data/unified TLB in the 
level_index input argument. The tlb_check return format is a bit-field that is described 
in Figure 11-21 and Table 11-91.

rsvd 29:24 Reserved

hlth 31:30 Health indicator. This field will report if the cache type and level reporting this error 
supports hardware status tracking and the current status of this cache.
00 – No hardware status tracking is provided for the cache type and level reporting this 
event.
01 – Status tracking is provided for this cache type and level and the current status is 
normal status.a

10 – Status tracking is provided for the cache type and level and the current status is 
cautionary.a When a cache reports a cautionary status the "hardware damage" bit of the 
PSP (see Figure 11-11, “Processor State Parameter,” on page 2:299) will be set as well.
11 – Reserved

index 51:32 Index of the cache line where the error occurred.

rsvd 53:52 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine 
check was an Intel Itanium instruction. If this bit is set to one, the instruction that 
generated the machine check was IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the 
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has 
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has 
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has 
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has 
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction 
pointer has been logged.

a. Hardware is tracking the operating status of the structure type and level reporting the error. The hardware 
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at or 
below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries exceeds 
a pre-defined threshold.

Figure 11-21. tlb_check Layout
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pi rp rq tv mcc pv pl iv is reserved

Table 11-91. tlb_check Fields

Field Bits Description

tr_slot 7:0 Slot number of the translation register where the failure occurred.

trv 8 The tr_slot field in the TLB_check parameter is valid.

Table 11-90. cache_check Fields (Continued)

Field Bits Description
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rv 9 Reserved

level 11:10 The level of the TLB where the error occurred. A value of 0 indicates the first level of TLB

reserved 15:12 Reserved

dtr 16 Error occurred in the data translation registers

itr 17 Error occurred in the instruction translation registers

dtc 18 Error occurred in data translation cache

itc 19 Error occurred in the instruction translation cache

op 23:20 Type of cache operation that caused the machine check:
0 – unknown
1 – TLB access due to load instruction
2 – TLB access due to store instruction
3 – TLB access due to instruction fetch or instruction prefetch
4 – TLB access due to data prefetch (both hardware and software)
5 – TLB shoot down access
6 – TLB probe instruction (probe, tpa)
7 – move in (VHPT fill)
8 – purge (insert operation that purges entries or a TLB purge instruction)
All other values are reserved.

reserved 29:24 Reserved

hlth 31:30 Health indicator. This field will report if the tlb type and level reporting this error supports 
hardware status tracking and the current status of this tlb.
00 – No hardware status tracking is provided for the tlb type and level reporting this 
event.
01 – Status tracking is provided for this tlb type and level and the current status is 
normal.a

10 – Status tracking is provided for the tlb type and level and the current status is 
cautionary.a When a tlb reports a cautionary status the "hardware damage" bit of the 
PSP (see Figure 11-11, “Processor State Parameter,” on page 2:299) will be set as well.
11 – Reserved

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine 
check was an Intel Itanium instruction. If this bit is set to one, the instruction that 
generated the machine check was IA-32 instruction.

iv 55 The is field in the TLB_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the 
machine check.

pv 58 The pl field of the TLB_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has 
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has 
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has 
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has 
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction 
pointer has been logged.

a. Hardware is tracking the operating status of the structure type and level reporting the error. The hardware 
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at or 
below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries exceeds 
a pre-defined threshold.

Table 11-91. tlb_check Fields (Continued)

Field Bits Description
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Bus_Check Return Format: The bus_check return format is returned in error_info 
when the user requests information on any level of hierarchy of the processor bus 
structures as specified in the level_index input argument. The bus_check return format 
must be used to report errors in uncacheable transactions. These errors must not be 
reported using the cache_check return format. The bus_check return format is a 
bit-field that is described in Figure 11-22 and Table 11-92.

Figure 11-22. bus_check Layout
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Table 11-92. bus_check Fields

Field Bits Description

size 4:0 Size in bytes of the transaction that caused the machine check abort.

ib 5 Internal bus error

eb 6 External bus error

cc 7 Error occurred during a cache to cache transfer.

type 15:8 Type of transaction that caused the machine check abort.
0 – unknown
1 – partial read
2 – partial write
3 – full line read
4 – full line write
5 – implicit or explicit write-back operation
6 – snoop probe
7 – incoming or outgoing ptc.g
8 – write coalescing transactions
9 – I/O space read
10 – I/O space write
11 – inter-processor interrupt message (IPI)
12 – interrupt acknowledge or external task priority cycle
All other values are reserved

sev 20:16 Bus error severity. The encodings of error severity are platform specific.

hier 22:21 This value indicates which level or bus hierarchy the error occurred in. A value of 0 
indicates the first level of hierarchy.

dp 23 A multiple-bit error was detected, and data was poisoned for the incoming cache line.

bsi 31:24 Bus error status information. It describes the type of bus error. This field is processor bus 
specific.

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine 
check was an Intel Itanium instruction. If this bit is set to one, the instruction that 
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the 
machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has 
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has 
been logged.
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Reg_File_Check Return Format: The reg_file_check return format is returned in 
error_info when the user requests information on any of the registers as specified in the 
level_index input argument. The reg_file_check return format is a bit-field that is 
described in Figure 11-23 and Table 11-93. When the reg_file_check return format is 
returned, the target address, the requester identifier and the responder identifier will 
always be invalid.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has 
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has 
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction 
pointer has been logged.

Figure 11-23. reg_file_check Layout
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Table 11-93. reg_file_check Fields

Field Bits Description

id 3:0 Register file identifier:
0 – unknown/unclassified
1 – General register (bank1)
2 – General register (bank 0)
3 – Floating-point register
4 – Branch register
5 – Predicate register
6 – Application register
7 – Control register
8 – Region register
9 – Protection key register
10 – Data breakpoint register
11 – Instruction breakpoint register
12 – Performance monitor control register
13 – Performance monitor data register
All other values are reserved

op 7:4 Identifies the operation that caused the machine check
0 – unknown
1 – read
2 – write
All other values are processor specific

reg_num 14:8 Identifies the register number that was responsible for generating the machine check

rnv 15 Specifies if the reg_num field is valid

reserved 53:16 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine 
check was an Intel Itanium instruction. If this bit is set to one, the instruction that 
generated the machine check was IA-32 instruction.

iv 55 The is field in the reg_file_check parameter is valid.

Table 11-92. bus_check Fields (Continued)

Field Bits Description
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Uarch_Check Return Format: The uarch_check return format is returned in 
error_info when the user requests information on any of the micro-architectural 
structures as specified in the level_index input argument. The uarch_check return 
format is a bit-field that is described in Figure 11-24 and Table 11-94.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating 
the machine check.

pv 58 The pl field of the reg_file_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has 
been corrected.

reserved 62:60 Reserved

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise 
instruction pointer has been logged.

Table 11-93. reg_file_check Fields

Field Bits Description
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Figure 11-24. uarch_check Layout
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Table 11-94. uarch_check Fields

Field Bits Description

sid 4:0 Structure identification. These bits identify the micro-architectural structure where the 
error occurred. The definition of these bits are implementation specific.

level 7:5 Level of the micro-architectural structure where the error was generated. A value of 0 
indicates the first level.

array_id 11:8 Identification of the array in the micro architectural structure where the error was 
generated. 
0 – unknown/unclassified
All other values are implementation specific

op 15:12 Type of operation that caused the error
0 – unknown
1 – read or load
2 – write or store
All other values are implementation specific

way 21:16 Way of the micro-architectural structure where the error was located. 

wv 22 The way field in the uarch_check parameter is valid.

xv 23 The index field in the uarch_check parameter is valid.

reserved 31:24 Reserved

index 39:32 Index or set of the micro-architectural structure where the error was located. 

reserved 53:40 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine 
check was an Intel Itanium instruction. If this bit is set to one, the instruction that 
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating 
the machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has 
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has 
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier 
has been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier 
has been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise 
instruction pointer has been logged.
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PAL_MC_ERROR_INJECT – Inject Processor Error (276)

Purpose: Injects the requested processor error or returns information on the supported injection 
capabilities for this particular processor implementation.

Calling Conv: Stacked

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure enables error injection into processor structures based on information 
specified by err_type_info, err_struct_info and err_data_buffer. Each invocation of the 
procedure enables a single error to be injected. The procedure supports error injection 
for at least one error of each severity type (correctable, recoverable, fatal).

The err_type_info argument specifies details of the error injection operation that is being 
requested (see Figure 11-25). The err_struct_info and err_data_buffer specify additional 
optional information. The format of err_struct_info is specified for each supported 
structure type indicated by the err_struct field in err_type_info. err_data_buffer is optional, 
depending on the structure type and whether trigger functionality is used. If 
err_data_buffer is not required for the error injection, PAL will not attempt to access the 
memory location specified in this parameter.

Argument Description
index Index of PAL_MC_ERROR_INJECT within the list of PAL procedures.
err_type_info Unsigned 64-bit integer specifying the first level error information which identifies the error 

structure and corresponding structure hierarchy, and the error severity.
err_struct_info Unsigned 64-bit integer identifying the optional structure specific information that provides 

the second level details for the requested error.
err_data_buffer Unsigned 64-bit integer specifying the address of the buffer providing additional parameters 

for the requested error. The address of this buffer must be 8-byte aligned.

Return Value Description
status Return status of the PAL_MC_ERROR_INJECT procedure.
capabilities 64-bit vector specifying the supported error injection capabilities for the input argument 

combination of struct_hier, err_struct and err_sev fields in err_type_info.
resources 64-bit vector specifying the architectural resources that are used by the procedure.
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-4 Call completed with error; the requested error could not be injected due to failure in locating 

the target location in the specified structure.
-5 Argument was valid, but requested error injection capability is not supported.
-9 Call requires PAL memory buffer

Figure 11-25. err_type_info
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If query mode is selected through the mode bit in the err_type_info parameter, the 
return value in the capabilities vector indicates which error injection types are 
individually supported on the underlying implementation for the corresponding values 
of err_struct, struct_hier and err_sev fields in err_type_info. The caller is expected to iterate 
through all combinations of err_inj, err_sev, err_struct, and struct_hier to determine the full 
extent of individual error injection types supported by the underlying implementation.

The capabilities vector does not indicate which combinations of error injection inputs 
from err_struct_info are supported by the implementation. For example, if an 
implementation supports tag error injection only for instruction caches and data error 
injection only for data caches, this cannot be determined by the capabilities vector. In 
this instance, the capabilities vector will report i=1, d=1, tag=1, data=1, indicating that 
the error injection is supported individually for instruction and data caches, and for tag 
and data fields, but not indicating which combinations of i, d, tag, and data are 

Table 11-95. err_type_info

Field Bits Description

mode 2:0 Indicates the mode of operation for this procedure:
0 – Query mode
1 – Error inject mode (err_inj should also be specified)
2 – Cancel outstanding trigger. All other fields in err_type_info, err_struct_info and 
err_data_buffer are ignored.
All other values are reserved.

err_inj 5:3 Indicates the mode of error injection:
0 – Error inject only (no error consumption)
1 – Error inject and consume
All other values are reserved.

err_sev 7:6 Indicates the severity desired for error injection/query. Definitions of the different error 
severity types is given in Section 11.8, “PAL Glossary” on page 2:350.
0 – Corrected error
1 – Recoverable error
2 – Fatal error
3 – Reserved

err_struct 12:8 Indicates the structure identification for error injection/query:
0 - Any structure (cannot be used during query mode). When selected, the structure type 
used for error injection is determined by PAL.
1 – Cache
2 – TLB
3 – Register file
4 – Bus/System interconnect
5-15 – Reserved
16-31 – Processor specific error injection capabilities. err_data_buffer is used to specify 
error types. Please refer to the processor specific documentation for additional details.

struct_hier 15:13 Indicates the structure hierarchy for error injection/query:
0 - Any level of hierarchy (cannot be used during query mode). When selected, the 
structure hierarchy used for error injection is determined by PAL.
1 – Error structure hierarchy level-1
2 – Error structure hierarchy level-2
3 – Error structure hierarchy level-3
4 – Error structure hierarchy level-4
All other values are reserved.

Reserved 47:16 Reserved

Impl_Spec 63:48 Processor specific error injection capabilities. Please refer to processor specific 
documentation for additional details.
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supported for error injection. The caller is required to use the query mode with 
appropriate inputs in err_struct_info to determine which combinations of error injection 
types are supported. If a given combination is not supported, the procedure returns 
with status -5.

The procedure supports both an Error inject and Error inject and consume mode 
(selectable through the err_inj field in err_type_info). In the former mode, the procedure 
performs the requested error injection in the specified structure, but does not perform 
any additional actions that can lead to consumption of the error and generation of the 
subsequent machine check. In Error inject and consume mode, the procedure will inject 
the error in the specified structure, and will perform additional operations to ensure 
that the error condition is encountered resulting in a machine check. Note that in this 
case, the machine check will be generated within the context of this procedure.

The procedure also provides the ability to set an error injection trigger. In this case, the 
error injection is delayed until the operation specified by the trigger is encountered and 
the executing context has the specified privilege level. In the absence of a trigger, the 
error injection is performed at the time of procedure execution. If an error injection 
trigger is specified, the mode field in err_type_info determines whether the error is 
injected, or injected and consumed when the trigger operation is encountered. There 
can be only one outstanding trigger programmed at a time. Subsequent procedure calls 
that use the trigger functionality will overwrite the previous trigger parameters. Once a 
trigger is programmed it remains active until either the trigger operation is encountered 
or software cancels the outstanding trigger via this call. Software can cancel 
outstanding triggers by specifying Cancel outstanding trigger via the mode bit in 
err_type_info. The resources value returned is all zeroes, indicating that the procedure is 
no longer using any architectural resources (specified in resources) for triggering 
purposes. When using this mode, it is possible that the procedure execution may itself 
satisfy the trigger conditions while in the process of cancelling the last programmed 
trigger.

To support triggers, PAL may use existing architectural resources. The resources return 
value defines the list of resources that are being used by PAL (see Figure 11-26).

In order for triggering to work when PAL is using the IBR or DBR registers, certain PSR 
bits are required to be set. Software needs to ensure that the PSR.db and the PSR.ic 
bits are set to one when executing the code that it is targeting with the trigger. If either 
one of these bits are not set, then triggers will not work as defined.

Procedure operation is undefined if software overwrites or modifies the IBR/DBR 
resources that PAL indicates it is using for a trigger. The IBR/DBR resources that PAL is 
not using are available for software to program for their own use.

Figure 11-26. resources Return Value
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Reserved dbr6 dbr4 dbr2 dbr0 ibr6 ibr4 ibr2 ibr0
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Reserved
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Multiprocessor coherency is not guaranteed when error injection is performed using this 
procedure. Please refer to the processor-specific documentation for further details 
regarding possible scenarios which can result in loss of coherency.

In cases where an error cannot be injected due to failure in locating the specified target 
location (cache line, TC, TR, register number) for the given set of input arguments, the 
procedure will return with status -4. For example, if the caller requests an error 
injection in the cache and specifies cl_id=1 (virtual address provided), then PAL will 
attempt to locate the cache line as indicated by the input virtual address. If the 
corresponding cache line cannot be found (the cache line could have been evicted from 
the cache in the time interval between the procedure call and the search process, or the 
cache line may be in invalid state), then the procedure returns with a status value of -4.

The procedure does not check the settings of the error promotion bits (bit 53 and bit 60 
in PAL_PROC_GET_FEATURES) before injecting an error in the specified structure. 
Based on the configuration of these bits, the severity of the error reported may vary.

The detailed descriptions of err_struct_info and err_data_buffer are shown below.

Table 11-96. resources Return Value

Field Bits Description

ibr0 0 When 1, indicates that IBR0,1 are being used by the procedure for trigger functionality.

ibr2 1 When 1, indicates that IBR2,3 are being used by the procedure for trigger functionality.

ibr4 2 When 1, indicates that IBR4,5 are being used by the procedure for trigger functionality.

ibr6 3 When 1, indicates that IBR6,7 are being used by the procedure for trigger functionality.

dbr0 4 When 1, indicates that DBR0,1 are being used by the procedure for trigger functionality.

dbr2 5 When 1, indicates that DBR2,3 are being used by the procedure for trigger functionality.

dbr4 6 When 1, indicates that DBR4,5 are being used by the procedure for trigger functionality.

dbr6 7 When 1, indicates that DBR6,7 are being used by the procedure for trigger functionality.

Figure 11-27. err_struct_info – Cache
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Reserved cl_dp cl_id cl_p c_t siv
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Reserved trigger_pl trigger tiv

Table 11-97. err_struct_info – Cache

Field Bits Description

siv 0 When 1, indicates that the structure information fields (c_t,cl_p,cl_id) are valid and 
should be used for error injection. When 0, the structure information fields are ignored, 
and the values of these fields used for error injection are implementation-specific.

c_t 2:1 Indicates which cache should be used for error injection:
0 – Reserved
1 – Instruction cache
2 – Data or unified cache
3 – Reserved

cl_p 5:3 Indicates the portion of the cache line where the error should be injected:
0 – Reserved
1 – Tag
2 – Data
3 – mesi
All other values are reserved.
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cl_id 8:6 Indicates which mechanism is used to identify the cache line to be used for error 
injection:
0 – Reserved
1 – Virtual address provided in the inj_addr field of the buffer pointed to by 
err_data_buffer should be used to identify the cache line for error injection.
2 – Physical address provided in the inj_addr field of the buffer pointed to by 
err_data_buffershould be used to identify the cache line for error injection.
3 – way and index fields provided in err_data_buffer should be used to identify the cache 
line for error injection.
All other values are reserved.

cl_dp 9 When 1, indicates that a multiple bit, non-correctable error should be injected in the 
cache line specified by cl_id. If this injected error is not consumed, it may eventually 
cause a data-poisoning event resulting in a corrected error signal, when the associated 
cache line is cast out (implicit or explicit write-back of the cache line). The error severity 
specified by err_sev in err_type_info must be set to 0 (corrected error) when this bit is 
set.

Reserved 31:10 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and 
should be used for error injection. When 0, the trigger information fields are ignored and 
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The address 
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to 
by err_data_buffer:
0 – Instruction memory access. The trigger match conditions for this operation type are 
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2, 
“Debug Address Breakpoint Match Conditions” on page 2:154.
1 – Data memory access. The trigger match conditions for this operation type are similar 
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug 
Address Breakpoint Match Conditions” on page 2:154.
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected:
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if 
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at 
any privilege level.

Reserved 63:40 Reserved

Figure 11-28. capabilities vector for cache
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Reserved trigger_pl trigger

Table 11-98. capabilities vector for cache

Field Bits Description

i 0 Error injection for instruction caches is supported

d 1 Error injection for data caches is supported

rv 2 Reserved

Table 11-97. err_struct_info – Cache (Continued)

Field Bits Description
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err_data_buffer needs to be specified for cache only if siv is 1 or tiv is 1, in err_struct_info.

tag 3 Error injection in tag portion of cache line is supported

data 4 Error injection in data portion of cache line is supported

mesi 5 Error injection in mesi portion of cache line is supported

dp 6 Error injection that results in data poisoning events is supported

Reserved 9:6 Reserved

pa 10 Error injection with physical address input is supported

va 11 Error injection with virtual address input is supported

wi 12 Error injection with way and index input is supported

Reserved 31:13 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-29. Buffer pointed to by err_data_buffer – Cache

63 0

trigger_addr

127 64

inj_addr

191 153152 133132 128

Reserved index way

Table 11-99. Buffer pointed to by err_data_buffer – Cache

Field Bits Description

trigger_addr 63:0 64-bit virtual address to be used by the trigger in the err_struct_info input argument. 
This field is ignored if tiv in err_struct_info is 0. The field is defined similar to the addr 
field in the debug breakpoint registers, as specified in Table 7-1, “Debug Breakpoint 
Register Fields (DBR/IBR)” on page 2:153.

inj_addr 127:64 64-bit virtual or physical address used to identify the cache line to be used for error 
injection. This field is valid only if cl_id in err_struct_info corresponds to either va or pa 
(value 1 or 2).

way 132:128 Indicates the way information for error injection. This is used in combination with the 
index field to identify the cache line for error injection. This field is valid only if cl_id in 
err_struct_info is 3, else it is ignored.

index 152:133 Indicates the index information for error injection. This is used in combination with the 
way field to identify the cache line for error injection. This field is valid only if cl_id in 
err_struct_info is 3, else it is ignored.

Reserved 191:153 Reserved

Table 11-98. capabilities vector for cache (Continued)

Field Bits Description
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Figure 11-30. err_struct_info – TLB
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Table 11-100. err_struct_info – TLB

Field Bits Description

siv 0 When 1, indicates that the structure information fields (tt, tc_tr, tr_slot) are valid and 
should be used for error injection. When 0, the structure information fields are ignored, 
and the values of these fields used for error injection are implementation-specific.

tt 2:1 Indicates which TLB should be used for error injection:
0 – Reserved
1 – Instruction TLB
2 – Data TLB
3 – Reserved

tc_tr 4:3 Indicates which portion of TLB should be used for error injection:
0 – Reserved
1 – tc: error should in injected in a Translation Cache (TC) entry. For TC insertion, the 
entry is identified by the vpn and rid fields in err_data_buffer
2 – tr: error should in injected in a Translation Register (TR) entry. For TR insertion, the 
slot number is specified by the tr_slot field.
3 – Reserved

tr_slot 12:5 Indicates the Translation Register (TR) slot number where the error should be injected. 
This field is valid only when tc_tr is 2, else it is ignored.

Reserved 31:13 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and 
should be used for error injection. When 0, the trigger information fields are ignored and 
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The virtual address 
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to 
by err_data_buffer:
0 – Instruction memory access. The trigger match conditions for this operation type are 
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2, 
“Debug Address Breakpoint Match Conditions” on page 2:154.
1 – Data memory access. The trigger match conditions for this operation type are similar 
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug 
Address Breakpoint Match Conditions” on page 2:154.
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if 
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at 
any privilege level.

Reserved 63:40 Reserved
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err_data_buffer needs to be specified for TLB only if tiv is 1 or if tc_tr value corresponds 
to tc, in err_struct_info.

Figure 11-31. capabilities vector for TLB
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Reserved trigger_pl trigger

Table 11-101. capabilities vector for TLB

Field Bits Description

d 0 Error injection for data TLB is supported

i 1 Error injection for instruction TLB is supported

rv 2 Reserved

tc 3 Error injection in TC entries is supported

tr 4 Error injection in TR entries is supported

Reserved 31:5 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-32. Buffer pointed to by err_data_buffer – TLB
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trigger_addr
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Reserved vpn

191 152151 133132 128

Reserved rid

Table 11-102. Buffer pointed to by err_data_buffer – TLB

Field Bits Description

trigger_addr 63:0 64-bit virtual address to be used by the trigger in the err_struct_info input argument. 
The field is defined similar to the addr field in debug breakpoint registers, as specified 
in Table 7-1, “Debug Breakpoint Register Fields (DBR/IBR)” on page 2:153.

vpn 115:64 Indicates the Virtual page number. This field is valid only when tc_tr in err_struct_info 
is 1. vpn used in combination with rid to identify the TC entry for error injection.

Reserved 127:116 Reserved

rid 151:128 Indicates the region identifier. This field is valid only when tc_tr in err_struct_info is 1. 
rid is used in combination with vpn to identify the TC entry for error injection.

Reserved 191:152 Reserved

Figure 11-33. err_struct_info – Register File
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Table 11-103. err_struct_info – Register File

Field Bits Description

siv 0 When 1, indicates that the structure information fields (regfile_id, reg_num) are valid and 
should be used for error injection. When 0, the structure information fields are ignored, 
and the values of these fields used for error injection are implementation-specific.

regfile_id 4:1 Identifies the register file where the error should be injected:
0 – Any register file type. When selected, the register file used for error injection is 
determined by PAL.
1 – General register (bank0)(GR16-31)
2 – General register (bank1)(GR0-127)
3 – Floating point register
4 – Branch register
5 – Predicate register
6 – Application register
7 – Control register
8 – Region register
9 – Protection key register
10 – Data breakpoint register
11 – Instruction breakpoint register
12 – Performance monitor control register
13 – Performance monitor data register
All other values are reserved.

reg_num 12:5 Indicates the register number where the error should be injected. Procedure operation is 
undefined if there is a conflict between the register number chosen for error injection, 
and the registers being used by the procedure for code execution (see PAL calling 
conventions, Section 11.9.2).
0-127: Specific register number corresponding to regfile_id
128-254: Reserved for future use
255: Any register number. When selected, the actual register number used for error 
injection is determined by PAL.

Reserved 31:13 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and 
should be used for error injection. When 0, the trigger information fields are ignored and 
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The address 
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to 
by err_data_buffer.
0 – Instruction memory access. The trigger match conditions for this operation type are 
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2, 
“Debug Address Breakpoint Match Conditions” on page 2:154
1 – Data memory access. The trigger match conditions for this operation type are similar 
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug 
Address Breakpoint Match Conditions” on page 2:154.
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected:
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if 
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at 
any privilege level.

Reserved 63:40 Reserved
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err_data_buffer needs to be specified for register file only if tiv in err_struct_info is 1.

Figure 11-34. capabilities Vector for Register File
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Reserved trigger_pl trigger

Table 11-104. capabilities Vector for Register File

Field Bits Description

gr_b0 0 Error injection for General register (bank0) is supported

gr_b1 1 Error injection for General register (bank1) is supported

fr 2 Error injection for Floating point register is supported

br 3 Error injection for Branch register is supported

pr 4 Error injection for Predicate register is supported

ar 5 Error injection for Application register is supported

cr 6 Error injection for Control register is supported

rr 7 Error injection for Region register is supported

pkr 8 Error injection for Protection key register is supported

dbr 9 Error injection for Data breakpoint register is supported

ibr 10 Error injection for Instruction breakpoint register is supported

pmc 11 Error injection for Performance monitor control register is supported

pmd 12 Error injection for Performance monitor data register is supported

Reserved 15:13 Reserved

regnum 16 Error injection with register number input is supported

Reserved 31:17 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-35. Buffer pointed to by err_data_buffer – Register File

63 0

trigger_addr

Table 11-105. Buffer pointed to by err_data_buffer – Register File

Field Bits Description

trigger_addr 63:0 64-bit address to be used by the trigger in the err_struct_info input argument. The field is 
defined similar to the addr field in the debug breakpoint registers, as specified in 
Table 7-1, “Debug Breakpoint Register Fields (DBR/IBR)” on page 2:153.
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err_data_buffer does not need to be specified for bus/system interconnect.

Figure 11-36. err_struct_info – Bus/Processor Interconnect
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Reserved

Table 11-106. err_struct_info – Bus/Processor Interconnect

Field Bits Description

Reserved 63:0 Reserved

Figure 11-37. capabilities vector for Bus/Processor Interconnect
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Reserved

Table 11-107. capabilities vector for Bus/Processor Interconnect

Field Bits Description

Reserved 63:0 Reserved
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PAL_MC_HW_TRACKING – Query which hardware structures are 
performing hardware status tracking (51)

Purpose: Provide a way to query which hardware structures are performing hardware status 
tracking for corrected machine check events.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure will return information about which hardware structures are providing 
hardware status tracking for corrected machine check events. This information is also 
returned in the error logs for corrected machine check events.

The layout of the tracked return value is shown in Figure 11-38.

Argument Description
index Index of PAL_MC_HW_TRACKING within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_HW_TRACKING procedure.
hw_track 64-bit vector denoting which hardware structures are providing hardware status tracking. 

See Figure 11-38.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Figure 11-38. Layout of hw_track Return Value
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Reserved

Table 11-108. hw_check Fields

Field Bits Description

ICT 3:0 Instruction cache tracking. This is a 4-bit vector denoting which levels of instruction 
cache provide hardware tracking.

DCT 7:4 Data cache tracking. This is a 4-bit vector denoting which levels of data/unified caches 
provide hardware tracking.

ITT 11:8 Instruction TLB tracking. This is a 4-bit vector denoting which levels of the instruction 
TLB provide hardware tracking.

DTT 15:12 Data TLB tracking. This is a 4-bit vector denoting which levels of data/unified TLB 
provide hardware tracking.

Reserved 63:16 Reserved
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The convention for the levels in the hw_track field is such that the least significant bit in 
the field represents the lowest level of the structures hierarchy. For example, bit 0 of 
the ICT field represents the first level instruction cache.
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PAL_MC_EXPECTED – Set/Reset Expected Machine Check Indicator 
(23)

Purpose: Informs PALE_CHECK whether a machine check is expected so that PALE_CHECK will 
not attempt to correct any expected machine checks.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: If the argument expected contains a value of 1, an implementation-dependent 
hardware resource is set to inform PALE_CHECK to expect a machine check. If the 
argument expected is 0, the resource is reset, so that PALE_CHECK does not expect 
any following machine checks. All other values of expected are reserved.

The implementation-dependent hardware resource should be, by default, in the “not 
expected” state. Software or firmware should only call PAL_MC_EXPECTED immediately 
prior to issuing an instruction which might generated an expected machine check. It 
should then immediately reset the bit to the “not expected” state after checking the 
results of the operation.

The previous return parameter indicates the previous state of the hardware resource to 
inform PALE_CHECK of an expected machine check. A value of 0 indicates that a 
machine check was not expected. A value of 1 indicated that a machine check was 
expected. All other values of previous are reserved.

Argument Description
index Index of PAL_MC_EXPECTED within the list of PAL procedures.
expected Unsigned integer with a value of 0 or 1 to set or reset the hardware resource PALE_CHECK 

examines for expected machine checks.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_EXPECTED procedure.
previous Unsigned integer denoting whether a machine check was previously expected.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_MC_REGISTER_MEM – Register Memory with PAL for Machine 
Check and Init (27)

Purpose: Registers a platform dependent location with PAL to which it can save minimal 
processor state in the event of a machine check or initialization event.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is used to register with PAL an uncacheable min-state save area 
memory buffer that is used for machine check and initialization event handling. The size 
of the min-state save area is either 4KB or a larger size that is indicated in the reset 
hand-off state described in Section 11.2.2.1, “Definition of SALE_ENTRY State 
Parameter” on page 2:291. The input argument size indicates the size of the min-state 
save buffer in kilobytes (KB) when it is greater than 4KB. If the size input argument 
does not match the required size, the procedure returns an invalid argument return 
status and a min-state area is not registered. The procedure will also return the 
required size of the min-state save area in the req_size return value.

The layout of the min-state save area is defined in Section 11.3.2.4, “Processor 
Min-state Save Area Layout” on page 2:302. The address passed has a minimum 
alignment requirement of 512-bytes.

Argument Description
index Index of PAL_MC_REGISTER_MEM within the list of PAL procedures.
address Physical address of the buffer to be registered with PAL.
size Unsigned integer indicating the size in kilobytes (KB) of the buffer passed. This input 

argument is only required when passing in a size greater than 4KB. The implementation 
indicates when a size greater than 4KB is required at the reset hand-off. Refer to 
Section 11.2.2.1, “Definition of SALE_ENTRY State Parameter” on page 2:291 for more 
information.

Reserved 0

Return Value Description
status Return status of the PAL_MC_REGISTER_MEM procedure.
req_size Returns the required size of the min-state save area in kilobytes (KB) if the size input 

argument did not match the required size for this implementation.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_MC_RESUME – Restore Minimal Architected State and Return 
(26)

Purpose: Restores the minimal architectural processor state, sets the CMC interrupt if necessary, 
and resumes execution.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure will restore the processor minimal architected state and optionally set 
the CMC interrupt.

If the set_cmci argument is set to one, this procedure will set the CMC interrupt and 
return to the interrupted context. The CMC interrupt handler will be invoked sometime 
after returning to the interrupted context.

The save_ptr argument specifies the processor min-state save area buffer from which 
the processor state will be restored. This pointer has the same alignment and size 
restrictions as the address passed to PAL_MC_REGISTER_MEM procedure on 
page 2:435.

This procedure is used to resume execution of the interrupted context for both machine 
check and initialization events. This procedure can resume execution to the same 
context or a new context. If software attempts to resume execution for these events 
without using this call, processor behavior is undefined.

If the caller is resuming to the same context, the new_context argument must be set to 
0 and the save_ptr argument has to point to a copy of the min-state save area written 
by PAL when the event occurred.

If the caller is resuming to a new context, the new_context argument must be set to 1 
and the save_ptr argument must point to a new min-state save area set up by the 
caller.

Please see Section 11.3.3, “Returning to the Interrupted Process” on page 2:305 3for 
more information on resuming to the interrupted context.

Argument Description
index Index of PAL_MC_RESUME within the list of PAL procedures.
set_cmci Unsigned 64 bit integer denoting whether to set the CMC interrupt. A value of 0 indicates not 

to set the interrupt, a value of 1 indicated to set the interrupt, and all other values are 
reserved.

save_ptr Physical address of min-state save area used to used to restore processor state.
new_context Unsigned 64-bit integer denoting whether the caller is returning to a new context. A value of 

0 indicates the caller is returning to the interrupted context, a value of 1 indicates that the 
caller is returning to a new context.

Return Value Description
status Return status of the PAL_MC_RESUME procedurea.

a. This procedure returns to the caller only in an error situation.

Reserved 0
Reserved 0
Reserved 0

Status Value Description
-2 Invalid argument
-3 Call completed with error
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PAL_MEM_ATTRIB – Get Memory Attributes (5)

Purpose: Returns the memory attributes implemented by processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Returns a 8-bit vector in the low order 8 bits of the return register that specifies the set 
of memory attributes implemented by the processor. The return register is formatted as 
follows:

Each bit in the bit field ma represents one of the eight possible memory attributes 
implemented by the processor. The bit field position corresponds to the numeric 
memory attribute encoding defined in Section 4.4, “Memory Attributes” on page 2:75.

Argument Description
index Index of PAL_MEM_ATTRIB within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MEM_ATTRIB procedure.
attrib 8-bit vector of memory attributes implemented by processor.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-39. Layout of attrib Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ma

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved
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PAL_MEMORY_BUFFER – Allocate a cacheable memory buffer for 
exclusive PAL usage (277)

Purpose: Provides cacheable memory to PAL for exclusive use during runtime.

Calling Conv: Stacked

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is used to provide PAL firmware a cacheable memory buffer for its 
exclusive use as well as the ability to relocate this buffer at a later point in time if 
necessary. PAL provides information at reset hand-off about the minimum buffer size 
required by this procedure, and also indicates if this procedure is required to be called 
for correct functionality of the processor. See Section 11.2.2, “PALE_RESET Exit State” 
on page 2:289 for additional information on the reset hand-off state.

The base_address input argument specifies the beginning address for the memory 
buffer. The alloc_size input argument specifies the size of the memory buffer allocated 
for PAL use. The minimum alignment requirement for this buffer is 4K. If the 
base_address is not at least 4K aligned, the procedure will return an invalid argument. If 
the alloc_size input argument is smaller than the minimum size passed at PAL reset 
handoff state, the procedure will return an invalid argument and provide the minimum 
size required in the min_size return argument.

The control_word input argument specifies if this procedure is being used to register the 
memory buffer or if it is being used to relocate the memory buffer. The format of the 
control_word is shown in Table 11-109.

Argument Description
index Index of PAL_MEMORY_BUFFER within the list of PAL procedures.
base_address Physical address of the memory buffer allocated for PAL use.
alloc_size Unsigned integer denoting the size of the memory buffer.
control_word Formatted bit vector that provides control options for this procedure. See Table 11-109.

Return Value Description
status Return status of the PAL_MEMORY_BUFFER procedure.
min_size Returns the minimum size of the memory buffer required if the alloc_size input argument was 

not large enough.
Reserved 0
Reserved 0

Status Value Description
1 Call has not completed a buffer relocation due to a pending interrupt
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Table 11-109. control_word Layout

Field Bits Description

reg 0 Value of 0 indicates registration for the first time of the buffer. A value of 1 
indicates a relocation of the buffer.

int 1 Value of 1 indicates that the procedure should periodically poll for pending 
external interrupts. If this value is 0, interrupts will be masked during the 
execution of the entire procedure.

Reserved 63:2 Reserved
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A memory buffer must be allocated for each physical package, and is shared by all 
logical processors on that package. Software is required to call this procedure on all 
logical processors on a given package with the same input values. If not, processor 
operation is undefined.

If the PAL reset hand-off state indicates that the memory buffer is required but no call 
is made to allocate the memory buffer for a given physical package before calling 
buffer-dependent PAL procedures on a logical processor on that package, those 
procedures return an error.

If software would like to relocate this memory buffer at a later point in time, it can do 
so by setting the value of reg field in control_word to one. PAL will copy the contents of 
the existing buffer to a new buffer. Software is still required to make this call on all 
logical processors with the same input arguments when relocating the buffer. Once the 
call has been made on all logical processors in the physical package, the old memory 
can be reclaimed.

Software can choose if it wants this procedure to periodically poll for interrupts during 
the execution of the procedure. If an interrupt is seen, the procedure will return a value 
of 1 and software must re-call this procedure again on the same logical processor, with 
the same input arguments, until the copy is completed. If this procedure returns with a 
value of 1, both the old memory buffer and the new memory buffer will be in use by 
PAL until PAL returns that the procedure has completed execution successfully by 
setting the return value to 0.

An error will be returned if software calls this procedure with the reg value set to one to 
re-register a buffer and a call has never been made to register the buffer.

It is required that PAL firmware only perform cacheable memory accesses to this buffer.
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PAL_PERF_MON_INFO – Get Processor Performance Monitor 
Information (15)

Purpose: Returns Performance Monitor information about what can be counted and how to 
configure the monitors to count the desired events.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PERF_MON_INFO is called to determine the number of performance monitors and 
the events which can be counted on the performance monitors. For more information 
on performance monitoring, see Section 7.2, “Performance Monitoring” on page 2:155. 
pm_info is a formatted 64-bit return register, as shown in Figure 11-40.

.

The pm_buffer argument points to a 128-byte memory area where mask information is 
returned. The layout of pm_buffer is shown in Table 11-111.

Argument Description
index Index of PAL_PERF_MON_INFO within the list of PAL procedures.
pm_buffer An address to an 8-byte aligned 128-byte memory buffer.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PERF_MON_INFO procedure.
pm_info Information about the performance monitors implemented.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-40. Layout of pm_info Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

retired cycles width generic

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-110. pm_info Fields

Field Description

generic Unsigned 8-bit number defining the number of generic PMC/PMD pairs.

width Unsigned 8-bit number in the range 0:60 defining the number of implemented counter bits.

cycles Unsigned 8-bit number defining the event type for counting processor cycles.

retired Unsigned 8-bit number defining the event type for retired instruction bundles.

Table 11-111. pm_buffer Layout

Offset Description

0x0 256-bit mask defining which PMC registers are implemented.

0x20 256-bit mask defining which PMD registers are implemented.
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0x40 256-bit mask defining which registers can count cycles.

0x60 256-bit mask defining which registers can count retired bundles.

Table 11-111. pm_buffer Layout (Continued)

Offset Description
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PAL_PLATFORM_ADDR – Set Processor Interrupt Block Address and 
I/O Port Space Address (16)

Purpose: Specifies the physical address of the processor Interrupt Block and I/O Port Space.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PLATFORM_ADDR specifies the physical address that the processor shall interpret 
as accesses to the SAPIC memory or the I/O Port space areas.

The default value for the Interrupt block pointer is 0x00000000 FEE00000. If an 
alternate address is selected by this call, it must be aligned on a 2 MB boundary, else 
the procedure will return an error status. The address specified must also not overlay 
any firmware addresses in the 16 MB region immediately below the 4GB physical 
address boundary.

The default value for the I/O block pointer is to the beginning of the 64 MB block at the 
highest physical address supported by the processor. Therefore, its physical address is 
implementation dependent. If an alternate address is selected by this call, it must be 
aligned on a 64MB boundary, else the procedure will return an error status. The address 
specified must also not overlay any firmware addresses in the 16 MB region 
immediately below the 4GB physical address boundary.

The Interrupt and I/O Block pointers should be initialized by firmware before any 
Inter-Processor Interrupt messages or I/O Port accesses. Otherwise the default block 
pointer values will be used.

Some processor implementations may not support relocation of the interrupt and I/O 
block pointers and an unimplemented procedure return status will be returned. In these 
cases the default address spaces will be used.

Argument Description
index Index of PAL_PLATFORM_ADDR within the list of PAL procedures.
type Unsigned 64-bit integer specifying the type of block. 0 indicates that the processor interrupt 

block pointer should be initialized. 1 indicates that the processor I/O block pointer should be 
initialized.

address Unsigned 64-bit integer specifying the address to which the processor I/O block or interrupt 
block shall be set. The address must specify an implemented physical address on the 
processor model, bit 63 is ignored.

Reserved 0

Return Value Description
status Return status of the PAL_PLATFORM_ADDR procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
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PAL_PMI_ENTRYPOINT – Setup SAL PMI Entrypoint in Memory (32)

Purpose: Sets the SAL PMI entrypoint in memory.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to set the SAL PMI entrypoint so that the SAL PMI code shall be 
executed out of main memory instead of the firmware address space. Some processor 
implementations will allow initialization of the PMI entrypoint only once. Under those 
situations, this procedure may be called only once after a boot to initialize the PMI 
entrypoint register. Subsequent calls will return a status of -3. This call must be made 
before PMI is enabled by SAL.

Argument Description
index Index of PAL_PMI_ENTRYPOINT within the list of PAL procedures.
SAL_PMI_entry 256-byte aligned physical address of SAL PMI entrypoint in memory.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PMI_ENTRYPOINT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_PREFETCH_VISIBILITY – Make Processor Prefetches Visible 
(41)

Purpose: Used in the architected sequences for memory attribute transitions described in 
Section 4.4.11, “Memory Attribute Transition” on page 2:88 to transition a page (or set 
of pages) from a one memory attribute to another.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call is intended to be used only in the architected sequences described in 
Section 4.4.11, “Memory Attribute Transition” on page 2:88.

The trans_type input indicates the type of memory attribute transition the user is 
making. An input value of 0 is used when transition virtual memory attributes only. A 
value of 1 is used when transitioning physical memory attributes only, or when 
transitioning memory that may have a combination of virtual and physical memory 
attributes. All other values are reserved.

This procedure, when used for transitioning virtual memory attributes, will ensure that 
all prefetches that were initiated by the processor to the cacheable, speculative 
memory prior to the call, will either not be cached; have been aborted; or are visible to 
subsequent fc instructions. (from both the local processor and from remote 
processors).

This procedure when used for transitioning physical memory attributes will ensure that 
all prefetches that were initiated by the processor to the cacheable, limited speculative 
memory prior to the call, will either not be cached; have been aborted; or are visible to 
subsequent fc instructions (from both the local processor and from remote 
processors). It will also terminate the ability for the processor to make speculative 
references to any limited speculation pages. For the processor to make any speculative 
reference to a limited speculation page after this call, there must be a verified reference 
made to that page after this call. See the discussion on limited speculation in 
Section 4.4.6.1, “Limited Speculation and the WBL Physical Addressing Attribute” on 
page 2:81.

Argument Description
index Index of PAL_PREFETCH_VISIBILITY within the list of PAL procedures.
trans_type Unsigned integer specifying the type of memory attribute transition that is being performed
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PREFETCH_VISIBILITY procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error; this call is not necessary on remote processors
0 Call completed without error; this call must also be performed on all remote processors in the 

coherence domain
-2 Invalid argument
-3 Call completed with error
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This procedure, when used to delete a memory range on-line, will ensure that all of the 
conditions described in both of the preceding paragraphs regarding transition of virtual 
memory attributes and physical memory attributes are met.

If the processor implementation does not require this procedure call to be made on 
remote processors in the sequences, this procedure will return a 1 upon successful 
completion.

A return value of 0 upon successful completion of this procedure is an indication to 
software that the processor implementation requires that this call be performed on all 
processors in the coherence domain to make prefetches visible in the sequences.

These return code can be used to tune the architected sequence to the particular 
system on which is running; see Section 4.4.11, “Memory Attribute Transition” for 
details.
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PAL_PROC_GET_FEATURES – Get Processor Dependent Features 
(17)

Purpose: Provides information about configurable processor features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES procedure calls are used 
together to describe current settings of processor features and to allow modification of 
some of these processor features.

The feature_set input argument for PAL_PROC_GET_FEATURES describes which 
processor feature_set information is being requested. Table 11-112 describes processor 
feature_set zero. The feature_set values are split into two categories: architected and 
implementation-specific. The architected feature sets have values from 0-15. The 
implementation-specific feature sets are values 16 and above. The architected feature 
sets are described in this document. The implementation-specific feature sets are 
described in processor-specific documentation.

This procedure will return an invalid argument if an unsupported architectural 
feature_set is passed as an input. Implementation-specific feature sets will start at 16 
and will expand in an ascending order as new implementation-specific feature sets are 
added. The return status is used by the caller to know which implementation-specific 
feature sets are currently supported on a particular processor.

For each valid feature_set, this procedure returns which processor features are 
implemented in the features_avail return argument, the current feature setting is in 
feature_status return argument, and the feature controllability in the feature_control 
return argument. Only the processor features which are implemented and controllable 
can be changed via PAL_PROC_SET_FEATURES. Features for which features_avail are 0 
(unimplemented features) also have features_status and features_control of 0.

In Table 11-112, the class field indicates whether a feature is required to be available 
(Req.) or is optional (Opt.). The control field indicates which features are required to be 
controllable. Req. indicates that the feature must be controllable, Opt. indicates that 

Argument Description
index Index of PAL_PROC_GET_FEATURES within the list of PAL procedures.
Reserved 0
feature_set Feature set information is being requested for.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-112.
feature_status 64-bit vector of current feature settings. See Table 11-112.
feature_control 64-bit vector of features controllable by software.

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a 

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported
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the feature may optionally be controllable, and No indicates that the feature cannot be 
controllable. The control field applies only when the feature is available. The sense of 
the bits is chosen so that for features which are controllable, the default hand-off value 
at exit from PALE_RESET should be 0. PALE_CHECK and PALE_INIT will not modify 
these features.

Table 11-112. Processor Features

Bit Class Control Scope Description

63 Opt. Req. Maya Enable BERR promotion. When 1, the Bus Error (BERR) signal is promoted 
to the Bus Initialization (BINIT) signal, and the BINIT pin is asserted on the 
occurrence of each Bus Error. Setting this bit has no effect if BINIT signalling 
is disabled. (See PAL_BUS_GET/SET_FEATURES)

62 Opt. Req. May Enable MCA promotion. When 1, machine check aborts (MCAs) are 
promoted to the Bus Error signal, and the BERR pin is assert on each 
occurrence of an MCA. Setting this bit has no effect if BERR signalling is 
disabled. (See PAL_BUS_GET/SET_FEATURES)

61 Opt. Req. May Enable MCA to BINIT promotion. When 1, machine check aborts (MCAs) 
are promoted to the Bus Initialization signal, and the BINIT pin is assert on 
each occurrence of an MCA. Setting this bit has no effect if BINIT signalling 
is disabled. (See PAL_BUS_GET/SET_FEATURES)

60 Opt. Req. Nob Enable CMCI promotion When 1, Corrected Machine Check Interrupts 
(CMCI) are promoted to MCAs. They are also further promoted to BERR if 
bit 39, Enable MCA promotion, is also set and they are promoted to BINIT if 
bit 38, Enable MCA to BINIT promotion, is also set. This bit has no effect if 
MCA signalling is disabled (see PAL_BUS_GET/SET_FEATURES)

59 Opt. Req. May Disable Cache. When 0, the processor performs cast outs on cacheable 
pages and issues and responds to coherency requests normally. When 1, 
the processor performs a memory access for each reference regardless of 
cache contents and issues no coherence requests and responds as if the 
line were not present. Cache contents cannot be relied upon when the cache 
is disabled.
WARNING: Semaphore instructions may not be atomic or may cause 
Unsupported Data Reference faults if caches are disabled.

58 Opt. Req. May Disable Coherency. When 0, the processor uses normal coherency requests 
and responses. When 1, the processor answers all requests as if the line 
were not present.

57 Opt. Req. May Disable Dynamic Power Management (DPM). When 0, the hardware may 
reduce power consumption by removing the clock input from idle functional 
units. When 1, all functional units will receive clock input, even when idle.

56 Opt. Req. May Disable a BINIT on internal processor time-out. When 0, the processor may 
generate a BINIT on an internal processor time-out. When 1, the processor 
will not generate a BINIT on an internal processor time-out. The event is 
silently ignored.

55 Opt. Req. May Enable external notification when the processor detects hardware errors 
caused by environmental factors that could cause loss of deterministic 
behavior of the processor. When 1, this bit will enable external notification, 
when 0 external notification is not provided. The type of external notification 
of these errors is processor-dependent. A loss of processor deterministic 
behavior is considered to have occurred if these environmentally induced 
errors cause the processor to deviate from its normal execution and 
eventually causes different behavior which can be observed at the processor 
bus pins. Processor errors that do not have this effects (i.e., software 
induced machine checks) may or may not be promoted depending on the 
processor implementation.
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54 Opt. Req. No Enable the use of the vmsw instruction. When 0, the vmsw instruction 
causes a Virtualization fault when executed at the most privileged level. 
When 1, this bit will enable normal operation of the vmsw instruction. This bit 
has no effect if virtual machine features are disabled (see bit 40).

53 Opt. Req. May Enable MCA signaling on unconsumed data-poisoning event detection. 
When 0, a CMCI will be signaled on error detection. When 1, an MCA will be 
signaled on error detection. Note that the reported error severity depends on 
which method is chosen for signaling; see Section 11.3.2.3, “Unconsumed 
Data-Poisoning Event Handling” for details.If this feature is not supported, 
then the corresponding argument is ignored when calling 
PAL_PROC_SET_FEATURES. Note that the functionality of this bit is 
independent of the setting in bit 60 (Enable CMCI promotion), and that the 
bit 60 setting does not affect CMCI signaling for data-poisoning related 
events.

52 Opt. Req. May Disable P-states. Provides the ability to disable p-states when they are 
implemented by the processor. When the feature is available and status is 1 
or when the feature is not available, the PAL P-state procedures 
(PAL_PSTATE_INFO, PAL_SET_PSTATE, PAL_GET_PSTATE) will return 
with a status of -1 (Unimplemented procedure). When the feature is 
available and the status is 0, the PAL P-state procedures will operate 
normally.

51:48 N/A N/A N/A Reserved

47 Opt. Opt. May Disable Dynamic branch prediction. When 0, the processor may predict 
branch targets and speculatively execute, but may not commit results. When 
1, the processor must wait until branch targets are known to execute.

46 Opt Opt. May Disable Dynamic Instruction Cache Prefetch. When 0, the processor may 
prefetch into the caches any instruction which has not been executed, but 
whose execution is likely. When 1, instructions may not be fetched until 
needed or hinted for execution. (Prefetch for a hinted branch is allowed even 
when dynamic instruction cache prefetch is disabled.)

45 Opt. Opt. May Disable Dynamic Data Cache Prefetch. When 0, the processor may prefetch 
into the caches any data which has not been accessed by instruction 
execution, but which is likely to be accessed. When 1, no data may be 
fetched until it is needed for instruction execution or is fetched by an lfetch 
instruction.

44 Opt. Req. No Disable Spontaneous Deferral. When 1, the processor may optionally defer 
speculative loads that do not encounter any exception conditions, but that 
trigger other implementation-dependent conditions (e.g., cache miss). This 
behavior is gated by the programming model described in Section 5.5.5, 
“Deferral of Speculative Load Faults” on page 2:105. When 0, spontaneous 
deferral is disabled.

43 Opt. Opt. No Disable Dynamic Predicate Prediction. When 0, the processor may predict 
predicate results and execute speculatively, but may not commit results until 
the actual predicates are known. When 1, the processor shall not execute 
predicated instructions until the actual predicates are known.

42 Opt. No ROc XR1 through XR3 implemented. Denotes whether XR1 - XR3 are 
implemented for machine check recovery. This feature may only be 
interrogated by PAL_PROC_GET_FEATURES. It may not be enabled or 
disabled by PAL_PROC_SET_FEATURES. The corresponding argument is 
ignored.

41 Opt. No RO XIP, XPSR, and XFS implemented. Denotes whether XIP, XPSR, and XFS 
are implemented for machine check recovery. This feature may only be 
interrogated by PAL_PROC_GET_FEATURES. It may not be enabled or 
disabled by PAL_PROC_SET_FEATURES. The corresponding argument is 
ignored.

Table 11-112. Processor Features (Continued)

Bit Class Control Scope Description
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40 Opt. Opt. No Virtual Machine features implemented and enabled. When 1, PSR.vm is 
implemented and virtual machines features are not disabled. When 0 
(features_status) and when the corresponding features_avail bit is 1, virtual 
machines features are implemented but are disabled. When both the 
features_avail and features_status bits are 0, virtual machine features are 
not implemented.
If implemented and controllable, virtual machine features may be disabled 
by writing this bit to 0 with PAL_PROC_SET_FEATURES. However, virtual 
machine features cannot be re-enabled except via a power-on; hence, if 
virtual machine features are disabled, this bit reads as 0 for both 
features_status and features_control (but still 1 for features_avail).

39 Opt. Req. May Variable P-state performance: A value of 1 indicates that the processor is 
optimizing performance for the given P-state power budget by dynamically 
varying the frequency, such that maximum performance is achieved for the 
power budget. A value of 0 indicates that P-states have no frequency 
variation or very small frequency variations for their given power budget.

38 Opt. No RO Simple implementation of unimplemented instruction addresses. Denotes 
how an unimplemented instruction address is recorded in IIP on an 
Unimplemented Instruction Address trap or fault. When 1, the full 
unimplemented address is recorded in IIP; when 0, the address is sign 
extended (virtual addresses) or zero extended (physical addresses). See 
Section 3.3.5.3, “Interruption Instruction Bundle Pointer (IIP – CR19)” for 
details. This feature may only be interrogated by 
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by 
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

37 Opt. No RO INIT, PMI, and LINT pins present. Denotes the absence of INIT, PMI, LINT0 
and LINT1 pins on the processor. When 1, the pins are absent. When 0, the 
pins are present. This feature may only be interrogated by 
PAL_PROC_GET_FEATURES.  It may not be enabled or disabled by 
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

36 Opt. No RO Unimplemented instruction address reported as fault. Denotes how the 
processor reports the detection of unimplemented instruction addresses. 
When 1, the processor reports an Unimplemented Instruction Address fault 
on the unimplemented address; when 0, it reports an Unimplemented 
Instruction Address trap on the previous instruction in program order. This 
feature may only be interrogated by PAL_PROC_GET_FEATURES. It may 
not be enabled or disabled by PAL_PROC_SET_FEATURES. The 
corresponding argument is ignored.

35 Opt. Req. May Disable data speculation and the ALAT. When 1, data speculation checks 
(chk.a) always fail (i.e., always branch to the target address), thus 
triggering recovery code; check loads (ld.c) always re-load the target 
register.  When 0, data speculation works as normal.

34 Opt. No RO Interruption Instruction Bundle interruption registers (IIB0, IIB1) 
implemented. Denotes whether IIB registers are implemented. This feature 
may only be interrogated by PAL_PROC_GET_FEATURES. It may not be 
enabled or disabled by PAL_PROC_SET_FEATURES. The corresponding 
argument is ignored.

33 Opt. No RO Interval Timer Offset register (ITO) implemented. Denotes whether ITO 
register is implemented. This feature may only be interrogated by 
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by 
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

32:0 N/A N/A N/A Reserved

a. May-span-multiple-logical-processors. Readers should refer to implementation-specific document for details.
b. Setting this bit affect logical-processor only.
c. Read-only bit.

Table 11-112. Processor Features (Continued)

Bit Class Control Scope Description
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PAL_PROC_SET_FEATURES – Set Processor Dependent Features 
(18)

Purpose: Enables/disables specific processor features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES should be called to ascertain the implemented processor 
features and their current setting before calling PAL_PROC_SET_FEATURES. The list of 
possible processor features is defined in Table 11-112. Any attempt to set processor 
features which cannot be set will be ignored.

Argument Description
index Index of PAL_PROC_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
feature_set Feature set to apply changes to. See PAL_PROC_GET_FEATURES for more information on 

feature sets.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a 

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported
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PAL_PSTATE_INFO – Get Information for Power/Performance 
States (44)

Purpose: Returns information about the P-states supported by the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Information about available P-states is returned in the data buffer referenced by 
pstate_buffer. Entries in the buffer are organized in an ascending order.  For example, P0 
(the highest performance P-state) state information is index 0 in the buffer, P1 state is 
index 1 in the buffer, and so on. The return argument pstate_num indicates the number 
of P-states supported on the given implementation. For example, if pstate_num is 4, it 
indicates that P-states P0-P3 are available for that implementation. Information in 
pstate_buffer is returned only for entries corresponding to the available P-states. Entries 
corresponding to unimplemented P-states must be ignored. Figure 11-41 illustrates the 
format of the pstate_buffer.

• typical_power_dissipation is a 20-bit field denoting the typical processor package 
power dissipation if all logical processors on the package are placed in this P-state, 
measured in milliwatts.

• perf_index is a 7-bit field denoting the performance index of this P-state, relative to 
the highest available P-state (P0). This field is enumerated relative to the index of 
the highest-performing P-state. A value of 100 represents the minimum processor 

Argument Description
index Index of PAL_PSTATE_INFO within the list of PAL procedures.
pstate_buffer 64-bit pointer to a 256-byte buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PSTATE_INFO procedure.
pstate_num Unsigned integer denoting the number of P-states supported. The maximum value of this 

field is 16.
dd_info Dependency domain information
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Figure 11-41. Layout of pstate_buffer Entry

offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 typical_power_dissipation reserved perf_index

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+4 transition_latency_1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+8 transition_latency_2

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+12 reserved

64
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performance in the P0 state. For example, if the P1-state has a value of 75, and the 
next P-state (P2) has a value of 50, it implies that P1 performance is 25% lower 
than P0 performance, and P2 performance is 50% lower than P0 performance.

• transition_latency_1 is a 32-bit field indicating the minimum number of processor 
cycles required to initiate a transition to this P-state from any other P-state.

• transition_latency_2 is a 32-bit field indicating the minimum recommended number of 
processor cycles that the caller should wait, before initiating a new P-state 
transition with a reasonable chance of acceptance. This field is intended to give the 
caller an estimation of the frequency with which PAL_SET_PSTATE procedure calls 
should be made, without having the transition request be not accepted.

Dependency domain details for the logical processor are returned in dd_info. See 
Figure 11-42 for dd_info layout.

• ddt (Dependency Domain Type) is a 3-bit unsigned integer denoting the type of 
dependency domains that exist on the processor package. The possible values are 
shown in Table 11-113. See Section 11.6.1, “Power/Performance States (P-states)” 
on page 2:315 for details of the values in this field.

• ddid (Dependency Domain Identifier) is a 6-bit unsigned integer denoting this 
logical processor's dependency domain. The ddid values are unique only for a given 
processor package. Software can use the ddid field to determine which logical 
processors belong to the same dependency domain within the package.

For more information on performance states and power management, refer to 
Section 11.6.1, “Power/Performance States (P-states)” on page 2:315.

Figure 11-42. Layout of dd_info Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ddid rv ddt

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-113. Values for ddt Field

Value Description

0 Hardware independent (HIDD)

1 Hardware coordinated (HCDD)

2 Software coordinated (SCDD)

3-7 Reserved
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PAL_PTCE_INFO – Get PTCE Purge Loop Information (6)

Purpose: Returns information required for the architected loop used to purge (initialize) the 
entire TC.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: No explicit hardware support is required by this call. See the purge loop example in the 
description of the ptc.e instruction in Chapter 2, “Instruction Reference” in Volume 3.

Argument Description
index Index of PAL_PTCE_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PTCE_INFO procedure.
tc_base Unsigned 64-bit integer denoting the beginning address to be used by the first PTCE 

instruction in the purge loop.
tc_counts Two unsigned 32-bit integers denoting the loop counts of the outer (loop 1) and inner (loop 2) 

purge loops. count1 (loop 1) is contained in bits 63:32 of the parameter, and count2 (loop 2) 
is contained in bits 31:0 of the parameter.

tc_strides Two unsigned 32-bit integers denoting the loop strides of the outer (loop 1) and inner (loop 2) 
purge loops. stride1 (loop 1) is contained in bits 63:32 of the parameter, and stride2 (loop 2) 
is contained in bits 31:0 of the parameter.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_REGISTER_INFO – Return Information about Implemented 
Processor Registers (39)

Purpose: Returns information about implemented Application and Control Registers.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

This procedure is called to obtain information about the implementation of Application 
Registers and Control Registers. Table 11-114 shows the information that is returned 
for each request.

Argument Description
index Index of PAL_REGISTER_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer denoting what register information is requested.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_REGISTER_INFO procedure.
reg_info_1 64-bit vector denoting information for registers 0-63. Bit 0 is register 0, bit 63 is register 63.
reg_info_2 64-bit vector denoting information for registers 64-127. Bit 0 is register 64, bit 63 is register 

127.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Table 11-114. info_request Return Value

info_request Meaning of Return Bit Vector

0  A 0-bit in the return vector indicates that the corresponding Application Register is not 
implemented, a 1-bit in the return vector indicates that the corresponding Application 
Register is implemented.

1 A 0-bit in the return vector indicated that the corresponding Application Register can be read 
without side effects, a 1-bit in the return vector indicated that the corresponding Application 
registers may cause side effects when read.

2  A 0-bit in the return vector indicates that the corresponding Control Register is not 
implemented, a 1-bit in the return vector indicates that the corresponding Control Register is 
implemented.

3 A 0-bit in the return vector indicated that the corresponding Control Register can be read 
without side effects, a 1-bit in the return vector indicated that the corresponding Control 
Register may cause side effects when read.

All others Reserved.
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PAL_RSE_INFO – Get RSE Information (19)

Purpose: Returns information about the register stack and RSE for this processor 
implementation.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The return parameter phys_stacked contains a 64-bit unsigned integer that specifies 
the number of physical registers implemented by the processor for the stacked general 
registers, r32-r127. phys_stacked will be an integer multiple of 16 greater than or 
equal to 96.

The return parameter hints contains a 2-bit field that specifies which RSE load/store 
hints are implemented.

A bit field value of 1 specifies that the corresponding mode is implemented; a value of 0 
specifies that the mode is not implemented. The bit field encodings are:

 

“Lazy” is the default RSE mode and must be implemented. Hardware is not required to 
implement any of the other modes.

Argument Description
index Index of PAL_RSE_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_RSE_INFO procedure.
phys_stacked Number of physical stacked general registers.
hints RSE hints supported by processor.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-43. Layout of hints Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved li si

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-115. RSE Hints Implemented

li si RSE Hints Class

0 0 enforced lazy Required

0 1 eager stores Optional

1 0 eager loads Optional

1 1 eager stores and loads Optional
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PAL_SET_HW_POLICY – Set Current Hardware Resource Sharing 
Policy (49)

Purpose: Sets the current hardware resource sharing policy of the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure is used to set the hardware resource sharing policy on the logical 
processor it is called on. The setting of this policy will impact other logical processors on 
the physical processor package. The logical processors impacted is returned by the 
PAL_GET_HW_POLICY procedure, see “PAL_GET_HW_POLICY – Retrieve Current 
Hardware Resource Sharing Policy (48)” on page 2:394 for details.

The input argument policy selects the hardware policy the caller would like to set. The 
supported hardware policies are listed in Table 11-116 below. By default the hardware 
always sets the processor in the performance policy at reset.

Argument Description
index Index of PAL_SET_HW_POLICY within the list of PAL procedures.
policy Unsigned 64-bit integer specifying the hardware resource sharing policy the caller is setting.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_SET_HW_POLICY procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed successfully but could not change the hardware policy since a competing 

logical processor is set in exclusive high priority
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Table 11-116. Processor Hardware Sharing Policies

Value Name Description

0 Performance The processor has its hardware resources configured to achieve 
maximum performance across all logical processors.

1 Fairness The processor configures hardware resources to approximately 
achieve equal sharing of competing hardware resources among all 
impacted logical processors.
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The caller must be aware of which logical processors are impacted by hardware policy 
changes, since making a call on one of the logical processors will impact all logical 
processors that share the same hardware resources. For example if the caller selects 
the high-priority policy on one logical processor A and then later in time selects fairness 
policy on one of the competing logical processors B, the procedure will take away 
high-priority status from logical processor A and change all impacted logical processors 
to the fairness policy without an error.

If a caller wants to ensure that high-priority will not be taken away from a logical 
processor, it can use the exclusive high-priority policy. This policy will return an error if 
any competing logical processor tries to change the hardware policy. This ensures that 
the caller can ensure a certain logical processor will retain high-priority status until that 
status is explicitly released by that logical processor.

This procedure is only supported on processors that have multiple logical processors 
sharing hardware resources that can be configured. On all other processor 
implementations, this procedure will return the Unimplemented procedure return 
status.

2 High-priority The processor configures hardware resources to provide the logical 
processor this procedure was called on a greater share of the 
competing hardware resources. All competing logical processors 
will get a smaller share of the competing hardware resources.

3 Exclusive High-priority The processor configures hardware resources such that the logical 
processor this procedure was called on has a greater share of the 
competing hardware resources. All competing logical processors 
will get a smaller share of the competing hardware resources. This 
policy also ensures that no other competing logical processor can 
modify the hardware sharing policy until the logical processor that is 
in exclusive high priority releases exclusive high-priority by 
selecting a different policy.

All Other Values Reserved

Table 11-116. Processor Hardware Sharing Policies (Continued)

Value Name Description
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PAL_SET_PSTATE – Request Processor to Enter Power/Performance 
State (263)

Purpose: To request a processor transition to a given P-state.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_SET_PSTATE is used to request the transition of the processor to the P-state 
specified by the p_state input parameter. The PAL_SET_PSTATE procedure does not wait 
for the transition to complete before returning back to the caller. The request may 
either be accepted (status = 0) or not accepted (status = 1), depending on hardware 
capabilities and implementation-specific event conditions. The presence of a platform 
power-cap does not prevent the request from being accepted. (See Section 11.6.1, 
“Power/Performance States (P-states)” on page 2:315 for details.) If the request is not 
accepted, then no transition is performed, and it is up to the caller to make another 
PAL_SET_PSTATE procedure call to transition to the desired P-state. When the request 
is accepted, the processor will attempt to initiate a transition to the requested 
performance state. For SCDD or HIDD logical processors, the procedure will always 
succeed in transitioning to the requested performance state. For HCDD logical 
processors, the procedure will make a best-case attempt at fulfilling the transition 
request, based on the nature of the dependencies that exist between the logical 
processors in the domain. In such circumstances, the procedure may initiate no 
transition, partial transition or full transition to the requested P-state. 

The force_pstate argument may be used for a HCDD when it is necessary to get a 
deterministic response for the P-state transition at the expense of compromising the 
power/performance of other logical processors in the same domain. If the force_pstate 
argument is non-zero, and if the request is accepted, the procedure will initiate the 
P-state transition on the logical processor regardless of any dependencies that exist in 
the dependency domain at the time the procedure is called. Forcing the P-state does 
not change the P-states requested by other logical processors in the dependency 
domain, nor the value seen on other logical processors when they do a 
PAL_GET_PSTATE with type=0; rather, forcing the P-state effectively suspends hardware 

Argument Description
index Index of PAL_SET_PSTATE within the list of PAL procedures.
p_state Unsigned integer denoting the processor P-state being requested.
force_pstate Unsigned integer denoting whether the P-state change should be forced for the logical 

processor.
Reserved 0

Return Value Description
status Return status of the PAL_SET_PSTATE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but transition request was not accepted
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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coordination. A subsequent call to PAL_SET_PSTATE on any logical processor in the 
dependency domain (with a force_pstate argument of zero) reinstates hardware 
coordination. The force_pstate argument is ignored on SCDD and HIDD logical 
processors.

Calling this procedure on some processor implementations may affect P-states of other 
processors in the same dependency domain. Please refer to Section 11.6.1, 
“Power/Performance States (P-states)” on page 2:315 and implementation-specific 
reference manuals for details.
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PAL_SHUTDOWN – Shutdown the Processor (45)

Purpose: Put the logical processor into a low power state which can be exited only by a reset 
event.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This call places the logical processor in a low power state which can be exited only by 
asserting a reset. This procedure can optionally let the platform know that it is about to 
shutdown by performing a store operation as specified in the notify_platform input 
argument.

If the notify_platform input argument is zero, no store operation will be performed. If the 
notify_platform input argument is non-zero, the layout for this argument is shown in 
Table 11-117.

If the address value is not naturally aligned to the size selected, this procedure will 
return an error.

The logical processor will wait until this transaction has been received by the platform 
before entering the shutdown state.

On receipt of a reset event, the logical processor will reset itself and start execution at 
the PAL reset address. All other events will are ignored by the logical processor when in 
shutdown state.

Argument Description
index Index of PAL_SHUTDOWN within the list of PAL procedures.
notify_platform 8-byte aligned physical address pointer providing details on how to optionally notify the 

platform that the processor is entering a shutdown state.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_SHUTDOWN procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Table 11-117. notify_platform Layout

Offset Description

0x0 Size of the store operation to perform (1, 2, 4 or 8 are the only valid values for this field).

0x8 Aligned physical address of the store operation. The most significant bit (63) of the physical 
address should be set according to the cacheability attribute wanted for the store transaction.

0x10 Data value for the store operation.

All others Reserved.
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PAL_TEST_INFO – Information for Processor Self-test (37)

Purpose: Returns the alignment and size requirements needed for the memory buffer passed to 
the PAL_TEST_PROC procedure as well as information on self-test control words for the 
processor self-tests.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_TEST_INFO returns the size and alignment requirements for the memory buffer 
that is passed to the PAL_TEST_PROC procedure and returns information on the 
implementation of the self-test control word based on the test_phase input argument. 
Please see Section 11.2.3, “PAL Self-test Control Word” on page 2:295 for more 
information on the self-test control word.

When test_phase is equal to zero, information is returned about phase two of the 
processor self-test. These are the tests that require external memory to execute 
properly. When test_phase is equal to one, information is returned about phase one of 
the processor self-test. These are the tests that are normally run during PALE_RESET 
and do not require external memory to properly execute. When information is 
requested about phase one of the processor self-test a memory buffer and alignment 
argument will be returned as well since these tests may need to save and restore 
processor state to this memory buffer if executed from the PAL_TEST_PROC procedure.

Argument Description
index Index of PAL_TEST_INFO within the list of PAL procedures.
test_phase Unsigned integer that specifies which phase of the processor self-test information is being 

requested on. A value of 0 indicates the phase two of the processor self-test and a value of 1 
indicates phase one of the processor self-test. All other values are reserved.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_TEST_INFO procedure.
bytes_needed Unsigned 64-bit integer denoting the number of bytes of main memory needed to perform 

the second phase of processor self-test.
alignment Unsigned 64-bit integer denoting the alignment required for the memory buffer.
st_control 48-bit wide bit-field indicating if control of the processor self-tests is supported and which bits 

of the test_control field are defined for use.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
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PAL_TEST_PROC – Perform a Processor Self-test (258)

Purpose: Performs the second phase of processor self test.

Calling Conv: Stacked Registers

PAL_TEST_PROC may modify some registers marked unchanged in the Stacked 
Register calling convention. See additional description below.

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_TEST_PROC procedure will perform a phase of the processor self-tests as 
directed by the test_info and the test_control input parameters.

test_address points to a contiguous memory region to be used by PAL_TEST_PROC. 
This memory region must be aligned as specified by the alignment return value from 
PAL_TEST_INFO, otherwise this procedure will return with an invalid argument return 
value. The PAL_TEST_PROC routine requires that the memory has been initialized and 
that there are no known uncorrected errors in the allocated memory. 

The test_info input parameter specifies the size of the memory buffer passed to the 
procedure and which phase of the processor self-test is requested to be run (either 
phase one or phase two).

• buffer_size indicates the size in bytes of the memory buffer that is passed to this 
procedure. buffer_size must be greater than or equal in size to the bytes_needed 
return value from PAL_TEST_INFO, otherwise this procedure will return with an 
invalid argument return value.

Argument Description
index Index of PAL_TEST_PROC within the list of PAL procedures.
test_address 64-bit physical address of main memory area to be used by processor self-test. The memory 

region passed must be cacheable, bit 63 must be zero.
test_info Input argument specifying the size of the memory buffer passed and the phase of the 

processor self-test that should be run. See Figure 11-44.
test_params Input argument specifying the self-test control word and the allowable memory attributes that 

can be used with the memory buffer. See Figure 11-45.

Return Value Description
status Return status of the PAL_TEST_PROC procedure.
self-test_state Formatted 8-byte value denoting the state of the processor after self-test. The format is 

described in Section 11.2.2.3, “Definition of Self Test State Parameter” on page 2:293.
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but hardware failures occurred during self-test
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Figure 11-44. Layout of test_info Argument

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

buffer_size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_phase buffer_size
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• test_phase defines which phase of the processor self-tests are requested to be run. 
A value of zero indicates to run phase two of the processor self-tests. Phase two of 
the processor self-tests are ones that require external memory to execute correctly. 
A value of one indicates to run phase one of the processor self-tests. Phase one of 
the processor self-tests are tests run during PALE_RESET and do not depend on 
external memory to run correctly. When the caller requests to have phase one of 
the processor self-test run via this procedure call, a memory buffer may be needed 
to save and restore state as required by the PAL calling conventions. The procedure 
PAL_TEST_INFO informs the caller about the requirements of the memory buffer.

The test_params input argument specifies which memory attributes are allowed to be 
used with the memory buffer passed to this procedure as well as the self-test control 
word. The self-test control word test_control controls the runtime and coverage of the 
processor self-test phase specified in the test_phase parameter.

• attributes specifies the memory attributes that are allowed to be used with the 
memory buffer passed to this procedure. The attributes parameter is a vector 
where each bit represents one of the virtual memory attributes defined by the 
architecture. The bit field position corresponds to the numeric memory attribute 
encoding defined in Section 4.4, “Memory Attributes” on page 2:75. The caller is 
required to support the cacheable attribute for the memory buffer, otherwise an 
invalid argument will be returned.

• test_control is the self-test control word corresponding to the test_phase passed. 
This test_control directs the coverage and runtime of the processor self-tests 
specified by the test_phase input argument. Information about the self-test control 
word can be found in Section 11.2.3, “PAL Self-test Control Word” on page 2:295 
and information on if this feature is implemented and the number of bits supported 
can be obtained by the PAL_TEST_INFO procedure call. If this feature is 
implemented by the processor, the caller can selectively skip parts of the processor 
self-test by setting test_control bits to a one. If a bit has a zero, this test will be 
run. The values in the unimplemented bits are ignored. If PAL_TEST_INFO indicated 
that the self-test control word is not implemented, this procedure will return with 
an invalid argument status if the caller sets any of the test_control bits.

PAL_TEST_PROC will classify the processor after the self-test in one of four states: 
CATASTROPHIC FAILURE, FUNCTIONALLY RESTRICTED, PERFORMANCE RESTRICTED, 
or HEALTHY. These processor self-test states are described in Figure 11-9 on 
page 2:293. If PAL_TEST_PROC returns in the FUNCTIONALLY RESTRICTED or 
PERFORMANCE RESTRICTED states the self-test_status return value can provide 
additional information regarding the nature of the failure. In the case of a 
CATASTROPHIC FAILURE, the procedure does not return.

The procedure will only perform memory accesses to the buffer passed to it using the 
memory attributes indicated in the attributes bit-field. The caller must ensure that the 
memory region passed to the procedure is in a coherent state.

PAL_TEST_PROC may modify PSR bits or system registers as necessary to test the 
processor. These bits or registers must be restored upon exit from PAL_TEST_PROC 

Figure 11-45. Layout of test_param Argument

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

test_control reserved attributes

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_control



2:464 Volume 2, Part 1: Processor Abstraction Layer

PAL_TEST_PROC

with the exception of the translation caches, which are evicted as a result of testing. 
PAL_TEST_PROC is free to invalidate all cache contents. If the caller depends on the 
contents of the cache, they should be flushed before making this call. PAL_TEST_PROC 
requires that the RSE is set up properly to handle spills and fills to a valid memory 
location if the contents of the register stack are needed. PAL_TEST_PROC requires that 
the memory buffer passed to it is not shared with other processors running this 
procedure in the system at the same time. PAL_TEST_PROC will use this memory 
region in a non-coherent manner. PAL_TEST_PROC may overwrite floating point 
registers 32-127 without restoring their values upon exit.
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PAL_VERSION – Get PAL Version Number Information (20)

Purpose: Returns PAL version information.

Calling Conv: Static registers only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_VERSION provides the caller the minimum PAL version needed for proper 
operation of the processor as well as the current PAL version running on the processor.

The min_pal_ver and current_pal_ver return values are 8-byte values in the following 
format: 

• PAL_B_version is a 16-bit binary coded decimal (BCD) number that provides 
identification information about the PAL_B firmware.

• PAL_vendor is an unsigned 8-bit integer indicating the vendor of the PAL code.

• PAL_A_version is a 16-bit binary coded decimal (BCD) number that provides 
identification information about the PAL_A firmware. In the split PAL_A model, this 
return value is the version number of the processor-specific PAL_A. The generic 
PAL_A version is not returned by this procedure in the split PAL_A model.

The version numbers selected for the PAL_A and PAL_B firmware is specific to the 
PAL_vendor. The version numbers selected will always have the property that later 
versions of firmware will have a higher number than earlier versions of firmware.

Argument Description
index Index of PAL_VERSION within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VERSION procedure.
min_pal_ver 8-byte formatted value returning the minimum PAL version needed for proper operation of 

the processor. See Figure 11-46.
current_pal_ver 8-byte formatted value returning the current PAL version running on the processor. See 

Figure 11-46.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-46. Layout of min_pal_ver and current_pal_ver Return Values

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAL_vendor Reserved PAL_B_version

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved PAL_A_version
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PAL_VM_INFO – Get Virtual Memory Information (7)

Purpose: Return information about the virtual memory characteristics of the processor 
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The tc_info return is an 8-byte quantity in the following format:

• num_sets – Unsigned 8-bit integer denoting the number of hash sets for the 
specified level (1=fully associative)

• num_ways – Unsigned 8-bit integer denoting the associativity of the specified level 
(1=direct).

• num_entries – Unsigned 16-bit integer denoting the number of entries in the 
specified TC.

• pf – Flag denoting whether the specified level is optimized for the region’s preferred 
page size (1=optimized). tc_pages indicates which page sizes are usable by this 
translation cache.

• ut – Flag denoting whether the specified TC is unified (1=unified).

• tr – Flag denoting whether installed translation registers will reduce the number of 
entries within the specified TC.

The num_entries will always equal num_ways * num_sets. For a direct mapped TC, 
num_ways = 1 and num_sets = num_entries. For a fully associative TC, num_sets = 1 
and num_ways = num_entries. 

Argument Description
index Index of PAL_VM_INFO within the list of PAL procedures.
tc_level Unsigned 64-bit integer specifying the level in the TLB hierarchy for which information is 

required. This value must be between 0 and one less than the value returned in the 
vm_info_1.num_tc_levels return value from PAL_VM_SUMMARY.

tc_type Unsigned 64-bit integer with a value of 1 for instruction translation cache and 2 for data or 
unified translation cache. All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_VM_INFO procedure.
tc_info 8-byte formatted value returning information about the specified TC.
tc_pages 64-bit vector containing a bit for each page size supported in the specified TC, where bit 

position n indicates a page size of 2**n.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument.
-3 Call completed with error.

Figure 11-47. Layout of tc_info Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

num_entries num_ways num_sets

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved tr ut pf
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PAL_VM_PAGE_SIZE – Get Virtual Memory Page Size Information 
(34)

Purpose: Returns page size information about the virtual memory characteristics of the processor 
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The values returned from this call are all 64-bit bitmaps. One bit is set for each page 
size implemented by the processor where bit n represents a page size of 2**n. Please 
refer to Table 4-5 on page 2:58 for the minimum page sizes that are supported.

The insertable_pages returns the page sizes that are supported for TLB insertions and 
region registers. 

The purge_pages returns the page sizes that are supported for the TLB purge 
operations.

Argument Description
index Index of PAL_VM_PAGE_SIZE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VM_PAGE_SIZE procedure.
insertable_pages 64-bit vector containing a bit for each architected page size that is supported for TLB 

insertions and region registers.
purge_pages 64-bit vector containing a bit for each architected page size supported for TLB purge 

operations.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.
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PAL_VM_SUMMARY – Get Virtual Memory Summary Information (8)

Purpose: Returns summary information about the virtual memory characteristics of the processor 
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The vm_info_1 return is an 8-byte quantity in the following format:

• vw – 1-bit flag indicating whether a hardware TLB walker is implemented (1 = 
walker present).

• phys_add_size – Unsigned 7-bit integer denoting the number of bits of physical 
address implemented.

• key_size – Unsigned 8-bit integer denoting the number of bits implemented in the 
PKR.key field.

• max_pkr – Unsigned 8-bit integer denoting the maximum PKR index (number of 
PKRs-1).

• hash_tag_id – Unsigned 8-bit integer which uniquely identifies the processor hash 
and tag algorithm.

• max_dtr_entry – Unsigned 8 bit integer denoting the maximum data translation 
register index (number of dtr entries - 1).

• max_itr_entry – Unsigned 8 bit integer denoting the maximum instruction 
translation register index (number of itr entries - 1).

• num_unique_tcs – Unsigned 8-bit integer denoting the number of unique TCs 
implemented. This is a maximum of 2*num_tc_levels.

• num_tc_levels – Unsigned 8-bit integer denoting the number of TC levels.

The vm_info_2 return is an 8-byte quantity in the following format:

Argument Description
index Index of PAL_VM_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VM_SUMMARY procedure.
vm_info_1 8-byte formatted value returning global virtual memory information.
vm_info_2 8-byte formatted value returning global virtual memory information.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

Figure 11-48. Layout of vm_info_1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hash_tag_id max_pkr key_size phys_add_size vw

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

num_tc_levels num_unique_tcs max_itr_entry max_dtr_entry
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• impl_va_msb – Unsigned 8-bit integer denoting the bit number of the most 
significant virtual address bit. This is the total number of virtual address bits - 1.

• rid_size – Unsigned 8-bit integer denoting the number of bits implemented in the 
RR.rid field.

• max_purges – Unsigned 16 bit integer denoting the maximum number of 
concurrent outstanding TLB purges allowed by the processor. A value of 0 indicates 
one outstanding purge allowed. A value of 216-1 indicates no limit on outstanding 
purges. All other values indicate the actual number of concurrent outstanding 
purges allowed.

Figure 11-49. Layout of vm_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

max_purges rid_size impl_va_msb

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved
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PAL_VM_TR_READ – Read a Translation Register (261)

Purpose: Reads a translation register.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure reads the specified translation register and returns its data in the buffer 
starting at tr_buffer. The format of the data is returned in Translation Insertion Format, 
as described in Figure 4-5, “Translation Insertion Format,” on page 2:54. In addition, 
bit 0 of the IFA in Figure 4-5 (an ignored field in the figure) will return whether the 
translation is valid. If bit 0 is 1, the translation is valid.

Some fields of the translation register returned may be invalid. The validity of these 
fields is indicated by the return argument TR_valid. If these fields are not valid, the 
caller should ignore the indicated fields when reading the translation register returned 
in tr_buffer.

• av – denotes that the access rights field is valid

• pv – denotes that the privilege level field is valid

• dv – denotes that the dirty bit is valid

• mv – denotes that the memory attributes are valid.

A value of 1 denotes a valid field. A value of 0 denotes an invalid field. Any value 
returned in an invalid field must be ignored.

The tr_buffer parameter should be aligned on an 8 byte boundary.

Note: This procedure may have the side effect of flushing all the translation cache 
entries depending on the implementation.

Argument Description
index Index of PAL_VM_TR_READ within the list of PAL procedures.
reg_num Unsigned 64-bit number denoting which TR to read.
tr_type Unsigned 64-bit number denoting whether to read an ITR (0) or DTR (1). All other values are 

reserved.
tr_buffer 64-bit pointer to the 32-byte memory buffer in which translation data is returned.

Return Value Description
status Return status of the PAL_VM_TR_READ procedure.
TR_valid Formatted bit vector denoting which fields are valid. See Figure 11-50.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

Figure 11-50. Layout of TR_valid Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved mv dv pv av

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved
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PAL_VP_CREATE – PAL Create New Virtual Processor (265)

Purpose: Initializes a new vpd for the operation of a new virtual processor in the virtual 
environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: Initializes a new vpd for the operation of a new virtual processor within the virtual 
environment.

The caller must pass a pointer to the new Virtual Processor Descriptor (vpd) as 
argument. The host virtual to host physical translation of the 64K region specified by 
vpd must be mapped with either a DTR or DTC. See Section 11.10.2.1.3, “Making PAL 
Procedure Calls in Physical or Virtual Mode” on page 2:359 for details on data 
translation requirements of memory buffer pointers passed as arguments to PAL 
procedures. The vac, vdc and virt_env_vaddr parameters in the VPD must already be 
initialized before calling this procedure. Invalid argument is returned on unsupported 
vac/vdc combinations. See Section 11.7.4.4, “Virtualization Optimization Combinations” 
on page 2:349 for details.

The host_iva parameter specifies the host IVT to handle IVA-based interruptions when 
this virtual processor is running. The VMM can use the same or different host_iva for 
each virtual processor. The opt_handler specifies an optional virtualization intercept 
handler. If a non-zero value is specified, all virtualization intercepts are delivered to this 
handler. If a zero value is specified, all virtualization intercepts are delivered to the 
Virtualization vector in the host IVT. If the VMM relocates the IVT specified by the 
host_iva parameter and/or the virtualization intercept handler specified by the 
opt_handler parameter after this procedure, PAL_VP_REGISTER must be called to 
register the new host IVT and virtualization intercept handler before resuming virtual 
processor execution or allowing any IVA-based interruptions to occur; otherwise 
processor operation is undefined.

Upon return, the VMM is responsible for setting up the rest of the VMD state before the 
new virtual processor is launched (via PAL_VPS_RESUME_NORMAL or 
PAL_VPS_RESUME_HANDLER).

Argument Description
index Index of PAL_VP_CREATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
host_iva 64-bit host virtual pointer to the host IVT for the virtual processor
opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See 

Section 11.7.3, “PAL Intercepts in Virtual Environment” on page 2:332 for details.

Return Value Description
status Return status of the PAL_VP_CREATE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.
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PAL_VP_ENV_INFO – PAL Virtual Environment Information (266)

Purpose: Returns the parameters needed to enter a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure returns the configuration options and the PAL virtual environment buffer 
size required by PAL_VP_INIT_ENV. This procedure is used by the VMM to setup a 
virtual environment and determine the amount of memory / resources required. The 
VMM can then allocate the required amount of physical memory, set up the virtual to 
physical instruction and data translations that cover the PAL virtual environment buffer 
in TRs and call PAL_VP_INIT_ENV. The buffer allocated must be at least 4K aligned.

On a multiprocessor system, this procedure need only be invoked once (on any one 
logical processor) to obtain virtual environment information.

This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.

Argument Description
index Index of PAL_VP_ENV_INFO within the list of PAL procedures
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_ENV_INFO procedure
buffer_size Unsigned integer denoting the number of bytes required by the PAL virtual environment 

buffer during PAL_VP_INIT_ENV
vp_env_info 64-bit vector of virtual environment information. See Table 11-118. for details
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Table 11-118. vp_env_info – Virtual Environment Information Parameter

Field Bit Description

Reserved 7:0 Reserved

opcode 8 If 1, hardware support to provide opcode information during PAL intercepts is available. 
The opcode (and the decoding of cause) passed as parameters to the VMM on inter-
cept will represent the instruction that triggered the intercept.
If 0, opcode information during PAL intercepts is provided by PAL. The opcode (and the 
decoding of cause) passed as parameters to the VMM on intercept will not necessarily 
represent the instruction that triggered the intercept, but may represent some value 
that was written to memory between the time the instruction that triggered the intercept 
was fetched, and when the intercept was triggered.

Reserved 9 Reserved

gitc 10 If 1, guest MOV-from-AR.ITC optimization is supported.a

If 0, guest MOV-from-AR.ITC optimization is not supported.
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Reserved 31:11 Reserved

probe 32 If 1, processor supports interception of probe instructions. See Section 11.7.4.2.8, 
“Probe Instruction Virtualization” on page 2:344 for details on the usage of this control. 
If 0, intercept of probe instructions is not supported.

tf 33 If 1, guest test feature optimization is supported. If 0, this optimization is not supported. 
See Section 11.7.4.2.9, “Test Feature Optimization” on page 2:345 for details.

ic_um 34 If 1, guest interruption collection and user mask optimization is supported. If 0, this 
optimization is not supported. See Section 11.7.4.2.10, “Interruption Collection and 
User Mask Optimization” on page 2:345 for details.

Reserved 63:35 Reserved

a. Architecturally, an implementation which supports guest MOV-from-AR.ITC will also support the interval timer 
offset (ITO) register.

Table 11-118. vp_env_info – Virtual Environment Information Parameter 

Field Bit Description
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PAL_VP_EXIT_ENV – PAL Exit Virtual Environment (267)

Purpose: Allows a logical processor to exit a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure allows a logical processor to exit a virtual environment.

Upon successful execution of the PAL_VP_EXIT_ENV procedure and if the iva parameter 
is non-zero, the IVA control register will contain the value from the iva parameter.

On a multiprocessor system, the VMM must allow the last logical processor in this 
environment to complete the procedure before freeing the memory resource allocated 
to the virtual environment.

This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.

Argument Description
index Index of PAL_VP_EXIT_ENV within the list of PAL procedures
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_EXIT_ENV procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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PAL_VP_INFO – PAL Virtual Processor Information (50)

Purpose: Returns information about virtual processor features.

Calling Conv: Static

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_VP_INFO procedure call is used to describe virtual processor features.

The feature_set input argument for PAL_VP_INFO describes which virtual-processor 
feature_set information is being requested, and is composed of two fields as shown:

A vmm_id of 0 indicates architected feature sets, while others are 
implementation-specific feature sets. Implementation-specific feature sets are 
described in VMM-specific documentation.

This procedure will return a -8 if an unsupported feature_set argument is passed as an 
input. The return status is used by the caller to know which feature sets are currently 
supported on a particular VMM. This procedure always returns unimplemented (-1) 
when called on physical processors.

For each valid feature_set, this procedure returns information about the virtual processor 
in vp_info.  Additional information may be returned in the memory buffer pointed to by 
vp_buffer, as needed. Details, for a given implementation-specific feature_set, of whether 
information is returned in the buffer, the size of the buffer, and the representation of 
this information in the buffer and in vp_info are described in VMM-specific 
documentation.

Architected feature_set 0 (vmm_id 0, index 0) is defined and required to be implemented 
(if this procedure is implemented), but there are no architected features defined in it 
yet, and so all bits in vp_info are reserved for architected feature_set 0. Other architected 
feature sets (vmm_id 0, index>0) are undefined, and return -8 (Specified feature_set is 
not implemented). Software can call PAL_VP_INFO with a feature_set argument of 0 to 

Argument Description
index Index of PAL_VP_INFO within the list of PAL procedures
feature_set Feature set information is being requested for.
vp_buffer An address to an 8-byte aligned memory buffer (if used).
Reserved 0

Return Value Description
status Return status of the PAL_VP_INFO procedure
vp_info Information about the virtual processor.
vmm_id Unique identifier for the VMM.
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-8 Specified feature_set is not implemented

63 48 47 0

vmm_id index

16 48
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get the vmm_id, although vmm_id is also returned for any other implemented feature 
sets as well. For feature_set 0, the vp_buffer argument is ignored.
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PAL_VP_INIT_ENV – PAL Initialize Virtual Environment (268)

Purpose: Allows a logical processor to enter a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure allows a logical processor to enter a virtual environment. This call must 
be made after calling PAL_VP_ENV_INFO and before calling other PAL virtualization 
procedures and services. All of the logical processors in a virtual environment share the 
same PAL virtual environment buffer. The buffer must be 4K aligned. The first 
logical processor entering the virtual environment initializes the buffer provided by the 
VMM. Subsequent processors can enter the virtual environment at any time and will not 
perform initialization to the buffer.

PAL_VP_ENV_INFO must be called before this procedure to determine the configuration 
options and size requirements for the virtual environment. The VMM is required to 
maintain the ITR and DTR translations of the PAL virtual environment buffer throughout 
this procedure. See “PAL_VP_ENV_INFO – PAL Virtual Environment Information (266)” 
on page 2:473 for more information on PAL_VP_ENV_INFO.

After this procedure, it is optional for the VMM to maintain the TR mapping for the PAL 
virtual environment buffer. If the TR translations for the buffer are not installed, the 
VMM must not make any PAL virtualization service calls; and the VMM must be 
prepared to handle DTLB faults during any PAL virtualization procedure calls.

Table 11-119 shows the layout of the config_options parameter. The config_options 
parameter configures the global configuration options and global virtualization 
optimizations for all the logical processors in the virtual environment. All logical 

Argument Description
index Index of PAL_VP_INIT_ENV within the list of PAL procedures
config_options 64-bit vector of global configuration settings – See Table 11-119. for details
pbase_addr Host physical base address of a block of contiguous physical memory for the PAL virtual 

environment buffer – This memory area must be allocated by the VMM and be 4K aligned. 
The first logical processor to enter the environment will initialize the physical block for 
virtualization operations.

vbase_addr Host virtual base address of the corresponding physical memory block for the PAL virtual 
environment buffer – The VMM must maintain the host virtual to host physical data and 
instruction translations in TRs for addresses within the allocated address space. Logical 
processors in this virtual environment will use this address when transitioning to virtual mode 
operations.

Return Value Description
status Return status of the PAL_VP_INIT_ENV procedure
vsa_base Virtualization Service Address – VSA specifies the virtual base address of the PAL 

virtualization services in this virtual environment.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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processors in the virtual environment must specify the same value in the config_options 
parameter during PAL_VP_INIT_ENV, otherwise processor operation is undefined.

Table 11-119. config_options – Global Configuration Options

Field Bit Description

Global
Configuration
Options

initialize 0 If 1, this procedure will initialize the PAL virtual environment buffer for 
this virtual environment. If 0, this procedure will not initialize the PAL 
virtual environment buffer. On a multiprocessor system, the VMM must 
wait until this procedure completes on the first logical processor before 
calling this procedure on additional logical processors; otherwise pro-
cessor operation is undefined.

fr_pmc 1 If 1, for virtualization intercepts the performance counters are disabled 
by setting PSR.up and pp to 0, see Section 11.7.3.1, “PAL Virtualiza-
tion Intercept Handoff State” on page 2:333 for details on PSR settings 
at virtualization intercepts; for all other IVA-based interruptions PSR.pp 
and up are set according to Interruption State column described in Pro-
cessor Status Field table described in Table 3-2, “Processor Status 
Register Fields” on page 2:24. The VMM must have DCR.pp equal to 0 
when the fr_pmc option is 1, whenever the IVA control register on the 
logical processor is set to point to the per-virtual-processor host IVT. 
See Section 11.7.2, “Interruption Handling in a Virtual Environment” on 
page 2:331 and Table 11-21, “IVA Settings after PAL Virtualiza-
tion-related Procedures and Services” on page 2:332 for details on 
per-virtual-processor host IVT.
If 0, PSR.pp and up are set according to Interruption State column 
described in Processor Status Field table described in Table 3-2, “Pro-
cessor Status Register Fields” on page 2:24

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in 
the VPD are stored in big-endian format and the PAL services calls are 
made with PSR.be bit equal to 1. If 0, the values in the VPD are stored 
in little-endian format and the PAL services calls are made with PSR.be 
bit equal to 0. The VMM must match DCR.be with the value set in this 
field when the IVA control register on the logical processor is set to 
point to the per-virtual-processor host IVT. See Section 11.7.2, “Inter-
ruption Handling in a Virtual Environment” on page 2:331 and 
Table 11-21, “IVA Settings after PAL Virtualization-related Procedures 
and Services” on page 2:332 for details on per-virtual-processor host 
IVT.

Reserved 7:3 Reserved.
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The fr_pmc bit in the global config_options parameter specifies whether the performance 
counters will be frozen when the Virtualization optimizations specified in the 
Virtualization Acceleration Control (vac) and Virtualization Disable Control (vdc) are 
running.  When a virtual processor is running, the vac field in the corresponding VPD 
specifies whether a certain virtualization accelerations are enabled.  If the fr_pmc in the 
virtual environment was also enabled, the performance counters will be frozen when 
the enabled virtualization optimizations are running. See Section 11.7.4, “Virtualization 
Optimizations” on page 2:335 for details on Virtualization Acceleration Control (vac) 
and Virtualization Disable Control (vdc).

This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.

Global
Virtualization
Optimizations

opcode 8 This bit must be set to 1 – opcode information will be provided to the 
VMM during PAL intercepts within the virtual environment. This opcode 
may or may not be guaranteed to be the opcode that triggered the 
intercept. See Table 11-118, “vp_env_info – Virtual Environment Infor-
mation Parameter” on page 2:473 for details. This procedure returns 
an error if this bit is not set to 1.

cause 9 If 1, the causes of virtualization intercepts will be provided to the VMM 
during PAL intercept handoffs within the virtual environment. No infor-
mation will be provided if 0. See Section 11.7.3.1, “PAL Virtualization 
Intercept Handoff State” on page 2:333 for details of virtualization inter-
cept handoffs.

gitc 10 If 1, enables guest MOV-from-AR.ITC optimization. For details see 
Section 11.7.4.1.3, “Guest MOV-from-AR.ITC Optimization” on 
page 2:337 and Section 3.3.4.4, “Interval Timer Offset (ITO – CR4)” on 
page 2:34. This bit is reserved if guest MOV-from-AR.ITC optimization 
is not supported.

Reserved 62:11 Reserved.

impl 63 Implementation-specific configuration option. This field is ignored if not 
implemented. Please refer to processor-specific documentation for 
details.

Table 11-119. config_options – Global Configuration Options (Continued)

Field Bit Description
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PAL_VP_REGISTER

PAL_VP_REGISTER – PAL Register Virtual Processor (269)

Purpose: Register a different host IVT and/or a different optional virtualization intercept handler 
for the virtual processor specified by vpd.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_REGISTER registers a different host IVT and/or a different optional 
virtualization intercept handler specific to the virtual processor specified by vpd. On 
creation of a virtual processor by PAL_VP_CREATE, the VMM specifies a host IVT specific 
to the virtual processor. This procedure allows the VMM to specify a host IVT different 
from the one specified during PAL_VP_CREATE.

The host virtual to host physical translation of the 64K region specified by vpd must be 
mapped with either a DTR or DTC. See Section 11.10.2.1.3, “Making PAL Procedure 
Calls in Physical or Virtual Mode” on page 2:359 for details on data translation 
requirements of memory buffer pointers passed as arguments to PAL procedures. The 
virt_env_vaddr parameter in the VPD must be setup with the host virtual address of the 
PAL virtual environment buffer before calling this procedure.

The host_iva parameter specifies the host IVT to handle IVA-based interruptions when 
this virtual processor is running. The VMM can use the same or different host_iva for 
each virtual processor. The opt_handler specifies an optional virtualization intercept 
handler. If a non-zero value is specified, all virtualization intercepts are delivered to this 
handler.  If a zero value is specified, all virtualization intercepts are delivered to the 
Virtualization vector in the host IVT.  Upon completion of this procedure, the VMM must 
not relocate the IVT specified by the host_iva parameter and/or the virtualization 
intercept handler specified by the opt_handler parameter. The VMM can call this 
procedure again in case it wishes to associate a different host IVT and/or virtualization 
intercept handler with the virtual processor.

PAL_VP_REGISTER returns invalid argument on unsupported virtualization optimization 
combinations in vpd. See Section 11.7.4.4, “Virtualization Optimization Combinations” 
on page 2:349 for details.

This procedure can be used by the VMM to:

Argument Description
index Index of PAL_VP_REGISTER within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
host_iva 64-bit host virtual pointer to the host IVT for the virtual processor
opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See 

Section 11.7.3, “PAL Intercepts in Virtual Environment” on page 2:332 for details.

Return Value Description
status Return status of the PAL_VP_REGISTER procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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PAL_VP_REGISTER

• Relocate the host IVT associated with the virtual processor.

• Specify a different optional virtualization intercept handler for the virtual processor.

This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.
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PAL_VP_RESTORE

PAL_VP_RESTORE – PAL Restore Virtual Processor (270)

Purpose: Restores virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_RESTORE performs an implementation-specific restore operation of the virtual 
processor specified by the vpd parameter on the logical processor. The host virtual to 
host physical translation of the 64K region specified by vpd and the PAL virtual 
environment buffer must be mapped by instruction and data translation registers (TR). 
The instruction and data translation must be maintained until after the next invocation 
of PAL_VP_SAVE or PAL_VPS_SAVE and a different host IVT is set up by the VMM by 
writing to the IVA control register. PAL_VP_RESTORE configures the logical processor to 
run the specified virtual processor by loading implementation-specific virtual processor 
context from the VPD, and returns control back to the VMM.

This procedure performs an implicit PAL_VPS_SYNC_WRITE; there is no need for the 
VMM to invoke PAL_VPS_SYNC_WRITE unless the VPD values are modified before 
resuming the virtual processor. After the procedure, the caller is responsible for 
restoring all of the architectural state before resuming to the new virtual processor 
through PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER.

Upon completion of this procedure, the IVA-based interruptions will be delivered to the 
host IVT associated with this virtual processor.

This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.

Argument Description
index Index of PAL_VP_RESTORE within the list of PAL procedures.
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_RESTORE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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PAL_VP_SAVE

PAL_VP_SAVE – PAL Save Virtual Processor (271)

Purpose: Saves virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_SAVE performs an implementation-specific save operation of the virtual 
processor specified by the vpd parameter on the logical processor. The host virtual to 
host physical translation of the 64K region specified by vpd must be mapped by 
instruction and data translation registers (TR).

This procedure performs an implicit PAL_VPS_SYNC_READ; there is no need for the 
VMM to invoke PAL_VPS_SYNC_READ to synchronize the implementation-specific 
control resources before this procedure.

Upon completion of this procedure, the IVA-based interruptions will continue to be 
delivered to the host IVT associated with this virtual processor. After this procedure, the 
VMM can setup the IVA control register to use a different host IVT.

This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.

Argument Description
index Index of PAL_VP_SAVE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_SAVE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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PAL_VP_TERMINATE

PAL_VP_TERMINATE – PAL Terminate Virtual Processor (272)

Purpose: Terminates operation for the specified virtual processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: Terminates operation of the virtual processor specified by vpd on the logical processor. 
The host virtual to host physical translation of the 64K region specified by vpd must be 
mapped by instruction and data translation registers (TR). See Section 11.10.2.1.3, 
“Making PAL Procedure Calls in Physical or Virtual Mode” on page 2:359 for details on 
data translation requirements of memory buffer pointers passed as arguments to PAL 
procedures. All resources allocated for the execution of the virtual machine are freed.

Upon successful execution of PAL_VP_TERMINATE procedure and if the iva parameter is 
non-zero, the IVA control register will contain the value from the iva parameter.

This procedure returns unimplemented procedure when virtual machine features are 
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446 
for details.

Argument Description
index Index of PAL_VP_TERMINATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0

Return Value Description
status Return status of the PAL_VP_TERMINATE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer
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11.11 PAL Virtualization Services

In order to support efficient handling of interruptions when PSR.vm was 1, a set of PAL 
virtualization services is defined to allow certain high-frequency PAL functions to be 
performed in a low-latency and low-overhead manner.

Upon successful completion of PAL_VP_INIT_ENV, the virtual base address of the PAL 
virtualization services (VSA) is returned to the VMM. VMM can invoke PAL services by 
branching to the defined offsets from the virtual base address. See Table 11-120 for the 
defined services. See Section 11.11, “PAL Virtualization Services” on page 2:486 for 
details on PAL virtualization services.

These PAL virtualization services will only make references to the PAL virtual 
environment buffer. The VMM is required to maintain the ITR and DTR translations of 
the PAL virtual environment buffer during any PAL virtualization service calls.

11.11.1 PAL Virtualization Service Invocation Convention

This section describes the required parameters applicable to all PAL Virtualization 
Services. Additional parameters are listed in the description section of specific PAL 
Virtualization Services. Architectural state not listed in this section is managed by the 
VMM and can contain both VMM and/or virtual processor state. The architectural state 
not listed is unchanged by PAL virtualization services.

The state of the processor on handing off to any PAL Virtualization Service is:

• GR24-31: Parameters for PAL virtualization services.

• BRs:

• BR0: Scratch, the VMM will use BR0 to specify the 64-bit host virtual address of 
the PAL Virtualization Service being invoked.

• Predicates: The predicates are preserved by the PAL virtualization services.

• PSR State (see Table 11-121 for details):

• PSR.be, i, cpl, is, ss, db, tb, vm must be 0.

• PSR.dt, rt and it must be 1.

• All other values are don’t cares.

Table 11-120. PAL Virtualization Services

Offset PAL Service

0x0000 PAL_VPS_RESUME_NORMAL

0x0400 PAL_VPS_RESUME_HANDLER

0x0800 PAL_VPS_SYNC_READ

0x0c00 PAL_VPS_SYNC_WRITE

0x1000 PAL_VPS_SET_PENDING_INTERRUPT

0x1400 PAL_VPS_THASH

0x1800 PAL_VPS_TTAG

0x1c00 PAL_VPS_RESTORE

0x2000 PAL_VPS_SAVE

All other 
offsets

Reserved
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Table 11-121. State Requirements for PSR for PAL Virtualization Services

PSR Bit Description Value

be big-endian memory access enable -a

a. PAL services can be called with PSR.be bit equal to 0 or 1. The behavior is undefined if PSR.be setting does 
not match the be parameter during PAL_VP_INIT_ENV. See “PAL_VP_INIT_ENV – PAL Initialize Virtual 
Environment (268)” on page 2:478 for details.

up user performance monitor enable -

ac alignment check -

mfl floating-point registers f2-f31 written -

mfh floating-point registers f32-f127 written -

ic interruption state collection enable 0b

b. Most PAL services are invoked with PSR.ic equal to 0.

-c

i interrupt enable 0

pk protection key validation enable -

dt data address translation enable 1

dfl disabled FP register f2 to f31 -

dfh disabled FP register f32 to f127 -

sp secure performance monitors -

pp privileged performance monitor enable -

di disable ISA transition -

si secure interval timer -

db debug breakpoint fault enable 0

lp lower-privilege transfer trap enable -

tb taken branch trap enable 0

rt register stack translation enable 1

cpl current privilege level 0

is instruction set 0

mc machine check abort mask -

it instruction address translation enable 1

id instruction debug fault disable -

da data access and dirty-bit fault disable -

dd data debug fault disable -

ss single step trap enable 0

ri restart instruction -

ed exception deferral -

bn register bank -d

0e

ia instruction access-bit fault disable -

vm processor virtualization 0
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11.11.2 PAL Virtualization Service Specifications

The following pages provide detailed interface specifications for each of the PAL 
Virtualization Services.

c. Specific PAL services can be invoked with PSR.ic equal to 1 or 0. See the description of specific PAL services 
for details.

d. Most PAL services can be invoked with PSR.bn equal to 1 or 0.
e. Specific PAL services must be invoked with PSR.bn equal to 0. See the description of specific PAL services 

for details.
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PAL_VPS_RESUME_NORMAL

PAL_VPS_RESUME_NORMAL – Resume Virtual Processor Normal 
(0x0000)

Purpose: Resumes the current virtual processor. This service is used when vpsr.ic is 1. This 
service can also be used independent of the state of vpsr.ic if all virtualization 
accelerations and disables are disabled.

Arguments:

Returns: PAL_VPS_RESUME_NORMAL does not return to the VMM.

Description: On interruptions or intercepts, PAL_VPS_RESUME_NORMAL allows the VMM to resume 
the same virtual processor where the vpsr.ic is 1. PAL_VP_RESTORE can be used to 
restore the state of a different virtual processor.

The VMM specifies the VBR0 of the virtual processor in GR24 and the 64-bit virtual 
pointer to the VPD in GR25.

The VMM is responsible for setting up all the required virtual processor state in the 
architectural registers as well as in the VPD prior to invoking this service. See 
Table 11-122, “Virtual Processor Settings in Architectural Resources for 
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on page 2:489 for 
details.

PAL_VPS_RESUME_NORMAL must be called with PSR.bn equal to 0.

If all virtualization accelerations and disables are disabled, PAL_VPS_RESUME_NORMAL 
can also be used to resume to the guest independent on the state of vpsr.ic.

Argument Description
GR24 VBR0
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Table 11-122. Virtual Processor Settings in Architectural Resources for 
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER

Resource Description

Bank 1 GRs Contains state of bank 0/1 GRs of the virtual processor (depends on 
vpsr.bn.)

FRs Contains floating-point register state of the virtual processor.

Predicate Register Contains the predicates of the virtual processor.

Branch Registers BR1-BR7 contains the state of the virtual processor. BR0 of the virtual 
processor resides in bank 0 GR24.

Application Registers Contains application register state of the virtual processor.

Interval Timer Offset Registera If guest MOV-from-AR.ITC optimization is enabled, this register contains 
an offset, programmed by the VMM, to ensure that guest reads of ITC get 
the proper value.

Interruption Control Registers IIP, IPSR and IFS contains the IP, PSR and CFM of the virtual processor. 
See Table 11-123 for the PSR settings for the execution of the virtual 
processor. The rest of the interruption control registers are don’t cares. For 
PAL_VPS_RESUME_HANDLER, the virtual interruption control registers 
are specified in the VPD. See Section 11.7.4, “Virtualization Optimizations” 
on page 2:335 for synchronization of VPD resources before resuming the 
virtual processor.
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PAL_VPS_RESUME_NORMAL

External Interrupt Control 
Registers

The external interrupt control registers contain the state of the virtual 
processor if d_extint in Virtualization Disable Control (vdc) is 1. Otherwise 
the external interrupt control registers are virtualized by the VMM and 
contain VMM state.

Data/Instruction Breakpoint 
Registers

The data/instruction breakpoint registers contain the state of the virtual 
processor if d_ibr_dbr in Virtualization Disable Control (vdc) is 1. 
Otherwise the data/instruction breakpoint registers are virtualized by the 
VMM and contain VMM state.

Performance Monitor 
Configuration Registers

The performance monitor configuration registers contain the state of the 
virtual processor if d_pmc in Virtualization Disable Control (vdc) is 1. 
Otherwise the performance monitor configuration registers are virtualized 
by the VMM and contain VMM state.

Performance Monitor Data 
Registers

Contain the state of the virtual processor.

a. Interval Timer Offset register is not supported on all processor implementations. See Section 3.3.4.4, “Interval 
Timer Offset (ITO – CR4)” on page 2:34 for details.

Table 11-123. Processor Status Register Settings for Virtual Processor 
Execution

Field Bits Description

User Mask = PSR{5:0}

rv 0 Reserved

be 1

Contain user mask of the virtual processor.

up 2

ac 3

mfl 4

mfh 5

System Mask = PSR{23:0}

ic 13 Must be 1.

i 14
VMM-specific.

pk 15

rv 12:6, 
16

Reserved

dt 17 Must be 1.

dfl 18

VMM-specific.

dfh 19

sp 20

pp 21

di 22

si 23

PSR.l = PSR{31:0}

db 24 VMM-specific.

lp 25 Contains the lp bit of the virtual processor.

tb 26 Contains the tb bit of the virtual processor.

rt 27 Must be 1.

rv 31:28 Reserved

PSR{63:0}

Table 11-122. Virtual Processor Settings in Architectural Resources for 
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER

Resource Description
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PAL_VPS_RESUME_NORMAL

PAL_VPS_RESUME_NORMAL performs the following actions:

• Perform any implementation-specific setup to run a virtual processor.

• Re-enable performance counters if the value of the fr_pmc field in the config_options 
parameter passed to PAL_VP_INIT_ENV was 1.

• Resume the virtual processor.

cpl 33:32 Contains the cpl field of the virtual processor.

is 34 VMM-specific.

mc 35 VMM-specific.

it 36 Must be 1.

id 37 VMM-specific.

da 38 VMM-specific.

dd 39 VMM-specific.

ss 40 VMM-specific.

ri 42:41 Contains the ri field of the virtual processor.

ed 43 Contains the ed bit of the virtual processor.

bn 44 Must be 1.

ia 45 VMM-specific.

vm 46 Must be 1.

rv 63:47 Reserved

Table 11-123. Processor Status Register Settings for Virtual Processor 
Execution (Continued)

Field Bits Description
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PAL_VPS_RESUME_HANDLER

PAL_VPS_RESUME_HANDLER – Resume Virtual Processor Handler 
(0x0400)

Purpose: Resumes the current virtual processor. This service is used when vpsr.ic is 0.

Arguments:

Returns: PAL_VPS_RESUME_HANDLER does not return to the VMM.

Description: On interruptions or intercepts, PAL_VPS_RESUME_HANDLER allows the VMM to resume 
to the same virtual processor where the vpsr.ic is 01.

GR24 specifies the BR0 of the virtual processor; GR25 specifies the 64-bit virtual 
pointer to the VPD; GR26 specifies the vac field of the VPD argument specified in GR25; 
bit 63 of GR26 specifies the value of CFLE setting at the target instruction. Behavior is 
undefined if the vac in GR26 does not match the vac field in the VPD argument specified 
in GR25.

The VMM is responsible for setting up all the required virtual processor state in the 
architectural registers as well as in the VPD prior to invoking this service. See 
Table 11-122, “Virtual Processor Settings in Architectural Resources for 
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on page 2:489 for 
details.

PAL_VPS_RESUME_HANDLER must be called with PSR.bn equal to 0.

PAL_VPS_RESUME_HANDLER performs the following actions:

• Perform any implementation-specific setup to run a virtual processor.

• Re-enable performance counters if the value of the fr_pmc field in the config_options 
parameter passed to PAL_VP_INIT_ENV was 1.

• Resume the virtual processor.

Argument Description
GR24 VBR0
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Virtualization Acceleration Control (vac) field from the VPD specified in GR25 and CFLE 

setting at the target instruction.
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

1. PAL_VP_RESTORE can be used to restore the state of a different virtual processor.
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PAL_VPS_SYNC_READ

PAL_VPS_SYNC_READ – Synchronize VPD State for Reads (0x0800)

Purpose: Synchronize VPD with the latest implementation-specific virtual architectural state.

Arguments:

Returns:

Description: On processor implementations that support virtualization accelerations, 
implementation-specific control resources can be provided to enhance performance of 
virtual processors. When a specific acceleration is enabled, after interruptions and 
intercepts which occur when PSR.vm was 1, the VMM must invoke this service to 
synchronize the related resources before reading the value from the VPD. For the 
accelerations that are disabled, the corresponding resources in the VPD are unchanged.

The synchronization requirements of the related resources for each acceleration are 
described in the corresponding sections for each acceleration in Section 11.7.4.2, 
“Virtualization Accelerations” on page 2:337.

PAL_VPS_SYNC_READ performs the following actions:

• Copy implementation-specific control resources of the enabled accelerations into VPD.

• Return to VMM by an indirect branch specified in the GR24 parameter.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch
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PAL_VPS_SYNC_WRITE

PAL_VPS_SYNC_WRITE – Synchronize VPD State for Writes 
(0x0c00)

Purpose: Synchronize the implementation-specific virtual architectural state with VPD.

Arguments:

Returns:

Description: On processor implementations that support virtualization accelerations, 
implementation-specific control resources can be provided to enhance performance of 
virtual processors. When a specific acceleration is enabled, the VMM must invoke this 
service to synchronize the related resources after modifying the value in the VPD and 
before resuming the virtual processor. For the accelerations that are disabled, the 
corresponding resources in the VPD are ignored.

The synchronization requirements of the related resources for each acceleration are 
described in the corresponding sections for each acceleration in Section 11.7.4.2, 
“Virtualization Accelerations” on page 2:337.

PAL_VPS_SYNC_WRITE performs the following actions:

• Copy values of the enabled accelerations in the VPD into implementation-specific 
control resources.

• Return to VMM by an indirect branch specified in the GR24 parameter.

Argument Description
GR24 64-bit host virtual return address.
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch
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PAL_VPS_SET_PENDING_INTERRUPT

PAL_VPS_SET_PENDING_INTERRUPT – Register Highest Priority 
Pending Interrupt (0x1000)

Purpose: Register highest priority pending interrupt of the running virtual processor.

Arguments:

Returns:

Description: PAL_VPS_SET_PENDING_INTERRUPT allows the VMM to register the highest priority 
pending interrupt for the virtual processor. The virtual highest priority pending interrupt 
is specified in the vhpi field in the VPD. See Table 11-124, “vhpi – Virtual Highest 
Priority Pending Interrupt” on page 2:495 for details.

PAL_VPS_SET_PENDING_INTERRUPT can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

Table 11-124. vhpi – Virtual Highest Priority Pending Interrupt

Value Description

0 Nothing pending.

1 Class 1 interrupt pending.

2 Class 2 interrupt pending.

3 Class 3 interrupt pending.

4 Class 4 interrupt pending.

5 Class 5 interrupt pending.

6 Class 6 interrupt pending.

7 Class 7 interrupt pending.

8 Class 8 interrupt pending.

9 Class 9 interrupt pending.

10 Class 10 interrupt pending.

11 Class 11 interrupt pending.

12 Class 12 interrupt pending.

13 Class 13 interrupt pending.

14 Class 14 interrupt pending.

15 Class 15 interrupt pending.

16 ExtINT pending.

17-31 Reserved.

32 NMI pending.

33+ Reserved.
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PAL_VPS_SET_PENDING_INTERRUPT

PAL_VPS_SET_PENDING_INTERRUPT performs the following actions:

• Copy the virtual highest priority pending interrupt from the VPD into 
implementation-specific resources.

• Return to VMM by an indirect branch specified in the GR24 parameter.
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PAL_VPS_THASH

PAL_VPS_THASH – Compute Long Format VHPT Entry Address 
(0x1400)

Purpose: Compute a long format VHPT entry address.

Arguments:

Returns:

Description: PAL_VPS_THASH computes a long format Virtual Hashed Page Table (VHPT) entry 
address based on the input arguments and the result is returned in GR31. The format 
of the region register parameter (GR26) is defined in Section 4.1.2, “Region Registers 
(RR)” on page 2:58, the ve field is ignored by the service. The format of the Virtual PTA 
parameter (GR27) is defined in Section 3.3.4.6, “Page Table Address (PTA – CR8)” on 
page 2:35, the vf field is ignored by the service.

PAL_VPS_THASH returns the same long format VHPT entry address given the same 
input arguments across different implementations. The long format VHPT entry address 
returned may not be the same as the long format VHPT entry address generated by the 
thash instruction of the processor.

PAL_VPS_THASH can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit virtual address used to compute the hash entry address
GR26 Region register value used to compute the hash entry address
GR27 Virtual PTA
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 64-bit VHPT entry address
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PAL_VPS_TTAG

PAL_VPS_TTAG – Compute Translated Hashed Entry Tag (0x1800)

Purpose: Compute the long format translated hashed entry tag.

Arguments:

Returns:

Description: PAL_VPS_TTAG computes the tag value of the long format Virtual Hashed Page Table 
(VHPT) based on the input arguments and the result is returned in GR31. The format of 
the region register parameter (GR26) is defined in Section 4.1.2, “Region Registers 
(RR)” on page 2:58, the ve field is ignored by the service.

PAL_VPS_TTAG returns the same tag value given the same input arguments across 
different implementations. The tag value returned may not be the same as the tag 
value generated by the ttag instruction of the processor.

PAL_VPS_TTAG can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit virtual address used to compute the hash entry tag
GR26 Region register value used to compute the hash entry tag
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 64-bit VHPT entry tag
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PAL_VPS_RESTORE

PAL_VPS_RESTORE – Fast Restore Virtual Processor State (0x1c00)

Purpose: Performs an implementation-specific light-weight restore operation for the specified 
VPD on the logical processor.

Arguments:

Returns:

Description: PAL_VPS_RESTORE performs an implementation-specific light-weight restore operation 
of the virtual processor specified by the VPD parameter (GR25) on the logical processor. 
The host virtual to host physical translation of the 64K region specified by the VPD 
parameter (GR25) and the PAL virtual environment buffer must be mapped by 
instruction and data translation registers (TR). The instruction and data translation 
must be maintained until after the next invocation of PAL_VP_SAVE or PAL_VPS_SAVE 
and a different host IVT is set up by the VMM by writing to the IVA control register. 
PAL_VPS_RESTORE configures the logical processor to run the specified virtual 
processor by loading the minimal implementation-specific virtual processor context 
from the VPD, and returns control back to the VMM.

If GR26 is zero, this service performs an implicit PAL_VPS_SYNC_WRITE; there is no 
need for the VMM to invoke PAL_VPS_SYNC_WRITE to synchronize the 
implementation-specific control resources before this service. If GR26 is one (0x1), no 
implicit synchronization will be performed by this service.

Upon completion of this service, the IVA-based interruptions will be delivered to the 
host IVT associated with this virtual processor.

This service does not restore any PAL procedure implementation-specific state1. The 
caller of this service is responsible to manage the difference in settings for the PAL 
procedures between the VMM and virtual processors.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Skip implicit synchronization
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

1. PAL_VP_RESTORE can be used to restore PAL procedure implementation-specific state. See
“PAL_VP_RESTORE – PAL Restore Virtual Processor (270)” on page 2:483 for details.
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PAL_VPS_SAVE

PAL_VPS_SAVE – Fast Save Virtual Processor State (0x2000)

Purpose: Performs an implementation-specific light-weight save operation for the specified VPD 
on the logical processor.

Arguments:

Returns:

Description: PAL_VPS_SAVE performs an implementation-specific light-weight save operation of the 
virtual processor specified by the VPD parameter (GR25) on the logical processor. The 
host virtual to host physical translation of the 64K region specified by the VPD 
parameter (GR25) must be mapped by instruction and data translation registers (TR).

If GR26 is zero, this service performs an implicit PAL_VPS_SYNC_READ; there is no 
need for the VMM to invoke PAL_VPS_SYNC_READ to synchronize the 
implementation-specific control resources before this service. If GR26 is one (0x1), no 
implicit synchronization will be performed by this service.

Upon completion of this service, the IVA-based interruptions will continue to be 
delivered to the host IVT associated with this virtual processor. After this service, the 
VMM can setup the IVA control register to use a different host IVT.

This service does not save any PAL procedure implementation-specific state1. The caller 
of this service is responsible to manage the difference in settings for the PAL 
procedures between the VMM and virtual processors.

§

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Skip implicit synchronization
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

1. PAL_VP_SAVE can be used to save PAL procedure implementation-specific state. See “PAL_VP_SAVE
– PAL Save Virtual Processor (271)” on page 2:484 for details.
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About the System Programmer’s Guide 1

Part II: System Programmer’s Guide is intended as a companion section to the 
information presented in Part I:, “System Architecture Guide”. While Part I provides a 
crisp and concise architectural definition of the Itanium instruction set, Part II provides 
insight into programming and usage models of the Itanium system architecture. This 
section emphasizes how the various architecture features fit together and explains how 
they contribute to high performance system software.

The intended audience for this section is system programmers who would like to better 
understand the Itanium system architecture. The goal of this document is to:

• Familiarize system programmers with Itanium system architecture principles and 
usage models.

• Provide recommendations, code examples, and performance guidelines.

This section does not re-define the Itanium instruction set. Please refer to Part 
I:, “System Architecture Guide” as the authoritative definition of the system 
architecture.

The reader is expected to be familiar with the contents of Part I and is expected to be 
familiar with modern virtual memory and multiprocessing concepts. Furthermore, this 
document is platform architecture neutral (i.e. no assumptions are made about 
platform architecture capabilities, such as busses, chipsets, or I/O devices).

1.1 Overview of the System Programmer’s Guide

The Itanium architecture provides numerous performance enhancing features of 
interest to the system programmer. Many of these instruction set features focus on 
reducing overhead in common situations. The chapters outlined below discuss different 
aspects of the Itanium system architecture.

Chapter 2, “MP Coherence and Synchronization” describes Itanium architecture-based 
multiprocessing synchronization primitives and the Itanium memory ordering model. 
This chapter also discusses programming rules for self- and cross-modifying code. This 
chapter is useful for application and system programmers who write multi-threaded 
code. 

Chapter 3, “Interruptions and Serialization” discusses how the Itanium architecture, 
despite its explicitly parallel instruction execution semantics, provides the system 
programmer with a precise interruption model. This chapter describes how the 
processor serializes execution around interruptions and what state is preserved and 
made available to low-level system code when interruptions are taken. This chapter 
introduces the interrupt vector table and describes how low-level kernel code is 
expected to transfer control to higher level operating system code written in a 
high-level programming language. This chapter is useful for operating system and 
firmware programmers. 
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Chapter 4, “Context Management” describes how operating systems need to preserve 
Itanium register contents. In addition to spilling and filling a register’s data value, the 
Itanium architecture also requires software to preserve control and data speculative 
state associated with that register, i.e. its NaT bit and ALAT state. This chapter also 
discusses system architecture mechanisms that allow an operating system to 
significantly reduce the number of registers that need to be spilled/filled on 
interruptions, system calls, and context switches. These optimizations improve the 
performance of an Itanium architecture-based operating system by reducing the 
amount of required memory traffic. This chapter is useful for operating system 
programmers.

Chapter 5, “Memory Management” introduces various memory management strategies 
in the Itanium architecture: region register model, protection keys, and the virtual hash 
page table usage models are described. This chapter is of interest to virtual memory 
management software developers.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating 
system support that is required for control and data speculation. This chapter describes 
various speculation software models and their associated operating system 
implications. This chapter is of interest to operating system developers and compiler 
writers.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of 
instruction emulation handlers that Itanium architecture-based operating systems are 
expected to support. This chapter is useful for operating system developers.

Chapter 8, “Floating-point System Software” discusses how processors based on the 
Itanium architecture handle floating-point numeric exceptions and how the Itanium 
architecture-based software stack provides complete IEEE-754 compliance. This 
includes a discussion of the floating-point software assist firmware, the FP SWA EFI 
driver. This chapter also describes how Itanium architecture-based operating systems 
are expected to support IEEE floating-point exception filters. This chapter is useful for 
operating system developers and floating-point numerics experts.

Chapter 9, “IA-32 Application Support” outlines how software needs to perform 
instruction set transitions, and what low-level kernel handlers are required in an 
Itanium architecture-based operating system to support IA-32 applications. This 
chapter is useful for operating system developers.

Chapter 10, “External Interrupt Architecture” describes the external interrupt 
architecture with a focus on how external asynchronous interrupt handling can be 
controlled by software. Basic interrupt prioritization, masking, and harvesting 
capabilities are discussed in this chapter. This chapter is of interest to operating system 
developers and to device driver writers.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform 
considerations and support for the existing IA-32 I/O port space platform 
infrastructure. This chapter is of interest to operating system developers and to device 
driver writers.

Chapter 12, “Performance Monitoring Support” describes the performance monitor 
architecture with a focus on what kind of operating system support is needed from 
Itanium architecture-based operating systems. This chapter is of interest to operating 
system and performance tool developers.
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Chapter 13, “Firmware Overview” introduces the firmware model and how various 
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system 
initialization and operating system boot. This chapter also discusses how firmware 
layers and the operating system work together to provide error detection, error 
logging, as well as fault containment capabilities. This chapter is of interest to platform 
firmware and operating system developers.

1.2 Related Documents

The following documents are referred to fairly often in this document. For more details 
on software conventions and platform firmware, please consult these manuals 
(available at http://developer.intel.com). 

[SWC] Intel® Itanium® Software Conventions and Runtime Architecture Guide

[UEFI] Unified Extensible Firmware Interface Specification

[SAL] Intel® Itanium® Processor Family System Abstraction Layer 
Specification

§
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MP Coherence and Synchronization 2

This chapter describes how to enforce an ordering of memory operations, how to 
update code images, and presents examples of several simple multiprocessor 
synchronization primitives on a processor based on the Itanium architecture. These 
topics are relevant to anyone who writes either user- or system-level software for 
multiprocessor systems based on the Itanium architecture.

The chapter begins with a brief overview of Itanium memory access instructions 
intended to summarize the behaviors that are relevant to later discussions in the 
chapter. Next, this chapter presents the Itanium memory ordering model and compares 
it to a sequentially-consistent ordering model. It then explores versions of several 
common synchronization primitives. This chapter closes by describing how to correctly 
update code images to implement self-modifying code, cross-modifying code, and 
paging of code using programmed I/O.

2.1 An Overview of Intel® Itanium® Memory Access 
Instructions

The Itanium architecture provides load, store, and semaphore instructions to access 
memory. In addition, it also provides a memory fence instruction to enforce further 
ordering relationships between memory accesses. As Section 4.4.7, “Memory Access 
Ordering” on page 1:73 describes, memory operations in the Itanium architecture 
come with one of four semantics: unordered, acquire, release, or fence. Section 2.2 on 
page 2:510 describes how the memory ordering model uses these semantics to 
indicate how memory operations can be ordered with respect to each other.

Section 2.1.1 defines the four memory operation semantics. Section 2.2, Section 2.3, 
and Section 2.4 present brief outlines of load and store, semaphore, and memory fence 
instructions in the Itanium architecture. Refer to Chapter 2, “Instruction Reference” for 
more information on the behavior and capabilities of these instructions.

2.1.1 Memory Ordering of Cacheable Memory References

The Itanium architecture has a relaxed memory ordering model which provides 
unordered memory opcodes, explicitly ordered memory opcodes, and a fencing 
operation that software can use to implement stronger ordering. Each memory 
operation establishes an ordering relationship with other operations through one of four 
semantics:

• Unordered semantics imply that the instruction is made visible in any order with 
respect to other orderable instructions.

• Acquire semantics imply that the instruction is made visible prior to all subsequent 
orderable instructions.

• Release semantics imply that the instruction is made visible after all prior orderable 
instructions.
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• Fence semantics combine acquire and release semantics (i.e. the instruction is 
made visible after all prior orderable instructions and before all subsequent 
orderable instructions).

In the above definitions “prior” and “subsequent” refer to the program-specified order. 
An “orderable instruction” is an instruction that the memory ordering model can use to 
establish ordering relationships1. The term “visible” refers to all architecturally-visible 
(from the standpoint of multiprocessor coherency) effects of performing an instruction. 
Specifically,

• Accesses to uncacheable or write-coalescing memory regions are visible when they 
reach the processor bus.

• Loads from cacheable memory regions are visible when they hit a 
non-programmer-visible structure such as a cache or store buffer.

• Stores to cacheable memory regions are visible when they enter a snooped (in a 
multiprocessor coherency sense) structure.

Memory access instructions typically have an ordered and an unordered form (i.e. a 
form with unordered semantics and a form with either acquire, release, or fence 
semantics). The Itanium architecture does not provide all possible combinations of 
instructions and ordering semantics. For example, the Itanium instruction set does not 
contain a store with fence semantics.

Section 4.4.7, “Memory Access Ordering” on page 1:73 and Section 4.4.7, 
“Sequentiality Attribute and Ordering” on page 2:82 discuss ordering, orderable 
instructions, and visibility in greater depth.

Section 2.2 on page 2:510 describes how the ordering semantics affect the Itanium 
memory ordering model.

2.1.2 Loads and Stores

In the Itanium architecture, a load instruction has either unordered or acquire 
semantics while a store instruction has either unordered or release semantics. By using 
acquire loads (ld.acq) and release stores (st.rel), the memory reference stream of 
an Itanium architecture-based program can be made to operate according to the IA-32 
ordering model. The Itanium architecture uses this behavior to provide IA-32 
compatibility. That is, an Itanium acquire load is equivalent to an IA-32 load and an 
Itanium release store is equivalent to an IA-32 store, from a memory ordering 
perspective.

Loads can be either speculative or non-speculative. The speculative forms (ld.s, 
ld.sa, and ld.a) support control and data speculation.

2.1.3 Semaphores

The Itanium architecture provides a set of three semaphore instructions: exchange 
(xchg), compare and exchange (cmpxchg), and fetch and add (fetchadd). Both 
cmpxchg and fetchadd may have either acquire or release semantics depending on the 

1. The ordering semantics of an instruction do not imply the orderability of the instruction. Specifically,
unordered ordering semantics alone do not make an instruction unorderable; there are orderable
instructions with each of the four ordering semantics.
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specific opcode chosen. The xchg instruction always has acquire semantics. These 
instructions read a value from memory, modify this value using an instruction-specific 
operation, and then write the modified value back to memory. The read-modify-write 
sequence is atomic by definition.

2.1.3.1 Considerations for using Semaphores

The memory location on which a semaphore instruction operates on must obey two 
constraints. First, the location must be cacheable (the fetchadd instruction is an 
exception to this rule; it may also operate on exported uncacheable locations, UCE). 
Thus, with the exception of fetchadd to UCE locations, the Itanium architecture does 
not support semaphores in uncacheable memory. Second, the location must be 
naturally-aligned to the size of the semaphore access. If either of these two constraints 
are not met, the processor generates a fault.

The exported uncacheable memory attribute, UCE, allows a processor based on the 
Itanium architecture to export fetch and add operations to the platform. A processor 
that does not support exported fetchadd will fault when executing a fetchadd to a UCE 
memory location. If the processor supports exported fetchadd but the platform does 
not, the behavior is undefined when executing a fetchadd to a UCE memory location.

Sharing locks between IA-32 and Itanium architecture-based code does work with the 
following restrictions:

• Itanium architecture-based code can only manipulate an IA-32 semaphore if the 
IA-32 semaphore is aligned.

• Itanium architecture-based code can only manipulate an IA-32 semaphore if the 
IA-32 semaphore is allocated in write-back cacheable memory.

An Itanium architecture-based operating system can emulate IA-32 uncacheable or 
misaligned semaphores by using the technique described in the next section.

2.1.3.2 Behavior of Uncacheable and Misaligned Semaphores

A processor based on the Itanium architecture raises an Unsupported Data Reference 
fault if it executes a semaphore that accesses a location with a memory attribute that 
the semaphore does not support.

If the alignment requirement for Itanium architecture-based semaphores is not met, a 
processor based on the Itanium architecture raises an Unaligned Data Reference fault. 
This fault is taken regardless of the setting of the user mask alignment checking bit, 
UM.ac.

The DCR.lc bit controls how the processor behaves when executing an atomic IA-32 
memory reference under an external bus lock. When the DCR.lc bit (see Section 
3.3.4.1, “Default Control Register (DCR – CR0)”) is 1 and an IA-32 atomic memory 
reference requires a non-cacheable or misaligned read-modify-write operation, an 
IA_32_Intercept(Lock) fault is raised. Such memory references require an external bus 
lock to execute correctly. To preserve LOCK pin functionality, an Itanium 
architecture-based operating system can virtualize the bus lock by implementing a 
shared cacheable global LOCK variable.
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To support existing IA-32 atomic read-modify-write operations that require the LOCK 
pin, an Itanium architecture-based operating system can use the DCR.lc bit to intercept 
all external IA-32 read-modify-write operations. Then, the IA_32_Intercept(Lock) 
handler can emulate these operations by first acquiring a cacheable virtualized LOCK 
variable, then performing the required memory operations non-atomically, and then 
releasing the virtualized LOCK variable. This emulation allows the read-modify-write 
sequence to appear atomic to other processors that use the semaphore.

2.1.4 Memory Fences

The memory fence instruction (mf) is the only instruction in the Itanium instruction set 
with fence semantics. This instruction serializes the set of memory accesses before the 
memory fence in program order with respect to the set of memory accesses that follow 
the fence in program order.

2.2 Memory Ordering in the Intel® Itanium® 
Architecture

Understanding a system’s memory ordering model is key to writing either user- or 
system-level multiprocessor software that uses shared memory to communicate 
between processes and also that executes correctly on a shared-memory 
multiprocessor system. For a general introduction to memory ordering models, see 
Adve and Gharachorloo [AG95].

Four factors determine how a processor or system based on the Itanium architecture 
orders a group of memory operations with respect to each other:

• Data dependencies define the relationship between operations from the same 
processor that have register or memory dependencies on the same address1. This 
relationship need only be honored by the local processor (i.e. the processor that 
executes the operations).

• The memory ordering semantics define the relationship between memory 
operations from a particular processor that reference different addresses. For 
cacheable references, this relationship is honored by all observers in the coherence 
domain.

• Aligned release stores and semaphore operations (both require and release forms) 
become visible to all observers in the coherence domain in a single total order 
except each processor may observe its own release stores (via loads or acquire 
loads) prior to their being observed globally2.

• Non-programmer-visible state, such as store buffers, processor caches, or any 
logically-equivalent structure, may satisfy read requests from loads or acquire loads 
on the local processor before the data in the structure is made globally visible to 
other observers.

1. That is, A precedes B in program order and A produces a value that B consumes. This relationship is
transitive.

2. Consequently, each such operation appears to become visible to each observer in the coherence
domain at the same time, with the exception that a release store can become visible to the storing
processor before others.
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In the Itanium architecture, dependencies between operations by a processor have 
implications for the ordering of those operations at that processor. The discussion in 
Section 2.2.1.6 on page 2:515 and Section 2.2.1.7 on page 2:516 explores this issue in 
greater depth.

The following sections examine the Itanium ordering model in detail. Section 2.2.1 
presents several memory ordering executions to illustrate important behaviors of the 
model. Section 2.2.2 discusses how memory attributes and the ordering model 
interact. Finally, Section 2.2.3 describes how the Itanium memory ordering model 
compares with other memory ordering models.

2.2.1 Memory Ordering Executions

Multiprocessor software that uses shared memory to communicate between processes 
often makes assumptions about the order in which other agents in the system will 
observe memory accesses. As Section 2.1.1 on page 2:507 describes, the Itanium 
architecture provides a rich set of ordering semantics that allows software to express 
different ordering constraints on a memory operation, such as a load. Writing correct 
multiprocessor software requires that the programmer (or compiler) select the ordering 
semantic appropriate to enforce the expected behavior.

For example, an algorithm that requires two store operations A and B become visible to 
other processors in the order {A, B} will use stores with different ordering semantics 
than an algorithm that does not require any particular ordering of A and B. Although it 
is always safe to enforce stricter ordering constraints than an algorithm requires, doing 
so may lead to lower performance. If the ordering of memory operations is not 
important, software should use unordered ordering semantics whenever possible for 
best possible performance.

This section presents multiprocessor executions to demonstrate the ordering behaviors 
that the Itanium architecture allows and to contrast the Itanium ordering model with 
other ordering models. The executions consist of sequences of memory accesses that 
execute on two or more processors and highlight outcomes that the Itanium memory 
ordering model either allows or disallows once all accesses on all processors complete. 
A programmer can use these executions as a guide to determine which Itanium 
memory ordering semantics are appropriate to ensure a particular visibility order of 
memory accesses.

Section 2.2.1.1 presents the assumptions and notational conventions that the 
upcoming discussions use to examine the executions. The remaining eleven sections 
each explore a different facet of the Itanium ordering model:

• Relaxed ordering of unordered memory operations (Section 2.2.1.2).

• Using acquire and release semantics to order operations (Section 2.2.1.3).

• Loads may pass stores (Section 2.2.1.4) and how to prevent this behavior 
(Section 2.2.1.5).

• When dependencies do or do not establish memory ordering (Section 2.2.1.6 and 
Section 2.2.1.7).

• Satisfying loads from store buffers (Section 2.2.1.8) and how to prevent this 
behavior (Section 2.2.1.9).

• Semaphore operations and local bypass (Section 2.2.1.10).
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• Global visibility order of memory operations (Section 2.2.1.11 and 
Section 2.2.1.12).

This presentation is organized to begin with simple behaviors and move to increasingly 
complex behaviors.

2.2.1.1 Assumptions and Notation

The discussions of the multiprocessor executions in the upcoming sections adopt two 
main notational conventions.

First, the memory accesses in the executions in this document are written using a 
pseudo-Itanium architecture-based assembly language that allows a store to write an 
immediate operand to memory. All memory locations are cacheable and aligned. Unless 
stated otherwise, memory locations do not overlap. Initially, all registers and memory 
locations contain zero.

Second, given two different memory operations X and Y, specifies that X precedes 
Y in program order and indicates that X is visible if Y is visible (i.e. X becomes 
visible before Y).

Using this notation, Figure 2-1 expresses the Itanium ordering semantics from 
Section 2.1.1, “Memory Ordering of Cacheable Memory References” on page 2:507 and 
also Section 4.4.7, “Memory Access Ordering” on page 1:73. There are no implications 
regarding the ordering of the visibility for the following pairs of operations: a release 
followed by an unordered operation; a release followed by an acquire; an unordered 
operation followed by another; or an unordered operation followed by an acquire.

In Figure 2-1, “Acquire”, “Release”, and “Fence” represent an orderable instruction with 
the corresponding memory ordering semantics whereas “X” and “Y” indicate any 
orderable instruction.

2.2.1.2 The Intel® Itanium® Architecture Provides a Relaxed Ordering Model

The Itanium memory ordering model is a relaxed model. As a result, the Itanium 
architecture permits any outcome when executing the code shown in Table 2-1.

Figure 2-1. Intel® Itanium® Ordering Semantics

Table 2-1.  Intel® Itanium® Architecture Provides a Relaxed Ordering 
Model

Processor #0 Processor #1

st [x] = 1 // M1
st [y] = 1 // M2

ld r1 = [y] // M3
ld r2 = [x] // M4

Outcomes: all are allowed

X Y»
X Y

Acquire X Acquire X»

X Release X Release»

X Fence X Fence»

Fence Y Fence Y»
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Because all of the operations in Table 2-1 are unordered, the Itanium memory ordering 
model does not place any constraints on the order in which a processor based on the 
Itanium architecture makes the operations visible.

Observing a particular value in r2, for example, does not allow any inferences to be 
made about the value of r1 because the pair of stores on Processor #0 may become 
visible in any order. Therefore, all outcomes are possible as the system may interleave 
M1, M2, M3, and M4 in any order without violating the memory ordering constraints. 

2.2.1.3 Enforcing Basic Ordering

Using acquire and release ordering semantics enforces an ordering between both the 
Processor #0 operations M1 and M2 and the Processor #1 operations M3 and M4 from 
the Table 2-1 execution as shown in Table 2-1.

The Itanium ordering model only disallows the outcome r1 = 1 and r2 = 0 in this 
execution. The release semantics on M2 and acquire semantics on M3 affect the 
following ordering constraints:

Given the code in Table 2-2, these two ordering constraints along with the assumption 
that the outcome is r1 = 1 and r2 = 0 together imply that:

This contradicts the postulated outcome r1 = 1 and r2 = 0 and thus the Itanium 
ordering model disallows the r1 = 1 and r2 = 0 outcome.

In operational terms, if Processor #1 observes M2, the release store to y (i.e. r1 is 1), it 
must have also observed M1, the unordered store to x (i.e. r2 is 1 as well), given the 
ordering constraints. Therefore, the Itanium ordering model must disallow the outcome 
r1 = 1 and r2 = 0 in this execution as this outcome violates these constraints.

Stronger ordering models that do not relax load-to-load and store-to-store ordering, 
such as sequential consistency, impose these same ordering constraints on M1, M2, M3, 
and M4 and therefore also do not allow the outcome r1 = 1 and r2 = 0.

2.2.1.4 Allow Loads to Pass Stores to Different Locations

The Itanium memory ordering model allows loads to pass stores as shown in the 
execution sequence in Table 2-3. Permitting this behavior can improve performance by 
allowing the processor to complete loads that follow a store that misses the cache.

Table 2-2. Acquire and Release Semantics Order Intel® Itanium® Memory 
Operations

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = 1 // M2

ld.acq r1 = [y] // M3
ld r2 = [x] // M4

Outcome: only r1 = 1 and r2 = 0 is not allowed

M1 M2
M3 M4

r1 = 1 M2 M3 M1 M4 (because M1 M2 and M3 M4)   r2 = 1  
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The Itanium ordering semantics always allow a processor to make operations that 
follow a release visible before the release and to make operations that precede an 
acquire visible after the acquire.

Like the execution shown in Table 2-1, the Itanium memory ordering model does not 
place any constraints on the ordering of the operations on each processor in this 
execution either. 

Therefore, for reasons similar to those given in Section 2.2.1.2 for the execution shown 
in Table 2-1, the Itanium memory ordering model allows any outcome in this execution 
as well. Further, the Itanium memory ordering model also allows all outcomes in similar 
executions that differ only in the ordering semantics of the load and store operations 
(e.g. those that replace M1 with an unordered store, etc.). There is no combination of 
legal ordering semantics on these operations (recall that the Itanium instruction set 
does not provide stores with acquire or fence semantics) that enforce either or 

2.2.1.5 Preventing Loads from Passing Stores to Different Locations

The only way to prevent the loads from moving ahead of the stores in the Table 2-3 
execution is to separate them with a memory fence as the execution in Table 2-4 
illustrates.

The Itanium memory ordering model only disallows the outcome r1 = 0 and r2 = 0 in 
this execution. The memory fences on Processor #0 and Processor #1 (operations M2 
and M5) force the load and store memory accesses to be made visible in program 
order; no re-ordering is permitted across the fence. Thus, the following ordering 
constraints must be met:

 

Given the code in Table 2-4, these two constraints along with the assumption that the 
outcome is r1 = 0 and r2 = 0 together imply that

Table 2-3. Loads May Pass Stores to Different Locations

Processor #0 Processor #1

st.rel [x] = 1 // M1
ld.acq r1 = [y] // M2

st.rel [y] = 1 // M3
ld.acq r2 = [x] // M4

Outcomes: all are allowed

Table 2-4. Loads May Not Pass Stores in the Presence of a Memory Fence

Processor #0 Processor #1

st [x] = 1 // M1
mf // M2
ld r1 = [y] // M3

st [y] = 1 // M4
mf // M5
ld r2 = [x] // M6

Outcome: only r1 = 0 and r2 = 0 is not allowed

M1 M2
M3 M4.

M1 M2 M3 
M4 M5 M6 

r1 = 0 M3 M4 M3 M6 because M4 M5 M6   
r1= 0 M1 M3 because M1 M2 M3  

M1 M3 and M3 M6 M1 M6 r2 = 1 
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This contradicts the postulated outcome r1 = 0 and r2 = 0 and thus the Itanium 
memory ordering model disallows the r1 = 1 and r2 = 0 outcome. Specifically, if M3 
reads 0, then M4, M5, and M6 may not yet be visible but M1 and M2 must be visible. 
Thus, when M6 becomes visible it must observe x = 1 because M1 is already visible.

2.2.1.6 Data Dependency Does Not Establish MP Ordering

The dependency rules define the relationship between memory operations that access 
the same address. Specifically, the Itanium architecture resolves read-after-write 
(RAW), write-after-read (WAR), and write-after-write (WAW) dependencies through 
memory in program order on the local processor. As Section 2.2 discusses, 
dependencies are fundamentally different from the ordering semantics even though 
both affect ordering relationships between groups of memory accesses.

The execution shown in Table 2-5 illustrates this difference.

The following discussion focuses on the outcome r1 = 1, r2 = 1, and r3 = 0. This 
outcome is allowed only because the Itanium architecture treats data dependencies and 
the ordering semantics differently.

The ordering semantics require , but do not place any constraints on the 
relative order of operations M1, M2, or M3. Due to the register and memory 
dependencies between the instructions on Processor #0, these operations complete in 
program order on Processor #0 and also become locally visible in this order. However, 
the operations need not be made visible to remote processors in program order. In this 
outcome it appears to Processor #0 as if while to Processor #1 it appears that 

 There are two things to note here. First, the behavior is another example of 
the local bypass behavior that Section 2.2.1.8 presents on page 2:518. Second, there 
are no dependencies directly between M1 and M3 that requires them to become 
globally visible in program order.

Note: All processors will observe the order established by a particular processor in 
case of a WAW memory dependency to the same location. For example, all pro-
cessors in the coherence domain eventually see a value of 1 in location x in the 
following code:

st [x] = 0 // M1: set [x] to 0
st [x] = 1 // M2: set [x] to 1,

// cannot move above M1 due to WAW

because there is a WAW memory dependency between from M2 to M1
and the Itanium architecture requires that the local processor resolves
RAW, WAR, and WAW dependencies between its memory accesses in
program order. Thus,  even though the ordering semantics do
not place any constraints on the relative ordering of M1 and M2.

Table 2-5. Dependencies Do Not Establish MP Ordering (1)

Processor #0 Processor #1

st [x] = 1 ;; // M1
ld r1 = [x] ;; // M2
st [y] = r1 ;; // M3

ld.acq r2 = [y] // M4
ld r3 = [x] // M5

Outcomes: r1 = 1, r2 = 1, and r3 = 0 is allowed

M4 M5

M1 M3
M3 M1.

M1 M2
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2.2.1.7 Data Dependency Establishes Local Ordering

In the Itanium architecture, a dependency (e.g., a later operation reading the value 
written by an earlier operation) can imply a local ordering relationship between the two 
operations. This section focuses on dependencies through registers only. 
Section 2.2.1.6 discusses dependencies and MP ordering.

The execution shown in Table 2-6 illustrates how data dependency and memory 
ordering interact in a simple “pointer chase.”

In this example, Processor #0 could be executing code that updates a shared object 
with M1 and then publishes a pointer to the object with M2. Processor #1 then loads 
the pointer and dereferences it to read the contents of the shared object. The outcome 
r1 = x and r2 = 0 implies that Processor #1 observes the new value of the object 
pointer, y, but the old value of the data field, x.

The ordering semantics require  but place no requirements on the relative 
ordering of M3 and M4.

Thus, the memory semantics alone would allow the outcome r1 = x and r2 = 0 in the 
absence of other constraints. Using an acquire load for M3 can avoid this outcome as 
doing so forces  and thus prevents the outcome. However, this use of acquire 
is non-intuitive given the RAW dependency through register r1 between M3 and M4. 
That is, M3 produces a value that M4 requires in order to execute so how should it be 
possible for them to go out of order? Further, using an acquire in this case prevents any 
memory operation following M3 from moving above M3, even if they are completely 
independent of M3.

To avoid this potential confusion and performance issue, the Itanium architecture treats 
data dependency and memory ordering in the same fashion on the local processor. That 
is, if  and A produces a value that B consumes, then  on the local processor. 
This relationship is also transitive as the execution in Table 2-7 illustrates.

The Processor #0 code is the same as in Table 2-6. The Processor #1 now performs the 
following operation: if the pointer value y is equal to x, load a value from x.

Table 2-6. Memory Ordering and Data Dependency

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y] ;; // M3
ld r2 = [r1] // M4

Outcome: r1 = x and r2 = 0 is not allowed

Table 2-7. Memory Ordering and Data Dependency Through a Predicate 
Register

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y] // M3
cmp.eq p1, p2 = r1, x ;; // C1

(p1)ld r2 = [x] // M4

Outcome: r1 = x and r2 = 0 is not allowed

M1 M2

M3 M4

A B» A B
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The Itanium architecture does not allow the outcome r1 = x and r2 = 0 in this 
execution either. Unlike the execution in Table 2-6, there is no direct dependency 
between the values that M3 produces and the values that M4 consumes. However, there 
is a RAW through register r1 from M3 to C1 and a RAW through register p1 from C1 to 
M4. Thus, by transitivity, .

The execution in Table 2-8 illustrates a similar construct but introduces a control 
dependency.

This execution is semantically the same as the execution in Table 2-7; however, this 
execution uses a control dependency rather than predication to conditionally execute 
M4. As a result, the outcome r1 = x and r2 = 0 is not allowed in the Table 2-8 
execution.

The execution of the load M4 is data-dependent on the value of p2 that the branch B1 
uses to resolve. Further, p2 is dependent on the value of r1 that the load M3 produces 
through the compare C1. Thus, .

The execution in Table 2-9 is a variation on the execution from Table 2-8 where the 
loads are truly independent.

In this execution, there is no dependency between M3 and M4, and thus, there are no 
constraints on the relative ordering of M3 and M4. Like the execution in Table 2-8, M4 is 
data-dependent on the value of p2 that the branch B1 uses to resolve. However, p2 is 
independent of the value that the load M3 produces (specifically, because the compare 
does not use the value of register r1 that the load produces). Thus, there is no chain of 
dependencies between M3 and M4 and therefore there are no constraints on the 
relative ordering of M3 and M4. As a result, all outcomes are allowed in this execution.

Table 2-8. Memory Ordering and Data and Control Dependencies

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y];; // M3
cmp.eq p1, p2 = r1, x // C1

(p2)br t // B1
ld r2 = [x] // M4

t:

Outcome: r1 = x and r2 = 0 is not allowed

Table 2-9. Memory Ordering and Control Dependency

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y] // M3
cmp p1, p2 = r3, x // C1

(p2) br t // B1
ld r2 = [x] // M4

t:

Outcome: all are allowed

M3 M4

M3 M4
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2.2.1.8 Store Buffers May Satisfy Local Loads

In the Itanium memory ordering model, store buffers (or other logically-equivalent 
structures) may satisfy local read requests from loads or acquire loads even if the 
stored data is not yet visible to other agents in the coherence domain. Such bypassing 
must honor any ordering semantics in the memory reference stream. Table 2-10 and 
Table 2-11 that Section 2.2.1.9 presents illustrate this behavior.

.

In this sequence, each processor bypasses its locally-written value from a store buffer 
before the value becomes visible to the other processor. This behavior may make 
accesses of different sizes that have overlapping memory addresses appear to complete 
non-atomically.

The following discussion focuses on the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 
because this outcome is allowed if and only if store buffers can satisfy local loads (other 
outcomes are allowed but do not depend on being able to satisfy local loads from a 
store buffer).

The Itanium memory ordering semantics only require that  and . 
There are no constraints on the relative ordering of M1 and M2 or M3 nor on the relative 
ordering of M4 and M5 or M6.

Remember that both dependencies and the memory ordering model place requirements 
on the manner in which a processor based on the Itanium architecture may re-order 
accesses. Even though the Itanium memory ordering model allows loads to pass stores, 
a processor based on the Itanium architecture cannot re-order the following sequence:

st.rel [x] = r0 // M1: store 0 to [x]
ld.acq r1 = [x] // M2: cannot move above st.rel due to RAW

This is because there is a RAW dependency through memory between M1 and M2 and 
the Itanium memory ordering model requires that the local processor resolve RAW, 
WAR, and WAW dependencies between its memory accesses in program order. Thus, 

 even though the ordering semantics place no constraints on the relative 
ordering of M1 and M2.

Because there is a RAW dependency through memory between M1 and M2 and between 
M4 and M5, the ordering constraints effectively become:1

Table 2-10. Store Buffers May Satisfy Loads if the Stored Data is Not Yet 
Globally Visible

Processor #0 Processor #1

st.rel [x] = 1 // M1
ld.acq r1 = [x] // M2
ld r2 = [y] // M3

st.rel [y] = 1 // M4
ld.acq r3 = [y] // M5
ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is allowed

1. That is, the store operations must become visible to the local processors before their loads that read
the stored value.

M2 M3 M5 M6

M1 M2

M1 M2 M3 
M4 M5 M6 
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to account for both the memory ordering semantics and dependencies. It is important 
to keep in mind that the observance of a dependency between two operations does not 
imply an ordering relationship (from the standpoint of the memory ordering model) 
between the operations as Section 2.2.1.6 describes.

Assuming that a processor can bypass locally-written values before they are made 
globally-visible implies that there is a local and a global visibility points for a memory 
operation where a value always becomes locally visible before it becomes globally 
visible. Since M1 and M4 can have local visibility with respect to M2 and M5 as well as 
global visibility,

where m1 and M1 represent local and global visibility of memory operation 1, 
respectively. There are two things to note. First, the ordering of the local visibilities of 
operations M1 and M4 (m1 and m4, respectively) allow each processor to honor its data 
dependencies. That is, Processor #2 honors the RAW dependency through memory 
between M1 and M2 by requiring m1 to become visible before M2. Second, that these 
requirements do not place any constraints on the relative ordering perceived by a 
remote observer of operation M1 with M2 and M3 or of operation M4 with M5 and M6 
(as the local visibilities meet the local ordering constraints that the dependencies 
impose).

The code in Table 2-10 and these constraints together imply that

Thus, the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is allowed because these 
statements are consistent with our definition of local and global visibility. Specifically, a 
value becomes locally visible before it becomes globally visible. Similar reasoning can 
show that the constraints also imply that 

2.2.1.9 Preventing Store Buffers from Satisfying Local Loads

In the code shown in Table 2-10 from Section 2.2.1.8, there are no ordering constraints 
between the store and acquire load from the standpoint of memory ordering semantics 
(however, there is a RAW dependency through memory that forces the acquire load to 
follow the store). Bypassing may not occur if doing so violates the memory ordering 
constraints of memory operations between the store and the bypassing read. 
Table 2-11 presents a variation on the execution in Table 2-10 from Section 2.2.1.8 
that illustrates this behavior.

Table 2-11. Preventing Store Buffers from Satisfying Local Loads

Processor #0 Processor #1

st [x] = 1 // M1
mf // M2
ld.acq r1 = [x] // M3
ld r2 = [y] // M4

st [y] = 1 // M5
mf // M6
ld.acq r3 = [y] // M7
ld r4 = [x] // M8

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed

m1 M2 M3; m1 M1  
m4 M5 M6; m4 M4  

r1 = 1 m1 M2
r3 = 1 m4 M5

r2 = 0 M3 M4 m1 M6 because m1 M3 and M3 M4 and M4 M6   
r4 = 0 M6 M1

m1 M6 and M6 M1 m1 M1 

m4 M4.
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Like Section 2.2.1.8, the discussion in this section focuses on the outcome r1 = 1, r3 = 
1, r2 = 0, and r4 = 0 because it is allowed if and only if store buffers can satisfy local 
loads. The line of reasoning to show that the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 
0 is not allowed in Table 2-11 is similar to the reasoning used to show that this outcome 
is allowed in the Table 2-10 execution from Section 2.2.1.8 on page 2:518.

By the definition of the Itanium memory ordering semantics,

By allowing local and global visibility of operations M1 and M5 (similar to the discussion 
in Section 2.2.1.8), this assumption, along with the above constraints, together imply 
that,

Consider these constraints on the Processor #0 operations m1, M1, M2, M3, and M4. 
Making m1 visible before M2, M3, and M4 correctly honors the data dependency 
through memory on Processor #0. However, unless it constrains the global visibility of 
M1 to occur before M2, M3, and M4, Processor #0 violates the Itanium ordering 
semantics. Specifically, the memory fence M2 must always be made visible after the 
store M1. Allowing global and local visibilities of M1 in this case violates this constraint, 
and thus, is not allowed. Essentially, by allowing M1 to become locally visible early, M3 
would see M1 before the fence semantics for M2 were met (namely, that M1 be visible 
before M2 and thus M3). Without local and global visibility of M1 and M5, the ordering 
constraints are as this example originally postulated.

The code in Table 2-11 and these constraints together imply that

This contradicts the r1 = 1, r3 = 1, r2 = 0, and r4 = 0 outcome. The visibility of the 
memory fence, M2, implies that all prior operations including the store to x, M1, are 
globally visible. Thus, the load from x on Processor #1, M8, must observe the new 
value of x and  but the outcome requires 

2.2.1.10 Semaphores Do Not Locally Bypass

As Section 2.2.1.8 and Section 2.2.1.9 discuss, loads and acquire loads may be 
satisfied with values placed in local store buffers (or other logically-equivalent 
structures) by stores or release stores before the stored data becomes visible to other 
agents in the coherence domain. The Itanium architecture explicitly prohibits such local 
bypass either to or from semaphore operations. That is, semaphore operations cannot 
be satisfied in this way nor can the data they store be used to satisfy loads or acquire 
loads in this way.

The execution in Table 2-12 illustrates a variation on the execution in Table 2-10 where 
the acquire loads have been replaced with exchange semaphore operations (which also 
have acquire semantics).

M1 M2 M3 M4  
M5 M6 M7 M8  

m1 M1 m1 M2 M3 M4  
m5 M5 m5 M6 M7 M8  

r2 = 0 M4 M5 M1 M8 because M1 M4 and M4 M5 and M5 M8 r4 = 1   

M1 M8 M8 M1.
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Although each semaphore operation can be decomposed into a read access followed by 
a write access, the Itanium architecture does not allow a read request by a semaphore 
to be satisfied from a store buffer (or other logically-equivalent structure). As a result, 
the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed. The reasoning is similar 
to that presented in Section 2.2.1.9.

Specifically, by the definition of the Itanium memory ordering semantics,  and 
. The relative ordering between operation M1 and operations M2 or M3 is not 

constrained. Likewise, the relative ordering between operation M4 and operations M5 
and M6.

Now, assume the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0. Given that r1 = 1, r3 = 
1, and r2 = 0, we observe the following:

This conclusion contradicts the assumed outcome where r4 = 0 and thus the outcome 
r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed. Because M1 and M4 cannot become 
locally-visible to M2 and M5 before they become globally-visible to M6 and M3 (as read 
accesses from semaphores may not bypass from store buffers or other 
logically-equivalent structures), it is not possible to avoid this contradiction.

The Itanium architecture also prohibits local bypass from a semaphore operation to a 
local read access from a load or acquire load as shown in the execution in Table 2-13.

Table 2-12. Bypassing to a Semaphore Operation

Processor #0 Processor #1

mov r5 = 2
st.rel [x] = 1 // M1
xchg r1 = [x], r5 // M2
ld r2 = [y] // M3

mov r6 = 2
st.rel [y] = 1 // M4
xchg r3 = [y], r6 // M5
ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed

Table 2-13. Bypassing from a Semaphore Operation

Processor #0 Processor #1

fetchadd.rel r5 = [x], 1 // M1
ld.acq r1 = [x] // M2
ld r2 = [y] // M3

fetchadd.rel r6 = [y], 1 // M4
ld.acq r3 = [y] // M5
ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, r4 = 0, r5 = 0, and r6 = 0 is not allowed

M2 M3
M5 M6

r1 = 1 M1 M2
r3 = 1 M4 M5
r2 = 0 M3 M4

M3 M4 M1 M6 because M1 M3 M4 M6   
M1 M6 r4 = 2
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A store buffer may not provide a local read operation early access to a value written by 
a semaphore operation. Therefore, the outcome r1 = 1, r3 = 1, r2 = 0, r4 = 0, r5 = 0, 
and r6 = 0 in the Table 2-13 execution is not allowed. The reasoning is similar to that 
used in the previous execution.

2.2.1.11 Ordered Cacheable Operations are Seen in the Same Order by All 
Observers

The Itanium memory ordering model requires that release stores and semaphore 
operations (both acquire and release forms) become visible to all observers in the 
coherence domain in a single total order with the exception that each processor may 
observe (via loads or acquire loads) its own update early. Thus, each observer in the 
coherence domain sees the same interleaving of release stores and semaphores (both 
acquire and release forms) from the other processors in the coherence domain except 
that each processor may observe its own release stores (via loads or acquire loads) 
prior to their being observed globally. Table 2-14 illustrates this behavior.

The Itanium memory ordering model only disallows the outcome r1 = 1, r3 = 1, r2 = 0, 
and r4 = 0 in this execution. By the definition of the Itanium memory ordering 
semantics,

The Itanium memory ordering model does not permit the r1 = 1, r3 = 1, r2 = 0, and r4 
= 0 outcome as this would require that Processors #1 and #3 observe the release 
stores to x and y in different orders. Specifically, assuming that the outcome is r1 = 1, 
r3 = 1, r2 = 0, and r4 = 0:

The final two statements are inconsistent since both and cannot be 
true unless Processors #1 and #3 are allowed to see the release stores to x and y in 
different orders.

The Itanium memory ordering model allows the r1 = 1, r3 = 1, r2 = 0, and r4 = 0 
outcome if either one or both of the release stores M1 and M4 are unordered since 
unordered operations need not be seen in the same total order by all observers in the 
coherence domain. Thus, in a version of the execution shown in Table 2-14 with 
unordered stores, Processor #2 observes while Processor #4 observes 

.

Table 2-14. Enforcing the Same Visibility Order to All Observers in a 
Coherence Domain

Processor #0 Processor #1 Processor #2 Processor #3

st.rel [x] = 1// M1 ld.acq r1 = [x]//M2
ld r2 = [y]//M3

st.rel [y] = 1// M4 ld.acq r3 = [y]//M5
ld r4 = [x]//M6

Outcome: only r1 = 1, r3 = 1, r2 = 0, and r4 =0 is not allowed

M2 M3
M5 M6

r1 = 1 M1 M2
r3 = 1 M4 M5

r2 = 0 M3 M4 M1 M4 because M1 M2, M2 M3, and M3 M4   
r4 = 0 M6 M1 M4 M1 because M4 M5, M5 M6, and M6 M1   

M1 M4 M4 M1

M1 M4
M4 M1
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The Itanium memory ordering model also allows this outcome if the release stores M1 
and M4 are replaced with a memory fence followed by an unordered store. From the 
standpoint of a single processor, a release store has equivalent ordering semantics on 
the local processor to a memory fence followed by an unordered store. However, 
because the store in the memory fence/unordered store pair is unordered, it does not 
have any ordering requirements with respect to a remote processor. Even when 
processors are allowed to construct different interleavings, the ordering of an individual 
processor’s memory references within the interleaving must always respect the 
ordering constraints placed on those references. 

2.2.1.12 Obeying Causality

As noted in Section 2.2.1.11, the Itanium memory ordering model requires that release 
stores and semaphore operations (both acquire and release forms) become visible to all 
observers in the coherence domain in a single total order with the exception that each 
processor may observe (via loads or acquire loads) its own update early. Thus, each 
observer in the coherence domain sees the same interleaving of release stores, and 
semaphores operations from the other processors in the coherence domain.

A consequence of this is the fact that the Itanium memory ordering model respects 
causality in a certain way. Specifically, if a release store or semaphore operation 
causally precedes any store or semaphore operation, then the two operations will 
become visible to all processors in the causality order. Table 2-1 illustrates this 
behavior. Suppose that M2 reads the value written by M1. In this case, there is a causal 
relationship from M1 to M3 (a control dependency could also establish such a 
relationship). The fact that the store to x is a release store implies that, since there is a 
causal relationship from M1 to M3, M1 must become visible to processor #2 before M3.

The Itanium memory ordering model disallows the outcome r1 = 1, r2 = 1, and r3 = 0 
in this execution (all other outcomes are allowed). To see this, we note the following. If 
r1 = 1, then  at Processor #1. Because M2 is an acquire load and , 

, where m3 represents the local visibility of memory operation 1 (see 
Section 2.2.1.8). Thus, . Since M1 is a release store, it appears to become 
visible to all processors at the same time. This fact and  together imply 

.

If r2 = 1, . Because M4 is an acquire load, . If r3 = 0, then . 
Together, these imply , which contradicts the observation from the previous 
paragraph. Thus, the outcome r1 = 1, r2 = 1, and r3 = 0 is disallowed.

The indicated outcome would also be disallowed if M1 were a semaphore operation 
because, like release stores, each semaphore must appear to become visible at all 
processors at the same time. The indicated outcome would be allowed if M1 were a 
weak store, as a weak store may appear to become visible at different times to 
different processors.

Table 2-15.  Intel® Itanium® Architecture Obeys Causality

Processor #0 Processor #1 Processor #2

st.rel [x] = 1 // M1 ld.acq r1 = [x]// M2
st [y] = 1 // M3

ld.acq r2 = [y] // M4
ld r3 = [x] // M5

Outcome: only r1 = 1, r2 = 1, and r3 = 0 is not allowed

M1 M2 M2 M3»
M2 m3

M1 m3
m3 M3

M1 M3

M3 M4 M4 M5 M5 M1
M3 M1
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2.2.2 Memory Attributes

In addition to the ordering semantics and data dependencies, the memory attributes of 
the page that is being referenced also influence access ordering and visibility. Using 
memory attributes allows the Itanium architecture to match the performance and the 
usage model to the type of device (e.g. main memory, memory-mapped I/O device, 
frame buffer, locations with side-effects, etc.) that backs a page of memory. Typically, 
memory with side-effects is mapped uncacheable while memory without side-effects is 
mapped as write-back cacheable.

Section 4.4, “Memory Attributes” describes memory attributes in the Itanium 
architecture in greater depth.

Memory with the uncacheable UC or UCE attributes is sequential by definition. A 
processor based on the Itanium architecture ensures that accesses to sequential 
memory locations reach a peripheral domain (a platform-specific collection of 
uncacheable locations, colloquially known as “a device”) in program order with respect 
to all other accesses to sequential locations in the same peripheral domain. The 
sequential behavior of UC or UCE memory is independent of the ordering semantics 
(i.e. acquire, release, fence, or unordered) attached to the accesses.

Other observers (e.g. processors or other peripheral domains) need not see references 
to UC or UCE memory in sequential order if at all. When multiple agents are writing to 
the same device, it is up to software to synchronize the accesses to the device to 
ensure the proper interleaving.

The ordering semantics of an access to sequential memory determines how the access 
becomes visible to the peripheral domain with respect to other operations. For 
example, consider the code sequence shown in Figure 2-2.

In this code, assume that data_0 and data_1 are cacheable locations and start and 
ready are an uncacheable UC or UCE locations.

Sequentiality ensures that M3 and M4 reach the peripheral domain in program order 
(i.e. M3 before M4). Further, the release semantics on M3 ensures that it is not made 
visible to the peripheral domain until after M1 and M2 are made visible to the coherence 
domain. The M1 and M2 accesses may become visible to the coherence domains in any 
order as they both have unordered semantics. Even though the memory ordering 
semantics allow M4 to become visible before M3, the processor must make M3 visible 
before M4 because both ready and start are sequential locations.

Figure 2-2. Interaction of Ordering and Accesses to Sequential Locations

sequential_example:
st [data_0] = 0 // M1: put data in cacheable mem
st [data_1] = 0 // M2: put data in cacheable mem
st.rel [ready] = 1 // M3: tell device to get ready
st [start] = 1 // M4: tell device to start
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2.2.3 Understanding Other Ordering Models: Sequential 
Consistency and IA-32

To provide a point of reference, it is helpful to understand other memory ordering 
models. These ordering models affect not only the programmer’s view of the system, 
but also the overall system performance and design. Processors with relaxed memory 
ordering models may achieve higher performance than those with strict ordering 
models.

The most intuitive memory ordering model is “sequential consistency” (SC) which 
Lamport formally defines in [L79]. In sequential consistency, all processors see the 
memory references from a given processor in program order, and, in addition, all 
processors see the same system-wide interleaving of memory references from each 
processor.

The SC model precludes many common optimizations made in modern microprocessors 
to enhance performance. For example, in an SC system, a load may not pass a prior 
store until that store becomes globally visible (because all memory operations must 
become visible in program order). This requirement prevents the SC system from using 
a store buffer to hide the latency of store traffic by allowing loads that hit the cache to 
be serviced under a prior store that miss the cache.

To address such performance issues, many memory ordering models have been 
developed that relax the constraints of sequential consistency. Adve categorizes these 
memory models by noting how they relax the ordering requirements between reads 
and writes and if they allow writes to be read early [AG95]. The Itanium architecture 
allows for relaxed ordering between reads and writes and also allows writes to be read 
early under certain circumstances.

Aside from disallowing any relaxation of memory references, sequential consistency has 
two other subtle differences from the Itanium memory ordering model. First, it requires 
a total order of operations whereas the Itanium memory ordering model only requires a 
total order for release stores and semaphores. Second, remote processors must always 
honor data dependencies since the local processor does not have the option of 
re-ordering such accesses as can occur.

The IA-32 memory ordering relaxes write to read ordering and allows a processor to 
read its own writes before they are globally visible. Further, IA-32 allows each 
processor in the coherence domain to interleave the reference streams from other 
processors in the coherence domain in a different order. The per-processor orders must 
meet some additional constraints to ensure they are consistent with each other 
(enumerating and explaining these constraints is beyond the scope of this document). 
For more information on the IA-32 ordering model see Section 6.2.3.2, “IA-32 
Segmentation” on page 1:131.
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2.3 Where the Intel® Itanium® Architecture Requires 
Explicit Synchronization

The Itanium architecture requires a memory synchronization (sync.i) and a memory 
fence (mf) during a context switch to ensure that all memory operations prior to the 
context switch are made visible before the context changes. Without this requirement, 
the ordering constraints may be violated if the process migrates to a different 
processor. For example, consider the example shown in Figure 2-3.

.

In this example, Processor #1 may make the unordered store visible to the coherence 
domain before Processor #0 makes the acquire load visible. This violates the ordering 
constraints. Executing a memory fence during the context switch handler ensures that 
this violation can not occur.

See Section 4.5, “Context Switching” on page 2:557 on context management in a 
processor based on the Itanium architecture.

Interruptions do not affect memory ordering. On entry to an interrupt handler, memory 
operations from the interrupted program may still be in-flight and not yet visible to 
other processors in the coherence domain. A handler that expects that all memory 
operations that precede the interruption to be visible must enforce this requirement by 
executing a memory fence at the beginning of the handler.

2.4 Synchronization Code Examples

There are many synchronization primitives that software uses in multiprocessor or 
multi-threaded environments to coordinate the activities of different code streams. In 
this section, we present several typical examples to illustrate how some common 
constructs translate to the Itanium instruction set. In addition, the discussions identify 
special considerations with various implementations.

The examples use the syntax “[foo]” to indicate the memory location that holds the 
variable foo. Actual Itanium architecture-based assembly language would first move 
the address of foo into a register and then use this register as an operand to a memory 
access instruction. The alternate syntax is chosen to simplify and clarify the examples.

Figure 2-3. Why a Fence During Context Switches is Required in the Intel® 
Itanium® Architecture

// Process A begins executing on Processor #0...

ld.acq r1 = [x] // load executes on processor #0

// 1) Context switch occurs
// 2) O/S migrates Process A from Processor #0 to Processor #1
// 3) Process A resumes at the instruction following the ld.acq

st [y] = r2 // store executes on processor #1
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2.4.1 Spin Lock

Software commonly uses spin locks to guard access to a critical region of code. In these 
locks, the software “spins” while waiting for a shared lock variable to indicate that the 
critical region can be safely accessed. Typically, the lock code uses atomic operations 
such as compare and exchange or fetch and add to update the shared lock variable. 
Figure 2-4 shows a spin lock based on the cmpxchg instruction.

The spin lock code first initializes ar.ccv and a register with the values that indicate 
that the lock is available and held, respectively. A compare and exchange obtains the 
lock by exchanging lock with 1 if it currently holds 0. Next, the first loop ensures that 
the code spins in cache while the lock is held by someone else. Once this loop finds that 
the lock is available, a compare and exchange instruction attempts to obtain the lock. If 
this instruction fails (e.g. because someone else obtained the lock in the meantime), 
the code resumes spinning in the first loop.

Spinning using only the cmpxchg/cmp/br loop may generate excessive coherency traffic. 
For example, if the cmpxchg always stores to memory (even if the comparison fails) and 
the lock is highly-contested, the platform may have to generate a number of read for 
ownership transactions causing lock to move around the system. Using the first 
ld8/cmp/br loop avoids this problem by obtaining lock in a shared state. In the worst 
case, when lock is not contested, this loop adds only the overhead of the additional 
compare and branch.

The initial ld8 need not be an acquire load because of the control-flow in the spin loop: 
this load must become visible before the cmpxchg8 because the load must return data 
in order for the compare and branch to resolve. Further, the store that relinquishes the 
lock after the critical section uses release semantics to prevent memory references 
from the critical from moving after the reference that releases the lock. Finally, the 
branches use “static predict not taken” hints to optimize for the case where the lock is 
not highly contested.

Figure 2-4. Spin Lock Code

// available. If it is 1, another process is in the critical section.
//
spin_lock:

mov ar.ccv = 0 // cmpxchg looks for avail (0)
mov r2 = 1 // cmpxchg sets to held (1)

spin:
ld8 r1 = [lock] ;; // get lock in shared state
cmp.ne p1, p0 = r1, r2 // is lock held (ie, lock == 1)?

(p1) br.cond.spnt spin ;; // yes, continue spinning

cmpxchg8.acq r1 = [lock], r2, ar.ccv ;;// attempt to grab lock
cmp.ne p1, p0 = r1, r2 // was lock empty?

(p1) br.cond.spnt spin ;; // bummer, continue spinning

cs_begin:
// critical section code goes here...

cs_end:

st8.rel [lock] = r0 ;; // release the lock
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2.4.2 Simple Barrier Synchronization

A barrier is a common synchronization primitive used to hold a set of processes at a 
particular point in the program (the barrier) until all processors reach the location. 
Once all processes arrive at the barrier, they may all continue to execute. Figure 2-5 
shows a sense-reversing barrier synchronization based on the fetchadd instruction 
from Hennessy and Patterson [HP96].

This type of barrier prevents a process that races ahead to the next instance of the 
barrier from trapping other (slow) processors that are in the process of leaving the 
barrier.

The barrier code begins by atomically updating the number of processors that are 
waiting at the barrier, count, using a fetchadd instruction. For the last processor that 
reaches the barrier, the fetchadd instruction returns the same value as the total 
shared variable, which is one less than the number of processors that wait at the 
barrier. Other processors each get a unique value on the interval [0, total) based on 
the order in which they arrive at the barrier.

All processors except the last processor wait in the wait_on_others loop for the signal 
that all have arrived at the barrier. The last processor to arrive at the barrier provides 
this signal.

The signal to leave the barrier is deduced from the value of the release shared variable 
and the local_sense local variable. Upon entering the barrier, each processor 
complements the value in its private local_sense variable. Once in the barrier, all 
processors always have the same value in their local_sense variables. This variable 

Figure 2-5. Sense-reversing Barrier Synchronization Code

// The total shared variable is one less than the number of processors
// that wait at the barrier.
// The release shared variable indicates if the processor must wait at
// the barrier (initially, this variable is 0).
// local_sense is a per-processor local variable that indicates the
// "sense" of the barrier (initially, this variable is 0).

sr_barrier:
fetchadd8.acq r1 = [count], 1 // update counter
ld8 r2 = [total] // get number of procs - 1
ld8 r3 = [local_sense] ;; // get local “sense” variable
xor r3 = 1, r3 // local_sense =! local_sense
cmp.eq p1, p2 = r1, r2;; // p1 => last proc to arrive
st8 [local_sense] = r3  // save new value of local_sense

(p1) st8 [count] = r0 // last resets count to 0
(p1) st8.rel [release] = r3 ;; // last allows other to leave

wait_on_others:
(p2) ld8 r1 = [release] ;; // p2 => more procs to come
(p2) cmp.ne.and p0, p2 = r1, r3 // have all arrived yet?
(p2) br.cond.sptk wait_on_others ;; // nope, continue waiting

// This mf prevents memory operations that follow the barrier code
// from moving ahead of memory operations that precede the barrier
// code
mf ;;
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indicates the value that release must have before the processor can leave the barrier. 
The last processor to arrive at the barrier releases the other processors by setting 
release to the new local_sense value.

The mf instruction in Figure 2-5 is necessary only if the programmer wishes to ensure 
that memory operations performed before the barrier code are visible to memory 
operations performed by any processor after the barrier code.

2.4.3 Dekker’s Algorithm

Dekker’s algorithm [D65] is a common synchronization construct that arbitrates for a 
resource through the use of several shared variables that indicate which processor is 
using the resource. Each processor has its own flag variable that it shares with all other 
processors in the system. When a processor attempts to enter the critical section, it 
sets its flag to one and checks to make sure the flags for the other processors are all 
zero.

The code in Figure 2-6 illustrates the core of this algorithm for a two-way 
multiprocessor system. In this example, a processor makes a single attempt to acquire 
the resource; typically, this code would appear in a loop. Although there is an array of 
per-processor flag variables, the code uses flag_me and flag_you to indicate to the 
flag variables for the processor attempting to obtain the resource and the other remote 
processor, respectively.

Dekker’s algorithm assumes a sequential consistency ordering model. Specifically, it 
assumes that loading zero from flag_you implies that a processor’s load and stores to 
the flag variables occur before the other processor’s load and store to the flag variables. 
If this is not the case, both processors can enter the critical section at the same time.

Using unordered loads or stores to access the flag_me and flag_you variables does not 
guarantee correct behavior as the processor may re-order the accesses as it sees fit. 
Using an acquire load and release store is also not sufficient to ensure correct behavior 
because the ordering semantics always allow acquire loads to move earlier and release 
stores to move later. In the absence of the mf, it is possible for the load from flag_you 
to occur before the store to flag_me; even with acquire and release operations.

The first ld8 need not be an acquire load because of the control-flow that skips the 
critical section: this load must become visible before any memory operations in the 
critical section because the load must return data in order for the compare and branch 
to resolve.
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2.4.4 Lamport’s Algorithm

Like Dekker’s algorithm, Lamport’s algorithm [L85] also provides mutual exclusion for 
critical sections of code. Lamport’s algorithm is very simple and, in the case of 
non-contested locks, only requires two read and two write memory accesses to enter 
the critical section. The algorithm uses two shared variables, x and y, and a shared 
array, b, that identify the process entering and using the critical section. Figure 2-7 
presents Lamport’s algorithm 2 [L85].

Lamport’s algorithm expects that a processor that enters the critical section performs 
the set of operations: S = {store x, load y, store y, load x}1. To enforce this ordering, 
the Itanium architecture requires a memory fence in the middle of the {store x, load y} 
sequence and the {store y, load x} sequence. No combination of ordered semantics on 
the operations in each of these sequences will guarantee the correct ordering.

It is not possible for the store y in the second sequence to pass the load y in the first 
sequence because of the data dependency from the load y to the compare and branch. 
If the processor reaches the store y in the second sequence, the load of y from the first 
sequence must be visible. Likewise, it is not possible for memory operations in the 
critical section to move ahead of the final load x because of the data dependency 
between this load and the compare and branch that guards the critical section.

The accesses to the b array allow the algorithm to correctly handle contention for the 
lock. In such cases, the algorithm backs off and re-trys.

Figure 2-6. Dekker’s Algorithm in a 2-way System

// The flag_me variable is zero if we are not in the
// synchronization and critical section code and non-zero
// otherwise; flag_you is similarly set for the other processor.
// This algorithm does not retry access to the
// resource if there is contention.
//
dekker:

mov r1 = 1 ;; // my flag = 1 (i want access!)
st8 [flag_me] = r1
mf ;; // make st visible first
ld8 r2 = [flag_you] ;; // is other’s flag 0?
cmp.ne p1, p0 = 0, r2

(p1) br.cond.spnt cs_skip ;; // if not, resource in use

cs_begin:
// critical section code goes here...

cs_end:

cs_skip:
st8.rel [flag_me] = r0 ;; // release lock

1. There are some additional operations on the b array that are interposed in this sequence when con-
tention for the resource occurs.
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2.5 Updating Code Images

There are four general techniques for updating code images in order to modify the code 
stream of a local or remote processor.

• Self-modifying code or code that modifies its own image.

• Cross-modifying code or code that modifies the image of code running concurrently 
on another processor.

Figure 2-7. Lamport’s Algorithm

// The proc_id variable holds a unique, non-zero id for the process that
// attempts access to the critical section. x and y are the synchronization
// variables that indicate who is in the critical section and who is
// attempting entry. ptr_b_1 and ptr_b_id point at the 1’st and id’th
// element of b[].
//
lamport:

ld8 r1 = [proc_id] ;; // r1 = unique process id
start:

st8 [ptr_b_id] = r1 // b[id] = “true”
st8 [x] = r1 // x = process id
mf // MUST fence here!
ld8 r2 = [y] ;;
cmp.ne p1, p0 = 0, r2;; // if (y != 0) then...

(p1) st8 [ptr_b_id] = r0 // ... b[id] = “false”
(p1) br.cond.sptk wait_y // ... wait until y == 0

st8 [y] = r1 // y = process id
mf // MUST fence here!
ld8 r3 = [x] ;;
cmp.eq p1, p0 = r1, r3 ;; // if (x == id) then...

(p1) br.cond.sptk cs_begin // ... enter critical section

st8 [ptr_b_id] = r0 // b[id] = “false”
ld8 r3 = [ptr_b_1] // r3 = &b[1]
mov ar.lc = N-1 ;; // lc = number of processors - 1

wait_b:
ld8 r2 = [r3] ;;
cmp.ne p1, p0 = r1, r2 // if (b[j] != 0) then...

(p1) br.cond.spnt wait_b ;; // ... wait until b[j] == 0
add r3 = 8, r3 // r3 = &b[j+1]
br.cloop.sptk wait_b ;; // loop over b[j] for each j

ld8 r2 = [y] ;;
cmp.ne p1, p0 = r2, r1 ;; // if (y != id) then...

(p1) br.cond.sptk cs_begin // ... enter critical section
wait_y:

ld8 r2 = [y] ;; // wait until y == 0
cmp.ne p1, p2 = 0, r2

(p1) br.cond.spnt wait_y
br start // back to start to try again

cs_begin:
// critical section code goes here...

cs_end:

st8 [y] = r0 // release the lock
st8.rel [ptr_b_id] = r0;; // b[id] = “false”
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• Programmed I/O for paging of code pages.

• DMA for paging of code pages.

The next four sections discuss these techniques in greater depth.

To illustrate the code sequences for self- and cross-modifying code, the examples in 
this section use the syntax “st [foo] = new” to represent a group of aligned stores that 
change the instruction at address foo to the instruction “new”. The Itanium architecture 
requires that the instruction stream see aligned stores atomically. In addition, the 
syntax “fc.i foo” represents a group of flush cache instructions that ensures the cache 
line addressed by foo is coherent with all the instruction caches. Updating more than 
one instruction simply requires the appropriate store/flush “pair” for each updated 
instruction1.

2.5.1 Self-modifying Code

Figure 2-8 presents the Itanium instruction sequence necessary to update a code 
image location on the local processor only.

This code fragment changes the instruction at the address code to the new instruction 
new_inst. After executing this code, the change is visible to both the local processor’s 
caches and its pipeline.

The st instruction updates the code image and the fc.i instruction ensures the value 
stored is coherent with the instruction cache.  The fc.i is necessary because the 
Itanium architecture does not require instruction caches to be coherent with data stores 
for Itanium architecture-based code. Next, the sync.i ensures that the code update is 
visible to the instruction stream of the local processor and orders the cache flush with 
respect to subsequent operations by waiting for the prior fc.i instructions to be made 
visible. Finally, the srlz.i instruction forces the pipeline to re-initiate any instruction 
group fetches it performed after the srlz.i and also waits for the sync.i to complete; 
effectively making the pipeline coherent with the updated code image.

The serialization instruction is not necessary if software can guarantee that the 
processor encounters an event that re-initiates code fetches performed after the 
sync.i, such as an interruption or an rfi, before executing the new code. Events such 
as an interrupt or rfi both perform an instruction serialization which in this example 
waits for the sync.i to complete and then re-initiates code fetches.

1. This description hides some of the complexity involved. Specifically, the flush and store operations
have different sizes. Whereas multiple store instructions are necessary to update a 16 byte instruc-
tion, a single cache line flush invalidates at least two 16 byte instructions.

Figure 2-8. Updating a Code Image on the Local Processor

patch_local:
st [code] = new_inst // write new instruction
fc.i code ;; // flush new instruction
sync.i ;; // sync i stream with store
srlz.i ;; // serialize

// Local caches and pipeline are now coherent with new_inst...
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2.5.2 Cross-modifying Code

Consider a multi-threaded program for a multiprocessor system that dynamically 
updates some procedure that any processor in the system may execute. The program 
maintains several disjoint buffers to hold the new code and requires a processor to 
execute an IP-relative branch instruction at some address x to reach the code. In this 
scenario, the program updates the procedure by emitting the new code into a different 
buffer and then patching the branch at address x to target this new buffer. By carefully 
writing the update code, software can ensure that any processor in the system sees 
either:

• The original branch at address x that targets the original code in the old buffer 
along with the original code, or

• The new branch at address x that targets the new code in the new buffer along with 
the new code.

The code in Figure 2-9 illustrates an optimized Itanium architecture-based code 
sequence that implements the cross-modifying code for this example.

To reach the new code at new_code, the processor executes the branch instruction at x. 
Initially, this branch jumps to an address other than new_code.

Note: The programmer needs to ensure that the branch to new_code is updated atom-
ically. If an 8-byte store is used to update the branch, then the programmer 
needs to ensure that the branch to new_code is either in the first or last slot of 
the bundle.

The release store ensures a processor cannot see the new branch at address x and the 
original code at address new_code. That is, if a processor encounters “branch 
<new_code>” at address x, then the processor’s instruction cache must be coherent 
with the code image updates applied before the release store that updates the branch.

If remote processors may see either the old or new code sequence, the final three 
instructions in Figure 2-9 are not necessary. In this case, the remote processors see the 
code image updates at some point in the future. In the meantime, they continue to 
execute the old code.

Figure 2-9. Supporting Cross-modifying Code without Explicit Serialization

patch:
st [new_code] = new_inst // write new instruction
fc.i new_code ;; // flush new instruction
sync.i ;; // sync i stream with store

// Update the target of the branch that jumps to the updated code.
// This branch MUST be ip-relative. Before executing the following
// store, the branch jumps to somewhere other than “new_code”.
//

st.rel [x] = “branch <new_code>”

// If it is desired to propagate “branch <new_code>” to both
// the local processor and remote processor now, the following
// code is also necessary:
//

fc.i x ;; // flush branch
sync.i ;; // sync i stream with store
mf ;; // fence
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The release store ensures that the code image updates are made visible to the remote 
processors in the proper order (i.e. new_code is updated before the branch at address x 
is updated). Using the final three instructions ensures that the remote processors will 
see the new code the next time they execute the branch at address x.

On the local processor, the branch at address x also serves to force the pipeline to be 
coherent with the code image update the machine without requiring an interrupt, rfi 
instruction, or srlz.i instruction. Table 2-16 enumerates the potential pipeline 
behaviors to illustrate this point.

In the first and fourth scenarios, the pipeline fetches and executes either the old branch 
and old target instruction or the new branch and new target instruction. Note that if the 
pipeline sees the new branch, it must also see the new target instruction by virtue of 
the way the code in Figure 2-9 is written. Either of these behaviors is consistent.

In the second and third scenarios, the pipeline obtains a mix of the old or new branch 
and the old or new target instruction. In these cases, the pipeline must flush because 
the predicted target will not agree with the branch instruction.

This behavior is not guaranteed unless the branch at address x is IP-relative and taken. 
The branch must be IP-relative to ensure that both the instruction and target address 
can be atomically updated (this is only possible with an IP-relative branch because in 
this type of branch, the target address is part of the instruction).

2.5.3 Programmed I/O

Programmed I/O requires that the CPU copy data from the device controller to main 
memory using load instructions to read from the device and store instructions to write 
data into cacheable memory (page-in).

To ensure correct operation, Itanium architecture-based software must exercise care in 
the presence of Programmed I/O due to two features of the architecture. First, the 
Itanium architecture does not require an implementation to maintain coherency 
between local instruction and data caches for Itanium architecture-based code. Second, 
the Itanium architecture allows aggressive instruction prefetching. Specifically, an 
implementation can move any location from a cacheable page into its instruction 
cache(s) any time a translation for the location indicates that the page is present (i.e. 
the p bit of the translation is set).

A system that performs Programmed I/O can use a sequence similar to that shown in 
Figure 2-8 to perform the data movement. Figure 2-10 presents a code sequence that 
updates a code image on both the local and remote processors.

Table 2-16. Potential Pipeline Behaviors of the Branch at x from Figure 2-9

Pipeline Operation Scenario #1 Scenario #2 Scenario #3 Scenario #4

Fetch branch at x Old branch Old branch New branch New branch

Predict branch at x Old target New target Old target New target

Code at target Old instruction “New” instruction
(but could be stale)

Old instruction New instruction

Retire branch at x Old retires Must flush due to 
misprediction

Must flush due 
to misprediction

New retires
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This code fragment changes the instruction at the address code to the new instruction 
new_inst. After executing this code, the change is visible to the local and remote 
processor’s caches and to the local processor’s pipeline, but may not be visible to 
remote processor’s pipelines.

The sequence in Figure 2-10 is similar to the code from Figure 2-8 except an mf 
instruction occurs between the sync.i and srlz.i instructions. The fence is necessary 
if software must ensure that the code image update is made visible to all remote 
processors before any subsequent memory operations from the local processor. 
Although the sync.i, which orders the st/fc.i pair, has unordered semantics, it is an 
orderable operation and thus obeys the release or fence semantics of subsequent 
instructions (unlike an fc.i instruction; see Section 4.4.7, “Sequentiality Attribute and 
Ordering” for more information).

Because the pipeline is not snooped, the code in Figure 2-10 cannot ensure that a 
remote processor’s pipeline is coherent with the code image update. In the local case 
shown in Figure 2-8, the srlz.i instruction enforces this coherency. As a result, the 
remote processor must serialize its instruction stream before it executes the updated 
code in order to ensure that a stale copy of some of the updated code is not present in 
the pipeline. This can be accomplished by explicitly executing a srlz.i before 
executing the updated code or by forcing an event that re-initiates any code fetches 
performed after the fc.i is observed to occur, such as an interruption or rfi.

Several optimizations to this code are possible depending on how software uses the 
updated code. Specifically, the mf and srlz.i can be eliminated under certain 
circumstances.

The srlz.i is not necessary if the local processor that updates the code image does not 
ever execute the new code. In this case, the local processor does not require its 
pipeline to be coherent with the changes to the code image. The fence is not necessary 
if the code image update can be made visible to remote processors in any relationship 
with subsequent memory operations from the local processor.

Figure 2-10. Updating a Code Image on a Remote Processor

patch_l_and_r:
st [code] = new_inst // write new instruction
fc.i code ;; // flush new instruction
sync.i ;; // sync i stream with store

// If the local processor must ensure that remote processors see
// the preceding memory updates before any subsequent memory
// operations, the following code is also necessary.
//

mf ;; // make store visible to others

// If the local processor is going to execute the code and cannot
// cannot ensure instruction stream serialization, the following
// code is also necessary,
//

srlz.i ;; // serialize my pipeline

// Local caches and pipeline are now coherent with new_inst, remote
// caches are now coherent with new_inst...
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Finally, software may also eliminate the mf or srlz.i instructions if it guarantees that 
these operations will take place elsewhere (e.g. in the operating system) before the 
processor attempts to execute the updated code. For example, context switch routines 
must contain a memory fence (see Section 2.3 on page page 2:526). Thus, the fence is 
not required if a context switch always occurs before any program can use the updated 
code.

2.5.4 DMA

Unlike Programmed I/O, which requires intervention from the CPU to move data from 
the device to main memory, data movement in DMA occurs without help from the CPU. 
A processor based on the Itanium architecture expects the platform to maintain 
coherency for DMA traffic. That is, the platform issues snoop cycles on the bus to 
invalidate cacheable pages that a DMA access modifies. These snoop cycles invalidate 
the appropriate lines in both instruction and data caches and thus maintain coherency. 
This behavior allows an operating system to page code pages without taking explicit 
actions to ensure coherency.

Software must maintain coherency for DMA traffic through explicit action if the platform 
does not maintain coherency for this traffic. Software can provide coherency by using 
the flush cache instruction, fc, to invalidate the instruction and data cache lines that a 
DMA transfer modifies. Code such as that shown in Figure 2-8 on page 2:532 and 
Figure 2-10 on page 2:535 accomplish this task.
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Interruptions and Serialization 3

This chapter discusses the interruption and serialization model. Although the Itanium 
architecture is an explicitly parallel architecture, faults and traps are delivered in 
program order based on IP, and from left-to-right in each instruction group. In other 
words, faults and traps are reported precisely on the instruction that caused them.

3.1 Terminology

In the Itanium architecture, an interruption is an event which causes the hardware 
automatically to stop execution of the current instruction stream, and start execution at 
the instruction address corresponding to the interruption handler for that 
interruption. When this happens, we say that an interruption has been delivered to the 
processor core.

There are two classes of interruptions in the Itanium architecture. IVA-based 
interruptions are handled by the operating system (OS), at an address determined by 
the location of the interrupt vector table (IVT) and the particular interruption that has 
occurred. PAL-based interruptions are handled by the processor firmware. 
PAL-based interruptions are not visible to the OS, though PAL may notify the OS that a 
PAL-based interruption has occurred; see Section 13.3, “Event Handling in Firmware” 
on page 2:632. 

The architecture supports several different types of interruptions. These are defined 
below:

• A fault occurs when OS intervention is required before the current instruction can 
be executed. For example, if the current instruction misses the TLBs on a data 
reference, a Data TLB Miss fault may be delivered by the processor. Faults are 
delivered precisely on the instruction that caused the fault. The faulting instruction 
and all subsequent instructions do not update any architectural state (with the 
possible exception of subsequent instructions which violate a resource 
dependency1). All instructions executed prior to the faulting instruction update all 
their architectural state before the fault handler begins execution.

• A trap occurs when OS intervention is required after the current instruction has 
completed. For example, if the last instruction executed was a branch and PSR.tb is 
1, a Taken Branch trap will be delivered after the instruction completes. Traps are 
delivered precisely on the instruction following the trapping instruction. The 
trapping instruction and all prior instructions update all their architectural state 
before the trap handler begins execution. All instructions subsequent to the 
trapping instruction do not update any architectural state.1

1. When an interruption is delivered on an instruction whose instruction group contains one or more
illegal dependency violations, instructions which follow the interrupted instruction in program order
and which violate the resource dependency may appear to complete before the interruption handler
begins execution. Software cannot rely upon the value(s) written to the resource(s) whose depen-
dencies have been violated; the value(s) are undefined. For details refer to Section 3.4, “Instruction
Sequencing Considerations” on page 1:39.
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• When an external or independent agent (I/O device, timer, another processor) 
requires attention from the processor, an interrupt occurs. There are several types 
of interrupts. An initialization interrupt occurs when the processor has received an 
initialization request. A Platform Management Interrupt (PMI) can be generated 
by the platform to request features such as power management. Initialization 
interrupts and PMIs are PAL-based interruptions. An external interrupt occurs 
when an agent in the system requires the OS to perform some service on its behalf. 
External interrupts are IVA-based interruptions. Interrupts are delivered 
asynchronously with respect to program execution. The instruction upon which an 
interrupt is delivered may or may not be related to the interrupt itself. 

• An abort is generated by the processor when a malfunction (Machine Check) is 
detected, or when a processor reset occurs. Aborts are asynchronous with respect 
to program execution. If caused by a particular instruction, an abort may be 
delivered sometime after that instruction completes. Aborts are PAL-based 
interruptions.

An interruption handler returns from interruption when it executes an rfi instruction. 
The rfi instruction copies state from specific control registers known as interruption 
registers into their corresponding architectural state (e.g. IIP is copied into IP and 
execution begins at that instruction address). Whether or not the state that is restored 
by the rfi is the same state that was captured when the interruption occurred is up to 
the operating system.

3.2 Interruption Vector Table

The Interruption Vector Address (IVA) control register defines the base address of the 
interruption vector table (IVT). Each IVA-based interruption has its own architected 
offset into this table as defined in Section 5.7, “IVA-based Interruption Vectors” on 
page 2:113. For the remainder of this section, “interruption” refers to an IVA-based 
interruption, unless otherwise noted.

When an interruption occurs, the processor stops execution at the current IP, sets the 
current privilege level to 0, and begins fetching instructions from the address of the 
entry point to the interruption handler for the particular interruption that occurred. The 
address of this entry point is defined by the base address of the IVT contained in the 
IVA register and the architected offset into the table according to the interruption that 
occurred.

The IVT is 32Kbytes long and contains the code for the interruption handlers. Execution 
of the interruption handler begins at the entry point. The interruption handler may be 
contained entirely in the IVT, or the handler may branch to code outside the IVT if more 
space is needed.

When an interruption occurs, if the processor is operating with instruction address 
translation enabled (PSR.it is 1), then the address in IVA is treated as a virtual address; 
otherwise, it is treated as a physical address. Whenever an interruption may occur (i.e. 
whenever external interrupts are not masked or disabled, or whenever an instruction 
may raise a fault or trap), the software must ensure that the processor can safely 
reference the IVT. As a result, the IVT must be permanently resident in physical 
memory. If instruction address translation is enabled, the IVT must be mapped by an 
instruction translation register and must point at a valid physical page frame. When 
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instruction address translation is disabled, the IVA register should contain the physical 
address of the base of the IVT. Software must further ensure that instruction and 
memory references from low-level interruption handlers do not generate additional 
interruptions until enough state has been saved and interruption collection can be 
re-enabled. 

There are many more interruptions than there are interruption vectors in the IVT. As 
specified in Section 5.6, “Interruption Priorities” there is a many-to-one relationship 
between interruptions and interruption vectors. The interruptions that share a common 
interruption vector (and hence, the code for an interruption handler) can determine 
which interruption occurred by reading the Interruption Status Register (ISR) control 
register. See Chapter 8, “Interruption Vector Descriptions” and Chapter 9, “IA-32 
Interruption Vector Descriptions” for details of the specific ISR settings for each unique 
interruption.

3.3 Interruption Handlers

3.3.1 Execution Environment

As defined in Section 5.5, “IVA-based Interruption Handling” on page 2:101, the 
processor automatically clears the PSR.i and PSR.ic bits when an interruption is 
delivered. This disables external interrupts and interrupt state collection, respectively. 
PMI delivery is also disabled while PSR.ic is 0; other PAL-based interruptions can be 
delivered at any point during the execution of the interruption handler, regardless of the 
state of PSR.i and PSR.ic. 

In addition to clearing the PSR.i and PSR.ic bits, the processor also automatically clears 
the PSR.bn bit when an interruption is delivered, switching to bank 0 of general 
registers GR16 - GR31. This provides the interruption handler with its own set of 
registers which can be used without spilling any of the interrupted context’s register 
state, effectively saving GR16 - GR31 of the interrupted context. (This assumes PSR.bn 
is 1 at the time of interruption; see Section 3.4.3, “Nested Interruptions” on 
page 2:546 for how to deal with the case where PSR.bn is 0 at the time of interruption.)

As specified in Section 3.3.7, “Banked General Registers” on page 2:42, GR24 - GR31 
of bank 0 should not be used while PSR.ic is 1. By firmware convention, PAL-based 
interruption handlers may use these registers without preserving their values when 
PSR.ic is 1. When PSR.ic is 0, software may safely use GR24 - GR31 of bank 0 as 
scratch register.

Several other PSR bits and the RSE.CFLE are modified by the hardware when an 
interruption is delivered. Table 3-1 summarizes the execution environment that 
interruption handlers operate in, and what each PSR bit and the RSE.CFLE values mean 
for the interruption handler.
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3.3.2 Interruption Register State

The Itanium architecture provides a set of hardware registers which, if interruption 
collection is enabled, capture relevant interruption state when an interruption occurs. 
The state of the PSR.ic bit at the time of an interruption controls whether collection is 
enabled. In this section, it is assumed that interruption collection is enabled (PSR.ic is 
1); see Section 3.4.3, “Nested Interruptions” on page 2:546 for details on handling 
interruptions when collection is disabled (PSR.ic is 0). For details on collection of 
interruption resources for each interruption vector refer to Chapter 8, “Interruption 
Vector Descriptions” and Chapter 9, “IA-32 Interruption Vector Descriptions.”

Table 3-1. Interruption Handler Execution Environment (PSR and RSE.CFLE 
Settings)

PSR Bit New Value Effect on Low-level Interruption Handler

be DCR.be Byte order used by handler is determined by be-bit in DCR register.

ic & i 0 Disables interruption collection and external interrupts. Bank 0 is 
made active bank. This is discussed above

bn 0

dt, rt, it, pk unchanged Instruction/Data/RSE address translation and protection key setting 
remain unchanged.

dfl & dfh 0 Floating-point registers are made accessible. This allows handlers 
to spill FP registers without having to toggle FP disable bits first. 
Modified bits indicate which registers were touched. See 
Section 4.2.2, “Preservation of Floating-point State in the OS” on 
page 2:553 for details.

mfl, mfh unchanged

pp DCR.pp Privileged Monitoring is determined by pp-bit in DCR register. By 
default, user counters are enabled and performance monitors are 
unsecured in handlers. See Chapter 12, “Performance Monitoring 
Support” for details.

up unchanged

sp 0

di 0 Instruction set transitions are not intercepted.

si 0 Interval timer is unsecured.

ac 0 No alignment checks are performed.

db, lp, tb, ss 0 Debug breakpoints, lower-privilege interception, taken branch and 
single step trapping are disabled.

cpl 0 Current privilege level becomes most privileged.

is 0 Intel Itanium Instruction set. Handlers execute Intel Itanium 
instructions.

id, da, ia, dd, ed 0 Instruction/data debug, access bit and speculation deferral bits are 
disabled. For details, refer to Section 5.5.4, “Single Instruction Fault 
Suppression” on page 2:104 and Section 5.5.5, “Deferral of 
Speculative Load Faults” on page 2:105.

ri 0 Interrupt handler starts at first instruction is bundle.

mc unchanged Software can mask delivery of some machine check conditions by 
setting PSR.mc to 1, but the processor hardware does not set this 
bit upon delivery of an IVA-based interruption. Delivery of resets 
and BINITs cannot be masked.

RSE.CFLE
(not a PSR bit)

0 Allows interruption handler to service faults in presence of an 
incomplete current register stack frame. This can happen when a 
mandatory RSE load takes an exception during when RSE is 
servicing a register stack underflow. For details refer to Section 6.6, 
“RSE Interruptions” on page 2:144.
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A processor based on the Itanium architecture provides the following interruption 
registers for collecting information about the latest interruption or the state of the 
machine at the time of the interruption:

• IPSR – A copy of the processor status register (PSR) at the moment the 
interruption occurred. The OS can use the IPSR to determine the value of any PSR 
bit when the interruption occurred. The contents of IPSR are restored into the PSR 
when the OS executes an rfi instruction. If the OS wishes to change the PSR state 
of the interrupted process (e.g. to step over an instruction debug fault), it can do so 
by modifying the IPSR contents before executing the rfi. When an interruption 
occurs, the processor sets IPSR.ri to the slot number (0, 1, or 2) of the instruction 
that was interrupted.

• IIP – A copy of the instruction pointer (IP) where the interruption occurred. The 
instruction bundle address contained in IIP, along with the IPSR.ri field, defines the 
instruction whose execution was interrupted. This instruction has not completed 
(i.e. it has not retired), so when the OS returns to the interrupted context, typically 
this is the instruction at which execution of the interrupted context resumes1. When 
the OS executes an rfi instruction, the contents of IIP are copied into the IP 
register and the processor begins fetching instructions from this address.

• ISR – Contains extra information about the specific interruption that occurred. This 
register is useful for determining exactly which interruption occurred for 
interruptions which share the same IVT vector. 

• IFA – Faults related to addressing (e.g. Data TLB fault) materialize the faulting 
address in this register. 

• ITIR – Faults related to addressing materialize the default page size and permission 
key for the region to which the faulting address belongs in this register. 

• IIPA – Contains the instruction bundle address of the last instruction to retire 
successfully while PSR.ic was 1. In conjunction with ISR.ei, IIPA can be used by 
software to locate the instruction that caused a trap or that was executed 
successfully prior to a fault or interrupt. 

• IIM – Instructions that take a Speculation fault (e.g. chk) or a Break Instruction 
fault (e.g. break.i) write this register with their immediate field when taking these 
faults. For these cases, the IIM register can be used to emulate the instruction, or 
to pass information to the fault handler; for example, software can use a particular 
immediate field value in a break instruction to indicate to the operating system that 
a system call is being performed.

• IHA – Faults related to the VHPT place the VHPT hash address in this register. See 
Section 5.3, “Virtual Hash Page Table” on page 2:571 for details.

• IFS – This register can be used by software to save a copy of the interrupted 
context’s PFS register, but an interruption handler must do this explicitly; hardware 
only clears the valid bit (IFS.v) upon interruption. See below for details.

• IIB0, IIB1 – Contain the 16-byte instruction bundle related to the interruption. Note 
that the IIB registers do not provide bundle information for all interruptions and are 
not supported on all processor implementations; please refer to Chapter 8, 

1. When an instruction faults because it requires emulation by the OS, the OS will normally skip the
emulated instruction by returning to the instruction bundle address and slot number that follows IIP
in program order. It does so by writing the next in-order bundle address and slot number into IIP and
IPSR.ri, respectively, before executing an rfi instruction. Details on emulation handlers is in
Chapter 7, “Instruction Emulation and Other Fault Handlers.”
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“Interruption Vector Descriptions” for details. Software can use the instruction 
bundle information for debug and emulation purposes.

No other architectural state is modified when an interruption occurs. Note that only IIP, 
IPSR, ISR, and IFS are written by all interruptions (assuming PSR.ic is 1 at the time of 
interruption); the other interruption control registers are only written by certain 
interruptions, and their values are undefined otherwise. For details on which faults 
update which interruption resources refer to Chapter 8, “Interruption Vector 
Descriptions” and Chapter 9, “IA-32 Interruption Vector Descriptions.”

3.3.3 Resource Serialization of Interrupted State

As defined in Section 3.2, “Serialization” on page 2:17, Itanium control register 
updates do not take effect until software explicitly serializes the processor’s data or 
instruction stream with a srlz.d or a srlz.i instruction, respectively. Control register 
updates that change a control register’s value and that have not yet been serialized are 
termed “in-flight.” Refer to Section 3.2.3, “Definition of In-flight Resources” on 
page 2:19 for a precise definition. 

When an interruption is delivered and before execution begins in the interruption 
handler, the processor hardware automatically performs an instruction and data 
serialization on all "in-flight" resources. As described in Section 3.3.1 and Section 3.3.2 
above, the following resources determine the execution environment of the interruption 
handler:

• CR[IVA] – determines new IP

• CR[DCR].be – determines new value of PSR.be

• CR[DCR].pp – determines new value of PSR.pp

• PSR.ic – determines whether interruption collection is enabled

• RR[7:0] – determines new value of CR[ITIR] and CR[IHA]

• CR[PTA] – determines new value of CR[IHA]

Although these resources are guaranteed to be serialized prior to interruption handler 
execution, there is no guarantee that they will be serialized prior to the determination 
of the handler's execution environment. If there is a value in-flight for any of these 
resources at the time of interruption delivery, either the old or new value may be used 
to generate the values of IP, PSR, CR[ITIR] and CR[IHA] seen by the handler.

As a result, if the handler requires the latest value of the listed resources to determine 
its execution environment, software must ensure that external interrupts are disabled 
and that no instruction or data references will take an exception until the resource 
updates have been appropriately serialized. Typically, the code toggling these resources 
is mapped by an instruction translation register to avoid TLB related faults.

Note that CR[IPSR] is guaranteed to get the latest value of the PSR on an interruption, 
even if there are PSR updates in-flight that have not been previously serialized by 
software.
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For example, assume that GR2 contains the new value for IVA and that PSR.i is 1. To 
modify the IVA register, software would perform the following code sequence, where 
the code page is mapped by an instruction translation register or instruction translation 
is disabled:

rsm psr.i // external interrupts disabled upon next instruction
mov cr[iva] = r2
;;
srlz.i // writing IVA requires instruction serialization
;;
ssm psr.i // external interrupts will be re-enabled after next srlz

3.3.4 Resource Serialization upon rfi

An rfi instruction also performs an instruction and a data serialization operation when 
it is executed. Any values that were written to processor register resources by 
instructions in an earlier instruction group than the rfi will be observed by the 
returned-to instruction, except for those register resources which are also written by 
the rfi itself, in which case the value written by the rfi will be observed. This makes 
the interruption handler more efficient by avoiding additional data and instruction 
serialization operations before returning to the interrupted context. 

3.4 Interruption Handling

The Itanium architecture-based operating systems need to distinguish the following 
interruption handler types: 

• Lightweight interruptions: Lightweight interruption handlers are allocated 1024 
bytes (192 instructions) per handler in the IVT. These are discussed in 
Section 3.4.1.

• Heavyweight interruptions: Heavyweight interruption handlers are allocated only 
256 bytes (48 instructions) per handler in the IVT. These are discussed in 
Section 3.4.2.

• Nested interruptions: If an interruption is taken when PSR.ic was 0 or was in-flight, 
a nested interruption occurs. Nested interruptions are discussed in Section 3.4.3.

3.4.1 Lightweight Interruptions

Lightweight interruption handlers are allocated 1024 bytes (192 instructions) per 
handler in the IVT. Typically, lightweight handlers are written in Itanium 
architecture-based assembly code, and run in their entirety with interruption collection 
turned off (PSR.ic = 0) and external interrupts disabled (PSR.i = 0). Because these 
lightweight handlers are usually very short and performance-critical, they are intended 
to fit entirely in the space allocated to them in the IVT. An example of a lightweight 
interruption handler is the Data TLB vector (offset 0x0800). The first 20 vectors in the 
IVT, offsets 0x0000 (VHPT Translation vector) through 0x4c00 (reserved), are 
lightweight vectors. Typical lightweight handlers deal with instruction, data or VHPT TLB 
Misses, protection key miss handling, and page table dirty or access bit updates.
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A typical lightweight interruption handler can operate completely out of register bank 0. 
If the bank 0 registers provide sufficient storage for the handler, none of the interrupted 
context’s register state need be saved to memory, and the handler does not need to 
use stacked registers. Assuming no stacked registers are needed, the lightweight 
interruption handler can operate with an incomplete current register stack frame, 
obviating the need for cover and alloc instructions in the handler. This also allows the 
TLB related handlers to service TLB misses that result from mandatory RSE loads to the 
current frame.

3.4.2 Heavyweight Interruptions

Heavyweight interruption handlers are allocated only 256 bytes (48 instructions) per 
handler in the IVT. This stub provides enough space to save minimal processor state, 
re-enable interruption collection and external interrupts, and branch to another routine 
to handle the interruption. Unlike a lightweight interruption handlers described above, 
heavyweight interruption handlers use general register bank 0 only until they can 
establish a safe memory context for spilling the interrupted context’s state. This allows 
heavyweight handlers to be interruptible and to take exceptions.

A heavyweight handler stub (i.e. the portion of the handler that is located in the IVT) 
should determine exactly which type of interruption has occurred based on its offset in 
the IVT and the contents of the ISR control register. It can then branch out of the IVT to 
the actual interruption handler. For some heavyweight interruptions (e.g. Data Debug 
fault), these handlers are typically written in a high-level programming language; for 
others (e.g. emulation handlers) the interruption can be handled efficiently in Itanium 
architecture-based assembly code.

The sequence given below illustrates the steps that an Itanium architecture-based 
heavyweight handler needs to perform to save the interrupted context’s state to 
memory and to create an interruptible execution environment. These steps assume 
that the low-level kernel code, the kernel backing store, and the kernel memory stack 
are pinned in the TLB (using a translation register), so that no TLB misses arise from 
referencing those memory pages. The ordering of the steps below is approximate and 
other operating system strategies are possible.

1. Copy the interruption resources (IIP, IPSR, IIPA, ISR, IFA, IIB0-1) into bank 0 of 
the banked registers. To avoid conflicts with processor firmware, use registers 
GR24-31 for this purpose. Both register bank 0 and the interruption control 
registers are accessible, since, as described in Section 3.3.1, the processor 
hardware, upon an interruption always switches to register bank 0, and clears 
PSR.ic and PSR.i. 

2. Preserve the interrupted the predicate registers into bank 0 of the banked 
registers. 

3. Determine whether interruption occurred in the operating system kernel or in 
user space by inspecting both IPSR.cpl and the memory stack pointer (GR12). 

a. If IPSR.cpl is zero and the interrupted context was already executing on a 
kernel stack, then no memory stack switch is required.

b. Otherwise, software needs to switch to a kernel memory stack by preserving 
the interrupted memory stack pointer to a banked register in bank 0, and 
setting up a new kernel memory stack pointer in GR12.
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4. Allocate a “trap frame” to store the interrupted context’s state on the kernel 
memory stack, and move the interruption state (IIP, IPSR, IIPA, ISR, IFA, IFS, 
IIB0-1), the interrupted memory stack pointer and the interrupted predicate 
registers from the banked registers to the trap frame.

5. Save register stack and RSE state by following the steps outlined in 
Section 6.11.1, “Switch from Interrupted Context” on page 2:148.

a. If IPSR.cpl is zero and the interrupted context was not executing on a kernel 
backing store (determined by inspecting BSPSTORE), then the new kernel 
BSPSTORE needs to be allocated such that enough space is provided for the 
RSE to spill all stacked registers. The architectural required maximum RSE 
spill area is 16KBytes. As a result, BSPSTORE should be offset from the base 
of the kernel backing store base by at least 16KBytes. This offset can be 
reduced if the kernel queries PAL for the actual implementation-specific 
number of stacked physical registers (RSE.N_STACK_PHYS). Based on 
RSE.N_STACK_PHYS, the required minimum offset in bytes is:

8 * (RSE.N_STACK_PHYS + 1 + truncate((RSE.N_STACK_PHYS + 62)/63))

Otherwise, the interrupted context was already executing on the kernel backing 
store. In this case, no new BSPSTORE pointer needs to be setup. The sequence in 
Section 6.11.1, “Switch from Interrupted Context” on page 2:148, is still 
required, however, step 6 in that sequence can be omitted. 

In either case, the interrupted register stack and RSE state (RSC, PFS, IFS, 
BSPSTORE, RNAT, and BSP) needs to be preserved, and should be saved either to 
the trap frame on the kernel memory stack, or to a newly allocated register stack 
frame.

6. Switch banked register to bank one and re-enable interruption collection as 
follows:

ssm 0x2000 // Set PSR.ic
bsw.1;; // Switch to register bank 1
srlz.d // Serialize PSR.ic update

With interruptions collection re-enabled, the kernel may now branch to paged 
code and may reference paged data structures.

7. Preserve branch register and application register state according to operating 
system conventions. 

8. Preserve general and floating-point register state. If this is an involuntary 
interruption, e.g. an external interrupt or an exception, then software must save 
the interrupted context’s volatile general register state (scratch registers) to the 
“trap frame” on the kernel memory stack, or to the newly allocated register stack 
frame. If this is a voluntary system call then there is no volatile register state. 
Preserved registers may or may not be spilled depending on operating system 
conventions. Additionally, the Itanium architecture provides mechanisms to 
reduce the amount of floating-point register spills and fills. More details on 
preservation of register context are given in Section 4.2, “Preserving Register 
State in the OS” on page 2:551.

9. At this point enough context has been saved to allow complete restoration of the 
interrupted context. Re-enable taking of external interrupts using the ssm 
instruction as follows:
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ssm 0x4000 ;; // Set PSR.i

There is no need to explicitly serialize the PSR.i update, unless there is a 
requirement to force sampling of external interrupts right away. Without the 
serialization, the PSR.i update will occur at the very latest when the next 
exception causes an implicit instruction serialization to occur.

10. Dispatch interruption service routine (can be high-level programming language 
routine).

11. Return from interruption service routine.

12. Disable external interrupts as follows:

rsm 0x4000 ;; // Clear PSR.i

There is no need to explicitly serialize the PSR.i update, since clearing of the PSR.i 
bit with the rsm instruction takes effect at the next instruction group. For details 
refer to the rsm instruction page in Chapter 2, “Instruction Reference” in Volume 
3.

13. Restore general and floating-point register state saved in step 8 above.

14. Restore branch register and application register state saved in step 7 above.

15. Disable collection of interruption resources and switch banked register to bank 
zero as follows:

rsm 0x2000 // Clear PSR.ic
bsw.0;; // Switch to register bank 0
srlz.d // Serialize PSR update

16. Restore register stack and RSE state by following the steps outlined in 
Section 6.11.2, “Return to Interrupted Context” on page 2:148.

17. Restore interrupted context’s interruption state (e.g., IIP, IPSR, IFS) from the 
“trap frame” on the kernel memory stack.

18. Restore interrupted context’s memory stack pointer and predicate registers from 
the trap frame on the kernel memory stack. This step essentially deallocates the 
trap frame from the kernel memory stack.

19. Return from interruption using the rfi instruction.

Many of the steps shown above are identical for different heavyweight interruptions, so 
unless there is a specific need to create a different handler for a particular interruption, 
a common handler can be used. Because external interrupt handlers use the Itanium 
external interrupt control registers to determine the specific external interrupt vector 
that needs servicing and to mask off other external interrupt vectors, an external 
interrupt handler looks somewhat different. Refer to Section 10.4, “External Interrupt 
Delivery” on page 2:606 for details on writing external interrupt handlers.

3.4.3 Nested Interruptions

The Itanium architecture provides a single set of interruption registers whose updates 
are controlled by PSR.ic. When an IVA-based interruption is delivered and PSR.ic is 0 or 
in-flight (e.g. during a lightweight interruption handler, or at the beginning of a 
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heavyweight interruption handler), we say that a nested interruption has occurred. On 
a nested interruption (other than a Data Nested TLB fault) only ISR is updated by the 
hardware. All other interruption registers preserve their pre-interruption contents.

With the exception of the Data Nested TLB fault, the Itanium architecture does not 
support nested interruptions. Data Nested TLB faults are special and are discussed in 
Section 5.4.4, “Data Nested TLB Vector” on page 2:576. The remainder of this section 
does not apply to Data Nested TLB faults. 

When a nested interruption occurs, the processor will update ISR as defined in 
Chapter 8, “Interruption Vector Descriptions” and it will set the ISR.ni bit to 1. A value 
of 1 in ISR.ni is the only indication to an interruption handler that a nested interruption 
has occurred. Since all other interruption registers are not updated, there is generally 
no way for the OS to recover from nested interruptions; the handler for the nested 
interruption has no context other than ISR for handling the nested interruption. If a 
nested interruption is detected, it is often useful for the handler to call some function in 
the OS that logs the state of ISR, IIP, and any other relevant register state to aid in 
debugging the problem.

§
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Context Management 4

This chapter discusses specific context management considerations in the Itanium 
architecture. With 128 general registers and 128 floating-point registers, the 
architecture provides a comparatively large amount of state. This chapter discusses 
various context management and state preservation rules. This chapter introduces 
some architectural features that help an operating system limit the amount of register 
spill/fill and gives recommendations to system programmers as to how to use some of 
the instruction set features.

4.1 Preserving Register State across Procedure Calls

The Itanium Software and Runtime Architecture Conventions [SWC] define a contract 
on register preservation between procedures as follows:

• Scratch Registers (Caller Saves): GR2-3, GR8-11, GR14-GR15, and GR16-31 in 
register bank 1, FR6-15, and FR32-127. Code that expects scratch registers to hold 
their value across procedure calls is required to save and restore them.

• Preserved Registers (Callee Saves): GR4-7, FR2-5, and FR16-31. Procedures using 
these registers are required to preserve them for their callers.

• Stacked Registers: GR32-127, when allocated, are preserved by the RSE.

• Constant Register: GR0 is always 0. FR0 is always +0.0. FR1 is always +1.0.

• Special Use Registers: GR1, GR12, and GR13 have special uses.

Additional architectural register usage conventions apply to GR16-31 in register bank 0 
which are used by low-level interrupt handlers and by processor firmware. For details 
refer to Section 3.3.1.

Itanium general registers and floating-point registers contain three state components: 
their register value, their control speculative (NaT/NaTVal) state, and their data 
speculative (ALAT) state. When software saves and restores these registers, all three 
state components need to be preserved. As described in Table 4-1, software is required 
to use different state preservation methods depending on the type of register. More 
details on register preservation are provided in the next two sections.

Table 4-1. Preserving Intel® Itanium® General and Floating-point 
Registers

State Components General Registers Floating-point 
Registers

GR1-31 (static) GR32-127 (stacked) FR2-127

Register Value st8.spill & ld8.fill 
preserve register value.

RSE automatically 
preserves register value.

stf.spill & ldf.fill 
preserve register value.

Control Speculative
State (NaT/NaTVal)

st8.spill & ld8.fill 
preserve register NaT.

RSE automatically 
preserves register NaT.

stf.spill & ldf.fill 
preserve NaTVal.

Data Speculative
State (ALAT)

Software must invala.e 
a register’s ALAT state 
when restoring the register.

RSE and ALAT manage
stacked register’s ALAT 
state automatically.

Software must invala.e 
a register’s ALAT state 
when restoring the register.
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4.1.1 Preserving General Registers

The Itanium general register file is partitioned into two register sets: GR0-31 are 
termed the static general registers and GR32-127 are termed the stacked general 
registers. Typically, st8.spill and ld8.fill instructions are used to preserve the 
static GRs, and the processor’s register stack engine (RSE) automatically preserves the 
stacked GRs.

Using the st8.spill and ld8.fill instructions, the general register value and its NaT 
bit are always preserved and restored in unison. However, these instructions do not 
save and restore a register’s data speculative state in the Advanced Load Address Table 
(ALAT). To maintain the correct ALAT state, software is therefore required to explicitly 
invalidate a register’s ALAT entry using the invala.e instruction when restoring a 
general register. The Itanium calling conventions avoid such explicit ALAT invalidations 
by disallowing data speculation to preserved registers (GR4-7) across procedure calls.

Spills and fills of general registers using st8.spill and ld8.fill cause implicit 
collection and restoration of the accompanying NaT bits to/from the User NaT collection 
application register (UNAT). The UNAT register needs to be preserved by software 
explicitly. The spill and fill instructions derive the UNAT bit index of a spilled/filled NaT 
bit from the spill/fill memory address and not from the spilled/filled register index. As a 
result, software needs to ensure that the 512-byte alignment offset1 of the spill/fill 
memory address is preserved when a general register is restored. This can be an issue 
particularly for user context data structures that may be moved around in memory 
(e.g. a setjmp() jump buffer).

Unlike the st8.spill and ld8.fill instructions, the register stack engine (RSE) 
preserves not only register values and register NaT bits, but it also manages the 
stacked register’s ALAT state by invalidating ALAT that could be reused by software 
when the physical register stack wraps. This automatic management of ALAT state 
across procedure calls permits compilers to use speculative advanced loads (ld.sa) to 
perform cross-procedure call control and data speculation in stacked general registers 
(GR32-127). Whenever software changes the virtual to physical register mapping of the 
stacked registers, the ALAT needs to be invalidated explicitly using the invala 
instruction. Typically this happens during process/thread context switches or in 
longjmp() when the register stack is reloaded with a new BSPSTORE. Refer to 
Section 4.5.1.1, “Non-local Control Transfers (setjmp/longjmp)” on page 2:557.

The RSE collects the NaT bits of the stacked general registers within the RNAT 
application register and automatically saves and restores accumulated RNAT collections 
to/from fixed locations within the register stack backing store. RNAT collections are 
placed on the backing store whenever BSPSTORE bits{8:3} are all one, which results in 
one RNAT collection for every 63 registers. When software copies a backing store to a 
new location, it is required to maintain the backing store’s 512-byte alignment offset2 
to ensure that the RNAT collections get placed at the proper offset.

1. The specific requirement is that (fill_address mod 512) must be equal to (spill_address mod 512).
2. The specific requirement is that (old_bspstore mod 512) must be equal to (new_bspstore mod 512).
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4.1.2 Preserving Floating-point Registers

The Itanium architecture encodes a floating-point register’s control speculative state as 
a special unnormalized floating-point number called NaTVal. As a result, Itanium 
floating-point registers do not have a NaT bit. The architecture provides the stf.spill 
and ldf.fill instructions to save and restore floating-point register values and control 
speculative state. These instructions always generate a 16-byte memory image 
regardless of the precision of the floating-point number contained in the register. 

Preservation of data speculative state associated with floating-point registers needs to 
be managed by software. As with the general registers, software is required to explicitly 
invalidate a register’s ALAT entry using the invala.e instruction when restoring a 
floating-point register. The Itanium calling conventions avoid such explicit ALAT 
invalidations by disallowing data speculation to preserved floating-point registers 
(FR2-5, FR16-31) across procedure calls. 

4.2 Preserving Register State in the OS

The software calling conventions described in the previous section apply to state 
preservation across procedure call boundaries. When entering the operating system 
kernel either voluntarily (for a system call) or involuntarily (for handling an exception or 
an external interrupt) additional concerns arise because the interrupted user’s context 
needs to be preserved in its entirety.

The Itanium architecture defines a large register set: 128 general registers and 128 
floating-point registers account for approximately 1 KByte and 2 KBytes of state, 
respectively. The architecture provides a variety of mechanisms to reduce the amount 
of state preservation that is needed on commonly executed code paths such as system 
calls and high frequency exceptions such as TLB miss handlers.

Additionally, Itanium architecture-based operating systems have opportunities to 
reduce the amount of context they need to save by distinguishing various kernel entry 
and exit points. For instance, when entering the kernel on behalf of a voluntary system 
call, the kernel need only preserve registers as outlined by the calling conventions. 
Furthermore, the operating system can be sensitive to whether the preserved context is 
coming from the IA-32 or Itanium instruction set, especially since the IA-32 register 
context is substantially smaller than the full Itanium register set. Ideally, an Itanium 
architecture-based operating system should use a single state storage structure which 
contains a field that indicates the amount of populated state.

Table 4-2 summarizes several key operating system points at which state preservation 
is needed. 

Scratch GRs and FRs, the bulk of all state, only need to be preserved at involuntary 
interruptions resulting from unexpected external interrupts or from exceptions that 
need to call code written in a high-level programming language. The demarcation of 
floating-point registers FR32-127 as “scratch” along with architectural support for lazy 
state save/restore of the floating-point register file allows software to substantially 
reduce the overhead of preserving the scratch FRs. See Section 4.2.2 for details.
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In principal, preserved GRs and FRs need not be spilled/filled when entering the kernel. 
Whatever function is called from the low-level interruption handler or the system call 
entry point will itself observe the calling conventions and preserve the registers. The 
only occasion when preserved registers need to be spilled/filled is on a process or 
thread context switch. However, many operating systems provide get_context() 
functions that provide user context upon demand. Although such functions are called 
infrequently, many operating systems prefer to pay the penalty of spilling preserved 
registers at system call and at interruption entry points to avoid the complexity of 
piecing together user state from various potentially unknown kernel stack locations on 
demand. Fortunately, the amount of preserved Itanium general register state is 
relatively small, and the Itanium architecture provides additional mechanisms for lazy 
floating-point state management. See Section 4.2.2 for details.

Stacked GRs are managed by the register stack engine (RSE). On process/thread 
context switches the operating system is required to completely flush the register stack 
to its backing store in memory (using the flushrs instruction). In cases where the 
operating system knows that it will return to the user process along the same path, e.g. 
in system calls and exception handling code, the Itanium architecture allows operating 
systems to switch the register stack backing store without having to flush all stacked 
registers to memory. This allows such kernel entry points to switch from the user’s to 
the kernel’s backing store without causing any memory traffic, as described in the next 
section.

4.2.1 Preservation of Stacked Registers in the OS

A switch from a thread of execution into the operating system kernel, whether on 
behalf of an involuntary interruption or a voluntary system call, requires preservation of 
the stacked registers. Instead of flushing all dirty stacked register’s to memory, the RSE 
can be used to automatically preserve the stacked registers of the interrupted context. 

Table 4-2.  Register State Preservation at Different Points in the OS

Register Type Number of
Registers

System Call
(Voluntary)

Lightweight
Interrup-

tionsa

(Involuntary)

a. For details on lightweight interruption handlers refer to Section 3.4.1, “Lightweight Interruptions” on 
page 2:543.

Heavyweight
Interrup-

tionsb

(Involuntary)

b. For details on heavyweight interruption handlers refer to Section 3.4.2, “Heavyweight Interruptions” on 
page 2:544.

Process/Thread
Context Switch

(Voluntary)

Scratch GRs 23 no spill/fill 
required

Untouched
(use banked 

registers)

spill/fill 
required

no spill/fill required
(done at interruption)

Preserved GRs 4 no spill/fill 
required

Untouched
(use banked 

registers)

no spill/fill 
required

spill/fill 
required

Stacked GRs 96 Backing Store 
Switch

Untouched Backing Store 
Switch

 Synchronous 
Backing Store Switch 

using flushrsc

c. Refer to Section 6.11.3, “Synchronous Backing Store Switch” for details.

Scratch FRs 106 no spill/fill 
required

Untouched spill/fill 
required

no spill/fill required
(done at interruption)

Preserved FRs 20 no spill/fill 
required

Untouched no spill/fill 
required

spill/fill 
required
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Automatic preservation offers performance benefits: the register stack may contain 
only a handful of dirty registers, system call parameters can be passed on the register 
stack, and, upon return to the interrupted context the loadrs instruction only needs to 
restore registers that were actually spilled to memory. Since system call rates scale 
with processor performance, the RSE offers a key method for reducing the kernel’s 
execution time of a system call.

To ensure operating system integrity the RSE requires a valid backing store (i.e. one 
with a valid page mapping). The validity of the current backing store depends on the 
interrupted context. If the interrupted context is itself a kernel thread, then its backing 
store is in a known state, and no backing store switch is required (assuming that kernel 
interruptions are nested). If the interrupted context is a user process, then the backing 
store could be pointing at an invalid region of memory, and software is required to 
redirect the RSE at a kernel backing store. Section 6.11.1, “Switch from Interrupted 
Context” on page 2:148 describes the code sequence to switch the RSE backing store 
without causing memory traffic.

If the kernel redirects the backing store to a kernel memory region, then the kernel 
must restore the backing store of the interrupted context prior to resumption of the 
interrupted context. The kernel must also restore the register stack to its interrupted 
state by manually pulling the spilled registers from the backing store. The kernel uses 
the loadrs instruction to restore stacked registers from the backing store. The loadrs 
instruction requires the backing store pointer to align with any registers spilled from the 
interrupted context. Thus the kernel should have paired all function calls (br.call 
instructions) with function returns (br.ret instructions), or manually manipulated the 
kernel backing store pointer, so that all kernel contents have been removed from the 
kernel backing store prior to the loadrs. After loading the stacked registers, the kernel 
can switch to the backing store of the interrupted frame. This code sequence is 
described in Section 6.11.1, “Switch from Interrupted Context” on page 2:148.

The kernel may occasionally gather the complete interrupted user context, such as to 
satisfy a debugger request or to provide extended information to a user signal handler. 
To provide the preserved register stack contents, including NaT values, the kernel must 
extract the user context values from its backing store.

4.2.2 Preservation of Floating-point State in the OS

A full preservation of Itanium floating-point register file requires approximately 2 
KBytes of memory. To reduce the frequency of such large register spills and fills, the 
Itanium architecture offers additional mechanisms for lazy floating-point state 
management. These features allow the system programmer to eliminate many 
unnecessary floating-point state spills and fills especially around voluntary and 
involuntary entries into the kernel, e.g. around system calls, external interrupts and 
exceptions. Lazy state preservation can provide a significant reduction of memory 
traffic and hence faster interrupt handlers and system calls, especially since most 
interrupt handlers and much system code rarely perform floating-point computations. 

The 126 non-constant floating-point registers are architecturally divided into the lower 
set (FR2-31) and the higher set (FR32-127). The Itanium architecture provides two 
floating-point register set “modified” bits, PSR.mfl and PSR.mfh, which are set by 
hardware upon a write to any register in the lower and higher sets, respectively. The 
“modified” bits are accessible to a user process through the user mask. Additionally, 



2:554 Volume 2, Part 2: Context Management

two “disabled” bits, PSR.dfl and PSR.dfh, are accessible to the privileged software 
alone. Setting a “disabled” bit causes a fault into the disabled-fp vector upon first use 
(read or write) of the corresponding register set. 

As mentioned earlier, an involuntary kernel entry (e.g. interruption) needs to preserve 
all scratch floating-point registers. Instead of blindly always spilling all registers, state 
spills can be conditionalized upon the “modified” bits in the PSR. Additionally, the 
“disabled” bits allow a deferred, or lazy, approach to both spills and fills. This is 
particularly useful for “on demand” state motion in an involuntary interruption handler 
that does not use many floating-point registers. To perform deferred spills on the high 
set, the handler sets PSR.dfh immediately upon entry. Any reference to a floating-point 
register in the high set will then fault into the disabled-fp vector which spills the 
corresponding state to a prearranged store before allowing use within the handler. Lazy 
state restoration is performed in a similar manner: the handler sets the “disabled” bit 
just before exit, causing the first reference by the interrupted context to the disabled 
set to fault into the kernel’s disabled floating-point vector which can then restore the 
appropriate state. Note the importance of agreeing upon prearranged stores for 
deferred spill/fill policies and the need for a mechanism to communicate a past fill or 
spill. 

At process or thread context switches all preserved floating-point registers need to be 
context switched. The higher (scratch) set is also managed here if the context-switch 
was occasioned by an involuntary interruption (e.g. timer interrupt) which did not 
already spill the higher set. Use of the “modified” bits by the OS to determine if the 
appropriate register set is “dirty” with previously unsaved data can help avoid needless 
spills and fills. 

The “modified” bits are intentionally accessible through the user mask so that a user 
process can provide hints to the OS code about its register liveness requirements. 
Clearing PSR.mfh, for instance, suggests that the user process does not see the higher 
register set as containing useful data anymore.

4.3 Preserving ALAT Coherency

As described in Section 4.4.5.3, “Detailed Functionality of the ALAT and Related 
Instructions” on page 1:65, software is required to explicitly invalidate the entire ALAT 
using the invala instruction whenever the virtual to physical register mapping is 
changed. Typically this occurs when the clrrb instruction is used, when a synchronous 
backing store switch is performed (e.g. in a user-level or kernel thread context switch), 
or when software “discontinuously” remaps the register to backing store mapping by 
resetting BSPSTORE (e.g. by calling longjmp()). 

When returning to a user-process after servicing an involuntary interruptions, an 
Itanium architecture-based operating system is required to invalidate the entire ALAT 
using the invala instruction. This is required because the operating system may have 
targeted advanced loads at scratch registers, and thereby altered the user-visible ALAT 
state.

When returning from a system call, however, full ALAT invalidations can be avoided by 
using invala.e instructions to selectively invalidate ALAT entries of all preserved 
registers (GR4-7, FR2-5, and FR16-31), or by ensuring that these registers where 
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never accessible to software during the system call (see Section 4.2.2 for details). This 
works, because at the system call entry user-code may not have any dependencies on 
the state of the scratch registers.

4.4 System Calls

Reducing the overhead associated with system calls becomes more important as 
processor efficiency increases. As processor frequencies and pipeline lengths increase, 
the typical overhead associated with flushing the processor pipeline to effect privilege 
domain crossings is increased. To reduce system call overhead, the Itanium 
architecture provides an efficient “enter privileged code” (epc) instruction (page 3:53) 
that can be paired with the demoting branch return. Additionally, the Itanium 
architecture provides the traditional break instruction (page 3:29) to enter privileged 
mode, that is typically paired with the rfi instruction (page 3:236) to return to user 
mode.

The epc instruction offers higher efficiency than the break instruction for invoking a 
kernel system call. Whereas a break instruction will always cause a pipeline flush to 
change privilege level, the epc is designed not to. The break instruction also passes the 
system call number as a parameter, and requires a table lookup with an indirect branch 
to the system call. With the epc instruction, the user application can directly branch to 
the system call code.

More information about epc-based system calls is provided in Section 4.4.1. More 
information about break-based system calls is provided in Section 4.4.2. Regardless of 
whether the epc or break instruction are used, an Itanium architecture-based 
operating system needs to check the integrity of system call parameters. In addition to 
traditional integrity checking of the passed parameter values, the system call handler 
should inspect system call parameters for set NaT bits as described in Section 4.4.3. 

4.4.1 epc/Demoting Branch Return

To execute a system call with epc, a user system call stub branches to an execute-only 
kernel page containing the system call, using the br.call instruction. The kernel page 
executes an epc to raise the privilege level. The privilege level is raised to the privilege 
level of the page mapping corresponding to the instruction address of the epc 
instruction. The page mapping must be execute-only (see Section 4.1.1.6, “Page 
Access Rights” for details). 

After the kernel completes its system call, it returns to the user system call stub with a 
br.ret instruction. The br.ret demotes the privilege level, by restoring the privilege 
level contained within the PFS application register (PFS.ppl). To ensure operating 
system integrity epc checks that the PFS.ppl field is no greater than the PSR.cpl at the 
time the epc is executed.

As described in Section 4.2.1, interruptions and system calls in a typical Itanium 
architecture-based operating system need to switch to the kernel register stack backing 
store upon kernel entry. The epc instruction does not disable interrupts nor does it 
switch the processor to the kernel backing store. As a result, code directly following the 
epc instruction that runs at increased privilege level is still running on the caller’s 
backing store. It is recommended that software disable external interrupts right after 
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the epc until the switch to the kernel backing store has been completed. Additionally, 
low-level operating system handlers should not only use IPSR.cpl, but should also 
check BSPSTORE, to determine whether they are running on the kernel backing store 
(imagine an external interrupt being delivered on the first instruction after the epc). 

4.4.2 break/rfi

The break instruction, when issued in the i, f, and m syllables, specifies an arbitrary 
21-bit immediate value. The kernel can choose a specific break immediate value to 
differentiate system calls from other usage of the break instruction (such as debug). 
The break instruction jumps to the break fault handler, which should be a valid address 
mapping for each user application, and raises the privilege mode to the most privileged 
level. 

The system call number is an additional parameter passed to the kernel when invoking 
a system call via the break instruction. The system call number must reside in a fixed 
location. If stored within GR32, then the system call stub must rearrange its input 
parameters to map to the register stack starting at GR33. This register jostling can be 
avoided by passing the system call number through a scratch static general register or 
by using the break immediate itself. Additionally, the system call can utilize all eight 
input registers of the register stack for system call parameters.

4.4.3 NaT Checking for NaTs in System Calls

In addition to regular range/value checking on system call arguments, Itanium 
architecture-based operating systems need to additionally ensure that system call 
arguments passed in by a user application do not have any NaT bits set. The following 
code fragment can be used:

mov mask = 0xff
clrrrb
;;

// create register stack frame with only output registers for system call args
alloc tmp = ar.pfs, 0, 0, 8, 0
shl mask = mask, syscall_arg_count
;;
mov pr = mask, 0xff00 // define p8 .. p15
;;
cmp.eq p7 = r0, r0 // set p7 to true
;;

// test for NaT bits in the input arguments
(p8) cmp.eq.and p7 = r32, r32 // and type compare clears p7 if r32 is NaT
(p9) cmp.eq.and p7 = r33, r33
(p10) cmp.eq.and p7 = r34, r34
(p11) cmp.eq.and p7 = r35, r35
(p12) cmp.eq.and p7 = r36, r36
(p13) cmp.eq.and p7 = r37, r37
(p14) cmp.eq.and p7 = r38, r38
(p15) cmp.eq.and p7 = r39, r39
(p7)  br.cond.sptk ok_arguments // No NaTs found
;; 
// p7 was cleared by at least one NaT argument
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4.5 Context Switching

This section discusses context switching at the user and kernel levels.

4.5.1 User-level Context Switching

4.5.1.1 Non-local Control Transfers (setjmp/longjmp)

A non-local control transfer such as the C language setjmp()/longjmp() pair requires 
software to correctly handle the register stack and the RSE. The register stack provides 
the BSP application register which always contains the backing store address of the 
current GR32. This permits execution of a setjmp() without having to manipulate any 
register stack or RSE state. All register stack and RSE manipulation is postponed to the 
much less frequent longjmp(). 

In setjmp() only the RSC, PFS and BSP application registers have to be preserved. This 
can be accomplished by reading these registers, and without having to disable the RSE. 
The preserved values will be referred to as setjmp_rsc, setjmp_pfs, and setjmp_bsp 
further on. 

In longjmp() restoration of the appropriate register stack and RSE state is more 
involved, and software needs to take the following steps:

1. Stop RSE by setting RSC.mode bits to zero.

2. Read current BSPSTORE (referred to as current_bspstore further down).

3. Find setjmp()’s RNAT collection (rnat_value).

a. Compute the backing store location of setjmp()’s RNAT collection as follows:

rnat_collection_address{63:0} = setjmp_bsp{63:0} | 0x1F8

The RNAT location is computed by setting bits{8:3} of setjmp()’s BSP to all 
ones. This is where setjmp()’s RNAT collection will have been spilled to 
memory.

b. If (current_bspstore > rnat_collection_address), then the required 
RNAT collection has already been spilled to the backing store.

c. Otherwise if (current_bspstore <= rnat_collection_address), the 
required RNAT collection is incomplete and is still contained in the register 
stack. To materialize the complete RNAT collection, flush the register stack to 
the backing store using a flushrs instruction.

d. Finally, load rnat_value from rnat_collection_address in memory.

4. Invalidate the contents of the register stack as follows:

a. Allocate a zero size register stack frame using the alloc instruction.

b. Write RSC.loadrs field with all zeros and execute a loadrs instruction. 

c. Invalidate the ALAT using the invala instruction.

5. Restore setjmp()’s register stack and RSE state as follows:

a. Write BSPSTORE with setjmp_bsp.

b. Write RNAT with rnat_value.
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c. Write RSC with setjmp_rsc.

d. Write PFS with setjmp_bsp.

6. Restore setjmp()’s return IP into BR7.

7. Return from longjmp() into setjmp()’s caller using br.ret instruction.

4.5.1.2 User-level Co-routines

The following steps need to be taken to execute a voluntary user-level thread switch. 

1. Save all preserved register state of outgoing thread to memory stack. Refer to 
Section 4.1 for details on preservation of general and floating-point registers.

2. Preserve predicate, branch, and application registers.

3. Flush outgoing register stack to backing store, and switch to incoming thread’s 
backing store as described in Section 6.11.3, “Synchronous Backing Store 
Switch” on page 2:148. This code sequence includes ALAT invalidation.

4. Switch thread memory stack pointers.

5. Restore incoming thread’s predicate, branch, and application registers.

6. Restore incoming thread’s preserved register state.

4.5.2 Context Switching in an Operating System Kernel

4.5.2.1 Thread Switch within the Same Address Space

To switch between different threads in the same address space the following steps are 
required:

1. Application architecture state associated with each thread (GRs, FRs, PRs, BRs, 
ARs) are saved and restores as if this were a user-level coroutine. This is 
described in Section 4.5.1.2.

2. Memory Ordering: to preserve correct memory ordering semantics the context 
switch routine needs to fence all memory references and flush cache (fc, fc.i) 
operations by executing a sync.i and mf instruction. More details on memory 
ordering are given in Section 2.3.

4.5.2.2 Address Space Switching

When an operating system switches address spaces it needs to perform the same steps 
as a same address space thread switch (described in the previous section). Additionally, 
however between the saves of the outgoing and the restores of the incoming process, 
the operating system context switch handler is required to:

1. Save the contents of the protection key registers associated with the outbound 
context, and then invalidate the protection key registers.

2. Save the default control register (DCR) of the outbound context (if the DCR is 
maintained on a per-process basis).

3. Save the region registers of the outbound address space.

4. Restore the region registers of the inbound address space.
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5. Restore the default control register (DCR) of the inbound context (if the DCR is 
maintained on a per-process basis).

6. Restore the contents of the protection key registers associated with the inbound 
context.

§
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Memory Management 5

This chapter introduces various memory management mechanisms of the Itanium 
architecture: region register model, protection keys, and the virtual hash page table 
usage models are described. This chapter also discusses usage of the architecture 
translation registers and translation caches. Outlines are provided for common TLB and 
VHPT miss handlers.

5.1 Address Space Model

The Itanium architecture provides a byte-addressable 64-bit virtual address space. The 
address space is divided into 8 equally-sized sections called regions. Each region is 261 
bytes in size and is tagged with a unique region identifier (RID). As a result, the 
processor TLBs can hold translations from many different address spaces concurrently, 
and need not be flushed on address space switches. The regions provide the basic 
virtual memory architecture to support multiple address space (MAS) operating 
systems.

Additionally, each translation in the TLB contains a protection key that is matched 
against a set of software maintained protection key registers. The protection keys are 
orthogonal to the region model and allow efficient object sharing between different 
address spaces. The protection key registers provide the basic virtual memory 
architecture to support single address space (SAS) operating systems.

5.1.1 Regions 

For each of the eight regions, there is a corresponding region register (RR), which 
contains a RID for that region. The operating system is responsible for managing the 
contents of the region registers. RIDs are between 18 and 24 bits wide, depending on 
the processor implementation. This allows an Itanium architecture-based operating 
system to uniquely address up to 224 address spaces each of which can be up to 261 
bytes in virtual size. An address space is made accessible to software by loading its RID 
into one of the eight region registers.

Address Translation: The upper 3 bits of a 64-bit virtual address (bits 63:61) identify 
the region to which the address belongs; these are called the virtual region number 
(VRN) bits. When a virtual address is translated to a physical address, the VRN bits 
select a region register which provides the RID used for this translation. Each TLB entry 
contains the RID tag bits for the translation it maps; these are matched against the RID 
bits from the selected region register when the TLB is looked up during address 
translation. Address translation only succeeds if the RID and VPN bits from the virtual 
address match the RID and VPN bits from the TLB entry. Note that the VRN bits are 
used only to select the region register, are not matched against the TLB entries.

Inserting/Purging of Translations: When a translation is inserted into the processor 
TLBs (either by software, or by the processor's hardware page walker), the VRN bits of 
the virtual address translation being inserted are used only to index the corresponding 
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region register; they are not inserted into the TLB. Likewise, when software purges a 
translation from the processor's TLBs, the VRN bits of the address used for the purge 
are used only to index the corresponding region register and are not used to find a 
matching translation. Only the RID and VPN bits are used to find overlapping 
translations in the TLBs. 

The fact that the VRN bits are not contained in the processor TLB allows the same 
address space (identified by a RID) to be referenced through any of the eight region 
registers. In other words, the combination of RID and VPN establishes a unique 85-bit 
virtual address, regardless of which VRN (and region register) was used to form the 
pair. Independence of VRN allows easy creation of temporary virtual mappings of an 
address space and can accelerate cross-address space copying as described in 
Section 5.1.1.3. 

5.1.1.1 RID Management

Before a RID that has been used for one address space can be reused for another 
address space, all TLB entries relating to the first address space have to be purged. In 
general, this will require a complete flush of the TLBs of all processors in the system. 
This can be accomplished by performing an IPI to all processors and executing the ptc.e 
loop described in Section 5.2.2.2.2 on each processor in the TLB coherence domain. 

A more efficient alternative, depending on the size of the defunct address space, might 
be to perform a series of ptc.ga operations on one processor to tear down just the 
translations used by the recycled RID. Some processor implementations support an 
efficient region-wide purge page size such that this can be accomplished with a single 
ptc.ga operation.

The frequency of these global TLB flushes can be reduced by using a RID allocation 
strategy that maximizes the time between use and reuse of a RID. For example, RIDs 
could be assigned by using a counter that is as wide as the number of implemented RID 
bits and that is incremented after every assignment. Only when the RID counter wraps 
around it is necessary to do a global TLB flush. After the flush the operating system can 
either remember the in-use RIDs or it can re-assign new RIDs to all currently active 
address spaces.

5.1.1.2 Multiple Address Space Operating Systems

Multiple address space (MAS) operating systems provide a separate address space for 
each process. Typically, only when a process is running is its address space visible to 
software.

The application view of the virtual address space in the MAS OS model is a contiguous 
64-bit address space, though normally not all of this virtual address space is accessible 
by the application. At least one of the 8 regions must be used to map the OS itself so 
that the OS can handle interruptions and system services invoked by the application.

The OS chooses a region ID and a region (e.g. region 7) into which to map itself during 
the boot process and usually does not change this mapping after enabling address 
translation. The other seven regions may be used to map process-private code and 
data; code and data that are shared amongst multiple processes; to map large files; 
temporary mappings to allow efficient cross-address space copies (see 
Section 5.1.1.3); and, for operating systems which use it, the long format VHPT. 
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In a MAS OS, the RID bits act as an address space identifier or tag. For each 
process-private region, a unique RID is assigned to that process by the OS. If a process 
needs multiple process-private regions (e.g. the process requires a private 64-bit 
address space), the OS assigns multiple unique RIDs for each such region. Because 
each translation in the processor's TLBs is tagged with its RID, the TLBs may contain 
translations from many different address spaces (RIDs) concurrently. This obviates the 
need for the OS to purge the processor's TLBs upon an address space switch. When the 
OS performs a context switch from process A to process B, the OS need only remove 
process A's private RIDs from the CPU's region registers and replace them with process 
B's private RIDs. 

5.1.1.3 Cross-address Space Copies in a MAS OS

The use of regions, region registers, and RIDs provides a mechanism for efficient 
address space-to-address space copies. Because translations are tied to RIDs and not 
to a particular static region, a MAS OS can easily copy a memory range from one 
address space to another by temporarily remapping the target memory location to 
another region. This remapping is accomplished simply by placing the RID to which the 
target location belongs into a different region register and then performing the copy 
from source to target directly.

For example, assume a MAS OS wishes to copy and 8-byte buffer from virtual address 
0x0000000000A00000 of the currently executing process (process A) to virtual address 
0x0000000000A00000 of another process (process B):

movl r2 = (2 << 61)
mov r3 = process_b_rid
movl r4 = 0x0000000000A00000
movl r5 = 0x4000000000A00000;;; // reference process B through RR[2]
mov rr[r2] = r3 ;; // put process B RID into RR[2]
srlz.d // serialize RR write

copyloop:
ld8 r6 = [r4] ;; // read buffer from process A addr space
st8 [r5] = r6 // store buffer into process B addr 

space
(p4)br copyloop // loop until done

mov r3 = original_rr2_rid ;;
mov rr[r2] = r3 ;; // restore RR[2] RID
srlz.d // serialize RR write

When the OS switches to process B and places process B’s RID into RR[0] and resumes 
execution of process B, the process can reference the message via virtual address 
0x0000000000A00000. Note that no new translations need to be created to make the 
sequence shown above work; because translations are tagged by RID and not by 
region, all existing translations for process B’s address space are visible regardless of 
which region the reference is made to, as long as the region register for that region 
contains the correct process B RID. Note that the sequence shown above is intended for 
illustrative purposes only; the OS may need to perform other steps as well to perform a 
cross-address space copy.
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5.1.2 Protection Keys

The Itanium architecture provides two mechanisms for applying protection to pages. 
The first mechanism is the access rights bits associated with each translation. These 
bits provide privilege level-granular access to a page. The second mechanism is the 
protection keys. Protection keys permit domain-granular access to a page. These are 
especially useful for mapping shared code and data segments in a globally shared 
region, and for implementing domains in a single address space (SAS) operating 
system.

Protection key checking is enabled via the PSR.pk bit. When PSR.pk is 1, instruction, 
data, and RSE references go through protection key access checks during the 
virtual-to-physical address translation process.

All processors based on the Itanium architecture implement at least 16 protection key 
registers (PKRs) in a protection key register cache. The OS is responsible for 
maintaining this cache and keeping track of which protection keys are present in the 
cache at any given time.

Each protection key register contains the following fields:

• v – valid bit. When 1, this register contains a valid key, and is checked during 
address translation whenever protection keys are enabled (PSR.pk is 1).

• wd – write disable. When 1, write permission is denied to translations which match 
this protection key, even if the data TLB access rights permit the write.

• rd – read disable. When 1, read permission is denied to translations which match 
this protection key, even if the data TLB access rights permit the read.

• xd – execute disable. When 1, execute permission is denied to translations which 
match this protection key, even if the instruction TLB access rights give execute 
permission.

• key – protection key. An 18- to 24-bit (depending on the processor 
implementation) unique key which tags a translation to a particular protection 
domain.

When protection key checking is enabled, the protection key tagged to a referenced 
translation is checked against all protection keys found in the protection key register 
cache. If a match is found, the protection rights specified by that key are applied to the 
translation. If the access being performed is allowed by the matching key, the access 
succeeds. If the access being performed is not allowed by the matching key (e.g. 
instruction fetch to a translation tagged with a key marked ‘xd’), a Protection Key 
Permission fault is raised by the processor. The OS may then decide whether to 
terminate the offending program or grant it the requested access.

If no match is found, a Protection Key Miss fault is raised by the processor, and the OS 
must insert the correct protection key into the PKRs and retry the access.

Protection keys can be used to provide different access rights to shared translations to 
each process. For example, assume a shared data page is tagged with a protection key 
number of 0xA. Two processes share this data page: one is the producer of the data on 
this page, and the other is only a consumer. When the producer process is running, the 
OS will insert a valid PKR with the protection key 0xA and the ‘wd’ and ‘rd’ bits cleared, 
to allow this process to both read and write this page. When the consumer process is 
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running, the OS will insert a valid PKR with the protection key 0xA and the ‘rd’ bit 
cleared, to allow this process to read from the page. However, the ‘wd’ bit for this PKR 
will be set when the consumer process is running to prevent it from writing the page.

The processor hardware has no notion of which protection keys belong to which 
process. The only check the hardware performs is to compare the protection key from 
the translation to any valid protection keys in the PKR cache. On a context switch, the 
OS must purge any valid protection keys from the PKRs which would provide access 
rights to the switched-to context that are not allowed. The OS may purge an existing 
PKR by performing a move to PKR instruction with the same key as the existing PKR, 
but with the PKR valid bit set to 0.

Protection keys can be read from the processor’s data TLBs via the tak instruction. 
However, instruction TLB key values cannot be read directly. Software must keep track 
of these values in its own data structures.

5.1.2.1 Single Address Space Operating Systems

Processes in a single address space (SAS) OS all cohabit a global address space. SAS 
operating systems running on a processor based on the Itanium architecture can view 
the RID bits as effectively extending the single virtual address space to between 79 and 
85 bits (depending on the number of RID bits implemented by the processor). This 
address space is then divided into between 218 and 224 61-bit regions, up to eight of 
which may be accessed concurrently. 

Note that there is no “SAS OS” or “MAS OS” mode in the Itanium architecture. The 
processor behavior is the same, regardless of the address space model used by the OS. 
The difference between a SAS OS and a MAS OS is one of OS policy: specifically how 
the RIDs and protection keys are managed by the OS, and whether different processes 
are permitted to share RIDs for their private code and data. Multiple, unrelated 
processes in a SAS OS may share the same RID for their private pages; it is the 
responsibility of the OS to use protection keys and the protection key registers (PKRs) 
to enforce protection. In a MAS OS, the unique per-process RIDs enforce this 
protection. 

Hybrid SAS/MAS models that combine unique RIDs for process-private regions and 
shared RIDs with protection keys for per-page memory protection in shared regions are 
also possible. 

5.2 Translation Lookaside Buffers (TLBs)

All processors based on the Itanium architecture implement one or more translation 
lookaside buffers (TLBs) for fast virtual-to-physical address translation. The 
architecture provides instructions for managing instruction and data TLBs as separate 
structures.

Both the instruction and data TLBs are further divided into a set of translation registers 
(TRs), which are managed exclusively by software and are “locked down” to pin critical 
address translations (e.g. kernel memory); and a set of translation cache entries (TCs), 
which can be managed by both software and the processor hardware. The TRs are 
divided into slots, each of which are individually addressable on insertion by software. 
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The TCs are treated as a set associative cache and are not addressable by software. 
The TC replacement policy is determined by software. All processor models implement 
at least 8 instruction and 8 data TRs, and at least 1 instruction and 1 data TC entry.

Software inserts translations into the TLBs via insertion instructions. There are four 
variants of insertion instructions. itr.i and itr.d insert a translation into the 
specified instruction or data TR slot, respectively. itc.i and itc.d insert a translation 
into a hardware-selected instruction or data TC entry, respectively. 

Software TR purge instructions also distinguish between the instruction and data TRs 
(ptr.i, ptr.d). TC purge instructions do not.

5.2.1 Translation Registers (TRs)

Once a translation is inserted by software into a TR, it remains in that TR until either 
the translation is overwritten by software, or the translation is purged. TRs are used by 
the OS to pin critical address translations; all memory references made to a TR 
translation will always hit the TLB and will never cause the processor's hardware page 
walker to walk the VHPT or raise a fault. Examples of memory areas that the OS might 
cover with one or more TRs are the Interruption Vector Table, critical interruption 
handlers not contained completely in the Interruption Vector Table, the root-level page 
table entries, the long format VHPT, and any other non-pageable kernel memory areas. 

Two address translations are said to overlap when one or more virtual addresses are 
mapped by both translations. Software must ensure that translations in an instruction 
TR never overlap other instruction TR or TC translations; likewise, software must 
ensure that translations in a data TR never overlap other data TR or TC translations. If 
an overlap is created, the processor will raise a Machine Check Abort.

The processor hardware will never overwrite or purge a valid TR. TRs that are currently 
unused may be used by the processor hardware as extra TC entries, but if software 
subsequently inserts a translation into an unused a TR, the TC translation will be 
purged when the insertion is executed.

5.2.1.1 TR Insertion

To insert a translation into a TR, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of 
PSR.ic is observed.

2. Place the base virtual address of the translation into the IFA control register.1

3. Place the page size of the translation into the ps field of the ITIR control register. 
If protection key checking is enabled, also place the appropriate translation key 
into the key field of the ITIR control register. See below for an explanation of 
protection keys.

4. Place the slot number of the instruction or data TR into which the translation is be 
inserted into a general register.

5. Place the base physical address of the translation into another general register.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along
with the rest of the translation. See Section 5.1.1 for details.
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6. Using the general registers from steps 4 and 5, execute the itr.i or itr.d 
instruction.

A data or instruction serialization operation must be performed after the insert (for 
itr.d or itr.i, respectively) before the inserted translation can be referenced.

Software may insert a new translation into a TR slot already occupied by another valid 
translation. However, software must perform a TR purge to ensure that the overwritten 
translation is no longer present in any of the processor's TLB structures.

Instruction TR inserts will purge any instruction TC entries which overlap the inserted 
translation, and may purge any data TC entries which overlap it. Data TR inserts will 
purge any data TC entries which overlap the inserted translation and may purge any 
instruction TC entries which overlap it.

Software may insert the same (or overlapping) translation into both the instruction TRs 
and the data TRs. This may be desirable for locked pages which contain both code and 
data, for example.

5.2.1.2 TR Purge

To purge a TR from the TLBs, software performs the following steps:

1. Place the base virtual address of the translation to be purged into a general 
register.1

2. Place the address range in bytes of the purge into bits {7:2} of a second general 
register.

3. Using these two GRs, execute the ptr.d or ptr.i instruction.

A data or instruction serialization operation must be performed after the purge (for 
ptr.d or ptr.i, respectively) before the translation is guaranteed to be purged from 
the processor's TLBs.

Note: The TR purge instruction operates independently of the slot into which the 
translation was originally inserted.

A ptr.d instruction will never purge an overlapping translation in an instruction TR, but 
may purge an overlapping translation in an instruction TC; likewise, a ptr.i instruction 
will never purge an overlapping translation in a data TR, but may purge an overlapping 
translation in a data TC.

A TR purge does not modify the page tables nor any other memory location, nor does it 
affect the TLB state of any processor other than the one on which it is executed.

5.2.2 Translation Caches (TCs)

The TC array acts as a cache of the dynamic working set for data and instruction 
translations. It is managed by software (via itc and ptc instructions) and, optionally 
by hardware, if the processor provides a hardware page walker (HPW) and the walker is 
enabled. See Section 5.3 below.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are used as part of
the translation to be purged. See Section 5.1.1 for details.
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The size, associativity, and replacement policy of the TC array are 
implementation-dependent. With the exception of the forward progress rules defined in 
Section 4.1.1.2, “Translation Cache (TC)” on page 2:49, software cannot depend on the 
existence or life-span of a TC translation, as a TC entry may be replaced or invalidated 
by the hardware at any time.

5.2.2.1 TC Insertion

To insert a TC entry, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of 
PSR.ic is observed.

2. Place the base virtual address of the translation into the IFA control register.1

3. Place the page size of the translation into the ps field of the ITIR control register. 
If protection key checking is enabled, also place the appropriate translation key 
into the key field of the ITIR control register. See below for an explanation of 
protection keys.

4. Place the base physical address of the translation into a general register.

5. Using the general register from step 4, execute the itc.i or itc.d instruction.

A data or instruction serialization operation must be performed after the insert (for 
itc.d or itc.i, respectively) before the inserted translation can be referenced.

Instruction TC inserts always purge overlapping instruction TCs and may purge 
overlapping data TCs. Likewise, data TC inserts always purge overlapping data TCs and 
may purge overlapping instruction TCs.

5.2.2.2 TC Purge

There are several types of TC purge instructions. Unlike the other TLB management 
instructions, the TC purge instructions do not distinguish between instruction and data 
translations; they will purge any matching translations in either the data or instruction 
TC arrays.

5.2.2.2.1 ptc.l

The most basic TC purge is the local TC purge instruction (ptc.l). To purge a TC from 
the local processor TLBs, software performs the following steps:

1. Place the base virtual address of the translation to be purged into a general 
register.2

2. Place the address range in bytes of the purge into bits {7:2} of a second general 
register.

3. Using these two GRs, execute the ptc.l instruction.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along
with the rest of the translation. See Section 5.1.1 for details.

2. The upper 3 bits (VRN) of this address specify a region register whose contents are used as part of
the translation to be purged. See Section 5.1.1 for details.
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A data or instruction serialization operation must be performed after the ptc.l before 
the translation is guaranteed to be no longer visible to the local data or instruction 
stream, respectively.

The ptc.l instruction does not modify the page tables nor any other memory location, 
nor does it affect the TLB state of any processor other than the one on which it is 
executed.

The ptc.l instruction ensures that all prior stores are made locally visible before the 
actual purge operation is performed. Consider the following code sequence:

st8 [VHPT] = <new_translation>
ptc.l <old_translation>
srlz.i

The ptc.l instruction will purge the translation only after the local store update is seen. 
If there was a hardware-initiated VHPT walk for the same translation, it would either 
insert the old_translation in the TLB before the ptc.l executes and then get purged by 
the ptc.l, or insert the new_translation after both the local store update and ptc.l 
purge are complete.

5.2.2.2.2 ptc.e

To purge all TC entries from the local processor’s TLBs, software uses a series of ptc.e 
instructions. Software must call the PAL_PTCE_INFO PAL routine at boot time to 
determine the parameters needed to use the ptc.e instruction. Specifically, 
PAL_PTCE_INFO returns:

• tc_base – an unsigned 64-bit integer denoting the beginning address to be used by 
the first ptc.e instruction in the purge loop.

• tc_counts – two unsigned 32-bit integers packed into a 64-bit parameter denoting 
the loop counts of the outer and inner purge loops. count1 (outer loop) is contained 
in bits {63:32} of the parameter, and count2 (inner loop) is contained in bits 
{31:0} of the parameter.

• tc_strides – two unsigned 32-bit integers packed into a 64-bit parameter denoting 
the loop stride of the outer and inner purge loops. stride1 (outer loop) is contained 
in bits {63:32} of the parameter, and stride2 (inner loop) is contained in bits 
{31:0} of the parameter.

Software then executes the following sequence:
disable_interrupts();
addr = tc_base;
for (i = 0; i < count1; i++) {

for (j = 0; j < count2; j++) {
ptc.e addr;
addr += stride2;

}
addr += stride1;

}
enable_interrupts();

A data or instruction serialization operation must be performed after the sequence 
shown above before the translations are guaranteed to be no longer visible to the local 
data or instruction stream, respectively.

The ptc.e instruction does not modify the page tables nor any other memory location, 
nor does it affect the TLB state of any processor other than the one on which it is 
executed.
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5.2.2.2.3 ptc.g, ptc.ga

The Itanium architecture supports efficient global TLB shootdowns via the ptc.g and 
ptc.ga instructions. These instructions obviate the need for performing inter-processor 
interrupts to maintain TLB coherence in a multiprocessor system. A TLB coherence 
domain is defined as a group of processors in a multiprocessor system which maintain 
TLB coherence via hardware.

For the remainder of this section, ptc.g refers to both the ptc.g and ptc.ga 
instructions, except where otherwise noted.

The number of ptc.g operations that can be in progress at any time is implementation 
dependent, and can be determined from the max_purges return parameter of 
PAL_VM_SUMMARY. Attempting to execute more than the maximum allowed number of 
simultaneous ptc.g purges will have undefined effects, including possibly raising a 
Machine Check Abort on one or more processors. Software should implement some 
semaphoring mechanism to ensure that not more than the maximum ptc.g purges 
allowed are in flight at any one time.

A ptc.g instruction is a release operation; all memory references that precede a ptc.g 
in program order are made visible to all other processors before the ptc.g is made 
visible. To guarantee visibility of the ptc.g prior to a particular point in program 
execution, software must use another release operation or a memory fence.

To purge a translation from all TLBs in the coherence domain, software performs the 
following steps:

1. Acquire the semaphore.

2. Place the base virtual address of the translation to be purged into a general 
register.

3. Place the address range in bytes of the purge into bits {7:2} of a second general 
register.

4. Using these two GRs, execute the ptc.g instruction. Note that the ptc.g 
instruction must be followed by a stop.

5. Release the semaphore.

Global purges can be batched together by performing multiple ptc.g instructions prior 
to releasing the lock.

A data or instruction serialization operation must be performed after the sequence 
shown above before the translations are guaranteed to be no longer visible to the local 
data or instruction stream, respectively. To guarantee the translations are no longer 
visible on remote processors, a release operation or memory fence instruction is 
required after the ptc.g instruction.

The ptc.g instruction does not modify the page tables nor any other memory location. 
It affects both the local and all remote TC entries in the TLB coherence domain. It does 
not remove translations from either local or remote TR entries. If a ptc.g overlaps a 
translation contained in a TR on the local processor, the local processor will raise a 
Machine Check Abort; if the ptc.g overlaps a translation contained in a TR on any 
remote processor in the coherence domain, no Machine Check Abort is raised.
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The ptc.ga variant of the global purge instruction behaves just like the ptc.g variant, 
but it also removes any ALAT entries which fall into the address range specified by the 
global shootdown from all remote processors’ ALATs. The ptc.ga variant is intended to 
be used whenever a translation is remapped to a different physical address to ensure 
that any stale ALAT entries are invalidated. Note that the ptc.ga is not guaranteed to 
affect the issuing processor's ALAT; processor implementations may optionally remove 
matching entries from the local ALAT, therefore software must perform a local ALAT 
invalidation via the invala instruction on the processor issuing the ptc.ga to ensure 
the local ALAT is coherent.

Note that processors based on the Itanium architecture may support one or more 
implementation-dependent purge sizes; some implementations may include a 
region-wide purge. The PAL_VM_PAGE_SIZE firmware call returns the supported page 
sizes for purges for a particular processor implementation. Refer to Section 11.10.1, 
“PAL Procedure Summary” for details. When software wishes to purge an address range 
that is much larger than the largest supported purge size from all TCs in the coherence 
domain, performance may be enhanced by issuing inter-processor interrupts to all 
processors and using the ptc.e loop described in Section 5.2.2.2.2 on each processor, 
instead of issuing many ptc.g instructions from one processor.

ptc.g instructions do not apply to processors outside the coherence domain of the 
processor issuing the ptc.g instruction. Systems with multiple coherence domains must 
use a platform-specific method for maintaining TLB coherence across coherence 
domains.

5.3 Virtual Hash Page Table

The Itanium architecture defines a data structure that allows for the insertion of TLB 
entries by a hardware mechanism. The data structure is called the “virtual hash page 
table” (VHPT) and the hardware mechanism is called the VHPT walker.

Unlike the IA-32 page tables, the Itanium VHPT itself is virtually mapped, i.e. VHPT 
walker references can take TLB faults themselves. Virtual mapping of the page tables is 
needed because the page tables for 264 address space are quite large and typically do 
not fit into physical memory. 

The Itanium architecture prescribes the format of a leaf-node page table entry (PTE) 
seen by the VHPT walker, but does not impose an OS page table data structure itself. As 
summarized in Table 5-1, the architecture support two different VHPT formats:

• Short format uses 8-byte PTEs, and is a linear page table. The short format VHPT 
does not contain protection key information (there are not enough PTE bits for 
that). Short format is a per-region linear page table, i.e. the PTEs and hash function 
are independent of the RID. The short format prefers use of a self-mapped page 
table. The short format VHPT is an efficient representation for address spaces that 
contain only a few large clusters of pages, like the text, data, and stack segments 
of applications running on a MAS operating system. 

• Long format uses 32-byte PTEs, and is a hashed page table. The hash function 
embedded in hardware. The long format supports protection keys and the use of 
multiple page sizes in a region. The long format hash and tag functions incorporate 
the RID, and allows multiple address space translations to be present in the same 
VHPT. The long format is expected to be used either as a cache of the real OS page 
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tables, or as a primary page table with collision chains. The long format VHPT is a 
much better representation for address spaces that are sparsely populated, since 
the short format VHPT has a linear layout and would consume a large amount of 
memory. Single address space operating systems may prefer the long format VHPT 
for this reason.

5.3.1 Short Format

The short format VHPT is a per-region linear table that contains translation entries for 
every page in the region’s virtual address space. This makes the VHPT very large, but 
since the VHPT itself lives in virtual address space only those parts of the VHPT that 
actually contain valid translation entries have to be present in physical memory. If the 
operating system’s page table is a hierarchical data structure and the last level of the 
hierarchy is a linear list of translations, the VHPT can be mapped directly onto the page 
table as shown in Figure 5-1.

If the VHPT walker tries to access a location in the VHPT for which no translation is 
present in the TLB, a VHPT Translation fault is raised. The original address for which the 
VHPT walker was trying to find an entry in the VHPT is supplied to the fault handler in 
the IFA register. The fault handler can use this address to traverse the page table and 
insert a translation into the TLB that maps the address the VHPT walker tried to access 
(in IHA) to the page that contains the corresponding leaf page table.

Table 5-1. Comparison of VHPT Formats

Attribute Short Format Long Format

Entry Size 8 Byte 32 Byte

Lookup Linear Hashed

Protection Keys No Yes

Page Size per region per entry

Figure 5-1. Self-mapped Page Table

PTA

. . .

. . . . . .

. . .. . .. . .

Page Table
VHPT

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E



Volume 2, Part 2: Memory Management 2:573

5.3.2 Long Format

The long format VHPT is organized as a hash table which contains a subset of all 
translation entries. The long format VHPT entries contain a 8-byte field that is ignored 
by the VHPT walker and can be used by the operating system to link VHPT entries to 
software-walkable hash collision chains if it uses the VHPT as its primary page table. 
The size of the long format VHPT is usually kept small enough to keep a mapping for it 
in one of the translation registers (TRs), so it is not necessary to handle VHPT 
translation faults.

The long format hash algorithm is based on the per-region preferred page size, but a 
translation for a larger page can still be entered into the VHPT by subdividing the large 
page into multiple smaller pages with the preferred page size and placing an entry for 
the large page at all VHPT locations that correspond to the smaller pages.

5.3.3 VHPT Updates

Visibility of VHPT updates to a VHPT walker on another processor follows the rules 
outlined in Section 4.1.7, “VHPT Environment” on page 2:67. Since a global TLB purge 
has release semantics, prior modifications to the VHPT will be visible to operations that 
occur after the TLB purge operation.

Atomic updates to short format VHPT entries can easily be done through 8-byte stores. 
For atomic updates of long format VHPT entries, the “ti” flag in bit 63 of the tag field 
can be utilized as follows:

• Set the “ti” bit to 1.

• Issue a memory fence.

• Update the entry.

• Clear the “ti” bit through a store with release semantics.

5.4 TLB Miss Handlers

The Itanium architecture enables lightweight TLB fault handlers by providing individual 
entry points for different excepting conditions and by pre-setting the translation 
insertion registers for the various types of TLB faults. The following subsections list the 
typical steps for resolving each kind of fault.

5.4.1 Data/Instruction TLB Miss Vectors

These faults occur when the data or instruction TLB required for a data access or 
instruction fetch is not found in the processor TLBs, the VHPT walker is enabled, and:

• Either the VHPT walker aborted the walk (for any reason and at any time), or

• The VHPT walker found the translation but the insert failed (due to tag mismatch in 
the long format or badly formed PTE), or

• The walker is not implemented on this processor.

There is a separate vector for each fault type (data and instruction).
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Since the VHPT walker may abort a walk at any time and raise these faults, software 
must always be able to handle all TLB faults, even when the VHPT walker is enabled. 
Upon entry to these fault handlers, the IHA, ITIR, and IFA control registers are 
initialized by the hardware as follows:

• IHA – contains the virtual address of the hashed page table address corresponding 
to the reference which raised the fault.

• ITIR – contains the default translation information for the reference which raised 
the fault (i.e. for the virtual address contained in IFA). The access key field is set to 
the region ID from the RR corresponding to the faulting address. The page size field 
is set to the preferred page size (RR.ps) from the RR corresponding to the faulting 
address.

• IFA – the virtual address of the bundle (for instruction faults) or data reference (for 
data faults) which missed the TLB.

The fault handler for a short format VHPT performs the following steps, at a minimum, 
to handle the fault:

1. Move IHA into a general register, chosen by convention to match the register 
expected by the nested TLB fault handler.

2. Perform an 8-byte load into another general register from the address contained 
in this general register to grab the VHPT entry. Note that the format of these first 
8 bytes is identical to the format required for TLB insertion. If the VHPT is not 
mapped by a TR, software must be prepared to handle a nested TLB fault when 
performing this load.

3. Using the general register from step 2 that holds the contents of the VHPT entry, 
perform a TC insert (itc.i for instruction faults, itc.d for data faults).

4. In an MP environment, reload the VHPT entry from step 2 into a third general 
register and compare the value to the one loaded in step 2. If the values are not 
the same, then the VHPT has been modified by another processor between steps 
2 and 3, and the entry will have to be re-inserted. In this case, purge the entry 
just inserted using a ptc.l instruction. The fault will re-occur after the rfi in 
step 5 (unless the VHPT walker succeeds on the next TLB miss) and the fault 
handler will re-attempt the insertion. (Uniprocessor environments may skip this 
step.)

5. rfi.

For a long format VHPT, additional steps are required to load bytes 16-23 of the VHPT 
entry and check for the correct tag (the correct tag for the reference can be generated 
using the ttag instruction). If the tags do not match, this indicates a VHPT collision, and 
the handler must proceed to walk the operating system’s collision chain manually to 
find the correct entry. The handler may then choose to swap places between the correct 
entry and the VHPT entry. Note that the pointers for a collision chain can be stored in 
bytes 24-31 of the VHPT entry format since these bytes are ignored by the VHPT 
walker.

If the default page size and key are not sufficient, the handler must also perform 
additional steps to load the correct page size and key into the ITIR register before 
performing the TC insert in step 3 of the sequence shown above.



Volume 2, Part 2: Memory Management 2:575

5.4.2 VHPT Translation Vector

Processors based on the Itanium architecture does not perform recursive TLB hardware 
page walks. Since the VHPT is itself a virtually addressed structure, each reference 
performed by the walker itself goes through the TLBs and may miss. These faults are 
raised when the VHPT walker is enabled, but the walker misses the TLBs when 
attempting to service a TLB miss caused by the program. 

There is a separate vector for each fault type (data and instruction).

Upon entry to this fault handler, the IHA, IFA, and ITIR control registers are initialized 
by the hardware as follows:

• IHA – contains the virtual address of the hashed page table address corresponding 
to the reference which raised the fault.

• ITIR – contains the default translation information for the VHPT address which 
missed the TLBs (i.e. for the virtual address contained in IHA). The access key field 
is set to the region ID from the RR corresponding to the VHPT address. The page 
size field is set to the preferred page size (RR.ps) from the RR corresponding to the 
VHPT address.

• IFA – contains the original faulting address that the VHPT walker was attempting to 
resolve.

The fault handler for a short format VHPT performs the following steps, at a minimum, 
to handle the fault:

1. Move the IHA register into a general register.

2. Perform a thash instruction using the general register from step 1 This will 
produce, in the target register, the VHPT address of the VHPT entry that maps the 
VHPT entry corresponding to the original faulting address (i.e. the address in 
IFA).

3. Using the target general register of the thash from step 2 as the load address, 
perform an 8-byte load from the VHPT. Note that the format of these first 8 bytes 
is identical to the format required for TLB insertion. Software must be prepared to 
take a nested TLB fault if this load misses the TLBs.

4. Move the IHA value from the general register written in step 1 into the IFA 
register.

5. Using the general register from step 3 that holds the contents of the VHPT entry, 
perform a data TC insert using the itc.d instruction. (VHPT references always go 
through the data TLBs.)

6. In an MP environment, reload the VHPT entry from step 3 into a different general 
register and compare the value to the one loaded in step 3. If the values are not 
the same, then the VHPT has been modified by another processor between steps 
3 and 4, and the entry will have to be re-inserted. In this case, purge the entry 
just inserted using a ptc.l instruction. The fault will re-occur after the rfi in 
step 7 (unless the VHPT walker succeeds on the next TLB miss) and the fault 
handler will re-attempt the insertion. (Uniprocessor environments may skip this 
step.)

7. rfi.
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For a long format VHPT, additional steps are required to load bytes 16-23 of the VHPT 
entry and check for the correct tag; see Section 5.4.1 for more details.

A separate structure other than the VHPT may be used to back VHPT translations, in 
which case the handler would not use the thash instruction to generate the address of 
the translation mapping the VHPT entry corresponding to the original faulting address. 
Instead, the handler would use the operating system’s own mechanism for finding VHPT 
back-mappings. Other schemes for handling VHPT misses are also possible, but are 
beyond the scope of this document. 

5.4.3 Alternate Data/Instruction TLB Miss Vectors

These faults are raised when an instruction or data reference misses the processor’s 
TLBs and the VHPT walker is not enabled for the faulting address, i.e. TLB misses are 
handled entirely in software. Operating systems which do not wish to use the VHPT 
walker can disable the walker and use these fault vectors for software TLB fill handlers. 
The OS may also choose to enable the walker on a per-region basis and use these 
vectors to handle misses in regions where the walker is disabled.

Upon entry to these fault handlers, the IFA and ITIR registers are initialized by the 
hardware as follows:

• ITIR – contains the default translation information for the reference which raised 
the fault (i.e. for the virtual address contained in IFA). The access key field is set to 
the region ID from the RR corresponding to the faulting address. The page size field 
is set to the preferred page size (RR.ps) from the RR corresponding to the faulting 
address.

• IFA – the virtual address of the bundle (for instruction faults) or data reference (for 
data faults) which missed the TLB.

The OS needs to lookup the PTE for the faulting address in the OS page table, convert it 
to the architected insertion format (see Section 4.1.1.5, “Translation Insertion 
Format”), and insert it into the TLB. The mechanism used to handle these faults is OS 
specific and is beyond the scope of this document.

5.4.4 Data Nested TLB Vector

To enable efficient handling of software TLB fills, the Itanium architecture provides a 
dedicated Data Nested TLB fault vector. The Data Nested TLB fault handler is intended 
to be used by the Data TLB fault handler, which allows the OS to page the page tables 
themselves. When PSR.ic is 0, any data reference that misses the TLB and would 
normally raise a Data TLB Miss fault (e.g. a load performed by the Data TLB fault 
handler to the page tables) will vector to the Data Nested TLB fault handler instead. 
Because IFA is not updated when PSR.ic is 0, the Data Nested TLB fault handler must 
get the faulting address from the general register used as the load address in the Data 
TLB fault handler1. Unlike other nested interruptions, the hardware does not update 
ISR when a Data Nested TLB fault is delivered. 

1. This requires a register usage convention between all TLB miss handlers and the Data Nested TLB
miss handler.
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The processor will not deliver a Data Nested TLB fault when PSR.ic is in-flight; Data 
Nested TLB faults are only delivered when PSR.ic is 0. If PSR.ic is in-flight, any data 
references which miss the TLB and trigger a fault will raise a Data TLB fault, and the 
processor will set ISR.ni to 1.

5.4.5 Dirty Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS 
page table and load the PTE into a general register rx. It can then set the “dirty” bit in 
rx and write the updated PTE back to the page table. To continue execution, the OS 
must insert the updated PTE into the data TLB or update the PTE memory image and let 
the VHPT walker perform the insertion.

5.4.6 Data/Instruction Access Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS 
page table and load the PTE into a general register rx. It can then set the “access” bit in 
rx and to continue execution, the OS must either:

• Write the updated PTE back to the page table, and have the VHPT walker pick it up, 
or

• Insert the updated PTE into the TLB using itc.i rx for instruction pages, and itc.d 
rx for data pages, or

• Step over the instruction/data access bit fault by setting the IPSR.ia or IPSR.da bits 
prior to performing an rfi.

5.4.7 Page Not Present Vector

Forward the fault to the operating system’s virtual memory subsystem.

5.4.8 Data/Instruction Access Rights Vector

Forward the fault to the operating system’s virtual memory subsystem.

5.5 Subpaging

The native page size an Itanium architecture-based operating system will choose for its 
page tables is likely be larger than the architectural minimum page size of 4 KB. Some 
legacy IA-32 applications, however, expect a page protection granularity of 4 KB. The 
following technique allows support for these applications with minimal impact on the 
native, larger page size paging mechanism.

A special type of entry is used in the native page table to mark pages that are 
subdivided into smaller 4 KByte units. The entry must have its memory attribute field 
set to the architecturally “software reserved” encoding (binary 001), and it carries a 
pointer to an array of 4 KB subentries in its most significant 59 bits. An example using 
a native page size of 16 KB is shown in Figure 5-2. The use of the “software reserved” 
memory attribute prevents the VHPT walker from attempting to insert the entry into 
the TLB.
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When one of the subdivided pages is referenced and does not have a translation in the 
TLB, a TLB miss will occur. The handler for this fault can then use the faulting address 
to calculate the appropriate offset into the sub-table and insert the corresponding 
4KByte PTE into the TLB.

Some care is required to ensure forward progress for IA-32 instructions. Each IA-32 
instruction can reference up to 8 distinct memory pages during its execution (see also 
Section 10.6.3, “IA-32 TLB Forward Progress Requirements”). This means that the fault 
handler not only has to insert the PTE for the current fault into the TLB, but also the 
PTEs for up to seven faults that occurred before, if these faults originate from the same 
IA-32 instruction. This can be accomplished by maintaining a buffer for the most recent 
faulting IIP and for the parameters of up to 7 TLB insertions. If a TLB fault occurs while 
executing in IA-32 mode and the IIP matches the most recent IIP, all TLB insertions in 
the buffer have to be repeated and the parameters for the new TLB fault must be added 
to the buffer. Otherwise, the buffer can be cleared out and the most recent IIP can be 
updated. The buffer also has to be cleared out when a TLB purge occurs.

§

Figure 5-2. Subpaging
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Runtime Support for Control and Data 
Speculation 6

An Itanium architecture-based operating system needs to handle exceptions generated 
by control speculative loads (ld.s or ld.sa), data speculative loads (ld.a) and 
architectural loads (ld) in different ways.

Software does not have to worry about control or data speculative loads potentially 
hitting uncacheable memory with side-effects, since ld.s, ld.sa, and ld.a instructions 
to non-speculative memory are always deferred by the processor for details refer to 
Section 4.4.6, “Speculation Attributes” on page 2:79. As a result, compilers can freely 
use control and data speculation to all program variables. 

Control speculative loads require special exception handling and the Itanium 
architecture provides a variety of deferral mechanisms for handling of control 
speculative exception handling. This is discussed in Section 6.1. 

The Itanium architecture supports different control speculation recovery models. These 
are discussed in Section 6.2.

Handling of exceptions caused by architectural and data speculative loads is the same, 
except for emulation of unaligned data speculative references, which require special 
unaligned emulation handling. This is discussed in Section 6.3.1.

6.1 Exception Deferral of Control Speculative Loads

Exceptions that occur on control speculative loads (ld.s or ld.sa) can be handled by 
the operating system in different ways. The operating system can configure a processor 
based on the Itanium architecture in three ways:

• Hardware-Only Deferral: automatic hardware deferral of all control speculative 
exceptions. In this case, the processor hardware will always defer excepting control 
speculative loads without invoking the operating system.

• Combined Hardware/Software Deferral: automatic deferral of some control 
speculative exceptions, but deliver others to software. In this case, some 
exceptions will result in hardware deferral as described above, other exceptions will 
be reported to the operating system. The operating system fault handlers can 
identify that an exception has been caused by a control speculative load (ISR.sp will 
be 1). Furthermore, OS handlers can software-defer an exception on a control 
speculative load by setting IPSR.ed to 1 prior to rfi-ing back to the ld.s or ld.sa. 
This allows an operating system to service “cheap” non-fatal exceptions (e.g. 
simple TLB misses), while software-deferring both “expensive” non-fatal (e.g. page 
faults) as well as fatal exceptions (e.g. non-recovery protection violation).

• Software-Only Deferral: processor is configured to deliver all control speculative 
exceptions to software. In this case, operating system software handles all 
non-fatal control speculative exceptions, and software-defers all fatal control 
speculative exceptions.
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Details on these three models are discussed in the next three sections as well as in 
Section 5.5.5, “Deferral of Speculative Load Faults” on page 2:105.

6.1.1 Hardware-only Deferral

Hardware only deferral is configured by setting all speculation deferral bits in the DCR 
register (dd, da, dr, dx, dk, dp and dm) to 1. All excepting control speculative loads are 
automatically deferred by the processor. As a result, all excepting control speculative 
loads that hit non-fatal exceptions, e.g. a TLB miss or a page fault, will be deferred by 
the processor hardware, and will cause speculation recovery code to be invoked. This 
can cause speculation recovery code to be invoked more often than strictly necessary.

6.1.2 Combined Hardware/Software Deferral

Setting of a DCR deferral bit to 1 results in hardware deferral by the processor, whereas 
clearing of a deferral bit causes exceptions to be delivered to software. The operating 
system may want to configure the processor to deliver control speculative exceptions to 
its handlers for certain non-fatal faults such as TLB misses or protection key misses. 
Early handling of these exceptions avoids unnecessary invocation of speculation 
recovery code, and the associated performance penalty. This is especially useful for 
exceptions handlers whose overhead is small. Note that handlers will also be invoked 
for excepting control speculative loads that have been hoisted from not taken paths, 
and therefore are not needed. As a result, software handling of control speculative 
exceptions is recommended only for statistically infrequent light weight fault handlers 
such as TLB miss or protection key miss handlers. If, while handling the exception, the 
operating system determines that this instance of the exception may require too much 
effort, e.g. a TLB miss turns out to be a page fault, the handler still has the choice of 
software-deferring the exception.

6.1.3 Software-only Deferral

Software only deferral is configured by clearing all speculation deferral bits in the DCR 
register (dd, da, dr, dx, dk, dp and dm) to 0. Control speculative loads that hit any 
Debug, Access Bit, Access Rights, Key Permissions, Key Miss, or Not Present fault, or 
that suffer a TLB miss or a VHPT Translation fault will be delivered to software. 

6.2 Speculation Recovery Code Requirements

As described by Table 6-1, code generators for the Itanium architecture are not always 
required to generate speculation recovery code for all forms of speculation. Compilers 
and operating systems can collaborate to provide two models for handling of recovery 
from failed control speculation: 

• ITLB.ed=1 (application with recovery code – the default): The compiler generates 
appropriate recovery code for all ld.s instructions, as well as for ld.sa and ld.a 
instructions that have speculatively executed uses. Speculation failure of ld.sa and 
ld.a instructions that have no speculatively executed uses can be recovered by a 
ld.c instruction, and hence do not require recovery code. The operating system 
may defer non-fatal exceptions. 
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• ITLB.ed=0 (no control speculative recovery code): The compiler generates recovery 
code only for ld.sa and ld.a instructions that have speculatively executed uses. 
Speculation failure of ld.sa and ld.a instructions that have no speculatively 
executed uses can be recovered by a ld.c instruction, and hence do not require 
recovery code. Speculation failure of ld.s instructions does not require recovery 
code, because, in this model, the operating system must guarantee that only fatal 
exceptions will be deferred. This requires software-only deferral of all potential 
non-fatal exceptions. The motivation for this model is that the absence of chk.s 
instructions and their associated recovery code may make for shorter and more 
compact in-line code, especially in loops with tight instruction schedules.

Presence or lack of control speculation recovery code is communicated from the 
compiler and the runtime system to the operating system by marking the code page’s 
page table entry ed-bit appropriately (this bit is referred to as ITLB.ed). When ITLB.ed 
is 1, the operating system will expect recovery code to be present; when ITLB.ed is 0 
no recovery code is expected. When a control speculative load takes an exception, the 
code page’s ITLB.ed bit is copied into ISR.ed and is made available to the operating 
system exception handler. Furthermore, a set ISR.sp bit indicates that an exception was 
caused by a control speculative load. 

6.3 Speculation Related Exception Handlers

6.3.1 Unaligned Handler

Misaligned control and data speculative loads, as well as architectural loads, are not 
required to be handled by the processor. As a result, the operating system’s unaligned 
reference handler has to be prepared to emulate such misaligned memory references, 
especially in cases where the application has not provided any recovery code (see 
Section 6.2 for details). Furthermore, misaligned data speculative loads (ld.sa or 
ld.a) must be forced failed by the unaligned emulation handler, because the ALAT 
cannot track all sizes of misalignment for store conflict detection.

Table 6-1. Speculation Recovery Code Requirements

Usage Model
OS May Defer Non-fatal Exceptions 

on Control Speculative Loads
(ITLB.ed=1)

OS Must Not Defer Non-fatal 
Exceptions on Control 

Speculative Loads
(ITLB.ed=0)

No Speculative Load Uses

ld.s Recovery code required; Invoked by 
chk.s or non-speculative use of 
speculative value recovers from failed 
control speculation.

No recovery code required;
OS handles all non-fatal exceptions 
speculatively.

ld.sa,ld.a No recovery code required;
ld.c recovers from failed data speculation.

With Speculative Load Uses

ld.s Recovery code required; invoked by 
chk.s or non-speculative use of 
speculative value recovers from failed 
control speculation.

No recovery code required;
OS handles all non-fatal exceptions 
speculatively.

ld.sa,ld.a Recovery code required;
chk.a recovers from failed data speculation.
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The following pseudo code outlines the basic steps for an unaligned reference handler: 

1. Ensure that only ISR.r is 1, and that ISR.w, ISR.x, and ISR.na are 0.

2. Inspect the ISR.sp and ISR.ed. If both are 1, then defer this control speculative 
load by setting IPSR.ed and rfi-ing.

3. Crack the instruction opcode to determine:

a. Size of the load: 1, 2, 4, 8, 10 bytes

b. Type of the load: ld.sa, ld.s, ld.a, ld.c.clr, ld.c.nc or ld

c. Target, source and post-increment registers of the load

4. If this is a data speculative load (ld.sa, or ld.a), invalidate the target register’s 
ALAT entry using an invala.e instruction, and rfi.

5. If this is a ld.c.clr instruction invalidate the target register’s ALAT entry using 
an invala.e instruction.

6. Emulate the memory read of the load instruction by updating the target register 
as follows:

a. Validate that emulated code has the access rights to the target memory 
location at the privilege level that it was running prior to taking the alignment 
fault. The regular_form probe instruction can be used on the first and the last 
byte of the unaligned memory reference. If both probes succeed the memory 
reference may proceed.

b. Using architectural ld instructions if the emulated operation is a ld or a ld.c 
(either clear or no clear flavor).

c. Using ld.s instructions if the emulated operation is a ld.s. The result in the 
target register may end up with its NaT bit or NaTVal set, if one of the parts 
of emulation causes an exception. If ITLB.ed is 0 (no control speculation 
recovery code), then the misaligned ld.s may only be deferred if a fatal 
exception occurred on either half or the ld.s emulation.

7. If this is a post-increment load, compute the new value for the source register.

§
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Instruction Emulation and Other Fault 
Handlers 7

This chapter introduces several common emulation handlers that an Itanium 
architecture-based operating system must support. A general overview is given for:

• Unaligned Reference Handler – emulation of misaligned memory references that 
the processor hardware cannot handle, or has been configured to fault on.

• Unsupported Data Reference Handler – emulation of memory operations that the 
processor hardware does not support. Examples are semaphore, ldfe or stfe 
operations to uncacheable memory. 

• Illegal Dependency Fault Handler – this is a fatal condition that operating system 
needs to provide error logging functionality for.

• Long Branch Handler – the Itanium processor does not implement the long branch 
instruction. When encountered on the Itanium processor, long branches must be 
emulated by the operating system.

Floating-point software assist emulation handlers are not discussed here, but are 
presented in Chapter 8, “Floating-point System Software.” Additionally, Section 5.5.1, 
“Efficient Interruption Handling” on page 2:102 discusses more details about emulation 
code in the Itanium architecture. 

7.1 Unaligned Reference Handler

Misaligned memory references that are not supported by the processor cause Unaligned 
Reference Faults. This behavior is implementation specific but typically occurs in cases 
where the access crosses a cache line or page boundary. In cases where the operating 
system chooses to emulate misaligned operations, some special cases need to be 
considered:

• Emulation of control and data speculative loads as well as advanced check and 
“regular” loads requires special attention. For details consult Section 6.3.1, 
“Unaligned Handler” on page 2:581.

• Emulation of unaligned semaphores, especially when interacting with IA-32 code 
require special attention. For details consult Section 2.1.3.2, “Behavior of 
Uncacheable and Misaligned Semaphores” on page 2:509.

IA-32 programs do not use the Itanium architecture-based handler to support 
unaligned references. The hardware that supports IA-32 execution provides the 
appropriate behavior if alignment checking is disabled through EFLAGS.ac. If an 
unaligned reference occurs in IA-32 code when EFLAGS.ac is set to enable alignment 
checking, alignment faults are delivered to a different vector from the unaligned 
reference handler. Specifically they are delivered to the 
IA_32_Exception(AlignmentCheck) vector; see Chapter 9, “IA-32 Interruption Vector 
Descriptions” for details.
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7.2 Unsupported Data Reference Handler

Processors based on the Itanium architecture do not support all types of memory 
references to all memory attributes. In particular:

• Semaphore operations to uncacheable memory are not supported. For details 
consult Section 2.1.3.2, “Behavior of Uncacheable and Misaligned Semaphores” on 
page 2:509.

• A 10-byte memory access, e.g. ldfe or stfe, to uncacheable memory are not 
supported by all implementations.

The handler for 10-byte memory accesses must go through the following steps to 
emulate the ldfe or stfe instructions:

• Determine that the opcode at the faulting address is an ldfe or stfe. On 
control-speculative flavors of these instructions (ldfe.s or ldfe.sa) processor 
hardware always defers the unsupported data reference fault. In other words, 
software does not have to emulate control-speculative fault deferral.

• If the instruction is an advanced load ldfe.a then the emulation handler should 
invalidate the ALAT entry of the appropriate floating-point target register using the 
invala.e instruction. Furthermore, a zero should be returned in the floating-point 
target register.

• If the instruction is a regular ldfe or stfe, then software must emulate the load or 
store behavior of the instruction taking the appropriate faults if necessary.

• If the instruction is the base register update form, update the appropriate base 
register.

A number of these steps may require the use of self-modifying code to patch 
instructions with the appropriate operands (for example, the target register of the 
inval.e must be patched to the destination register of the ldfe or stfe). See 
Section 2.5, “Updating Code Images” on page 2:531 for more information.

7.3 Illegal Dependency Fault

The Itanium instruction sequencing rules specify that, generally speaking, instructions 
within an instruction group are free of dependencies as described in Section 3.4, 
“Instruction Sequencing Considerations” on page 1:39. A dependency violation occurs 
anytime a program violates read-after-write (RAW), write-after-write (WAW) or 
write-after-read (WAR) resource dependency rules within an instruction group.

As Section 3.4.4, “Processor Behavior on Dependency Violations” on page 1:44 
describes, an implementation may provide hardware to detect and report dependency 
violations. It is important to note that the presence and capabilities of such hardware is 
implementation specific. A processor based on the Itanium architecture reports 
dependency violations through the General Exception Vector with an ISR.code of 8.

It is recommended that operating systems log the dependency violation and then 
terminate the offending application, as hardware behavior is undefined when a 
dependency violation occurs.
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7.4 Long Branch

The Itanium architecture supports “long” branches with a 64-bit offset. This provides 
IP-relative conditional- and call-type branches that can reach any address in a 64-bit 
address space. These instructions use the MLX template, and similar to the move long 
instruction (movl), they encode their immediate in the L and the X slot of the bundle.

The Intel Itanium processor does not support the long branch instruction, brl, and 
requires the operating system to emulate its behavior. When an Itanium processor 
encounters a brl instruction, it vectors to the Illegal Operation Fault handler, 
regardless of the branches’ qualifying predicate. This handler is expected to emulate 
the long branch instruction in software. A general outline of the long branch emulation 
handler is as follows:

• The emulation handler reads the IIP, IPSR, and predicates at the time of the fault.

• If the fault occurred in IA-32 code or if the fault did not occur in slot 2 of a bundle 
(IPSR.ri is not 2), the handler passes the fault to regular illegal operation fault 
handler.

• Two floating-point registers are spilled into the integer register file to get ready to 
load the bundle.

• The emulation handler speculatively loads the 128-bit bundle at the faulting IP 
using the integer form of the floating-point load pair instruction. This instruction is 
chosen because it operates atomically (see Section 4.5, “Memory Datum Alignment 
and Atomicity”). Using two 64-bit integer loads would require the handler to ensure 
that another agent does not update the bundle between the two reads.

• If the speculation fails, the recovery code re-issues the load. Before re-issuing an 
architectural load, the processor must first re-enable PSR.ic to be able to handle 
potential TLB misses when reading the opcode from memory. In other words, this 
becomes a heavyweight handler. For details see Section 3.4.2, “Heavyweight 
Interruptions” on page 2:544. Once the opcode has been read from memory 
successfully flow of the emulation continues at the next step.

• The 128-bit bundle is moved from the FP register file into two integer registers and 
the FP registers are restored to their contents at the time of the fault.

• The handler extracts the fields necessary to decode the instruction (specifically, the 
qp, template, major opcode, and btype or b1 fields of slot 2). It also determines the 
value of the qualifying predicate of the instruction in slot 2 from the contents of the 
predicate register at the time of the fault. Itanium instruction are always stored in 
memory in little-endian memory format. When extracting bit fields from the loaded 
opcode current processor endianness (PSR.be) must be taken into account.

• The emulation handler passes the fault off to the regular illegal operation fault 
handler if the bundle is not an MLX or if the faulting instruction is not a brl.cond or 
brl.call.

• If the faulting instruction is a not-taken brl.cond or brl.call, the code prepares 
to change the IIP to the address of the sequential successor of the faulting branch 
(i.e. IIP + 16) and jumps ahead to the trap detection code mentioned below.

• If the faulting instruction is a taken brl.call, the handler emulates the 
appropriate behavior of the call. The code uses a br.call to move the appropriate 
values into CFM and AR[PFS]. There are several details, however. First, the branch 
register update from the call must be backed out (as it is not the correct update for 
the brl.call). Second, AR[PFS].ppl must be set based on the cpl at the time of the 
fault (which is given by IPSR.cpl). Finally, the code must update the branch register 
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specified in the brl.call instruction with the IP of the successor of the brl.call 
(predication helps here as the Itanium instruction set does not provide an indirect 
move to branch register instruction).

• The handler forms the 60-bit immediate IP-offset for the brl target from the i and 
imm20 fields from the X syllable of the bundle (the brl instruction) and the imm39 
field from the L syllable of the bundle.

• The handler checks to see if there are any traps to be taken. Specifically, it verifies 
that the next IP is at an implemented address (the specific test depends on whether 
the processor was in virtual or physical mode at the time of the fault as IPSR.it 
indicates), that taken branch traps are not enabled if the branch is taken, and that 
single stepping is not enabled.

• If a trap condition is detected, the ISR.code and ISR.vector fields are set up as 
appropriate and the handler jumps to the appropriate operating system entry point 
after restoring the predicates at the time of the fault and setting the IIP to the 
appropriate address.

• If no trap occurs, the handler restores the predicates and returns to the faulting 
code at the appropriate IP.

A processor based on the Itanium architecture typically does not fault on instructions 
with false qualifying predicates. However, an implementation may take an Illegal 
Operation Fault on an MLX instruction with a false predicate; the Itanium processor is 
such an implementation. This implies that the brl emulation handler must also provide 
the means to skip the faulting instruction when its qualifying predicate is false.

§
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Floating-point System Software 8

This chapter details the way floating-point exceptions are handled in the Itanium 
architecture and how the architecture can be used to implement the ANSI/IEEE Std. 
754-1985 for Binary Floating-point Arithmetic (IEEE-754). It is useful in creating and 
maintaining floating-point exception handling software by operating system writers.

8.1 Floating-point Exceptions in the Intel® Itanium® 
Architecture

Floating-point exception handling in the Itanium architecture has two major 
responsibilities. The first responsibility is to assist a hardware implementation to 
conform to the Itanium floating-point architecture specification. The Floating-point 
Software Assistance (FP SWA) Exception handler supports this conformance and is 
included as a driver in the Unified Extensible Firmware Interface (UEFI). The second 
responsibility is to provide conformance to the IEEE-754 standard. The IEEE 
Floating-point Exception Filter (IEEE Filter) supports providing this conformance.

When a floating-point exception occurs, a minimal amount of processor state 
information is saved in interruption control registers. Additional information is 
contained in the Floating-point Status Register (FPSR), i.e. application register (AR40). 
This register contains the IEEE exception enable controls, the IEEE rounding controls, 
the IEEE status flags, and information to determine the dynamic precision and range of 
the result to be produced.

When a floating-point exception occurs, execution is transferred to the appropriate 
interruption vector, either the Floating-point Fault Vector (at vector address 0x5c00) or 
the Floating-point Trap Vector (at vector address 0x5d00.) There the operating system 
may handle the exception or save additional processor information and arrange for 
handling of the exception elsewhere in the operating system. Floating-point exception 
faults must be handled differently than other faults. Correcting the condition that 
caused the fault (e.g. a page not present is brought into memory) and re-executing the 
instruction is how most other faults are handled. For floating-point faults, software is 
required to emulate the operation and continue execution at the next instruction as is 
normally done for traps. Part of this emulation needs to include a check for any lower 
priority traps that would have been raised if the instruction hadn’t faulted, e.g. a 
single-step trap.

8.1.1 Software Assistance Exceptions (Faults and Traps)

There are three categories of Software Assistance (SWA) exceptions that must handled 
by the operating system. The first two categories, SWA Faults and SWA Traps, are 
implementation dependent and could be generated by any Itanium floating-point 
arithmetic instruction that contains a status field specifier in the instruction's encoding. 
An implementation may choose to raise a SWA Fault as needed. The SWA Trap can only 
be raised under special circumstances. The third category, architecturally mandated 
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SWA Faults, is limited to the scalar reciprocal and scalar reciprocal square-root 
approximation instructions and is not implementation dependent. It is required for the 
correctness of the divide and square root algorithms.

8.1.1.1 SWA Faults

The Itanium architecture allows an implementation to raise SWA faults as required. 
Therefore an implementation-independent operating system must be able to emulate 
the architectural behavior of all FP instructions that can raise a floating-point exception. 
However, hardware implementations will limit the cases that raise SWA Faults for 
performance reasons. The most likely cases would be for the consumption of 
denormalized or unnormalized operands and production of denormalized results.

The general flow of the SWA Fault handler is as follows:

1. From the interruption instruction bundle pointer (IIP) and faulting instruction 
index (IPSR.ri), determine the FP instruction that faulted.

2. From the instruction, decode the opcode, static precision, status field and 
input/output register specifiers.

3. Read the data from the input registers.

4. From the opcode and the FPSR’s status field, decode the result range and 
precision.

5. From the ISR.code, determine that a SWA Fault has occurred, if not go to the last 
step.

6. From the FPSR, determine if the trap disabled or trap enabled result is wanted.

7. Emulate the Itanium instruction to produce the Itanium architecture specified 
result.

8. Place the result(s) in the correct FR and/or PR registers, if required.

9. Update the flags in the appropriate status field of the FPSR, if required.

10. Update the ISR.code if required. (This is required if the SWA fault has been 
translated into an IEEE fault or trap.)

11. Check to see if an IEEE fault or trap needs to be raised. If so, then queue it to the 
IEEE Filter, otherwise continue checking for lower priority traps that may need to 
be raised and if required invoke their handler. When finished, continue execution 
at the next instruction.

8.1.1.2 SWA Traps

SWA traps are allowed in the Itanium architecture as an optimization for cases when 
the hardware implementation has produced the result of the first (exponent 
unbounded) IEEE rounding1 and can't continue with the second (exponent bounded) 
IEEE rounding to produce the final result. One option for the implementation would be 
to throw away the first IEEE rounding result and raise the SWA Fault. The SWA Fault 
handler would then have to redo the computation of the first IEEE rounding. A 
potentially more efficient option would be for the implementation to return the first 
IEEE rounding result and raise a SWA trap. Returning the first IEEE rounded result is 

1. ANSI/IEEE Std 754-1985 sections 7.3 Overflow and 7.4 Underflow.
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the same as what is done when the IEEE Overflow or Underflow exceptions are enabled. 
However, hardware implementations will limit the cases that raise SWA Traps for 
performance reasons. The most likely case would be for the production of denormalized 
results.

For tiny1 results, the SWA Trap handler has the simpler task of taking the intermediate 
result of the first IEEE rounding, the ISR.fpa and ISR.i status bits and producing the 
correctly rounded and signed minimum normal, denormal or zero. For huge2 results, 
the SWA Trap handler has the even simpler task of taking the intermediate result of the 
first rounding and producing the correctly signed maximum representable normal or 
infinity, based on the sign of the result, the rounding direction, and the result precision 
and range.

Note: The Itanium architecture also allows for SWA Traps to be raised when the result 
is just Inexact. This is a trivial case for the SWA Trap handler, since result of the 
second IEEE rounding is identical to the first IEEE rounding.

The general flow of the SWA Trap handler is as follows:

1. From the interruption instruction previous address (IIPA) and exception 
instruction index (ISR.ei), determine the FP instruction that trapped.

2. From the instruction, decode the opcode, static precision, status field and 

1. Tiny numbers are non-zero values with a magnitude smaller than the smallest normal floating-point
number. 

2. Huge numbers have values larger in magnitude than the largest normal floating-point number.

Figure 8-1.  Overview of Floating-point Exception Handling in the Intel® 
Itanium® Architecture
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input/output register specifiers.

3. From the ISR.code and FPSR trap enable controls, determine if a SWA Trap has 
occurred, if not go to the last step.

4. Read the first IEEE rounded result from the FR output register.

5. From the opcode and the status field, decode the result range and precision.

6. From the ISR.code’s FPA, O, U, and I status bits and the intermediate result, 
produce the Itanium architecture specified result.

7. Place the result in the output FR register.

8. Update the flags in the appropriate status field of the FPSR, if required.

9. Update the ISR.code if required. (This is required if the SWA trap has been 
translated into an IEEE trap.)

10. Check to see if an IEEE trap needs to be raised. If so, then queue it to the IEEE 
Filter, otherwise continue checking for lower priority traps that may need to be 
raised and if required invoke their handler. When finished, continue execution at 
the next instruction.

8.1.1.3 Approximation Instructions and Architecturally Mandated SWA Faults

The scalar approximation instructions, frcpa and frsqrta, can raise architecturally 
mandated SWA Faults. This occurs when their input operands are such that they are 
potentially prevented from generating the correct result by the usual software 
algorithms that are employed for divide and square root. The reasons for this are that 
these algorithms may suffer from underflow, overflow, or loss of precision, because the 
inputs or result are at the extremes of their range. For these special cases, the SWA 
Fault handler must use alternate algorithms to provide the correct quotient or square 
root and place that result in the floating-point destination register. The predicate 
destination register is also cleared to indicate the result is not an approximation that 
needs to be improved via the iterative algorithm.

The parallel approximation instructions fprcpa and fprsqrta have situations similar to 
the scalar approximation instruction’s architecturally mandated SWA Faults. This occurs 
when their input operands are such that they are potentially prevented from generating 
the correct result by the usual software algorithms that are employed for divide and 
square root. For these special cases, instead of generating a SWA Fault, the parallel 
approximation instructions indicate that software must use alternate algorithms to 
provide the correct reciprocal or square-root reciprocal by clearing the destination 
predicate register. The cleared predicate is the indication to the parallel IEEE-754 divide 
and square root software algorithms that alternative algorithms are required to produce 
the correct IEEE-754 quotient or square root.

8.1.2 The IEEE Floating-point Exception Filter

The Itanium architecture supports the reporting of the five IEEE-754 standard 
floating-point exceptions and the IA-32 Denormal Operand exception. In the Itanium 
architecture the Denormal Operand exception is expanded to the Denormal/Unnormal 
Operand exception. When referring to the IEEE-754 exceptions in the Itanium 
architecture the Denormal/Unnormal Operand exception is included.
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At the application level, a user floating-point exception handler could handle the 
Itanium floating-point exception directly. This is the traditional operating system 
approach of providing a signal handler with a pointer to a machine-dependent data 
structure. It would be more convenient for the application developer if the operating 
system were to first transform the results to make them IEEE-754 conforming and then 
present the exception to the user in an abstracted manner. It is recommended that the 
operating system include such a software layer to enable application developers that 
want to handle floating-point exceptions in their application. The IEEE Floating-point 
Exception Filter provides this convenience to the developer through three functions.

• The first function of the IEEE Filter is to map the Itanium architecture's result to the 
IEEE-754 conforming result. This includes the wrapping of the exponent for 
Overflow and Underflow exceptions. The Itanium architecture keeps the exponent 
in the 17-bit format, which is not wrapped (i.e. scaled) with the appropriate value 
for the destination precision.

• The second function of an IEEE Filter is to transform the interruption information to 
a format that is easier to interpret and to invoke a user handler for the exception. 
The user's handler may then provide a value to be substituted for the IEEE default 
result, based on the operation, exception and inputs.

• The third function of the filter is to hide the complexities of the parallel instructions 
from the user. If a floating-point fault occurs in the high half of a parallel 
floating-point instruction and there is a user handler provided, the parallel 
instruction is split into two scalar instructions. The result for the high half comes 
from the user handler, while the low half is emulated by the IEEE Filter. The two 
results are combined back into a parallel result and execution is continued. More 
complicated cases can also occur with multiple faults and/or traps occurring in the 
same instruction.

Note: Usage of the IEEE Filter should not be compulsory – the user should be able to 
choose to handle enabled floating-point exceptions directly. The IEEE filter just 
hides the details of the instruction set and frees the user handler from having to 
emulate instructions directly and potentially incorrectly.

8.1.2.1 Invalid Operation Exception (Fault)

The exception-enabled response of an Itanium floating-point arithmetic instruction to 
an Invalid Operation exception is to leave the operands unchanged and to set the V bit 
in the ISR.code field of the ISR register. The operating system kernel, reached via the 
floating-point fault vector, will then invoke the user floating-point exception handler, if 
one has been registered.

8.1.2.2 Divide by Zero Exception (Fault)

The exception-enabled response of an Itanium floating-point arithmetic instruction to a 
Divide-by-Zero exception is to leave the operands unchanged and to set the Z bit in the 
ISR.code field of the ISR register. The operating system kernel, reached via the 
floating-point fault vector, will then invoke the user floating-point exception handler, if 
one has been registered.
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8.1.2.3 Denormal/Unnormal Operand Exception (Fault)

The exception-enabled response of the Itanium arithmetic instruction to a 
Denormal/Unnormal Operand exception is to leave the operands unchanged and to set 
the D bit in the ISR.code field of the ISR register. The operating system kernel, reached 
via the floating-point fault vector, will then invoke the user floating-point exception 
handler, if one has been registered.

8.1.2.4 Overflow Exception (Trap)

The exception-enabled response of an Itanium floating-point arithmetic instruction to 
an Overflow exception is to deliver the first (exponent unbounded) IEEE rounded result, 
and to set the O bit (and possibly the I and FPA bits) in the ISR.code field of the ISR 
register and the Overflow flags (and possibly the Inexact flag) in the appropriate status 
field of the FPSR register.

The IEEE-754 standard requires that, when raising an overflow exception, the user 
handler should be provided with the result rounded to the destination precision with the 
exponent range unbounded. For the huge result to fit in the destination’s range, it must 
be scaled down by a factor equal to 2.0a (with a equal to 3*2n-2, where n is the number 
of bits in the exponent of the floating-point format used to represent the result.) This 
scaling down will bring the result close to the middle of the range covered by the 
particular format. The exponent adjustment factors to do the scaling for the various 
formats are determined as follows:

• 8-bit (single) exponents are adjusted by 3*26 = 0xc0 = 192.

• 11-bit (double) exponents are adjusted by 3*29 = 0x600 = 1536.

• 15-bit (double-extended) exponents are adjusted by 3*213 = 0x6000 = 24576.

• 17-bit (register) exponents are adjusted by 3*215 = 0x18000 = 98304.

The actual scaling of the result is not performed by the Itanium architecture. The IEEE 
filter that is invoked before calling the user floating-point exception handler typically 
performs the scaling.

8.1.2.5 Underflow Exception (Trap)

The exception-enabled response of an Itanium floating-point arithmetic instruction to 
an Underflow exception is to deliver the first (exponent unbounded) IEEE rounded 
result, and to set the U bit (and possibly the I and FPA bits) in the ISR.code field of the 
ISR register and the Underflow flag (and possibly the Inexact flag) in the appropriate 
status field of the FPSR register.

The IEEE-754 standard requires that, when raising an underflow exception, the user 
handler should be provided with the result rounded to the destination precision with the 
exponent range unbounded. For the tiny result to fit in the destination’s range, it must 
be scaled up by a factor equal to 2.0a (with a equal to 3*2n-2, where n is the number of 
bits in the exponent of the floating-point format used to represent the result). The 
scaling up will bring result close to the middle of the range covered by the particular 
format. The exponent adjustment factors to do this scaling for the various formats are 
the same as those for enabled overflow exceptions, listed above.
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Just as for overflow, the actual scaling of the result is not performed by the Itanium 
architecture. It is typically performed by the IEEE Filter, which is invoked before calling 
the user floating-point exception handler.

8.1.2.6 Inexact Exception (Trap)

The exception-enabled response of an Itanium arithmetic instruction to an Inexact 
exception is to set the I bit (and possibly the FPA bit) in the ISR.code field of the ISR 
register and the Inexact flag in the appropriate status field of the FPSR register. The 
operating system kernel, reached via the floating-point fault vector, will then invoke the 
user floating-point exception handler, if one has been registered.

8.2 IA-32 Floating-point Exceptions

IA-32 floating-point exceptions may occur when executing code in IA-32 mode. When 
this happens, execution is transferred to the Itanium interruption vector for IA-32 
Exceptions (at vector address 0x6900.) For classic IA-32 floating-point instructions, 
they are raised via the “IA_32_Exception(FPError) – Pending Floating-point Error.” For 
SSE instructions, they are raised via the “IA_32_Exception(StreamingSIMD) – SSE 
Numeric Error Fault.” The operating system may schedule Itanium architecture-based 
and/or IA-32 exception handlers for these exceptions.

§
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IA-32 Application Support 9

The Itanium architecture enables Itanium architecture-based operating systems to host 
IA-32 applications, Itanium architecture-based applications, as well as mixed 
IA-32/Itanium architecture-based applications. Unless the operating system explicitly 
intercepts ISA transfers (using the PSR.di), user-level code can transition between the 
two instruction sets without operating system intervention. This allows IA-32 programs 
to call Itanium architecture-based subroutines or vice-versa. Itanium 
architecture-based and IA-32 code can share data through registers and/or memory. 
Multi-threaded IA-32 and Itanium architecture-based applications can easily 
communicate with each other or the Itanium architecture-based operating system 
using shared memory. The Itanium architecture does not support execution of Itanium 
architecture-based programs on an IA-32 operating system. While the architecture 
does not prevent IA-32 code from executing as part of an Itanium architecture-based 
operating system, it is strongly recommended that Itanium architecture-based 
operating systems do not contain IA-32 code.

One of the most compelling motivations for executing IA-32 code on an Itanium 
architecture-based operating system is the ability to run existing unmodified IA-32 
application binaries. Because IA-32 performs 32-bit instruction/memory references that 
are zero-extended into 64-bit virtual addresses, Itanium architecture-based operating 
systems must ensure that all IA-32 code and data is located in the lower 4GBytes of the 
virtual address space. Compute intensive IA-32 applications can improve their 
performance substantially by migrating compute kernels from IA-32 to Itanium 
architecture-based code while preserving the bulk of the application’s IA-32 binary 
code. If mixed IA-32/Itanium architecture-based applications are supported, care has 
to be taken that the data accessible to IA-32 portions of the application is located in the 
lower 4GBytes of the virtual address space.

While processors based on the Itanium architecture are capable of supporting a wide 
range of Itanium architecture-based/IA-32 code mixing, Itanium architecture-based 
operating systems need to provide a software support infrastructure to enable full 
interoperability between the IA-32 and Itanium instruction set. Most Itanium 
architecture-based operating systems are expected to support user-level IA-32 
applications, and, as a result, must be able to provide the full range of operating 
system services through a 32-bit system call interface. However, different operating 
systems and runtime conventions may reduce the set of interoperability modes as 
desired by the operating system vendor.

While it is an interesting topic, this chapter does not discuss 32-bit application binary 
interfaces provided by specific operating systems. Instead, this chapter focusses on 
what services are required from an Itanium architecture-based operating system by a 
processor based on the Itanium architecture that is executing IA-32 code. In other 
words, the focus of this chapter is the low-level processor / operating system interface 
rather than the IA-32 software / operating system (application binary) interface.
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9.1 Transitioning between Intel® Itanium® and IA-32 
Instruction Sets

As mentioned earlier, user-level code can transition from Itanium to IA-32 (or back) 
instruction sets without operating system intervention. As described in Chapter 6, 
“IA-32 Application Execution Model in an Intel® Itanium® System Environment” in 
Volume 1, two instructions are provided for this purpose: br.ia (an Itanium 
unconditional branch), and JMPE (an IA-32 register indirect and absolute jump). Prior 
to executing any IA-32 instructions, however, the Itanium architecture-based operating 
system needs to setup an execution environment for executing IA-32 code.

9.1.1 IA-32 Code Execution Environments

Processors based on the Itanium architecture are capable of executing IA-32 code in 
real mode, VM86 mode or protected mode. When segmentation is enabled both 16 and 
32-bit code are supported. Prior to transferring control to IA-32 code, an Itanium 
architecture-based application and/or operating system is expected to setup the 
complete IA-32 execution environment in Itanium registers.

In particular, Itanium architecture-based software must setup IA-32 segment descriptor 
and selector registers in Itanium application registers, and must ensure that code and 
stack segment descriptors (CSD, SSD) are pointing at valid and correctly aligned 
memory areas. It is also worth noting that the IA-32 GDT and LDT descriptors are 
maintained in GR30 and GR31, and are unprotected from Itanium architecture-based 
user-level code. For more details on the IA-32 execution environment please refer to 
Section 6.2.2, “IA-32 Application Register State Model” on page 1:113. 

Some IA-32 execution environments may need support from an Itanium 
architecture-based operating system. Which IA-32 software environments are 
supported by an Itanium architecture-based operating system is determined by the 
operating system vendor. Itanium architecture-based platform firmware (SAL) provides 
a runtime environment that allows execution of real-mode IA-32 code found in PCI 
configuration option ROMs.

9.1.2 br.ia

br.ia is an unconditional indirect branch that transitions from Itanium to IA-32 
instruction set. Prior to entering IA-32 code with br.ia, software is also required to 
flush the register stack. br.ia sets the size of the current register stack frame to zero. 
The register stack is disabled during IA-32 code execution. Because IA-32 code 
execution uses Itanium registers, much of the Itanium register state is overwritten and 
left in an undefined state when IA-32 code is run. As a result, software can not rely on 
the value of such registers across an instruction set transition. Execution of IA-32 code 
also invalidates the ALAT. For more details refer to Table 6-2, “IA-32 Segment Register 
Fields” on page 1:118. 
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For best performance, the following code sequence is recommended for transitioning 
from Itanium to IA-32 instruction set:

{.mii
flushrs // flush register stack
mov b7 = rTarget // Setup IA-32 target address
nop.i // nop.i or other instruction
;;

{.mib
nop.m // nop.m or other instruction
nop.i // nop.i or other instruction
br.ia.sptk b7 // branch to IA-32 target defined by 

// lower 32-bits of branch register b7
;;

Key to performance is that the register stack flush (flushrs) and the br.ia instruction 
are separated by a single cycle, and that the br.ia instruction is the first B-slot in the 
bundle directly following the flushrs. The nop instruction slots in the code example 
may be used for other instructions. 

9.1.3 JMPE

JMPE is an IA-32 instruction that comes in a register indirect and absolute branch 
flavors. The code segment descriptor base is held in the CSD application register 
(ar.csd).

• JMPE reg16/32 computes the target of the Itanium instruction set as
IP = ([reg16/32] + CSD.base) & 0xfffffff0

• JMPE disp16/32 computes the target of the Itanium instruction set as
IP = (disp16/32 + CSD.base) & 0xfffffff0

Targets of the IA-32 JMPE instruction are forced to be 16-byte aligned, and are 
constrained to the lower 4Gbytes of the 64-bit virtual address space. The JMPE 
instruction leaves the IA-32 return address (address of the IA-32 instruction following 
the JMPE itself) in IA_64 register GR1. 

9.1.4 Procedure Calls between Intel® Itanium® and IA-32 
Instruction Sets

If procedure call linkage is required between Itanium architecture-based and IA-32 
subroutines, software needs to perform additional work as described in the next two 
sections.

9.1.4.1 Itanium® Architecture-based Caller to IA-32 Callee

This section outlines what steps an Itanium architecture-based caller of an IA-32 
procedure needs to perform. The ordering of the steps is approximate and need not be 
executed exactly in the order presented.

1. Setup IA-32 execution environment, if not already done (see Section 9.1.2 for 
details). Ensure that no NaTed registers are used to setup IA-32 environment nor 
that they are passed as procedure call arguments to IA-32 code.

2. Marshall arguments from the register stack to memory stack according to IA-32 
software conventions.

3. Set up exception handle unwind data structures according to OS convention.



2:598 Volume 2, Part 2: IA-32 Application Support

4. Make sure JMPE knows where to return to, e.g. deposit return address for the 
JMPE on memory stack or pass it in an IA-32 visible register.

5. Setup IA-32 branch target in branch register.

6. Flush register stack, but no other RSE updates.

7. br.ia is an indirect branch to IA-32 code. There is no need to preserve Itanium 
only application registers, since IA-32 code execution leaves them unmodified.

8. Run in the IA-32 callee until it executes a JMPE instruction.

9. JMPE instruction is an unconditional jump to Itanium architecture-based code. 
JMPE should use the return address specified in step 4.

10. Move return values from memory stack to static Itanium register used for 
procedure return value according to Itanium calling conventions.

11. Ensure that IA-32 code correctly unwound memory stack, and that memory stack 
pointer is correctly aligned.

12. Update exception handle unwind data structures according to OS convention.

13. br.ret returns to Itanium architecture-based caller.

9.1.4.2 IA-32 Caller to Itanium® Architecture-based Callee

This section outlines what steps an IA-32 caller of an Itanium architecture-based 
procedure needs to perform. The ordering of the steps is approximate and need not be 
executed exactly in the order presented.

1. Caller deposits arguments on memory stack, and calls Itanium 
architecture-based transition stub using the JMPE instruction.

2. Execute JMPE instruction as an unconditional branch to Itanium 
architecture-based code. The JMPE instruction will leave the address of the IA-32 
instruction following the JMPE itself in Itanium register GR1. This address may be 
used as a return address later.

3. Allocate a register stack frame with the alloc instruction.

4. Load procedure arguments from memory stack into Itanium stacked registers. 
Preserve IA-32 return address in memory or register stack.

5. Set up exception handle unwind data structures according to OS convention.

6. br.call to target Itanium architecture-based callee.

7. Execute Itanium architecture-based code until it returns using br.ret.

8. Move return value from static Itanium register to memory stack.

9. Load IA-32 return address from step 4 into branch register.

10. Instead of flushing the register stack to memory, the contents of the register 
stack can be discarded at this point since IA-32 code execution will overwrite it 
anyway. Invalidate register stack by:

a. Allocating a zero-size stack frame using the alloc instruction.

b. Writing zero into RSC application register, and executing a loadrs instruction.

c. Restore RSC application register to its original value in preparation for the 
next call from IA-32 to Itanium instruction set.
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11. Ensure memory stack pointer is correctly aligned prior to returning to IA-32 code.

12. br.ia returns to IA-32 caller.

9.2 IA-32 Architecture Handlers

An Itanium architecture-based operating system needs to be prepared to handle 
exceptions from Itanium architecture-based and IA-32 code. Depending on the 
exception cause, exception vectors can be:

• Shared Itanium/IA-32 Exception Vectors: all virtual memory related instruction and 
data reference faults share a common exception vector, regardless of whether they 
were caused by Itanium architecture-based or IA-32 code.

• Unique Itanium Exception vectors: these are conditions that only Itanium 
architecture-based code can cause. Examples are: Instruction Breakpoint fault, 
Illegal Operation fault, Illegal Dependency fault, Unimplemented Data Address 
fault, etc. 

• Unique IA-32 Exception Vectors: these conditions can occur only from IA-32 
instructions. 

A detailed break-down of which exceptions occur on which interruption vector and from 
which instruction set is given in Table 5-6. Table 9-1 shown below summarizes all IA-32 
related exceptions that an Itanium architecture-based operating system needs to be 
ready to handle. These IA-32 specific interrupts are grouped into three vectors: the 
IA-32 Exception vector, the IA-32 Intercept, and the IA-32 Interrupt vector. Within each 
of these vectors the interrupt status register (ISR) provides detailed codes as to the 
origin of this exception. Details on the IA-32 vectors is provided in Chapter 9, “IA-32 
Interruption Vector Descriptions.” More details on debug related IA-32 exceptions is 
given in the following section of this document.

Table 9-1. IA-32 Vectors that need Itanium® Architecture-based OS 
Support

Vector (IVA offset) Exception Name Exception Related To Expected OS Behavior

IA-32 Exception
vector (0x6900)

IA-32 Instruction Debug fault Debug Relay to debugger.

IA-32 Code Fetch fault Segmentation Signal application.

IA-32 Instruction Length > 15 
bytes fault

Bad Opcode Signal application.

IA-32 Device Not Available fault Numeric Signal application.

IA-32 FP Error fault Numeric Signal application.

IA-32 Segment Not Present fault Segmentation Signal application.

IA-32 Stack Exception fault Segmentation Signal application.

IA-32 General Protection fault Segmentation Signal application.

IA-32 Divide by Zero fault Numeric Signal application.

IA-32 Alignment Check fault Misaligned IA-32 
Memory Reference 
with alignment 
checking enabled.

Depends on convention.

IA-32 Bound fault Segmentation Signal application.

IA-32 SSE Numeric Error Fault Numeric Signal application.

IA-32 INTO Overflow trap Numeric Signal application.

IA-32 Breakpoint (INT 3) trap Software Breakpoint Depends on convention.

IA-32 Data Breakpoint trap Debug Relay to debugger.
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9.3 Debugging IA-32 and 
Itanium®Architecture-based Code

Itanium architecture-based operating systems that want to provide debug support for 
both IA-32 and Itanium architecture-based applications, need to be aware of the 
differences between taking instruction and data breakpoint exceptions as well as single 
step or taken branch traps on Itanium and IA-32 instructions. 

9.3.1 Instruction Breakpoints

If an Itanium instruction matches an instruction breakpoint register (IBR) then an 
Instruction Debug Fault is delivered on the Itanium Debug vector. To step across a 
single Itanium instruction, IPSR.id must be set to one. An IA-32 instruction, however, 
that matches an IBR causes an IA-32 Instruction Breakpoint fault which is delivered to 
the IA-32 Exception vector (Debug). To step across a single IA-32 instruction, either 
IPSR.id or EFLAGS.rf must be set to one.

9.3.2 Data Breakpoints

If an Itanium memory reference matches a data breakpoint register (DBR) then a Data 
Debug Fault is delivered on the Itanium Debug vector. To step across a single data 
breakpoint, IPSR.dd must be set to one. An IA-32 instruction, however, that matches a 
DBR causes an IA-32 Data Breakpoint trap which is delivered to the IA-32 Exception 
vector (Debug). In other words, the debugger only gets control after the instruction 

IA-32 Taken Branch trap Debug Relay to debugger.

IA-32 Single Step trap Debug Relay to debugger.

IA-32 Invalid Opcode fault Bad Opcode Signal application.

IA-32 Intercept 
vector (0x6a00)

IA-32 Instruction Intercept fault Attempted to access 
IA-32 paging, MTRRs, 
IDT, IA-32 control 
registers, IA-32 debug 
registers or attempted 
to execute IA-32 
privileged instructions.

This is not supported on 
an Itanium 
architecture-based OS. 
Signal application.

IA-32 Locked Data Reference 
fault

Attempt to reference 
misaligned or 
uncacheable 
semaphore.

Emulation handler if 
needed. Refer to 
Section 2.1.3.2, 
“Behavior of 
Uncacheable and 
Misaligned Semaphores” 
on page 2:509.

IA-32 System Flag Intercept trap System Flag intercept Depends on convention.

IA-32 Gate Intercept trap Gate/Task transfer 
intercept

Depends on convention.

IA-32 Interrupt 
vector (0x6b00)

IA-32 Software Interrupt (INT) 
trap

Software Interrupt Depends on convention.

Cannot happen in 
Itanium 
architecture-based 
operating system

IA-32 Double Fault
IA-32 Invalid TSS Fault,
IA-32 Page Fault, 
IA-32 Machine Check

N/A Don’t worry,

Table 9-1. IA-32 Vectors that need Itanium® Architecture-based OS 
Support (Continued)

Vector (IVA offset) Exception Name Exception Related To Expected OS Behavior
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making the reference has completed. Since IA-32 instruction can make multiple 
memory references, a single IA-32 instruction may cause multiple data break points to 
trigger. Details on how this is communicated to software in the interrupt status register 
(ISR) is given in Section 9.1, “IA-32 Trap Code” on page 2:213. Since IA-32 data 
breakpoints are traps, there is no need to step over them.

9.3.3 Single Step Traps

When PSR.ss enables single stepping of Itanium architecture-based applications, each 
instruction that is stepped will stop at the Single Step trap handler. When PSR.ss or 
EFLAG.tf enable single stepping of IA-32 applications, an IA_32_Exception(Debug) trap 
is taken after each IA-32 instruction. For more details refer to Section 9.1, “IA-32 Trap 
Code” on page 2:213.

9.3.4 Taken Branch Traps

When PSR.tb enables taken branch trapping on Itanium architecture-based 
applications, each taken branch will transfer control to the Taken Branch Trap handler. 
When PSR.tb is set, taken IA-32 branches transfer control to the 
IA_32_Exception(Debug) trap handler taken after each IA-32 instruction. For more 
details refer to Section 9.1, “IA-32 Trap Code” on page 2:213.

§
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External Interrupt Architecture 10

The Itanium architecture provides a high performance external interrupt architecture. 
While IA-32 processors commonly use a three wire shared APIC bus, processors based 
on the Itanium architecture utilize a high performance, message-based, point-to-point 
protocol between processors and multiple I/O interrupt controllers. To ensure that 
processors based on the Itanium architecture can fully leverage the large set of existing 
platform infrastructure and I/O devices, compatibility with existing platform 
infrastructure is provided in the form of direct support for Intel 8259A compatible 
interrupt controllers and limited support for level sensitive interrupts.

This chapter introduces the basic external interrupt mechanism provided by the 
architecture, while Section 5.8, “Interrupts” provides the complete architectural 
definition for the Itanium external interrupt architecture. 

10.1 External Interrupt Basics

Interrupts are identified by their vector number. The vector number implies interrupt 
priority, and also determines whether the interrupt is delivered to processor firmware 
as a “PAL-based” interrupt, or whether it is delivered to the operating system as an 
“IVA-based” external interrupt. 

This chapter discusses asynchronous external interrupts only. PAL-based platform 
management interrupts (PMI) are not discussed here. External interrupts are IVA-based 
and are delivered to the operating system by transferring control to code located at 
address CR[IVA]+0x3000. This code location is also known as the external interrupt 
vector and is described on page 2:186. 

Software can distinguish interrupts based on their vector number. Vector numbers 
range from 0 to 255. Vector numbers also establish interrupt priorities as follows:

• Vector numbers below 16 are special, and are architecturally defined in 
Section 5.8.1, “Interrupt Vectors and Priorities” on page 2:118. The non-maskable 
interrupt (NMI) is always vector 2 and is higher priority than all in-service external 
interrupts. ExtINT, Intel 8259A compatible external interrupt controller interrupt, is 
always vector 0. Vector numbers below 16 have higher priority than vectors above 
16. Vector 15 is used to indicate that the highest priority pending interrupt in the 
processor is at a priority level that is currently masked or there are no pending 
external interrupts. 

• For vector numbers between 16 and 255, higher vector numbers imply higher 
priority. In this range, vectors are freely assignable by software. This is achieved by 
programming of interrupt controllers and the processor internal interrupt 
configuration registers.
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10.2 Configuration of External Interrupt Vectors

As defined in Section 5.8, “Interrupts” on page 2:114, external interrupts originate 
from one of four sources:

• From external sources, e.g. external interrupt controllers or intelligent external I/O 
devices, or

• From the processor’s LINT0 or LINT1 pins1 (typically connected to an Intel 8259A 
compatible interrupt controller), or

• From internal processor sources, e.g. timers or performance monitors, or

• From other processors, e.g. inter-processor interrupts (IPIs).

All interrupts are point-to-point communications. There is no facility for broadcasting of 
interrupts. The interrupt message protocol used by the processor-to-processor and the 
external source-to-processor is not defined architecturally, and is not visible to 
software.

A number of external interrupt control registers (LID,TPR, ITV, PMV, CMCV, LRR0 and 
LRR1) allow software to directly configure the processor interrupt resources. The Local 
ID register (LID) establishes a processor’s unique physical interrupt identifier. The Task 
Priority Register (TPR) allows masking of external interrupts based on vector priority 
classes. The ITV, PMV, CMCV, LRR0 and LRR1 external interrupt control registers 
configure the vector number for the processor’s local interrupt sources. Configuration of 
the external controllers and devices is controller-/device-specific, and is beyond the 
scope of this document.

10.3 External Interrupt Masking

The Itanium architecture provides four mechanisms to prevent external interrupts from 
being delivered to a processor: a bit in the processor status register (PSR.i), the 
interrupt vector register (IVR) and the end-of-interrupt (EOI) register, the task priority 
register (TPR), and the external task priority register (XTPR). The next four sections 
discuss these mechanisms.

10.3.1 PSR.i

When PSR.i is zero, the processor does not accept any external interrupts. However, 
interrupts continue to be pended by the processor. Software can use PSR.i to 
temporarily disable taking of external interrupts, e.g. to ensure uninterruptable 
execution of critical code sections. Since clearing of PSR.i takes effect immediately 
(refer to the rsm instruction page), software is not necessarily required to explicitly 
serialize clearing of PSR.i (unless another processor resource requires serialization). On 

1. Processors optionally support two external interrupt pins. Software can query for the presence of
LINT pins via the PAL_PROC_GET_FEATURES procedure call.
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the way out of an uninterruptable code section software is not required to serialize the 
setting of PSR.i either, unless it is of interest to software to be able to take interrupts in 
the very next instruction group. A code example for this case is given below: 

rsm i ;;
// rsm of PSR.i takes effect on the next instruction

// uninterruptable code sequence here

ssm i ;;
// ssm of PSR.i does require data serialization, if we need to ensure
// that external interrupts are enabled at the very next instruction. If 
// data serialization is omitted, PSR.i is set to 1 at the latest when
// the next exception is taken.

By avoiding the serialization operations on PSR.i the performance of such 
uninterruptable code sections is improved.

10.3.2 IVR Reads and EOI Writes

As described in Section 10.4, IVR reads return the highest priority, pending, unmasked 
vector, and places this vector “in-service.” Additionally, IVR reads have the side-effect 
of masking all vectors that have equal or lower priority than one that is returned by the 
IVR read. Correspondingly, writes to the EOI register unmask all vectors with equal or 
lower priority than the highest priority “in-service” vector. Due to nesting of higher 
priority interrupts, it is possible to have multiple vectors in the “in-service” state.

10.3.3 Task Priority Register (TPR)

The Task Priority Register (TPR) provides an additional interrupt masking capability. It 
allows software to mask interrupt “priority classes” of 16 vectors each by specifying the 
mask priority class in the TPR.mic field. The TPR.mmi field allows masking of all 
maskable external interrupts (essentially all but NMI). 

An example of TPR use is shown in Section 10.5.2, “TPR and XPTR Usage Example” on 
page 2:608.

10.3.4 External Task Priority Register (XTPR)

The External Task Priority Register (XTPR) is a per-processor resource that can be 
provided by external bus logic in some Itanium architecture-based platforms. If 
supported by the platform, XTPR can be used by the operating system to redirect 
external interrupts to other processors in a multiprocessor system. 

The XTPR is updated by performing a 1-byte store to the XTP byte which is located at 
an offset of 0x1e0008 in the Processor Interrupt Block (see Section 5.8.4, “Processor 
Interrupt Block” for details). Since the timing of the modification of the XTP register is 
not time critical there is no serialization required. Effects of the one byte store 
operation are platform specific. Typically, it will generate a transaction on the system 
bus identifying it as an XTP register update transaction, and will indicate which 
processor generated the transaction as well as the stored data.

An example of XTPR use is included in Section 10.5.2, “TPR and XPTR Usage Example” 
on page 2:608.
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10.4 External Interrupt Delivery

The architectural interrupt model in Section 5.8 defines how each interrupt vector 
cycles through one of four states:

• Inactive: there is no interrupt pending on this vector.

• Pending: an interrupt has been received by the processor on this vector, but has 
not been accepted by the processor and has not been acquired by software. The 
processor hardware will accept the interrupt when this vector’s priority level is 
higher than the highest currently in-service vector, PSR.i is one, and TPR settings 
do not mask the interrupt. This will cause the processor to transfer control flow to 
the external interrupt handler. Software can then acquire the highest priority, 
pending, unmasked vector by reading the IVR control register. The IVR read returns 
the 8-bit vector number in a register and masks all vectors that have equal or lower 
priority. This vector now enters the In-Service/None Pending state.

• In-Service/None Pending: an interrupt has been received by the processor on this 
vector, and has been acquired by software (by reading the IVR control register), but 
software has not completed servicing this interrupt. In this state, the processor 
masks all vectors that have equal or lower priority. In this state, the processor can 
receive and remember a second interrupt on this vector. If this happens, the 
processor transitions this vector to the “In-Service/One Pending” state. If software 
completes the interrupt service routine (indicated to the processor by writing the 
EOI register) before another interrupt is received on this vector, then the processor 
returns this vector to the Inactive state, and all vectors with equal or lower priority 
are unmasked.

• In-Service/One Pending: an interrupt has been received by the processor on this 
vector, and has been acquired by software (by reading the IVR control register), 
and software has not completed servicing this interrupt. Additionally, the processor 
received a second interrupt on this vector, which is now held pending. If additional 
interrupts on this vector are received by the processor while this vector is in the 
“In-Service/One Pending” state, those additional interrupts are not distinguishable 
by the processor hardware. When software completes the interrupt service routine 
for the original interrupt on this vector (indicated to the processor by writing the 
EOI register), then the processor returns this interrupt vector to the Pending state 
for the second interrupt that was received on this vector. Additionally, all vectors 
with equal or lower priority are unmasked.

It is recommended the following structure for an Itanium architecture-based external 
interrupt handler:

1. Read and Save TPR, i.e. save Old Task Priority variable (optional).

2. External Interrupt Harvest Loop:

a. Read the IVR control register to determine which vector is being delivered. If 
the returned IVR value is 15, then this is a spurious interrupt and it can be 
can ignored; software can now clear PSR.ic, restore IPSR and IIP and then 
rfi to the interrupted context. If the returned IVR value is not 15, continue 
with step 2b.

b. Raise TPR register to the interrupt class to which the level read out of IVR 
belongs (optional).
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c. Software must preserve IIP and IPSR prior to re-enabling PSR.ic and PSR.i 
which will re-enable taking of exceptions and higher priority external 
interrupts.

d. Issue a srlz.d instruction. This ensures that updated PSR.ic and PSR.i 
settings are visible, and it also makes sure that the IVR read side effect of 
masking lower or equal priority interrupts is visible when PSR.i becomes 1.

e. Dispatch the appropriate interrupt service routine.

f. Disable external interrupts by clearing PSR.i with an rsm 0x4000 
instruction.This ensures that external interrupts are disabled prior to the EOI 
write in the next step.

g. Notify the processor that interrupt handling for this vector is completed by 
writing to the EOI register. This will unmask any pending lower priority 
interrupts. If this was a level triggered interrupt, write to the I/O SAPIC EOI 
register.

h. Lower TPR register to Old Task Priority (optional).

i. Issue a srlz.d instruction. This ensures that ensure the EOI write from step 
2g is reflected in the future IVR read (in step 2a). It also ensures that the TPR 
update from step 2h unmasks any interrupts in the priority classes (including 
the current task priority level) that were masked by the previous value of 
TPR.

j. Return to top of loop (step 2a).

These steps assume that the routine’s caller already performed the required state 
preservation of interruption resources. Therefore the focus of the steps above is to 
check the IVR to acquire the vector so the operating system can determine what device 
the interrupt is associated with. The code is setup to loop, servicing interrupts until the 
spurious interrupt vector (15) is returned. Looping and harvesting outstanding 
interrupts reduces the time wasted by returning to the previous state just to get 
interrupted again. The benefit of interrupt harvesting is that the processor pipeline is 
not unnecessarily flushed and that the interrupted context is only saved/restored once 
for a sequence of external interrupts. Once the vector is obtained the specific interrupt 
service routine is called to service the device request. Upon return from the interrupt 
service routine, an EOI is written and the IVR is checked once again.

If the operating system does not implement priority levels then there is no need to save 
and restore the task priority level (steps 1, 2b, and 2h are optional). As described in 
Section 10.3 above, an IVR read automatically masks interrupts at the current 
in-service level and below until the corresponding EOI is issued. For level triggered 
interrupts, the programmer must not only inform the processor, but the external 
interrupt controller that the level triggered interrupt has been serviced.

10.5 Interrupt Control Register Usage Examples

The examples in this section provide an overview of using the Itanium external 
interrupt control registers. Actual and pseudo code fragments are listed to aid in the 
development of OS code which will utilize these registers. It is up to the operating 
system and its writer to determine what minimum set of control registers are required 
to be used.
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10.5.1 Notation

Preprocessor macros for function ENTRY and END are used in the examples to reduce 
duplication of code and reduce document space requirements.
#define ENTRY(label) \

 .text; \
 .align 32;; \
 .global label; \
 .proc label; \

label::

#define END(label) .endp

10.5.2 TPR and XPTR Usage Example

This code will allow certain interrupts to be masked by increasing/decreasing the task 
priority register. If you don’t want to mask all external interrupts, you can raise the 
priority level to mask out only the interrupts that have higher priority (and no effect on 
your current critical section).

We also take the expensive route here by updating not only the processor TPR, but the 
External Task Priority Register used by the chipset (if supported) as a hint to what 
processor should receive the next external interrupt. 
//
// routine to set the task priority register to mask
// interrupts at the specific level or below
//
// INPUT: SPL level
//

TPR_MIC=4
TPR_MIC_LEN=4

.global external_task_pri_reg// address points to Interrupt Delivery block

ENTRY(set_spl)
alloc r18=ar.pfs,1,0,0,0
dep.z r22=r32,TPR_MIC,TPR_MIC_LEN
movl r19=external_task_pri_reg
;;
mov cr.tpr=r22
ld8 r20=[r19] // get address of EXt. TASK Priority Register
;;
srlz.d // srlz.d only required if want TPR update effective 

immediately
st1 [r20]=r32 // if supported by platform: update eXternal Task Priority 

(XTP)
br.ret.sptk b0
;;

END(set_spl)
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10.5.3 EOI Usage Example

This example is a typical return from an interrupt service routine to the generic 
interrupt handler. Interrupts are disabled before returning to the main trap handler in 
preparation for returning from kernel space.

 
return_from_interrupt:
// disable interrupts here

rsm 0x4000 // make sure interrupts disabled

// interrupt_eoi# clear the sapic/pic interrupt
sapic_eoi:

mov cr.eoi=r0      // issue and eoi
;;
srlz.d // make sure it takes effect

// issue the appropriate EOI sequence to the external interrupt
// controller here.

For level trigger interrupts, the OS is required to issue an EOI not only to the processor, 
but also the external interrupt controller where the interrupt originated. This forces the 
OS to keep track of whether the vector is associated with a level or an edge trigger 
interrupt line.

10.5.4 IRR Usage Example

Waiting on an interrupt with interrupts disabled.

my_interrupt_loop::
//
// check for vector 192 (0xc0) via irr3
//

mov     r3=cr.irr3
;;
and     r3=0x1,r3
;;
cmp.eq p6,p7=0x1,r3

(p7)br.cond.sptk.few   my_interrupt_loop
;;
mov     r4=cr.ivr       // read the vector
;;
mov     cr.eoi=r0       // clear it 
;;

10.5.5 Interval Timer Usage Example

The Itanium architecture provides a 64 bit interval timer for elapsed time notification 
interrupts. It is similar to the IA-32 Time Stamp Counter (TSC). Programming the 
Itanium interval timer consists of initializing the ITV (CR 72), ITM (CR 1), and ITC (AR 
44).

The Interval Timer Vector (ITV) specifies the external interrupt vector number for the 
Interval Timer Interrupts. The code examples below show how to clear and initialize the 
timers vector, match register, and count registers.
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The Interval Time Counter (ITC) gets updated at a fixed relation to the processor clock. 
The ITM, Interval Timer Match, is used to determine when a interval timer interrupt is 
generated. When the ITC matches the ITM and the timer is unmasked via ITV then an 
interrupt will be generated.

//
// routine to reset the interval timer to zero..
//

ENTRY(em_timer_reinit)
mov    ar.itc=r0 // reset itimer counter
br.ret.spnt.few rp

END(em_timer_reinit)

//
// routine to setup the interval timer.
//
// 1) setup the interval timer vector
// 2) initialize the time counter to zero
// 3) initialize the match register 
//
// INPUTS: timermatch -- value to initialize ITM register with.
// vector number -- vector to interrupt with
// OUTPUTS: none
//
ENTRY(enable_minterval)

alloc r14=ar.pfs,0x2,0,0,0 // get ready for input parameters
mov ar.itc=r0 // initialize counter to zero
;;
mov cr.itm=r32 // set match register
;;
srlz.d 
mov cr.itv=r33 // set interval timer vector
;;
srlz.d // make sure it goes through
br.ret.sptk.few rp // return
.endp

Since the ITC gets updated at a fixed relation to the processor clock, in order to find out 
the frequency at run time, one can use a firmware call to obtain the input frequency 
information to the interval time. Using this frequency information the ITM can be set to 
deliver an interrupt at a specific time interval (i.e. for operating system scheduling 
purposes). Assuming the frequency information returned by the firmware is in ticks per 
second, the programmer could use a time-out delta for delivering a timer interrupt 
every 10 milliseconds as follows:

timeout_delta=ticks_per_second/100;

where ticks_per_second is the frequency value returned by the firmware and 
timeout_delta will be the value added to the ITC for setting the next ITM. Therefore, the 
ITC is left free running, but the ITM must be updated upon every timer interrupt with its 
next time out match value, i.e. ITM = ITC + timeout_delta.

The only issue with this setup is if the timer interrupt delivery is delayed beyond the 
point of the original intended delivery time (i.e. ITC > ITM). This could happen if 
interrupts were disabled or blocked by the operating system/device driver longer than 
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the time-out value. In this case the ITM has to be adjusted in order for the next ITM to 
be accurate. The following algorithm could be used to adjust the next ITM before 
returning from the timer interrupt handler.

for (;;) {
itm_next = itm_next + timeout_delta + (read current ITC - read current ITM);
if (itm_next < current ITC) {

/* we missed the next interrupt already, continue */
} else {

set_itm(itm_next);
break;

}
}

where itm_next was initialized to current ITC + timeout_delta, and set_itm in Itanium 
architecture-based assembly would look like:

.global set_itm

.proc set_itm
set_itm:

alloc r18=ar.pfs,1,0,0,0
mov cr.itm=r32
;;
srlz.d
br.ret.sptk b0
;;

.endp set_itm

10.5.6 Resource Utilization Counter Usage Example

The Itanium architecture provides a 64-bit counter to provide information on how many 
execution cycles a given logical processor is getting. It is similar to the Interval Timer 
(ITC, AR 44), except that it is clocked only when the logical processor is active. 
Optimizations such as hardware multi-threading and processor virtualization may cause 
a logical processor to sometimes be inactive. The Resource Utilization Counter allows 
for better cycle accounting for logical processors, given these types of optimizations.

RUC should only be written by Virtual Machine Monitors; other Operating Systems 
should not write to RUC, but should only read it.

10.5.7 Local Redirection Example

The Local Redirection Registers (LRR0-1) serves to steer external signal-based 
interrupts that are directly connected to the processor. LRR0 and LRR1 control the 
external interrupt signals (pins) referred to as Local Interrupt 0 (LINT0) and Local 
Interrupt 1 (LINT1) respectively. The example below shows how to mask interrupt 
delivery on LINT0.

movl r18=(1<<16)
;;
mov cr.lrr0=r18
;;
srlz.d  // srlz.d is required after LRR write to ensure write effect

Note: LINT0 and LINT1 pins are not required to be supported. Writes to LRR0-1 con-
trol registers would have not effect, and reads from LRR0-1 control registers 
would return 0.
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10.5.8 Inter-processor Interrupts Layout and Example

A processor generates an inter-processor interrupt (IPI) by storing a 64-bit interrupt 
command to an 8-byte aligned address in the Interrupt delivery region of the Processor 
Interrupt block. The address being stored to determines what target processor receives 
the IPI. The example below is an example of sending an interrupt to a specific 
processor based on the destination ID passed in. The destination ID consists of the 
Local interrupt ID and the Extended interrupt ID.

Writing to improperly aligned addresses in the delivery region or failure to store less 
than 64 bits can result in an invalid operation fault. The access must be uncacheable in 
order to generate an IPI.

//
// send_ipi_physical (dest_id, vector)
//
// inputs: processor destination ID vector to send
// (Local ID (8 bits << 8)| EID ( 8 bits))
//         
//
//

.global ipi_block   // pointer to processor I/O block

IPI_DEST_EID=0x4

ENTRY(send_ipi_physical)
alloc r19=ar.pfs,2,0,0,0
movl r17=ipi_block;;
ld8 r17=[r17]      // get pointer to processor block
shl r21=r32,IPI_DEST_EID;;
add r20=r21,r17;; // point to proper processor
st8.rel [r20]=r33 // send the IPI
br.ret.sptk b0;;

END(send_ipi_physical)

10.5.9 INTA Example

External interrupt controllers, that are compatible with the Intel 8259A interrupt 
controller can not issue interrupt messages, so the vector number is not available at 
the time of the interrupt request. When an interrupt is accepted the software must 
check to see if it came from an external controller by the vector number (via IVR) to 
see if it is the ExtINT vector. 
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Once the software determines it is an ExtINT, it must obtain the actual vector by doing 
an uncached 1-byte load from the INTA byte located in the upper half of the processor 
interrupt block, offset 0x1e0000 from the base.

EXTINT=r0
INTA_PHYS_ADDRESS=0x80000000fefe0000
inta_address=r31

movl inta_address=INTA_PHYS_ADDRESS
;;
srlz.d // make sure everything is up to date
mov r14 = cr.ivr // read ivr
;;
srlz.d          // serialize before the EOI is written...
;;
cmp.ne p1,p2 = EXTINT,r14 ;;

(p1)br.cond.sptk process_interrupt
;;

//
// A single byte load from the INTA address should cause
// the processor to emit the INTA cycle on the processor
// system bus. Any Intel 8259A compatible external interrupt 
// controller must respond with the actual interrupt 
// vector number as the data to be loaded.
//
//

ld1 r17 = [inta_address] // get the real vector..
;;

// vector obtained

process_interrupt:

§
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I/O Architecture 11

I/O devices can be accessed from Itanium architecture-based programs using regular 
loads and stores to uncacheable space. While cacheable Itanium memory references 
may be reordered by the processor, uncacheable I/O references are always presented 
to the platform in program order. This “sequentiality” of uncacheable references is 
discussed in Section 2.2.2, “Memory Attributes” on page 2:524 and in more detail in 
Section 4.4.7, “Sequentiality Attribute and Ordering” on page 2:82.

Additionally, uncacheable memory pages are defined to be “non-speculative” which 
causes all data and control speculative loads to uncacheable pages to defer. Control 
speculative loads to uncacheable memory return a NaT/NaTVal to their target register. 
Data speculative loads to uncacheable memory return zero to their target register. For 
details, refer to Section 4.4.6, “Speculation Attributes” on page 2:79.

When configuring chipset registers or setting up device registers, it is sometimes 
required to know when a memory transaction has been completed. Completion means 
the processor received acknowledgment that the transaction finished successfully in the 
platform, and that all its side-effects have occurred and will be visible to the next 
memory operation (issued by the same processor). To ensure completion of prior 
accesses on the platform, the Itanium architecture provides the mf.a instruction. Unlike 
the mf instruction that waits for visibility of prior operations, the mf.a waits for 
completion of prior operations on the platform. More details in Section 11.1.

To fully leverage the large set of existing platform infrastructure and I/O devices, the 
architecture also supports the IA-32 platform I/O port space. The Itanium instruction 
set does not provide IN and OUT instructions, but they can be emulated. The I/O port 
space can be mapped into user-space, and IA-32 applications can use IN and OUT 
instructions to directly communicate with the I/O port space. More details in 
Section 11.2.

The Itanium architecture provides a high-performance, high-bandwidth uncacheable 
memory attribute that supports write-coalescing. This allows the processor to burst 
writes to uncacheable locations at much higher bandwidth. The Itanium architecture 
does not guarantee the FIFO delivery of write-coalescing stores. More details in 
Section 4.4.5, “Coalescing Attribute” on page 2:78.

11.1 Memory Acceptance Fence (mf.a)

An mf instruction ensures that all cache coherent agents have observed all prior 
memory operations made by the processor issuing the mf. However, it does not ensure 
that those operations have completed, in the Itanium architecture parlance it does not 
ensure that they have been “accepted” by the external platform. For instance, a load 
may have been made visible to all processors by snooping their caches, but the data 
return may still be in progress. Such a load would be visible, but not complete.
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The mf.a instruction on the other hand ensures that all prior data memory references 
made by the processor issuing the mf.a have been “accepted” by the external platform. 
However by itself the mf.a does not guarantee that all cache coherent agents have 
observed all prior memory operations. For instance, an uncacheable store to a chipset 
register may have completed on the system bus, however, that does not entail that all 
prior cacheable transactions (from the processor issuing the store) have been observed 
by all other processors in the coherence domain.

If software needs to ensure that all prior memory operations have been accepted by the 
platform and have been observed by all cache coherent agents, both an mf.a and an 
mf instruction must be issued. The mf.a must be issued first, and the mf must be issued 
second. For more details on memory ordering between cache coherent agents please 
refer to Chapter 2, “MP Coherence and Synchronization.” 

Typically mf.a is used to configure a system’s I/O space, e.g. to setup chipset registers 
that affect all subsequent memory operations. Specifically, the mf.a instruction 
restrains further data accesses from initiating on the external platform interface until:

1. All previous sequential (i.e. non write-coalescing uncacheable) loads have been 
returned data, and

2. All previous stores have been “accepted” by the platform. Typically acceptance is 
indicated by a bus-specific signals/phase, e.g. completion of response phase on 
the system bus.

Architecturally, the definition of “acceptance” is platform dependent. The next section 
discusses the usage of the mf.a instruction in the context of the I/O port space. 

11.2 I/O Port Space

IA-32 processors support two I/O models: memory mapped I/O and the 64KB I/O port 
space. To support IA-32 platforms, the Itanium architecture allows operating systems 
to map the 64KB I/O port space into the 64-bit virtual address space. This allows 
Itanium architecture-based operating systems to see all I/O devices as a single unified 
memory mapped I/O model, and permits “normal” Itanium load and store instructions 
as well as IA-32 IN and OUT instructions to directly access the I/O port space.

As described in Section 10.7, “I/O Port Space Model” on page 2:267, Itanium 
architecture-based operating systems can map the physical 64KB I/O port space into a 
spread-out 64MB block of virtual address space. The virtual base address of the I/O 
port space (IOBase) is maintained by the operating system in kernel register KR0. 
When the processor issues Itanium load and stores accesses to the I/O port space, a 
port’s virtual address is computed as:
port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

For Itanium loads and stores, this address computation places four 1-byte ports on 
each 4KB page and expands the space to 64MB, with the ports being at a relative offset 
specified by port{11:0} within each 4KB virtual page. When executing an IA-32 IN or 
OUT instruction a processor based on the Itanium architecture automatically converts 
the IA-32 address to the appropriate expanded I/O port space address.
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As a result of the spreading-out of the I/O ports into individual 4KB pages, Itanium 
architecture-based operating system code can control IA-32 IN, OUT instruction and 
IA-32 or Itanium load/store accessibility to blocks of 4 virtual I/O ports using the TLBs. 
This allows Itanium architecture-based operating systems to securely map devices that 
inhabit the I/O port space to different Itanium architecture-based device drivers or to 
user-space Itanium architecture-based applications.

Itanium architecture-based operating systems must ensure that the I/O port space is 
always mapped as uncacheable memory, and that Itanium architecture-based software 
only issues aligned 1, 2 or 4 byte references to I/O port space, otherwise device 
behavior is undefined.

When porting an IA-32 device driver to the Itanium architecture it can be useful to 
emulate the behavior of IA-32 IN and OUT instructions. The following code examples 
should be used for this purpose, since they enforce the strict memory ordering and 
platform acceptance requirements that IA-32 IN and OUT instructions are subject to. 
The following Itanium architecture-based assembly code outb (out byte) and inb (in 
byte) examples assume that the io_port_base is the virtual address mapping pointer 
set up by the IA_64 operating system. An mf.a instruction is used to verify acceptance 
by the platform before returning to the calling routine. Interrupts would expected to be 
disabled if these routines are called from user mode. This is for possible issues with 
process migration after servicing an interrupt.
//
// void outb(unsigned char *io_port,unsigned char byte)
//
//Output a byte to an I/O port.
//
ENTRY(outb)

base_addr = r16
port_addr = r17
port_offset = r18
mask = r19

alloc   r13 = ar.pfs, 2, 0, 0, 0        // 2 in, 0 local, 0 out, 0 rot
movl    base_addr = io_port_base
extr.u  port_offset = in0, 2, 14
mov     mask = 0xfff
;;
ld8     port_addr = [base_addr]
shl     port_offset = port_offset, 12
and     in0 = mask, in0
;;
add     port_offset = port_offset, in0
;;
mf
add     port_addr = port_addr, port_offset
;;
st1.rel [port_addr] = in1
mf.a
mf
br.ret.spnt.few rp

END(outb)

//
// unsigned char inb(unsigned char *io_port)
//
// Input a byte from an I/O port.
//
ENTRY(inb)

base_addr = r16
port_addr = r17
port_offset = r18
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mask = r19

alloc   r13 = ar.pfs, 2, 0, 0, 0        // 2 in, 0 local, 0 out, 0 rot
movl    base_addr = io_port_base
extr.u  port_offset = in0, 2, 14
mov     mask = 0xfff
;;
ld8     port_addr = [base_addr]
shl     port_offset = port_offset, 12
and     in0 = mask, in0
;;
add     port_offset = port_offset, in0
;;
mf
add     port_addr = port_addr, port_offset
;;
ld1.acq r8 = [port_addr]
mf.a
mf
br.ret.spnt.few rp

END(inb)

§
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Performance Monitoring Support 12

Processors based on the Itanium architecture include a minimum of four performance 
counters which can be programmed to count processor events. These event counts can 
be used to analyze both hardware and software performance. Performance counters 
can be configured to generate a counter overflow interrupt. This interrupt can be used 
for event- or time-based profiling. For hot-spot analysis of running code, performance 
monitor interrupts can be used to create a profile of frequently occurring instruction 
pointers (IP). Another common use of event counts is to compute processor 
performance metrics such as cycles per instructions (CPI), the current branch, cache or 
TLB miss rates, etc.

The Itanium architecture provides architected support for context switching of 
performance monitors by an Itanium architecture-based operating system. If supported 
by the operating system, this allows performance counter events to be broken down 
per thread or per process which is important for effective performance tuning of 
Itanium architecture-based applications. 

The remainder of this chapter reviews the architected performance monitoring 
mechanisms. It also discusses the Itanium architecture-based operating system 
support needed for two monitoring usage models: per process/thread and system-wide 
event monitoring.

12.1 Architected Performance Monitoring Mechanisms

As defined in Section 7.2, “Performance Monitoring” on page 2:155, processors based 
on the Itanium architecture provide a minimum of four generic performance counter 
pairs (PMC/PMD[4..7]). The performance monitor control (PMC) registers are used to 
select the event to be counted, and to define under what conditions the event should 
qualify for being counted (for details refer to Section 7.2.1, “Generic Performance 
Counter Registers” on page 2:156). The performance monitor data (PMD) registers 
contain the event count or data.

The PMC/PMD registers can only be written by privileged software (PSR.cpl must be 
zero). A counter can be configured as a “privileged” counter or a “user-level” counter by 
setting of the PMC[i].pm bit. Privileged counters can only read at privilege level 0, while 
user-level counters can by read by user mode code (unless the operating system has 
explicitly disabled the user-level monitor reads using PSR.sp).

Once the PMC/PMD registers have been configured, counting is enabled and disabled by 
setting bits in the PSR. User-level counters can be controlled at user-level using the 
rum and sum instructions to toggle PSR.up. Privileged counters are controlled by 
privileged software using the rsm, ssm, mov from/to PSR instructions to toggle PSR.pp. 
Counting for all counters is further controlled by the PMC[0] freeze bit. When PMC[0].fr 
is 0, all counters are disabled. When PMC[0].fr is 1, counting is enabled based on 
PMC[i].pm, PSR.pp and PSR.up. For more details on controlling of the performance 
monitors please refer to Section 7.2.1, “Generic Performance Counter Registers” on 
page 2:156.
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The PAL firmware provides information about the performance monitor registers that 
are implemented on the processor through the PAL_PERF_MON_INFO PAL call. 
Information provided by the PAL includes bit masks which indicate which PMC/PMD 
registers are implemented on this processor model, as well as the implemented number 
of generic PMC/PMD pairs, and the counter width of the generic counters.

12.2 Operating System Support

The monitoring mechanisms discussed in the previous section support two performance 
monitoring usage models that need support from an Itanium architecture-based 
operating system.

• Per Thread/Process Event Monitoring

To monitor processor events per thread the operating system needs to save and restore 
performance monitor state at thread/process context switches. This save/restore of 
PMC and PMD registers only needs to be done for monitored threads. The effect of the 
save/restore is that when a monitored thread is running, PMD reads will reflect events 
for the monitored thread/process only. Section 7.2.4.2, “Performance Monitor Context 
Switch” defines the steps required for per-thread context switch of performance 
monitors. It is worth noting that the PMC/PMD masks returned from 
PAL_PERF_MON_INFO indicate which PMC/PMD registers are implemented. The context 
switch routine can use the mask to save/restore implemented monitors without 
knowing the function of the monitors.

• System Wide Event Monitoring

To monitor processor events system wide (across all processes and the operating 
system kernel itself), a monitor must be enabled continuously across all contexts. This 
can be achieved by configuring a privileged monitor (PMC.pm=1), and by ensuring that 
PSR.pp and DCR.pp remain set for the duration of the monitor session. Since the 
operating system typically reloads PSR and possibly DCR on context switch, this 
requires the operating system to set PSR.pp and DCR.pp for all contexts that are active 
during the monitoring session. One way to accomplish this is to have code in the 
context switch routine to always set PSR.pp and DCR.pp when system wide monitoring 
is in effect. Another technique is to set the initial state for all new threads/processes to 
PSR.pp=1, PSR.up=0, PSR.sp=0 and DCR.pp=1. Setting the per thread PSR and DCR 
in this way ensures that privileged monitors will be enabled across all contexts. When 
system wide monitoring is in effect, PSR.pp, DCR.pp as well as the PMC and PMD 
registers should not be altered by the context switch routine. 

To support both per thread and system wide monitoring, the operating system needs to 
be aware which type of monitoring is being performed at any given moment. If per 
thread/process monitoring is active, then the operating system must save/restore 
monitor state for monitored threads. If system wide monitoring is active, then the 
operating system must ensure that PSR.pp and DCR.pp remain set.

The preferred approach for performance monitoring is for Itanium architecture-based 
operating systems to provide a set of kernel mode services that allow performance 
monitoring software to be implemented in a loadable device driver. Such a loadable 
device driver can support various usage monitoring models, can be adapted to 
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model-specific processor monitoring capabilities, and is a well-defined isolated and 
easily replaceable software component. The following operating system services allow a 
kernel mode device driver to take full advantage of the performance monitors:

• Allocation/Free Performance monitors – operating system should delegate 
management of the performance monitor resources to device driver. 

• Process create/terminate notification – operating system should notify driver on 
process create/terminate.

• Thread create/terminate notification – operating system should notify driver on 
thread create/terminate.

• Context switch notification – operating system should notify driver on thread and 
process context switch. The driver will perform the required save/restore depending 
on the currently active usage model. 

• Performance counter overflow interrupt – operating system should notify driver 
when a performance monitor overflow interrupt occurs.

• Get Current Process Identifier – returns a unique identifier for the current process 
or address space. This should be callable in any context, e.g. by an interrupt 
handler.

• Get Current Thread Identifier – returns a unique identifier for the current thread of 
execution. This should be callable in any context, e.g. by an interrupt handler.

One of the challenges when doing instruction pointer (IP) profiling is to relate the 
current IP to an executable binary module and to an instruction within that module. If 
appropriate symbol information is available, the IP can be mapped to a line of source 
code. 

To support this IP to module mapping, it is recommended that the OS provide services 
to enumerate all kernel and user mode modules in memory, and to allow a kernel mode 
driver to be notified of each module load. The following services are recommended:

• Enumerate kernel mode modules – provides information each kernel mode module 
currently loaded in memory. 

• Enumerate threads/processes – provides a list of current threads/processes. The 
list should include the unique identifier for each thread/process.

• Enumerate all user mode modules – provides information on each user mode 
module that is currently loaded in memory (all processes). 

• Enumerate modules for a process – provides information on each user mode 
module that is currently loaded in memory for the selected process. 

• Module load notification – OS should notify a driver when the OS loads a kernel or 
user mode module into memory for execution. The notification should occur before 
the module begins execution. 

In the above services for module enumeration and load notification, the module 
information provided for a module should include module name, load address, size in 
bytes, section number (if a section of a module is loaded non-contiguously), and a 
process/thread identifier that identifies the process into which the module is loaded.

§
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Firmware Overview 13

Itanium-based systems make use of several firmware components: Processor 
Abstraction Layer (PAL), System Abstraction Layer (SAL), Unified Extensible Firmware 
Interface (UEFI) and Advanced Configuration and Power Interface (ACPI).

The PAL and SAL components work together to handle the reset abort event. The reset 
abort handling performs processor and system initialization for operating system (OS) 
boot and provides an API to the operating system loader. The PAL and SAL firmware 
layers work together to handle machine check aborts (MCA), initialization events 
(INIT), and platform management interrupt (PMI) handling. All firmware components 
also provide runtime procedure calls to abstract processor and platform functions that 
may vary across implementations.

This chapter will provide an overview of the firmware components and how the 
firmware components interact with each other as well as with the operating system. For 
the full architecture specifications of the PAL firmware please refer to Chapter 11, 
“Processor Abstraction Layer.” For full architecture specifications on SAL, UEFI and ACPI 
firmware components please refer to Section 1.2, “Related Documents” on page 2:505.

The PAL layer is developed by Intel Corporation and delivered with the processor. The 
SAL, UEFI and ACPI firmware is developed by the platform manufacturer and provide a 
means of supporting value added platform features from different vendors.

The interaction of the various functional firmware blocks with the processor, platform 
and operating system is shown in Figure 13-1, “Firmware Model” on page 2:624. 

13.1 Processor Boot Flow Overview

13.1.1 Firmware Boot Flow

Upon detection of a reset event on a processor based on the Itanium architecture, 
execution begins at an architected entry point inside of PAL. This PAL code will verify 
the integrity of the PAL code and may perform some basic processor testing. PAL will 
then branch to an entry point within the SAL firmware. This first branch to SAL is to 
determine if a firmware update is needed requiring re-programming of the firmware 
code. If no firmware update is needed SAL will branch back to PAL. 

PAL now performs additional processor testing and initialization. These first processor 
tests are performed without platform memory. PAL indicates the outcome of the testing 
and branches to an entry point within SAL firmware for the second time. SAL will now 
begin platform testing and initialization. The exact division of work between SAL and 
UEFI from that point on is platform implementation dependent. It is required that the 
SAL runtime services, the UEFI boot and runtime services, and the ACPI tables and 
control methods be exposed to the operating systems for correct operation.
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The order of steps within the UEFI/SAL firmware is platform implementation dependent 
and may vary. In general, the UEFI/SAL firmware selects a Bootstrap processor (BSP) in 
multiprocessor (MP) configurations early in the boot sequence. Next, UEFI/SAL will find 
and initialize memory and invoke PAL procedures to conduct additional processor tests 
to ensure the health of the processors. UEFI/SAL then initializes the system fabric and 
platform devices.

The UEFI firmware may incorporate a Boot Manager. The UEFI firmware specification 
[UEFI] enables booting from a variety of mass storage devices such as hard disk, CD, 
DVD as well as remote boot via a network. At a minimum, one of the mass storage 
devices contains an UEFI system partition.

Figure 13-1. Firmware Model
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The UEFI Boot Manager displays the list of operating system choices and permits the 
user to select the operating system for booting. To support this functionality, the OS 
setup program stores the boot paths of the OS loaders and boot options in non-volatile 
storage managed by the UEFI firmware. The UEFI reserves the environment variables 
Boot#### (#### represents values 0000 to 0xFFFF) for this purpose. The OS setup 
program must also store the OS loader binary images within the UEFI System Partition. 
The UEFI Boot Manager will also allow the user to add boot options, delete boot options, 
launch an UEFI application, and set the auto-boot time out value.

The UEFI System Partition also contains UEFI drivers that may be loaded by the UEFI 
firmware prior to transfer of control to an OS loader. The floating-point software assist 
(FPSWA) library is included in a UEFI runtime driver. The FPSWA library may be invoked 
by the OS during floating-point exception faults and traps. Please see Section 8.1.1, 
“Software Assistance Exceptions (Faults and Traps)” on page 2:587 for more 
information on the usage of this library.

If the user elects to boot an Itanium architecture-based operating system, the UEFI 
loads the appropriate OS loader from the UEFI System Partition and passes control to 
it. The OS loader will load other files including the OS kernel from an OS partition using 
the UEFI boot services which provides an API interface to the OS loader.

The OS loader can obtain information about the memory map usage of the firmware by 
making the UEFI procedure call GetMemoryMap(). This procedure provides information 
related to the size and attributes of the memory regions currently used by firmware.

The OS loader will then jump to the OS kernel that takes control of the system. Until 
this point, system firmware retained control of key system resources such as the 
Interrupt Vector Table and provided the necessary interrupt, trap and fault handlers.

Figure 13-2, “Control Flow of Boot Process in a Multiprocessor Configuration” on page 
2:626 depicts the booting steps in a MP configuration.

13.1.2 Operating System Boot Steps

The firmware will initialize the processor(s) and platform to a specific state before 
handing off to the operating system boot loader. The boot loader is then responsible for 
copying the operating system from some storage medium into memory for running. 
Once this is done the operating system will need to initialize some key registers before 
entering into a higher level language code such as C. This section will describe code 
that an OS will need to execute in order to initialize system registers for preparing an 
OS to run in virtual mode and handle interrupts. Appendix A, “Code Examples” provides 
the Itanium architecture-based sample assembly code described in this section.

Assuming the specific operating system boot loader hands off to the OS kernel in 
physical mode, the operating system should first disable interrupts and interrupt 
collection via the PSR. This is done to avoid taking external interrupts from timers, etc 
and also prepares for writing specific system registers that require PSR.ic to be 0 when 
written.
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Next the operating system startup code invalidates the ALAT via the invala instruction. 
The invala in complete form will invalidate all entries in the ALAT. 

Figure 13-2. Control Flow of Boot Process in a Multiprocessor Configuration 
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The register stack should be invalidated. This can be done by setting the Register Stack 
Configuration Register (RSC) to zero followed by a loadrs instruction. Setting the RSC 
to zero will put the register stack in enforced lazy mode and set the RSC.loadrs, load 
distance to tear point, to zero. The loadrs will invalidate all stacked registers outside 
current frame. 

The region registers and protection key registers are then initialized with operating 
system implementation dependent values. For example, the OS will initialize the region 
register with a preferred page size. It would also disable the VHPT until it was ready for 
it. In the example, all region registers are initialized with an 8-KB page size.

An OS must setup a kernel stack pointer and backing store pointer for the register 
stack. The stack pointer (GR12) is set to the OS kernel stack area with scratch space to 
cover calling conventions. AR.RSC must be set to enforced lazy mode before writing to 
the bspstore register. Initializing the bspstore has effects on all three RSE pointers 
(BSP, BSPSTORE, and RSE.BspLoad).

In order for the operating systems to handle interruptions, the operating system 
interrupt vector table base address must be set up. The size of the vector table is 32K 
bytes and is 32K byte aligned. Setting the location of the table is accomplished by 
moving the address into CR.IVA. 

Operating systems setup system address translations for the kernel text and data by 
using the translation insertion format described in Section 4.1.1.5, “Translation 
Insertion Format” on page 2:53. A combination of a general register, Interruption TLB 
Insertion Register (ITIR), and the Interruption Faulting Address register (IFA) are used 
to insert entries into the TLB. To void TLB faults on specific text and data areas the 
operating system can lock critical virtual memory translations in the TLB by use of 
Translation Register (TR) section of the TLB. The entries are placed into a TR via the 
Insert Translation Register (itr) instruction. The translation will remain unless the 
software issues the Purge Translation (ptr) instruction. Other important areas might be 
locked also, such as entries for memory mapped I/O, etc.

After the initial translations have been entered, the OS can make final preparations for 
enabling virtual addressing. The OS needs to set several important bits in the IPSR, 
such as data address translation (dt), register stack translation (rt), instruction address 
translation (it), enabling interruption collection (ic), and setting the specific register 
bank (bn). 

The Default Control Register (DCR) specifies the default parameters for PSR values on 
interruption, some additional global controls, and whether speculative load faults can 
be deferred. The example defers all speculation faults. Also, if the operating system is 
utilizing the performance monitors then the DCR.pp bit should be set so that on 
interruption the PSR.pp bit will be set.

The global pointer (GR1) should point to the global data area. It must be setup properly 
before using higher level languages such as C. The startup code should also set the 
following registers to zero, the Interruption Function State (CR.IFS, to set frame marker 
to zero), and AR.RNAT (to make sure no NaT bits are set before OS kernel begins using 
the RSE.
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Before enabling virtual addressing, the Interruption Instruction Bundle Pointer (IIP) is 
set to point a virtual address. This is done so when the return from interruption 
instruction (rfi) is executed the instruction fetched will have a virtual address. The rfi 
will switch modes based on IPSR values which are moved into the PSR. The IIP value 
becomes the new IP. 

13.2 Runtime Procedure Calls

The PAL, SAL, and UEFI firmware components provide entry points as runtime 
interfaces to the OS. These runtime interfaces allow the OS to obtain information about 
the processor and platform as well as perform implementation-specific functions on the 
processor and platform. 

The calling conventions for these runtime procedures are documented in the respective 
firmware architecture specifications. For PAL and SAL, the first input argument to the 
procedure call specifies the index of the procedure within the list of supported 
procedures for each firmware layer.

13.2.1 PAL Procedure Calls

PAL procedure calls are classified into two types: static and stacked. The static calls are 
intended for boot-time use before main memory is available or in error recovery 
situations where memory or the RSE may not be reliable. All parameters will be passed 
in the general registers GR28 to GR31 of Bank 1. The stacked registers (GR32 to 
GR127) will not be used for these calls. The static calls can be called at both boot-time 
and runtime.

Stacked register calls are intended for use after memory has been made available. The 
stacked registers are used for parameter passing and local variable allocation. These 
calls also allow memory pointers may be passed as arguments. These calls can be 
made at boot-time after memory has been tested and initialized as well as runtime.

For a listing of all the PAL procedures and their classification please see 
Section 11.10.1, “PAL Procedure Summary” on page 2:354.

All PAL calls are re-entrant and can be executed simultaneously on multiple processors.

13.2.1.1 Making a Static PAL Call

Since the static PAL calls do not use stacked registers, these calls are made as a pure 
jump with branch register B0 containing the address of the bundle to which control will 
return. The following code example describes how to make a static PAL call:
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The sample code is position independent and functions in both physical and virtual 
addressing modes. Since the return address is evaluated by using the runtime 
instruction pointer (IP value), it will run from any address. This attribute is important 
for any relocatable code. 

The address of the PAL procedure entry point is passed to SAL at the hand-off from PAL 
to SAL during reset. SAL will pass this information on to the OS during OS boot as well.

13.2.1.2 Making a Stacked PAL Call

A stacked PAL call uses the stacked registers for argument passing and local variable 
allocation. The stacked PAL calls conform to the calling conventions document [SWC], 
with the exception that general register GR28 must also contain the function index 
input argument. The following code example describes how to make a stacked PAL call.

GetFeaturesCall:

mov r14 = ip // Get the ip of the current bundle
movl r28 = PAL_PROC_GET_FEATURES// Index of the PAL procedure
movl r4 = AddressOfPALProc;;// Address of the PAL proc entry point
ld8 r4 = [r4];;// Read address from local pointer
mov b5 = r4 // Move address into a branch register

// Compute the return address in a position independent manner

addl r14 = (BackHome - GetFeaturesCall),r14;;
mov b0 = r14 // b0 is the return link
mov r29 = r0 // Initialize rest of input arguments
mov r30 = r0 // to zero as required by the
mov r31 = r0 // architecture.

br.sptk b5;; // Make the PAL call.

// PAL will return here when the call is completed

BackHome:
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13.2.1.3 PAL Procedure Calls and Performance

PAL procedure calls are designed for a number of different functions varying from 
boot-time usage before platform memory is available to processor-specific functions 
used during runtime by the OS. PAL runtime procedure calls made by the OS are 
designed to be flexible with minimal overhead. The following features aid in this goal:

• PAL procedure calls are relocatable. This feature is useful for platforms that have 
PAL stored in non-volatile storage, such as flash. During OS boot the PAL 
procedures are copied into RAM which will reduce the memory latency.

• A number of PAL procedure calls are defined to be called in both physical and virtual 
addressing. This allows the caller to make the call in its currently executing 
addressing mode, thus reducing the need to switch between physical and virtual 
addressing. 

13.2.2 SAL Procedure Calls

All SAL procedure calls use the stacked register calling convention. SAL follows the 
floating-point register conventions specified in the calling conventions document 
[SWC], with the exception that SAL does not use the floating-point registers FR32 to 
FR127. This exception eliminates the need for the OS to save these registers across SAL 
procedure calls. 

SAL procedures are non re-entrant. The OS is required to enforce single threaded 
access to the SAL procedures except for the following procedures:

• SAL_MC_RENDEZ, SAL_CACHE_INIT, SAL_CACHE_FLUSH

13.2.3 UEFI Procedure Calls 

UEFI procedure calls are classified into the following two categories: boot services and 
runtime services. The UEFI boot services execute in physical addressing mode only. The 
runtime services can execute in either physical or virtual addressing mode. The UEFI 
boot services are only available during the boot process and are terminated by a call to 

movl r4 = AddressOfPALProc;;// Address of the PAL proc entry point
ld8 r4 = [r4];;// Read address from local pointer
mov b5 = r4 // Move address into a branch register

// Make the PAL_HALT_INFO procedure call. PAL_HALT_INFO uses stacked
register 
// convention and parameters are passed with in0-in3

mov r28 = PAL_HALT_INFO;;// Index of the PAL procedure
mov out0 = r28// r28 and in0 must both contain the 

// index value for stacked PAL calls.
mov out1 = ScratchMem_Pointer// Pointer to the memory argument 
mov out2 = 0x0// Write zero to unused input arguments
mov out3 = 0x0

br.call.sptk.few b0 = b5;;// PAL stacked call

// PAL will return here when the call is completed
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the EfiExitBootServices() procedure. After this call, UEFI boot services may no longer 
be invoked by the OS. The UEFI runtime services execute in physical mode until the OS 
invokes the EFISetVirtualAddress() function to switch the UEFI to virtual mode. After 
this point, the UEFI runtime services may be invoked in virtual mode only. For full 
information on all the UEFI boot and runtime services please refer to the UEFI 
specification [UEFI].

13.2.4 ACPI Control Methods

Advanced Configuration and Power Interface (ACPI) firmware provides a method of 
reporting system resources (up to the boundary of the box) to the operating systems. 
ACPI uses tables to describe system information, features, and methods for controlling 
those features. The ACPI tables list devices on the system board, devices that cannot 
be detected by bus walks, and devices which require the OS for power or temperature 
management. The ACPI control methods use a pseudo-code language called AML (ACPI 
Machine Language). AML is a tokenized language. The OS contains and uses an AML 
interpreter that interprets and executes these methods stored in the ACPI tables.

13.2.5 Physical and Virtual Addressing Mode Considerations

All of the PAL procedures can be called in the physical addressing mode. A subset of PAL 
calls can be made using the virtual addressing mode. For PAL calls that can be invoked 
using virtual addressing mode, it is the responsibility of the caller to map these PAL 
procedures with an ITR as well as either a DTR or DTC. If the caller chooses to map the 
PAL procedures using a DTC it must be able to handle TLB faults that could occur. See 
Section 11.10.1, “PAL Procedure Summary” for a summary of all PAL procedures and 
the calling conventions.

The SAL and UEFI firmware layers have been designed to operate in virtual addressing 
mode. UEFI provides an interface to the OS loader that describes the physical memory 
addresses used by firmware and indicates whether the virtual address of such areas 
need to be registered by the OS with UEFI. The UEFI Specification [UEFI] also provides 
the interfaces for the OS to register the virtual address mappings. In a MP 
configuration, the virtual addresses registered by the OS must be valid globally on all 
the processors in the system. 

The SAL runtime services may be called either in virtual or physical addressing mode. 
SAL procedures that execute during machine check, INIT, and PMI handling must be 
invoked in physical addressing mode. 

The parameters passed to the firmware runtime services must be consistent with the 
addressing environment, i.e. PSR.dt, PSR.rt setting. Additionally, the global pointer 
(gp) register [SWC] must contain the physical or virtual address for use by the 
firmware.

13.2.5.1 SAL Procedures that Invoke PAL Procedures

Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL 
procedures. While invoking these SAL procedures in virtual mode, the OS must provide 
the appropriate translation resources required by PAL (i.e. ITR and DTC covering the 
PAL code area). 
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In general, if SAL needs to invoke a PAL procedure, it will do so in the same addressing 
mode in which it was called by the OS (i.e. without changing the PSR.dt, PSR.rt, and 
PSR.it bits). If a particular PAL procedure can only be invoked in physical mode, SAL will 
turn off translations and then invoke the PAL procedure. SAL will then restore 
translations before returning to the caller. The PAL_CACHE_INIT procedure invoked by 
the SAL_CACHE_INIT is an example of a procedure that would require such an 
addressing mode transition.

13.3 Event Handling in Firmware

The PAL and SAL firmware layers are responsible for handling three events. These 
events are the machine check abort (MCA), the initialization event (INIT) and the 
platform management interrupt (PMI). When the processor detects these events it will 
pass control to PAL for handling. The following sections describe the high level overview 
of the firmware handling of these events.

13.3.1 Machine Check Abort (MCA) Flows

In order to have a highly reliable and fault tolerant computing environment a great deal 
of coordination and cooperation between the system entities (i.e. the processor, 
platform, and system software) is required. The PAL firmware, the SAL firmware, and 
the operating system all work together to meet this goal. This section will provide an 
overview of the machine check abort handling.

When the processor detects an error, control is transferred to the PAL_CHECK 
entrypoint. PAL_CHECK will perform error analysis and processor error correction where 
possible. Subsequently, PAL either returns to the interrupted context or hands off 
control to the SAL_CHECK component. The level of recovery provided by PAL_CHECK is 
implementation dependant and is beyond the scope of this specification. SAL_CHECK 
will perform error logging and platform error correction where possible. Errors that are 
corrected by PAL and SAL firmware are logged and control is transferred back to the 
interrupted process/context. For corrected errors, no OS intervention is required for 
error handling, but the OS is notified of the event for logging purposes through a low 
priority asynchronous corrected machine check interrupt (CMCI). See Section 5.8.3.8, 
“Corrected Machine Check Vector (CMCV – CR74)” for more information on the CMCI. If 
the error was not corrected by firmware, SAL hands off control to the OS_MCA handler.

Within the firmware the entire machine check is handled with virtual address 
translations disabled. However, the OS machine check handler may optionally enable 
virtual addressing and execute most of MCA handler in virtual mode.

Figure 13-3 and Figure 13-4 depict an overview of Itanium machine check processing. 
The control flows are slightly different for corrected and uncorrected machine checks.
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For multiprocessor systems, machine checks are classified as local and global. A global 
MCA implies a system wide broadcast by hardware of an error condition. During a 
global MCA condition, all the processors in the system will be notified of the MCA, 
detected by one or more system components, and each of the processors in the system 
will start processing the MCA in their respective handlers. The SAL firmware and OS 
layers will coordinate the handling of the error among the processors. 

A local MCA has a scope of influence that is limited to the particular processor which 
encountered the error. This local MCA will not be broadcast to other processors in the 
system and will be handled on an individual processor basis. At any point in time, more 
than one processor in the system may experience a local MCA and handle it without 
notifying other processors in the system. 

The next sections will provide an overview of the responsibilities that the PAL, SAL and 
OS have for handling machine checks. These sections are not an exhaustive description 
of the functionality of the handlers but provides a high level description of how the MCA 
handling is split among the different components.

13.3.1.1 Machine Check Handling in PAL

All machine check abort events are first handled in the PAL firmware layer. The 
following provides a brief description of some of the functions of the PAL machine check 
handler:

• Correct processor errors if possible.

Figure 13-3. Correctable Machine Check Code Flow

Figure 13-4. Uncorrectable Machine Check Code Flow
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• Attempt to contain the error by requesting a rendezvous for all processors in the 
system if needed.

• Hand off control to SAL for further processing, such as error logging.

• Return processor error log information upon request by SAL.

• Return to the interrupted context by restoring the state of the processor.

• Notify the OS about corrected machine check conditions through the CMC interrupt.

13.3.1.2 Machine Check Handling in SAL

Before SAL is ready to handle machine checks, it must register with PAL an uncacheable 
memory buffer that PAL can use to save away processor state. This area is known as 
the min-state save area. If a machine check occurs before this memory location has 
been registered, return to the interrupted context is not possible and the machine 
check is not recoverable.

The following provides a description of some of the functions of the SAL machine check 
handler.

• Attempt to rendezvous the other processors in the system on a PAL request.

• Process MCA handling after handoff from PAL.

• Retrieve processor error log information via PAL procedure calls and store this 
information for logging purposes.

• Issue a PAL clear log request to clear the processor error logs, which enables 
further logging.

• Log platform state for MCA and retain it until it is retrieved by the OS.

• Attempt to correct processor machine check errors which are not corrected by PAL.

• Attempt to correct platform machine check errors.

• Branch to the OS MCA handler for uncorrected errors or optionally reset the 
system.

• Return to the interrupted context via a PAL procedure call.

13.3.1.3 Machine Check Abort Handling in OS

Before the OS kernel is ready to handle machine checks, it must register the address of 
the OS_MCA entry point and the GP [SWC] value for the OS_MCA handler with SAL. If 
the OS does not register its entry point, the occurrence of a machine check will cause a 
system reset. In MP configurations, the OS must also register with SAL: 

• A rendezvous interrupt vector which SAL firmware can use to rendezvous the 
processors.

• The mechanism that the OS will employ to wake up the processors at the end of 
machine check processing.

When the OS registers the OS_MCA entry point with SAL, it also supplies the length of 
the code (or at least the length of the first level OS_MCA handler). SAL computes and 
saves the checksum of this code area. Prior to entering OS_MCA, SAL ensures that the 
OS_MCA vector is valid by verifying the checksum of the OS_MCA code. Hence, the 
OS_MCA code must not contain any self modifying code. 
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When an uncorrected machine check event occurs, SAL will invoke the OS_MCA 
handler. The functionality of this handler is dependent on the OS. At a minimum, it 
must call a SAL procedure to retrieve the error logging and state information and then 
call another SAL procedure to release these resources for future error logging and state 
save.

When the OS_MCA code completes, it decides whether or not to return to the 
interrupted context. The OS must take into account the state information retrieved 
from the SAL with respect to the continuability of the processor and system. Thus, even 
if the OS could correct the error, if PAL or SAL reports that it did not capture the entire 
processor context, resumption of the interrupted context will not be possible.

The OS must also determine from values stored by PAL in the min-state save area 
whether the machine check occurred while operating with PSR.ic set to 0 and whether 
the processor supports recovery for this case. Please refer to Section 11.3.1.1, 
“Resources Required for Machine Check and Initialization Event Recovery” for more 
information on processor recovery under this condition.

To provide better software error handling, some operating systems build mechanisms 
to identify whether machine checks occurred during execution of the OS kernel code or 
in the application context. One technique to achieve this is to call the PAL_MC_DRAIN 
procedure when an application makes a system call to the OS. This procedure 
completes all outstanding transactions within the processor and reports any pending 
machine checks. This technique impacts system call and interrupt handling 
performance significantly, but will improve system reliability by allowing the OS to 
recover from more errors than if this mechanism was not included.

13.3.2 INIT Flows

INIT is an initialization event generated by the platform or by software through an 
inter-processor interrupt message. The INIT can be due to a platform INIT event or due 
to a failed rendezvous on an application processor. 

The INIT event will pass control to the PAL firmware INIT handler. The PAL INIT handler 
saves processor state to the registered min-state save area and sets up the architected 
hand off state before branching to SAL. See Section 11.5, “Platform Management 
Interrupt (PMI)” for more information on the PAL INIT handling. 

The SAL INIT handler logs processor state and platform state information and then calls 
the OS_INIT handler if one is registered. The OS_INIT handler gains control in physical 
mode but may switch to virtual mode if necessary. The OS may choose to implement a 
crash dump or an interactive debugger within the OS_INIT handler. 

The OS must register the OS_INIT entry point with SAL, otherwise the occurrence of an 
INIT event will cause a system reset. At the end of OS_INIT handling, the OS must 
return to SAL with the appropriate exit status.

Figure 13-5 illustrates the flow of control during INIT processing.
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Figure 13-5. INIT Flow
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13.3.3 PMI Flows

Processors based on the Itanium architecture implement the Platform Management 
Interrupt (PMI) to enable platform developers to provide high level system functions, 
such as power management and security, in a manner that is transparent not only to 
the application software but also to the operating system.

When the processor detects a PMI event it will transfer control to the registered PAL 
PMI entrypoint. PAL will set up the hand off state which includes the vector information 
for the PMI and hand off control to the registered SAL PMI handler. To reduce the PMI 
overhead time, the PAL PMI handler will not save any processor architectural state to 
memory. Please see Section 11.5, “Platform Management Interrupt (PMI)” for more 
information on PAL PMI handling.

The SAL PMI handler may choose to save some additional register state to SAL 
allocated memory to handle the specific platform event that generated the PMI.

The OS will not see the PMI events generated by the platform. The platform developer 
can use PMI interrupts to provide features to differentiate their platform.

PMI handling was designed to be executed with minimal overhead. The SAL firmware 
code copies the PAL and SAL PMI handlers to RAM during system reset and registers 
these entry-points with the processor. This code is then run with the cacheable memory 
attribute to improve performance.

Depending on the implementation and the platform, there may be no special hardware 
protection of the PMI code's memory area in RAM, and the protection of this code space 
may be through the OS memory management’s paging mechanism. SAL sets the 
correct attributes for this memory space and passes this information to the OS through 
the Memory Descriptor Table from EfiGetMemoryMap() [UEFI].

13.3.4 P-state Feedback Mechanism Flow Diagram

The example flowchart shown below illustrates how the caller can utilize the 
PAL_SET_PSTATE and the PAL_GET_PSTATE procedures to manage system utilization 
and power consumption, for a processor implementation that belongs to either a 
hardware-coordinated dependency domain or a hardware-independent dependency 
domain. At the beginning of the loop, PAL_GET_PSTATE gives the performance 
characteristics of the processor over the last time period. It is assumed that the caller 
maintains an internal count for determining the busy ratio of the logical processor (busy 
ratio can be defined as the percentage of time the processor was busy executing 
instructions and not idle). The caller then seeks to adjust the P-state for the next time 
period to match the busy ratio from the previous time period. For example, if the busy 
ratio for a given period was 100%, and the performance_index returned by 
PAL_GET_PSTATE was 60, then this indicates that the P-state for the next time period 
should be P0 (which has performance index of 100). The caller would then call the 
PAL_SET_PSTATE procedure to transition the processor to the P0 state. In essence, if 
the busy ratio is greater than the performance_index returned by PAL_GET_PSTATE, the 
caller responds to the increased demand requirement of the workload by transitioning 
the processor to a higher-performance P-state. Alternatively, if the busy ratio is lower 
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than the performance_index returned by PAL_GET_PSTATE, the caller responds by 
transitioning the processor to a lower performance P-state, which consumes less power 
and operates at reduced performance.

Such an adaptive policy implemented by the caller to dynamically respond to system 
workload characteristics using P-states allows for efficient power utilization – the 
processor consumes additional power by operating at a higher performance level only 
when the current workload requires it to do so.

§

Figure 13-6. Flowchart Showing P-state Feedback Policy
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Code Examples A

A.1 OS Boot Flow Sample Code

The sample code given below is a example of setting up operating system register state 
to prepare the processor for running in virtual mode as described in Section 13.1.2, 
“Operating System Boot Steps” on page 2:625.

// This code will perform the following steps:
//1.Initialize PSR with interrupt disabled (bit 13)
//2.Invalidate ALAT via invala instruction
//3.Invalidate register stack
//4.Set region registers rr[r0] - rr[r7] to RID=0, PS=8K, E=0.
//5.Disable the VHPT
//6.Initialize protection key registers
//7.Initialize SP
//8.Initialize BSP
//9.Enable register stack engine.
//10.Setup IVA 
//11.Setup virtual->physical address translation
//12.Setup GP.

.file“start.s”

// globals

        .global main
        .type main, @function // C function we will return to

.global __GLOB_DATA_PTR // External pointer to Global Data area

.global IVT_BASE // External pointer to IVT_BASE

        .text

// This is the entry point where primary boot loader
// passes control.

pstart::

mov     psr.l = r0 // Initialize psr.l
;;
invala // Invalidate ALAT
mov     ar.rsc = r0 // Invalidate register stack
;;
loadrs             

// Initialize Region Registers

mov r2 = (13 << 2)     // 8K page size
mov r3 = r0 
mov r4 = 61
;;

Loader_RRLoop:
shl r10 = r3, r4
;;
mov rr[r10] = r2
add r3 = 1, r3
;;
cmp4.geu p6, p7 = 8, r3 
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(p6)br.cond.sptk.few.clr Loader_RRLoop
;; 

// Disable the VHPT walker and set up the minimum size for it (32K) by writing 
// to the page table address register (cr.pta)

mov r2 = (15<<2)
;;

mov cr.pta = r2

// Initialize the protection key registers for kernel

mov r2 = (1<< 0)
mov r3 = r0 
;;
mov pkr[r3] = r2 // validate pkr[zero]
;;
mov r2 = r0 
;;

pkr_loop:
add  r3=r3,r0, 1 // start with index 1
;;
cmp.gtu p6,p7 = 8,r3
;;

(p6)mov pkr[r3] = r2
(p6)br.cond.sptk.few.clr pkr_loop // loop until 8

// Setup kernel stack pointer (r12)

movl    sp = kstack + (64*1024) // 64K stack
;;

// Set up the scratch area on stack

add     sp = - 32, sp

// Setup the Register stack backing store
// 
// 1st deal with Register Stack Configuration register
//
// NOTE: the RSC mode must be enforced lazy (00) to write to bspstore
//
// mode: = enforced lazy
// be = little endian

mov  ar.rsc = r0 
;; 

//Now have to setup the RSE backing store pointer
//
//NOTE: initializing the bspstore has effects on all 3 RSE pointers
// (BSP, BSPSTORE, and RSE.BspLoad)

movl r2 = kstack + ((96 + (96/63))*8) 
;;
mov  ar.bspstore = r2 

// Need to setup base address for interrupt vector table...

movl r3 = IVT_BASE 
;;
mov  cr.iva = r3

// Setup system address translation for the kernel
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//
//      The Translation Insertion Format looks like the following...
//
//      Below is the register interface to insert entries into the TLB
//
//1) A general register contains an address,attributes,and permissions
//2) ITIR: additional info such as protection key page size info
//3) IFA: specifies the virtual page number for instruction and data 
// TLB inserts
//
//Registers used:
//---------------
// | 63 53 | 52 | 51 50 | 49 12 | 11 9| 8 7 | 6 | 5 |4 1| 0 |
//GR |   ig | ed |   rv  |   ppn | ar  | pl | d | a | ma | p |
//
// ITIR | rv {63:32} | key {31:8} | ps {7:2} | rv {1:0}|
//
//IFA | vpn {63:12}| ignored {11:0} |
//
//RR[vrn] | reserved{63:32} | rid {31:8}| ignored {7:2) | rv{1} | ignored {0}|
//
//
//where 
//ig = ignored bits
//rv= reserved bits
//p = present bit
//ma = memory attribute
//a = accessed bit
//d = dirty bit
//pl= privilege level
//ar= access rights
//ppn= physical page number
//ed= exception deferral
//ps= page size of mapping (2**ps)
//vpn= virtual page number
//
// Setup virtual page number
//
// NOTE:The virtual page number depends on a translation’s
//page size.
//
// Add entry for TEXT section

movl r2 = 0x0 
;;
mov  cr.ifa = r2

//setup ITIR (Interruption TLB Insertion Register)

movl r3=( ( 24 << 2 ) | ( 0 << 8 ) ) // set page size to 16 MB
;;
mov  cr.itir = r3

//now setup the general register to use with itr (insert translation
//register), use physical page of zero

movl r10 =((1 << 52 )| ( 0x00000000 << 12 )|( 3 << 9 )|( 0 << 7 )| \
(1 <<6 ) | ( 1 << 5 ) | ( 1 << 0 )) 

mov r11 = r0 
;;
itr.i itr[r11] = r10 // Insert translation register

//Entry for OS Data section

add r11 = 1, r11              // skip to tr next index
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movl r2 = 0x0 // use vpn 0
;;
mov  cr.ifa = r2

//Setup ITIR (Interruption TLB Insertion Register)

movl r3 = ( ( 24 << 2 ) | ( 0 << 8 ) ) // 16 MB
;;
mov  cr.itir = r3

//Now setup the general register to use with itr (insert translation
//register)

movl r10 =((1 << 52 ) | (0x0 << 12 ) | (3 << 9 ) | (0 << 7) |\
(1 << 6) | ( 1 << 5 ) | (1 << 0)) 

;;
itr.d dtr[r11] = r10 // Insert translation register
;;

//It is now time to set the appropriate bits in the PSR (processor
//status register)

movl r3 = ((1 << 44) | (1 << 36) |(1 << 38) |(1 << 27) |(1 << 17) | \
(1 << 15) | (1 << 14) | (1 <<      13))

;;
mov cr.ipsr = r3

//Initialize DCR to defer all speculation faults

movl r2 = 0x7f00 
;;
mov cr.dcr = r2

// Initialize the global pointer (gp = r1)

movl gp = __GLOB_DATA_PTR

// Clear out ifs

mov cr.ifs=r0

// Need to do a “rfi” in order to synchronize above instructions and set
// “it” and “ed” bits in the PSR.

movl r3 = main // Setup for main, C code
;;
mov cr.iip = r3 // Setup iip to hit main
;;
rfi 
;;

// Setup kernel stack

.data

.globalkstack

.align 16
kstack:
.skip(64*1024)

§
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About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such 
as explicit parallelism, predication, speculation and more. The architecture is designed 
to be highly scalable to fill the ever increasing performance requirements of various 
server and workstation market segments. The Itanium architecture features a 
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor 
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key 
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a 
comprehensive description of the programming environment, resources, and instruction 
set visible to both the application and system programmer. In addition, it also describes 
how programmers can take advantage of the features of the Itanium architecture to 
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level 
resources, programming environment, and the IA-32 application interface. This volume 
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of 
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by 
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of 
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point 
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System 
Environment” describes the operation of IA-32 instructions within the Itanium System 
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® 
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.
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Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” 
provides an overview of the application programming environment for the Itanium 
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control 
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization 
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on 
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in 
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources 
and programming state, interrupt model, and processor firmware interface. This 
volume also provides a useful system programmer's guide for writing high performance 
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment 
designed to support execution of Itanium architecture-based operating systems running 
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural 
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating 
system for virtual to physical address translation, virtual aliasing, physical addressing, 
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a 
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which 
automatically saves and restores the stacked subset (GR32 – GR 127) of the general 
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance 
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.
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Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts 
and intercepts that can occur during IA-32 instruction set execution in the Itanium 
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with 
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium 
System Environment from the perspective of an Itanium architecture-based operating 
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts 
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second 
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing 
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes 
execution around interruptions and what state is preserved and made available to 
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve 
Itanium register contents and state. This chapter also describes system architecture 
mechanisms that allow an operating system to reduce the number of registers that 
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating 
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of 
instruction emulation handlers that Itanium architecture-based operating systems are 
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the 
Itanium architecture handle floating-point numeric exceptions and how the software 
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium 
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt 
architecture with a focus on how external asynchronous interrupt handling can be 
controlled by software. 

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform 
issues and support for the existing IA-32 I/O port space.
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Chapter 12, “Performance Monitoring Support” describes the performance monitor 
architecture with a focus on what kind of support is needed from Itanium 
architecture-based operating systems. 

Chapter 13, “Firmware Overview” introduces the firmware model, and how various 
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system 
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium® 
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium 
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which 
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format 
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules 
that are applicable when generating code for processors based on the Itanium 
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set 
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all 
base IA-32 instructions, organized in alphabetical order by assembly language 
mnemonic.
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Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed 
description of all IA-32 Intel® MMX™ technology instructions designed to increase 
performance of multimedia intensive applications. Organized in alphabetical order by 
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all 
IA-32 SSE instructions designed to increase performance of multimedia intensive 
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be 
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level 
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new 
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports 
the execution of both IA-32 and Itanium architecture-based code.

Itanium® Architecture-based Firmware – The Processor Abstraction Layer (PAL) 
and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor 
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system 
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at 
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual 
for Software Development and Optimization– Document number 308065 
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development 
and Optimization – This document (Document number 251110) describes 
model-specific architectural features incorporated into the Intel® Itanium® 2 
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development – 
This document (Document number 245320) describes model-specific architectural 
features incorporated into the Intel® Itanium® processor, the first processor based 
on the Itanium architecture.
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set 
of manuals describes the Intel 32-bit architecture. They are available from the Intel 
Literature Department by calling 1-800-548-4725 and requesting Document 
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide – 
This document (Document number 245358) defines general information necessary 
to compile, link, and execute a program on an Itanium architecture-based 
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification – 
This document (Document number 245359) specifies requirements to develop 
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at 
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines 
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of 
Revision

Revision 
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and 
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current 
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and 
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.
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August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking 
on interruption messages by processors optional. See Vol 2, Part I, Ch 5 
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers 
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure 
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2, 
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states). 
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for 
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined 
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD 
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY, 
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER, 
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional. 
Undefined behavior for 1-byte accesses to the non-architected regions in the 
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the 
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol 
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in 
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL 
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and 
check_target_register_sof. 
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II, 
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of 
Revision

Revision 
Number Description
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August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2, 
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1; 
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2; 
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3, 
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I, 
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I, 
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s) 
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I, 
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation 
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part 
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the 
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I, 
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2, 
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section 
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of 
Revision

Revision 
Number Description
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Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return 
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new 
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1, 
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow 
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative 
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section 
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications 
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section 
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2, 
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of 
Revision

Revision 
Number Description
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§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32 
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI 
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the 
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry 
order; SAL needs to initialize all the IA-32 registers properly before making 
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/ 
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of 
Revision

Revision 
Number Description



Volume 3: Instruction Reference 3:11

Instruction Reference 2

This chapter describes the function of each Itanium instruction. The pages of this 
chapter are sorted alphabetically by assembly language mnemonic.

2.1 Instruction Page Conventions

The instruction pages are divided into multiple sections as listed in Table 2-1. The first 
three sections are present on all instruction pages. The last three sections are present 
only when necessary. Table 2-2 lists the font conventions which are used by the 
instruction pages.

In the Format section, register addresses are specified using the assembly mnemonic 
field names given in the third column of Table 2-3. For instructions that are predicated, 
the Description section assumes that the qualifying predicate is true (except for 
instructions that modify architectural state when their qualifying predicate is false). The 
test of the qualifying predicate is included in the Operation section (when applicable).

In the Operation section, registers are addressed using the notation reg[addr].field. 
The register file being accessed is specified by reg, and has a value chosen from the 
second column of Table 2-3. The addr field specifies a register address as an assembly 
language field name or a register mnemonic. For the general, floating-point, and 
predicate register files which undergo register renaming, addr is the register address 
prior to renaming and the renaming is not shown. The field option specifies a named 
bit field within the register. If field is absent, then all fields of the register are 
accessed. The only exception is when referencing the data field of the general registers 

Table 2-1. Instruction Page Description

Section Name Contents

Format Assembly language syntax, instruction type and encoding format

Description Instruction function in English

Operation Instruction function in C code

FP Exceptions IEEE floating-point traps

Interruptions Prioritized list of interruptions that may be caused by the instruction

Serialization Serializing behavior or serialization requirements

Table 2-2. Instruction Page Font Conventions

Font Interpretation

regular (Format section) Required characters in an assembly language mnemonic

italic (Format section) Assembly language field name that must be filled with one of a range 
of legal values listed in the Description section

code (Operation section) C code specifying instruction behavior

code_italic (Operation section) Assembly language field name corresponding to a italic field listed 
in the Format section



3:12 Volume 3: Instruction Reference

(64-bits not including the NaT bit) where the notation GR[addr] is used. The syntactical 
differences between the code found in the Operation section and ANSI C is listed in 
Table 2-4.

The Operation section contains code that specifies only the execution semantics of each 
instruction and does not include any behavior relating to instruction fetch (e.g., 
interrupts and faults caused during fetch). The Interruptions section does not list any 
faults that may be caused by instruction fetch or by mandatory RSE loads. The code to 
raise certain pervasive faults and actions is not included in the code in the Operation 
section. These faults and actions are listed in Table 2-5. The Single step trap applies to 
all instructions and is not listed in the Interruptions section.

Table 2-3. Register File Notation

Register File C Notation
Assembly 
Mnemonic

Indirect 
Access

Application registers AR ar

Branch registers BR b

Control registers CR cr

CPU identification registers CPUID cpuid Y

Data breakpoint registers DBR dbr Y

Instruction breakpoint registers IBR ibr Y

Data TLB translation cache DTC N/A

Data TLB translation registers DTR dtr Y

Floating-point registers FR f

General registers GR r

Instruction TLB translation cache ITC N/A

Instruction TLB translation registers ITR itr Y

Protection key registers PKR pkr Y

Performance monitor configuration registers PMC pmc Y

Performance monitor data registers PMD pmd Y

Predicate registers PR p

Region registers RR rr Y

Table 2-4. C Syntax Differences

Syntax Function

{msb:lsb}, {bit} Bit field specifier. When appended to a variable, denotes a bit field extending from the 
most significant bit specified by “msb” to the least significant bit specified by “lsb” 
including bits “msb” and “lsb.” If “msb” and “lsb” are equal then a single bit is 
accessed. The second form denotes a single bit.

u>, u>=, u<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as 
unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.

u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.

u* Unsigned multiplication. Operands are treated as unsigned.
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2.2 Instruction Descriptions

The remainder of this chapter provides a description of each of the Itanium instructions.

Table 2-5. Pervasive Conditions Not Included in Instruction Description 
Code

Condition Action

Read of a register outside the current frame. An undefined value is returned (no fault).

Access to a banked general register (GR 16 through GR 31). The GR bank specified by PSR.bn is accessed.

PSR.ss is set. A Single Step trap is raised.
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add

add — Add
Format: (qp) add r1 = r2, r3 register_form A1

(qp) add r1 = r2, r3, 1 plus1_form, register_form A1
(qp) add r1 = imm, r3 pseudo-op
(qp) adds r1 = imm14, r3 imm14_form A4
(qp) addl r1 = imm22, r3 imm22_form A5

Description: The two source operands (and an optional constant 1) are added and the result placed 
in GR r1. In the register form the first operand is GR r2; in the imm_14 form the first 
operand is taken from the sign-extended imm14 encoding field; in the imm22_form the 
first operand is taken from the sign-extended imm22 encoding field. In the imm22_form, 
GR r3 can specify only GRs 0, 1, 2 and 3.

The plus1_form is available only in the register_form (although the equivalent effect in 
the immediate forms can be achieved by adjusting the immediate).

The immediate-form pseudo-op chooses the imm14_form or imm22_form based on the 
size of the immediate operand and the value of r3.

Operation: if (PR[qp]) {
check_target_register(r1);

if (register_form) // register form
tmp_src = GR[r2];

else if (imm14_form) // 14-bit immediate form
tmp_src = sign_ext(imm14, 14);

else // 22-bit immediate form
tmp_src = sign_ext(imm22, 22);

tmp_nat = (register_form ? GR[r2].nat : 0);

if (plus1_form)
GR[r1] = tmp_src + GR[r3] + 1;

else
GR[r1] = tmp_src + GR[r3];

GR[r1].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault
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addp4

addp4 — Add Pointer
Format: (qp) addp4 r1 = r2, r3 register_form A1

(qp) addp4 r1 = imm14, r3 imm14_form A4

Description: The two source operands are added. The upper 32 bits of the result are forced to zero, 
and then bits {31:30} of GR r3 are copied to bits {62:61} of the result. This result is 
placed in GR r1. In the register_form the first operand is GR r2; in the imm14_form the 
first operand is taken from the sign-extended imm14 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm14, 14));
tmp_nat = (register_form ? GR[r2].nat : 0);

tmp_res = tmp_src + GR[r3];
tmp_res = zero_ext(tmp_res{31:0}, 32);
tmp_res{62:61} = GR[r3]{31:30};
GR[r1] = tmp_res;
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Figure 2-1. Add Pointer
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alloc

alloc — Allocate Stack Frame
Format: (qp) alloc r1 = ar.pfs, i, l, o, r M34

Description: A new stack frame is allocated on the general register stack, and the Previous Function 
State register (PFS) is copied to GR r1. The change of frame size is immediate. The write 
of GR r1 and subsequent instructions in the same instruction group use the new frame.

The four parameters, i (size of inputs), l (size of locals), o (size of outputs), and r (size 
of rotating) specify the sizes of the regions of the stack frame.

The size of the frame (sof) is determined by i + l + o. Note that this instruction may 
grow or shrink the size of the current register stack frame. The size of the local region 
(sol) is given by i + l. There is no real distinction between inputs and locals. They are 
given as separate operands in the instruction only as a hint to the assembler about how 
the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number. 
If this instruction attempts to change the size of CFM.sor, and the register rename base 
registers (CFM.rrb.gr, CFM.rrb.fr, CFM.rrb.pr) are not all zero, then the instruction will 
cause a Reserved Register/Field fault.

Although the assembler does not allow illegal combinations of operands for alloc, illegal 
combinations can be encoded in the instruction. Attempting to allocate a stack frame 
larger than 96 registers, or with the rotating region larger than the stack frame, or with 
the size of locals larger than the stack frame, or specifying a qualifying predicate other 
than PR 0, will cause an Illegal Operation fault.

This instruction must be the first instruction in an instruction group and must either be 
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0; 
otherwise, the results are undefined.

If insufficient registers are available to allocate the desired frame alloc will stall the 
processor until enough dirty registers are written to the backing store. Such mandatory 
RSE stores may cause the data related faults listed below.

Figure 2-2. Stack Frame

Local

GR32

sof
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Operation: // tmp_sof, tmp_sol, tmp_sor are the fields encoded in the instruction 
tmp_sof = i + l + o;
tmp_sol = i + l;
tmp_sor = r u>> 3;
check_target_register_sof(r1, tmp_sof);
if (tmp_sof u> 96 || r u> tmp_sof || tmp_sol u> tmp_sof || qp != 0)

illegal_operation_fault();
if (tmp_sor != CFM.sor &&

(CFM.rrb.gr != 0 || CFM.rrb.fr != 0 || CFM.rrb.pr != 0))
reserved_register_field_fault();

alat_frame_update(0, tmp_sof - CFM.sof);
rse_new_frame(CFM.sof, tmp_sof);// Make room for new registers; Mandatory 

// RSE stores can raise faults listed below.
CFM.sof = tmp_sof;
CFM.sol = tmp_sol;
CFM.sor = tmp_sor;

GR[r1] = AR[PFS];
GR[r1].nat = 0;

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Reserved Register/Field fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
VHPT Data fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Data TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault
Data Page Not Present fault
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and

and — Logical And
Format: (qp) and r1 = r2, r3 register_form A1

(qp) and r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically ANDed and the result placed in GR r1. In the 
register_form the first operand is GR r2; in the imm8_form the first operand is taken 
from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src & GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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andcm

andcm — And Complement
Format: (qp) andcm r1 = r2, r3 register_form A1

(qp) andcm r1 = imm8, r3 imm8_form A3

Description: The first source operand is logically ANDed with the 1’s complement of the second 
source operand and the result placed in GR r1. In the register_form the first operand is 
GR r2; in the imm8_form the first operand is taken from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src & ~GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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br — Branch
Format: (qp) br.btype.bwh.ph.dh target25  ip_relative_form B1

(qp) br.btype.bwh.ph.dh b1 = target25 call_form, ip_relative_form B3
br.btype.bwh.ph.dh target25 counted_form, ip_relative_form B2
br.ph.dh target25 pseudo-op

(qp) br.btype.bwh.ph.dh b2  indirect_form B4
(qp) br.btype.bwh.ph.dh b1 = b2 call_form, indirect_form B5

br.ph.dh b2  pseudo-op

Description: A branch condition is evaluated, and either a branch is taken, or execution continues 
with the next sequential instruction. The execution of a branch logically follows the 
execution of all previous non-branch instructions in the same instruction group. On a 
taken branch, execution begins at slot 0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target25 
operand, in assembly, specifies a label to branch to. This is encoded in the branch 
instruction as a signed immediate displacement (imm21) between the target bundle and 
the bundle containing this instruction (imm21 = target25 - IP >> 4). For indirect branches, 
the target address is taken from BR b2.

There are two pseudo-ops for unconditional branches. These are encoded like a 
conditional branch (btype = cond), with the qp field specifying PR 0, and with the bwh 
hint of sptk.

The branch type determines how the branch condition is calculated and whether the 
branch has other effects (such as writing a link register). For the basic branch types, 

Table 2-6. Branch Types

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-rel or Indirect

call Conditional procedure call Qualifying predicate IP-rel or Indirect

ret Conditional procedure return Qualifying predicate Indirect

ia Invoke IA-32 instruction set Unconditional Indirect

cloop Counted loop branch Loop count IP-rel

ctop, cexit Mod-scheduled counted loop Loop count and epilog 
count

IP-rel

wtop, wexit Mod-scheduled while loop Qualifying predicate and 
epilog count

IP-rel
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the branch condition is simply the value of the specified predicate register. These basic 
branch types are:

• cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

• call: If the qualifying predicate is 1, the branch is taken and several other actions 
occur:

• The current values of the Current Frame Marker (CFM), the EC application 
register and the current privilege level are saved in the Previous Function State 
application register.

• The caller’s stack frame is effectively saved and the callee is provided with a 
frame containing only the caller’s output region.

• The rotation rename base registers in the CFM are reset to 0.

• A return link value is placed in BR b1.

• return: If the qualifying predicate is 1, the branch is taken and the following 
occurs:

• CFM, EC, and the current privilege level are restored from PFS. (The privilege 
level is restored only if this does not increase privilege.)

• The caller’s stack frame is restored.

• If the return lowers the privilege, and PSR.lp is 1, then a Lower-Privilege 
Transfer trap is taken.

• ia: The branch is taken unconditionally, if it is not intercepted by the OS. The effect 
of the branch is to invoke the IA-32 instruction set (by setting PSR.is to 1) and 
begin processing IA-32 instructions at the virtual linear target address contained in 
BR b2{31:0}. If the qualifying predicate is not PR 0, an Illegal Operation fault is 
raised. If instruction set transitions are disabled (PSR.di is 1), then a Disabled 
Instruction Set Transition fault is raised. 

The IA-32 target effective address is calculated relative to the current code 
segment, i.e. EIP{31:0} = BR b2{31:0} - CSD.base. The IA-32 instruction set can 
be entered at any privilege level, provided PSR.di is 0. If PSR.dfh is 1, a Disabled FP 
Register fault is raised on the target IA-32 instruction. No register bank switch nor 
change in privilege level occurs during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are 
loaded before issuing the branch. If the target EIP value exceeds the code segment 
limit or has a code segment privilege violation, an IA_32_Exception(GPFault) is 
raised on the target IA-32 instruction. For entry into 16-bit IA-32 code, if BR b2 is 
not within 64K-bytes of CSD.base a GPFault is raised on the target instruction. 
EFLAG.rf is unmodified until the successful completion of the first IA-32 instruction. 
PSR.da, PSR.id, PSR.ia, PSR.dd, and PSR.ed are cleared to zero after br.ia 
completes execution and before the first IA-32 instruction begins execution. 
EFLAG.rf is not cleared until the target IA-32 instruction successfully completes.

Software must set PSR properly before branching to the IA-32 instruction set; 
otherwise processor operation is undefined.  See Table 3-2, “Processor Status 
Register Fields” on page 2:24 for details.

Software must issue a mf instruction before the branch if memory ordering is 
required between IA-32 processor consistent and Itanium unordered memory 
references. The processor does not ensure Itanium-instruction-set-generated 
writes into the instruction stream are seen by subsequent IA-32 instruction fetches. 
br.ia does not perform an instruction serialization operation. The processor does 
ensure that prior writes (even in the same instruction group) to GRs and FRs are 
observed by the first IA-32 instruction. Writes to ARs within the same instruction 
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group as br.ia are not allowed, since br.ia may implicitly reads all ARs. If an 
illegal RAW dependency is present between an AR write and br.ia, the first IA-32 
instruction fetch and execution may or may not see the updated AR value.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software 
can not rely on ALAT values being preserved across an instruction set transition. All 
registers left in the current register stack frame are undefined across an instruction 
set transition. On entry to IA-32 code, existing entries in the ALAT are ignored. If 
the register stack contains any dirty registers, an Illegal Operation fault is raised on 
the br.ia instruction. The current register stack frame is forced to zero. To flush 
the register file of dirty registers, the flushrs instruction must be issued in an 
instruction group preceding the br.ia instruction. To enhance the performance of 
the instruction set transition, software can start the register stack flush in parallel 
with starting the IA-32 instruction set by 1) ensuring flushrs is exactly one 
instruction group before the br.ia, and 2) br.ia is in the first B-slot. br.ia should 
always be executed in the first B-slot with a hint of “static-taken” (default), 
otherwise processor performance will be degraded.

If a br.ia causes any Itanium traps (e.g., Single Step trap, Taken Branch trap, or 
Unimplemented Instruction Address trap), IIP will contain the original 64-bit target 
IP. (The value will not have been zero extended from 32 bits.)

Another branch type is provided for simple counted loops. This branch type uses the 
Loop Count application register (LC) to determine the branch condition, and does not 
use a qualifying predicate:

• cloop: If the LC register is not equal to zero, it is decremented and the branch is 
taken.

In addition to these simple branch types, there are four types which are used for 
accelerating modulo-scheduled loops (see also Section 4.5.1, “Modulo-scheduled Loop 
Support” on page 1:75). Two of these are for counted loops (which use the LC register), 
and two for while loops (which use the qualifying predicate). These loop types use 
register rotation to provide register renaming, and they use predication to turn off 
instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some 
while loops, a portion of the prolog stages. In the epilog phase, EC is decremented each 
time around and, for most loops, when EC is one, the pipeline has been drained, and 
the loop is exited. For certain types of optimized, unrolled software-pipelined loops, the 
target of a br.cexit or br.wexit is set to the next sequential bundle. In this case, the 
pipeline may not be fully drained when EC is one, and continues to drain while EC is 
zero.

For these modulo-scheduled loop types, the calculation of whether the branch is taken 
or not depends on the kernel branch condition (LC for counted types, and the qualifying 
predicate for while types) and on the epilog condition (whether EC is greater than one 
or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop) 
are used when the loop decision is located at the bottom of the loop body and therefore 
a taken branch will continue the loop while a fall through branch will exit the loop. The 
exit types (cexit and wexit) are used when the loop decision is located somewhere 
other than the bottom of the loop and therefore a fall though branch will continue the 
loop and a taken branch will exit the loop. The exit types are also used at intermediate 
points in an unrolled pipelined loop. (For more details, see Section 4.5.1, 
“Modulo-scheduled Loop Support” on page 1:75).
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The modulo-scheduled loop types are:

• ctop and cexit: These branch types behave identically, except in the determination 
of whether to branch or not. For br.ctop, the branch is taken if either LC is 
non-zero or EC is greater than one. For br.cexit, the opposite is true. It is not 
taken if either LC is non-zero or EC is greater than one and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate 
initialization. During the prolog and kernel phase, when LC is non-zero, LC counts 
down. When br.ctop or br.cexit is executed with LC equal to zero, the epilog 
phase is entered, and EC counts down. When br.ctop or br.cexit is executed with 
LC equal to zero and EC equal to one, a final decrement of EC and a final register 
rotation are done. If LC and EC are equal to zero, register rotation stops. These 
other effects are the same for the two branch types, and are described in 
Figure 2-3.

wtop and wexit: These branch types behave identically, except in the 
determination of whether to branch or not. For br.wtop, the branch is taken if 
either the qualifying predicate is one or EC is greater than one. For br.wexit, the 
opposite is true. It is not taken if either the qualifying predicate is one or EC is 
greater than one, and is taken otherwise.

These branch types also use the qualifying predicate and EC to control register 
rotation and predicate initialization. During the prolog phase, the qualifying 
predicate is either zero or one, depending upon the scheme used to program the 
loop. During the kernel phase, the qualifying predicate is one. During the epilog 
phase, the qualifying predicate is zero, and EC counts down. When br.wtop or 
br.wexit is executed with the qualifying predicate equal to zero and EC equal to 
one, a final decrement of EC and a final register rotation are done. If the qualifying 
predicate and EC are zero, register rotation stops. These other effects are the same 
for the two branch types, and are described in Figure 2-4.

Figure 2-3. Operation of br.ctop and br.cexit
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The loop-type branches (br.cloop, br.ctop, br.cexit, br.wtop, and br.wexit) are 
only allowed in instruction slot 2 within a bundle. Executing such an instruction in either 
slot 0 or 1 will cause an Illegal Operation fault, whether the branch would have been 
taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are 
slightly different for branch instructions. Changes to BRs, PRs, and PFS by non-branch 
instructions are visible to a subsequent branch instruction in the same instruction group 
(i.e., a limited RAW is allowed for these resources). This allows for a low-latency 
compare-branch sequence, for example. The normal RAW requirements apply to the LC 
and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the 
reading and writing instructions are branches. For example, a br.wtop or br.wexit 
may not use PR[63] as its qualifying predicate and PR[63] cannot be the qualifying 
predicate for any branch preceding a br.wtop or br.wexit in the same instruction 
group.

For dependency purposes, the loop-type branches effectively always write their 
associated resources, whether they are taken or not. The cloop type effectively always 
writes LC. When LC is 0, a cloop branch leaves it unchanged, but hardware may 
implement this as a re-write of LC with the same value. Similarly, br.ctop and 
br.cexit effectively always write LC, EC, the RRBs, and PR[63]. br.wtop and 
br.wexit effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether 
Prediction Strategy hints are shown in Table 2-7. Sequential Prefetch hints are shown in 
Table 2-8. Branch Cache Deallocation hints are shown in Table 2-9. See Section 4.5.2, 
“Branch Prediction Hints” on page 1:78.

Figure 2-4. Operation of br.wtop and br.wexit
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Operation: if (ip_relative_form) // determine branch target
tmp_IP = IP + sign_ext((imm21 << 4), 25);

else // indirect_form
tmp_IP = BR[b2];

if (btype != ‘ia’) // for Itanium branches,
tmp_IP = tmp_IP & ~0xf; // ignore bottom 4 bits of target

lower_priv_transition = 0;

switch (btype) {
case ‘cond’: // simple conditional branch

tmp_taken = PR[qp];
break;

case ‘call’: // call saves a return link
tmp_taken = PR[qp];
if (tmp_taken) {

BR[b1] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

}
break;

case ‘ret’: // return restores stack frame

Table 2-7. Branch Whether Hint

bwh Completer Branch Whether Hint

spnt Static Not-Taken

sptk Static Taken

dpnt Dynamic Not-Taken

dptk Dynamic Taken

Table 2-8. Sequential Prefetch Hint

ph Completer Sequential Prefetch Hint

few or none Few lines

many Many lines

Table 2-9. Branch Cache Deallocation Hint

dh Completer Branch Cache Deallocation Hint

none Don’t deallocate

clr Deallocate branch information
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tmp_taken = PR[qp];
if (tmp_taken) {

// tmp_growth indicates the amount to move logical TOP *up*:
// tmp_growth = sizeof(previous out) - sizeof(current frame)
// a negative amount indicates a shrinking stack
tmp_growth = (AR[PFS].pfm.sof - AR[PFS].pfm.sol) - CFM.sof;
alat_frame_update(-AR[PFS].pfm.sol, 0);
rse_fatal = rse_restore_frame(AR[PFS].pfm.sol,

 tmp_growth, CFM.sof);
if (rse_fatal) {
// See Section 6.4, “RSE Operation” on page 2:137

CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

} else // normal branch return
CFM = AR[PFS].pfm;

rse_enable_current_frame_load();
AR[EC] = AR[PFS].pec;
if (PSR.cpl u< AR[PFS].ppl) { // ... and restores privilege

PSR.cpl = AR[PFS].ppl;
lower_priv_transition = 1;

}
}
break;

case ‘ia’: // switch to IA mode
tmp_taken = 1;
if (PSR.ic == 0 || PSR.dt == 0 || PSR.mc == 1 || PSR.it == 0)

undefined_behavior();
if (qp != 0)

illegal_operation_fault();
if (AR[BSPSTORE] != AR[BSP])

illegal_operation_fault();
if (PSR.di)

disabled_instruction_set_transition_fault();
PSR.is = 1; // set IA-32 Instruction Set Mode
CFM.sof = 0; //force current stack frame
CFM.sol = 0; //to zero
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;
rse_invalidate_non_current_regs();

//compute effective instruction pointer
EIP{31:0} = tmp_IP{31:0} - AR[CSD].Base;

// Note the register stack is disabled during IA-32 instruction
// set execution

break;

case ‘cloop’: // simple counted loop
if (slot != 2)
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illegal_operation_fault();
tmp_taken = (AR[LC] != 0);
if (AR[LC] != 0)

AR[LC]--;
break;

case ‘ctop’: 
case ‘cexit’: // SW pipelined counted loop

if (slot != 2)
illegal_operation_fault();

if (btype == ‘ctop’) tmp_taken = ((AR[LC] != 0) || (AR[EC] u> 1));
if (btype == ‘cexit’)tmp_taken = !((AR[LC] != 0) || (AR[EC] u> 1));
if (AR[LC] != 0) {

AR[LC]--;
AR[EC] = AR[EC];
PR[63] = 1;
rotate_regs();

} else if (AR[EC] != 0) {
AR[LC] = AR[LC];
AR[EC]--;
PR[63] = 0;
rotate_regs();

} else {
AR[LC] = AR[LC];
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

case ‘wtop’:
case ‘wexit’: // SW pipelined while loop

if (slot != 2)
illegal_operation_fault();

if (btype == ‘wtop’) tmp_taken = (PR[qp] || (AR[EC] u> 1));
if (btype == ‘wexit’)tmp_taken = !(PR[qp] || (AR[EC] u> 1));
if (PR[qp]) {

AR[EC] = AR[EC];
PR[63] = 0;
rotate_regs();

} else if (AR[EC] != 0) {
AR[EC]--;
PR[63] = 0;
rotate_regs();

} else {
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

}
if (tmp_taken) {
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taken_branch = 1;
IP = tmp_IP; // set the new value for IP
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(tmp_IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(tmp_IP))))
unimplemented_instruction_address_trap(lower_priv_transition,

 tmp_IP);
if (lower_priv_transition && PSR.lp)

lower_privilege_transfer_trap();
if (PSR.tb)

taken_branch_trap();
}

Interruptions: Illegal Operation fault Lower-Privilege Transfer trap
Disabled Instruction Set Transition fault Taken Branch trap
Unimplemented Instruction Address trap

Additional Faults on IA-32 target instructions:
IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1
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break — Break
Format: (qp) break imm21 pseudo-op

(qp) break.i imm21 i_unit_form I19
(qp) break.b imm21 b_unit_form B9
(qp) break.m imm21 m_unit_form M37
(qp) break.f imm21 f_unit_form F15
(qp) break.x imm62 x_unit_form X1

Description: A Break Instruction fault is taken. For the i_unit_form, f_unit_form and m_unit_form, 
the value specified by imm21 is zero-extended and placed in the Interruption Immediate 
control register (IIM).

For the b_unit_form, imm21 is ignored and the value zero is placed in the Interruption 
Immediate control register (IIM).

For the x_unit_form, the lower 21 bits of the value specified by imm62 is zero-extended 
and placed in the Interruption Immediate control register (IIM). The L slot of the bundle 
contains the upper 41 bits of imm62.

A break.i instruction may be encoded in an MLI-template bundle, in which case the L 
slot of the bundle is ignored.

This instruction has five forms, each of which can be executed only on a particular 
execution unit type. The pseudo-op can be used if the unit type to execute on is 
unimportant.

Operation: if (PR[qp]) {
if (b_unit_form)

immediate = 0;
else if (x_unit_form)

immediate = zero_ext(imm62, 21);
else // i_unit_form || m_unit_form || f_unit_form

immediate = zero_ext(imm21, 21);

break_instruction_fault(immediate);
}

Interruptions: Break Instruction fault



3:30 Volume 3: Instruction Reference

brl

brl — Branch Long
Format: (qp) brl.btype.bwh.ph.dh target64 X3

(qp) brl.btype.bwh.ph.dh b1 = target64 call_form X4
brl.ph.dh target64 pseudo-op

Description: A branch condition is evaluated, and either a branch is taken, or execution continues 
with the next sequential instruction. The execution of a branch logically follows the 
execution of all previous non-branch instructions in the same instruction group. On a 
taken branch, execution begins at slot 0.

Long branches are always IP-relative. The target64 operand, in assembly, specifies a label 
to branch to. This is encoded in the long branch instruction as an immediate 
displacement (imm60) between the target bundle and the bundle containing this 
instruction (imm60 = target64 - IP >> 4). The L slot of the bundle contains 39 bits of imm60.

There is a pseudo-op for long unconditional branches, encoded like a conditional branch 
(btype = cond), with the qp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the 
branch has other effects (such as writing a link register). For all long branch types, the 
branch condition is simply the value of the specified predicate register:

• cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

• call: If the qualifying predicate is 1, the branch is taken and several other actions 
occur:

• The current values of the Current Frame Marker (CFM), the EC application 
register and the current privilege level are saved in the Previous Function State 
application register.

• The caller’s stack frame is effectively saved and the callee is provided with a 
frame containing only the caller’s output region.

• The rotation rename base registers in the CFM are reset to 0.

• A return link value is placed in BR b1.

Read after Write (RAW) and Write after Read (WAR) dependency requirements for long 
branch instructions are slightly different than for other instructions but are the same as 
for branch instructions. See page 3:24 for details.

This instruction must be immediately followed by a stop; otherwise its behavior is 
undefined.

Values for various branch hint completers are the same as for branch instructions. 
Whether Prediction Strategy hints are shown in Table 2-7 on page 3:25, Sequential 
Prefetch hints are shown in Table 2-8 on page 3:25, and Branch Cache Deallocation 
hints are shown in Table 2-9 on page 3:25. See Section 4.5.2, “Branch Prediction Hints” 
on page 1:78.

This instruction is not implemented on the Itanium processor, which takes an Illegal 
Operation fault whenever a long branch instruction is encountered, regardless of 
whether the branch is taken or not. To support the Itanium processor, the operating 

Table 2-10. Long Branch Types

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-relative

call Conditional procedure call Qualifying predicate IP-relative
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system is required to provide an Illegal Operation fault handler which emulates taken 
and not-taken long branches. Presence of this instruction is indicated by a 1 in the lb bit 
of CPUID register 4. See Section 3.1.11, “Processor Identification Registers” on 
page 1:34.

Operation: tmp_IP = IP + (imm60 << 4); // determine branch target
if (!followed_by_stop())

undefined_behavior();
if (!instruction_implemented(BRL))

illegal_operation_fault();

switch (btype) {
case ‘cond’: // simple conditional branch

tmp_taken = PR[qp];
break;

case ‘call’: // call saves a return link
tmp_taken = PR[qp];
if (tmp_taken) {

BR[b1] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

}
break;

}
if (tmp_taken) {

taken_branch = 1;
IP = tmp_IP; // set the new value for IP
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(tmp_IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(tmp_IP))))
unimplemented_instruction_address_trap(0,tmp_IP);

if (PSR.tb)
taken_branch_trap();

}

Interruptions: Illegal Operation fault Taken Branch trap
Unimplemented Instruction Address trap
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brp — Branch Predict
Format: brp.ipwh.ih target25, tag13  ip_relative_form B6

brp.indwh.ih b2, tag13  indirect_form B7
brp.ret.indwh.ih b2, tag13 return_form, indirect_form B7

Description: This instruction can be used to provide to hardware early information about a future 
branch. It has no effect on architectural machine state, and operates as a nop 
instruction except for its performance effects.

The tag13 operand, in assembly, specifies the address of the branch instruction to which 
this prediction information applies. This is encoded in the branch predict instruction as a 
signed immediate displacement (timm9) between the bundle containing the presaged 
branch and the bundle containing this instruction (timm9 = tag13 - IP >> 4).

The target25 operand, in assembly, specifies the label that the presaged branch will have 
as its target. This is encoded in the branch predict instruction exactly as in branch 
instructions, with a signed immediate displacement (imm21) between the target bundle 
and the bundle containing this instruction (imm21 = target25 - IP >> 4). The indirect_form 
can be used to presage an indirect branch. In the indirect_form, the target of the 
presaged branch is given by BR b2.

The return_form is used to indicate that the presaged branch will be a return.

Other hints can be given about the presaged branch. Values for various hint completers 
are shown in the following tables. For more details, refer to Section 4.5.2, “Branch 
Prediction Hints” on page 1:78.

The ipwh and indwh completers provide information about how best the branch condition 
should be predicted, when the branch is reached.

The ih completer can be used to mark a small number of very important branches (e.g., 
an inner loop branch). This can signal to hardware to use faster, smaller prediction 
structures for this information.

Table 2-11. IP-relative Branch Predict Whether Hint

ipwh Completer IP-relative Branch Predict Whether Hint

sptk Presaged branch should be predicted Static Taken

loop Presaged branch will be br.cloop, br.ctop, or br.wtop

exit Presaged branch will be br.cexit or br.wexit

dptk Presaged branch should be predicted Dynamically

Table 2-12. Indirect Branch Predict Whether Hint

indwh Completer Indirect Branch Predict Whether Hint

sptk Presaged branch should be predicted Static Taken

dptk Presaged branch should be predicted Dynamically

Table 2-13. Importance Hint

ih Completer Branch Predict Importance Hint

none Less important

imp More important
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Operation: tmp_tag = IP + sign_ext((timm9 << 4), 13);
if (ip_relative_form) {

tmp_target = IP + sign_ext((imm21 << 4), 25);
tmp_wh = ipwh;

} else { // indirect_form
tmp_target = BR[b2];
tmp_wh = indwh;

}
branch_predict(tmp_wh, ih, return_form, tmp_target, tmp_tag);

Interruptions: None
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bsw — Bank Switch
Format: bsw.0 zero_form B8

bsw.1 one_form B8

Description: This instruction switches to the specified register bank. The zero_form specifies Bank 0 
for GR16 to GR31. The one_form specifies Bank 1 for GR16 to GR31. After the bank 
switch the previous register bank is no longer accessible but does retain its current 
state. If the new and old register banks are the same, bsw is effectively a nop, although 
there may be a performance degradation. 

A bsw instruction must be the last instruction in an instruction group; otherwise, 
operation is undefined. Instructions in the same instruction group that access GR16 to 
GR31 reference the previous register bank. Subsequent instruction groups reference 
the new register bank.

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
undefined_behavior();

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (PSR.vm == 1)
virtualization_fault();

if (zero_form)
PSR.bn = 0;

else // one_form
PSR.bn = 1;

Interruptions: Privileged Operation fault Virtualization fault

Serialization: This instruction does not require any additional instruction or data serialization 
operation. The bank switch occurs synchronously with its execution.
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chk — Speculation Check
Format: (qp) chk.s r2, target25 pseudo-op

(qp) chk.s.i r2, target25 control_form, i_unit_form, gr_form I20
(qp) chk.s.m r2, target25 control_form, m_unit_form, gr_form M20
(qp) chk.s f2, target25 control_form, fr_form M21
(qp) chk.a.aclr r1, target25 data_form, gr_form M22
(qp) chk.a.aclr f1, target25 data_form, fr_form M23

Description: The result of a control- or data-speculative calculation is checked for success or failure. 
If the check fails, a branch to target25 is taken.

In the control_form, success is determined by a NaT indication for the source register. 
If the NaT bit corresponding to GR r2 is 1 (in the gr_form), or FR f2 contains a NaTVal (in 
the fr_form), the check fails.

In the data_form, success is determined by the ALAT. The ALAT is queried using the 
general register specifier r1 (in the gr_form), or the floating-point register specifier f1 
(in the fr_form). If no ALAT entry matches, the check fails. An implementation may 
optionally cause the check to fail independent of whether an ALAT entry matches. A 
chk.a with general register specifier r0 or floating-point register specifiers f0 or f1 
always fails.

The target25 operand, in assembly, specifies a label to branch to. This is encoded in the 
instruction as a signed immediate displacement (imm21) between the target bundle and 
the bundle containing this instruction (imm21 = target25 - IP >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the 
instruction would have branched, and the branching behavior is not implemented, then 
a Speculative Operation fault is taken and the value specified by imm21 is zero-extended 
and placed in the Interruption Immediate control register (IIM). The fault handler 
emulates the branch by sign-extending the IIM value, adding it to IIP and returning.

The control_form of this instruction for checking general registers can be encoded on 
either an I-unit or an M-unit. The pseudo-op can be used if the unit type to execute on 
is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally 
invalidated, based on the value of the aclr completer (See Table 2-14).

Note that if the clr value of the aclr completer is used and the check succeeds, the 
matching ALAT entry is invalidated. However, if the check fails (which may happen even 
if there is a matching ALAT entry), any matching ALAT entry may optionally be 
invalidated, but this is not required. Recovery code for data speculation, therefore, 
cannot rely on the absence of a matching ALAT entry.

Table 2-14. ALAT Clear Completer

aclr Completer Effect on ALAT

clr Invalidate matching ALAT entry

nc Don’t invalidate
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Operation: if (PR[qp]) {
if (control_form) {

if (fr_form && (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0)))
disabled_fp_register_fault(tmp_isrcode, 0);

check_type = gr_form ? CHKS_GENERAL : CHKS_FLOAT;
fail = (gr_form && GR[r2].nat) || (fr_form && FR[f2] == NATVAL);

} else { // data_form
if (gr_form) {

reg_type   = GENERAL;
check_type = CHKA_GENERAL;
alat_index = r1;
always_fail = (alat_index == 0);

} else { // fr_form
reg_type   = FLOAT;
check_type = CHKA_FLOAT;
alat_index = f1;
always_fail = ((alat_index == 0) || (alat_index == 1));

}
fail = (always_fail || (!alat_cmp(reg_type, alat_index)));

}
if (fail) {

if (check_branch_implemented(check_type)) {
taken_branch = 1;
IP = IP + sign_ext((imm21 << 4), 25);
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(IP))))

unimplemented_instruction_address_trap(0, IP);
if (PSR.tb)

taken_branch_trap();
} else

speculation_fault(check_type, zero_ext(imm21, 21));
} else if (data_form && (aclr == ‘clr’))

alat_inval_single_entry(reg_type, alat_index);
}

Interruptions: Disabled Floating-point Register fault Unimplemented Instruction Address trap
Speculative Operation fault Taken Branch trap
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clrrrb — Clear RRB
Format: clrrrb all_form B8

clrrrb.pr pred_form B8

Description: In the all_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and 
CFM.rrb.pr) are cleared. In the pred_form, the single register rename base register for 
the predicates (CFM.rrb.pr) is cleared.

This instruction must be the last instruction in an instruction group; otherwise, 
operation is undefined.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
undefined_behavior();

if (all_form) {
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

} else { // pred_form
CFM.rrb.pr = 0;

}

Interruptions: None
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clz — Count Leading Zeros
Format: (qp) clz r1 = r3 I9

Description: The number of leading zeros in GR r3 is placed in GR r1.

An Illegal Operation fault is raised on processor models that do not support the 
instruction. CPUID register 4 indicates the presence of the feature on the processor 
model. See Section 3.1.11, “Processor Identification Registers” on page 1:34 for 
details. This capability may also be determined using the test feature (tf) instruction 
using the @clz operand.

Operation: if (PR[qp])
if (!instruction_implemented(CLZ))

illegal_operation_fault();
check_target_register(r1);

tmp_val = 0;

do {
if (GR[r3]{63 - tmp_val} != 0) break;

} while (tmp_val++ < 63);

GR[r1] = tmp_val;
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault
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cmp — Compare
Format: (qp) cmp.crel.ctype p1, p2 = r2, r3 register_form A6

(qp) cmp.crel.ctype p1, p2 = imm8, r3 imm8_form A8
(qp) cmp.crel.ctype p1, p2 = r0, r3 parallel_inequality_form A7
(qp) cmp.crel.ctype p1, p2 = r3, r0 pseudo-op

Description: The two source operands are compared for one of ten relations specified by crel. This 
produces a boolean result which is 1 if the comparison condition is true, and 0 
otherwise. This result is written to the two predicate register destinations, p1 and p2. 
The way the result is written to the destinations is determined by the compare type 
specified by ctype.

The compare types describe how the predicate targets are updated based on the result 
of the comparison. The normal type simply writes the compare result to one target, and 
the complement to the other. The parallel types update the targets only for a particular 
comparison result. This allows multiple simultaneous OR-type or multiple simultaneous 
AND-type compares to target the same predicate register.

The unc type is special in that it first initializes both predicate targets to 0, independent 
of the qualifying predicate. It then operates the same as the normal type. The behavior 
of the compare types is described in Table 2-15. A blank entry indicates the predicate 
target is left unchanged.

In the register_form the first operand is GR r2; in the imm8_form the first operand is 
taken from the sign-extended imm8 encoding field; and in the parallel_inequality_form 
the first operand must be GR 0. The parallel_inequality_form is only used when the 
compare type is one of the parallel types, and the relation is an inequality (>, >=, <, 
<=). See below.

If the two predicate register destinations are the same (p1 and p2 specify the same 
predicate register), the instruction will take an Illegal Operation fault, if the qualifying 
predicate is 1, or if the compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually 
pseudo-ops. For these, the assembler simply switches the source operand specifiers 
and/or switches the predicate target specifiers and uses an implemented relation. For 
some of the pseudo-op compares in the imm8_form, the assembler subtracts 1 from 
the immediate value, making the allowed immediate range slightly different. Of the six 
parallel compare types, three of the types are actually pseudo-ops. The assembler 

Table 2-15. Comparison Types

ctype
Pseudo-op 

of

PR[qp]==0

PR[qp]==1

Result==0,
No Source NaTs

Result==1,
No Source NaTs

One or More
Source NaTs

PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2]

none 0 1 1 0 0 0

unc 0 0 0 1 1 0 0 0

or 1 1

and 0 0 0 0

or.andcm 1 0

orcm or 1 1

andcm and 0 0 0 0

and.orcm or.andcm 0 1
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simply uses the negative relation with an implemented type. The implemented relations 
and how the pseudo-ops map onto them are shown in Table 2-16 (for normal and unc 
type compares), and Table 2-17 (for parallel type compares).

The parallel compare types can be used only with a restricted set of relations and 
operands. They can be used with equal and not-equal comparisons between two 
registers or between a register and an immediate, or they can be used with inequality 
comparisons between a register and GR 0. Unsigned relations are not provided, since 
they are not of much use when one of the operands is zero. For the parallel inequality 
comparisons, hardware only directly implements the ones where the first operand (GR 
r2) is GR 0. Comparisons where the second operand is GR 0 are pseudo-ops for which 
the assembler switches the register specifiers and uses the opposite relation.

Table 2-16. 64-bit Comparison Relations for Normal and unc Compares

crel
Compare Relation

(a rel b)
Register Form is a

pseudo-op of
Immediate Form is a 

pseudo-op of
Immediate Range

eq a == b -128 .. 127

ne a != b eq p1  p2 eq p1  p2 -128 .. 127

lt a < b signed -128 .. 127

le a <= b lt a  b p1  p2 lt a-1 -127 .. 128

gt a > b lt a  b lt a-1 p1  p2 -127 .. 128

ge a >= b lt p1  p2 lt p1  p2 -128 .. 127

ltu a < b unsigned 0 .. 127,
264-128 .. 264-1

leu a <= b ltu a  b p1  p2 ltu a-1 1 .. 128,
264-127 .. 264

gtu a > b ltu a  b ltu a-1 p1  p2 1 .. 128,
264-127 .. 264

geu a >= b ltu p1  p2 ltu p1  p2 0 .. 127,
264-128 .. 264-1

Table 2-17. 64-bit Comparison Relations for Parallel Compares

crel
Compare Relation

(a rel b)
Register Form is a

pseudo-op of
Immediate Range

eq a == b -128 .. 127

ne a != b -128 .. 127

lt 0 < b signed no immediate forms

lt a < 0 gt a  b

le 0 <= b

le a <= 0 ge a  b

gt 0 > b

gt a > 0 lt a  b

ge 0 >= b

ge a >= 0 le a  b
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Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_nat = (register_form ? GR[r2].nat : 0) || GR[r3].nat;
if (register_form)

tmp_src = GR[r2];
else if (imm8_form)

tmp_src = sign_ext(imm8, 8);
else // parallel_inequality_form

tmp_src = 0;

if (crel == ‘eq’) tmp_rel = tmp_src == GR[r3];
else if (crel == ‘ne’) tmp_rel = tmp_src != GR[r3];
else if (crel == ‘lt’) tmp_rel = lesser_signed(tmp_src,  GR[r3]);
else if (crel == ‘le’) tmp_rel = lesser_equal_signed(tmp_src, GR[r3]);
else if (crel == ‘gt’) tmp_rel = greater_signed(tmp_src,  GR[r3]);
else if (crel == ‘ge’) tmp_rel = greater_equal_signed(tmp_src, GR[r3]);
else if (crel == ‘ltu’) tmp_rel = lesser(tmp_src, GR[r3]);
else if (crel == ‘leu’) tmp_rel = lesser_equal(tmp_src, GR[r3]);
else if (crel == ‘gtu’) tmp_rel = greater(tmp_src, GR[r3]);
else tmp_rel = greater_equal(tmp_src, GR[r3]);//‘geu’

switch (ctype) {
case ‘and’: // and-type compare

if (tmp_nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)
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illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault
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cmp4 — Compare 4 Bytes
Format: (qp) cmp4.crel.ctype p1, p2 = r2, r3 register_form A6

(qp) cmp4.crel.ctype p1, p2 = imm8, r3 imm8_form A8
(qp) cmp4.crel.ctype p1, p2 = r0, r3 parallel_inequality_form A7
(qp) cmp4.crel.ctype p1, p2 = r3, r0 pseudo-op

Description: The least significant 32 bits from each of two source operands are compared for one of 
ten relations specified by crel. This produces a boolean result which is 1 if the 
comparison condition is true, and 0 otherwise. This result is written to the two predicate 
register destinations, p1 and p2. The way the result is written to the destinations is 
determined by the compare type specified by ctype. See the Compare instruction and 
Table 2-15 on page 3:39.

In the register_form the first operand is GR r2; in the imm8_form the first operand is 
taken from the sign-extended imm8 encoding field; and in the parallel_inequality_form 
the first operand must be GR 0. The parallel_inequality_form is only used when the 
compare type is one of the parallel types, and the relation is an inequality (>, >=, <, 
<=). See the Compare instruction and Table 2-17 on page 3:40.

If the two predicate register destinations are the same (p1 and p2 specify the same 
predicate register), the instruction will take an Illegal Operation fault, if the qualifying 
predicate is 1, or if the compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually 
pseudo-ops. See the Compare instruction and Table 2-16 and Table 2-17 on page 3:40. 
The range for immediates is given below.

Table 2-18. Immediate Range for 32-bit Compares

crel
Compare Relation

(a rel b)
Immediate Range

eq a == b -128 .. 127

ne a != b -128 .. 127

lt a < b signed -128 .. 127

le a <= b -127 .. 128

gt a > b -127 .. 128

ge a >= b -128 .. 127

ltu a < b unsigned 0 .. 127, 232-128 .. 232-1

leu a <= b 1 .. 128, 232-127 .. 232

gtu a > b 1 .. 128, 232-127 .. 232

geu a >= b 0 .. 127, 232-128 .. 232-1
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Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_nat = (register_form ? GR[r2].nat : 0) || GR[r3].nat;

if (register_form)
tmp_src = GR[r2];

else if (imm8_form)
tmp_src = sign_ext(imm8, 8);

else // parallel_inequality_form
tmp_src = 0;

if (crel == ‘eq’) tmp_rel = tmp_src{31:0} == GR[r3]{31:0};
else if (crel == ‘ne’) tmp_rel = tmp_src{31:0} != GR[r3]{31:0};
else if (crel == ‘lt’)

tmp_rel = lesser_signed(sign_ext(tmp_src, 32), 
sign_ext(GR[r3], 32));

else if (crel == ‘le’)
tmp_rel = lesser_equal_signed(sign_ext(tmp_src, 32), 

sign_ext(GR[r3], 32));
else if (crel == ‘gt’)

tmp_rel = greater_signed(sign_ext(tmp_src, 32), 
sign_ext(GR[r3], 32));

else if (crel == ‘ge’)
tmp_rel = greater_equal_signed(sign_ext(tmp_src, 32), 

sign_ext(GR[r3], 32));
else if (crel == ‘ltu’)

tmp_rel = lesser(zero_ext(tmp_src, 32), 
zero_ext(GR[r3], 32));

else if (crel == ‘leu’)
tmp_rel = lesser_equal(zero_ext(tmp_src, 32), 

zero_ext(GR[r3], 32));
else if (crel == ‘gtu’)

tmp_rel = greater(zero_ext(tmp_src, 32), 
zero_ext(GR[r3], 32));

else // ‘geu’
tmp_rel = greater_equal(zero_ext(tmp_src, 32), 

zero_ext(GR[r3], 32));

switch (ctype) {
case ‘and’: // and-type compare

if (tmp_nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
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PR[p2] = 0;
}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault
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cmpxchg — Compare and Exchange
Format: (qp) cmpxchgsz.sem.ldhint r1 = [r3], r2, ar.ccv M16

(qp) cmp8xchg16.sem.ldhint r1 = [r3], r2, ar.csd, ar.ccv sixteen_byte_form M16

Description: A value consisting of sz bytes (8 bytes for cmp8xchg16) is read from memory starting at 
the address specified by the value in GR r3. The value is zero extended and compared 
with the contents of the cmpxchg Compare Value application register (AR[CCV]). If the 
two are equal, then the least significant sz bytes of the value in GR r2 are written to 
memory starting at the address specified by the value in GR r3. For cmp8xchg16, if the 
two are equal, then 8-bytes from GR r2 are stored at the specified address ignoring bit 
3 (GR r3 & ~0x8), and 8 bytes from the Compare and Store Data application register 
(AR[CSD]) are stored at that address + 8 ((GR r3 & ~0x8) + 8). The zero-extended 
value read from memory is placed in GR r1 and the NaT bit corresponding to GR r1 is 
cleared.

The values of the sz completer are given in Table 2-19. The sem completer specifies the 
type of semaphore operation. These operations are described in Table 2-20. See 
Section 4.4.7, “Sequentiality Attribute and Ordering” on page 2:82 for details on 
memory ordering.

If the address specified by the value in GR r3 is not naturally aligned to the size of the 
value being accessed in memory, an Unaligned Data Reference fault is taken 
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the 
Processor Status Register). For the cmp8xchg16 instruction, the address specified must 
be 8-byte aligned.

The memory read and write are guaranteed to be atomic. For the cmp8xchg16 
instruction, the 8-byte memory read and the 16-byte memory write are guaranteed to 
be atomic.

Both read and write access privileges for the referenced page are required. The write 
access privilege check is performed whether or not the memory write is performed.

This instruction is only supported to cacheable pages with write-back write policy. 
Accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages 
with other memory attributes cause an Unsupported Data Reference fault.

The value of the ldhint completer specifies the locality of the memory access. The values 
of the ldhint completer are given in Table 2-34 on page 3:152. Locality hints do not 

Table 2-19. Memory Compare and Exchange Size

sz Completer Bytes Accessed

1 1

2 2

4 4

8 8

Table 2-20. Compare and Exchange Semaphore Types

sem
Completer

Ordering
Semantics

Semaphore Operation

acq Acquire The memory read/write is made visible prior to all subsequent data memory 
accesses.

rel Release The memory read/write is made visible after all previous data memory 
accesses.
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affect program functionality and may be ignored by the implementation. See 
Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:69 for details.

For cmp8xchg16, Illegal Operation fault is raised on processor models that do not 
support the instruction. CPUID register 4 indicates the presence of the feature on the 
processor model. See Section 3.1.11, “Processor Identification Registers” on page 1:34 
for details.

Operation: if (PR[qp]) {
size = sixteen_byte_form ? 16 : sz;

if (sixteen_byte_form && !instruction_implemented(CMP8XCHG16))
illegal_operation_fault();

check_target_register(r1);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_translate(GR[r3], size, SEMAPHORE, PSR.cpl, &mattr,
 &tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

if (sixteen_byte_form) {
if (sem == ‘acq’)

val = mem_xchg16_cond(AR[CCV], GR[r2], AR[CSD], paddr, UM.be,
mattr, ACQUIRE, ldhint);

else // ‘rel’
val = mem_xchg16_cond(AR[CCV], GR[r2], AR[CSD], paddr, UM.be,

mattr, RELEASE, ldhint);
} else {

if (sem == ‘acq’)
val = mem_xchg_cond(AR[CCV], GR[r2], paddr, size, UM.be, mattr,

ACQUIRE, ldhint);
else // ‘rel’

val = mem_xchg_cond(AR[CCV], GR[r2], paddr, size, UM.be, mattr, 
RELEASE, ldhint);

val = zero_ext(val, size * 8);
}

if (AR[CCV] == val)
alat_inval_multiple_entries(paddr, size);

GR[r1] = val;
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault
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cover — Cover Stack Frame
Format: cover B8

Description: A new stack frame of zero size is allocated which does not include any registers from 
the previous frame (as though all output registers in the previous frame had been 
locals). The register rename base registers are reset. If interruption collection is 
disabled (PSR.ic is zero), then the old value of the Current Frame Marker (CFM) is 
copied to the Interruption Function State register (IFS), and IFS.v is set to one. 

A cover instruction must be the last instruction in an instruction group; otherwise, 
operation is undefined.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
undefined_behavior();

if (PSR.cpl == 0 && PSR.vm == 1)
virtualization_fault();

alat_frame_update(CFM.sof, 0);
rse_preserve_frame(CFM.sof);
if (PSR.ic == 0) {

CR[IFS].ifm = CFM;
CR[IFS].v = 1;

}

CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

Interruptions: Virtualization fault
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czx — Compute Zero Index
Format: (qp) czx1.l r1 = r3 one_byte_form, left_form I29

(qp) czx1.r r1 = r3 one_byte_form, right_form I29
(qp) czx2.l r1 = r3 two_byte_form, left_form I29
(qp) czx2.r r1 = r3 two_byte_form, right_form I29

Description: GR r3 is scanned for a zero element. The element is either an 8-bit aligned byte 
(one_byte_form) or a 16-bit aligned pair of bytes (two_byte_form). The index of the 
first zero element is placed in GR r1. If there are no zero elements in GR r3, a default 
value is placed in GR r1. Table 2-21 gives the possible result values. In the left_form, 
the source is scanned from most significant element to least significant element, and in 
the right_form it is scanned from least significant element to most significant element.

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
if (left_form) { // scan from most significant down

if ((GR[r3] & 0xff00000000000000) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x00ff000000000000) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x0000ff0000000000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x000000ff00000000) == 0) GR[r1] = 3;
else if ((GR[r3] & 0x00000000ff000000) == 0) GR[r1] = 4;
else if ((GR[r3] & 0x0000000000ff0000) == 0) GR[r1] = 5;
else if ((GR[r3] & 0x000000000000ff00) == 0) GR[r1] = 6;
else if ((GR[r3] & 0x00000000000000ff) == 0) GR[r1] = 7;
else GR[r1] = 8;

} else { // right_form scan from least significant up
if ((GR[r3] & 0x00000000000000ff) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x000000000000ff00) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x0000000000ff0000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x00000000ff000000) == 0) GR[r1] = 3;
else if ((GR[r3] & 0x000000ff00000000) == 0) GR[r1] = 4;
else if ((GR[r3] & 0x0000ff0000000000) == 0) GR[r1] = 5;
else if ((GR[r3] & 0x00ff000000000000) == 0) GR[r1] = 6;
else if ((GR[r3] & 0xff00000000000000) == 0) GR[r1] = 7;
else GR[r1] = 8;

}
} else { // two_byte_form

if (left_form) { // scan from most significant down
if ((GR[r3] & 0xffff000000000000) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x0000ffff00000000) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x00000000ffff0000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x000000000000ffff) == 0) GR[r1] = 3;
else GR[r1] = 4;

} else { // right_form scan from least significant up
if ((GR[r3] & 0x000000000000ffff) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x00000000ffff0000) == 0) GR[r1] = 1;

Table 2-21. Result Ranges for czx

Size Element Width
Range of Result if Zero Element 

Found
Default Result if No Zero Element 

Found

1 8 bit 0-7 8

2 16 bit 0-3 4
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else if ((GR[r3] & 0x0000ffff00000000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0xffff000000000000) == 0) GR[r1] = 3;
else GR[r1] = 4;

}
}
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault
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dep — Deposit
Format: (qp) dep r1 = r2, r3, pos6, len4 merge_form, register_form I15

(qp) dep r1 = imm1, r3, pos6, len6 merge_form, imm_form I14
(qp) dep.z r1 = r2, pos6, len6 zero_form, register_form I12
(qp) dep.z r1 = imm8, pos6, len6 zero_form, imm_form I13

Description: In the merge_form, a right justified bit field taken from the first source operand is 
deposited into the value in GR r3 at an arbitrary bit position and the result is placed in 
GR r1. In the register_form the first source operand is GR r2; and in the imm_form it is 
the sign-extended value specified by imm1 (either all ones or all zeroes). The deposited 
bit field begins at the bit position specified by the pos6 immediate and extends to the left 
(towards the most significant bit) a number of bits specified by the len immediate. Note 
that len has a range of 1-16 in the register_form and 1-64 in the imm_form. The pos6 
immediate has a range of 0 to 63.

In the zero_form, a right justified bit field taken from either the value in GR r2 (in the 
register_form) or the sign-extended value in imm8 (in the imm_form) is deposited into 
GR r1 and all other bits in GR r1 are cleared to zero. The deposited bit field begins at the 
bit position specified by the pos6 immediate and extends to the left (towards the most 
significant bit) a number of bits specified by the len immediate. The len immediate has 
a range of 1-64 and the pos6 immediate has a range of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len + 
pos6 > 64, the most significant len + pos6 - 64 bits of the deposited bit field are 
truncated. The len immediate is encoded as len minus 1 in the instruction.

The operation of dep r1 = r2, r3, 36, 16 is illustrated in Figure 2-5.

The operation of dep.z r1 = r2, 36, 16 is illustrated in Figure 2-6.

Figure 2-5. Deposit Example (merge_form)

Figure 2-6. Deposit Example (zero_form)
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Operation: if (PR[qp]) {
check_target_register(r1);

if (imm_form) {
tmp_src = (merge_form ? sign_ext(imm1,1) : sign_ext(imm8, 8));
tmp_nat = merge_form ? GR[r3].nat : 0;
tmp_len = len6 ;

} else { // register_form
tmp_src = GR[r2];
tmp_nat = (merge_form ? GR[r3].nat : 0) || GR[r2].nat;
tmp_len = merge_form ? len4 : len6 ;

}
if (pos6 + tmp_len u> 64)

tmp_len = 64 - pos6;

if (merge_form)
GR[r1] = GR[r3];

else // zero_form
GR[r1] = 0;

GR[r1]{(pos6 + tmp_len - 1):pos6} = tmp_src{(tmp_len - 1):0};
GR[r1].nat = tmp_nat;

}

Interruptions: Illegal Operation fault
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epc — Enter Privileged Code
Format: epc B8

Description: This instruction increases the privilege level. The new privilege level is given by the TLB 
entry for the page containing this instruction. This instruction can be used to implement 
calls to higher-privileged routines without the overhead of an interruption.

Before increasing the privilege level, a check is performed. The PFS.ppl (previous 
privilege level) is checked to ensure that it is not more privileged than the current 
privilege level. If this check fails, the instruction takes an Illegal Operation fault.

If the check succeeds, then the privilege is increased as follows:

• If instruction address translation is enabled and the page containing the epc 
instruction has execute-only page access rights and the privilege level assigned to 
the page is higher than (numerically less than) the current privilege level, then the 
current privilege level is set to the privilege level field in the translation for the page 
containing the epc instruction. This instruction can promote but cannot demote, 
and the new privilege comes from the TLB entry.

If instruction address translation is disabled, then the current privilege level is set 
to 0 (most privileged).

Instructions after the epc in the same instruction group may be executed at the old 
privilege level or the new, higher privilege level. Instructions in subsequent 
instruction groups will be executed at the new, higher privilege level.

• If the page containing the epc instruction has any other access rights besides 
execute-only, or if the privilege level assigned to the page is lower or equal to 
(numerically greater than or equal to) the current privilege level, then no action is 
taken (the current privilege level is unchanged).

Note that the ITLB is actually only read once, at instruction fetch. Information from the 
access rights and privilege level fields from the translation is then used in executing this 
instruction.

This instruction cannot be predicated.

Operation: if (AR[PFS].ppl u< PSR.cpl)
illegal_operation_fault();

if (PSR.it)
PSR.cpl = tlb_enter_privileged_code();

else
PSR.cpl = 0;

Interruptions: Illegal Operation fault
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extr — Extract
Format: (qp) extr r1 = r3, pos6, len6 signed_form I11

(qp) extr.u r1 = r3, pos6, len6 unsigned_form I11

Description: A field is extracted from GR r3, either zero extended or sign extended, and placed 
right-justified in GR r1. The field begins at the bit position given by the second operand 
and extends len6 bits to the left. The bit position where the field begins is specified by 
the pos6 immediate. The extracted field is sign extended in the signed_form or zero 
extended in the unsigned_form. The sign is taken from the most significant bit of the 
extracted field. If the specified field extends beyond the most significant bit of GR r3, 
the sign is taken from the most significant bit of GR r3. The immediate value len6 can be 
any number in the range 1 to 64, and is encoded as len6-1 in the instruction. The 
immediate value pos6 can be any value in the range 0 to 63.

The operation of extr r1 = r3, 7, 50 is illustrated in Figure 2-7.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_len = len6;

if (pos6 + tmp_len u> 64)
tmp_len = 64 - pos6;

if (unsigned_form)
GR[r1] = zero_ext(shift_right_unsigned(GR[r3], pos6), tmp_len);

else // signed_form
GR[r1] = sign_ext(shift_right_unsigned(GR[r3], pos6), tmp_len);

GR[r1].nat = GR[r3].nat;
}

Interruptions: Illegal Operation fault

Figure 2-7. Extract Example

56 7 0

49 0

GR r3:

GR r1:

63

63

Sign
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fabs — Floating-point Absolute Value
Format: (qp) fabs f1 = f3 pseudo-op of: (qp) fmerge.s f1 = f0, f3

Description: The absolute value of the value in FR f3 is computed and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.
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fadd — Floating-point Add
Format: (qp) fadd.pc.sf f1 = f3, f2 pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f2

Description: FR f3 and FR f2 are added (computed to infinite precision), rounded to the precision 
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode 
specified by FPSR.sf.rc, and placed in FR f1. If either FR f3 or FR f2 is a NaTVal, FR f1 is set 
to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22. The mnemonic values 
for sf are given in Table 2-23. For the encodings and interpretation of the status field’s 
pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

Table 2-22. Specified pc Mnemonic Values

pc Mnemonic Precision Specified

.s single

.d double

none dynamic
(i.e. use pc value in status field)

Table 2-23. sf Mnemonic Values

sf Mnemonic Status Field Accessed

.s0 or none sf0

.s1 sf1

.s2 sf2

.s3 sf3
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famax — Floating-point Absolute Maximum
Format: (qp) famax.sf f1 = f2, f3 F8

Description: The operand with the larger absolute value is placed in FR f1. If the magnitude of FR f2 
equals the magnitude of FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as the 
fcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_right = fp_reg_read(FR[f2]);
tmp_left = fp_reg_read(FR[f3]);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}

fp_update_psr(f1);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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famin — Floating-point Absolute Minimum
Format: (qp) famin.sf f1 = f2, f3 F8

Description: The operand with the smaller absolute value is placed in FR f1. If the magnitude of FR f2 
equals the magnitude of FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as the 
fcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_left = fp_reg_read(FR[f2]);
tmp_right = fp_reg_read(FR[f3]);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}

fp_update_psr(f1);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fand — Floating-point Logical And
Format: (qp) fand f1 = f2, f3 F9

Description: The bit-wise logical AND of the significand fields of FR f2 and FR f3 is computed. The 
resulting value is stored in the significand field of FR f1. The exponent field of FR f1 is set 
to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive 
(0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand & FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fandcm — Floating-point And Complement
Format: (qp) fandcm f1 = f2, f3 F9

Description: The bit-wise logical AND of the significand field of FR f2 with the bit-wise complemented 
significand field of FR f3 is computed. The resulting value is stored in the significand field 
of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) 
and the sign field of FR f1 is set to positive (0).

If either FR f2 or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand & ~FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fc — Flush Cache
Format: (qp) fc r3 invalidate_line_form M28

(qp) fc.i r3 instruction_cache_coherent_form M28

Description: In the invalidate_line form, the cache line associated with the address specified by the 
value of GR r3 is invalidated from all levels of the processor cache hierarchy. The 
invalidation is broadcast throughout the coherence domain. If, at any level of the cache 
hierarchy, the line is inconsistent with memory it is written to memory before 
invalidation. The line size affected is at least 32-bytes (aligned on a 32-byte boundary). 
An implementation may flush a larger region.

In the instruction_cache_coherent form, the cache line specified by GR r3 is flushed in 
an implementation-specific manner that ensures that the instruction caches are 
coherent with the data caches. The fc.i instruction is not required to invalidate the 
targeted cache line nor write the targeted cache line back to memory if it is inconsistent 
with memory, but may do so if this is required to make the instruction caches coherent 
with the data caches. The fc.i instruction is broadcast throughout the coherence 
domain if necessary to make all instruction caches coherent. The line size affected is at 
least 32-bytes (aligned on a 32-byte boundary). An implementation may flush a larger 
region.

When executed at privilege level 0, fc and fc.i perform no access rights or protection 
key checks. At other privilege levels, fc and fc.i perform access rights checks as if 
they were 1-byte reads, but do not perform any protection key checks (regardless of 
PSR.pk).

The memory attribute of the page containing the affected line has no effect on the 
behavior of these instructions. The fc instruction can be used to remove a range of 
addresses from the cache by first changing the memory attribute to non-cacheable and 
then flushing the range.

These instructions follow data dependency ordering rules; they are ordered only with 
respect to previous load, store or semaphore instructions to the same line. fc and fc.i 
have data dependencies in the sense that any prior stores by this processor will be 
included in the flush operation. Subsequent memory operations to the same line need 
not wait for prior fc or fc.i completion before being globally visible. fc and fc.i are 
unordered operations, and are not affected by a memory fence (mf) instruction. These 
instructions are ordered with respect to the sync.i instruction.

Operation: if (PR[qp]) {
itype = NON_ACCESS|FC|READ;
if (GR[r3].nat)

register_nat_consumption_fault(itype);
tmp_paddr = tlb_translate_nonaccess(GR[r3], itype);

if (invalidate_line_form)
mem_flush(tmp_paddr);

else // instruction_cache_coherent_form
make_icache_coherent(tmp_paddr);

}
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Interruptions: Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Data Nested TLB fault Data NaT Page Consumption fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault
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fchkf — Floating-point Check Flags
Format: (qp) fchkf.sf target25 F14

Description: The flags in FPSR.sf.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags 
set in FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in 
FPSR.sf.flags are not set in FPSR.s0.flags, then a branch to target25 is taken.

The target25 operand, specifies a label to branch to. This is encoded in the instruction 
as a signed immediate displacement (imm21) between the target bundle and the bundle 
containing this instruction (imm21 = target25 - IP >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the 
instruction would have branched, and the branching behavior is not implemented, then 
a Speculative Operation fault is taken and the value specified by imm21 is zero-extended 
and placed in the Interruption Immediate control register (IIM). The fault handler 
emulates the branch by sign-extending the IIM value, adding it to IIP and returning.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
switch (sf) {

case ‘s0’:
tmp_flags = AR[FPSR].sf0.flags;
break;

case ‘s1’:
tmp_flags = AR[FPSR].sf1.flags;
break;

case ‘s2’:
tmp_flags = AR[FPSR].sf2.flags;
break;

case ‘s3’:
tmp_flags = AR[FPSR].sf3.flags;
break;

}
if ((tmp_flags & ~AR[FPSR].traps) || (tmp_flags & ~AR[FPSR].sf0.flags)) {

if (check_branch_implemented(FCHKF)) {
taken_branch = 1; 
IP = IP + sign_ext((imm21 << 4), 25);
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(IP, PSR.vm))
|| (!PSR.it && unimplemented_physical_address(IP)))
unimplemented_instruction_address_trap(0, IP);

if (PSR.tb)
taken_branch_trap();

} else
speculation_fault(FCHKF, zero_ext(imm21, 21));

}
}

FP Exceptions: None

Interruptions: Speculative Operation fault Taken Branch trap
Unimplemented Instruction Address trap
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fclass — Floating-point Class
Format: (qp) fclass.fcrel.fctype p1, p2 = f2, fclass9 F5

Description: The contents of FR f2 are classified according to the fclass9 completer as shown in 
Table 2-25. This produces a boolean result based on whether the contents of FR f2 
agrees with the floating-point number format specified by fclass9, as specified by the fcrel 
completer. This result is written to the two predicate register destinations, p1 and p2. 
The result written to the destinations is determined by the compare type specified by 
fctype.

The allowed types are Normal (or none) and unc. See Table 2-26 on page 3:67. The 
assembly syntax allows the specification of membership or non-membership and the 
assembler swaps the target predicates to achieve the desired effect.

A number agrees with the pattern specified by fclass9 if:

• the number is NaTVal and fclass9 {8} is 1, or 

• the number is a quiet NaN and fclass9 {7} is 1, or

• the number is a signaling NaN and fclass9 {6} is 1, or

• the sign of the number agrees with the sign specified by one of the two low-order 
bits of fclass9, and the type of the number (disregarding the sign) agrees with the 
number-type specified by the next four bits of fclass9, as shown in Table 2-25.

Note: An fclass9 of 0x1FF is equivalent to testing for any supported operand.

The class names used in Table 2-25 are defined in Table 5-2, “Floating-point Register 
Encodings” on page 1:86.

Table 2-24. Floating-point Class Relations

fcrel Test Relation

m FR f2 agrees with the pattern specified by fclass9 (is a member)

nm FR f2 does not agree with the pattern specified by fclass9 (is not a member)

Table 2-25. Floating-point Classes

fclass9 Class Mnemonic

Either these cases can be tested for

0x0100 NaTVal @nat

0x080 Quiet NaN @qnan

0x040 Signaling NaN @snan

or the OR of the following two cases

0x001 Positive @pos

0x002 Negative @neg

AND’ed with OR of the following four cases

0x004 Zero @zero

0x008 Unnormalized @unorm

0x010 Normalized @norm

0x020 Infinity @inf
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Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

tmp_rel = ((fclass9{0} && !FR[f2].sign || fclass9{1} && FR[f2].sign)
&& ((fclass9{2} && fp_is_zero(FR[f2]))||

 (fclass9{3} && fp_is_unorm(FR[f2])) ||
 (fclass9{4} && fp_is_normal(FR[f2])) ||
 (fclass9{5} && fp_is_inf(FR[f2]))
)

)
|| (fclass9{6} && fp_is_snan(FR[f2]))
|| (fclass9{7} && fp_is_qnan(FR[f2]))
|| (fclass9{8} && fp_is_natval(FR[f2]));

tmp_nat = fp_is_natval(FR[f2]) && (!fclass9{8});

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
} else {

if (fctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fclrf — Floating-point Clear Flags
Format: (qp) fclrf.sf F13

Description: The status field’s 6-bit flags field is reset to zero.
The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_set_sf_flags(sf, 0);

}

FP Exceptions: None

Interruptions: None
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fcmp — Floating-point Compare
Format: (qp) fcmp.frel.fctype.sf p1, p2 = f2, f3 F4

Description: The two source operands are compared for one of twelve relations specified by frel. This 
produces a boolean result which is 1 if the comparison condition is true, and 0 
otherwise. This result is written to the two predicate register destinations, p1 and p2. 
The way the result is written to the destinations is determined by the compare type 
specified by fctype. The allowed types are Normal (or none) and unc.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

The relations are defined for each of the comparison types in Table 2-27. Of the twelve 
relations, not all are directly implemented in hardware. Some are actually pseudo-ops. 
For these, the assembler simply switches the source operand specifiers and/or switches 
the predicate target specifiers and uses an implemented relation.

Table 2-26. Floating-point Comparison Types

fctype
PR[qp]==0

PR[qp]==1

Result==0,
No Source NaTVals

Result==1,
No Source NaTVals

One or More
Source NaTVals

PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2]

none 0 1 1 0 0 0

unc 0 0 0 1 1 0 0 0

Table 2-27. Floating-point Comparison Relations

frel
frel Completer
Unabbreviated

Relation Pseudo-op of
Quiet NaN

as Operand
Signals Invalid

eq equal f2 == f3 No

lt less than f2 < f3 Yes

le less than or equal f2 <= f3 Yes

gt greater than f2 > f3 lt f2  f3 Yes

ge greater than or equal f2 >= f3 le f2  f3 Yes

unord unordered f2 ? f3 No

neq not equal !(f2 == f3) eq p1  p2 No

nlt not less than !(f2 < f3) lt p1  p2 Yes

nle not less than or equal !(f2 <= f3) le p1  p2 Yes

ngt not greater than !(f2 > f3) lt f2  f3 p1  p2 Yes

nge not greater than or equal !(f2 >= f3) le f2  f3 p1  p2 Yes

ord ordered !(f2 ? f3) unord p1  p2 No
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Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (tmp_isrcode = fp_reg_disabled(f2, f3, 0, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
PR[p1] = 0;
PR[p2] = 0;

} else {
fcmp_exception_fault_check(f2, f3, frel, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = fp_reg_read(FR[f2]);
tmp_fr3 = fp_reg_read(FR[f3]);

if (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2,
tmp_fr3);

else if (frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2,
tmp_fr3);

else if (frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2, 
tmp_fr3);

else if (frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, 
tmp_fr2);

else if (frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3,
tmp_fr2);

else if (frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, 
tmp_fr3);

else if (frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, 
tmp_fr3);

else if (frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2,
tmp_fr3);

else if (frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2,
tmp_fr3);

else if (frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, 
tmp_fr2);

else if (frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3,
tmp_fr2);

else tmp_rel = !fp_unordered(tmp_fr2, 
tmp_fr3); //‘ord’

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

fp_update_fpsr(sf, tmp_fp_env);
}

} else {
if (fctype == ‘unc’) {

if (p1 == p2)
illegal_operation_fault();

PR[p1] = 0;
PR[p2] = 0;

}
}
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FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fcvt.fx — Convert Floating-point to Integer
Format: (qp) fcvt.fx.sf f1 = f2 signed_form F10

(qp) fcvt.fx.trunc.sf f1 = f2 signed_form, trunc_form F10
(qp) fcvt.fxu.sf f1 = f2 unsigned_form F10
(qp) fcvt.fxu.trunc.sf f1 = f2 unsigned_form, trunc_form F10

Description: FR f2 is treated as a register format floating-point value and converted to a signed 
(signed_form) or unsigned integer (unsigned_form) using either the rounding mode 
specified in the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is 
used. The result is placed in the 64-bit significand field of FR f1. The exponent field of FR 
f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to 
positive (0). If the result of the conversion cannot be represented as a 64-bit integer, 
the 64-bit integer indefinite value 0x8000000000000000 is used as the result, if the 
IEEE Invalid Operation Floating-point Exception fault is disabled. 

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fcvt_exception_fault_check(f2, signed_form,

trunc_form, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f1].significand = INTEGER_INDEFINITE;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

} else {
tmp_res = fp_ieee_rnd_to_int(fp_reg_read(FR[f2]), &tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;

FR[f1].significand = tmp_res.significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}
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FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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fcvt.xf — Convert Signed Integer to Floating-point
Format: (qp) fcvt.xf f1 = f2 F11

Description: The 64-bit significand of FR f2 is treated as a signed integer and its register file precision 
floating-point representation is placed in FR f1.

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation is always exact and is unaffected by the rounding mode.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;

} else {
tmp_res = FR[f2];
if (tmp_res.significand{63}) {

tmp_res.significand = (~tmp_res.significand) + 1;
tmp_res.sign = 1;

} else
tmp_res.sign = 0;

tmp_res.exponent = FP_INTEGER_EXP;
tmp_res = fp_normalize(tmp_res);

FR[f1].significand = tmp_res.significand;
FR[f1].exponent = tmp_res.exponent;
FR[f1].sign = tmp_res.sign;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fcvt.xuf — Convert Unsigned Integer to Floating-point
Format: (qp) fcvt.xuf.pc.sf f1 = f3  pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f0

Description: FR f3 is multiplied with FR 1, rounded to the precision indicated by pc (and possibly 
FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and 
placed in FR f1.

Note: Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an 
integer in the floating-point register file producing a normal floating-point 
value.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.
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fetchadd — Fetch and Add Immediate
Format: (qp) fetchadd4.sem.ldhint r1 = [r3], inc3 four_byte_form M17

(qp) fetchadd8.sem.ldhint r1 = [r3], inc3 eight_byte_form M17

Description: A value consisting of four or eight bytes is read from memory starting at the address 
specified by the value in GR r3. The value is zero extended and added to the 
sign-extended immediate value specified by inc3. The values that may be specified by 
inc3 are: -16, -8, -4, -1, 1, 4, 8, 16. The least significant four or eight bytes of the sum 
are then written to memory starting at the address specified by the value in GR r3. The 
zero-extended value read from memory is placed in GR r1 and the NaT bit 
corresponding to GR r1 is cleared.

The sem completer specifies the type of semaphore operation. These operations are 
described in Table 2-28. See Section 4.4.7, “Sequentiality Attribute and Ordering” on 
page 2:82 for details on memory ordering.

The memory read and write are guaranteed to be atomic for accesses to pages with 
cacheable, writeback memory attribute. For accesses to other memory types, atomicity 
is platform dependent. Details on memory attributes are described in Section 4.4, 
“Memory Attributes” on page 2:75.

If the address specified by the value in GR r3 is not naturally aligned to the size of the 
value being accessed in memory, an Unaligned Data Reference fault is taken 
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the 
Processor Status Register).

Both read and write access privileges for the referenced page are required. The write 
access privilege check is performed whether or not the memory write is performed.

Only accesses to UCE pages or cacheable pages with write-back write policy are 
permitted. Accesses to NaTPages result in a Data NaT Page Consumption fault. 
Accesses to pages with other memory attributes cause an Unsupported Data Reference 
fault.

On a processor model that supports exported fetchadd, a fetchadd to a UCE page 
causes the fetch-and-add operation to be exported outside of the processor; if the 
platform does not support exported fetchadd, the operation is undefined. On a 
processor model that does not support exported fetchadd, a fetchadd to a UCE page 
causes an Unsupported Data Reference fault. See Section 4.4.9, “Effects of Memory 
Attributes on Memory Reference Instructions” on page 2:86.

The value of the ldhint completer specifies the locality of the memory access. The values 
of the ldhint completer are given in Table 2-34 on page 3:152. Locality hints do not 
affect program functionality and may be ignored by the implementation. See 
Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:69 for details.

Table 2-28. Fetch and Add Semaphore Types

sem
Completer

Ordering
Semantics

Semaphore Operation

acq Acquire The memory read/write is made visible prior to all subsequent data memory 
accesses.

rel Release The memory read/write is made visible after all previous data memory 
accesses.
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Operation: if (PR[qp]) {
check_target_register(r1);

if (GR[r3].nat)
register_nat_consumption_fault(SEMAPHORE);

size = four_byte_form ? 4 : 8;

paddr = tlb_translate(GR[r3], size, SEMAPHORE, PSR.cpl, &mattr,
 &tmp_unused);

if (!ma_supports_fetchadd(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

if (sem == ‘acq’)
val = mem_xchg_add(inc3, paddr, size, UM.be, mattr, ACQUIRE, ldhint);

else // ‘rel’
val = mem_xchg_add(inc3, paddr, size, UM.be, mattr, RELEASE, ldhint);

alat_inval_multiple_entries(paddr, size);

GR[r1] = zero_ext(val, size * 8);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault
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flushrs — Flush Register Stack
Format: flushrs M25

Description: All stacked general registers in the dirty partition of the register stack are written to the 
backing store before execution continues. The dirty partition contains registers from 
previous procedure frames that have not yet been saved to the backing store. For a 
description of the register stack partitions, refer to Chapter 6, “Register Stack Engine” 
in Volume 2. A pending external interrupt can interrupt the RSE store loop when 
enabled.

After this instruction completes execution BSPSTORE is equal to BSP.

This instruction must be the first instruction in an instruction group and must either be 
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0; 
otherwise, the results are undefined. This instruction cannot be predicated.

Operation: while (AR[BSPSTORE] != AR[BSP]) {
rse_store(MANDATORY); // increments AR[BSPSTORE]
deliver_unmasked_pending_external_interrupt();

}

Interruptions: Unimplemented Data Address fault Data Key Miss fault
VHPT Data fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Data TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
Data Page Not Present fault Data Debug fault
Data NaT Page Consumption fault
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fma — Floating-point Multiply Add
Format: (qp) fma.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision and then FR f2 is added to 
this product, again in infinite precision. The resulting value is then rounded to the 
precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding 
mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
result.

If f2 is f0, an IEEE multiply operation is performed instead of a multiply and add. See 
“fmpy — Floating-point Multiply” on page 3:85.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || 
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read(FR[f2]), tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap
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Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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fmax — Floating-point Maximum
Format: (qp) fmax.sf f1 = f2, f3 F8

Description: The operand with the larger value is placed in FR f1. If FR f2 equals FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as the 
fcmp.lt operation. 

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_bool_res = fp_less_than(fp_reg_read(FR[f3]),
fp_reg_read(FR[f2]));

FR[f1] = (tmp_bool_res ? FR[f2] : FR[f3]);

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fmerge — Floating-point Merge
Format: (qp) fmerge.ns f1 = f2, f3 neg_sign_form F9

(qp) fmerge.s f1 = f2, f3 sign_form F9
(qp) fmerge.se f1 = f2, f3 sign_exp_form F9

Description: Sign, exponent and significand fields are extracted from FR f2 and FR f3, combined, and 
the result is placed in FR f1.

For the neg_sign_form, the sign of FR f2 is negated and concatenated with the exponent 
and the significand of FR f3. This form can be used to negate a floating-point number by 
using the same register for FR f2 and FR f3.

For the sign_form, the sign of FR f2 is concatenated with the exponent and the 
significand of FR f3.

For the sign_exp_form, the sign and exponent of FR f2 is concatenated with the 
significand of FR f3.

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the 
computed result.

Figure 2-8. Floating-point Merge Negative Sign Operation

Figure 2-9. Floating-point Merge Sign Operation

Figure 2-10. Floating-point Merge Sign and Exponent Operation
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f3].significand;
if (neg_sign_form) {

FR[f1].exponent = FR[f3].exponent;
FR[f1].sign = !FR[f2].sign;

} else if (sign_form) {
FR[f1].exponent = FR[f3].exponent;
FR[f1].sign = FR[f2].sign;

} else { // sign_exp_form
FR[f1].exponent = FR[f2].exponent;
FR[f1].sign = FR[f2].sign;

}
}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fmin — Floating-point Minimum
Format: (qp) fmin.sf f1 = f2, f3 F8

Description: The operand with the smaller value is placed in FR f1. If FR f2 equals FR f3, FR f1 gets FR 
f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as the 
fcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_bool_res = fp_less_than(fp_reg_read(FR[f2]),
fp_reg_read(FR[f3]));

FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fmix — Floating-point Mix
Format: (qp) fmix.l f1 = f2, f3 mix_l_form F9

(qp) fmix.r f1 = f2, f3 mix_r_form F9
(qp) fmix.lr f1 = f2, f3 mix_lr_form F9

Description: For the mix_l_form (mix_r_form), the left (right) single precision value in FR f2 is 
concatenated with the left (right) single precision value in FR f3. For the mix_lr_form, 
the left single precision value in FR f2 is concatenated with the right single precision 
value in FR f3.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the 
computed result.

Figure 2-11. Floating-point Mix Left

Figure 2-12. Floating-point Mix Right

Figure 2-13. Floating-point Mix Left-Right
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (mix_l_form) {

tmp_res_hi = FR[f2].significand{63:32};
tmp_res_lo = FR[f3].significand{63:32};

} else if (mix_r_form) {
tmp_res_hi = FR[f2].significand{31:0};
tmp_res_lo = FR[f3].significand{31:0};

} else { // mix_lr_form
tmp_res_hi = FR[f2].significand{63:32};
tmp_res_lo = FR[f3].significand{31:0};

}
FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fmpy — Floating-point Multiply
Format: (qp) fmpy.pc.sf f1 = f3, f4 pseudo-op of: (qp) fma.pc.sf f1 = f3, f4, f0

Description: The product FR f3 and FR f4 is computed to infinite precision. The resulting value is then 
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) 
using the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.
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fms — Floating-point Multiply Subtract
Format: (qp) fms.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision and then FR f2 is 
subtracted from this product, again in infinite precision. The resulting value is then 
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) 
using the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, a NaTVal is placed in FR f1 instead of the 
computed result.

If f2 is f0, an IEEE multiply operation is performed instead of a multiply and subtract. 
See “fmpy — Floating-point Multiply” on page 3:85.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4)) 

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || 
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fms_fnma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
tmp_fr2 = fp_reg_read(FR[f2]);
tmp_fr2.sign = !tmp_fr2.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, tmp_fr2, tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap
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Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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fneg — Floating-point Negate
Format: (qp) fneg f1 = f3 pseudo-op of: (qp) fmerge.ns f1 = f3, f3

Description: The value in FR f3 is negated and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.
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fnegabs — Floating-point Negate Absolute Value
Format: (qp) fnegabs f1 = f3 pseudo-op of: (qp) fmerge.ns f1 = f0, f3

Description: The absolute value of the value in FR f3 is computed, negated, and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.
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fnma — Floating-point Negative Multiply Add
Format: (qp) fnma.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision, negated, and then FR f2 
is added to this product, again in infinite precision. The resulting value is then rounded 
to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the 
rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
result.

If f2 is f0, an IEEE multiply operation is performed, followed by negation of the product. 
See “fnmpy — Floating-point Negative Multiply” on page 3:92.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fms_fnma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read(FR[f2]), tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap
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Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap



3:92 Volume 3: Instruction Reference

fnmpy

fnmpy — Floating-point Negative Multiply
Format: (qp) fnmpy.pc.sf f1 = f3, f4 pseudo-op of: (qp) fnma.pc.sf f1 = f3, f4,f0

Description: The product FR f3 and FR f4 is computed to infinite precision and then negated. The 
resulting value is then rounded to the precision indicated by pc (and possibly FPSR.sf.pc 
and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The rounded result 
is placed in FR f1.

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: See “fnma — Floating-point Negative Multiply Add” on page 3:90.
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fnorm — Floating-point Normalize
Format: (qp) fnorm.pc.sf f1 = f3 pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f0

Description: FR f3 is normalized and rounded to the precision indicated by pc (and possibly 
FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and 
placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.
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for — Floating-point Logical Or
Format: (qp) for f1 = f2, f3 F9

Description: The bit-wise logical OR of the significand fields of FR f2 and FR f3 is computed. The 
resulting value is stored in the significand field of FR f1. The exponent field of FR f1 is set 
to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive 
(0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand | FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fpabs — Floating-point Parallel Absolute Value
Format: (qp) fpabs f1 = f3 pseudo-op of: (qp) fpmerge.s f1 = f0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f3 
are computed and stored in the significand field of FR f1. The exponent field of FR f1 is 
set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to 
positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.
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fpack — Floating-point Pack
Format: (qp) fpack f1 = f2, f3 pack_form F9

Description: The register format numbers in FR f2 and FR f3 are converted to single precision memory 
format. These two single precision numbers are concatenated and stored in the 
significand field of FR f1 . The exponent field of FR f1 is set to the biased exponent for 
2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
tmp_res_hi = fp_single(FR[f2]);
tmp_res_lo = fp_single(FR[f3]);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Figure 2-14. Floating-point Pack

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1 0 1003E

32 31

82-bit FR to Single Mem Format Conversions



Volume 3: Instruction Reference 3:97

fpamax

fpamax — Floating-point Parallel Absolute Maximum
Format: (qp) fpamax.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 and FR f3 are compared. 
The operands with the larger absolute value are returned in the significand field of FR f1.

If the magnitude of high (low) FR f3 is less than the magnitude of high (low) FR f2, high 
(low) FR f1 gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, and neither FR f2 or FR f3 is a NaTVal, high 
(low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the 
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as for 
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_right = fp_reg_read_hi(f2);
tmp_fr3 = tmp_left = fp_reg_read_hi(f3);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_right = fp_reg_read_lo(f2);
tmp_fr3 = tmp_left = fp_reg_read_lo(f3);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}



3:98 Volume 3: Instruction Reference

fpamax

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fpamin — Floating-point Parallel Absolute Minimum
Format: (qp) fpamin.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The 
operands with the smaller absolute value is returned in the significand of FR f1.

If the magnitude of high (low) FR f2 is less than the magnitude of high (low) FR f3, high 
(low) FR f1 gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, and neither FR f2 or FR f3 is a NaTVal, high 
(low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the 
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as for 
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_left = fp_reg_read_hi(f2);
tmp_fr3 = tmp_right = fp_reg_read_hi(f3);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_left = fp_reg_read_lo(f2);
tmp_fr3 = tmp_right = fp_reg_read_lo(f3);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}
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fpamin

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fpcmp — Floating-point Parallel Compare
Format: (qp) fpcmp.frel.sf f1= f2, f3 F8

Description: The two pairs of single precision source operands in the significand fields of FR f2 and FR 
f3 are compared for one of twelve relations specified by frel. This produces a boolean 
result which is a mask of 32 1’s if the comparison condition is true, and a mask of 32 0’s 
otherwise. This result is written to a pair of 32-bit integers in the significand field of FR 
f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the 
sign field of FR f1 is set to positive (0).

The mnemonic values for sf are given in Table 2-23 on page 3:56.

The relations are defined for each of the comparison types in Table 2-29. Of the twelve 
relations, not all are directly implemented in hardware. Some are actually pseudo-ops. 
For these, the assembler simply switches the source operand specifiers and/or switches 
the predicate type specifiers and uses an implemented relation.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Table 2-29. Floating-point Parallel Comparison Results

PR[qp]==0

PR[qp]==1

Result==false,
No Source NaTVals

Result==true,
No Source NaTVals

One or More
Source NaTVals

unchanged 0...0 1...1 NaTVal

Table 2-30. Floating-point Parallel Comparison Relations

frel
frel Completer
Unabbreviated

Relation Pseudo-op of
Quiet NaN

as Operand
Signals Invalid

eq equal f2 == f3 No

lt less than f2 < f3 Yes

le less than or equal f2 <= f3 Yes

gt greater than f2 > f3 lt f2  f3 Yes

ge greater than or equal f2 >= f3 le f2  f3 Yes

unord unordered f2 ? f3 No

neq not equal !(f2 == f3) No

nlt not less than !(f2 < f3) Yes

nle not less than or equal !(f2 <= f3) Yes

ngt not greater than !(f2 > f3) nlt f2  f3 Yes

nge not greater than or equal !(f2 >= f3) nle f2  f3 Yes

ord ordered !(f2 ? f3) No
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpcmp_exception_fault_check(f2, f3, frel, sf, &tmp_fp_env);

if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = fp_reg_read_hi(f2);
tmp_fr3 = fp_reg_read_hi(f3);

if  (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else if (frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);
else if (frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else tmp_rel = !fp_unordered(tmp_fr2,

tmp_fr3); //‘ord’

tmp_res_hi = (tmp_rel ? 0xFFFFFFFF : 0x00000000);

tmp_fr2 = fp_reg_read_lo(f2);
tmp_fr3 = fp_reg_read_lo(f3);

if  (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else if (frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);
else if (frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else tmp_rel = !fp_unordered(tmp_fr2,

tmp_fr3); //‘ord’
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tmp_res_lo = (tmp_rel ? 0xFFFFFFFF : 0x00000000);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fpcvt.fx

fpcvt.fx — Convert Parallel Floating-point to Integer
Format: (qp) fpcvt.fx.sf f1 = f2 signed_form F10

(qp) fpcvt.fx.trunc.sf f1 = f2 signed_form, trunc_form F10
(qp) fpcvt.fxu.sf f1 = f2 unsigned_form F10
(qp) fpcvt.fxu.trunc.sf f1 = f2 unsigned_form, trunc_form F10

Description: The pair of single precision values in the significand field of FR f2 is converted to a pair 
of 32-bit signed integers (signed_form) or unsigned integers (unsigned_form) using 
either the rounding mode specified in the FPSR.sf.rc, or using Round-to-Zero if the 
trunc_form of the instruction is used. The result is written as a pair of 32-bit integers 
into the significand field of FR f1. The exponent field of FR f1 is set to the biased 
exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0). If the 
result of the conversion cannot be represented as a 32-bit integer, the 32-bit integer 
indefinite value 0x80000000 is used as the result, if the IEEE Invalid Operation 
Floating-point Exception fault is disabled. 

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpcvt_exception_fault_check(f2,

signed_form, trunc_form, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res_hi = INTEGER_INDEFINITE_32_BIT;

} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f2), HIGH,

&tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;

tmp_res_hi = tmp_res.significand{31:0};
}

if (fp_is_nan(tmp_default_result_pair.lo)) {
tmp_res_lo = INTEGER_INDEFINITE_32_BIT;

} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_lo(f2), LOW,

&tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign) 
tmp_res.significand = (~tmp_res.significand) + 1;

tmp_res_lo = tmp_res.significand{31:0};
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault
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Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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fpma — Floating-point Parallel Multiply Add
Format: (qp) fpma.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR 
f3 and FR f4 are computed to infinite precision and then the pair of single precision 
values in the significand field of FR f2 is added to these products, again in infinite 
precision. The resulting values are then rounded to single precision using the rounding 
mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand 
field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
results.

Note: If f2 is f0 in the fpma instruction, just the IEEE multiply operation is performed. 
(See “fpmpy — Floating-point Parallel Multiply” on page 3:115.) FR f1, as an 
operand, is not a packed pair of 1.0 values, it is just the register file format’s 
1.0 value.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on 
page 1:90.
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || 
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpma_exception_fault_check(f2,

f3, f4, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_hi(f2), tmp_fp_env);
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_lo(f2), tmp_fp_env);
tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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fpmax — Floating-point Parallel Maximum
Format: (qp) fpmax.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The 
operands with the larger value is returned in the significand of FR f1.

If the value of high (low) FR f3 is less than the value of high (low) FR f2, high (low) FR f1 
gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, high (low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the 
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as for 
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_right = fp_reg_read_hi(f2);
tmp_fr3 = tmp_left = fp_reg_read_hi(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2 : tmp_fr3);

tmp_fr2 = tmp_right = fp_reg_read_lo(f2);
tmp_fr3 = tmp_left = fp_reg_read_lo(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2 : tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fpmerge — Floating-point Parallel Merge
Format: (qp) fpmerge.ns f1 = f2, f3 neg_sign_form F9

(qp) fpmerge.s f1 = f2, f3 sign_form F9
(qp) fpmerge.se f1 = f2, f3 sign_exp_form F9

Description: For the neg_sign_form, the signs of the pair of single precision values in the significand 
field of FR f2 are negated and concatenated with the exponents and the significands of 
the pair of single precision values in the significand field of FR f3 and stored in the 
significand field of FR f1. This form can be used to negate a pair of single precision 
floating-point numbers by using the same register for f2 and f3.

For the sign_form, the signs of the pair of single precision values in the significand field 
of FR f2 are concatenated with the exponents and the significands of the pair of single 
precision values in the significand field of FR f3 and stored in FR f1.

For the sign_exp_form, the signs and exponents of the pair of single precision values in 
the significand field of FR f2 are concatenated with the pair of single precision 
significands in the significand field of FR f3 and stored in the significand field of FR f1.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the 
computed result.

Figure 2-15. Floating-point Parallel Merge Negative Sign Operation

Figure 2-16. Floating-point Parallel Merge Sign Operation
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (neg_sign_form) {

tmp_res_hi = (!FR[f2].significand{63} << 31)
 | (FR[f3].significand{62:32});

tmp_res_lo = (!FR[f2].significand{31} << 31)
 | (FR[f3].significand{30:0});

} else if (sign_form) {
tmp_res_hi = (FR[f2].significand{63} << 31)

 | (FR[f3].significand{62:32});
tmp_res_lo = (FR[f2].significand{31} << 31)

 | (FR[f3].significand{30:0});
} else { // sign_exp_form

tmp_res_hi = (FR[f2].significand{63:55} << 23)
 | (FR[f3].significand{54:32});

tmp_res_lo = (FR[f2].significand{31:23} << 23)
 | (FR[f3].significand{22:0});

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Figure 2-17. Floating-point Parallel Merge Sign and Exponent Operation
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fpmin — Floating-point Parallel Minimum
Format: (qp) fpmin.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The 
operands with the smaller value is returned in significand of FR f1.

If the value of high (low) FR f2 is less than the value of high (low) FR f3, high (low) FR f1 
gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, high (low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the 
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic 
floating-point instructions. The Invalid Operation is signaled in the same manner as for 
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_left = fp_reg_read_hi(f2);
tmp_fr3 = tmp_right = fp_reg_read_hi(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_left = fp_reg_read_lo(f2);
tmp_fr3 = tmp_right = fp_reg_read_lo(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fpmpy — Floating-point Parallel Multiply
Format: (qp) fpmpy.sf f1 = f3, f4 pseudo-op of: (qp) fpma.sf f1 = f3, f4, f0

Description: The pair of products of the pairs of single precision values in the significand fields of FR 
f3 and FR f4 are computed to infinite precision. The resulting values are then rounded to 
single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded 
results are stored in the significand field of FR f1. The exponent field of FR f1 is set to the 
biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If either FR f3, or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
results.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on 
page 1:90.

Operation: See “fpma — Floating-point Parallel Multiply Add” on page 3:107.
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fpms — Floating-point Parallel Multiply Subtract
Format: (qp) fpms.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR 
f3 and FR f4 are computed to infinite precision and then the pair of single precision 
values in the significand field of FR f2 is subtracted from these products, again in infinite 
precision. The resulting values are then rounded to single precision using the rounding 
mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand 
field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

Note: If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the 
computed results.

Mapping: If f2 is f0 in the fpms instruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on 
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || 
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpms_fpnma_exception_fault_check(f2, f3,

 f4, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
if (f2 != 0) {

tmp_sub = fp_reg_read_hi(f2);
tmp_sub.sign = !tmp_sub.sign;
tmp_res = fp_add(tmp_res, tmp_sub, tmp_fp_env);

}
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
if (f2 != 0) {

tmp_sub = fp_reg_read_lo(f2);
tmp_sub.sign = !tmp_sub.sign;
tmp_res = fp_add(tmp_res, tmp_sub, tmp_fp_env);

}
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tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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fpneg — Floating-point Parallel Negate
Format: (qp) fpneg f1 = f3 pseudo-op of: (qp) fpmerge.ns f1 = f3, f3

Description: The pair of single precision values in the significand field of FR f3 are negated and stored 
in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent 
for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.
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fpnegabs — Floating-point Parallel Negate Absolute Value
Format: (qp) fpnegabs f1 = f3 pseudo-op of: (qp) fpmerge.ns f1 = f0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f3 
are computed, negated and stored in the significand field of FR f1. The exponent field of 
FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set 
to positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.
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fpnma — Floating-point Parallel Negative Multiply Add
Format: (qp) fpnma.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR 
f3 and FR f4 are computed to infinite precision, negated, and then the pair of single 
precision values in the significand field of FR f2 are added to these (negated) products, 
again in infinite precision. The resulting values are then rounded to single precision 
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored 
in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent 
for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
result.

Note: If f2 is f0 in the fpnma instruction, just the IEEE multiply operation (with the 
product being negated before rounding) is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on 
page 1:90.
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpms_fpnma_exception_fault_check(f2, f3,

f4, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_hi(f2), tmp_fp_env);
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_lo(f2), tmp_fp_env);
tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap
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fpnmpy — Floating-point Parallel Negative Multiply
Format: (qp) fpnmpy.sf f1 = f3, f4 pseudo-op of: (qp) fpnma.sf f1 = f3, f4,f0

Description: The pair of products of the pairs of single precision values in the significand fields of FR 
f3 and FR f4 are computed to infinite precision and then negated. The resulting values 
are then rounded to single precision using the rounding mode specified by FPSR.sf.rc. 
The pair of rounded results are stored in the significand field of FR f1. The exponent field 
of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is 
set to positive (0).

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on 
page 1:90.

Operation: See “fpnma — Floating-point Parallel Negative Multiply Add” on page 3:120.
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fprcpa — Floating-point Parallel Reciprocal Approximation
Format: (qp) fprcpa.sf f1, p2 = f2, f3 F6

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged. 

If PR qp is 1, the following will occur:

• Each half of the significand of FR f1 is either set to an approximation (with a relative 
error < 2-8.886) of the reciprocal of the corresponding half of FR f3, or set to the 
IEEE-754 mandated response for the quotient FR f2/FR f3 of the corresponding half 
— if that half of FR f2 or of FR f3 is in the set {-Infinity, -0, +0, +Infinity, NaN}.

• If either half of FR f1 is set to the IEEE-754 mandated quotient, or is set to an 
approximation of the reciprocal which may cause the Newton-Raphson iterations to 
fail to produce the correct IEEE-754 divide result, then PR p2 is set to 0, otherwise it 
is set to 1.

For correct IEEE divide results, when PR p2 is cleared, user software is expected to 
compute the quotient (FR f2/FR f3) for each half (using the non-parallel frcpa 
instruction), and merge the results into FR f1, keeping PR p2 cleared.

• The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and 
the sign field of FR f1 is set to positive (0).

• If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
result, and PR p2 is cleared. 

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result_pair = fprcpa_exception_fault_check(f2, f3, sf,

&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi) ||
limits_check.hi_fr3) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);
tmp_pred_hi = 0;

} else {
num = fp_normalize(fp_reg_read_hi(f2));
den = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_inf(num) && fp_is_finite(den)) {

tmp_res = FP_INFINITY;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
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tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else {
tmp_res = fp_ieee_recip(den);
if (limits_check.hi_fr2_or_quot)

tmp_pred_hi = 0;
else

tmp_pred_hi = 1;
}
tmp_res_hi = fp_single(tmp_res);

}
if (fp_is_nan_or_inf(tmp_default_result_pair.lo) ||

limits_check.lo_fr3) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);
tmp_pred_lo = 0;

} else {
num = fp_normalize(fp_reg_read_lo(f2));
den = fp_normalize(fp_reg_read_lo(f3));
if (fp_is_inf(num) && fp_is_finite(den)) {

tmp_res = FP_INFINITY;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else {
tmp_res = fp_ieee_recip(den);
if (limits_check.lo_fr2_or_quot)

tmp_pred_lo = 0;
else

tmp_pred_lo = 1;
}
tmp_res_lo = fp_single(tmp_res);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;
PR[p2] = tmp_pred_hi && tmp_pred_lo;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

FP Exceptions: Invalid Operation (V)
Zero Divide (Z)
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Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fprsqrta — Floating-point Parallel Reciprocal Square Root 
Approximation
Format: (qp) fprsqrta.sf f1, p2 = f3 F7

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged. 

If PR qp is 1, the following will occur:

• Each half of the significand of FR f1 is either set to an approximation (with a relative 
error < 2-8.831) of the reciprocal square root of the corresponding half of FR f3, or 
set to the IEEE-754 compliant response for the reciprocal square root of the 
corresponding half of FR f3 — if that half of FR f3 is in the set {-Infinity, -Finite, -0, 
+0, +Infinity, NaN}.

• If either half of FR f1 is set to the IEEE-754 mandated reciprocal square root, or is 
set to an approximation of the reciprocal square root which may cause the 
Newton-Raphson iterations to fail to produce the correct IEEE-754 square root 
result, then PR p2 is set to 0, otherwise it is set to 1.

For correct IEEE square root results, when PR p2 is cleared, user software is 
expected to compute the square root for each half (using the non-parallel frsqrta 
instruction), and merge the results in FR f1, keeping PR p2 cleared.

• The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and 
the sign field of FR f1 is set to positive (0).

• If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2 
is cleared. 

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f3, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result_pair = fprsqrta_exception_fault_check(f3, sf,

&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);
tmp_pred_hi = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_zero(tmp_fr3)) {

tmp_res = FP_INFINITY;
tmp_res.sign = tmp_fr3.sign;
tmp_pred_hi = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
tmp_res = FP_ZERO;
tmp_pred_hi = 0;

} else {
tmp_res = fp_ieee_recip_sqrt(tmp_fr3);
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if (limits_check.hi)
tmp_pred_hi = 0;

else
tmp_pred_hi = 1;

}
tmp_res_hi = fp_single(tmp_res);

}

if (fp_is_nan(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);
tmp_pred_lo = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read_lo(f3));
if (fp_is_zero(tmp_fr3)) {

tmp_res = FP_INFINITY;
tmp_res.sign = tmp_fr3.sign;
tmp_pred_lo = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
tmp_res = FP_ZERO;
tmp_pred_lo = 0;

} else {
tmp_res = fp_ieee_recip_sqrt(tmp_fr3);
if (limits_check.lo)

tmp_pred_lo = 0;
else

tmp_pred_lo = 1;
}
tmp_res_lo = fp_single(tmp_res);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;
PR[p2] = tmp_pred_hi && tmp_pred_lo;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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frcpa — Floating-point Reciprocal Approximation
Format: (qp) frcpa.sf f1, p2 = f2, f3 F6

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• FR f1 is either set to an approximation (with a relative error < 2-8.886) of the 
reciprocal of FR f3, or to the IEEE-754 mandated quotient of FR f2/FR f3 — if either 
FR f2 or FR f3 is in the set {-Infinity, -0, Pseudo-zero, +0, +Infinity, NaN, 
Unsupported}.

• If FR f1 is set to the approximation of the reciprocal of FR f3, then PR p2 is set to 1; 
otherwise, it is set to 0.

• If FR f2 and FR f3 are such that the approximation of FR f3’s reciprocal may cause the 
Newton-Raphson iterations to fail to produce the correct IEEE-754 result of FR f2/FR 
f3, then a Floating-point Exception fault for Software Assist occurs. 

System software is expected to compute the IEEE-754 quotient (FR f2/FR f3), return 
the result in FR f1, and set PR p2 to 0.

• If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
result, and PR p2 is cleared. 

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result = frcpa_exception_fault_check(f2, f3, sf,

&tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;
PR[p2] = 0;

} else {
num = fp_normalize(fp_reg_read(FR[f2]));
den = fp_normalize(fp_reg_read(FR[f3]));
if (fp_is_inf(num) && fp_is_finite(den)) {

FR[f1] = FP_INFINITY;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
FR[f1] = FP_ZERO;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
FR[f1] = FP_ZERO;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;



Volume 3: Instruction Reference 3:129

frcpa

} else {
FR[f1] = fp_ieee_recip(den);
PR[p2] = 1;

}
}
fp_update_fpsr(sf, tmp_fp_env);

}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

// fp_ieee_recip()

fp_ieee_recip(den)
{

RECIP_TABLE[256] = {
0x3fc, 0x3f4, 0x3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
0x3be, 0x3b7, 0x3af, 0x3a8, 0x3a1, 0x399, 0x392, 0x38b,
0x384, 0x37d, 0x376, 0x36f, 0x368, 0x361, 0x35b, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, 0x2fa, 0x2f4, 0x2ee,
0x2e8, 0x2e2, 0x2dc, 0x2d7, 0x2d1, 0x2cb, 0x2c5, 0x2bf,
0x2ba, 0x2b4, 0x2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27e, 0x279, 0x273, 0x26e, 0x269,
0x264, 0x25f, 0x25a, 0x255, 0x250, 0x24b, 0x246, 0x241,
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21b,
0x216, 0x211, 0x20d, 0x208, 0x204, 0x1ff, 0x1fb, 0x1f6,
0x1f2, 0x1ed, 0x1e9, 0x1e5, 0x1e0, 0x1dc, 0x1d8, 0x1d4,
0x1cf, 0x1cb, 0x1c7, 0x1c3, 0x1bf, 0x1bb, 0x1b6, 0x1b2,
0x1ae, 0x1aa, 0x1a6, 0x1a2, 0x19e, 0x19a, 0x197, 0x193,
0x18f, 0x18b, 0x187, 0x183, 0x17f, 0x17c, 0x178, 0x174,
0x171, 0x16d, 0x169, 0x166, 0x162, 0x15e, 0x15b, 0x157,
0x154, 0x150, 0x14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, 0x12e, 0x12a, 0x127, 0x124, 0x120,
0x11d, 0x11a, 0x117, 0x113, 0x110, 0x10d, 0x10a, 0x107,
0x103, 0x100, 0x0fd, 0x0fa, 0x0f7, 0x0f4, 0x0f1, 0x0ee,
0x0eb, 0x0e8, 0x0e5, 0x0e2, 0x0df, 0x0dc, 0x0d9, 0x0d6,
0x0d3, 0x0d0, 0x0cd, 0x0ca, 0x0c8, 0x0c5, 0x0c2, 0x0bf,
0x0bc, 0x0b9, 0x0b7, 0x0b4, 0x0b1, 0x0ae, 0x0ac, 0x0a9,
0x0a6, 0x0a4, 0x0a1, 0x09e, 0x09c, 0x099, 0x096, 0x094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, 0x07f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 0x06b,
0x069, 0x066, 0x064, 0x061, 0x05f, 0x05d, 0x05a, 0x058,
0x056, 0x053, 0x051, 0x04f, 0x04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0x036, 0x033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0x022,
0x020, 0x01e, 0x01c, 0x01a, 0x018, 0x015, 0x013, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001,

};

tmp_index = den.significand{62:55};
tmp_res.significand = (1 << 63) | (RECIP_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_ONES - 2 - den.exponent;
tmp_res.sign = den.sign;
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return (tmp_res);
}

FP Exceptions: Invalid Operation (V)
Zero Divide (Z)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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frsqrta — Floating-point Reciprocal Square Root Approximation
Format: (qp) frsqrta.sf f1, p2 = f3 F7

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• FR f1 is either set to an approximation (with a relative error < 2-8.831) of the 
reciprocal square root of FR f3, or set to the IEEE-754 mandated square root of FR f3 
— if FR f3 is in the set {-Infinity, -Finite, -0, Pseudo-zero, +0, +Infinity, NaN, 
Unsupported}.

• If FR f1 is set to an approximation of the reciprocal square root of FR f3, then PR p2 is 
set to 1; otherwise, it is set to 0.

• If FR f3 is such the approximation of its reciprocal square root may cause the 
Newton-Raphson iterations to fail to produce the correct IEEE-754 square root 
result, then a Floating-point Exception fault for Software Assist occurs. 

System software is expected to compute the IEEE-754 square root, return the 
result in FR f1, and set PR p2 to 0.

• If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2 
is cleared. 

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f3, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result = frsqrta_exception_fault_check(f3, sf,

&tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f1] = tmp_default_result;
PR[p2] = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read(FR[f3]));
if (fp_is_zero(tmp_fr3)) {

FR[f1] = tmp_fr3;
PR[p2] = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
FR[f1] = tmp_fr3;
PR[p2] = 0;

} else {
FR[f1] = fp_ieee_recip_sqrt(tmp_fr3);
PR[p2] = 1;

}
}
fp_update_fpsr(sf, tmp_fp_env);

}
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fp_update_psr(f1);
} else {

PR[p2] = 0;
}

// fp_ieee_recip_sqrt()

fp_ieee_recip_sqrt(root)
{

RECIP_SQRT_TABLE[256] = {
0x1a5, 0x1a0, 0x19a, 0x195, 0x18f, 0x18a, 0x185, 0x180,
0x17a, 0x175, 0x170, 0x16b, 0x166, 0x161, 0x15d, 0x158,
0x153, 0x14e, 0x14a, 0x145, 0x140, 0x13c, 0x138, 0x133,
0x12f, 0x12a, 0x126, 0x122, 0x11e, 0x11a, 0x115, 0x111,
0x10d, 0x109, 0x105, 0x101, 0x0fd, 0x0fa, 0x0f6, 0x0f2,
0x0ee, 0x0ea, 0x0e7, 0x0e3, 0x0df, 0x0dc, 0x0d8, 0x0d5,
0x0d1, 0x0ce, 0x0ca, 0x0c7, 0x0c3, 0x0c0, 0x0bd, 0x0b9,
0x0b6, 0x0b3, 0x0b0, 0x0ad, 0x0a9, 0x0a6, 0x0a3, 0x0a0,
0x09d, 0x09a, 0x097, 0x094, 0x091, 0x08e, 0x08b, 0x088,
0x085, 0x082, 0x07f, 0x07d, 0x07a, 0x077, 0x074, 0x071,
0x06f, 0x06c, 0x069, 0x067, 0x064, 0x061, 0x05f, 0x05c,
0x05a, 0x057, 0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x045, 0x043, 0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035,
0x033, 0x030, 0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0x020, 0x01e, 0x01c, 0x01a, 0x018, 0x016, 0x014, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001,
0x3fc, 0x3f4, 0x3ec, 0x3e5, 0x3dd, 0x3d5, 0x3ce, 0x3c7,
0x3bf, 0x3b8, 0x3b1, 0x3aa, 0x3a3, 0x39c, 0x395, 0x38e,
0x388, 0x381, 0x37a, 0x374, 0x36d, 0x367, 0x361, 0x35a,
0x354, 0x34e, 0x348, 0x342, 0x33c, 0x336, 0x330, 0x32b,
0x325, 0x31f, 0x31a, 0x314, 0x30f, 0x309, 0x304, 0x2fe,
0x2f9, 0x2f4, 0x2ee, 0x2e9, 0x2e4, 0x2df, 0x2da, 0x2d5,
0x2d0, 0x2cb, 0x2c6, 0x2c1, 0x2bd, 0x2b8, 0x2b3, 0x2ae,
0x2aa, 0x2a5, 0x2a1, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x286, 0x282, 0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x264, 0x260, 0x25c, 0x258, 0x254, 0x250, 0x24c, 0x249,
0x245, 0x241, 0x23d, 0x239, 0x235, 0x232, 0x22e, 0x22a,
0x227, 0x223, 0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x20a, 0x207, 0x204, 0x200, 0x1fd, 0x1f9, 0x1f6, 0x1f3,
0x1f0, 0x1ec, 0x1e9, 0x1e6, 0x1e3, 0x1df, 0x1dc, 0x1d9,
0x1d6, 0x1d3, 0x1d0, 0x1cd, 0x1ca, 0x1c7, 0x1c4, 0x1c1,
0x1be, 0x1bb, 0x1b8, 0x1b5, 0x1b2, 0x1af, 0x1ac, 0x1aa,

};

tmp_index = (root.exponent{0} << 7) | root.significand{62:56};
tmp_res.significand = (1 << 63) | (RECIP_SQRT_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_HALF -

 ((root.exponent - FP_REG_BIAS) >> 1);
tmp_res.sign = FP_SIGN_POSITIVE;
return (tmp_res);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault
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fselect — Floating-point Select
Format: (qp) fselect f1 = f3, f4, f2 F3

Description: The significand field of FR f3 is logically AND-ed with the significand field of FR f2 and the 
significand field of FR f4 is logically AND-ed with the one’s complement of the significand 
field of FR f2. The two results are logically OR-ed together. The result is placed in the 
significand field of FR f1.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E). The sign 
bit field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || 
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = (FR[f3].significand & FR[f2].significand)

| (FR[f4].significand & ~FR[f2].significand);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fsetc — Floating-point Set Controls
Format: (qp) fsetc.sf amask7, omask7 F12

Description: The status field’s control bits are initialized to the value obtained by logically AND-ing 
the sf0.controls and amask7 immediate field and logically OR-ing the omask7 immediate 
field.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
tmp_controls = (AR[FPSR].sf0.controls & amask7) | omask7;
if (is_reserved_field(FSETC, sf, tmp_controls))

reserved_register_field_fault(); 
fp_set_sf_controls(sf, tmp_controls);

}

FP Exceptions: None

Interruptions: Reserved Register/Field fault
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fsub — Floating-point Subtract
Format: (qp) fsub.pc.sf f1 = f3, f2 pseudo-op of: (qp) fms.pc.sf f1 = f3, f1, f2

Description: FR f2 is subtracted from FR f3 (computed to infinite precision), rounded to the precision 
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode 
specified by FPSR.sf.rc, and placed in FR f1.

If either FR f3 or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The 
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and 
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on 
page 1:90.

Operation: See “fms — Floating-point Multiply Subtract” on page 3:86.
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fswap — Floating-point Swap
Format: (qp) fswap f1 = f2, f3 swap_form F9

(qp) fswap.nl f1 = f2, f3 swap_nl_form F9
(qp) fswap.nr f1 = f2, f3 swap_nr_form F9

Description: For the swap_form, the left single precision value in FR f2 is concatenated with the right 
single precision value in FR f3. The concatenated pair is then swapped.

For the swap_nl_form, the left single precision value in FR f2 is concatenated with the 
right single precision value in FR f3. The concatenated pair is then swapped, and the left 
single precision value is negated.

For the swap_nr_form, the left single precision value in FR f2 is concatenated with the 
right single precision value in FR f3. The concatenated pair is then swapped, and the 
right single precision value is negated.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the 
computed result.

Figure 2-18. Floating-point Swap

Figure 2-19. Floating-point Swap Negate Left
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (swap_form) {

tmp_res_hi = FR[f3].significand{31:0};
tmp_res_lo = FR[f2].significand{63:32};

} else if (swap_nl_form) {
tmp_res_hi = (!FR[f3].significand{31} << 31)

 | (FR[f3].significand{30:0});
tmp_res_lo = FR[f2].significand{63:32};

} else { // swap_nr_form
tmp_res_hi = FR[f3].significand{31:0};
tmp_res_lo = (!FR[f2].significand{63} << 31)

 | (FR[f2].significand{62:32});
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Figure 2-20. Floating-point Swap Negate Right
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fsxt — Floating-point Sign Extend
Format: (qp) fsxt.l f1 = f2, f3 sxt_l_form F9

(qp) fsxt.r f1 = f2, f3 sxt_r_form F9

Description: For the sxt_l_form (sxt_r_form), the sign of the left (right) single precision value in FR 
f2 is extended to 32-bits and is concatenated with the left (right) single precision value 
in FR f3.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the 
computed result.

Figure 2-21. Floating-point Sign Extend Left

Figure 2-22. Floating-point Sign Extend Right
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (sxt_l_form) {

tmp_res_hi = (FR[f2].significand{63} ? 0xFFFFFFFF : 0x00000000);
tmp_res_lo = FR[f3].significand{63:32};

} else { // sxt_r_form
tmp_res_hi = (FR[f2].significand{31} ? 0xFFFFFFFF : 0x00000000);
tmp_res_lo = FR[f3].significand{31:0};

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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fwb — Flush Write Buffers
Format: (qp) fwb M24

Description: The processor is instructed to expedite flushing of any pending stores held in write or 
coalescing buffers. Since this operation is a hint, the processor may or may not take 
any action and actually flush any outstanding stores. The processor gives no indication 
when flushing of any prior stores is completed. An fwb instruction does not ensure 
ordering of stores, since later stores may be flushed before prior stores. 

To ensure prior coalesced stores are made visible before later stores, software must 
issue a release operation between stores (see Table 4-15 on page 2:83 for a list of 
release operations). 

This instruction can be used to help ensure stores held in write or coalescing buffers are 
not delayed for long periods or to expedite high priority stores out of the processors.

Operation: if (PR[qp]) {
mem_flush_pending_stores();

}

Interruptions: None
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fxor — Floating-point Exclusive Or
Format: (qp) fxor f1 = f2, f3 F9

Description: The bit-wise logical exclusive-OR of the significand fields of FR f2 and FR f3 is computed. 
The resulting value is stored in the significand field of FR f1. The exponent field of FR f1 
is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to 
positive (0).

If either of FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed 
result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand ^ FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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getf — Get Floating-point Value or Exponent or Significand
Format: (qp) getf.s r1 = f2 single_form M19

(qp) getf.d r1 = f2 double_form M19
(qp) getf.exp r1 = f2 exponent_form M19
(qp) getf.sig r1 = f2 significand_form M19

Description: In the single and double forms, the value in FR f2 is converted into a single precision 
(single_form) or double precision (double_form) memory representation and placed in 
GR r1, as shown in Figure 5-7 and Figure 5-8 on page 1:95, respectively. In the 
single_form, the most-significant 32 bits of GR r1 are set to 0.

In the exponent_form, the exponent field of FR f2 is copied to bits 16:0 of GR r1 and the 
sign bit of the value in FR f2 is copied to bit 17 of GR r1. The most-significant 46-bits of 
GR r1 are set to zero.

In the significand_form, the significand field of the value in FR f2 is copied to GR r1

For all forms, if FR f2 contains a NaTVal, then the NaT bit corresponding to GR r1 is set to 
1.

Figure 2-23. Function of getf.exp

Figure 2-24. Function of getf.sig
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Operation: if (PR[qp]) {
check_target_register(r1);
if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (single_form) {
GR[r1]{31:0} = fp_fr_to_mem_format(FR[f2], 4, 0);
GR[r1]{63:32} = 0;

} else if (double_form) {
GR[r1] = fp_fr_to_mem_format(FR[f2], 8, 0);

} else if (exponent_form) {
GR[r1]{63:18} = 0;
GR[r1]{16:0} = FR[f2].exponent;
GR[r1]{17} = FR[f2].sign;

} else // significand_form
GR[r1] = FR[f2].significand;

if (fp_is_natval(FR[f2]))
GR[r1].nat = 1;

else
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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hint — Performance Hint
Format: (qp) hint imm21 pseudo-op

(qp) hint.i imm21 i_unit_form I18
(qp) hint.b imm21 b_unit_form B9
(qp) hint.m imm21 m_unit_form M48
(qp) hint.f imm21 f_unit_form F16
(qp) hint.x imm62 x_unit_form X5

Description: Provides a performance hint to the processor about the program being executed. It has 
no effect on architectural machine state, and operates as a nop instruction except for its 
performance effects.

The immediate, imm21 or imm62, specifies the hint. For the x_unit_form, the L slot of the 
bundle contains the upper 41 bits of imm62.

This instruction has five forms, each of which can be executed only on a particular 
execution unit type. The pseudo-op can be used if the unit type to execute on is 
unimportant.

Operation: if (PR[qp]) {
if (x_unit_form)

hint = imm62;
else // i_unit_form || b_unit_form || b_unit_form || f_unit_form

hint = imm21;

if (is_supported_hint(hint))
execute_hint(hint);

}

Interruptions: None

Table 2-31. Hint Immediates

imm21 or imm62 Mnemonic Hint

0x0 @pause Indicates to the processor that the currently executing stream is waiting, 
spinning, or performing low priority tasks. This hint can be used by the 
processor to allocate more resources or time to another executing stream 
on the same processor. For the case where the currently executing stream 
is spinning or otherwise waiting for a particular address in memory to 
change, an advanced load to that address should be done before 
executing a hint @pause; this hint can be used by the processor to 
resume normal allocation of resources or time to the currently executing 
stream at the point when some other stream stores to that address.

0x1 @priority Indicates to the processor that the currently executing stream is performing 
a high priority task. This hint can be used by the processor to allocate more 
resources or time to this stream. Implementations will ensure that such 
increased allocation is only temporary, and that repeated use of this hint 
will not impair longer-term fairness of allocation.

0x02-0x3f These values are available for future architected extensions and will 
execute as a nop on all current processors. Use of these values may 
cause unexpected performance issues on future processors and should 
not be used.

other Implementation specific. Performs an implementation-specific hint action. 
Consult processor model-specific documentation for details.
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invala — Invalidate ALAT
Format: (qp) invala complete_form M24

(qp) invala.e r1 gr_form, entry_form M26
(qp) invala.e f1 fr_form, entry_form M27

Description: The selected entry or entries in the ALAT are invalidated.

In the complete_form, all ALAT entries are invalidated. In the entry_form, the ALAT is 
queried using the general register specifier r1 (gr_form), or the floating-point register 
specifier f1 (fr_form), and if any ALAT entry matches, it is invalidated.

Operation: if (PR[qp]) {
if (complete_form)

alat_inval();
else { // entry_form

if (gr_form)
alat_inval_single_entry(GENERAL, r1);

else // fr_form
alat_inval_single_entry(FLOAT, f1);

}
}

Interruptions: None
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itc — Insert Translation Cache
Format: (qp) itc.i r2 instruction_form M41

(qp) itc.d r2 data_form M41

Description: An entry is inserted into the instruction or data translation cache. GR r2 specifies the 
physical address portion of the translation. ITIR specifies the protection key, page size 
and additional information. The virtual address is specified by the IFA register and the 
region register is selected by IFA{63:61}. The processor determines which entry to 
replace based on an implementation-specific replacement algorithm.

The visibility of the itc instruction to externally generated purges (ptc.g, ptc.ga) 
must occur before subsequent memory operations. From a software perspective, this is 
similar to acquire semantics. Serialization is still required to observe the side-effects of 
a translation being present.

itc must be the last instruction in an instruction group; otherwise, its behavior 
(including its ordering semantics) is undefined.

The TLB is first purged of any overlapping entries as specified by Table 4-1 on 
page 2:52.

This instruction can only be executed at the most privileged level, and when PSR.ic and 
PSR.vm are both 0.

To ensure forward progress, software must ensure that PSR.ic remains 0 until rfi-ing 
to the instruction that requires the translation.
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Operation: if (PR[qp]) {
if (!followed_by_stop())

undefined_behavior();
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r2].nat)

register_nat_consumption_fault(0);

tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(ITC_TYPE);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TC);

} else { // data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(DTC_TYPE);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TC);

}
}

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation 
before a dependent instruction fetch access. For the data_form, software must issue a 
data serialization operation before issuing a data access or non-access reference 
dependent on the new translation.
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itr — Insert Translation Register
Format: (qp) itr.i itr[r3] = r2 instruction_form M42

(qp) itr.d dtr[r3] = r2 data_form M42

Description: A translation is inserted into the instruction or data translation register specified by the 
contents of GR r3. GR r2 specifies the physical address portion of the translation. ITIR 
specifies the protection key, page size and additional information. The virtual address is 
specified by the IFA register and the region register is selected by IFA{63:61}.

As described in Table 4-1, “Purge Behavior of TLB Inserts and Purges” on page 2:52, 
the TLB is first purged of any entries that overlap with the newly inserted translation. 
The translation previously contained in the TR slot specified by GR r3 is not necessarily 
purged from the processor's TLBs and may remain as a TC entry. To ensure that the 
previous TR translation is purged, software must use explicit ptr instructions before 
inserting the new TR entry. 

This instruction can only be executed at the most privileged level, and when PSR.ic and 
PSR.vm are both 0.

Operation: if (PR[qp]) {
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);

slot = GR[r3]{7:0};
tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

tmp_tr_type = instruction_form ? ITR_TYPE : DTR_TYPE;

if (is_reserved_reg(tmp_tr_type, slot))
reserved_register_field_fault();

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TR);

} else { // data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TR);

}
}
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Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation 
before a dependent instruction fetch access. For the data_form, software must issue a 
data serialization operation before issuing a data access or non-access reference 
dependent on the new translation.

Notes: The processor may use invalid translation registers for translation cache entries. 
Performance can be improved on some processor models by ensuring translation 
registers are allocated beginning at translation register zero and continuing 
contiguously upwards.



Volume 3: Instruction Reference 3:151

ld

ld — Load
Format: (qp) ldsz.ldtype.ldhint r1 = [r3] no_base_update_form M2

(qp) ldsz.ldtype.ldhint r1 = [r3], r2 reg_base_update_form M2
(qp) ldsz.ldtype.ldhint r1 = [r3], imm9 imm_base_update_form M3
(qp) ld16.ldhint r1, ar.csd = [r3] sixteen_byte_form, no_base_update_form M2
(qp) ld16.acq.ldhint r1, ar.csd = [r3] sixteen_byte_form, acquire_form,

no_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3] fill_form, no_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3], r2 fill_form, reg_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3], imm9 fill_form, imm_base_update_form M3

Description: A value consisting of sz bytes is read from memory starting at the address specified by 
the value in GR r3. The value is then zero extended and placed in GR r1. The values of 
the sz completer are given in Table 2-32. The NaT bit corresponding to GR r1 is cleared, 
except as described below for speculative loads. The ldtype completer specifies special 
load operations, which are described in Table 2-33.

For the sixteen_byte_form, two 8-byte values are loaded as a single, 16-byte memory 
read. The value at the lowest address is placed in GR r1, and the value at the highest 
address is placed in the Compare and Store Data application register (AR[CSD]). The 
only load types supported for this sixteen_byte_form are none and acq.

For the fill_form, an 8-byte value is loaded, and a bit in the UNAT application register is 
copied into the target register NaT bit. This instruction is used for reloading a spilled 
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the base update forms, the value in GR r3 is added to either a signed immediate 
value (imm9) or a value from GR r2, and the result is placed back in GR r3. This base 
register update is done after the load, and does not affect the load address. In the 
reg_base_update_form, if the NaT bit corresponding to GR r2 is set, then the NaT bit 
corresponding to GR r3 is set and no fault is raised. Base register update is not 
supported for the ld16 instruction.

Table 2-32. sz Completers

sz Completer Bytes Accessed

1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes

Table 2-33. Load Types

ldtype
Completer

Interpretation Special Load Operation

none Normal load

s Speculative load Certain exceptions may be deferred rather than generating a fault. 
Deferral causes the target register’s NaT bit to be set. The NaT bit is 
later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for 
colliding stores. If the referenced data page has a non-speculative 
attribute, the target register and NaT bit is cleared, and the processor 
ensures that no ALAT entry exists for the target register. The absence of 
an ALAT entry is later used to detect deferral or collision.
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For more details on ordered, biased, speculative, advanced and check loads see 
Section 4.4.4, “Control Speculation” on page 1:60 and Section 4.4.5, “Data 
Speculation” on page 1:63. For more details on ordered loads see Section 4.4.7, 
“Memory Access Ordering” on page 1:73. See Section 4.4.6, “Memory Hierarchy 
Control and Consistency” on page 1:69 for details on biased loads. Details on memory 
attributes are described in Section 4.4, “Memory Attributes” on page 2:75.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT 
Consumption fault is taken. For speculative and speculative advanced loads, no fault is 
raised, and the exception is deferred. For the base-update calculation, if the NaT bit 
associated with GR r2 is 1, the NaT bit associated with GR r3 is set to 1 and no fault is 
raised.

The value of the ldhint completer specifies the locality of the memory access. The values 
of the ldhint completer are given in Table 2-34. A prefetch hint is implied in the base 
update forms. The address specified by the value in GR r3 after the base update acts as 
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified 
by ldhint. Prefetch and locality hints do not affect program functionality and may be 
ignored by the implementation. See Section 4.4.6, “Memory Hierarchy Control and 
Consistency” on page 1:69 for details.

sa Speculative
Advanced load

An entry is added to the ALAT, and certain exceptions may be deferred. 
Deferral causes the target register’s NaT bit to be set, and the 
processor ensures that no ALAT entry exists for the target register. The 
absence of an ALAT entry is later used to detect deferral or collision.

c.nc Check load
– no clear

The ALAT is searched for a matching entry. If found, no load is done 
and the target register is unchanged. Regardless of ALAT hit or miss, 
base register updates are performed, if specified. An implementation 
may optionally cause the ALAT lookup to fail independent of whether an 
ALAT entry matches. If not found, a load is performed, and an entry is 
added to the ALAT (unless the referenced data page has a 
non-speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load
– clear

The ALAT is searched for a matching entry. If found, the entry is 
removed, no load is done and the target register is unchanged. 
Regardless of ALAT hit or miss, base register updates are performed, if 
specified. An implementation may optionally cause the ALAT lookup to 
fail independent of whether an ALAT entry matches. If not found, a clear 
check load behaves like a normal load.

c.clr.acq Ordered check load 
– clear

This type behaves the same as the unordered clear form, except that 
the ALAT lookup (and resulting load, if no ALAT entry is found) is 
performed with acquire semantics.

acq Ordered load An ordered load is performed with acquire semantics.

bias Biased load A hint is provided to the implementation to acquire exclusive ownership 
of the accessed cache line.

Table 2-34. Load Hints

ldhint Completer Interpretation

none Temporal locality, level 1

Table 2-33. Load Types (Continued)

ldtype
Completer

Interpretation Special Load Operation
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In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is 
implied.

For the base update forms, specifying the same register address in r1 and r3 will cause 
an Illegal Operation fault.

Hardware support for ld16 instructions that reference a page that is neither a 
cacheable page with write-back policy nor a NaTPage is optional. On processor models 
that do not support such ld16 accesses, an Unsupported Data Reference fault is raised 
when an unsupported reference is attempted.

For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do 
not support the instruction.  CPUID register 4 indicates the presence of the feature on 
the processor model.  See Section 3.1.11, “Processor Identification Registers” on 
page 1:34 for details.

nt1 No temporal locality, level 1

nta No temporal locality, all levels

Table 2-34. Load Hints (Continued)

ldhint Completer Interpretation
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Operation: if (PR[qp]) {
size = fill_form ? 8 : (sixteen_byte_form ? 16 : sz);

speculative = (ldtype == ‘s’ || ldtype == ‘sa’);
advanced = (ldtype == ‘a’ || ldtype == ‘sa’);
check_clear = (ldtype == ‘c.clr’ || ldtype == ‘c.clr.acq’);
check_no_clear = (ldtype == ‘c.nc’);
check = check_clear || check_no_clear;
acquire = (acquire_form || ldtype == ‘acq’ || ldtype == ‘c.clr.acq’);
otype = acquire ? ACQUIRE : UNORDERED;
bias = (ldtype == ‘bias’) ? BIAS : 0 ;
translate_address = 1;
read_memory = 1;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced) itype |= ADVANCE ; 
if (size == 16) itype |= UNCACHE_OPT ;

if (sixteen_byte_form && !instruction_implemented(LD16))
illegal_operation_fault();

if ((reg_base_update_form || imm_base_update_form) && (r1 == r3))
illegal_operation_fault();

check_target_register(r1);
if (reg_base_update_form || imm_base_update_form)

check_target_register(r3);

if (reg_base_update_form) {
tmp_r2 = GR[r2];
tmp_r2nat = GR[r2].nat;

}

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(GENERAL, r1)) {
translate_address = alat_translate_address_on_hit(ldtype, GENERAL, 

r1);
read_memory = alat_read_memory_on_hit(ldtype, GENERAL, r1);

}
if (!translate_address) {

if (check_clear || advanced) // remove any old alat entry
alat_inval_single_entry(GENERAL, r1);

} else {
if (!defer) {

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,
&defer);

spontaneous_deferral(paddr, size, UM.be, mattr, otype,
bias | ldhint, &defer);

if (!defer && read_memory) {
if (size == 16) {

mem_read_pair(&val, &val_ar, paddr, size, UM.be, mattr, 
 otype, ldhint);

}
else {
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val = mem_read(paddr, size, UM.be, mattr, otype, 
 bias | ldhint);

}
}

}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(GENERAL, r1);
if (defer) {

if (speculative) {
GR[r1] = natd_gr_read(paddr, size, UM.be, mattr, otype,

 bias | ldhint);
GR[r1].nat = 1;

} else {
GR[r1] = 0; // ld.a to sequential memory
GR[r1].nat = 0;

}
} else { // execute load normally

if (fill_form) { // fill NaT on ld8.fill
bit_pos = GR[r3]{8:3};
GR[r1] = val;
GR[r1].nat = AR[UNAT]{bit_pos};

} else { // clear NaT on other types
if (size == 16) {

GR[r1] = val;
AR[CSD] = val_ar;

}
else {

GR[r1] = zero_ext(val, size * 8);
}
GR[r1].nat = 0;

}
if ((check_no_clear || advanced) && ma_is_speculative(mattr))

// add entry to ALAT
alat_write(ldtype, GENERAL, r1, paddr, size);

}
}

if (imm_base_update_form) { // update base register
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + tmp_r2;
GR[r3].nat = GR[r3].nat || tmp_r2nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], ldhint | bias, itype);

}
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Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
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ldf — Floating-point Load
Format: (qp) ldffsz.fldtype.ldhint f1 = [r3] no_base_update_form M9

(qp) ldffsz.fldtype.ldhint f1 = [r3], r2 reg_base_update_form M7
(qp) ldffsz.fldtype.ldhint f1 = [r3], imm9 imm_base_update_form M8
(qp) ldf8.fldtype.ldhint f1 = [r3] integer_form, no_base_update_form M9
(qp) ldf8.fldtype.ldhint f1 = [r3], r2 integer_form, reg_base_update_form M7
(qp) ldf8.fldtype.ldhint f1 = [r3], imm9 integer_form, imm_base_update_form M8
(qp) ldf.fill.ldhint f1 = [r3] fill_form, no_base_update_form M9
(qp) ldf.fill.ldhint f1 = [r3], r2 fill_form, reg_base_update_form M7
(qp) ldf.fill.ldhint f1 = [r3], imm9 fill_form, imm_base_update_form M8

Description: A value consisting of fsz bytes is read from memory starting at the address specified by 
the value in GR r3. The value is then converted into the floating-point register format 
and placed in FR f1. See Section 5.1, “Data Types and Formats” on page 1:85 for details 
on conversion to floating-point register format. The values of the fsz completer are 
given in Table 2-35. The fldtype completer specifies special load operations, which are 
described in Table 2-36.

For the integer_form, an 8-byte value is loaded and placed in the significand field of FR 
f1 without conversion. The exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

For the fill_form, a 16-byte value is loaded, and the appropriate fields are placed in FR 
f1 without conversion. This instruction is used for reloading a spilled register. See 
Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the base update forms, the value in GR r3 is added to either a signed immediate 
value (imm9) or a value from GR r2, and the result is placed back in GR r3. This base 
register update is done after the load, and does not affect the load address. In the 
reg_base_update_form, if the NaT bit corresponding to GR r2 is set, then the NaT bit 
corresponding to GR r3 is set and no fault is raised.

Table 2-35. fsz Completers

fsz Completer Bytes Accessed Memory Format

s 4 bytes Single precision

d 8 bytes Double precision

e 10 bytes Extended precision

Table 2-36. FP Load Types

fldtype
Completer

Interpretation Special Load Operation

none Normal load

s Speculative load Certain exceptions may be deferred rather than generating a fault. 
Deferral causes NaTVal to be placed in the target register. The NaTVal 
value is later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for 
colliding stores. If the referenced data page has a non-speculative 
attribute, no ALAT entry is added to the ALAT and the target register is 
set as follows: for the integer_form, the exponent is set to 0x1003E and 
the sign and significand are set to zero; for all other forms, the sign, 
exponent and significand are set to zero. The absence of an ALAT entry 
is later used to detect deferral or collision.
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For more details on speculative, advanced and check loads see Section 4.4.4, “Control 
Speculation” on page 1:60 and Section 4.4.5, “Data Speculation” on page 1:63. Details 
on memory attributes are described in Section 4.4, “Memory Attributes” on page 2:75.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT 
Consumption fault is taken. For speculative and speculative advanced loads, no fault is 
raised, and the exception is deferred. For the base-update calculation, if the NaT bit 
associated with GR r2 is 1, the NaT bit associated with GR r3 is set to 1 and no fault is 
raised.

The value of the ldhint modifier specifies the locality of the memory access. The 
mnemonic values of ldhint are given in Table 2-34 on page 3:152. A prefetch hint is 
implied in the base update forms. The address specified by the value in GR r3 after the 
base update acts as a hint to prefetch the indicated cache line. This prefetch uses the 
locality hints specified by ldhint. Prefetch and locality hints do not affect program 
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory 
Hierarchy Control and Consistency” on page 1:69 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is 
implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f1.

Hardware support for ldfe (10-byte) instructions that reference a page that is neither a 
cacheable page with write-back policy nor a NaTPage is optional. On processor models 
that do not support such ldfe accesses, an Unsupported Data Reference fault is raised 
when an unsupported reference is attempted. The fault is delivered only on the normal, 
advanced, and check load flavors. Control-speculative flavors of ldfe always defer the 
Unsupported Data Reference fault. 

sa Speculative 
Advanced load

An entry is added to the ALAT, and certain exceptions may be deferred. 
Deferral causes NaTVal to be placed in the target register, and the 
processor ensures that no ALAT entry exists for the target register. The 
absence of an ALAT entry is later used to detect deferral or collision.

c.nc Check load –
no clear

The ALAT is searched for a matching entry. If found, no load is done 
and the target register is unchanged. Regardless of ALAT hit or miss, 
base register updates are performed, if specified. An implementation 
may optionally cause the ALAT lookup to fail independent of whether an 
ALAT entry matches. If not found, a load is performed, and an entry is 
added to the ALAT (unless the referenced data page has a 
non-speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load – clear The ALAT is searched for a matching entry. If found, the entry is 
removed, no load is done and the target register is unchanged. 
Regardless of ALAT hit or miss, base register updates are performed, if 
specified. An implementation may optionally cause the ALAT lookup to 
fail independent of whether an ALAT entry matches. If not found, a clear 
check load behaves like a normal load.

Table 2-36. FP Load Types (Continued)

fldtype
Completer

Interpretation Special Load Operation
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Operation: if (PR[qp]) {
size = (fill_form ? 16 : (integer_form ? 8 : fsz));
speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == ‘a’ || fldtype == ‘sa’);
check_clear = (fldtype == ‘c.clr’ );
check_no_clear = (fldtype == ‘c.nc’);
check = check_clear || check_no_clear;
translate_address = 1;
read_memory = 1;

itype = READ;
if (speculative) itype |= SPEC;
if (advanced) itype |= ADVANCE;
if (size == 10) itype |= UNCACHE_OPT;

if (reg_base_update_form || imm_base_update_form)
check_target_register(r3);

fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, itype);

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(FLOAT, f1)) {
translate_address = alat_translate_address_on_hit(fldtype, FLOAT, f1);
read_memory = alat_read_memory_on_hit(fldtype, FLOAT, f1);

}

if (!translate_address) {
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
} else {

if (!defer) {
paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,

&defer);
spontaneous_deferral(paddr, size, UM.be, mattr, UNORDERED,

ldhint, &defer);
if (!defer && read_memory)

val = mem_read(paddr, size, UM.be, mattr, UNORDERED, ldhint);
}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
if (speculative && defer) {

FR[f1] = NATVAL;
} else if (advanced && !speculative && defer) {

FR[f1] = (integer_form ? FP_INT_ZERO : FP_ZERO);
} else { // execute load normally

FR[f1] = fp_mem_to_fr_format(val, size, integer_form);

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
// add entry to ALAT

alat_write(fldtype, FLOAT, f1, paddr, size);
}



3:160 Volume 3: Instruction Reference

ldf

}

if (imm_base_update_form) { // update base register
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + GR[r2];
GR[r3].nat = GR[r3].nat || GR[r2].nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], ldhint, itype);

fp_update_psr(f1);
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault
VHPT Data fault Unaligned Data Reference fault
Data TLB fault Unsupported Data Reference fault
Data Page Not Present fault
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ldfp — Floating-point Load Pair
Format: (qp) ldfps.fldtype.ldhint f1, f2 = [r3] single_form, no_base_update_form M11

(qp) ldfps.fldtype.ldhint f1, f2 = [r3], 8 single_form, base_update_form M12
(qp) ldfpd.fldtype.ldhint f1, f2 = [r3] double_form, no_base_update_form M11
(qp) ldfpd.fldtype.ldhint f1, f2 = [r3], 16 double_form, base_update_form M12
(qp) ldfp8.fldtype.ldhint f1, f2 = [r3] integer_form, no_base_update_form M11
(qp) ldfp8.fldtype.ldhint f1, f2 = [r3], 16 integer_form, base_update_form M12

Description: Eight (single_form) or sixteen (double_form/integer_form) bytes are read from 
memory starting at the address specified by the value in GR r3. The value read is 
treated as a contiguous pair of floating-point numbers for the single_form/double_form 
and as integer/Parallel FP data for the integer_form. Each number is converted into the 
floating-point register format. The value at the lowest address is placed in FR f1, and the 
value at the highest address is placed in FR f2. See Section 5.1, “Data Types and 
Formats” on page 1:85 for details on conversion to floating-point register format. The 
fldtype completer specifies special load operations, which are described in Table 2-36 on 
page 3:157.

For more details on speculative, advanced and check loads see Section 4.4.4, “Control 
Speculation” on page 1:60 and Section 4.4.5, “Data Speculation” on page 1:63.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT 
Consumption fault is taken. For speculative and speculative advanced loads, no fault is 
raised, and the exception is deferred.

In the base_update_form, the value in GR r3 is added to an implied immediate value 
(equal to double the data size) and the result is placed back in GR r3. This base register 
update is done after the load, and does not affect the load address.

The value of the ldhint modifier specifies the locality of the memory access. The 
mnemonic values of ldhint are given in Table 2-34 on page 3:152. A prefetch hint is 
implied in the base update form. The address specified by the value in GR r3 after the 
base update acts as a hint to prefetch the indicated cache line. This prefetch uses the 
locality hints specified by ldhint. Prefetch and locality hints do not affect program 
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory 
Hierarchy Control and Consistency” on page 1:69 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is 
implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f1 and FR f2.

There is a restriction on the choice of target registers. Register specifiers f1 and f2 must 
specify one odd-numbered physical FR and one even-numbered physical FR. Specifying 
two odd or two even registers will cause an Illegal Operation fault to be raised. The 
restriction is on physical register numbers after register rotation. This means that if f1 
and f2 both specify static registers or both specify rotating registers, then f1 and f2 
must be odd/even or even/odd. If f1 and f2 specify one static and one rotating register, 
the restriction depends on CFM.rrb.fr. If CFM.rrb.fr is even, the restriction is the same; 
f1 and f2 must be odd/even or even/odd. If CFM.rrb.fr is odd, then f1 and f2 must be 
even/even or odd/odd. Specifying one static and one rotating register should only be 
done when CFM.rrb.fr will have a predictable value (such as 0).
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Operation: if (PR[qp]) {
size = single_form ? 8 : 16;

speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == ‘a’ || fldtype == ‘sa’);
check_clear = (fldtype == ‘c.clr’);
check_no_clear = (fldtype == ‘c.nc’);
check = check_clear || check_no_clear;
translate_address = 1;
read_memory = 1;

itype = READ;
if (speculative) itype |= SPEC;
if (advanced) itype |= ADVANCE; 

if (fp_reg_bank_conflict(f1, f2))
illegal_operation_fault();

if (base_update_form)
check_target_register(r3);

fp_check_target_register(f1);
fp_check_target_register(f2);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, itype);

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(FLOAT, f1)) {
translate_address = alat_translate_address_on_hit(fldtype, FLOAT, f1);
read_memory = alat_read_memory_on_hit(fldtype, FLOAT, f1);

}

if (!translate_address) {
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
} else {

if (!defer) {
paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,

&defer);
spontaneous_deferral(paddr, size, UM.be, mattr, UNORDERED,

ldhint, &defer);
if (!defer && read_memory)

mem_read_pair(&f1_val, &f2_val, paddr, size, UM.be,
mattr, UNORDERED, ldhint);

}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
if (speculative && defer) {

FR[f1] = NATVAL;
FR[f2] = NATVAL;

} else if (advanced && !speculative && defer) {
FR[f1] = (integer_form ? FP_INT_ZERO : FP_ZERO);
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FR[f2] = (integer_form ? FP_INT_ZERO : FP_ZERO);
} else { // execute load normally

FR[f1] = fp_mem_to_fr_format(f1_val, size/2, integer_form);
FR[f2] = fp_mem_to_fr_format(f2_val, size/2, integer_form);

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
// add entry to ALAT

alat_write(fldtype, FLOAT, f1, paddr, size);
}

}

if (base_update_form) { // update base register
GR[r3] = GR[r3] + size;
GR[r3].nat = GR[r3].nat;
if (!GR[r3].nat)

mem_implicit_prefetch(GR[r3], ldhint, itype);
}

fp_update_psr(f1);
fp_update_psr(f2);

}

Interruptions: Illegal Operation fault Data Page Not Present fault
Disabled Floating-point Register fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
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lfetch — Line Prefetch
Format: (qp) lfetch.lftype.lfhint [r3] no_base_update_form M18

(qp) lfetch.lftype.lfhint [r3], r2 reg_base_update_form M20
(qp) lfetch.lftype.lfhint [r3], imm9 imm_base_update_form M22
(qp) lfetch.lftype.excl.lfhint [r3] no_base_update_form, exclusive_form M18
(qp) lfetch.lftype.excl.lfhint [r3], r2 reg_base_update_form, exclusive_form M20
(qp) lfetch.lftype.excl.lfhint [r3], imm9 imm_base_update_form, exclusive_form M22

Description: The line containing the address specified by the value in GR r3 is moved to the highest 
level of the data memory hierarchy. The value of the lfhint modifier specifies the locality 
of the memory access; see Section 4.4, “Memory Access Instructions” on page 1:57 for 
details. The mnemonic values of lfhint are given in Table 2-38. 

The behavior of the memory read is also determined by the memory attribute 
associated with the accessed page. See Chapter 4, “Addressing and Protection” in 
Volume 2. Line size is implementation dependent but must be a power of two greater 
than or equal to 32 bytes. In the exclusive form, the cache line is allowed to be marked 
in an exclusive state. This qualifier is used when the program expects soon to modify a 
location in that line. If the memory attribute for the page containing the line is not 
cacheable, then no reference is made.

The completer, lftype, specifies whether or not the instruction raises faults normally 
associated with a regular load. Table 2-37 defines these two options.

In the base update forms, after being used to address memory, the value in GR r3 is 
incremented by either the sign-extended value in imm9 (in the imm_base_update_form) 
or the value in GR r2 (in the reg_base_update_form). In the reg_base_update_form, if 
the NaT bit corresponding to GR r2 is set, then the NaT bit corresponding to GR r3 is set 
– no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit 
corresponding to GR r3 is clear, then the address specified by the value in GR r3 after 
the post-increment acts as a hint to implicitly prefetch the indicated cache line. This 
implicit prefetch uses the locality hints specified by lfhint. The implicit prefetch does not 
affect program functionality, does not raise any faults, and may be ignored by the 
implementation.

In the no_base_update_form, the value in GR r3 is not modified and no implicit prefetch 
hint is implied.

If the NaT bit corresponding to GR r3 is set then the state of memory is not affected. In 
the reg_base_update_form and imm_base_update_form, the post increment of GR r3 is 
performed and prefetch is hinted as described above.

lfetch instructions, like hardware prefetches, are not orderable operations, i.e., they 
have no order with respect to prior or subsequent memory operations.

Table 2-37. lftype Mnemonic Values

lftype Mnemonic Interpretation

none No faults are raised

fault Raise faults
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A faulting lfetch to an unimplemented address results in an Unimplemented Data 
Address fault. A non-faulting lfetch to an unimplemented address does not take the 
fault and will not issue a prefetch request, but, if specified, will perform a register 
post-increment.

Both the non-faulting and the faulting forms of lfetch can be used speculatively. The 
purpose of raising faults on the faulting form is to allow the operating system to resolve 
problems with the address to the extent that it can do so relatively quickly. If problems 
with the address cannot be resolved quickly, the OS simply returns to the program, and 
forces the data prefetch to be skipped over.

Specifically, if a faulting lfetch takes any of the listed faults (other than Illegal 
Operation fault), the operating system must handle this fault to the extent that it can 
do so relatively quickly and invisibly to the interrupted program. If the fault cannot be 
handled quickly or cannot be handled invisibly (e.g., if handling the fault would involve 
terminating the program), the OS must return to the interrupted program, skipping 
over the data prefetch. This can easily be done by setting the IPSR.ed bit to 1 before 
executing an rfi to go back to the process, which will allow the lfetch.fault to 
perform its base register post-increment (if specified), but will suppress any prefetch 
request and hence any prefetch-related fault. Note that the OS can easily identify that a 
faulting lfetch was the cause of the fault by observing that ISR.na is 1, and 
ISR.code{3:0} is 4. The one exception to this is the Illegal Operation fault, which can 
be caused by an lfetch.fault if base register post-increment is specified, and the 
base register is outside of the current stack frame, or is GR0. Since this one fault is not 
related to the prefetch aspect of lfetch.fault, but rather to the base update portion, 
Illegal Operation faults on lfetch.fault should be handled the same as for any other 
instruction.

Table 2-38. lfhint Mnemonic Values

lfhint Mnemonic Interpretation

none Temporal locality, level 1

nt1 No temporal locality, level 1

nt2 No temporal locality, level 2

nta No temporal locality, all levels
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Operation: if (PR[qp]) {
itype = READ|NON_ACCESS;
itype |= (lftype == ‘fault’) ? LFETCH_FAULT : LFETCH;

if (reg_base_update_form || imm_base_update_form)
check_target_register(r3);

if (lftype == ‘fault’) { // faulting form
if (GR[r3].nat && !PSR.ed) // fault on NaT address

register_nat_consumption_fault(itype);
}

excl_hint = (exclusive_form) ? EXCLUSIVE : 0;

if (!GR[r3].nat && !PSR.ed) {// faulting form already faulted if r3 is nat
paddr = tlb_translate(GR[r3], 1, itype, PSR.cpl, &mattr, &defer);
if (!defer)

mem_promote(paddr, mattr, lfhint | excl_hint);
}

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + GR[r2];
GR[r3].nat = GR[r2].nat || GR[r3].nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], lfhint | excl_hint, itype);

}

Interruptions: Illegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault
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loadrs — Load Register Stack
Format: loadrs M25

Description: This instruction ensures that a specified number of bytes (registers values and/or NaT 
collections) below the current BSP have been loaded from the backing store into the 
stacked general registers. The loaded registers are placed into the dirty partition of the 
register stack. All other stacked general registers are marked as invalid, without being 
saved to the backing store. 

The number of bytes to be loaded is specified in a sub-field of the RSC application 
register (RSC.loadrs). Backing store addresses are always 8-byte aligned, and 
therefore the low order 3 bits of the loadrs field (RSC.loadrs{2:0}) are ignored. This 
instruction can be used to invalidate all stacked registers outside the current frame, by 
setting RSC.loadrs to zero.

This instruction will fault with an Illegal Operation fault under any of the following 
conditions:

• the RSE is not in enforced lazy mode (RSC.mode is non-zero).

• CFM.sof and RSC.loadrs are both non-zero.

• an attempt is made to load up more registers than are available in the physical 
stacked register file.

This instruction must be the first instruction in an instruction group and must either be 
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0; 
otherwise, the results are undefined. This instruction cannot be predicated.

Operation: if (AR[RSC].mode != 0)
illegal_operation_fault();

if ((CFM.sof != 0) && (AR[RSC].loadrs != 0))
illegal_operation_fault();

rse_ensure_regs_loaded(AR[RSC].loadrs); // can raise faults listed below
AR[RNAT] = undefined();

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault
Data Page Not Present fault
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mf — Memory Fence
Format: (qp) mf ordering_form M24

(qp) mf.a acceptance_form M24

Description: This instruction forces ordering between prior and subsequent memory accesses. The 
ordering_form ensures all prior data memory accesses are made visible prior to any 
subsequent data memory accesses being made visible. It does not ensure prior data 
memory references have been accepted by the external platform, nor that prior data 
memory references are visible.

The acceptance_form prevents any subsequent data memory accesses by the processor 
from initiating transactions to the external platform until:

• all prior loads to sequential pages have returned data, and 

• all prior stores to sequential pages have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance_form is typically 
used to ensure the processor has “waited” until a memory-mapped I/O transaction has 
been “accepted” before initiating additional external transactions. The acceptance_form 
does not ensure ordering, or acceptance to memory areas other than sequential pages.

Operation: if (PR[qp]){
if (acceptance_form)

acceptance_fence();
else // ordering_form

ordering_fence();
}

Interruptions: None
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mix — Mix
Format: (qp) mix1.l r1 = r2, r3 one_byte_form, left_form I2

(qp) mix2.l r1 = r2, r3 two_byte_form, left_form I2
(qp) mix4.l r1 = r2, r3 four_byte_form, left_form I2
(qp) mix1.r r1 = r2, r3 one_byte_form, right_form I2
(qp) mix2.r r1 = r2, r3 two_byte_form, right_form I2
(qp) mix4.r r1 = r2, r3 four_byte_form, right_form I2

Description: The data elements of GR r2 and r3 are mixed as shown in Figure 2-25, and the result 
placed in GR r1. The data elements in the source registers are grouped in pairs, and one 
element from each pair is selected for the result. In the left_form, the result is formed 
from the leftmost elements from each of the pairs. In the right_form, the result is 
formed from the rightmost elements. Elements are selected alternately from the two 
source registers.
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Figure 2-25. Mix Examples
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (left_form)
GR[r1] = concatenate8(x[7], y[7], x[5], y[5],

x[3], y[3], x[1], y[1]);
else // right_form

GR[r1] = concatenate8(x[6], y[6], x[4], y[4],
x[2], y[2], x[0], y[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (left_form)
GR[r1] = concatenate4(x[3], y[3], x[1], y[1]);

else // right_form
GR[r1] = concatenate4(x[2], y[2], x[0], y[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

if (left_form)
GR[r1] = concatenate2(x[1], y[1]);

else // right_form
GR[r1] = concatenate2(x[0], y[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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mov — Move Application Register
Format: (qp) mov r1 = ar3 pseudo-op

(qp) mov ar3 = r2 pseudo-op
(qp) mov ar3 = imm8 pseudo-op
(qp) mov.i r1 = ar3 i_form, from_form I28
(qp) mov.i ar3 = r2 i_form, register_form, to_form I26
(qp) mov.i ar3 = imm8 i_form, immediate_form, to_form I27
(qp) mov.m r1 = ar3 m_form, from_form M31
(qp) mov.m ar3 = r2 m_form, register_form, to_form M29
(qp) mov.m ar3 = imm8 m_form, immediate_form, to_form M30

Description: The source operand is copied to the destination register. 

In the from_form, the application register specified by ar3 is copied into GR r1 and the 
corresponding NaT bit is cleared. 

In the to_form, the value in GR r2 (in the register_form), or the sign-extended value in 
imm8 (in the immediate_form), is placed in AR ar3. In the register_form if the NaT bit 
corresponding to GR r2 is set, then a Register NaT Consumption fault is raised.

Only a subset of the application registers can be accessed by each execution unit (M or 
I). Table 3-3 on page 1:28 indicates which application registers may be accessed from 
which execution unit type. An access to an application register from the wrong unit type 
causes an Illegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need for 
specifying the execution unit. Accesses of the ARs are always implicitly serialized. While 
implicitly serialized, read-after-write and write-after-write dependency violations must 
be avoided (e.g., setting CCV, followed by cmpxchg in the same instruction group, or 
simultaneous writes to the UNAT register by ld.fill and mov to UNAT).
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Operation: if (PR[qp]) {
tmp_type = (i_form ? AR_I_TYPE : AR_M_TYPE);
if (is_reserved_reg(tmp_type, ar3))

illegal_operation_fault();

if (from_form) {
check_target_register(r1);
if (((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode != 0))

illegal_operation_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.cpl != 0)
privileged_register_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.vm == 1)
virtualization_fault();

GR[r1] = (is_ignored_reg(ar3)) ? 0 : AR[ar3];
GR[r1].nat = 0;

} else { // to_form
tmp_val = (register_form) ? GR[r2] : sign_ext(imm8, 8);

if (is_read_only_reg(AR_TYPE, ar3) ||
(((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode != 0)))
illegal_operation_fault(); 

if (register_form && GR[r2].nat)
register_nat_consumption_fault(0);

if (is_reserved_field(AR_TYPE, ar3, tmp_val))
reserved_register_field_fault();

if ((is_kernel_reg(ar3) || ar3 == ITC || ar3 == RUC) && (PSR.cpl != 0))
privileged_register_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.vm == 1)
virtualization_fault();

if (!is_ignored_reg(ar3)) {
tmp_val = ignored_field_mask(AR_TYPE, ar3, tmp_val);
// check for illegal promotion
if (ar3 == RSC && tmp_val{3:2} u< PSR.cpl)

tmp_val{3:2} = PSR.cpl;
AR[ar3] = tmp_val;

if (ar3 == BSPSTORE) {
AR[BSP] = rse_update_internal_stack_pointers(tmp_val);
AR[RNAT] = undefined();

}
}

}
}

Interruptions: Illegal Operation fault Privileged Register fault
Register NaT Consumption fault Virtualization fault
Reserved Register/Field fault
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mov — Move Branch Register
Format: (qp) mov r1 = b2 from_form I22

(qp) mov b1 = r2  pseudo-op
(qp) mov.mwh.ih b1 = r2, tag13  to_form I21
(qp) mov.ret.mwh.ih b1 = r2, tag13 return_form, to_form I21

Description: The source operand is copied to the destination register. 

In the from_form, the branch register specified by b2 is copied into GR r1. The NaT bit 
corresponding to GR r1 is cleared.

In the to_form, the value in GR r2 is copied into BR b1. If the NaT bit corresponding to 
GR r2 is 1, then a Register NaT Consumption fault is taken.

A set of hints can also be provided when moving to a branch register. These hints are 
very similar to those provided on the brp instruction, and provide prediction 
information about a future branch which may use the value being moved into BR b1. The 
return_form is used to provide the hint that this value will be used in a return-type 
branch.

The values for the mwh whether hint completer are given in Table 2-39. For a 
description of the ih hint completer see the Branch Prediction instruction and Table 2-13 
on page 3:32.

A pseudo-op is provided for copying a general register into a branch register when 
there is no hint information to be specified. This is encoded with a value of 0 for tag13 
and values corresponding to none for the hint completers.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);
GR[r1] = BR[b2];
GR[r1].nat = 0;

} else { // to_form
tmp_tag = IP + sign_ext((timm9 << 4), 13);
if (GR[r2].nat)

register_nat_consumption_fault(0);
BR[b1] = GR[r2];
branch_predict(mwh, ih, return_form, GR[r2], tmp_tag); 

}
}

Interruptions: Illegal Operation fault Register NaT Consumption fault

Table 2-39. Move to BR Whether Hints

mwh Completer Move to BR Whether Hint

none Ignore all hints

sptk Static Taken

dptk Dynamic
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mov — Move Control Register
Format: (qp) mov r1 = cr3 from_form M33

(qp) mov cr3 = r2 to_form M32

Description: The source operand is copied to the destination register. 

For the from_form, the control register specified by cr3 is read and the value copied into 
GR r1.

For the to_form, GR r2 is read and the value copied into CR cr3.

Control registers can only be accessed at the most privileged level, and when PSR.vm is 
0. Reading or writing an interruption control register (CR16-CR27), when the PSR.ic bit 
is one, will result in an Illegal Operation fault.

Operation: if (PR[qp]) {
if (is_reserved_reg(CR_TYPE, cr3)

|| to_form && is_read_only_reg(CR_TYPE, cr3)
|| PSR.ic && is_interruption_cr(cr3))

{
illegal_operation_fault();

}

if (from_form)
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (from_form) {
if (PSR.vm == 1)

virtualization_fault();
if (cr3 == IVR)

check_interrupt_request();

if (cr3 == ITIR)
GR[r1] = impl_itir_cwi_mask(CR[ITIR]);

else
GR[r1] = CR[cr3];

GR[r1].nat = 0;
} else { // to_form

if (GR[r2].nat)
register_nat_consumption_fault(0);

if (is_reserved_field(CR_TYPE, cr3, GR[r2]))
reserved_register_field_fault();

if ((cr3 == IFA) && impl_check_mov_ifa() &&
unimplemented_virtual_address(GR[r2], PSR.vm))
unimplemented_data_address_fault(0);

if (PSR.vm == 1)
virtualization_fault();

if (cr3 == EOI)
end_of_interrupt();

tmp_val = ignored_field_mask(CR_TYPE, cr3, GR[r2]);
CR[cr3] = tmp_val;
if (cr3 == IIPA)



3:176 Volume 3: Instruction Reference

mov cr

last_IP = tmp_val;
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Serialization: Reads of control registers reflect the results of all prior instruction groups and 
interruptions.

In general, writes to control registers do not immediately affect subsequent 
instructions. Software must issue a serialize operation before a dependent instruction 
uses a modified resource.

Control register writes are not implicitly synchronized with a corresponding control 
register read and requires data serialization.
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mov — Move Floating-point Register
Format: (qp) mov f1 = f3 pseudo-op of: (qp) fmerge.s f1 = f3, f3

Description: The value of FR f3 is copied to FR f1.

Operation: See “fmerge — Floating-point Merge” on page 3:80.
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mov — Move General Register
Format: (qp) mov r1 = r3 pseudo-op of: (qp) adds r1 = 0, r3

Description: The value of GR r3 is copied to GR r1.

Operation: See “add — Add” on page 3:14.
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mov — Move Immediate
Format: (qp) mov r1 = imm22 pseudo-op of: (qp) addl r1 = imm22, r0

Description: The immediate value, imm22, is sign extended to 64 bits and placed in GR r1.

Operation: See “add — Add” on page 3:14.
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mov — Move Indirect Register
Format: (qp) mov r1 = ireg[r3] from_form M43

(qp) mov ireg[r3] = r2 to_form M42

Description: The source operand is copied to the destination register. 

For move from indirect register, GR r3 is read and the value used as an index into the 
register file specified by ireg (see Table 2-40 below). The indexed register is read and its 
value is copied into GR r1.

For move to indirect register, GR r3 is read and the value used as an index into the 
register file specified by ireg. GR r2 is read and its value copied into the indexed register.

For all register files other than the region registers, bits {7:0} of GR r3 are used as the 
index. For region registers, bits {63:61} are used. The remainder of the bits are 
ignored. 

Instruction and data breakpoint, performance monitor configuration, protection key, 
and region registers can only be accessed at the most privileged level. Performance 
monitor data registers can only be written at the most privileged level. 

The CPU identification registers can only be read. There is no to_form of this 
instruction.

For move to protection key register, the processor ensures uniqueness of protection 
keys by checking new valid protection keys against all protection key registers. If any 
matching keys are found, duplicate protection keys are invalidated.

Apart from the PMC and PMD register files, access of a non-existent register results in a 
Reserved Register/Field fault. All accesses to the implementation-dependent portion of 
PMC and PMD register files result in implementation dependent behavior but do not 
fault.

Modifying a region register or a protection key register which is being used to translate:

• the executing instruction stream when PSR.it == 1, or

• the data space for an eager RSE reference when PSR.rt == 1

is an undefined operation.

Operation: if (PR[qp]) {
if (ireg == RR_TYPE)

tmp_index = GR[r3]{63:61};
else // all other register types

tmp_index = GR[r3]{7:0};

Table 2-40. Indirect Register File Mnemonics

ireg Register File

cpuid Processor Identification Register

dbr Data Breakpoint Register

ibr Instruction Breakpoint Register

pkr Protection Key Register

pmc Performance Monitor Configuration Register

pmd Performance Monitor Data Register

rr Region Register
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if (from_form) {
check_target_register(r1);

if (PSR.cpl != 0 && !(ireg == PMD_TYPE || ireg == CPUID_TYPE))
privileged_operation_fault(0);

if (GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index))
reserved_register_field_fault();

if (PSR.vm == 1 && ireg != PMD_TYPE)
virtualization_fault();

if (ireg == PMD_TYPE) {
if ((PSR.cpl != 0) && ((PSR.sp == 1) ||

 (tmp_index > 3 &&
 tmp_index <= IMPL_MAXGENERIC_PMCPMD &&
 PMC[tmp_index].pm == 1)))
GR[r1] = 0;

else 
GR[r1] = pmd_read(tmp_index);

} else
switch (ireg) {

case CPUID_TYPE: GR[r1] = CPUID[tmp_index]; break;
case DBR_TYPE: GR[r1] = DBR[tmp_index]; break;
case IBR_TYPE: GR[r1] = IBR[tmp_index]; break;
case PKR_TYPE: GR[r1] = PKR[tmp_index]; break;
case PMC_TYPE: GR[r1] = pmc_read(tmp_index); break;
case RR_TYPE: GR[r1] = RR[tmp_index]; break;

}
GR[r1].nat = 0;

} else { // to_form
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (GR[r2].nat || GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index)
|| ireg == CPUID_TYPE
|| is_reserved_field(ireg, tmp_index, GR[r2]))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (ireg == PKR_TYPE && GR[r2]{0} == 1) { // writing valid prot key
if ((tmp_slot = tlb_search_pkr(GR[r2]{31:8})) != NOT_FOUND)

PKR[tmp_slot].v = 0; // clear valid bit of matching key reg
}
tmp_val = ignored_field_mask(ireg, tmp_index, GR[r2]);
switch (ireg) {

case DBR_TYPE: DBR[tmp_index] = tmp_val; break;
case IBR_TYPE: IBR[tmp_index] = tmp_val; break;
case PKR_TYPE: PKR[tmp_index] = tmp_val; break;
case PMC_TYPE: pmc_write(tmp_index, tmp_val); break;
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case PMD_TYPE: pmd_write(tmp_index, tmp_val); break;
case RR_TYPE: RR[tmp_index]= tmp_val; break;

} 
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For move to data breakpoint registers, software must issue a data serialize operation 
before issuing a memory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction 
serialize operation before fetching an instruction dependent on the modified register.

For move to protection key, region, performance monitor configuration, and 
performance monitor data registers, software must issue an instruction or data serialize 
operation to ensure the changes are observed before issuing any dependent 
instruction.

To obtain improved accuracy, software can issue an instruction or data serialize 
operation before reading the performance monitors.
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mov — Move Instruction Pointer
Format: (qp) mov r1 = ip I25

Description: The Instruction Pointer (IP) for the bundle containing this instruction is copied into GR 
r1.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = IP;
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault
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mov — Move Predicates
Format: (qp) mov r1 = pr from_form I25

(qp) mov pr = r2, mask17 to_form I23
(qp) mov pr.rot = imm44 to_rotate_form I24

Description: The source operand is copied to the destination register.

For moving the predicates to a GR, PR i is copied to bit position i within GR r1.

For moving to the predicates, the source can either be a general register, or an 
immediate value. In the to_form, the source operand is GR r2 and only those predicates 
specified by the immediate value mask17 are written. The value mask17 is encoded in the 
instruction in an imm16 field such that: imm16 = mask17 >> 1. Predicate register 0 is 
always one. The mask17 value is sign extended. The most significant bit of mask17, 
therefore, is the mask bit for all of the rotating predicates. If there is a deferred 
exception for GR r2 (the NaT bit is 1), a Register NaT Consumption fault is taken.

In the to_rotate_form, only the 48 rotating predicates can be written. The source 
operand is taken from the imm44 operand (which is encoded in the instruction in an imm28 
field, such that: imm28 = imm44 >> 16). The low 16-bits correspond to the static 
predicates. The immediate is sign extended to set the top 21 predicates. Bit position i in 
the source operand is copied to PR i.

This instruction operates as if the predicate rotation base in the Current Frame Marker 
(CFM.rrb.pr) were zero.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);
GR[r1] = 1; // PR[0] is always 1
for (i = 1; i <= 63; i++) {

GR[r1]{i} = PR[pr_phys_to_virt(i)];
}
GR[r1].nat = 0;

} else if (to_form) {
if (GR[r2].nat)

register_nat_consumption_fault(0);
tmp_src = sign_ext(mask17, 17);
for (i = 1; i <= 63; i++) {

if (tmp_src{i})
PR[pr_phys_to_virt(i)] = GR[r2]{i};

}
} else { // to_rotate_form

tmp_src = sign_ext(imm44, 44);
for (i = 16; i <= 63; i++) {

PR[pr_phys_to_virt(i)] = tmp_src{i};
}

}
}

Interruptions: Illegal Operation fault Register NaT Consumption fault
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mov — Move Processor Status Register
Format: (qp) mov r1 = psr from_form M36

(qp) mov psr.l = r2 to_form M35

Description: The source operand is copied to the destination register. See Section 3.3.2, “Processor 
Status Register (PSR)” on page 2:23.

For move from processor status register, PSR bits {36:35} and {31:0} are read, and 
copied into GR r1. All other bits of the PSR read as zero.

For move to processor status register, GR r2 is read, bits {31:0} copied into PSR{31:0} 
and bits {63:32} are ignored. Bits {31:0} of GR r2 corresponding to reserved fields of 
the PSR must be 0 or a Reserved Register/Field fault will result. An implementation may 
also raise Reserved Register/Field fault if bits {63:32} in GR r2 corresponding to 
reserved fields of the PSR are non-zero.

Moves to and from the PSR can only be performed at the most privileged level, and 
when PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is 
1) are undefined if an interruption occurs between the enabling of the PSR.ic bit and a 
subsequent instruction serialize operation. 

Operation: if (PR[qp]) {
if (from_form)

check_target_register(r1);
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (from_form) {
if (PSR.vm == 1)

virtualization_fault();
tmp_val = zero_ext(PSR{31:0}, 32); // read lower 32 bits
tmp_val |= PSR{36:35} << 35; // read mc and it bits
GR[r1] = tmp_val; // other bits read as zero
GR[r1].nat = 0;

} else { // to_form
if (GR[r2].nat)

register_nat_consumption_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_MOVPART, GR[r2]))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

PSR{31:0} = GR[r2]{31:0};
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue an instruction or data serialize operation before issuing 
instructions dependent upon the altered PSR bits. Unlike with the rsm instruction, the 
PSR.i bit is not treated specially when cleared.



3:186 Volume 3: Instruction Reference

mov um

mov — Move User Mask
Format: (qp) mov r1 = psr.um from_form M36

(qp) mov psr.um = r2 to_form M35

Description: The source operand is copied to the destination register. 

For move from user mask, PSR{5:0} is read, zero-extend, and copied into GR r1.

For move to user mask, PSR{5:0} is written by bits {5:0} of GR r2. PSR.up can only be 
modified if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is 
not modified.

Writing a non-zero value into any other parts of the PSR results in a Reserved 
Register/Field fault.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);

GR[r1] = zero_ext(PSR{5:0}, 6);
GR[r1].nat = 0;

} else { // to_form
if (GR[r2].nat)

register_nat_consumption_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_UM, GR[r2]))
reserved_register_field_fault();

PSR{1:0} = GR[r2]{1:0};

if (PSR.sp == 0) // unsecured perf monitor
PSR{2} = GR[r2]{2};

PSR{5:3} = GR[r2]{5:3};
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Register NaT Consumption fault

Serialization: All user mask modifications are observed by the next instruction group.
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movl — Move Long Immediate
Format: (qp) movl r1 = imm64 X2

Description: The immediate value imm64 is copied to GR r1. The L slot of the bundle contains 41 bits of 
imm64.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = imm64;
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault
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mpy4 — Unsigned Integer Multiply
Format: (qp) mpy4 r1 = r2, r3 I2

Description: The lower 32 bits of each of the two source operands are treated as unsigned values 
and are multiplied, and the result is placed in GR r1. The upper 32 bits of each of the 
source operands are ignored.

Operation: if (PR[qp]) {
if (!instruction_implemented(mpy4))

illegal_operation_fault();
check_target_register(r1);

GR[r1] = zero_ext(GR[r2], 32) * zero_ext(GR[r3], 32);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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mpyshl4 — Unsigned Integer Shift Left and Multiply
Format: (qp) mpyshl4 r1 = r2, r3 I2

Description: The upper 32 bits of GR r2 and the lower 32 bits of GR r3 are treated as unsigned values 
and are multiplied. The result of the multiplication is shifted left 32 bits, with the 
vacated bit positions filled with zeroes, and the result is placed in GR r1. The lower 32 
bits of GR r2 and the upper 32 bits of GR r3 are ignored.

This instruction can be used to perform a 64-bit integer multiply operation producing a 
64-bit result (rc = ra * rb):

mpy4 r1 = ra, rb;; //partial product low 32 bits * low 32 bits
mpyshl4 r2 = ra, rb;; //partial product high 32 bits * low 32 bits
mpyshl4 r3 = rb, ra //partial product low 32 bits * high 32 bits
add r1 = r1, r2;; //partial sum
add rc = r1, r3 //final sum

Operation: if (PR[qp]) {
if (!instruction_implemented(MPYSHL4))

illegal_operation_fault();
check_target_register(r1);

GR[r1] = (zero_ext((GR[r2] >> 32), 32) * zero_ext(GR[r3], 32)) << 32;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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mux — Mux
Format: (qp) mux1 r1 = r2, mbtype4 one_byte_form I3

(qp) mux2 r1 = r2, mhtype8 two_byte_form I4

Description: A permutation is performed on the packed elements in a single source register, GR r2, 
and the result is placed in GR r1. For 8-bit elements, only some of all possible 
permutations can be specified. The five possible permutations are given in Table 2-41 
and shown in Figure 2-26.

Table 2-41. Mux Permutations for 8-bit Elements

mbtype4 Function

@rev Reverse the order of the bytes

@mix Perform a Mix operation on the two halves of GR r2
@shuf Perform a Shuffle operation on the two halves of GR r2
@alt Perform an Alternate operation on the two halves of GR r2
@brcst Perform a Broadcast operation on the least significand byte of GR r2

Figure 2-26. Mux1 Operation (8-bit elements)

GR r1:

GR r2:

mux1 r1 = r2, @rev

GR r1:

GR r2:

mux1 r1 = r2, @mix

GR r1:

GR r2:

mux1 r1 = r2, @shuf

GR r1:

GR r2:

mux1 r1 = r2, @alt

GR r1:

GR r2:

mux1 r1 = r2, @brcst
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For 16-bit elements, all possible permutations, with and without repetitions can be 
specified. They are expressed with an 8-bit mhtype8 field, which encodes the indices of 
the four 16-bit data elements. The indexed 16-bit elements of GR r2 are copied to 
corresponding 16-bit positions in the target register GR r1. The indices are encoded in 
little-endian order. (The 8 bits of mhtype8[7:0] are grouped in pairs of bits and named 
mhtype8[3], mhtype8[2], mhtype8[1], mhtype8[0] in the Operation section).

Figure 2-27. Mux2 Examples (16-bit elements)

GR r1:

GR r2:

mux2 r1 = r2, 0x8d (shuffle 10 00 11 01)

GR r1:

GR r2:

mux2 r1 = r2, 0x1b (reverse 00 01 10 11)

GR r1:

GR r2:

mux2 r1 = r2, 0xaa (broadcast 10 10 10 10)

GR r1:

GR r2:

mux2 r1 = r2, 0xd8 (alternate 11 01 10 00)
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
x[0] = GR[r2]{7:0};
x[1] = GR[r2]{15:8};
x[2] = GR[r2]{23:16};
x[3] = GR[r2]{31:24};
x[4] = GR[r2]{39:32};
x[5] = GR[r2]{47:40};
x[6] = GR[r2]{55:48};
x[7] = GR[r2]{63:56};

switch (mbtype) {
case ‘@rev’:

GR[r1] = concatenate8(x[0], x[1], x[2], x[3],
x[4], x[5], x[6], x[7]);

break;

case ‘@mix’:
 GR[r1] = concatenate8(x[7], x[3], x[5], x[1],

x[6], x[2], x[4], x[0]);
break;

case ‘@shuf’:
GR[r1] = concatenate8(x[7], x[3], x[6], x[2], 

x[5], x[1], x[4], x[0]);
break;

case ‘@alt’:
GR[r1] = concatenate8(x[7], x[5], x[3], x[1],

x[6], x[4], x[2], x[0]);
break;

case ‘@brcst’:
GR[r1] = concatenate8(x[0], x[0], x[0], x[0],

x[0], x[0], x[0], x[0]);
break;

}
} else { // two_byte_form

x[0] = GR[r2]{15:0};
x[1] = GR[r2]{31:16};
x[2] = GR[r2]{47:32};
x[3] = GR[r2]{63:48};

res[0] = x[mhtype8{1:0}];
res[1] = x[mhtype8{3:2}];
res[2] = x[mhtype8{5:4}];
res[3] = x[mhtype8{7:6}];

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
}
GR[r1].nat = GR[r2].nat;

}

Interruptions: Illegal Operation fault
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nop — No Operation
Format: (qp) nop imm21 pseudo-op

(qp) nop.i imm21 i_unit_form I18
(qp) nop.b imm21 b_unit_form B9
(qp) nop.m imm21 m_unit_form M48
(qp) nop.f imm21 f_unit_form F16
(qp) nop.x imm62 x_unit_form X5

Description: No operation is done.

The immediate, imm21 or imm62, can be used by software as a marker in program code. It 
is ignored by hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of imm62.

A nop.i instruction may be encoded in an MLI-template bundle, in which case the L slot 
of the bundle is ignored.

This instruction has five forms, each of which can be executed only on a particular 
execution unit type. The pseudo-op can be used if the unit type to execute on is 
unimportant.

Operation: if (PR[qp]) {
; // no operation

}

Interruptions: None
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or — Logical Or
Format: (qp) or r1 = r2, r3 register_form A1

(qp) or r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically ORed and the result placed in GR r1. In the 
register form the first operand is GR r2; in the immediate form the first operand is taken 
from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src | GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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pack — Pack
Format: (qp) pack2.sss r1 = r2, r3  two_byte_form, signed_saturation_form I2

(qp) pack2.uss r1 = r2, r3 two_byte_form, unsigned_saturation_form I2
(qp) pack4.sss r1 = r2, r3 four_byte_form, signed_saturation_form I2

Description: 32-bit or 16-bit elements from GR r2 and GR r3 are converted into 16-bit or 8-bit 
elements respectively, and the results are placed GR r1. The source elements are 
treated as signed values. If a source element cannot be represented in the result 
element, then saturation clipping is performed. The saturation can either be signed or 
unsigned. If an element is larger than the upper limit value, the result is the upper limit 
value. If it is smaller than the lower limit value, the result is the lower limit value. The 
saturation limits are given in Table 2-42.

Table 2-42. Pack Saturation Limits

Size
Source Element

Width
Result Element

Width
Saturation

Upper
Limit

Lower Limit

2 16 bit 8 bit signed 0x7f 0x80

2 16 bit 8 bit unsigned 0xff 0x00

4 32 bit 16 bit signed 0x7fff 0x8000

Figure 2-28. Pack Operation

GR r3:

GR r1:

GR r2:

pack4

GR r3:

GR r1:

GR r2:

pack2
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Operation: if (PR[qp]) {
check_target_register(r1);

if (two_byte_form) {
if (signed_saturation_form) {

max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);

} else { // unsigned_saturation_form
max = 0xff;
min = 0x00;

}
temp[0] = sign_ext(GR[r2]{15:0}, 16);
temp[1] = sign_ext(GR[r2]{31:16}, 16);
temp[2] = sign_ext(GR[r2]{47:32}, 16);
temp[3] = sign_ext(GR[r2]{63:48}, 16);
temp[4] = sign_ext(GR[r3]{15:0}, 16);
temp[5] = sign_ext(GR[r3]{31:16}, 16);
temp[6] = sign_ext(GR[r3]{47:32}, 16);
temp[7] = sign_ext(GR[r3]{63:48}, 16);

for (i = 0; i < 8; i++) {
if (temp[i] > max)

temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}

GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],
 temp[3], temp[2], temp[1], temp[0]);

} else { // four_byte_form
max = sign_ext(0x7fff, 16); // signed_saturation_form
min = sign_ext(0x8000, 16);
temp[0] = sign_ext(GR[r2]{31:0}, 32);
temp[1] = sign_ext(GR[r2]{63:32}, 32);
temp[2] = sign_ext(GR[r3]{31:0}, 32);
temp[3] = sign_ext(GR[r3]{63:32}, 32);

for (i = 0; i < 4; i++) {
if (temp[i] > max)

temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}

GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);
}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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padd — Parallel Add
Format: (qp) padd1 r1 = r2, r3 one_byte_form, modulo_form A9

(qp) padd1.sss r1 = r2, r3 one_byte_form, sss_saturation_form A9
(qp) padd1.uus r1 = r2, r3 one_byte_form, uus_saturation_form A9
(qp) padd1.uuu r1 = r2, r3 one_byte_form, uuu_saturation_form A9
(qp) padd2 r1 = r2, r3 two_byte_form, modulo_form A9
(qp) padd2.sss r1 = r2, r3 two_byte_form, sss_saturation_form A9
(qp) padd2.uus r1 = r2, r3 two_byte_form, uus_saturation_form A9
(qp) padd2.uuu r1 = r2, r3 two_byte_form, uuu_saturation_form A9
(qp) padd4 r1 = r2, r3 four_byte_form, modulo_form A9

Description: The sets of elements from the two source operands are added, and the results placed in 
GR r1.

If a sum of two elements cannot be represented in the result element and a saturation 
completer is specified, then saturation clipping is performed. The saturation can either 
be signed or unsigned, as given in Table 2-43. If the sum of two elements is larger than 
the upper limit value, the result is the upper limit value. If it is smaller than the lower 
limit value, the result is the lower limit value. The saturation limits are given in 
Table 2-44.

Table 2-43. Parallel Add Saturation Completers

Completer Result r1 treated as Source r2 treated as Source r3 treated as

sss signed signed signed

uus unsigned unsigned signed

uuu unsigned unsigned unsigned

Table 2-44. Parallel Add Saturation Limits

Size Element Width
Result r1 Signed Result r1 Unsigned

Upper Limit Lower Limit Upper Limit Lower Limit

1 8 bit 0x7f 0x80 0xff 0x00

2 16 bit 0x7fff 0x8000 0xffff 0x0000

Figure 2-29. Parallel Add Examples

GR r2:

GR r1:

GR r3:

++++

padd1 padd2

GR r2:

GR r1:

GR r3:

++++ ++++
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (sss_saturation_form) {
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);

for (i = 0; i < 8; i++) {
temp[i] = sign_ext(x[i], 8) + sign_ext(y[i], 8);

}
} else if (uus_saturation_form) {

max = 0xff;
min = 0x00;

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + sign_ext(y[i], 8);

}
} else if (uuu_saturation_form) {

max = 0xff;
min = 0x00;

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

}
} else { // modulo_form

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

}
}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 8; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}
GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],

temp[3], temp[2], temp[1], temp[0]);

} else if (two_byte_form) { // 2-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
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x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (sss_saturation_form) {
max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = sign_ext(x[i], 16) + sign_ext(y[i], 16);

}
} else if (uus_saturation_form) {

max = 0xffff;
min = 0x0000;

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + sign_ext(y[i], 16);

}
} else if (uuu_saturation_form) {

max = 0xffff;
min = 0x0000;

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}
} else { // modulo_form

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}
}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 4; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}
GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

for (i = 0; i < 2; i++) { // modulo_form
temp[i] = zero_ext(x[i], 32) + zero_ext(y[i], 32);

}

GR[r1] = concatenate2(temp[1], temp[0]);
}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}



3:200 Volume 3: Instruction Reference

padd

Interruptions: Illegal Operation fault
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pavg — Parallel Average
Format: (qp) pavg1 r1 = r2, r3 normal_form, one_byte_form A9

(qp) pavg1.raz r1 = r2, r3 raz_form, one_byte_form A9
(qp) pavg2 r1 = r2, r3 normal_form, two_byte_form A9
(qp) pavg2.raz r1 = r2, r3 raz_form, two_byte_form A9

Description: The unsigned data elements of GR r2 are added to the unsigned data elements of GR r3. 
The results of the add are then each independently shifted to the right by one bit 
position. The high-order bits of each element are filled with the carry bits of the sums. 
To prevent cumulative round-off errors, an averaging is performed. The unsigned 
results are placed in GR r1.

The averaging operation works as follows. In the normal_form, the low-order bit of 
each result is set to 1 if at least one of the two least significant bits of the 
corresponding sum is 1. In the raz_form, the average rounds away from zero by adding 
1 to each of the sums. 

Figure 2-30. Parallel Average Example

GR r2:

GR r1:

GR r3:

++++

pavg2

or

Sum Bits
Carry
Bit

16-bit Sum
Plus
Carry

Shift Right
1 Bit

Shift Right 1 Bit
with Average in
Low-order Bit
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Figure 2-31. Parallel Average with Round Away from Zero Example

GR r2:

GR r1:

GR r3:

++++

pavg2.raz

Sum Bits
Carry
Bit

1 1 1 1

16-bit Sum
Plus
Carry

Shift Right
1 Bit

Shift Right 1 Bit
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (raz_form) {
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8) + 1;
res[i] = shift_right_unsigned(temp[i], 1);

}
} else { // normal form

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
res[i] = shift_right_unsigned(temp[i], 1) | (temp[i]{0});

}
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);

} else { // two_byte_form
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (raz_form) {
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16) + 1;
res[i] = shift_right_unsigned(temp[i], 1);

}
} else { // normal form

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
res[i] = shift_right_unsigned(temp[i], 1) | (temp[i]{0});

}
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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pavgsub — Parallel Average Subtract
Format: (qp) pavgsub1 r1 = r2, r3 one_byte_form A9

(qp) pavgsub2 r1 = r2, r3 two_byte_form A9

Description: The unsigned data elements of GR r3 are subtracted from the unsigned data elements of 
GR r2. The results of the subtraction are then each independently shifted to the right by 
one bit position. The high-order bits of each element are filled with the borrow bits of 
the subtraction (the complements of the ALU carries). To prevent cumulative round-off 
errors, an averaging is performed. The low-order bit of each result is set to 1 if at least 
one of the two least significant bits of the corresponding difference is 1. The signed 
results are placed in GR r1.

Figure 2-32. Parallel Average Subtract Example

GR r2:

GR r1:

GR r3:

----

pavgsub2

or

Sum Bits
Borrow
Bit

16-bit Difference
Plus
Carry

Shift Right
1 Bit

Shift Right 1 Bit
with Average in
Low-order Bit
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
res[i] = (temp[i]{8:0} u>> 1) | (temp[i]{0});

}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);

} else { // two_byte_form
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
res[i] = (temp[i]{16:0} u>> 1) | (temp[i]{0});

}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault



3:206 Volume 3: Instruction Reference

pcmp

pcmp — Parallel Compare
Format: (qp) pcmp1.prel r1 = r2, r3 one_byte_form A9

(qp) pcmp2.prel r1 = r2, r3 two_byte_form A9
(qp) pcmp4.prel r1 = r2, r3 four_byte_form A9

Description: The two source operands are compared for one of the two relations shown in 
Table 2-45. If the comparison condition is true for corresponding data elements of GR r2 
and GR r3, then the corresponding data element in GR r1 is set to all ones. If the 
comparison condition is false, then the corresponding data element in GR r1 is set to all 
zeros. For the ‘>’ relation, both operands are interpreted as signed.

Table 2-45. Pcmp Relations

prel Compare Relation (r2 prel r3)

eq r2 == r3
gt r2 > r3 (signed)

Figure 2-33. Parallel Compare Examples

GR r2:

GR r1:

GR r3:

====

pcmp2.eq

True False True True

0xffff 0x0000 0xffff 0xffff

GR r2:

GR r1:

GR r3:

>

pcmp1.gt

T

ff 00

GR r2:

GR r1:

GR r3:

=

pcmp4.eq

True

0xffffffff 0x00000000

>

F

>

T

>

T

>

F

>

F

>

F

>

T

ff ff 00 00 00 ff

=

False
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

if (prel == ‘eq’)
tmp_rel = x[i] == y[i];

else // ‘gt’
tmp_rel = greater_signed(sign_ext(x[i], 8),

 sign_ext(y[i], 8));

if (tmp_rel)
res[i] = 0xff;

else
res[i] = 0x00;

}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else if (two_byte_form) { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

if (prel == ‘eq’)
tmp_rel = x[i] == y[i];

else // ‘gt’
tmp_rel = greater_signed(sign_ext(x[i], 16),

 sign_ext(y[i], 16));

if (tmp_rel)
res[i] = 0xffff;

else
res[i] = 0x0000;

}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};
for (i = 0; i < 2; i++) {

if (prel == ‘eq’)
tmp_rel = x[i] == y[i];

else // ‘gt’
tmp_rel = greater_signed(sign_ext(x[i], 32),

 sign_ext(y[i], 32));

if (tmp_rel)
res[i] = 0xffffffff;
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else
res[i] = 0x00000000;

}
GR[r1] = concatenate2(res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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pmax — Parallel Maximum
Format: (qp) pmax1.u r1 = r2, r3 one_byte_form I2

(qp) pmax2 r1 = r2, r3 two_byte_form I2

Description: The maximum of the two source operands is placed in the result register. In the 
one_byte_form, each unsigned 8-bit element of GR r2 is compared with the 
corresponding unsigned 8-bit element of GR r3 and the greater of the two is placed in 
the corresponding 8-bit element of GR r1. In the two_byte_form, each signed 16-bit 
element of GR r2 is compared with the corresponding signed 16-bit element of GR r3 and 
the greater of the two is placed in the corresponding 16-bit element of GR r1.

Figure 2-34. Parallel Maximum Examples
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? y[i] : x[i];
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? y[i] : x[i];
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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pmin — Parallel Minimum
Format: (qp) pmin1.u r1 = r2, r3 one_byte_form I2

(qp) pmin2 r1 = r2, r3 two_byte_form I2

Description: The minimum of the two source operands is placed in the result register. In the 
one_byte_form, each unsigned 8-bit element of GR r2 is compared with the 
corresponding unsigned 8-bit element of GR r3 and the smaller of the two is placed in 
the corresponding 8-bit element of GR r1. In the two_byte_form, each signed 16-bit 
element of GR r2 is compared with the corresponding signed 16-bit element of GR r3 and 
the smaller of the two is placed in the corresponding 16-bit element of GR r1.

Figure 2-35. Parallel Minimum Examples
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? x[i] : y[i];
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? x[i] : y[i];
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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pmpy — Parallel Multiply
Format: (qp) pmpy2.r r1 = r2, r3 right_form I2

(qp) pmpy2.l r1 = r2, r3 left_form I2

Description: Two signed 16-bit data elements of GR r2 are multiplied by the corresponding two 
signed 16-bit data elements of GR r3 as shown in Figure 2-36. The two 32-bit results 
are placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

if (right_form) {
GR[r1]{31:0} = sign_ext(GR[r2]{15:0}, 16) * 

sign_ext(GR[r3]{15:0}, 16);
GR[r1]{63:32} = sign_ext(GR[r2]{47:32}, 16) * 

sign_ext(GR[r3]{47:32}, 16);
} else { // left_form

GR[r1]{31:0} = sign_ext(GR[r2]{31:16}, 16) * 
sign_ext(GR[r3]{31:16}, 16);

GR[r1]{63:32} = sign_ext(GR[r2]{63:48}, 16) * 
sign_ext(GR[r3]{63:48}, 16);

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

Figure 2-36. Parallel Multiply Operation
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pmpyshr — Parallel Multiply and Shift Right
Format: (qp) pmpyshr2 r1 = r2, r3, count2 signed_form I1

(qp) pmpyshr2.u r1 = r2, r3, count2 unsigned_form I1

Description: The four 16-bit data elements of GR r2 are multiplied by the corresponding four 16-bit 
data elements of GR r3 as shown in Figure 2-37. This multiplication can either be signed 
(pmpyshr2), or unsigned (pmpyshr2.u). Each product is then shifted to the right count2 
bits, and the least-significant 16-bits of each shifted product form 4 16-bit results, 
which are placed in GR r1. A count2 of 0 gives the 16 low bits of the results, a count2 of 16 
gives the 16 high bits of the results. The allowed values for count2 are given in 
Table 2-46.

Table 2-46. Parallel Multiply and Shift Right Shift Options

count2 Selected Bit Field from Each 32-bit Product

0 15:0

7 22:7

15 30:15

16 31:16

Figure 2-37. Parallel Multiply and Shift Right Operation
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Operation: if (PR[qp]) {
check_target_register(r1);
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

if (unsigned_form) // unsigned multiplication
temp[i] = zero_ext(x[i], 16) * zero_ext(y[i], 16);

else // signed multiplication
temp[i] = sign_ext(x[i], 16) * sign_ext(y[i], 16);

res[i] = temp[i]{(count2 + 15):count2};
}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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popcnt — Population Count
Format: (qp) popcnt r1 = r3 I9

Description: The number of bits in GR r3 having the value 1 is counted, and the resulting sum is 
placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

res = 0;
// Count up all the one bits
for (i = 0; i < 64; i++) {

res += GR[r3]{i};
}

GR[r1] = res;
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault
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probe — Probe Access
Format: (qp) probe.r r1 = r3, r2 regular_form, read_form, register_form M38

(qp) probe.w r1 = r3, r2 regular_form, write_form, register_form M38
(qp) probe.r r1 = r3, imm2 regular_form, read_form, immediate_form M39
(qp) probe.w r1 = r3, imm2 regular_form, write_form, immediate_form M39
(qp) probe.r.fault r3, imm2 fault_form, read_form, immediate_form M40
(qp) probe.w.fault r3, imm2 fault_form, write_form, immediate_form M40
(qp) probe.rw.fault r3, imm2 fault_form, read_write_form, immediate_form M40

Description: This instruction determines whether read or write access, with a specified privilege 
level, to a given virtual address is permitted. In the regular_form, GR r1 is set to 1 if the 
specified access is allowed and to 0 otherwise. In the fault_form, if the specified access 
is allowed this instruction does nothing; if the specified access is not allowed, a fault is 
taken.

When PSR.dt is 1, the DTLB and the VHPT are queried for present translations to 
determine if access to the virtual address specified by GR r3 bits {60:0} and the region 
register indexed by GR r3 bits {63:61}, is permitted at the privilege level given by 
either GR r2 bits{1:0} or imm2. If PSR.pk is 1, protection key checks are also performed. 
The read or write form specifies whether the instruction checks for read or write access, 
or both.

When PSR.dt is 0, a regular_form probe uses its address operand as a virtual address 
to query the DTLB only, because the VHPT walker is disabled. If the probed address is 
found in the DTLB, the regular_form probe returns the appropriate value, if not an 
Alternate Data TLB fault is raised if psr.ic is 1 or a Data Nested TLB fault is raised if 
psr.ic is 0 or in-flight.

When PSR.dt is 0, a fault_form probe treats its address operand as a physical address, 
and takes no TLB related faults. 

A regular_form probe to an unimplemented virtual address returns 0. A fault_form 
probe to an unimplemented virtual address (when PSR.dt is 1) or unimplemented 
physical address (when PSR.dt is 0) takes an Unimplemented Data Address fault. 

If this instruction faults, then it will set the non-access bit in the ISR and set the ISR 
read or write bits depending on the completer. The faults generated by the different 
forms of the probe instruction are shown in Table 2-47 below:
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This instruction can only probe with equal or lower privilege levels. If the specified 
privilege level is higher (lower number), then the probe is performed with the current 
privilege level.

When PSR.vm is 1, this instruction may optionally raise Virtualization faults, see 
Section 11.7.4.2.8, “Probe Instruction Virtualization” on page 2:344 for details.

Please refer to the Intel® Itanium® Software Conventions and Runtime 
Architecture Guide for usage information of the probe instruction.

Table 2-47. Faults for regular_form and fault_form Probe Instructions

Probe Form Type Faults

regular_form Register NaT Consumption fault
Virtualization faulta

Data Nested TLB fault
Alternate Data TLB fault
VHPT Data fault
Data TLB fault
Data Page Not Present fault
Data NaT Page Consumption fault
Data Key Miss fault

a. This instruction may optionally raise Virtualization faults, see Section 11.7.4.2.8, “Probe Instruction 
Virtualization” on page 2:344 for details.

fault_form Register NaT Consumption fault
Unimplemented Data Address fault
Virtualization faulta

Data Nested TLB fault
Alternate Data TLB fault
VHPT Data fault
Data TLB fault
Data Page Not Present fault
Data NaT Page Consumption fault
Data Key Miss fault
Data Key Permission fault
Data Access Rights fault
Data Dirty Bit fault
Data Access Bit fault
Data Debug fault
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Operation: if (PR[qp]) {
itype = NON_ACCESS;
itype |= (read_write_form) ? READ|WRITE : ((write_form) ? WRITE : READ);
itype |= (fault_form) ? PROBE_FAULT : PROBE;
itype |= (register_form) ? REGISTER_FORM : IMM_FORM;

if (!fault_form)
check_target_register(r1);

if (GR[r3].nat || (register_form ? GR[r2].nat : 0))
register_nat_consumption_fault(itype);

tmp_pl = (register_form) ? GR[r2]{1:0} : imm2;
if (tmp_pl < PSR.cpl)

tmp_pl = PSR.cpl;

if (fault_form) {
tlb_translate(GR[r3], 1, itype, tmp_pl, &mattr, &defer);

} else { // regular_form
if (impl_probe_intercept())

check_probe_virtualization_fault(itype, tmp_pl);
GR[r1] = tlb_grant_permission(GR[r3], itype, tmp_pl);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Virtualization fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Dirty Bit fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault
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psad — Parallel Sum of Absolute Difference
Format: (qp) psad1 r1 = r2, r3 I2

Description: The unsigned 8-bit elements of GR r2 are subtracted from the unsigned 8-bit elements 
of GR r3. The absolute value of each difference is accumulated across the elements and 
placed in GR r1.

Figure 2-38. Parallel Sum of Absolute Difference Example
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Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

GR[r1] = 0;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
if (temp[i] < 0)

temp[i] = -temp[i];
GR[r1] += temp[i];

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault
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pshl — Parallel Shift Left
Format: (qp) pshl2 r1 = r2, r3 two_byte_form, variable_form I7

(qp) pshl2 r1 = r2, count5 two_byte_form, fixed_form I8
(qp) pshl4 r1 = r2, r3 four_byte_form, variable_form I7
(qp) pshl4 r1 = r2, count5 four_byte_form, fixed_form I8

Description: The data elements of GR r2 are each independently shifted to the left by the scalar shift 
count in GR r3, or in the immediate field count5. The low-order bits of each element are 
filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 15 
(for 16-bit quantities) or 31 (for 32-bit quantities) yield all zero results. The results are 
placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

shift_count = (variable_form ? GR[r3] : count5);
tmp_nat = (variable_form ? GR[r3].nat : 0);

if (two_byte_form) { // two_byte_form
if (shift_count u> 16)

shift_count = 16;
GR[r1]{15:0} = GR[r2]{15:0} << shift_count;
GR[r1]{31:16} = GR[r2]{31:16} << shift_count;
GR[r1]{47:32} = GR[r2]{47:32} << shift_count;
GR[r1]{63:48} = GR[r2]{63:48} << shift_count;

} else { // four_byte_form
if (shift_count u> 32)

shift_count = 32;
GR[r1]{31:0} = GR[r2]{31:0} << shift_count;
GR[r1]{63:32} = GR[r2]{63:32} << shift_count;

}

GR[r1].nat = GR[r2].nat || tmp_nat;
}

Interruptions: Illegal Operation fault

Figure 2-39. Parallel Shift Left Examples
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pshladd — Parallel Shift Left and Add
Format: (qp) pshladd2 r1 = r2, count2, r3 A10

Description: The four signed 16-bit data elements of GR r2 are each independently shifted to the left 
by count2 bits (shifting zeros into the low-order bits), and added to the four signed 
16-bit data elements of GR r3. Both the left shift and the add operations are saturating: 
if the result of either the shift or the add is not representable as a signed 16-bit value, 
the final result is saturated. The four signed 16-bit results are placed in GR r1. The first 
operand can be shifted by 1, 2 or 3 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = sign_ext(x[i], 16) << count2;

if (temp[i] > max)
res[i] = max;

else if (temp[i] < min)
res[i] = min;

else {
res[i] = temp[i] + sign_ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < min)

res[i] = min;
}

}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault



3:224 Volume 3: Instruction Reference

pshr

pshr — Parallel Shift Right
Format: (qp) pshr2 r1 = r3, r2 signed_form, two_byte_form, variable_form I5

(qp) pshr2 r1 = r3, count5 signed_form, two_byte_form, fixed_form I6
(qp) pshr2.u r1 = r3, r2 unsigned_form, two_byte_form, variable_form I5
(qp) pshr2.u r1 = r3, count5 unsigned_form, two_byte_form, fixed_form I6
(qp) pshr4 r1 = r3, r2 signed_form, four_byte_form, variable_form I5
(qp) pshr4 r1 = r3, count5 signed_form, four_byte_form, fixed_form I6
(qp) pshr4.u r1 = r3, r2 unsigned_form, four_byte_form, variable_form I5
(qp) pshr4.u r1 = r3, count5 unsigned_form, four_byte_form, fixed_form I6

Description: The data elements of GR r3 are each independently shifted to the right by the scalar 
shift count in GR r2, or in the immediate field count5. The high-order bits of each 
element are filled with either the initial value of the sign bits of the data elements in GR 
r3 (arithmetic shift) or zeros (logical shift). The shift count is interpreted as unsigned. 
Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities) yield all 
zero or all one results depending on the initial values of the sign bits of the data 
elements in GR r3 and whether a signed or unsigned shift is done. The results are placed 
in GR r1.
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Operation: if (PR[qp]) {
check_target_register(r1);

shift_count = (variable_form ? GR[r2] : count5);
tmp_nat = (variable_form ? GR[r2].nat : 0);

if (two_byte_form) { // two_byte_form
if (shift_count u> 16)

shift_count = 16;
if (unsigned_form) { // unsigned shift

GR[r1]{15:0} = shift_right_unsigned(zero_ext(GR[r3]{15:0}, 16),
shift_count);

GR[r1]{31:16} = shift_right_unsigned(zero_ext(GR[r3]{31:16}, 16),
shift_count);

GR[r1]{47:32} = shift_right_unsigned(zero_ext(GR[r3]{47:32}, 16),
shift_count);

GR[r1]{63:48} = shift_right_unsigned(zero_ext(GR[r3]{63:48}, 16),
shift_count);

} else { // signed shift
GR[r1]{15:0} = shift_right_signed(sign_ext(GR[r3]{15:0}, 16),

shift_count);
GR[r1]{31:16} = shift_right_signed(sign_ext(GR[r3]{31:16}, 16),

shift_count);
GR[r1]{47:32} = shift_right_signed(sign_ext(GR[r3]{47:32}, 16),

shift_count);
GR[r1]{63:48} = shift_right_signed(sign_ext(GR[r3]{63:48}, 16),

shift_count);
}

} else { // four_byte_form
if (shift_count > 32)

shift_count = 32;
if (unsigned_form) { // unsigned shift

GR[r1]{31:0} = shift_right_unsigned(zero_ext(GR[r3]{31:0}, 32),
shift_count);

GR[r1]{63:32} = shift_right_unsigned(zero_ext(GR[r3]{63:32}, 32),
shift_count);

} else { // signed shift
GR[r1]{31:0} = shift_right_signed(sign_ext(GR[r3]{31:0}, 32),

shift_count);
GR[r1]{63:32} = shift_right_signed(sign_ext(GR[r3]{63:32}, 32),

shift_count);
}

}

GR[r1].nat = GR[r3].nat || tmp_nat;
}

Interruptions: Illegal Operation fault



3:226 Volume 3: Instruction Reference

pshradd

pshradd — Parallel Shift Right and Add
Format: (qp) pshradd2 r1 = r2, count2, r3 A10

Description: The four signed 16-bit data elements of GR r2 are each independently shifted to the 
right by count2 bits, and added to the four signed 16-bit data elements of GR r3. The 
right shift operation fills the high-order bits of each element with the initial value of the 
sign bits of the data elements in GR r2. The add operation is performed with signed 
saturation. The four signed 16-bit results of the add are placed in GR r1. The first 
operand can be shifted by 1, 2 or 3 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = shift_right_signed(sign_ext(x[i], 16), count2);

res[i] = temp[i] + sign_ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < min)

res[i] = min;
}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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psub — Parallel Subtract
Format: (qp) psub1 r1 = r2, r3 one_byte_form, modulo_form A9

(qp) psub1.sss r1 = r2, r3 one_byte_form, sss_saturation_form A9
(qp) psub1.uus r1 = r2, r3 one_byte_form, uus_saturation_form A9
(qp) psub1.uuu r1 = r2, r3 one_byte_form, uuu_saturation_form A9
(qp) psub2 r1 = r2, r3 two_byte_form, modulo_form A9
(qp) psub2.sss r1 = r2, r3 two_byte_form, sss_saturation_form A9
(qp) psub2.uus r1 = r2, r3 two_byte_form, uus_saturation_form A9
(qp) psub2.uuu r1 = r2, r3 two_byte_form, uuu_saturation_form A9
(qp) psub4 r1 = r2, r3 four_byte_form, modulo_form A9

Description: The sets of elements from the two source operands are subtracted, and the results 
placed in GR r1.

If the difference between two elements cannot be represented in the result element 
and a saturation completer is specified, then saturation clipping is performed. The 
saturation can either be signed or unsigned, as given in Table 2-48. If the difference of 
two elements is larger than the upper limit value, the result is the upper limit value. If 
it is smaller than the lower limit value, the result is the lower limit value. The saturation 
limits are given in Table 2-49.

Table 2-48. Parallel Subtract Saturation Completers

Completer Result r1 treated as Source r2 treated as Source r3 treated as

sss signed signed signed

uus unsigned unsigned signed

uuu unsigned unsigned unsigned

Table 2-49. Parallel Subtract Saturation Limits

Size Element Width
Result r1 Signed Result r1 Unsigned

Upper Limit Lower Limit Upper Limit Lower Limit

1 8 bit 0x7f 0x80 0xff 0x00

2 16 bit 0x7fff 0x8000 0xffff 0x0000

Figure 2-40. Parallel Subtract Examples
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GR r1:

GR r3:

----
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---- ----
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (sss_saturation_form) { // sss_saturation_form
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);
for (i = 0; i < 8; i++) {

temp[i] = sign_ext(x[i], 8) - sign_ext(y[i], 8);
}

} else if (uus_saturation_form) { // uus_saturation_form
max = 0xff;
min = 0x00;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - sign_ext(y[i], 8);
}

} else if (uuu_saturation_form) { // uuu_saturation_form
max = 0xff;
min = 0x00;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}

} else { // modulo_form
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}

}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 8; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}

GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],
temp[3], temp[2], temp[1], temp[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (sss_saturation_form) { // sss_saturation_form
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max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);
for (i = 0; i < 4; i++) {

temp[i] = sign_ext(x[i], 16) - sign_ext(y[i], 16);
}

} else if (uus_saturation_form) { // uus_saturation_form
max = 0xffff;
min = 0x0000;
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - sign_ext(y[i], 16);
}

} else if (uuu_saturation_form) { // uuu_saturation_form
max = 0xffff;
min = 0x0000;
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
}

} else { // modulo_form
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
}

}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 4; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}

GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);
} else { // four-byte elements

x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

for (i = 0; i < 2; i++) { // modulo_form
temp[i] = zero_ext(x[i], 32) - zero_ext(y[i], 32);

}

GR[r1] = concatenate2(temp[1], temp[0]);
}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault
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ptc.e — Purge Translation Cache Entry
Format: (qp) ptc.e r3 M47

Description: One or more translation entries are purged from the local processor’s instruction and 
data translation cache. Translation Registers and the VHPT are not modified.

The number of translation cache entries purged is implementation specific. Some 
implementations may purge all levels of the translation cache hierarchy with one 
iteration of PTC.e, while other implementations may require several iterations to flush 
all levels, sets and associativities of both instruction and data translation caches. GR r3 
specifies an implementation-specific parameter associated with each iteration.

The following loop is defined to flush the entire translation cache for all processor 
models. Software can acquire parameters through a processor dependent layer that is 
accessed through a procedural interface. The selected region registers must remain 
unchanged during the loop.

disable_interrupts();
addr = base;
for (i = 0; i < count1; i++) {

for (j = 0; j < count2; j++) {
ptc.e(addr);
addr += stride2;

}
addr += stride1;

}
enable_interrupts();

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat)

register_nat_consumption_fault(0);
if (PSR.vm == 1)

virtualization_fault();
tlb_purge_translation_cache(GR[r3]);

}

Interruptions: Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue a data serialization operation to ensure the purge is complete 
before issuing a data access or non-access reference dependent upon the purge. 
Software must issue instruction serialize operation before fetching an instruction 
dependent upon the purge.
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ptc.g, ptc.ga — Purge Global Translation Cache
Format: (qp) ptc.g r3, r2 global_form M45

(qp) ptc.ga r3, r2 global_alat_form M45

Description: The instruction and data translation cache for each processor in the local TLB coherence 
domain are searched for all entries whose virtual address and page size partially or 
completely overlap the specified purge virtual address and purge address range. These 
entries are removed.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region 
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the 
purge as 1<<GR[r2]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57 
for details on supported page sizes for TLB purges.

Based on the processor model, the translation cache may be also purged of more 
translations than specified by the purge parameters up to and including removal of all 
entries within the translation cache.

ptc.g has release semantics and is guaranteed to be made visible after all previous 
data memory accesses are made visible. Serialization is still required to observe the 
side-effects of a translation being removed. If it is desired that the ptc.g become 
visible before any subsequent data memory accesses are made visible, a memory fence 
instruction (mf) should be executed immediately following the ptc.g.

ptc.g must be the last instruction in an instruction group; otherwise, its behavior 
(including its ordering semantics) is undefined.

The behavior of the ptc.ga instruction is similar to ptc.g. In addition to the behavior 
specified for ptc.g the ptc.ga instruction encodes an extra bit of information in the 
broadcast transaction. This information specifies the purge is due to a page remapping 
as opposed to a protection change or page tear down. The remote processors within the 
coherence domain will then take what ever additional action is necessary to make their 
ALAT consistent. Matching entries in the local ALAT are optionally invalidated; software 
must perform a local ALAT invalidation via the invala instruction on the processor 
issuing the ptc.ga to ensure the local ALAT is coherent.

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0.

Unless specifically supported by the processors and platform, only one global purge 
transaction may be issued at a time by all processors, the operation is undefined 
otherwise. Software is responsible for enforcing this restriction. Implementations may 
optionally support multiple concurrent global purge transactions.  The firmware returns 
if implementations support this optional behavior. It also returns the maximum number 
of simultaneous outstanding purges allowed.

Propagation of ptc.g between multiple local TLB coherence domains is platform 
dependent, and must be handled by software. It is expected that the local TLB 
coherence domain covers at least the processors on the same local bus.
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Operation: if (PR[qp]) {
if (!followed_by_stop())

undefined_behavior();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

if (global_alat_form) tmp_ptc_type = GLOBAL_ALAT_FORM;
else tmp_ptc_type = GLOBAL_FORM;

tlb_broadcast_purge(tmp_rid, tmp_va, tmp_size, tmp_ptc_type);
}

Interruptions: Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: The broadcast purge TC is not synchronized with the instruction stream on a remote 
processor. Software cannot depend on any such synchronization with the instruction 
stream. Hardware on the remote machine cannot reload an instruction from memory or 
cache after acknowledging a broadcast purge TC without first retranslating the I-side 
access in the TLB. Hardware may continue to use a valid private copy of the instruction 
stream data (possibly in an I-buffer) obtained prior to acknowledging a broadcast purge 
TC to a page containing the i-stream data. Hardware must retranslate access to an 
instruction page upon an interruption or any explicit or implicit instruction serialization 
event (e.g., srlz.i, rfi). 

Software must issue the appropriate data and/or instruction serialization operation to 
ensure the purge is completed before a local data access, non-access reference, or local 
instruction fetch access dependent upon the purge.
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ptc.l — Purge Local Translation Cache
Format: (qp) ptc.l r3, r2 M45

Description: The instruction and data translation cache of the local processor is searched for all 
entries whose virtual address and page size partially or completely overlap the specified 
purge virtual address and purge address range. All these entries are removed.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region 
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the 
purge as 1<<GR[r2]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57 
for details on supported page sizes for TLB purges.

The processor ensures that all entries matching the purging parameters are removed. 
However, based on the processor model, the translation cache may be also purged of 
more translations than specified by the purge parameters up to and including removal 
of all entries within the translation cache.

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0.

This is a local operation, no purge broadcast to other processors occurs in a 
multiprocessor system. This instruction ensures that all prior stores are made locally 
visible before the actual purge operation is performed.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

}

Interruptions: Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue the appropriate data and/or instruction serialization operation to 
ensure the purge is completed before a data access, non-access reference, or 
instruction fetch access dependent upon the purge.
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ptr — Purge Translation Register
Format: (qp) ptr.d r3, r2 data_form M45

(qp) ptr.i r3, r2 instruction_form M45

Description: In the data form of this instruction, the data translation registers and caches are 
searched for all entries whose virtual address and page size partially or completely 
overlap the specified purge virtual address and purge address range. All these entries 
are removed. Entries in the instruction translation registers are unaffected by the data 
form of the purge.

In the instruction form, the instruction translation registers and caches are searched for 
all entries whose virtual address and page size partially or completely overlap the 
specified purge virtual address and purge address range. All these entries are removed. 
Entries in the data translation registers are unaffected by the instruction form of the 
purge.

In addition, in both forms, the instruction and data translation cache may be purged of 
more translations than specified by the purge parameters up to and including removal 
of all entries within the translation cache.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region 
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the 
purge as 1<<GR[r2]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57 
for details on supported page sizes for TLB purges.

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0.

This is a local operation, no purge broadcast to other processors occurs in a 
multiprocessor system.

As described in Section 4.1.1.2, “Translation Cache (TC)” on page 2:49, the processor 
may use the translation caches to cache virtual address mappings held by translation 
registers. The ptr.i and ptr.d instructions purge the processor’s translation registers 
as well as cached translation register copies that may be contained in the respective 
translation caches. 
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Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

if (data_form) {
tlb_must_purge_dtr_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

} else { // instruction_form
tlb_must_purge_itr_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);

}
}

Interruptions: Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Serialization: For the data form, software must issue a data serialization operation to ensure the 
purge is completed before issuing an instruction dependent upon the purge. For the 
instruction form, software must issue an instruction serialization operation to ensure 
the purge is completed before fetching an instruction dependent on that purge.
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rfi — Return From Interruption
Format: rfi B8

Description: The machine context prior to an interruption is restored. PSR is restored from IPSR, 
IPSR is unmodified, and IP is restored from IIP. Execution continues at the bundle 
address loaded into the IP, and the instruction slot loaded into PSR.ri.

This instruction must be immediately followed by a stop; otherwise, operation is 
undefined. This instruction switches to the register bank specified by IPSR.bn. 
Instructions in the same instruction group that access GR16 to GR31 reference the 
previous register bank. Subsequent instruction groups reference the new register bank.

This instruction performs instruction serialization, which ensures:

• prior modifications to processor register resources that affect fetching of 
subsequent instruction groups are observed.

• prior modifications to processor register resources that affect subsequent execution 
or data memory accesses are observed.

• prior memory synchronization (sync.i) operations have taken effect on the local 
processor instruction cache.

• subsequent instruction group fetches (including the target instruction group) are 
re-initiated after rfi completes.

The rfi instruction must be in an instruction group after the instruction group 
containing the operation that is to be serialized. 

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0. This instruction can not be predicated.

Execution of this instruction is undefined if PSR.ic or PSR.i are 1. Software must ensure 
that an interruption cannot occur that could modify IIP, IPSR, or IFS between when 
they are written and the subsequent rfi.

Execution of this instruction is undefined if IPSR.ic is 0 and the current register stack 
frame is incomplete.

This instruction does not take Lower Privilege Transfer, Taken Branch or Single Step 
traps.

If this instruction sets PSR.ri to 2 and the target is an MLX bundle, then an Illegal 
Operation fault will be taken on the target bundle.

If IPSR.is is 1, control is resumed in the IA-32 instruction set at the virtual linear 
address specified by IIP{31:0}. PSR.di does not inhibit instruction set transitions for 
this instruction. If PSR.dfh is 1 after rfi completes execution, a Disabled FP Register 
fault is raised on the target IA-32 instruction.

If IPSR.is is 1 and an Unimplemented Instruction Address trap is taken, IIP will contain 
the original 64-bit target IP. (The value will not have been zero extended from 32 bits.)

When entering the IA-32 instruction set, the size of the current stack frame is set to 
zero, and all stacked general registers are left in an undefined state. Software can not 
rely on the value of these registers across an instruction set transition. Software must 
ensure that BSPSTORE==BSP on entry to the IA-32 instruction set, otherwise 
undefined behavior may result. 



Volume 3: Instruction Reference 3:237

rfi

If IPSR.is is 1, software must set other IPSR fields properly for IA-32 instruction set 
execution; otherwise processor operation is undefined.  See Table 3-2, “Processor 
Status Register Fields” on page 2:24 for details.

Software must issue a mf instruction before this instruction if memory ordering is 
required between IA-32 processor-consistent and Itanium unordered memory 
references. The processor does not ensure Itanium-instruction-set-generated writes 
into the instruction stream are seen by subsequent IA-32 instructions.

Software must ensure the code segment descriptor and selector are loaded before 
issuing this instruction. If the target EIP value exceeds the code segment limit or has a 
code segment privilege violation, an IA_32_Exception(GPFault) exception is raised on 
the target IA-32 instruction. For entry into 16-bit IA-32 code, if IIP is not within 
64K-bytes of CSD.base a GPFault is raised on the target instruction.
EFLAG.rf and PSR.id are unmodified until the successful completion of the target IA-32 
instruction. PSR.da, PSR.dd, PSR.ia and PSR.ed are cleared to zero before the target 
IA-32 instruction begins execution.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can 
not rely on ALAT state across an instruction set transition. On entry to IA-32 code, 
existing entries in the ALAT are ignored.

Operation: if (!followed_by_stop())
undefined_behavior();

unimplemented_address = 0;
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (PSR.vm == 1)
virtualization_fault();

taken_rfi = 1;

PSR = CR[IPSR];
if (CR[IPSR].is == 1) { //resume IA-32 instruction set

if (CR[IPSR].ic == 0 || CR[IPSR].dt == 0 ||
CR[IPSR].mc == 1 || CR[IPSR].it == 0)
undefined_behavior();

tmp_IP = CR[IIP];
if (!impl_uia_fault_supported() &&

((CR[IPSR].it && unimplemented_virtual_address(tmp_IP, IPSR.vm))
|| (!CR[IPSR].it && unimplemented_physical_address(tmp_IP))))
unimplemented_address = 1;

//compute effective instruction pointer
EIP{31:0} = CR[IIP]{31:0} - AR[CSD].Base;

//force zero-sized restored frame
rse_restore_frame(0, 0, CFM.sof);
CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;
rse_invalidate_non_current_regs();
//The register stack engine is disabled during IA-32
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//instruction set execution.
} else { //return to Itanium instruction set

tmp_IP = CR[IIP] & ~0xf;
slot = CR[IPSR].ri;
if ((CR[IPSR].it && unimplemented_virtual_address(tmp_IP, IPSR.vm))

|| (!CR[IPSR].it && unimplemented_physical_address(tmp_IP))) 
unimplemented_address = 1;

if (CR[IFS].v) {
tmp_growth = -CFM.sof;
alat_frame_update(-CR[IFS].ifm.sof, 0); 
rse_restore_frame(CR[IFS].ifm.sof, tmp_growth, CFM.sof);
CFM = CR[IFS].ifm;

}
rse_enable_current_frame_load();

}
IP = tmp_IP;
instruction_serialize();
if (unimplemented_address)

unimplemented_instruction_address_trap(0, tmp_IP);

Interruptions: Privileged Operation fault Unimplemented Instruction Address trap
Virtualization fault

Additional Faults on IA-32 target instructions
IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

Serialization: An implicit instruction and data serialization operation is performed.



Volume 3: Instruction Reference 3:239

rsm

rsm — Reset System Mask
Format: (qp) rsm imm24 M44

Description: The complement of the imm24 operand is ANDed with the system mask (PSR{23:0}) and 
the result is placed in the system mask. See Section 3.3.2, “Processor Status Register 
(PSR)” on page 2:23.

The PSR system mask can only be written at the most privileged level, and when 
PSR.vm is 0.

When the current privilege level is zero (PSR.cpl is 0), an rsm instruction whose mask 
includes PSR.i may cause external interrupts to be disabled for an 
implementation-dependent number of instructions, even if the qualifying predicate for 
the rsm instruction is false. Architecturally, the extents of this external interrupt 
disabling “window” are defined as follows:

• External interrupts may be disabled for any instructions in the same instruction 
group as the rsm, including those that precede the rsm in sequential program order, 
regardless of the value of the qualifying predicate of the rsm instruction.

• If the qualifying predicate of the rsm is true, then external interrupts are disabled 
immediately following the rsm instruction.

• If the qualifying predicate of the rsm is false, then external interrupts may be 
disabled until the next data serialization operation that follows the rsm instruction.

The external interrupt disable window is guaranteed to be no larger than defined by the 
above criteria, but it may be smaller, depending on the processor implementation.

When the current privilege level is non-zero (PSR.cpl is not 0), an rsm instruction whose 
mask includes PSR.i may briefly disable external interrupts, regardless of the value of 
the qualifying predicate of the rsm instruction. However, processor implementations 
guarantee that non-privileged code cannot lock out external interrupts indefinitely 
(e.g., via an arbitrarily long sequence of rsm instructions with zero-valued qualifying 
predicates).

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_SM, imm24))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (imm24{1}) PSR{1} = 0;) // be
if (imm24{2}) PSR{2} = 0;) // up
if (imm24{3}) PSR{3} = 0;) // ac
if (imm24{4}) PSR{4} = 0;) // mfl
if (imm24{5}) PSR{5} = 0;) // mfh
if (imm24{13}) PSR{13} = 0;) // ic
if (imm24{14}) PSR{14} = 0;) // i
if (imm24{15}) PSR{15} = 0;) // pk
if (imm24{17}) PSR{17} = 0;) // dt
if (imm24{18}) PSR{18} = 0;) // dfl
if (imm24{19}) PSR{19} = 0;) // dfh
if (imm24{20}) PSR{20} = 0;) // sp
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if (imm24{21}) PSR{21} = 0;) // pp
if (imm24{22}) PSR{22} = 0;) // di
if (imm24{23}) PSR{23} = 0;) // si

}

Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must use a data serialize or instruction serialize operation before issuing 
instructions dependent upon the altered PSR bits – except the PSR.i bit. The PSR.i bit is 
implicitly serialized and the processor ensures that external interrupts are masked by 
the time the next instruction executes.
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rum — Reset User Mask
Format: (qp) rum imm24 M44

Description: The complement of the imm24 operand is ANDed with the user mask (PSR{5:0}) and the 
result is placed in the user mask. See Section 3.3.2, “Processor Status Register (PSR)” 
on page 2:23.

PSR.up is only cleared if the secure performance monitor bit (PSR.sp) is zero. 
Otherwise PSR.up is not modified.

Operation: if (PR[qp]) {
if (is_reserved_field(PSR_TYPE, PSR_UM, imm24))

reserved_register_field_fault();

if (imm24{1}) PSR{1} = 0;) // be
if (imm24{2} && PSR.sp == 0) //non-secure perf monitor

PSR{2} = 0;) // up
if (imm24{3}) PSR{3} = 0;) // ac
if (imm24{4}) PSR{4} = 0;) // mfl
if (imm24{5}) PSR{5} = 0;) // mfh

}

Interruptions: Reserved Register/Field fault

Serialization: All user mask modifications are observed by the next instruction group.
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setf — Set Floating-point Value, Exponent, or Significand
Format: (qp) setf.s f1 = r2 single_form M18

(qp) setf.d f1 = r2 double_form M18
(qp) setf.exp f1 = r2 exponent_form M18
(qp) setf.sig f1 = r2 significand_form M18

Description: In the single and double forms, GR r2 is treated as a single precision (in the 
single_form) or double precision (in the double_form) memory representation, 
converted into floating-point register format, and placed in FR f1, as shown in Figure 5-4 
and Figure 5-5 on page 1:93, respectively.

In the exponent_form, bits 16:0 of GR r2 are copied to the exponent field of FR f1 and bit 
17 of GR r2 is copied to the sign bit of FR f1. The significand field of FR f1 is set to one 
(0x800...000). 

In the significand_form, the value in GR r2 is copied to the significand field of FR f1. 

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the 
sign field of FR f1 is set to positive (0). 

For all forms, if the NaT bit corresponding to r2 is equal to 1, FR f1 is set to NaTVal 
instead of the computed result.

Figure 2-41. Function of setf.exp

Figure 2-42. Function of setf.sig
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (!GR[r2].nat) {
if (single_form)

FR[f1] = fp_mem_to_fr_format(GR[r2], 4, 0);
else if (double_form)

FR[f1] = fp_mem_to_fr_format(GR[r2], 8, 0);
else if (significand_form) {

FR[f1].significand = GR[r2];
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = 0;

} else { // exponent_form
FR[f1].significand = 0x8000000000000000;
FR[f1].exp = GR[r2]{16:0};
FR[f1].sign = GR[r2]{17};

}
} else

FR[f1] = NATVAL;

fp_update_psr(f1);
}

Interruptions: Illegal Operation fault Disabled Floating-point Register fault
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shl — Shift Left
Format: (qp) shl r1= r2, r3 I7

(qp) shl r1 = r2, count6 pseudo-op of: (qp) dep.z r1 = r2, count6, 64-count6

Description: The value in GR r2 is shifted to the left, with the vacated bit positions filled with zeroes, 
and placed in GR r1. The number of bit positions to shift is specified by the value in GR 
r3 or by an immediate value count6. The shift count is interpreted as an unsigned number. 
If the value in GR r3 is greater than 63, then the result is all zeroes.

See “dep — Deposit” on page 3:51 for the immediate form.

Operation: if (PR[qp]) {
check_target_register(r1);

count = GR[r3];
GR[r1] = (count > 63) ? 0: GR[r2] << count;

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault
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shladd — Shift Left and Add
Format: (qp) shladd r1 = r2, count2, r3 A2

Description: The first source operand is shifted to the left by count2 bits and then added to the second 
source operand and the result placed in GR r1. The first operand can be shifted by 1, 2, 
3, or 4 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = (GR[r2] << count2) + GR[r3];
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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shladdp4 — Shift Left and Add Pointer
Format: (qp) shladdp4 r1 = r2, count2, r3 A2

Description: The first source operand is shifted to the left by count2 bits and then is added to the 
second source operand. The upper 32 bits of the result are forced to zero, and then bits 
{31:30} of GR r3 are copied to bits {62:61} of the result. This result is placed in GR r1. 
The first operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_res = (GR[r2] << count2) + GR[r3];
tmp_res = zero_ext(tmp_res{31:0}, 32);
tmp_res{62:61} = GR[r3]{31:30};
GR[r1] = tmp_res;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Figure 2-43. Shift Left and Add Pointer
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shr — Shift Right
Format: (qp) shr r1 = r3, r2 signed_form I5

(qp) shr.u r1 = r3, r2 unsigned_form I5
(qp) shr r1 = r3, count6 pseudo-op of: (qp) extr r1 = r3, count6, 64-count6
(qp) shr.u r1 = r3, count6 pseudo-op of: (qp) extr.u r1 = r3, count6, 64-count6

Description: The value in GR r3 is shifted to the right and placed in GR r1. In the signed_form the 
vacated bit positions are filled with bit 63 of GR r3; in the unsigned_form the vacated 
bit positions are filled with zeroes. The number of bit positions to shift is specified by 
the value in GR r2 or by an immediate value count6. The shift count is interpreted as an 
unsigned number. If the value in GR r2 is greater than 63, then the result is all zeroes 
(for the unsigned_form, or if bit 63 of GR r3 was 0) or all ones (for the signed_form if 
bit 63 of GR r3 was 1).

If the .u completer is specified, the shift is unsigned (logical), otherwise it is signed 
(arithmetic).

See “extr — Extract” on page 3:54 for the immediate forms.

Operation: if (PR[qp]) {
check_target_register(r1);

if (signed_form) {
count = (GR[r2] > 63) ? 63 : GR[r2];
GR[r1] = shift_right_signed(GR[r3], count);

} else {
count = GR[r2];
GR[r1] = (count > 63) ? 0 : shift_right_unsigned(GR[r3], count);

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault
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shrp — Shift Right Pair
Format: (qp) shrp r1 = r2, r3, count6 I10

Description: The two source operands, GR r2 and GR r3, are concatenated to form a 128-bit value and 
shifted to the right count6 bits. The least-significant 64 bits of the result are placed in 
GR r1.

The immediate value count6 can be any number in the range 0 to 63.

Operation: if (PR[qp]) {
check_target_register(r1);

temp1 = shift_right_unsigned(GR[r3], count6);
temp2 = GR[r2] << (64 - count6);
GR[r1] = zero_ext(temp1, 64 - count6) | temp2;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Figure 2-44. Shift Right Pair

GR r3:

GR r1:

GR r2:



Volume 3: Instruction Reference 3:249

srlz

srlz — Serialize
Format: (qp) srlz.i instruction_form M24

(qp) srlz.d data_form M24

Description: Instruction serialization (srlz.i) ensures:

• prior modifications to processor register resources that affect fetching of 
subsequent instruction groups are observed,

• prior modifications to processor register resources that affect subsequent execution 
or data memory accesses are observed,

• prior memory synchronization (sync.i) operations have taken effect on the local 
processor instruction cache,

• subsequent instruction group fetches are re-initiated after srlz.i completes.

The srlz.i instruction must be in an instruction group after the instruction group 
containing the operation that is to be serialized. Operations dependent on the 
serialization must be in an instruction group after the instruction group containing the 
srlz.i.

Data serialization (srlz.d) ensures:

• prior modifications to processor register resources that affect subsequent execution 
or data memory accesses are observed.

The srlz.d instruction must be in an instruction group after the instruction group 
containing the operation that is to be serialized. Operations dependent on the 
serialization must follow the srlz.d, but they can be in the same instruction group as 
the srlz.d.

A srlz cannot be used to stall processor data memory references until prior data 
memory references, or memory fences are visible or “accepted” by the external 
platform.

The following processor resources require a serialize to ensure side-effects are 
observed; CRs, PSR, DBRs, IBRs, PMDs, PMCs, RRs, PKRs, TRs and TCs (refer to 
Section 3.2, “Serialization” on page 2:17 for details).

Operation: if (PR[qp]) {
if (instruction_form)

instruction_serialize();
else // data_form

data_serialize();
}

Interruptions: None
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ssm — Set System Mask
Format: (qp) ssm imm24 M44

Description: The imm24 operand is ORed with the system mask (PSR{23:0}) and the result is placed 
in the system mask. See Section 3.3.2, “Processor Status Register (PSR)” on 
page 2:23.

The PSR system mask can only be written at the most privileged level, and when 
PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is 
1), are undefined if an interruption occurs between the enabling of the PSR.ic bit and a 
subsequent instruction serialize operation.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_SM, imm24))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (imm24{1}) PSR{1} = 1;) // be
if (imm24{2}) PSR{2} = 1;) // up
if (imm24{3}) PSR{3} = 1;) // ac
if (imm24{4}) PSR{4} = 1;) // mfl
if (imm24{5}) PSR{5} = 1;) // mfh
if (imm24{13}) PSR{13} = 1;) // ic
if (imm24{14}) PSR{14} = 1;) // i
if (imm24{15}) PSR{15} = 1;) // pk
if (imm24{17}) PSR{17} = 1;) // dt
if (imm24{18}) PSR{18} = 1;) // dfl
if (imm24{19}) PSR{19} = 1;) // dfh
if (imm24{20}) PSR{20} = 1;) // sp
if (imm24{21}) PSR{21} = 1;) // pp
if (imm24{22}) PSR{22} = 1;) // di
if (imm24{23}) PSR{23} = 1;) // si

}

Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must issue a data serialize or instruction serialize operation before issuing 
instructions dependent upon the altered PSR bits from the ssm instruction. Unlike with 
the rsm instruction, setting the PSR.i bit is not treated specially. Refer to Section 3.2, 
“Serialization” on page 2:17 for a description of serialization.
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st — Store
Format: (qp) stsz.sttype.sthint [r3] = r2 normal_form, no_base_update_form M6

(qp) stsz.sttype.sthint [r3] = r2, imm9 normal_form, imm_base_update_form M5
(qp) st16.sttype.sthint [r3] = r2, ar.csd sixteen_byte_form, no_base_update_form M6
(qp) st8.spill.sthint [r3] = r2 spill_form, no_base_update_form M6
(qp) st8.spill.sthint [r3] = r2, imm9 spill_form, imm_base_update_form M5

Description: A value consisting of the least significant sz bytes of the value in GR r2 is written to 
memory starting at the address specified by the value in GR r3. The values of the sz 
completer are given in Table 2-32 on page 3:151. The sttype completer specifies special 
store operations, which are described in Table 2-50. If the NaT bit corresponding to GR 
r3 is 1, or in sixteen_byte_form or normal_form, if the NaT bit corresponding to GR r2 is 
1, a Register NaT Consumption fault is taken.

In the sixteen_byte_form, two 8-byte values are stored as a single, 16-byte atomic 
memory write. The value in GR r2 is written to memory starting at the address specified 
by the value in GR r3. The value in the Compare and Store Data application register 
(AR[CSD]) is written to memory starting at the address specified by the value in GR r3 
plus 8.

In the spill_form, an 8-byte value is stored, and the NaT bit corresponding to GR r2 is 
copied to a bit in the UNAT application register. This instruction is used for spilling a 
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the imm_base_update form, the value in GR r3 is added to a signed immediate value 
(imm9) and the result is placed back in GR r3. This base register update is done after the 
store, and does not affect the store address, nor the value stored (for the case where r2 
and r3 specify the same register). Base register update is not supported for the st16 
instruction.

For more details on ordered stores see Section 4.4.7, “Memory Access Ordering” on 
page 1:73.

The ALAT is queried using the physical memory address and the access size, and all 
overlapping entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values 
of the sthint completer are given in Table 2-51. A prefetch hint is implied in the base 
update forms. The address specified by the value in GR r3 after the base update acts as 
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified 
by sthint. See Section 4.4.6, “Memory Hierarchy Control and Consistency” on 
page 1:69.

Hardware support for st16 instructions that reference a page that is neither a 
cacheable page with write-back policy nor a NaTPage is optional. On processor models 
that do not support such st16 accesses, an Unsupported Data Reference fault is raised 
when an unsupported reference is attempted.

Table 2-50. Store Types

sttype
Completer

Interpretation Special Store Operation

none Normal store

rel Ordered store An ordered store is performed with release semantics.
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For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do 
not support the instruction.  CPUID register 4 indicates the presence of the feature on 
the processor model.  See Section 3.1.11, “Processor Identification Registers” on 
page 1:34 for details.

Operation: if (PR[qp]) {
size = spill_form ? 8 : (sixteen_byte_form ? 16 : sz);
itype = WRITE;
if (size == 16) itype |= UNCACHE_OPT;
otype = (sttype == ‘rel’) ? RELEASE : UNORDERED;

if (sixteen_byte_form && !instruction_implemented(ST16))
illegal_operation_fault();

if (imm_base_update_form)
check_target_register(r3);

if (GR[r3].nat || ((sixteen_byte_form || normal_form) && GR[r2].nat))
register_nat_consumption_fault(WRITE);

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,
&tmp_unused);

if (spill_form && GR[r2].nat) {
natd_gr_write(GR[r2], paddr, size, UM.be, mattr, otype, sthint);

}
else {

if (sixteen_byte_form)
mem_write16(GR[r2], AR[CSD], paddr, UM.be, mattr, otype, sthint);

else
mem_write(GR[r2], paddr, size, UM.be, mattr, otype, sthint);

}

if (spill_form) {
bit_pos = GR[r3]{8:3};
AR[UNAT]{bit_pos} = GR[r2].nat;

}

alat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = 0;
mem_implicit_prefetch(GR[r3], sthint, WRITE);

}
}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault

Table 2-51. Store Hints

sthint Completer Interpretation

none Temporal locality, level 1

nta Non-temporal locality, all levels
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Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault
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stf — Floating-point Store
Format: (qp) stffsz.sthint [r3] = f2 normal_form, no_base_update_form M13

(qp) stffsz.sthint [r3] = f2, imm9 normal_form, imm_base_update_form M10
(qp) stf8.sthint [r3] = f2 integer_form, no_base_update_form M13
(qp) stf8.sthint [r3] = f2, imm9 integer_form, imm_base_update_form M10
(qp) stf.spill.sthint [r3] = f2 spill_form, no_base_update_form M13
(qp) stf.spill.sthint [r3] = f2, imm9 spill_form, imm_base_update_form M10

Description: A value, consisting of fsz bytes, is generated from the value in FR f2 and written to 
memory starting at the address specified by the value in GR r3. In the normal_form, the 
value in FR f2 is converted to the memory format and then stored. In the integer_form, 
the significand of FR f2 is stored. The values of the fsz completer are given in Table 2-35 
on page 3:157. In the normal_form or the integer_form, if the NaT bit corresponding to 
GR r3 is 1 or if FR f2 contains NaTVal, a Register NaT Consumption fault is taken. See 
Section 5.1, “Data Types and Formats” on page 1:85 for details on conversion from 
floating-point register format.

In the spill_form, a 16-byte value from FR f2 is stored without conversion. This 
instruction is used for spilling a register. See Section 4.4.4, “Control Speculation” on 
page 1:60 for details.

In the imm_base_update form, the value in GR r3 is added to a signed immediate value 
(imm9) and the result is placed back in GR r3. This base register update is done after the 
store, and does not affect the store address.

The ALAT is queried using the physical memory address and the access size, and all 
overlapping entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values 
of the sthint completer are given in Table 2-51 on page 3:252. A prefetch hint is implied 
in the base update forms. The address specified by the value in GR r3 after the base 
update acts as a hint to prefetch the indicated cache line. This prefetch uses the locality 
hints specified by sthint. See Section 4.4.6, “Memory Hierarchy Control and 
Consistency” on page 1:69.

Hardware support for stfe (10-byte) instructions that reference a page that is neither a 
cacheable page with write-back policy nor a NaTPage is optional. On processor models 
that do not support such stfe accesses, an Unsupported Data Reference fault is raised 
when an unsupported reference is attempted. 
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Operation: if (PR[qp]) {
if (imm_base_update_form)

check_target_register(r3);
if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, WRITE);

if (GR[r3].nat || (!spill_form && (FR[f2] == NATVAL)))
register_nat_consumption_fault(WRITE);

size = spill_form ? 16 : (integer_form ? 8 : fsz);
itype = WRITE;
if (size == 10) itype |= UNCACHE_OPT;

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr, &tmp_unused);
val = fp_fr_to_mem_format(FR[f2], size, integer_form);
mem_write(val, paddr, size, UM.be, mattr, UNORDERED, sthint);

alat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = 0;
mem_implicit_prefetch(GR[r3], sthint, WRITE);

}
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
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sub — Subtract
Format: (qp) sub r1 = r2, r3 register_form A1

(qp) sub r1 = r2, r3, 1 minus1_form, register_form A1
(qp) sub r1 = imm8, r3 imm8_form A3

Description: The second source operand (and an optional constant 1) are subtracted from the first 
operand and the result placed in GR r1. In the register form the first operand is GR r2; in 
the immediate form the first operand is taken from the sign-extended imm8 encoding 
field.

The minus1_form is available only in the register_form (although the equivalent effect 
can be achieved by adjusting the immediate).

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

if (minus1_form)
GR[r1] = tmp_src - GR[r3] - 1;

else
GR[r1] = tmp_src - GR[r3];

GR[r1].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault
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sum — Set User Mask
Format: (qp) sum imm24 M44

Description: The imm24 operand is ORed with the user mask (PSR{5:0}) and the result is placed in 
the user mask. See Section 3.3.2, “Processor Status Register (PSR)” on page 2:23.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) is zero. 
Otherwise PSR.up is not modified.

Operation: if (PR[qp]) {
if (is_reserved_field(PSR_TYPE, PSR_UM, imm24))

reserved_register_field_fault();

if (imm24{1}) PSR{1} = 1;) // be
if (imm24{2} && PSR.sp == 0) //non-secure perf monitor

PSR{2} = 1;) // up
if (imm24{3}) PSR{3} = 1;) // ac
if (imm24{4}) PSR{4} = 1;) // mfl
if (imm24{5}) PSR{5} = 1;) // mfh

}

Interruptions: Reserved Register/Field fault

Serialization: All user mask modifications are observed by the next instruction group.
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sxt — Sign Extend
Format: (qp) sxtxsz r1 = r3 I29

Description: The value in GR r3 is sign extended from the bit position specified by xsz and the result 
is placed in GR r1. The mnemonic values for xsz are given in Table 2-52.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = sign_ext(GR[r3],xsz * 8);
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault

Table 2-52. xsz Mnemonic Values

xsz Mnemonic Bit Position

1 7

2 15

4 31
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sync — Memory Synchronization
Format: (qp) sync.i M24

Description: sync.i ensures that when previously initiated Flush Cache (fc, fc.i) operations issued 
by the local processor become visible to local data memory references, prior Flush 
Cache operations are also observed by the local processor instruction fetch stream. 
sync.i also ensures that at the time previously initiated Flush Cache (fc, fc.i) 
operations are observed on a remote processor by data memory references they are 
also observed by instruction memory references on the remote processor. sync.i is 
ordered with respect to all cache flush operations as observed by another processor. A 
sync.i and a previous fc must be in separate instruction groups. If semantically 
required, the programmer must explicitly insert ordered data references (acquire, 
release or fence type) to appropriately constrain sync.i (and hence fc and fc.i) 
visibility to the data stream on other processors.

sync.i is used to maintain an ordering relationship between instruction and data 
caches on local and remote processors. An instruction serialize operation must be used 
to ensure synchronization initiated by sync.i on the local processor has been observed 
by a given point in program execution.

An example of self-modifying code (local processor):

st [L1] = data //store into local instruction stream
fc.i L1 //flush stale datum from instruction/data cache
;; //require instruction boundary between fc.i and sync.i
sync.i //ensure local and remote data/inst caches

//are synchronized
;;
srlz.i //ensure sync has been observed by the local processor,
;; //ensure subsequent instructions observe 

//modified memory
L1: target //instruction modified

Operation: if (PR[qp]) {
instruction_synchronize();

}

Interruptions: None
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tak — Translation Access Key
Format: (qp) tak r1 = r3 M46

Description: The protection key for a given virtual address is obtained and placed in GR r1.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified 
by GR r3 and the region register indexed by GR r3 bits {63:61}. If a matching present 
translation is found, the protection key of the translation is placed in bits 31:8 of GR r1. 
If a matching present translation is not found or if an unimplemented virtual address is 
specified by GR r3, the value 1 is returned.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is disabled. If no 
matching present translation is found in the DTLB, the value 1 is returned. 

A translation with the NaTPage attribute is not treated differently and returns its key 
field.

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0.

Operation: if (PR[qp]) {
itype = NON_ACCESS|TAK;
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

if (PSR.vm == 1)
virtualization_fault();

GR[r1] = tlb_access_key(GR[r3], itype);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault Virtualization fault
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tbit — Test Bit
Format: (qp) tbit.trel.ctype p1, p2 = r3, pos6 I16

Description: The bit specified by the pos6 immediate is selected from GR r3. The selected bit forms a 
single bit result either complemented or not depending on the trel completer. This result 
is written to the two predicate register destinations p1 and p2. The way the result is 
written to the destinations is determined by the compare type specified by ctype. See 
the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For 
normal and unc types, only the .z value is directly implemented in hardware; the .nz 
value is actually a pseudo-op. For it, the assembler simply switches the predicate target 
specifiers and uses the implemented relation. For the parallel types, both relations are 
implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same 
predicate register), the instruction will take an Illegal Operation fault, if the qualifying 
predicate is set, or if the compare type is unc.

Table 2-53. Test Bit Relations for Normal and unc tbits

trel Test Relation Pseudo-op of

nz selected bit == 1 z p1  p2

z selected bit == 0

Table 2-54. Test Bit Relations for Parallel tbits

trel Test Relation

nz selected bit == 1

z selected bit == 0
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Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (trel == ‘nz’) // ‘nz’ - test for 1
tmp_rel = GR[r3]{pos6};

else // ‘z’ - test for 0
tmp_rel = !GR[r3]{pos6};

switch (ctype) {
case ‘and’: // and-type compare

if (GR[r3].nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!GR[r3].nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!GR[r3].nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (GR[r3].nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault
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tf — Test Feature
Format: (qp) tf.trel.ctype p1, p2 = imm5 I30

Description: The imm5 value (in the range of 32-63) selects the feature bit defined in Table 2-57 to be 
tested from the features vector in CPUID[4]. See Section 3.1.11, “Processor 
Identification Registers” on page 1:34 for details on CPUID registers. The selected bit 
forms a single-bit result either complemented or not depending on the trel completer.  
This result is written to the two predicate register destinations p1 and p2.  The way the 
result is written to the destinations is determined by the compare type specified by 
ctype.  See the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test.  For 
normal and unc types, only the .z value is directly implemented in hardware; the .nz 
value is actually a pseudo-op.  For it, the assembler simply switches the predicate 
target specifiers and uses the implemented relation.  For the parallel types, both 
relations are implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same 
predicate register), the instruction will take an Illegal Operation fault, if the qualifying 
predicate is set or the compare type is unc.

Table 2-55. Test Feature Relations for Normal and unc tf

trel Test Relation Pseudo-op of

nz selected feature available z p1  p2

z selected feature unavailable

Table 2-56. Test Feature Relations for Parallel tf

trel Test Relation

nz selected feature available

z selected feature unavailable

Table 2-57. Test Feature Features Assignment

imm5 Feature Symbol Feature

32 @clz clz feature

33 @mpy mpy4, mpyshl4 feature

34 - 63 none Not currently defined
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Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_rel = (psr.vm && pal_vp_env_enabled() && VAC.a_tf) ?
vcpuid[4]{imm5} : cpuid[4]{imm5};

if (trel == ‘z’) // ‘z’ - test for 0, not 1
tmp_rel = !tmp_rel;

switch (ctype) {
case ‘and’: // and-type compare

if (!tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault
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thash — Translation Hashed Entry Address
Format: (qp) thash r1 = r3 M46

Description: A Virtual Hashed Page Table (VHPT) entry address is generated based on the specified 
virtual address and the result is placed in GR r1. The virtual address is specified by GR r3 
and the region register selected by GR r3 bits {63:61}. 

If thash is given a NaT input argument or an unimplemented virtual address as an 
input, the resulting target register value is undefined, and its NaT bit is set to one.

When the processor is configured to use the region-based short format VHPT 
(PTA.vf=0), the value returned by thash is defined by the architected short format 
hash function. See Section 4.1.5.3, “Region-based VHPT Short Format” on page 2:63.

When the processor is configured to use the long format VHPT (PTA.vf=1), thash 
performs an implementation-specific long format hash function on the virtual address 
to generate a hash index into the long format VHPT.

In the long format, a translation in the VHPT must be uniquely identified by its hash 
index generated by this instruction and the hash tag produced from the ttag 
instruction.

The hash function must use all implemented region bits and only virtual address bits 
{60:0} to determine the offset into the VHPT. Virtual address bits {63:61} are used 
only by the short format hash to determine the region of the VHPT.

This instruction must be implemented on all processor models, even processor models 
that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

Operation: if (PR[qp]) {
check_target_register(r1);

if (PSR.vm == 1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR[r3], PSR.vm)) {
GR[r1] = undefined();
GR[r1].nat = 1;

} else {
tmp_vr = GR[r3]{63:61};
tmp_va = GR[r3]{60:0};
GR[r1] = tlb_vhpt_hash(tmp_vr, tmp_va, RR[tmp_vr].rid,

 RR[tmp_vr].ps);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Virtualization fault
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tnat — Test NaT
Format: (qp) tnat.trel.ctype p1, p2 = r3 I17

Description: The NaT bit from GR r3 forms a single bit result, either complemented or not depending 
on the trel completer. This result is written to the two predicate register destinations, p1 
and p2. The way the result is written to the destinations is determined by the compare 
type specified by ctype. See the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For 
normal and unc types, only the .z value is directly implemented in hardware; the .nz 
value is actually a pseudo-op. For it, the assembler simply switches the predicate target 
specifiers and uses the implemented relation. For the parallel types, both relations are 
implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same 
predicate register), the instruction will take an Illegal Operation fault, if the qualifying 
predicate is set, or if the compare type is unc.

Table 2-58. Test NaT Relations for Normal and unc tnats

trel Test Relation Pseudo-op of

nz selected bit == 1 z p1  p2

z selected bit == 0

Table 2-59. Test NaT Relations for Parallel tnats

trel Test Relation

nz selected bit == 1

z selected bit == 0
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Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (trel == ‘nz’) // ‘nz’ - test for 1
tmp_rel = GR[r3].nat;

else // ‘z’ - test for 0
tmp_rel = !GR[r3].nat;

switch (ctype) {
case ‘and’: // and-type compare

if (!tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault
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tpa — Translate to Physical Address
Format: (qp) tpa r1 = r3 M46

Description: The physical address for the virtual address specified by GR r3 is obtained and placed in 
GR r1.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified 
by GR r3 and the region register indexed by GR r3 bits {63:61}. If a matching present 
translation is found the physical address of the translation is placed in GR r1. If a 
matching present translation is not found the appropriate TLB fault is taken.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is disabled. If no 
matching present translation is found in the DTLB, an Alternate Data TLB fault is raised 
if psr.ic is one or a Data Nested TLB fault is raised if psr.ic is zero.

If this instruction faults, then it will set the non-access bit in the ISR. The ISR read and 
write bits are not set.

This instruction can only be executed at the most privileged level, and when PSR.vm is 
0.

Operation: if (PR[qp]) {
itype = NON_ACCESS|TPA;
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

GR[r1] = tlb_translate_nonaccess(GR[r3], itype);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Alternate Data TLB fault
Privileged Operation fault VHPT Data fault
Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Virtualization fault Data NaT Page Consumption fault
Data Nested TLB fault
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ttag — Translation Hashed Entry Tag
Format: (qp) ttag r1 = r3 M46

Description: A tag used for matching during searches of the long format Virtual Hashed Page Table 
(VHPT) is generated and placed in GR r1. The virtual address is specified by GR r3 and 
the region register selected by GR r3 bits {63:61}.

If ttag is given a NaT input argument or an unimplemented virtual address as an input, 
the resulting target register value is undefined, and its NaT bit is set to one.

The tag generation function generates an implementation-specific long format VHPT 
tag. The tag generation function must use all implemented region bits and only virtual 
address bits {60:0}. PTA.vf is ignored by this instruction.

A translation in the long format VHPT must be uniquely identified by its hash index 
generated by the thash instruction and the tag produced from this instruction.

This instruction must be implemented on all processor models, even processor models 
that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

Operation: if (PR[qp]) {
check_target_register(r1);

if (PSR.vm == 1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR[r3], PSR.vm)) {
GR[r1] = undefined();
GR[r1].nat = 1;

} else {
tmp_vr = GR[r3]{63:61};
tmp_va = GR[r3]{60:0};
GR[r1] = tlb_vhpt_tag(tmp_va, RR[tmp_vr].rid, RR[tmp_vr].ps);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Virtualization fault
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unpack — Unpack
Format: (qp) unpack1.h r1 = r2, r3 one_byte_form, high_form I2

(qp) unpack2.h r1 = r2, r3 two_byte_form, high_form I2
(qp) unpack4.h r1 = r2, r3 four_byte_form, high_form I2
(qp) unpack1.l r1 = r2, r3 one_byte_form, low_form I2
(qp) unpack2.l r1 = r2, r3 two_byte_form, low_form I2
(qp) unpack4.l r1 = r2, r3 four_byte_form, low_form I2

Description: The data elements of GR r2 and r3 are unpacked, and the result placed in GR r1. In the 
high_form, the most significant elements of each source register are selected, while in 
the low_form the least significant elements of each source register are selected. 
Elements are selected alternately from the source registers.
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Figure 2-45. Unpack Operation
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Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (high_form)
GR[r1] = concatenate8( x[7], y[7], x[6], y[6],

x[5], y[5], x[4], y[4]);
else // low_form

GR[r1] = concatenate8( x[3], y[3], x[2], y[2],
x[1], y[1], x[0], y[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (high_form)
GR[r1] = concatenate4(x[3], y[3], x[2], y[2]);

else // low_form
GR[r1] = concatenate4(x[1], y[1], x[0], y[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

if (high_form)
GR[r1] = concatenate2(x[1], y[1]);

else // low_form
GR[r1] = concatenate2(x[0], y[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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vmsw — Virtual Machine Switch
Format: vmsw.0 zero_form B8

vmsw.1 one_form B8

Description: This instruction sets the PSR.vm bit to the specified value. This instruction can be used 
to implement transitions to/from virtual machine mode without the overhead of an 
interruption.

If instruction address translation is enabled and the page containing the vmsw 
instruction has access rights equal to 7, then the new value is written to the PSR.vm 
bit.  In the zero_form, PSR.vm is set to 0, and in the one_form, PSR.vm is set to 1.

Instructions after the vmsw instruction in the same instruction group may be executed 
with the old or new value of PSR.vm. Instructions in subsequent instruction groups will 
be executed with PSR.vm equal to the new value.

If the above conditions are not met, this instruction takes a Virtualization fault.

This instruction can only be executed at the most privileged level. This instruction 
cannot be predicated.

Implementation of PSR.vm is optional.  If it is not implemented, this instruction takes 
Illegal Operation fault. If it is implemented but either virtual machine features or the 
vmsw instruction are disabled, this instruction takes Virtualization fault when executed 
at the most privileged level.

Operation: if (!implemented_vm())
illegal_operation fault();

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (!(PSR.it == 1 && itlb_ar() == 7) || vm_disabled() || vmsw_disabled())
virtualization_fault();

if (zero_form) {
PSR.vm = 0;

}
else {

PSR.vm = 1;
}

Interruptions: Illegal Operation fault Virtualization fault
Privileged Operation fault
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xchg — Exchange
Format: (qp) xchgsz.ldhint r1 = [r3], r2 M16

Description: A value consisting of sz bytes is read from memory starting at the address specified by 
the value in GR r3. The least significant sz bytes of the value in GR r2 are written to 
memory starting at the address specified by the value in GR r3. The value read from 
memory is then zero extended and placed in GR r1 and the NaT bit corresponding to GR 
r1 is cleared. The values of the sz completer are given in Table 2-60.

If the address specified by the value in GR r3 is not naturally aligned to the size of the 
value being accessed in memory, an Unaligned Data Reference fault is taken 
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the 
Processor Status Register).

Both read and write access privileges for the referenced page are required. 

The exchange is performed with acquire semantics, i.e., the memory read/write is 
made visible prior to all subsequent data memory accesses. See Section 4.4.7, 
“Sequentiality Attribute and Ordering” on page 2:82 for details on memory ordering.

The memory read and write are guaranteed to be atomic.

This instruction is only supported to cacheable pages with write-back write policy. 
Accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages 
with other memory attributes cause an Unsupported Data Reference fault.

The value of the ldhint completer specifies the locality of the memory access. The values 
of the ldhint completer are given in Table 2-34 on page 3:152. Locality hints do not 
affect program functionality and may be ignored by the implementation. See 
Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:69 for details.

Table 2-60. Memory Exchange Size

sz Completer Bytes Accessed

1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes
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Operation: if (PR[qp]) {
check_target_register(r1);

if (GR[r3].nat || GR[r2].nat)
register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_translate(GR[r3], sz, SEMAPHORE, PSR.cpl, &mattr,
 &tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

val = mem_xchg(GR[r2], paddr, sz, UM.be, mattr, ACQUIRE, ldhint);

alat_inval_multiple_entries(paddr, sz);

GR[r1] = zero_ext(val, sz * 8);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault
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xma — Fixed-Point Multiply Add
Format: (qp) xma.l f1 = f3, f4, f2 low_form F2

(qp) xma.lu f1 = f3, f4, f2 pseudo-op of: (qp) xma.l f1 = f3, f4, f2
(qp) xma.h f1 = f3, f4, f2 high_form F2
(qp) xma.hu f1 = f3, f4, f2 high_unsigned_form F2

Description: Two source operands (FR f3 and FR f4) are treated as either signed or unsigned integers 
and multiplied. The third source operand (FR f2) is zero extended and added to the 
product. The upper or lower 64 bits of the resultant sum are selected and placed in FR 
f1.

In the high_unsigned_form, the significand fields of FR f3 and FR f4 are treated as 
unsigned integers and multiplied to produce a full 128-bit unsigned result. The 
significand field of FR f2 is zero extended and added to the product. The most significant 
64-bits of the resultant sum are placed in the significand field of FR f1.

In the high_form, the significand fields of FR f3 and FR f4 are treated as signed integers 
and multiplied to produce a full 128-bit signed result. The significand field of FR f2 is 
zero extended and added to the product. The most significant 64-bits of the resultant 
sum are placed in the significand field of FR f1.

In the other forms, the significand fields of FR f3 and FR f4 are treated as signed integers 
and multiplied to produce a full 128-bit signed result. The significand field of FR f2 is 
zero extended and added to the product. The least significant 64-bits of the resultant 
sum are placed in the significand field of FR f1.

In all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0).

Note: f1 as an operand is not an integer 1; it is just the register file format’s 1.0 
value.

In all forms, if any of FR f3 , FR f4 , or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of 
the computed result.
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Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || 
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;

} else {
if (low_form || high_form)

tmp_res_128 =
fp_I64_x_I64_to_I128(FR[f3].significand, FR[f4].significand);

else // high_unsigned_form
tmp_res_128 =

fp_U64_x_U64_to_U128(FR[f3].significand, FR[f4].significand);

tmp_res_128 =
fp_U128_add(tmp_res_128, fp_U64_to_U128(FR[f2].significand));

if (high_form || high_unsigned_form)
FR[f1].significand = tmp_res_128.hi;

else // low_form
FR[f1].significand = tmp_res_128.lo;

FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

Interruptions: Disabled Floating-point Register fault
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xmpy — Fixed-Point Multiply
Format: (qp) xmpy.l f1 = f3, f4 pseudo-op of: (qp) xma.l f1 = f3, f4, f0

(qp) xmpy.lu f1 = f3, f4 pseudo-op of: (qp) xma.l f1 = f3, f4, f0
(qp) xmpy.h f1 = f3, f4 pseudo-op of: (qp) xma.h f1 = f3, f4, f0
(qp) xmpy.hu f1 = f3, f4 pseudo-op of: (qp) xma.hu f1 = f3, f4, f0

Description: Two source operands (FR f3 and FR f4) are treated as either signed or unsigned integers 
and multiplied. The upper or lower 64 bits of the resultant product are selected and 
placed in FR f1.

In the high_unsigned_form, the significand fields of FR f3 and FR f4 are treated as 
unsigned integers and multiplied to produce a full 128-bit unsigned result. The most 
significant 64-bits of the resultant product are placed in the significand field of FR f1.

In the high_form, the significand fields of FR f3 and FR f4 are treated as signed integers 
and multiplied to produce a full 128-bit signed result. The most significant 64-bits of 
the resultant product are placed in the significand field of FR f1.

In the other forms, the significand fields of FR f3 and FR f4 are treated as signed integers 
and multiplied to produce a full 128-bit signed result. The least significant 64-bits of the 
resultant product are placed in the significand field of FR f1.

In all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 
(0x1003E) and the sign field of FR f1 is set to positive (0). Note: f1 as an operand is not 
an integer 1; it is just the register file format’s 1.0 value.

Operation: See “xma — Fixed-Point Multiply Add” on page 3:276.
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xor — Exclusive Or
Format: (qp) xor r1 = r2, r3 register_form A1

(qp) xor r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically XORed and the result placed in GR r1. In the 
register_form the first operand is GR r2; in the imm8_form the first operand is taken 
from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src ^ GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault
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zxt — Zero Extend
Format: (qp) zxtxsz r1 = r3 I29

Description: The value in GR r3 is zero extended above the bit position specified by xsz and the result 
is placed in GR r1. The mnemonic values for xsz are given in Table 2-52 on page 3:258.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = zero_ext(GR[r3],xsz * 8);
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault

§
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3

Pseudo-Code Functions 3

This chapter contains a table of all pseudo-code functions used on the Itanium 
instruction pages.

Table 3-1. Pseudo-code Functions

Function Operation

xxx_fault(parameters ...) There are several fault functions. Each fault function accepts parameters specific to 
the fault, e.g., exception code values, virtual addresses, etc. If the fault is deferred for 
speculative load exceptions the fault function will return with a deferral indication. 
Otherwise, fault routines do not return and terminate the instruction sequence.

xxx_trap(parameters ...) There are several trap functions. Each trap function accepts parameters specific to 
the trap, e.g., trap code values, virtual addresses, etc. Trap routines do not return.

acceptance_fence() Ensures prior data memory references to uncached ordered-sequential memory 
pages are “accepted” before subsequent data memory references are performed by 
the processor.

alat_cmp(rtype, raddr) Returns a one if the implementation finds an ALAT entry which matches the register 
type specified by rtype and the register address specified by raddr, else returns 
zero. This function is implementation specific. Note that an implementation may 
optionally choose to return zero (indicating no match) even if a matching entry exists 
in the ALAT. This provides implementation flexibility in designing fast ALAT lookup 
circuits.

alat_frame_update( delta_bof, delta_sof) Notifies the ALAT of a change in the bottom of frame and/or size of frame. This allows 
management of the ALAT’s tag bits or other management functions it might need.

alat_inval() Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, size) The ALAT is queried using the physical memory address specified by paddr and the 
access size specified by size. All matching ALAT entries are invalidated. No value is 
returned.

alat_inval_single_entry(rtype, rega) The ALAT is queried using the register type specified by rtype and the register 
address specified by rega. At most one matching ALAT entry is invalidated. No value 
is returned.

alat_read_memory_on_hit(ldtype, rtype, 
raddr)

Returns a one if the implementation requires that the requested check load should 
perform a memory access (requires prior address translation); returns a zero 
otherwise.

alat_translate_address_on_hit(ldtype, 
rtype, raddr)

Returns a one if the implementation requires that the requested check load should 
translate the source address and take associated faults; returns a zero otherwise.

alat_write(ldtype, rtype, raddr, paddr, 
size)

Allocates a new ALAT entry or updates an existing entry using the load type specified 
by ldtype, the register type specified by rtype, the register address specified by 
raddr, the physical memory address specified by paddr, and the access size 
specified by size. No value is returned. This function guarantees that at most only 
one ALAT entry exists for a given raddr. Based on the load type ldtype, if a 
ld.c.nc, ldf.c.nc, or ldfp.c.nc instruction's raddr matches an existing ALAT 
entry's register tag, but the instruction's size and/or paddr are different than that of 
the existing entry's, then this function may either preserve the existing entry, or 
invalidate it and write a new entry with the instruction's specified size and paddr.

align_to_size_boundary(vaddr, size) Returns vaddr aligned to the boundary specified by size.

branch_predict(wh, ih, ret, target, tag) Implementation-dependent routine which updates the processor’s branch prediction 
structures. 
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check_branch_implemented(check_type) Implementation-dependent routine which returns TRUE or FALSE, depending on 
whether a failing check instruction causes a branch (TRUE), or a Speculative 
Operation fault (FALSE). The result may be different for different types of check 
instructions: CHKS_GENERAL, CHKS_FLOAT, CHKA_GENERAL, CHKA_FLOAT. In 
addition, the result may depend on other implementation-dependent parameters.

check_probe_virtualization_fault(type, 
cpl)

If implemented, this function may raise virtualization faults for specific probe 
instructions. Please refer to the instruction page for probe instruction for details.

check_target_register(r1) If the r1 argument specifies an out-of-frame stacked register (as defined by CFM) or 
r1 specifies GR0, an Illegal Operation fault is delivered, and this function does not 
return.

check_target_register_sof(r1, newsof) If the r1 argument specifies an out-of-frame stacked register (as defined by the 
newsof argument) or r1 specifies GR0, an Illegal Operation fault is delivered and 
this function does not return.

concatenate2(x1, x2) Concatenates the lower 32 bits of the 2 arguments, and returns the 64-bit result. 

concatenate4(x1, x2, x3, x4) Concatenates the lower 16 bits of the 4 arguments, and returns the 64-bit result.

concatenate8(x1, x2, x3, x4, x5, x6, x7, 
x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit result.

data_serialize() Ensures all prior register updates with side-effects are observed before subsequent 
execution and data memory references are performed.

deliver_unmasked_pending_interrupt() This implementation-specific function checks whether any unmasked external 
interrupts are pending, and if so, transfers control to the external interrupt vector.

execute_hint(hint) Executes the hint specified by hint.

fadd(fp_dp, fr2) Adds a floating-point register value to the infinitely precise product and return the 
infinitely precise sum, ready for rounding.

fcmp_exception_fault_check(f2, f3, frel, 
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcmp instruction.

fcvt_fx_exception_fault_check(fr2, 
signed_form, trunc_form, sf *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt.fx, fcvt.fxu, 
fcvt.fx.trunc and fcvt.fxu.trunc instructions. It propagates NaNs.

fma_exception_fault_check(f2, f3, f4, pc, 
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fma instruction. It propagates 
NaNs and special IEEE results.

fminmax_exception_fault_check(f2, f3, sf, 
*tmp_fp_env)

Checks for all floating-point faulting conditions for the famax, famin, fmax, and fmin 
instructions.

fms_fnma_exception_fault_check(f2, f3, 
f4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fms and fnma instructions. It 
propagates NaNs and special IEEE results.

fmul(fr3, fr4) Performs an infinitely precise multiply of two floating-point register values.

followed_by_stop() Returns TRUE if the current instruction is followed by a stop; otherwise, returns 
FALSE.

fp_check_target_register(f1) If the specified floating-point register identifier is 0 or 1, this function causes an illegal 
operation fault.

fp_decode_fault(tmp_fp_env) Returns floating-point exception fault code values for ISR.code.

fp_decode_traps(tmp_fp_env) Returns floating-point trap code values for ISR.code.

fp_equal(fr1, fr2) IEEE standard equality relationship test.

fp_fr_to_mem_format(freg, size) Converts a floating-point value in register format to floating-point memory format. It 
assumes that the floating-point value in the register has been previously rounded to 
the correct precision which corresponds with the size parameter.

fp_ieee_recip(num, den) Returns the true quotient for special sets of operands, or an approximation to the 
reciprocal of the divisor to be used in the software divide algorithm.

fp_ieee_recip_sqrt(root) Returns the true square root result for special operands, or an approximation to the 
reciprocal square root to be used in the software square root algorithm. 

fp_is_nan(freg) Returns true when floating register contains a NaN.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation
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fp_is_nan_or_inf(freg) Returns true if the floating-point exception_fault_check functions returned a IEEE 
fault disabled default result or a propagated NaN.

fp_is_natval(freg) Returns true when floating register contains a NaTVal

fp_is_normal(freg) Returns true when floating register contains a normal number.

fp_is_pos_inf(freg) Returns true when floating register contains a positive infinity.

fp_is_qnan(freg) Returns true when floating register contains a quiet NaN.

fp_is_snan(freg) Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg) Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg) Returns true when floating register contains an unsupported format.

fp_less_than(fr1, fr2) IEEE standard less-than relationship test.

fp_lesser_or_equal(fr1, fr2) IEEE standard less-than or equal-to relationship test

fp_mem_to_fr_format(mem, size) Converts a floating-point value in memory format to floating-point register format.

fp_normalize(fr1) Normalizes an unnormalized fp value. This function flushes to zero any unnormal 
values which can not be represented in the register file

fp_raise_fault(tmp_fp_env) Checks the local instruction state for any faulting conditions which require an 
interruption to be raised.

fp_raise_traps(tmp_fp_env) Checks the local instruction state for any trapping conditions which require an 
interruption to be raised.

fp_reg_bank_conflict(f1, f2) Returns true if the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, f3, f4) Check for possible disabled floating-point register faults.

fp_reg_read(freg) Reads the FR and gives canonical double-extended denormals (and 
pseudo-denormals) their true mathematical exponent. Other classes of operands are 
unaltered.

fp_unordered(fr1, fr2) IEEE standard unordered relationship

fp_update_fpsr(sf, tmp_fp_env) Copies a floating-point instruction’s local state into the global FPSR.

fp_update_psr(dest_freg) Conditionally sets PSR.mfl or PSR.mfh based on dest_freg.

fpcmp_exception_fault_check(f2, f3, frel, 
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcmp instruction.

fpcvt_exception_fault_check(f2, 
signed_form, trunc_form, sf, 
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcvt.fx, fpcvt.fxu, 
fpcvt.fx.trunc, and fpcvt.fxu.trunc instructions. It propagates NaNs.

fpma_exception_fault_check(f2, f3, f4, sf, 
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpma instruction. It propagates 
NaNs and special IEEE results.

fpminmax_exception_fault_check(f2, f3, 
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpmin, fpmax, fpamin and 
fpamax instructions.

fpms_fpnma_exception_fault_check(f2, 
f3, f4, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpms and fpnma instructions. It 
propagates NaNs and special IEEE results.

fprcpa_exception_fault_check(f2, f3, sf, 
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprcpa instruction. It 
propagates NaNs and special IEEE results. It also indicates operand limit violations.

fprsqrta_exception_fault_check(f3, sf, 
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprsqrta instruction. It 
propagates NaNs and special IEEE results. It also indicates operand limit violations. 

frcpa_exception_fault_check(f2, f3, sf, 
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frcpa instruction. It 
propagates NaNs and special IEEE results.

frsqrta_exception_fault_check(f3, sf, 
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frsqrta instruction. It 
propagates NaNs and special IEEE results

ignored_field_mask(regclass, reg, value) Boolean function that returns value with bits cleared to 0 corresponding to ignored 
bits for the specified register and register type.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation
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impl_check_mov_itir() Implementation-specific function that returns TRUE if ITIR is checked for reserved 
fields and encodings on a mov to ITIR instruction.

impl_check_mov_psr_l(gr) Implementation-specific function to check bits {63:32} of gr corresponding to 
reserved fields of the PSR for Reserved Register/Field fault.

impl_check_tlb_itir() Implementation-specific function that returns TRUE if all fields of ITIR are checked for 
reserved encodings on a TLB insert instruction regardless of whether the translation 
is present.

impl_gitc_enable() Implementation-specific function that indicates whether guest MOV-from-AR.ITC 
optimization is enabled.

impl_ia32_ar_reserved_ignored(ar3) Implementation-specific function which indicates how the reserved and ignored fields 
in the specified IA-32 application register, ar3, behave.  If it returns FALSE, the 
reserved and/or ignored bits in the specified application register can be written, and 
when read they return the value most-recently written. If it returns TRUE, attempts to 
write a non-zero value to a reserved field in the specified application register cause a 
Reserved Register/Field fault, and reads return 0; writing to an ignored field in the 
specified application register is ignored, and reads return the constant value defined 
for that field.

impl_iib() Implementation-specific function which indicates whether Interruption Instruction 
Bundle registers (IIB0-1) are implemented.

impl_itir_cwi_mask() Implementation-specific function that either returns the value passed to it or the value 
passed to it masked with zeros in bit positions {63:32} and/or {1:0}.

impl_ito() Implementation-specific function which indicates whether Interval Timer Offset (ITO) 
register is implemented.

impl_probe_intercept() Implementation-specific function indicates whether probe interceptions are 
supported.

impl_ruc() Implementation-specific function which indicates whether Resource Utilization 
Counter (RUC) application register is implemented.

impl_uia_fault_supported() Implementation-specific function that either returns TRUE if the processor reports 
unimplemented instruction addresses with an Unimplemented Instruction Address 
fault, and returns FALSE if the processor reports them with an Unimplemented 
Instruction Address trap.

implemented_vm() Returns TRUE if the processor implements the PSR.vm bit (regardless of whether 
virtual machine features are enabled or disabled).

instruction_implemented(inst) Implementation-dependent routine which returns TRUE or FALSE, depending on 
whether inst is implemented.

instruction_serialize() Ensures all prior register updates with side-effects are observed before subsequent 
instruction and data memory references are performed. Also ensures prior SYNC.i 
operations have been observed by the instruction cache.

instruction_synchronize() Synchronizes the instruction and data stream for Flush Cache operations. This 
function ensures that when prior Flush Cache operations are observed by the local 
data cache they are observed by the local instruction cache, and when prior Flush 
Cache operations are observed by another processor’s data cache they are observed 
within the same processor’s instruction cache.

is_finite(freg) Returns true when floating register contains a finite number.

is_ignored_reg(regnum) Boolean function that returns true if regnum is an ignored application register, 
otherwise false.

is_inf(freg) Returns true when floating register contains an infinite number.

is_interruption_cr(regnum) Boolean function that returns true if regnum is one of the Interruption Control 
registers (see Section 3.3.5, “Interruption Control Registers” on page 2:36), otherwise 
false.

is_kernel_reg(ar_addr) Returns a one if ar_addr is the address of a kernel register application register

Table 3-1. Pseudo-code Functions (Continued)

Function Operation
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is_read_only_reg(rtype, raddr) Returns a one if the register addressed by raddr in the register bank of type rtype 
is a read only register.

is_reserved_field(regclass, arg2, arg3) Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum) Returns true if register regnum is reserved in the regclass register file.

is_supported_hint(hint) Returns true if the implementation supports the specified hint. This function may 
depend on factors other than the hint value, such as which execution unit it is 
executed on or the slot number the instruction was encoded in.

itlb_ar() Returns the page access rights from the ITLB for the page addressed by the current 
IP, or INVALID_AR if PSR.it is 0.

make_icache_coherent(paddr) The cache line addressed by the physical address paddr is flushed in an 
implementation-specific manner that ensures that the instruction cache is coherent 
with the data caches.

mem_flush(paddr) The line addressed by the physical address paddr is invalidated in all levels of the 
memory hierarchy above memory and written back to memory if it is inconsistent with 
memory.

mem_flush_pending_stores() The processor is instructed to start draining pending stores in write coalescing and 
write buffers. This operation is a hint. There is no indication when prior stores have 
actually been drained.

mem_implicit_prefetch(vaddr, hint, type) Moves the line addressed by vaddr to the location of the memory hierarchy specified 
by hint. This function is implementation dependent and can be ignored. The type 
allows the implementation to distinguish prefetches for different instruction types. 

mem_promote(paddr, mtype, hint) Moves the line addressed by paddr to the highest level of the memory hierarchy 
conditioned by the access hints specified by hint. Implementation dependent and 
can be ignored.

mem_read(paddr, size, border, mattr, 
otype, hint)

Returns the size bytes starting at the physical memory location specified by paddr 
with byte order specified by border, memory attributes specified by mattr, and 
access hint specified by hint. otype specifies the memory ordering attribute of this 
access, and must be UNORDERED or ACQUIRE.

mem_read_pair(*low_value, *high_value, 
paddr, size, border, mattr, otype, hint)

Reads the size / 2 bytes of memory starting at the physical memory address 
specified by paddr into low_value, and the size / 2 bytes of memory starting at the 
physical memory address specified by (paddr + size / 2) into high_value, with 
byte order specified by border, memory attributes specified by mattr, and access 
hint specified by hint. otype specifies the memory ordering attribute of this access, 
and must be UNORDERED or ACQUIRE.  No value is returned.

mem_write(value, paddr, size, border, 
mattr, otype, hint)

Writes the least significant size bytes of value into memory starting at the physical 
memory address specified by paddr with byte order specified by border, memory 
attributes specified by mattr, and access hint specified by hint. otype specifies the 
memory ordering attribute of this access, and must be UNORDERED or RELEASE. 
No value is returned.

mem_write16(gr_value, ar_value, paddr, 
border, mattr, otype, hint)

Writes the 8 bytes of gr_value into memory starting at the physical memory address 
specified by paddr, and the 8 bytes of ar_value into memory starting at the physical 
memory address specified by (paddr + 8), with byte order specified by border, 
memory attributes specified by mattr, and access hint specified by hint. otype 
specifies the memory ordering attribute of this access, and must be UNORDERED or 
RELEASE. No value is returned.

mem_xchg(data, paddr, size, byte_order, 
mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by paddr. 
The read is conditioned by the locality hint specified by hint. After the read, the least 
significant size bytes of data are written to size bytes in memory starting at the 
physical address specified by paddr. The read and write are performed atomically. 
Both the read and the write are conditioned by the memory attribute specified by 
mattr and the byte ordering in memory is specified by byte_order. otype specifies 
the memory ordering attribute of this access, and must be ACQUIRE.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation



3:286 Volume 3: Pseudo-Code Functions

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

mem_xchg_add(add_val, paddr, size, 
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by 
paddr. The read is conditioned by the locality hint specified by hint. The least 
significant size bytes of the sum of the value read from memory and add_val is 
then written to size bytes in memory starting at the physical address specified by 
paddr. The read and write are performed atomically. Both the read and the write are 
conditioned by the memory attribute specified by mattr and the byte ordering in 
memory is specified by byte_order. otype specifies the memory ordering attribute 
of this access, and has the value ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data, paddr, 
size, byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by 
paddr. The read is conditioned by the locality hint specified by hint. If the value read 
from memory is equal to cmp_val, then the least significant size bytes of data are 
written to size bytes in memory starting at the physical address specified by 
paddr. If the write is performed, the read and write are performed atomically. Both the 
read and the write are conditioned by the memory attribute specified by mattr and 
the byte ordering in memory is specified by byte_order. otype specifies the 
memory ordering attribute of this access, and has the value ACQUIRE or RELEASE.

mem_xchg16_cond(cmp_val, gr_data, 
ar_data, paddr, byte_order, mattr, otype, 
hint)

Returns 8 bytes from memory starting at the physical address specified by paddr. 
The read is conditioned by the locality hint specified by hint. If the value read from 
memory is equal to cmp_val, then the 8 bytes of gr_data are written to 8 bytes in 
memory starting at the physical address specified by (paddr & ~0x8), and the 8 bytes 
of ar_data are written to 8 bytes in memory starting at the physical address 
specified by ((paddr & ~0x8) + 8). If the write is performed, the read and write are 
performed atomically. Both the read and the write are conditioned by the memory 
attribute specified by mattr and the byte ordering in memory is specified by 
byte_order.  The byte ordering only affects the ordering of bytes within each of the 
8-byte values stored. otype specifies the memory ordering attribute of this access, 
and has the value ACQUIRE or RELEASE.

ordering_fence() Ensures prior data memory references are made visible before future data memory 
references are made visible by the processor.

partially_implemented_ip() Implementation-dependent routine which returns TRUE if the implementation, on an 
Unimplemented Instruction Address trap, writes IIP with the sign-extended virtual 
address or zero-extended physical address for what would have been the next value 
of IP. Returns FALSE if the implementation, on this trap, simply writes IIP with the full 
address which would have been the next value of IP.

pending_virtual_interrupt() Check for unmasked pending virtual interrupt.

pr_phys_to_virt(phys_id) Returns the virtual register id of the predicate from the physical register id, phys_id 
of the predicate.

rotate_regs() Decrements the Register Rename Base registers, effectively rotating the register 
files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

rse_enable_current_frame_load() If the RSE load pointer (RSE.BSPLoad) is greater than AR[BSP], the RSE.CFLE bit is 
set to indicate that mandatory RSE loads are allowed to restore registers in the 
current frame (in no other case does the RSE spill or fill registers in the current 
frame). This function does not perform mandatory RSE loads. This procedure does 
not cause any interruptions.

rse_ensure_regs_loaded(number_of_byt
es)

All registers and NaT collections between AR[BSP] and 
(AR[BSP]-number_of_bytes) which are not already in stacked registers are 
loaded into the register stack with mandatory RSE loads. If the number of registers to 
be loaded is greater than RSE.N_STACK_PHYS an Illegal Operation fault is raised. All 
registers starting with backing store address (AR[BSP] - 8) and decrementing down 
to and including backing store address (AR[BSP] - number_of_bytes) are made part 
of the dirty partition. With exception of the current frame, all other stacked registers 
are made part of the invalid partition. Note that number_of_bytes may be zero. The 
resulting sequence of RSE loads may be interrupted. Mandatory RSE loads may 
cause an interruption; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_invalidate_non_current_regs() All registers outside the current frame are invalidated.
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rse_load(type) Restores a register or NaT collection from the backing store (load_address = 
RSE.BspLoad - 8). If load_address{8:3} is equal to 0x3f then a NaT collection is 
loaded into a NaT dispersal register. (dispersal register may not be the same 
as AR[RNAT].) If load_address{8:3} is not equal to 0x3f then the register 
RSE.LoadReg - 1 is loaded and the NaT bit for that register is set to 
dispersal_register{load_address{8:3}}. If the load is successful 
RSE.BspLoad is decremented by 8. If the load is successful and a register was 
loaded RSE.LoadReg is decremented by 1 (possibly wrapping in the stacked 
registers). The load moves a register from the invalid partition to the current frame if 
RSE.CFLE is 1, or to the clean partition if RSE.CFLE is 0. For mandatory RSE loads, 
type is MANDATORY. Mandatory RSE loads may cause interruptions. See 
Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_new_frame(current_frame_size, 
new_frame_size)

A new frame is defined without changing any register renaming. The new frame size 
is completely defined by the new_frame_size parameter (successive calls are not 
cumulative). If new_frame_size is larger than current_frame_size and the 
number of registers in the invalid and clean partitions is less than the size of frame 
growth then mandatory RSE stores are issued until enough registers are available. 
The resulting sequence of RSE stores may be interrupted. Mandatory RSE stores 
may cause interruptions; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_preserve_frame(preserved_frame_si
ze)

The number of registers specified by preserved_frame_size are marked to be 
preserved by the RSE. Register renaming causes the preserved_frame_size 
registers after GR[32] to be renamed to GR[32]. AR[BSP] is updated to contain the 
backing store address where the new GR[32] will be stored.

rse_restore_frame(preserved_sol, 
growth, current_frame_size)

The first two parameters define how the current frame is about to be updated by a 
branch return or rfi: preserved_sol defines how many registers need to be 
restored below RSE.BOF; growth defines by how many registers the top of the 
current frame will grow (growth will generally be negative). The number of registers 
specified by preserved_sol are marked to be restored. Register renaming causes 
the preserved_sol registers before GR[32] to be renamed to GR[32]. AR[BSP] is 
updated to contain the backing store address where the new GR[32] will be stored. If 
the number of dirty and clean registers is less than preserved_sol then mandatory 
RSE loads must be issued before the new current frame is considered valid. This 
function does not perform mandatory RSE loads. This function returns TRUE if the 
preserved frame grows beyond the invalid and clean regions into the dirty region. In 
this case the third argument, current_frame_size, is used to force the returned to 
frame to zero (see Section 6.5.5, “Bad PFS used by Branch Return” on page 2:143).

rse_store(type) Saves a register or NaT collection to the backing store (store_address = 
AR[BSPSTORE]). If store_address{8:3} is equal to 0x3f then the NaT collection 
AR[RNAT] is stored. If store_address{8:3} is not equal to 0x3f then the register 
RSE.StoreReg is stored and the NaT bit from that register is deposited in 
AR[RNAT]{store_address{8:3}}. If the store is successful AR[BSPSTORE] is 
incremented by 8. If the store is successful and a register was stored RSE.StoreReg 
is incremented by 1 (possibly wrapping in the stacked registers). This store moves a 
register from the dirty partition to the clean partition. For mandatory RSE stores, type 
is MANDATORY. Mandatory RSE stores may cause interruptions. See Table 6-6, 
“RSE Interruption Summary” on page 6-145.

rse_update_internal_stack_pointers(new
_store_pointer)

Given a new value for AR[BSPSTORE] (new_store_pointer) this function 
computes the new value for AR[BSP]. This value is equal to new_store_pointer 
plus the number of dirty registers plus the number of intervening NaT collections. This 
means that the size of the dirty partition is the same before and after a write to 
AR[BSPSTORE]. All clean registers are moved to the invalid partition.

sign_ext(value, pos) Returns a 64 bit number with bits pos-1 through 0 taken from value and bit pos-1 of 
value replicated in bit positions pos through 63. If pos is greater than or equal to 64, 
value is returned.
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spontaneous_deferral(paddr, size, 
border, mattr, otype, hint, *defer)

Implementation-dependent routine which optionally forces *defer to TRUE if all of 
the following are true: spontaneous deferral is enabled, spontaneous deferral is 
permitted by the programming model, and the processor determines it would be 
advantageous to defer the speculative load (e.g., based on a miss in some particular 
level of cache).

spontaneous_deferral_enabled() Implementation-dependent routine which returns TRUE or FALSE, depending on 
whether spontaneous deferral of speculative loads is enabled or disabled in the 
processor.

tlb_access_key(vaddr, itype) This function returns, in bits 31:8, the access key from the TLB for the entry 
corresponding to vaddr and itype; bits 63:32 and 7:0 return 0. If vaddr is an 
unimplemented virtual address, or a matching present translation is not found, the 
value 1 is returned.

tlb_broadcast_purge(rid, vaddr, size, 
type)

Sends a broadcast purge DTC and ITC transaction to other processors in the 
multiprocessor coherency domain, where the region identifier (rid), virtual address 
(vaddr) and page size (size) specify the translation entry to purge. The operation 
waits until all processors that receive the purge have completed the purge operation. 
The purge type (type) specifies whether the ALAT on other processors should also 
be purged in conjunction with the TC.

tlb_enter_privileged_code() This function determines the new privilege level for epc from the TLB entry for the 
page containing this instruction. If the page containing the epc instruction has 
execute-only page access rights and the privilege level assigned to the page is higher 
than (numerically less than) the current privilege level, then the current privilege level 
is set to the privilege level field in the translation for the page containing the epc 
instruction. 

tlb_grant_permission(vaddr, type, pl) Returns a boolean indicating if read, write access is granted for the specified virtual 
memory address (vaddr) and privilege level (pl). The access type (type) specifies 
either read or write. The following faults are checked::

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault
If a fault is generated, this function does not return.

tlb_insert_data(slot, pte0, pte1, vaddr, rid, 
tr)

Inserts an entry into the DTLB, at the specified slot number. pte0, pte1 compose 
the translation. vaddr and rid specify the virtual address and region identifier for the 
translation. If tr is true the entry is placed in the TR section, otherwise the TC 
section.

tlb_insert_inst(slot, pte0, pte1, vaddr, rid, 
tr)

Inserts an entry into the ITLB, at the specified slot number. pte0, pte1 compose 
the translation. vaddr and rid specify the virtual address and region identifier for the 
translation. If tr is true, the entry is placed in the TR section, otherwise the TC 
section.

tlb_may_purge_dtc_entries(rid, vaddr, 
size)

May locally purge DTC entries that match the specified virtual address (vaddr), 
region identifier (rid) and page size (size). May also invalidate entries that partially 
overlap the parameters. The extent of purging is implementation dependent. If the 
purge size is not supported, an implementation may generate a machine check abort 
or over purge the translation cache up to and including removal of all entries from the 
translation cache.
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tlb_may_purge_itc_entries(rid, vaddr, 
size)

May locally purge ITC entries that match the specified virtual address (vaddr), region 
identifier (rid) and page size (size). May also invalidate entries that partially overlap 
the parameters. The extent of purging is implementation dependent. If the purge size 
is not supported, an implementation may generate a machine check abort or over 
purge the translation cache up to and including removal of all entries from the 
translation cache.

tlb_must_purge_dtc_entries(rid, vaddr, 
size)

Purges all local, possibly overlapping, DTC entries matching the specified region 
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} 
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged 
regardless of the VRN bits. If the purge size is not supported, an implementation may 
generate a machine check abort or over purge the translation cache up to and 
including removal of all entries from the translation cache. If the specified purge 
values overlap with an existing DTR translation, an implementation may generate a 
machine check abort.

tlb_must_purge_dtr_entries(rid, vaddr, 
size)

Purges all local, possibly overlapping, DTR entries matching the specified region 
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} 
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged 
regardless of the VRN bits. If the purge size is not supported, an implementation may 
generate a machine check abort or over purge the translation cache up to and 
including removal of all entries from the translation cache. 

tlb_must_purge_itc_entries(rid, vaddr, 
size)

Purges all local, possibly overlapping, ITC entry matching the specified region 
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is 
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged 
regardless of the VRN bits. If the purge size is not supported, an implementation may 
generate a machine check abort or over purge the translation cache up to and 
including removal of all entries from the translation cache. If the specified purge 
values overlap with an existing ITR translation, an implementation may generate a 
machine check abort.

tlb_must_purge_itr_entries(rid, vaddr, 
size)

Purges all local, possibly overlapping, ITR entry matching the specified region 
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is 
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged 
regardless of the VRN bits. If the purge size is not supported, an implementation may 
generate a machine check abort or over purge the translation cache up to and 
including removal of all entries from the translation cache. 

tlb_purge_translation_cache(loop) Removes 1 to N translations from the local processor’s ITC and DTC. The number of 
entries removed is implementation specific. The parameter loop is used to generate 
an implementation-specific purge parameter.

tlb_replacement_algorithm(tlb) Returns the next ITC or DTC slot number to replace. Replacement algorithms are 
implementation specific. tlb specifies to perform the algorithm on the ITC or DTC.

tlb_search_pkr(key) Searches for a valid protection key register with a matching protection key. The 
search algorithm is implementation specific. Returns the PKR register slot number if 
found, otherwise returns Not Found.
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tlb_translate(vaddr, size, type, cpl, *attr, 
*defer)

Returns the translated data physical address for the specified virtual memory address 
(vaddr) when translation enabled; otherwise, returns vaddr. size specifies the size 
of the access, type specifies the type of access (e.g., read, write, advance, spec). 
cpl specifies the privilege level for access checking purposes. *attr returns the 
mapped physical memory attribute. If any fault conditions are detected and deferred, 
tlb_translate returns with *defer set. If a fault is generated but the fault is not 
deferred, tlb_translate does not return. tlb_translate checks the following faults:

• Unimplemented Data Address fault

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty Bit fault

• Data Access Bit fault

• Data Debug fault

• Unaligned Data Reference fault

• Unsupported Data Reference fault

tlb_translate_nonaccess(vaddr, type) Returns the translated data physical address for the specified virtual memory address 
(vaddr). type specifies the type of access (e.g., FC, TPA). If a fault is generated, 
tlb_translate_nonaccess does not return. The following faults are checked:

• Unimplemented Data Address fault

• Virtualization fault (tpa only)

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Access Rights fault (fc only)

tlb_vhpt_hash(vrn, vaddr61, rid, size) Generates a VHPT entry address for the specified virtual region number (vrn) and 
61-bit virtual offset (vaddr61), region identifier (rid) and page size (size). 
Tlb_vhpt_hash hashes vaddr, rid and size parameters to produce a hash index. 
The hash index is then masked based on PTA.size and concatenated with PTA.base 
to generate the VHPT entry address. The long format hash is implementation 
specific.

tlb_vhpt_tag(vaddr, rid, size) Generates a VHPT tag identifier for the specified virtual address (vaddr), region 
identifier (rid) and page size (size). Tlb_vhpt_tag hashes the vaddr, rid and size 
parameters to produce translation identifier. The tag in conjunction with the hash 
index is used to uniquely identify translations in the VHPT. Tag generation is 
implementation specific. All processor models tag function must guarantee that bit 63 
of the generated tag is zero (ti bit).

undefined() Returns an undefined 64-bit value.

undefined_behavior() Causes undefined processor behavior. Extent of undefined behavior is described in 
Section 3.5, “Undefined Behavior” on page 1:44.
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§

unimplemented_physical_address(paddr) Return TRUE if the presented physical address is unimplemented on this processor 
model; FALSE otherwise. This function is model specific.

unimplemented_virtual_address(vaddr, 
vm)

Return TRUE if the presented virtual address is unimplemented on this processor 
model; FALSE otherwise. If vm is 1, one additional bit of virtual address is treated as 
unimplemented. This function is model specific.

vm_all_probes() Returns TRUE if the processor is configured to virtualize all probe instructions when 
PSR.vm is 1.  See Section 11.7.4.2.8, “Probe Instruction Virtualization” on 
page 2:344 for details.

vm_disabled() Returns TRUE if the processor implements the PSR.vm bit and virtual machine 
features are disabled. See Section 3.4, “Processor Virtualization” on page 2:44 in 
SDM and “PAL_PROC_GET_FEATURES – Get Processor Dependent Features 
(17)” on page 2:446 in SDM for details.

vm_select_probes() Returns TRUE if the processor is configured to virtualize selected probe instructions 
when PSR.vm is 1.  See Section 11.7.4.2.8, “Probe Instruction Virtualization” on 
page 2:344 for details.

vmsw_disabled() Returns TRUE if the processor implements the PSR.vm bit and the vmsw instruction 
is disabled.  See Section 3.4, “Processor Virtualization” on page 2:44 in SDM and 
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on 
page 2:446 in SDM for details.

zero_ext(value, pos) Returns a 64 bit unsigned number with bits pos-1 through 0 taken from value and 
zeroes in bit positions pos through 63. If pos is greater than or equal to 64, value is 
returned.
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Instruction Formats 4

Each Itanium instruction is categorized into one of six types; each instruction type may 
be executed on one or more execution unit types. Table 4-1 lists the instruction types 
and the execution unit type on which they are executed:

Three instructions are grouped together into 128-bit sized and aligned containers called 
bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template 
field. The format of a bundle is depicted in Figure 4-1.

The template field specifies two properties: stops within the current bundle, and the 
mapping of instruction slots to execution unit types. Not all combinations of these two 
properties are allowed - Table 4-2 indicates the defined combinations. The three 
rightmost columns correspond to the three instruction slots in a bundle; listed within 
each column is the execution unit type controlled by that instruction slot for each 
encoding of the template field. A double line to the right of an instruction slot indicates 
that a stop occurs at that point within the current bundle. See “Instruction Encoding 
Overview” on page 1:38 for the definition of a stop. Within a bundle, execution order 
proceeds from slot 0 to slot 2. Unused template values (appearing as empty rows in 
Table 4-2) are reserved and cause an Illegal Operation fault.

Extended instructions, used for long immediate integer and long branch instructions, 
occupy two instruction slots. Depending on the major opcode, extended instructions 
execute on a B-unit (long branch/call) or an I-unit (all other L+X instructions).

Table 4-1. Relationship between Instruction Type and Execution Unit Type

Instruction
Type

Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unita

a. L+X Major Opcodes 0 - 7 execute on an I-unit. L+X Major Opcodes 8 - F execute on a B-unit.

Figure 4-1. Bundle Format

127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template

41 41 41 5
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4.1 Format Summary

All instructions in the instruction set are 41 bits in length. The leftmost 4 bits (40:37) of 
each instruction are the major opcode. Table 4-3 shows the major opcode assignments 
for each of the 5 instruction types — ALU (A), Integer (I), Memory (M), Floating-point 
(F), and Branch (B). Bundle template bits are used to distinguish among the 4 columns, 
so the same major op values can be reused in each column.

Unused major ops (appearing as blank entries in Table 4-3) behave in one of four ways:

• Ignored major ops (white entries in Table 4-3) execute as nop instructions.

Table 4-2. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unita

05 M-unit L-unit X-unita

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F

a. The MLX template was formerly called MLI, and for compatibility, the X slot may encode break.i and nop.i in 
addition to any X-unit instruction.
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• Reserved major ops (light gray in the gray scale version of Table 4-3, brown in the 
color version) cause an Illegal Operation fault.

• Reserved if PR[qp] is 1 major ops (dark gray in the gray scale version of Table 4-3, 
purple in the color version) cause an Illegal Operation fault if the predicate register 
specified by the qp field of the instruction (bits 5:0) is 1 and execute as a nop 
instruction if 0.

• Reserved if PR[qp] is 1 B-unit major ops (medium gray in the gray scale version of 
Table 4-3, cyan in the color version) cause an Illegal Operation fault if the predicate 
register specified by the qp field of the instruction (bits 5:0) is 1 and execute as a 
nop instruction if 0. These differ from the Reserved if PR[qp] is 1 major ops (purple) 
only in their RAW dependency behavior (see “RAW Dependency Table” on 
page 3:374).

Table 4-4 on page 3:296 summarizes all the instruction formats. The instruction fields 
are color-coded for ease of identification, as described in Table 4-5 on page 3:298. A 
color version of this chapter is available for those heavily involved in working with the 
instruction encodings.

The instruction field names, used throughout this chapter, are described in Table 4-6 on 
page 3:298. The set of special notations (such as whether an instruction is privileged) 
are listed in Table 4-7 on page 3:299. These notations appear in the “Instruction” 
column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one 
instruction field. For example, the 14-bit immediate in the Add Imm14 instruction 
(format A4) is formed from the imm7b, imm6d, and s fields. Table 4-74 on page 3:368 
shows how the immediates are formed from the instruction fields for each instruction 
which has an immediate.

Table 4-3. Major Opcode Assignments

Major 
Op

(Bits 
40:37)

Instruction Type

I/A M/A F B L+X

0 Misc 0 Sys/Mem Mgmt 0 FP Misc 0 Misc/Indirect Branch 0 Misc 0

1 1 Sys/Mem Mgmt 1 FP Misc 1 Indirect Call 1 1

2 2 2 2 Indirect Predict/Nop 2 2

3 3 3 3 3 3

4 Deposit 4 Int Ld +Reg/getf 4 FP Compare 4 IP-relative Branch 4 4

5 Shift/Test Bit 5 Int Ld/St +Imm 5 FP Class 5 IP-rel Call 5 5

6 6 FP Ld/St +Reg/setf 6 6 6 movl 6

7 MM Mpy/Shift 7 FP Ld/St +Imm 7 7 IP-relative Predict 7 7

8 ALU/MM ALU 8 ALU/MM ALU 8 fma 8  e 8 8

9 Add Imm22
9 Add Imm22

9 fma 9  e 9 9

A A A fms A  e A A

B B B fms B  e B B

C Compare C Compare C fnma C  e C Long Branch C

D Compare D Compare D fnma D  e D Long Call D

E Compare E Compare E fselect/xma E  e E E

F F F F  e F F
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Table 4-4.  Instruction Format Summary

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0
ALU A1 8 x2a ve x4 x2b r3 r2 r1 qp

Shift L and Add A2 8 x2a ve x4 ct2d r3 r2 r1 qp
ALU Imm8 A3 8 s x2a ve x4 x2b r3 imm7b r1 qp
Add Imm14 A4 8 s x2a ve imm6d r3 imm7b r1 qp
Add Imm22 A5 9 s imm9d imm5c r3 imm7b r1 qp
Compare A6 C - E tb x2 ta p2 r3 r2 c p1 qp

Compare to Zero A7 C - E tb x2 ta p2 r3 0 c p1 qp
Compare Imm8 A8 C - E s x2 ta p2 r3 imm7b c p1 qp

MM ALU A9 8 za x2a zb x4 x2b r3 r2 r1 qp
MM Shift and Add A10 8 za x2a zb x4 ct2d r3 r2 r1 qp

MM Multiply Shift I1 7 za x2a zb ve ct2d x2b r3 r2 r1 qp
MM Mpy/Mix/Pack I2 7 za x2a zb ve x2c x2b r3 r2 r1 qp

MM Mux1 I3 7 za x2a zb ve x2c x2b mbt4c r2 r1 qp
MM Mux2 I4 7 za x2a zb ve x2c x2b mht8c r2 r1 qp

Shift R Variable I5 7 za x2a zb ve x2c x2b r3 r2 r1 qp
MM Shift R Fixed I6 7 za x2a zb ve x2c x2b r3 count5b r1 qp
Shift L Variable I7 7 za x2a zb ve x2c x2b r3 r2 r1 qp

MM Shift L Fixed I8 7 za x2a zb ve x2c x2b ccount5c r2 r1 qp
Bit Strings I9 7 za x2a zb ve x2c x2b r3 0 r1 qp

Shift Right Pair I10 5 x2 x count6d r3 r2 r1 qp
Extract I11 5 x2 x len6d r3 pos6b y r1 qp
Dep.Z I12 5 x2 x len6d y cpos6c r2 r1 qp

Dep.Z Imm8 I13 5 s x2 x len6d y cpos6c imm7b r1 qp
Deposit Imm1 I14 5 s x2 x len6d r3 cpos6b r1 qp

Deposit I15 4 cpos6d len4d r3 r2 r1 qp
Test Bit I16 5 tb x2 ta p2 r3 pos6b y c p1 qp

Test NaT I17 5 tb x2 ta p2 r3 x y c p1 qp
Nop/Hint I18 0 i x3 x6 y imm20a qp

Break I19 0 i x3 x6 imm20a qp
Int Spec Check I20 0 s x3 imm13c r2 imm7a qp

Move to BR I21 0 x3 timm9c ih x wh r2 b1 qp
Move from BR I22 0 x3 x6 b2 r1 qp
Move to Pred I23 0 s x3 mask8c r2 mask7a qp

Move to Pred Imm44 I24 0 s x3 imm27a qp
Move from Pred/IP I25 0 x3 x6 r1 qp

Move to AR I26 0 x3 x6 ar3 r2 qp
Move to AR Imm8 I27 0 s x3 x6 ar3 imm7b qp

Move from AR I28 0 x3 x6 ar3 r1 qp
Sxt/Zxt/Czx I29 0 x3 x6 r3 r1 qp
Test Feature I30 5 tb x2 ta p2 0 x imm5b y c p1 qp

Int Load M1 4 m x6 hint x r3 r1 qp
Int Load +Reg M2 4 m x6 hint x r3 r2 r1 qp
Int Load +Imm M3 5 s x6 hint i r3 imm7b r1 qp

Int Store M4 4 m x6 hint x r3 r2 qp
Int Store +Imm M5 5 s x6 hint i r3 r2 imm7a qp

FP Load M6 6 m x6 hint x r3 f1 qp
FP Load +Reg M7 6 m x6 hint x r3 r2 f1 qp
FP Load +Imm M8 7 s x6 hint i r3 imm7b f1 qp

FP Store M9 6 m x6 hint x r3 f2 qp
FP Store +Imm M10 7 s x6 hint i r3 f2 imm7a qp
FP Load Pair M11 6 m x6 hint x r3 f2 f1 qp

FP Load Pair +Imm M12 6 m x6 hint x r3 f2 f1 qp
Line Prefetch M13 6 m x6 hint x r3 qp

Line Prefetch +Reg M14 6 m x6 hint x r3 r2 qp
Line Prefetch +Imm M15 7 s x6 hint i r3 imm7b qp

(Cmp &) Exchg M16 4 m x6 hint x r3 r2 r1 qp
Fetch & Add M17 4 m x6 hint x r3 s i2b r1 qp

Set FR M18 6 m x6 x r2 f1 qp
Get FR M19 4 m x6 x f2 r1 qp

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0
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Int Spec Check M20 1 s x3 imm13c r2 imm7a qp
FP Spec Check M21 1 s x3 imm13c f2 imm7a qp
Int ALAT Check M22 0 s x3 imm20b r1 qp
FP ALAT Check M23 0 s x3 imm20b f1 qp
Sync/Srlz/ALAT M24 0 x3 x2 x4 qp

RSE Control M25 0 x3 x2 x4 0
Int ALAT Inval M26 0 x3 x2 x4 r1 qp
FP ALAT Inval M27 0 x3 x2 x4 f1 qp
Flush Cache M28 1 x x3 x6 r3 qp
Move to AR M29 1 x3 x6 ar3 r2 qp

Move to AR Imm8 M30 0 s x3 x2 x4 ar3 imm7b qp
Move from AR M31 1 x3 x6 ar3 r1 qp
Move to CR M32 1 x3 x6 cr3 r2 qp

Move from CR M33 1 x3 x6 cr3 r1 qp
Alloc M34 1 x3 sor sol sof r1 qp

Move to PSR M35 1 x3 x6 r2 qp
Move from PSR M36 1 x3 x6 r1 qp

Break M37 0 i x3 x2 x4 imm20a qp
Probe M38 1 x3 x6 r3 r2 r1 qp

Probe Imm2 M39 1 x3 x6 r3 i2b r1 qp
Probe Fault Imm2 M40 1 x3 x6 r3 i2b qp

TC Insert M41 1 x3 x6 r2 qp
Mv to Ind/TR Ins M42 1 x3 x6 r3 r2 qp

Mv from Ind M43 1 x3 x6 r3 r1 qp
Set/Reset Mask M44 0 i x3 i2d x4 imm21a qp

Translation Purge M45 1 x3 x6 r3 r2 qp
Translation Access M46 1 x3 x6 r3 r1 qp

TC Entry Purge M47 1 x3 x6 r3 qp
Nop/Hint M48 0 i x3 x2 x4 y imm20a qp

IP-Relative Branch B1 4 s d wh imm20b p btype qp
Counted Branch B2 4 s d wh imm20b p btype 0
IP-Relative Call B3 5 s d wh imm20b p b1 qp
Indirect Branch B4 0 d wh x6 b2 p btype qp

Indirect Call B5 1 d wh b2 p b1 qp
IP-Relative Predict B6 7 s ih t2e imm20b timm7a wh

Indirect Predict B7 2 ih t2e x6 b2 timm7a wh
Misc B8 0 x6 0

Break/Nop/Hint B9 0/2 i x6 imm20a qp
FP Arithmetic F1 8 - D x sf f4 f3 f2 f1 qp

Fixed Multiply Add F2 E x x2 f4 f3 f2 f1 qp
FP Select F3 E x f4 f3 f2 f1 qp

FP Compare F4 4 rb sf ra p2 f3 f2 ta p1 qp
FP Class F5 5 fc2 p2 fclass7c f2 ta p1 qp

FP Recip Approx F6 0 - 1 q sf x p2 f3 f2 f1 qp
FP Recip Sqrt App F7 0 - 1 q sf x p2 f3 f1 qp
FP Min/Max/Pcmp F8 0 - 1 sf x x6 f3 f2 f1 qp
FP Merge/Logical F9 0 - 1 x x6 f3 f2 f1 qp

Convert FP to Fixed F10 0 - 1 sf x x6 f2 f1 qp
Convert Fixed to FP F11 0 x x6 f2 f1 qp

FP Set Controls F12 0 sf x x6 omask7c amask7b qp
FP Clear Flags F13 0 sf x x6 qp
FP Check Flags F14 0 s sf x x6 imm20a qp

Break F15 0 i x x6 imm20a qp
Nop/Hint F16 0 i x x6 y imm20a qp

Break X1 0 i x3 x6 imm20a qp imm41
Move Imm64 X2 6 i imm9d imm5c ic vc imm7b r1 qp imm41
Long Branch X3 C i d wh imm20b p btype qp imm39

Long Call X4 D i d wh imm20b p b1 qp imm39
Nop/Hint X5 0 i x3 x6 y imm20a qp imm41

Table 4-4.  Instruction Format Summary (Continued)

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0
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Table 4-5. Instruction Field Color Key

Field & Color

ALU Instruction Opcode Extension

Integer Instruction Opcode Hint Extension

Memory Instruction Immediate

Branch Instruction Indirect Source

Floating-point Instruction Predicate Destination

Integer Source Integer Destination

Memory Source Memory Source & Destination

Shift Source Shift Immediate

Special Register Source Special Register Destination

Floating-point Source Floating-point Destination

Branch Source Branch Destination

Address Source Branch Tag Immediate

Qualifying Predicate Reserved Instruction

Ignored Field/Instruction Reserved Inst if PR[qp] is 1

Reserved B-type Inst if PR[qp] is 1

Table 4-6. Instruction Field Names

Field Name Description

ar3 application register source/target

b1, b2 branch register source/target

btype branch type opcode extension

c complement compare relation opcode extension

ccount5c multimedia shift left complemented shift count immediate

count5b, count6d multimedia shift right/shift right pair shift count immediate

cposx deposit complemented bit position immediate

cr3 control register source/target

ct2d multimedia multiply shift/shift and add shift count immediate

d branch cache deallocation hint opcode extension

fn floating-point register source/target

fc2, fclass7c floating-point class immediate

hint memory reference hint opcode extension

i, i2b, i2d, immx immediate of length 1, 2, or x

ih branch importance hint opcode extension

len4d, len6d extract/deposit length immediate

m memory reference post-modify opcode extension

maskx predicate immediate mask

mbt4c, mht8c multimedia mux1/mux2 immediate

p sequential prefetch hint opcode extension

p1, p2 predicate register target

pos6b test bit/extract bit position immediate

q floating-point reciprocal/reciprocal square-root opcode extension

qp qualifying predicate register source

rn general register source/target

s immediate sign bit

sf floating-point status field opcode extension
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The remaining sections of this chapter present the detailed encodings of all instructions. 
The “A-Unit Instruction encodings” are presented first, followed by the “I-Unit 
Instruction Encodings” on page 3:310, “M-Unit Instruction Encodings” on page 3:323, 
“B-Unit Instruction Encodings” on page 3:349, “F-Unit Instruction Encodings” on 
page 3:356, and “X-Unit Instruction Encodings” on page 3:365.

Within each section, the instructions are grouped by function, and appear with their 
instruction format in the same order as in Table 4-4, “Instruction Format Summary” on 
page 3:296. The opcode extension fields are briefly described and tables present the 
opcode extension assignments. Unused instruction encodings (appearing as blank 
entries in the opcode extensions tables) behave in one of four ways:

• Ignored instructions (white color entries in the tables) execute as nop instructions.

• Reserved instructions (light gray color in the gray scale version of the tables, brown 
color in the color version) cause an Illegal Operation fault.

• Reserved if PR[qp] is 1 instructions (dark gray in the gray scale version of the 
tables, purple in the color version) cause an Illegal Operation fault if the predicate 
register specified by the qp field of the instruction (bits 5:0) is 1 and execute as a 
nop instruction if 0.

• Reserved if PR[qp] is 1 B-unit instructions (medium gray in the gray scale version 
of the tables, cyan in the color version) cause an Illegal Operation fault if the 
predicate register specified by the qp field of the instruction (bits 5:0) is 1 and 
execute as a nop instruction if 0. These differ from the Reserved if PR[qp] is 1 
instructions (purple) only in their RAW dependency behavior (see “RAW 
Dependency Table” on page 3:374).

sof, sol, sor alloc size of frame, size of locals, size of rotating immediates

ta, tb compare type opcode extension

t2e, timmx branch predict tag immediate

vx reserved opcode extension field

wh branch whether hint opcode extension

x, xn opcode extension of length 1 or n

y extract/deposit/test bit/test NaT/hint opcode extension

za, zb multimedia operand size opcode extension

Table 4-7. Special Instruction Notations

Notation Description

e instruction ends an instruction group when taken, or for Reserved if PR[qp] is 1 (cyan) 
encodings and non-branch instructions with a qualifying predicate, when its PR[qp] is 
1, or for Reserved (brown) encodings, unconditionally

f instruction must be the first instruction in an instruction group and must either be in 
instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0

i instruction is allowed in the I slot of an MLI template

l instruction must be the last in an instruction group

p privileged instruction

t instruction is only allowed in instruction slot 2

Table 4-6. Instruction Field Names (Continued)

Field Name Description
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Some processors may implement the Reserved if PR[qp] is 1 (purple) and Reserved if 
PR[qp] is 1 B-unit (cyan) encodings in the L+X opcode space as Reserved (brown). 
These encodings appear in the L+X column of Table 4-3 on page 3:295, and in 
Table 4-69 on page 3:366, Table 4-70 on page 3:366, Table 4-71 on page 3:367, and 
Table 4-72 on page 3:367. On processors which implement these encodings as 
Reserved (brown), the operating system is required to provide an Illegal Operation fault 
handler which emulates them as Reserved if PR[qp] is 1 (cyan/purple) by decoding the 
reserved opcodes, checking the qualifying predicate, and returning to the next 
instruction if PR[qp] is 0.

Constant 0 fields in instructions must be 0 or undefined operation results. The 
undefined operation may include checking that the constant field is 0 and causing an 
Illegal Operation fault if it is not. If an instruction having a constant 0 field also has a 
qualifying predicate (qp field), the fault or other undefined operation must not occur if 
PR[qp] is 0. For constant 0 fields in instruction bits 5:0 (normally used for qp), the fault 
or other undefined operation may or may not depend on the PR addressed by those 
bits.

Ignored (white space) fields in instructions should be coded as 0. Although ignored in 
this revision of the architecture, future architecture revisions may define these fields as 
hint extensions. These hint extensions will be defined such that the 0 value in each field 
corresponds to the default hint. It is expected that assemblers will automatically set 
these fields to zero by default.

Unused opcode hint extension values (white color entries in Hint Completer tables) 
should not be used by software. Processors must perform the architected functional 
behavior of the instruction independent of the hint extension value (whether defined or 
unused), but different processor models may interpret unused opcode hint extension 
values in different ways, resulting in undesirable performance effects.

4.2 A-Unit Instruction Encodings

4.2.1 Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode 
extension field in bits 35:34 (x2a) and most have a second 2-bit opcode extension field 
in bits 28:27 (x2b), a 4-bit opcode extension field in bits 32:29 (x4), and a 1-bit 
reserved opcode extension field in bit 33 (ve). Table 4-8 shows the 2-bit x2a and 1-bit 
ve assignments, Table 4-9 shows the integer ALU 4-bit+2-bit assignments, and 
Table 4-12 on page 3:306 shows the multimedia ALU 1-bit+2-bit assignments (which 
also share major opcode 8).

Table 4-8. Integer ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

ve
Bit 33

0 1

8

0 Integer ALU 4-bit+2-bit Ext (Table 4-9)

1 Multimedia ALU 1-bit+2-bit Ext (Table 4-12)

2 adds – imm14 A4

3 addp4 – imm14 A4
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4.2.1.1 Integer ALU – Register-Register

A1

4.2.1.2 Shift Left and Add

A2

Table 4-9. Integer ALU 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

ve
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 0 0

0 add A1 add +1 A1

1 sub -1 A1 sub A1

2 addp4 A1

3 and A1 andcm A1 or A1 xor A1

4 shladd A2

5

6 shladdp4 A2

7

8

9 sub – imm8 A3

A

B and – imm8 A3 andcm – imm8 A3 or – imm8 A3 xor – imm8 A3

C

D

E

F

40 373635343332 29282726 2019 1312 6 5 0

8 x2a ve x4 x2b r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b

add
r1 = r2, r3

8 0 0

0
0

r1 = r2, r3, 1 1

sub
r1 = r2, r3

1
1

r1 = r2, r3, 1 0

addp4

r1 = r2, r3

2 0

and

3

0

andcm 1

or 2

xor 3

40 373635343332 29282726 2019 1312 6 5 0

8 x2a ve x4 ct2d r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4

shladd
r1 = r2, count2, r3 8 0 0

4

shladdp4 6
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4.2.1.3 Integer ALU – Immediate8-Register

A3

4.2.1.4 Add Immediate14

A4

4.2.1.5 Add Immediate22

A5

4.2.2 Integer Compare

The integer compare instructions are encoded within major opcodes C - E using a 2-bit 
opcode extension field (x2) in bits 35:34 and three 1-bit opcode extension fields in bits 
33 (ta), 36 (tb), and 12 (c), as shown in Table 4-10. The integer compare immediate 
instructions are encoded within major opcodes C - E using a 2-bit opcode extension 
field (x2) in bits 35:34 and two 1-bit opcode extension fields in bits 33 (ta) and 12 (c), 
as shown in Table 4-11.

40 373635343332 29282726 2019 1312 6 5 0

8 s x2a ve x4 x2b r3 imm7b r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b

sub

r1 = imm8, r3 8 0 0

9 1

and

B

0

andcm 1

or 2

xor 3

40 373635343332 2726 2019 1312 6 5 0

8 s x2a ve imm6d r3 imm7b r1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve

adds
r1 = imm14, r3 8

2
0

addp4 3

40 373635 2726 22212019 1312 6 5 0

9 s imm9d imm5c r3 imm7b r1 qp

4 1 9 5 2 7 7 6

Instruction Operands Opcode

addl r1 = imm22, r3 9
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Table 4-10. Integer Compare Opcode Extensions

x2
Bits 

35:34

tb
Bit 
36

ta
Bit 
33

c
Bit 
12

Opcode
Bits 40:37

C D E

0

0

0
0 cmp.lt A6 cmp.ltu A6 cmp.eq A6

1 cmp.lt.unc A6 cmp.ltu.unc A6 cmp.eq.unc A6

1
0 cmp.eq.and A6 cmp.eq.or A6 cmp.eq.or.andcm A6

1 cmp.ne.and A6 cmp.ne.or A6 cmp.ne.or.andcm A6

1

0
0 cmp.gt.and A7 cmp.gt.or A7 cmp.gt.or.andcm A7

1 cmp.le.and A7 cmp.le.or A7 cmp.le.or.andcm A7

1
0 cmp.ge.and A7 cmp.ge.or A7 cmp.ge.or.andcm A7

1 cmp.lt.and A7 cmp.lt.or A7 cmp.lt.or.andcm A7

1

0

0
0 cmp4.lt A6 cmp4.ltu A6 cmp4.eq A6

1 cmp4.lt.unc A6 cmp4.ltu.unc A6 cmp4.eq.unc A6

1
0 cmp4.eq.and A6 cmp4.eq.or A6 cmp4.eq.or.andcm A6

1 cmp4.ne.and A6 cmp4.ne.or A6 cmp4.ne.or.andcm A6

1

0
0 cmp4.gt.and A7 cmp4.gt.or A7 cmp4.gt.or.andcm A7

1 cmp4.le.and A7 cmp4.le.or A7 cmp4.le.or.andcm A7

1
0 cmp4.ge.and A7 cmp4.ge.or A7 cmp4.ge.or.andcm A7

1 cmp4.lt.and A7 cmp4.lt.or A7 cmp4.lt.or.andcm A7

Table 4-11. Integer Compare Immediate Opcode Extensions

x2
Bits 

35:34

ta
Bit 
33

c
Bit 
12

Opcode
Bits 40:37

C D E

2

0
0 cmp.lt – imm8 A8 cmp.ltu – imm8 A8 cmp.eq – imm8 A8

1 cmp.lt.unc – imm8 A8 cmp.ltu.unc – imm8 A8 cmp.eq.unc – imm8 A8

1
0 cmp.eq.and – imm8 A8 cmp.eq.or – imm8 A8 cmp.eq.or.andcm – imm8 A8

1 cmp.ne.and – imm8 A8 cmp.ne.or – imm8 A8 cmp.ne.or.andcm – imm8 A8

3

0
0 cmp4.lt – imm8 A8 cmp4.ltu – imm8 A8 cmp4.eq – imm8 A8

1 cmp4.lt.unc – imm8 A8 cmp4.ltu.unc – imm8 A8 cmp4.eq.unc – imm8 A8

1

0
cmp4.eq.and – imm8 A8 cmp4.eq.or – imm8 A8 cmp4.eq.or.andcm – imm8 

A8

1
cmp4.ne.and – imm8 A8 cmp4.ne.or – imm8 A8 cmp4.ne.or.andcm – imm8 

A8
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4.2.2.1 Integer Compare – Register-Register

A6

40 373635343332 2726 2019 1312 11 6 5 0

C - E tb x2 ta p2 r3 r2 c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c

cmp.lt

p1, p2 = r2, r3

C

0 0

0

0cmp.ltu D

cmp.eq E

cmp.lt.unc C

1cmp.ltu.unc D

cmp.eq.unc E

cmp.eq.and C

1

0cmp.eq.or D

cmp.eq.or.andcm E

cmp.ne.and C

1cmp.ne.or D

cmp.ne.or.andcm E

cmp4.lt C

1 0

0

0cmp4.ltu D

cmp4.eq E

cmp4.lt.unc C

1cmp4.ltu.unc D

cmp4.eq.unc E

cmp4.eq.and C

1

0cmp4.eq.or D

cmp4.eq.or.andcm E

cmp4.ne.and C

1cmp4.ne.or D

cmp4.ne.or.andcm E
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4.2.2.2 Integer Compare to Zero – Register

A7

40 373635343332 2726 2019 1312 11 6 5 0

C - E tb x2 ta p2 r3 0 c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c

cmp.gt.and

p1, p2 = r0, r3

C

0

1

0

0cmp.gt.or D

cmp.gt.or.andcm E

cmp.le.and C

1cmp.le.or D

cmp.le.or.andcm E

cmp.ge.and C

1

0cmp.ge.or D

cmp.ge.or.andcm E

cmp.lt.and C

1cmp.lt.or D

cmp.lt.or.andcm E

cmp4.gt.and C

1

0

0cmp4.gt.or D

cmp4.gt.or.andcm E

cmp4.le.and C

1cmp4.le.or D

cmp4.le.or.andcm E

cmp4.ge.and C

1

0cmp4.ge.or D

cmp4.ge.or.andcm E

cmp4.lt.and C

1cmp4.lt.or D

cmp4.lt.or.andcm E
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4.2.2.3 Integer Compare – Immediate-Register

A8

4.2.3 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit 
opcode extension fields in bits 36 (za) and 33 (zb) and a 2-bit opcode extension field in 
bits 35:34 (x2a) as shown in Table 4-12. The multimedia ALU instructions also have a 
4-bit opcode extension field in bits 32:29 (x4), and a 2-bit opcode extension field in bits 
28:27 (x2b) as shown in Table 4-13 on page 3:307.

40 373635343332 2726 2019 1312 11 6 5 0

C - E s x2 ta p2 r3 imm7b c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 ta c

cmp.lt

p1, p2 = imm8, r3

C

2

0

0cmp.ltu D

cmp.eq E

cmp.lt.unc C

1cmp.ltu.unc D

cmp.eq.unc E

cmp.eq.and C

1

0cmp.eq.or D

cmp.eq.or.andcm E

cmp.ne.and C

1cmp.ne.or D

cmp.ne.or.andcm E

cmp4.lt C

3

0

0cmp4.ltu D

cmp4.eq E

cmp4.lt.unc C

1cmp4.ltu.unc D

cmp4.eq.unc E

cmp4.eq.and C

1

0cmp4.eq.or D

cmp4.eq.or.andcm E

cmp4.ne.and C

1cmp4.ne.or D

cmp4.ne.or.andcm E

Table 4-12. Multimedia ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits 40:37

x2a
Bits 35:34

za
Bit 36

zb
Bit 33

8 1

0
0 Multimedia ALU Size 1 (Table 4-13)

1 Multimedia ALU Size 2 (Table 4-14)

1
0 Multimedia ALU Size 4 (Table 4-15)

1
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Table 4-13. Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

za
Bit 
36

zb
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 0

0 padd1 A9 padd1.sss A9 padd1.uuu A9 padd1.uus A9

1 psub1 A9 psub1.sss A9 psub1.uuu A9 psub1.uus A9

2 pavg1 A9 pavg1.raz A9

3 pavgsub1 A9

4

5

6

7

8

9 pcmp1.eq A9 pcmp1.gt A9

A

B

C

D

E

F

Table 4-14. Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

za
Bit 
36

zb
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 1

0 padd2 A9 padd2.sss A9 padd2.uuu A9 padd2.uus A9

1 psub2 A9 psub2.sss A9 psub2.uuu A9 psub2.uus A9

2 pavg2 A9 pavg2.raz A9

3 pavgsub2 A9

4 pshladd2 A10

5

6 pshradd2 A10

7

8

9 pcmp2.eq A9 pcmp2.gt A9

A

B

C

D

E

F
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Table 4-15. Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

za
Bit 
36

zb
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 1 1 0

0 padd4 A9

1 psub4 A9

2

3

4

5

6

7

8

9 pcmp4.eq A9 pcmp4.gt A9

A

B

C

D

E

F
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4.2.3.1 Multimedia ALU

A9

4.2.3.2 Multimedia Shift and Add

A10

40 373635343332 29282726 2019 1312 6 5 0

8 za x2a zb x4 x2b r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4 x2b

padd1

r1 = r2, r3 8 1

0
0

0

0padd2 1

padd4 1 0

padd1.sss
0

0
1

padd2.sss 1

padd1.uuu
0

0
2

padd2.uuu 1

padd1.uus
0

0
3

padd2.uus 1

psub1
0

0

1

0psub2 1

psub4 1 0

psub1.sss
0

0
1

psub2.sss 1

psub1.uuu
0

0
2

psub2.uuu 1

psub1.uus
0

0
3

psub2.uus 1

pavg1
0

0

2

2
pavg2 1

pavg1.raz
0

0
3

pavg2.raz 1

pavgsub1
0

0
3 2

pavgsub2 1

pcmp1.eq
0

0

9

0pcmp2.eq 1

pcmp4.eq 1 0

pcmp1.gt
0

0

1pcmp2.gt 1

pcmp4.gt 1 0

40 373635343332 29282726 2019 1312 6 5 0

8 za x2a zb x4 ct2d r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4

pshladd2
r1 = r2, count2, r3 8 1 0 1

4

pshradd2 6
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4.3 I-Unit Instruction Encodings

4.3.1 Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift 
instructions are encoded within major opcode 7 using two 1-bit opcode extension fields 
in bits 36 (za) and 33 (zb) and a 1-bit reserved opcode extension in bit 32 (ve) as 
shown in Table 4-16. They also have a 2-bit opcode extension field in bits 35:34 (x2a) 
and a 2-bit field in bits 29:28 (x2b) and most have a 2-bit field in bits 31:30 (x2c) as 
shown in Table 4-17.

Table 4-16. Multimedia and Variable Shift 1-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 32

0 1

7

0
0 Multimedia Size 1 (Table 4-17)

1 Multimedia Size 2 (Table 4-18)

1
0 Multimedia Size 4 (Table 4-19)

1 Variable Shift (Table 4-20)

Table 4-17. Multimedia Opcode 7 Size 1 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 0 0 0

0

0

1

2

3

1

0

1

2

3

2

0 unpack1.h I2 mix1.r I2

1 pmin1.u I2 pmax1.u I2

2 unpack1.l I2 mix1.l I2

3 psad1 I2

3

0

1

2 mux1 I3

3
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Table 4-18. Multimedia Opcode 7 Size 2 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 0 1 0

0

0 pshr2.u – var I5 pshl2 – var I7

1 pmpyshr2.u I1

2 pshr2 – var I5

3 pmpyshr2 I1

1

0

1 pshr2.u – fixed I6 popcnt I9 clz I9

2

3 pshr2 – fixed I6

2

0 pack2.uss I2 unpack2.h I2 mix2.r I2

1 pmpy2.r I2

2 pack2.sss I2 unpack2.l I2 mix2.l I2

3 pmin2 I2 pmax2 I2 pmpy2.l I2

3

0

1 pshl2 – fixed I8

2 mux2 I4

3

Table 4-19. Multimedia Opcode 7 Size 4 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 1 0 0

0

0 pshr4.u – var I5 pshl4 – var I7

1 mpy4 I2

2 pshr4 – var I5

3 mpyshl4 I2

1

0

1 pshr4.u – fixed I6

2

3 pshr4 – fixed I6

2

0 unpack4.h I2 mix4.r I2

1

2 pack4.sss I2 unpack4.l I2 mix4.l I2

3

3

0

1 pshl4 – fixed I8

2

3
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4.3.1.1 Multimedia Multiply and Shift

I1

Table 4-20. Variable Shift Opcode 7 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 1 1 0

0

0 shr.u – var I5 shl – var I7

1

2 shr – var I5

3

1

0

1

2

3

2

0

1

2

3

3

0

1

2

3

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve ct2d x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b

pmpyshr2
r1 = r2, r3, count2 7 0 1 0 0

3

pmpyshr2.u 1
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4.3.1.2 Multimedia Multiply/Mix/Pack/Unpack

I2

4.3.1.3 Multimedia Mux1

I3

4.3.1.4 Multimedia Mux2

I4

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mpy4

r1 = r2, r3 7

1 0

0

0
1

3
mpyshl4 3

pmpy2.r
0 1

2

1
3

pmpy2.l 3

mix1.r 0 0

0

2

mix2.r 0 1

mix4.r 1 0

mix1.l 0 0

2mix2.l 0 1

mix4.l 1 0

pack2.uss 0 1 0

0pack2.sss 0 1
2

pack4.sss 1 0

unpack1.h 0 0

0

1

unpack2.h 0 1

unpack4.h 1 0

unpack1.l 0 0

2unpack2.l 0 1

unpack4.l 1 0

pmin1.u
0 0 1

0

pmax1.u 1

pmin2
0 1 3

0

pmax2 1

psad1 0 0 3 2

40 3736353433323130292827 2423 2019 1312 6 5 0

7 za x2a zb ve x2c x2b mbt4c r2 r1 qp

4 1 2 1 1 2 2 4 4 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mux1 r1 = r2, mbtype4 7 0 0 0 3 2 2

40 3736353433323130292827 2019 1312 6 5 0

7 za x2a zb ve x2c x2b mht8c r2 r1 qp

4 1 2 1 1 2 2 8 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mux2 r1 = r2, mhtype8 7 0 1 0 3 2 2
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4.3.1.5 Shift Right – Variable

I5

4.3.1.6 Multimedia Shift Right – Fixed

I6

4.3.1.7 Shift Left – Variable

I7

4.3.1.8 Multimedia Shift Left – Fixed

I8

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshr2

r1 = r3, r2 7

0 1

0 0

2

0

pshr4 1 0

shr 1 1

pshr2.u 0 1

0pshr4.u 1 0

shr.u 1 1

40 373635343332313029282726 201918 141312 6 5 0

7 za x2a zb ve x2c x2b r3 count5b r1 qp

4 1 2 1 1 2 2 1 7 1 5 1 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshr2

r1 = r3, count5 7

0 1

0 1

3

0
pshr4 1 0

pshr2.u 0 1
1

pshr4.u 1 0

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshl2

r1 = r2, r3 7

0 1

0 0 0 1pshl4 1 0

shl 1 1

40 3736353433323130292827 2524 2019 1312 6 5 0

7 za x2a zb ve x2c x2b ccount5c r2 r1 qp

4 1 2 1 1 2 2 3 5 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshl2
r1 = r2, count5 7

0 1
0 3 1 1

pshl4 1 0
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4.3.1.9 Bit Strings

I9

4.3.2 Integer Shifts

The integer shift, test bit, and test NaT instructions are encoded within major opcode 5 
using a 2-bit opcode extension field in bits 35:34 (x2) and a 1-bit opcode extension 
field in bit 33 (x). The extract and test bit instructions also have a 1-bit opcode 
extension field in bit 13 (y). Table 4-21 shows the test bit, extract, and shift right pair 
assignments.

Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y). 
Table 4-22 shows these assignments.

4.3.2.1 Shift Right Pair

I10

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 0 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

popcnt
r1 = r3 7 0 1 0 1 1

2

clz 3

Table 4-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions

Opcode
Bits 40:37

x2
Bits 35:34

x
Bit 33

y
Bit 13

0 1

5

0

0

Test Bit (Table 4-23) Test NaT/Test Feature (Table 4-23)

1 extr.u I11 extr I11

2

3 shrp I10

Table 4-22. Deposit Opcode Extensions

Opcode
Bits 40:37

x2
Bits 35:34

x
Bit 33

y
Bit 26

0 1

5

0

1

Test Bit/Test NaT/Test Feature (Table 4-23)

1 dep.z I12 dep.z – imm8 I13

2

3 dep – imm1 I14

40 373635343332 2726 2019 1312 6 5 0

5 x2 x count6d r3 r2 r1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x2 x

shrp r1 = r2, r3, count6 5 3 0
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4.3.2.2 Extract

I11

4.3.2.3 Zero and Deposit

I12

4.3.2.4 Zero and Deposit Immediate8

I13

4.3.2.5 Deposit Immediate1

I14

4.3.2.6 Deposit

I15

4.3.3 Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode 
extension field in bits 35:34 (x2) plus five 1-bit opcode extension fields in bits 33 (ta), 
36 (tb), 12 (c), 13 (y) and 19 (x). Table 4-23 summarizes these assignments.

40 37 36 35 34 33 32 27 26 20 19 14 13 12 6 5 0

5 x2 x len6d r3 pos6b y r1 qp

4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension

x2 x y

extr.u
r1 = r3, pos6, len6 5 1 0

0

extr 1

40 373635343332 272625 2019 1312 6 5 0

5 x2 x len6d y cpos6c r2 r1 qp

4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y

dep.z r1 = r2, pos6, len6 5 1 1 0

40 373635343332 272625 2019 1312 6 5 0

5 s x2 x len6d y cpos6c imm7b r1 qp

4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y

dep.z r1 = imm8, pos6, len6 5 1 1 1

40 373635343332 2726 2019 141312 6 5 0

5 s x2 x len6d r3 cpos6b r1 qp

4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension

x2 x

dep r1 = imm1, r3, pos6, len6 5 3 1

40 3736 3130 2726 2019 1312 6 5 0

4 cpos6d len4d r3 r2 r1 qp

4 6 4 7 7 7 6

Instruction Operands Opcode

dep r1 = r2, r3, pos6, len4 4
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4.3.3.1 Test Bit

I16

Table 4-23. Test Bit Opcode Extensions

Opcode
Bits 40:37

x2
Bits 

35:34

ta
Bit 33

tb
Bit 36

c
Bit 12

y
Bit 13

x
Bit 19

0 1

5 0

0

0

0
0 tbit.z I16

1 tnat.z I17 tf.z I30

1
0 tbit.z.unc I16

1 tnat.z.unc I17 tf.z.unc I30

1

0
0 tbit.z.and I16

1 tnat.z.and I17 tf.z.and I30

1
0 tbit.nz.and I16

1 tnat.nz.and I17 tf.nz.and I30

1

0

0
0 tbit.z.or I16

1 tnat.z.or I17 tf.z.or I30

1
0 tbit.nz.or I16

1 tnat.nz.or I17 tf.nz.or I30

1

0
0 tbit.z.or.andcm I16

1 tnat.z.or.andcm I17 tf.z.or.andcm I30

1
0 tbit.nz.or.andcm I16

1 tnat.nz.or.andcm I17 tf.nz.or.andcm I30

40 373635343332 2726 2019 141312 11 6 5 0

5 tb x2 ta p2 r3 pos6b y c p1 qp

4 1 2 1 6 7 6 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y c

tbit.z

p1, p2 = r3, pos6 5 0

0

0

0

0

tbit.z.unc 1

tbit.z.and
1

0

tbit.nz.and 1

tbit.z.or

1

0
0

tbit.nz.or 1

tbit.z.or.andcm
1

0

tbit.nz.or.andcm 1
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4.3.3.2 Test NaT

I17

4.3.4 Miscellaneous I-Unit Instructions

The miscellaneous I-unit instructions are encoded in major opcode 0 using a 3-bit 
opcode extension field (x3) in bits 35:33. Some also have a 6-bit opcode extension field 
(x6) in bits 32:27. Table 4-24 shows the 3-bit assignments and Table 4-25 summarizes 
the 6-bit assignments.

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 r3 x y c p1 qp

4 1 2 1 6 7 1 5 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y x c

tnat.z

p1, p2 = r3 5 0

0

0

1 0

0

tnat.z.unc 1

tnat.z.and
1

0

tnat.nz.and 1

tnat.z.or

1

0
0

tnat.nz.or 1

tnat.z.or.andcm
1

0

tnat.nz.or.andcm 1

Table 4-24. Misc I-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0 6-bit Ext (Table 4-25)

1 chk.s.i – int I20

2 mov to pr.rot – imm44 I24

3 mov to pr I23

4

5

6

7 mov to b I21
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4.3.4.1 Nop/Hint (I-Unit)

I-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode 
extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (x6), and 
a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-26.

I18

Table 4-25. Misc I-Unit 6-bit Opcode Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x6

Bits 
30:27

Bits 32:31

0 1 2 3

0 0

0 break.i I19 zxt1 I29 mov from ip I25

1 1-bit Ext (Table 4-26) zxt2 I29 mov from b I22

2 zxt4 I29 mov.i from ar I28

3 mov from pr I25

4 sxt1 I29

5 sxt2 I29

6 sxt4 I29

7

8 czx1.l I29

9 czx2.l I29

A mov.i to ar – imm8 I27 mov.i to ar I26

B

C czx1.r I29

D czx2.r I29

E

F

Table 4-26. Misc I-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.i

1 hint.i

40 373635 3332 272625 6 5 0

0 i x3 x6 y imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x3 x6 y

nop.i i
imm21 0 0 01

0

hint.i 1
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4.3.4.2 Break (I-Unit)

I19

4.3.4.3 Integer Speculation Check (I-Unit)

I20

4.3.5 GR/BR Moves

The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit 
Instructions” on page 3:318 for a summary of the opcode extensions. The mov to BR 
instruction uses a 2-bit “whether” prediction hint field in bits 21:20 (wh) as shown in 
Table 4-27.

The mov to BR instruction also uses a 1-bit opcode extension field (x) in bit 22 to 
distinguish the return form from the normal form, and a 1-bit hint extension in bit 23 
(ih) (see Table 4-56 on page 3:354).

4.3.5.1 Move to BR

I21

40 373635 3332 272625 6 5 0

0 i x3 x6 imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x3 x6

break.i i imm21 0 0 00

40 373635 3332 2019 1312 6 5 0

0 s x3 imm13c r2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s.i r2, target25 0 1

Table 4-27. Move to BR Whether Hint Completer

wh
Bits 21:20

mwh

0 .sptk

1 none 

2 .dptk

3

40 373635 3332 242322212019 1312 9 8 6 5 0

0 x3 timm9c ih x wh r2 b1 qp

4 1 3 9 1 1 2 7 4 3 6

Instruction Operands Opcode
Extension

x3 x ih wh

mov.mwh.ih
b1 = r2, tag13 0 7

0 See Table 4-56 
on page 3:354

See Table 4-27 
on page 3:320mov.ret.mwh.ih 1
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4.3.5.2 Move from BR

I22

4.3.6 GR/Predicate/IP Moves

The GR/Predicate/IP move instructions are encoded in major opcode 0. See 
“Miscellaneous I-Unit Instructions” on page 3:318 for a summary of the opcode 
extensions.

4.3.6.1 Move to Predicates – Register

I23

4.3.6.2 Move to Predicates – Immediate44

I24

4.3.6.3 Move from Predicates/IP

I25

4.3.7 GR/AR Moves (I-Unit)

The I-Unit GR/AR move instructions are encoded in major opcode 0. (Some ARs are 
accessed using system/memory management instructions on the M-unit. See “GR/AR 
Moves (M-Unit)” on page 3:342.) See “Miscellaneous I-Unit Instructions” on 
page 3:318 for a summary of the I-Unit GR/AR opcode extensions.

40 373635 3332 2726 1615 1312 6 5 0

0 x3 x6 b2 r1 qp

4 1 3 6 11 3 7 6

Instruction Operands Opcode
Extension

x3 x6

mov r1 = b2 0 0 31

40 373635 333231 2423 2019 1312 6 5 0

0 s x3 mask8c r2 mask7a qp

4 1 3 1 8 4 7 7 6

Instruction Operands Opcode
Extension

x3

mov pr = r2, mask17 0 3

40 373635 3332 6 5 0

0 s x3 imm27a qp

4 1 3 27 6

Instruction Operands Opcode
Extension

x3

mov pr.rot = imm44 0 2

40 373635 3332 2726 1312 6 5 0

0 x3 x6 r1 qp

4 1 3 6 14 7 6

Instruction Operands Opcode
Extension

x3 x6

mov
r1 = ip

0 0
30

r1 = pr 33
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4.3.7.1 Move to AR – Register (I-Unit)

I26

4.3.7.2 Move to AR – Immediate8 (I-Unit)

I27

4.3.7.3 Move from AR (I-Unit)

I28

4.3.8 Sign/Zero Extend/Compute Zero Index

I29

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 ar3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i ar3 = r2 0 0 2A

40 373635 3332 2726 2019 1312 6 5 0

0 s x3 x6 ar3 imm7b qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i ar3 = imm8 0 0 0A

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 ar3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i r1 = ar3 0 0 32

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

zxt1

r1 = r3 0 0

10

zxt2 11

zxt4 12

sxt1 14

sxt2 15

sxt4 16

czx1.l 18

czx2.l 19

czx1.r 1C

czx2.r 1D
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4.3.9 Test Feature

I30

4.4 M-Unit Instruction Encodings

4.4.1 Loads and Stores

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a 
6-bit opcode extension field in bits 35:30 (x6). Instructions in major opcode 4 (integer 
load/store, semaphores, and get FR) use two 1-bit opcode extension fields in bit 36 (m) 
and bit 27 (x) as shown in Table 4-28. Instructions in major opcode 6 (floating-point 
load/store, load pair, and set FR) use two 1-bit opcode extension fields in bit 36 (m) 
and bit 27 (x) as shown in Table 4-29.

The integer load/store opcode extensions are summarized in Table 4-30 on page 3:324, 
Table 4-31 on page 3:324, and Table 4-32 on page 3:325, and the semaphore and get 
FR opcode extensions in Table 4-33 on page 3:325. The floating-point load/store 

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 0 x imm5b y c p1 qp

4 1 2 1 6 7 1 5 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y x c

tf.z

p1, p2 = imm5 5 0

0

0

1 1

0

tf.z.unc 1

tf.z.and
1

0

tf.nz.and 1

tf.z.or

1

0
0

tf.nz.or 1

tf.z.or.andcm
1

0

tf.nz.or.andcm 1

Table 4-28. Integer Load/Store/Semaphore/Get FR 1-bit Opcode 
Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

4

0 0 Load/Store (Table 4-30)

0 1 Semaphore/get FR (Table 4-33)

1 0 Load +Reg (Table 4-31)

1 1

Table 4-29. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode 
Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

6

0 0 FP Load/Store (Table 4-34)

0 1 FP Load Pair/set FR (Table 4-37)

1 0 FP Load +Reg (Table 4-35)

1 1 FP Load Pair +Imm (Table 4-38)
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opcode extensions are summarized in Table 4-34 on page 3:326, Table 4-35 on 
page 3:326, and Table 4-36 on page 3:327, the floating-point load pair and set FR 
opcode extensions in Table 4-37 on page 3:327 and Table 4-38 on page 3:328.

Table 4-30. Integer Load/Store Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6

Bits 
35:32

Bits 31:30

0 1 2 3

4 0 0

0 ld1 M2 ld2 M2 ld4 M2 ld8 M2

1 ld1.s M2 ld2.s M2 ld4.s M2 ld8.s M2

2 ld1.a M2 ld2.a M2 ld4.a M2 ld8.a M2

3 ld1.sa M2 ld2.sa M2 ld4.sa M2 ld8.sa M2

4 ld1.bias M2 ld2.bias M2 ld4.bias M2 ld8.bias M2

5 ld1.acq M2 ld2.acq M2 ld4.acq M2 ld8.acq M2

6 ld8.fill M2

7

8 ld1.c.clr M2 ld2.c.clr M2 ld4.c.clr M2 ld8.c.clr M2

9 ld1.c.nc M2 ld2.c.nc M2 ld4.c.nc M2 ld8.c.nc M2

A ld1.c.clr.acq M2 ld2.c.clr.acq M2 ld4.c.clr.acq M2 ld8.c.clr.acq M2

B

C st1 M6 st2 M6 st4 M6 st8 M6

D st1.rel M6 st2.rel M6 st4.rel M6 st8.rel M6

E st8.spill M6

F

Table 4-31. Integer Load +Reg Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6

Bits 
35:32

Bits 31:30

0 1 2 3

4 1 0

0 ld1 M2 ld2 M2 ld4 M2 ld8 M2

1 ld1.s M2 ld2.s M2 ld4.s M2 ld8.s M2

2 ld1.a M2 ld2.a M2 ld4.a M2 ld8.a M2

3 ld1.sa M2 ld2.sa M2 ld4.sa M2 ld8.sa M2

4 ld1.bias M2 ld2.bias M2 ld4.bias M2 ld8.bias M2

5 ld1.acq M2 ld2.acq M2 ld4.acq M2 ld8.acq M2

6 ld8.fill M2

7

8 ld1.c.clr M2 ld2.c.clr M2 ld4.c.clr M2 ld8.c.clr M2

9 ld1.c.nc M2 ld2.c.nc M2 ld4.c.nc M2 ld8.c.nc M2

A ld1.c.clr.acq M2 ld2.c.clr.acq M2 ld4.c.clr.acq M2 ld8.c.clr.acq M2

B

C

D

E

F



Volume 3: Instruction Formats 3:325

Table 4-32. Integer Load/Store +Imm Opcode Extensions

Opcode
Bits 

40:37

x6

Bits 
35:32

Bits 31:30

0 1 2 3

5

0 ld1 M3 ld2 M3 ld4 M3 ld8 M3

1 ld1.s M3 ld2.s M3 ld4.s M3 ld8.s M3

2 ld1.a M3 ld2.a M3 ld4.a M3 ld8.a M3

3 ld1.sa M3 ld2.sa M3 ld4.sa M3 ld8.sa M3

4 ld1.bias M3 ld2.bias M3 ld4.bias M3 ld8.bias M3

5 ld1.acq M3 ld2.acq M3 ld4.acq M3 ld8.acq M3

6 ld8.fill M3

7

8 ld1.c.clr M3 ld2.c.clr M3 ld4.c.clr M3 ld8.c.clr M3

9 ld1.c.nc M3 ld2.c.nc M3 ld4.c.nc M3 ld8.c.nc M3

A ld1.c.clr.acq M3 ld2.c.clr.acq M3 ld4.c.clr.acq M3 ld8.c.clr.acq M3

B

C st1 M5 st2 M5 st4 M5 st8 M5

D st1.rel M5 st2.rel M5 st4.rel M5 st8.rel M5

E st8.spill M5

F

Table 4-33. Semaphore/Get FR/16-Byte Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6

Bits 
35:32

Bits 31:30

0 1 2 3

4 0 1

0
cmpxchg1.acq 

M16
cmpxchg2.acq 

M16
cmpxchg4.acq 

M16
cmpxchg8.acq M16

1 cmpxchg1.rel M16 cmpxchg2.rel M16 cmpxchg4.rel M16 cmpxchg8.rel M16

2 xchg1 M16 xchg2 M16 xchg4 M16 xchg8 M16

3

4
fetchadd4.acq 

M17
fetchadd8.acq M17

5 fetchadd4.rel M17 fetchadd8.rel M17

6

7 getf.sig M19 getf.exp M19 getf.s M19 getf.d M19

8
cmp8xchg16.acq 

M16

9
cmp8xchg16.rel 

M16

A ld16 M2

B ld16.acq M2

C st16 M6

D st16.rel M6

E

F
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Table 4-34. Floating-point Load/Store/Lfetch Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6

Bits 
35:32

Bits 31:30

0 1 2 3

6 0 0

0 ldfe M9 ldf8 M9 ldfs M9 ldfd M9

1 ldfe.s M9 ldf8.s M9 ldfs.s M9 ldfd.s M9

2 ldfe.a M9 ldf8.a M9 ldfs.a M9 ldfd.a M9

3 ldfe.sa M9 ldf8.sa M9 ldfs.sa M9 ldfd.sa M9

4

5

6 ldf.fill M9

7

8 ldfe.c.clr M9 ldf8.c.clr M9 ldfs.c.clr M9 ldfd.c.clr M9

9 ldfe.c.nc M9 ldf8.c.nc M9 ldfs.c.nc M9 ldfd.c.nc M9

A

B lfetch M18 lfetch.excl M18 lfetch.fault M18 lfetch.fault.excl M18

C stfe M13 stf8 M13 stfs M13 stfd M13

D

E stf.spill M13

F

Table 4-35. Floating-point Load/Lfetch +Reg Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6

Bits 
35:32

Bits 31:30

0 1 2 3

6 1 0

0 ldfe M7 ldf8 M7 ldfs M7 ldfd M7

1 ldfe.s M7 ldf8.s M7 ldfs.s M7 ldfd.s M7

2 ldfe.a M7 ldf8.a M7 ldfs.a M7 ldfd.a M7

3 ldfe.sa M7 ldf8.sa M7 ldfs.sa M7 ldfd.sa M7

4

5

6 ldf.fill M7

7

8 ldfe.c.clr M7 ldf8.c.clr M7 ldfs.c.clr M7 ldfd.c.clr M7

9 ldfe.c.nc M7 ldf8.c.nc M7 ldfs.c.nc M7 ldfd.c.nc M7

A

B lfetch M20 lfetch.excl M20 lfetch.fault M20 lfetch.fault.excl M20

C

D

E

F
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Table 4-36. Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Opcode
Bits 

40:37

x6

Bits 
35:32

Bits 31:30

0 1 2 3

7

0 ldfe M8 ldf8 M8 ldfs M8 ldfd M8

1 ldfe.s M8 ldf8.s M8 ldfs.s M8 ldfd.s M8

2 ldfe.a M8 ldf8.a M8 ldfs.a M8 ldfd.a M8

3 ldfe.sa M8 ldf8.sa M8 ldfs.sa M8 ldfd.sa M8

4

5

6 ldf.fill M8

7

8 ldfe.c.clr M8 ldf8.c.clr M8 ldfs.c.clr M8 ldfd.c.clr M8

9 ldfe.c.nc M8 ldf8.c.nc M8 ldfs.c.nc M8 ldfd.c.nc M8

A

B lfetch M22 lfetch.excl M22 lfetch.fault M22 lfetch.fault.excl M22

C stfe M10 stf8 M10 stfs M10 stfd M10

D

E stf.spill M10

F

Table 4-37. Floating-point Load Pair/Set FR Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6

Bits 
35:32

Bits 31:30

0 1 2 3

6 0 1

0 ldfp8 M11 ldfps M11 ldfpd M11

1 ldfp8.s M11 ldfps.s M11 ldfpd.s M11

2 ldfp8.a M11 ldfps.a M11 ldfpd.a M11

3 ldfp8.sa M11 ldfps.sa M11 ldfpd.sa M11

4

5

6

7 setf.sig M18 setf.exp M18 setf.s M18 setf.d M18

8 ldfp8.c.clr M11 ldfps.c.clr M11 ldfpd.c.clr M11

9 ldfp8.c.nc M11 ldfps.c.nc M11 ldfpd.c.nc M11

A

B

C

D

E

F
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The load and store instructions all have a 2-bit cache locality opcode hint extension field 
in bits 29:28 (hint). Table 4-39 and Table 4-40 summarize these assignments.

Table 4-38. Floating-point Load Pair +Imm Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6

Bits 
35:32

Bits 31:30

0 1 2 3

6 1 1

0 ldfp8 M12 ldfps M12 ldfpd M12

1 ldfp8.s M12 ldfps.s M12 ldfpd.s M12

2 ldfp8.a M12 ldfps.a M12 ldfpd.a M12

3 ldfp8.sa M12 ldfps.sa M12 ldfpd.sa M12

4

5

6

7

8 ldfp8.c.clr M12 ldfps.c.clr M12 ldfpd.c.clr M12

9 ldfp8.c.nc M12 ldfps.c.nc M12 ldfpd.c.nc M12

A

B

C

D

E

F

Table 4-39. Load Hint Completer

hint
Bits 29:28

ldhint

0 none 

1 .nt1

2

3 .nta

Table 4-40. Store Hint Completer

hint
Bits 29:28

sthint

0 none 

1

2

3 .nta
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4.4.1.1 Integer Load

M2

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ld1.ldhint

r1 = [r3]

4

0 0

00

See Table 4-39 
on page 3:328

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B

ld16.ldhint
r1, ar.csd = [r3] 0 1

28

ld16.acq.ldhint 2C
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4.4.1.2 Integer Load – Increment by Register

M2

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ld1.ldhint

r1 = [r3], r2 4 1 0

00

See Table 4-39 
on page 3:328

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B
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4.4.1.3 Integer Load – Increment by Immediate

M3

40 373635 3029282726 2019 1312 6 5 0

5 s x6 hint i r3 imm7b r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

ld1.ldhint

r1 = [r3], imm9 5

00

See Table 4-39 on 
page 3:328

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B
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4.4.1.4 Integer Store

M6

4.4.1.5 Integer Store – Increment by Immediate

M5

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

st1.sthint

[r3] = r2
4

0 0

30

See Table 4-40 
on page 3:328

st2.sthint 31

st4.sthint 32

st8.sthint 33

st1.rel.sthint 34

st2.rel.sthint 35

st4.rel.sthint 36

st8.rel.sthint 37

st8.spill.sthint 3B

st16.sthint
[r3] = r2, ar.csd 0 1

30

st16.rel.sthint 34

40 373635 3029282726 2019 1312 6 5 0

5 s x6 hint i r3 r2 imm7a qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

st1.sthint

[r3] = r2, imm9 5

30

See Table 4-40 on 
page 3:328

st2.sthint 31

st4.sthint 32

st8.sthint 33

st1.rel.sthint 34

st2.rel.sthint 35

st4.rel.sthint 36

st8.rel.sthint 37

st8.spill.sthint 3B
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4.4.1.6 Floating-point Load

M9

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfs.ldhint

f1 = [r3] 6 0 0

02

See Table 4-39 
on page 3:328

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24
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4.4.1.7 Floating-point Load – Increment by Register

M7

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 r2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfs.ldhint

f1 = [r3], r2 6 1 0

02

See Table 4-39 on 
page 3:328

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24
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4.4.1.8 Floating-point Load – Increment by Immediate

M8

4.4.1.9 Floating-point Store

M13

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 imm7b f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

ldfs.ldhint

f1 = [r3], imm9 7

02

See Table 4-39 on 
page 3:328

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

stfs.sthint

[r3] = f2 6 0 0

32

See Table 4-40 on 
page 3:328

stfd.sthint 33

stf8.sthint 31

stfe.sthint 30

stf.spill.sthint 3B
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4.4.1.10 Floating-point Store – Increment by Immediate

M10

4.4.1.11 Floating-point Load Pair

M11

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 f2 imm7a qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

stfs.sthint

[r3] = f2, imm9 7

32

See Table 4-40 on 
page 3:328

stfd.sthint 33

stf8.sthint 31

stfe.sthint 30

stf.spill.sthint 3B

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfps.ldhint

f1, f2 = [r3] 6 0 1

02

See Table 4-39 
on page 3:328

ldfpd.ldhint 03

ldfp8.ldhint 01

ldfps.s.ldhint 06

ldfpd.s.ldhint 07

ldfp8.s.ldhint 05

ldfps.a.ldhint 0A

ldfpd.a.ldhint 0B

ldfp8.a.ldhint 09

ldfps.sa.ldhint 0E

ldfpd.sa.ldhint 0F

ldfp8.sa.ldhint 0D

ldfps.c.clr.ldhint 22

ldfpd.c.clr.ldhint 23

ldfp8.c.clr.ldhint 21

ldfps.c.nc.ldhint 26

ldfpd.c.nc.ldhint 27

ldfp8.c.nc.ldhint 25
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4.4.1.12 Floating-point Load Pair – Increment by Immediate

M12

4.4.2 Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the 
floating-point load/store instructions. See “Loads and Stores” on page 3:323 for a 
summary of the opcode extensions.

The line prefetch instructions all have a 2-bit cache locality opcode hint extension field 
in bits 29:28 (hint) as shown in Table 4-44.

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfps.ldhint f1, f2 = [r3], 8

6 1 1

02

See Table 4-39 
on page 3:328

ldfpd.ldhint
f1, f2 = [r3], 16

03

ldfp8.ldhint 01

ldfps.s.ldhint f1, f2 = [r3], 8 06

ldfpd.s.ldhint
f1, f2 = [r3], 16

07

ldfp8.s.ldhint 05

ldfps.a.ldhint f1, f2 = [r3], 8 0A

ldfpd.a.ldhint
f1, f2 = [r3], 16

0B

ldfp8.a.ldhint 09

ldfps.sa.ldhint f1, f2 = [r3], 8 0E

ldfpd.sa.ldhint
f1, f2 = [r3], 16

0F

ldfp8.sa.ldhint 0D

ldfps.c.clr.ldhint f1, f2 = [r3], 8 22

ldfpd.c.clr.ldhint
f1, f2 = [r3], 16

23

ldfp8.c.clr.ldhint 21

ldfps.c.nc.ldhint f1, f2 = [r3], 8 26

ldfpd.c.nc.ldhint
f1, f2 = [r3], 16

27

ldfp8.c.nc.ldhint 25

Table 4-41. Line Prefetch Hint Completer

hint
Bits 29:28

lfhint

0 none 

1 .nt1

2 .nt2

3 .nta
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4.4.2.1 Line Prefetch

M13

4.4.2.2 Line Prefetch – Increment by Register

M14

4.4.2.3 Line Prefetch – Increment by Immediate

M15

4.4.3 Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer 
load/store instructions. See “Loads and Stores” on page 3:323 for a summary of the 
opcode extensions. These instructions have the same cache locality opcode hint 
extension field in bits 29:28 (hint) as load instructions. See Table 4-39, “Load Hint 
Completer” on page 3:328.

40 373635 3029282726 2019 6 5 0

6 m x6 hint x r3 qp

4 1 6 2 1 7 14 6

Instruction Operands Opcode
Extension

m x x6 hint

lfetch.excl.lfhint

[r3] 6 0 0

2D
See Table 4-41 on 

page 3:337
lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 r2 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

lfetch.lfhint

[r3], r2 6 1 0

2C

See Table 4-41 on 
page 3:337

lfetch.excl.lfhint 2D

lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 imm7b qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

lfetch.lfhint

[r3], imm9 7

2C

See Table 4-41 on 
page 3:337

lfetch.excl.lfhint 2D

lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F
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4.4.3.1 Exchange/Compare and Exchange

M16

4.4.3.2 Fetch and Add – Immediate

M17

4.4.4 Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point 
load/store instructions. The get FR instructions are encoded in major opcode 4 along 
with the integer load/store instructions. See “Loads and Stores” on page 3:323 for a 
summary of the opcode extensions.

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

cmpxchg1.acq.ldhint

r1 = [r3], r2, ar.ccv

4 0 1

00

See 
Table 4-39 on 
page 3:328

cmpxchg2.acq.ldhint 01

cmpxchg4.acq.ldhint 02

cmpxchg8.acq.ldhint 03

cmpxchg1.rel.ldhint 04

cmpxchg2.rel.ldhint 05

cmpxchg4.rel.ldhint 06

cmpxchg8.rel.ldhint 07

cmp8xchg16.acq.ldhint
r1 = [r3], r2, ar.csd, ar.ccv

20

cmp8xchg16.rel.ldhint 24

xchg1.ldhint

r1 = [r3], r2

08

xchg2.ldhint 09

xchg4.ldhint 0A

xchg8.ldhint 0B

40 373635 3029282726 2019 1615141312 6 5 0

4 m x6 hint x r3 s i2b r1 qp

4 1 6 2 1 7 4 1 2 7 6

Instruction Operands Opcode
Extension

m x x6 hint

fetchadd4.acq.ldhint

r1 = [r3], inc3 4 0 1

12

See Table 4-39 
on page 3:328

fetchadd8.acq.ldhint 13

fetchadd4.rel.ldhint 16

fetchadd8.rel.ldhint 17
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4.4.4.1 Set FR

M18

4.4.4.2 Get FR

M19

4.4.5 Speculation and Advanced Load Checks

The speculation and advanced load check instructions are encoded in major opcodes 0 
and 1 along with the system/memory management instructions. See “System/Memory 
Management” on page 3:345 for a summary of the opcode extensions.

4.4.5.1 Integer Speculation Check (M-Unit)

M20

4.4.5.2 Floating-point Speculation Check

M21

40 373635 3029282726 2019 1312 6 5 0

6 m x6 x r2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6

setf.sig

f1 = r2 6 0 1

1C

setf.exp 1D

setf.s 1E

setf.d 1F

40 373635 3029282726 2019 1312 6 5 0

4 m x6 x f2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6

getf.sig

r1 = f2 4 0 1

1C

getf.exp 1D

getf.s 1E

getf.d 1F

40 373635 3332 2019 1312 6 5 0

1 s x3 imm13c r2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s.m r2, target25 1 1

40 373635 3332 2019 1312 6 5 0

1 s x3 imm13c f2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s f2, target25 1 3
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4.4.5.3 Integer Advanced Load Check

M22

4.4.5.4 Floating-point Advanced Load Check

M23

4.4.6 Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along 
with the memory management instructions. See “System/Memory Management” on 
page 3:345 for a summary of the opcode extensions.

4.4.6.1 Sync/Fence/Serialize/ALAT Control

M24

40 373635 3332 1312 6 5 0

0 s x3 imm20b r1 qp

4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3

chk.a.nc
r1, target25 0

4

chk.a.clr 5

40 373635 3332 1312 6 5 0

0 s x3 imm20b f1 qp

4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3

chk.a.nc
f1, target25 0

6

chk.a.clr 7

40 373635 33323130 2726 6 5 0

0 x3 x2 x4 qp

4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2

invala

0 0

0 1

fwb 0

2mf 2

mf.a 3

srlz.d 0

3srlz.i 1

sync.i 3
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4.4.6.2 RSE Control

M25

4.4.6.3 Integer ALAT Entry Invalidate

M26

4.4.6.4 Floating-point ALAT Entry Invalidate

M27

4.4.6.5 Flush Cache

M28

4.4.7 GR/AR Moves (M-Unit)

The M-Unit GR/AR move instructions are encoded in major opcode 0 along with the 
system/memory management instructions. (Some ARs are accessed using system 
control instructions on the I-unit. See “GR/AR Moves (I-Unit)” on page 3:321.) See 
“System/Memory Management” on page 3:345 for a summary of the M-Unit GR/AR 
opcode extensions.

40 373635 33323130 2726 6 5 0

0 x3 x2 x4 0

4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2

flushrs f

0 0
C

0
loadrs f A

40 373635 33323130 2726 1312 6 5 0

0 x3 x2 x4 r1 qp

4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

invala.e r1 0 0 2 1

40 373635 33323130 2726 1312 6 5 0

0 x3 x2 x4 f1 qp

4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

invala.e f1 0 0 3 1

40 373635 3332 2726 2019 6 5 0

1 x x3 x6 r3 qp

4 1 3 6 7 14 6

Instruction Operands Opcode
Extension

x3 x6 x

fc
r3 1 0 30

0

fc.i 1
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4.4.7.1 Move to AR – Register (M-Unit)

M29

4.4.7.2 Move to AR – Immediate8 (M-Unit)

M30

4.4.7.3 Move from AR (M-Unit)

M31

4.4.8 GR/CR Moves

The GR/CR move instructions are encoded in major opcode 0 along with the 
system/memory management instructions. See “System/Memory Management” on 
page 3:345 for a summary of the opcode extensions.

4.4.8.1 Move to CR

M32

4.4.8.2 Move from CR

M33

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 ar3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.m ar3 = r2 1 0 2A

40 373635 33323130 2726 2019 1312 6 5 0

0 s x3 x2 x4 ar3 imm7b qp

4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

mov.m ar3 = imm8 0 0 8 2

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 ar3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.m r1 = ar3 1 0 22

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 cr3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p cr3 = r2 1 0 2C

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 cr3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p r1 = cr3 1 0 24
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4.4.9 Miscellaneous M-Unit Instructions

The miscellaneous M-unit instructions are encoded in major opcode 0 along with the 
system/memory management instructions. See “System/Memory Management” on 
page 3:345 for a summary of the opcode extensions.

4.4.9.1 Allocate Register Stack Frame

M34

Note: The three immediates in the instruction encoding are formed from the operands 
as follows:
sof = i + l + o
sol = i + l
sor = r >> 3

4.4.9.2 Move to PSR

M35

4.4.9.3 Move from PSR

M36

4.4.9.4 Break (M-Unit)

M37

40 373635 33323130 2726 2019 1312 6 5 0

1 x3 sor sol sof r1 qp

4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3

alloc f r1 = ar.pfs, i, l, o, r 1 6

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p psr.l = r2
1 0

2D

mov psr.um = r2 29

40 373635 3332 2726 1312 6 5 0

1 x3 x6 r1 qp

4 1 3 6 14 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p r1 = psr
1 0

25

mov r1 = psr.um 21

40 373635 33323130 272625 6 5 0

0 i x3 x2 x4 imm20a qp

4 1 3 2 4 1 20 6

Instruction Operands Opcode
Extension

x3 x4 x2

break.m imm21 0 0 0 0
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4.4.10 System/Memory Management

All system/memory management instructions are encoded within major opcodes 0 and 
1 using a 3-bit opcode extension field (x3) in bits 35:33. Some instructions also have a 
4-bit opcode extension field (x4) in bits 30:27, or a 6-bit opcode extension field (x6) in 
bits 32:27. Most of the instructions having a 4-bit opcode extension field also have a 
2-bit extension field (x2) in bits 32:31. Table 4-42 shows the 3-bit assignments for 
opcode 0, Table 4-43 summarizes the 4-bit+2-bit assignments for opcode 0, Table 4-44 
shows the 3-bit assignments for opcode 1, and Table 4-45 summarizes the 6-bit 
assignments for opcode 1.

Table 4-42. Opcode 0 System/Memory Management 3-bit Opcode 
Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0
System/Memory Management 4-bit+2-bit Ext 

(Table 4-43)

1

2

3

4 chk.a.nc – int M22

5 chk.a.clr – int M22

6 chk.a.nc – fp M23

7 chk.a.clr – fp M23

Table 4-43. Opcode 0 System/Memory Management 4-bit+2-bit Opcode 
Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x4
Bits 

30:27

x2
Bits 32:31

0 1 2 3

0 0

0 break.m M37 invala M24 fwb M24 srlz.d M24

1
1-bit Ext 

(Table 4-46)
srlz.i M24

2 invala.e – int M26 mf M24

3 invala.e – fp M27 mf.a M24 sync.i M24

4 sum M44

5 rum M44

6 ssm M44

7 rsm M44

8 mov.m to ar – imm8 M30

9

A loadrs M25

B

C flushrs M25

D

E

F
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4.4.10.1 Probe – Register

M38

Table 4-44. Opcode 1 System/Memory Management 3-bit Opcode 
Extensions

Opcode
Bits 40:37

x3
Bits 

35:33

1

0 System/Memory Management 6-bit Ext (Table 4-45)

1 chk.s.m – int M20

2

3 chk.s – fp M21

4

5

6 alloc M34

7

Table 4-45. Opcode 1 System/Memory Management 6-bit Opcode 
Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x6

Bits 
30:27

Bits 32:31

0 1 2 3

1 0

0 mov to rr M42 mov from rr M43 fc M28

1
mov to dbr M42 mov from dbr M43 mov from psr.um 

M36
probe.rw.fault – 

imm2 M40

2
mov to ibr M42 mov from ibr M43 mov.m from ar M31 probe.r.fault – 

imm2 M40

3
mov to pkr M42 mov from pkr M43 probe.w.fault – 

imm2 M40

4 mov to pmc M42 mov from pmc M43 mov from cr M33 ptc.e M47

5 mov to pmd M42 mov from pmd M43 mov from psr M36

6

7 mov from cpuid M43

8 probe.r – imm2 M39 probe.r M38

9 ptc.l M45 probe.w – imm2 M39 mov to psr.um M35 probe.w M38

A ptc.g M45 thash M46 mov.m to ar M29

B ptc.ga M45 ttag M46

C ptr.d M45 mov to cr M32

D ptr.i M45 mov to psr.l M35

E itr.d M42 tpa M46 itc.d M41

F itr.i M42 tak M46 itc.i M41

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r2 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.r
r1 = r3, r2 1 0

38

probe.w 39
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4.4.10.2 Probe – Immediate2

M39

4.4.10.3 Probe Fault – Immediate2

M40

4.4.10.4 Translation Cache Insert

M41

4.4.10.5 Move to Indirect Register/Translation Register Insert

M42

40 373635 3332 2726 2019 15141312 6 5 0

1 x3 x6 r3 i2b r1 qp

4 1 3 6 7 5 2 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.r
r1 = r3, imm2 1 0

18

probe.w 19

40 373635 3332 2726 2019 15141312 6 5 0

1 x3 x6 r3 i2b qp

4 1 3 6 7 5 2 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.rw.fault

r3, imm2 1 0

31

probe.r.fault 32

probe.w.fault 33

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

itc.d l p

r2 1 0
2E

itc.i l p 2F

40 373635 3332 2726 2019 13 12 6 5 0

1 x3 x6 r3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p

rr[r3] = r2

1 0

00

dbr[r3] = r2 01

ibr[r3] = r2 02

pkr[r3] = r2 03

pmc[r3] = r2 04

pmd[r3] = r2 05

itr.d p dtr[r3] = r2 0E

itr.i p itr[r3] = r2 0F
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4.4.10.6 Move from Indirect Register

M43

4.4.10.7 Set/Reset User/System Mask

M44

4.4.10.8 Translation Purge

M45

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p

r1 = rr[r3]

1 0

10

r1 = dbr[r3] 11

r1 = ibr[r3] 12

r1 = pkr[r3] 13

r1 = pmc[r3] 14

mov
r1 = pmd[r3] 15

r1 = cpuid[r3] 17

40 373635 33323130 2726 6 5 0

0 i x3 i2d x4 imm21a qp

4 1 3 2 4 21 6

Instruction Operands Opcode
Extension

x3 x4

sum

imm24 0 0

4

rum 5

ssm p 6

rsm p 7

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

ptc.l p

r3, r2 1 0

09

ptc.g l p 0A

ptc.ga l p 0B

ptr.d p 0C

ptr.i p 0D
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4.4.10.9 Translation Access

M46

4.4.10.10 Purge Translation Cache Entry

M47

4.4.11 Nop/Hint (M-Unit)

M-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit 
opcode extension field in bits 35:33 (x3), a 2-bit opcode extension field in bits 32:31 
(x2), a 4-bit opcode extension field in bits 30:27 (x4), and a 1-bit opcode extension 
field in bit 26 (y), as shown in Table 4-46.

M48

4.5 B-Unit Instruction Encodings

The branch-unit includes branch, predict, and miscellaneous instructions.

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

thash

r1 = r3 1 0

1A

ttag 1B

tpa p 1E

tak p 1F

40 373635 3332 2726 2019 6 5 0

1 x3 x6 r3 qp

4 1 3 6 7 14 6

Instruction Operands Opcode
Extension

x3 x6

ptc.e p r3 1 0 34

Table 4-46. Misc M-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x4
Bits 30:27

x2
Bits 32:31

y
Bit 26

0 0 1 0
0 nop.m

1 hint.m

40 373635 33323130 272625 6 5 0

0 i x3 x2 x4 y imm20a qp

4 1 3 2 4 1 20 6

Instruction Operands Opcode
Extension

x3 x4 x2 y

nop.m
imm21 0 0 1 0

0

hint.m 1
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4.5.1 Branches

Opcode 0 is used for indirect branch, opcode 1 for indirect call, opcode 4 for IP-relative 
branch, and opcode 5 for IP-relative call.

The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode 
extension field in bits 8:6 (btype) to distinguish the branch types as shown in 
Table 4-47.

The indirect branch, indirect return, and miscellaneous branch-unit instructions are 
encoded within major opcode 0 using a 6-bit opcode extension field in bits 32:27 (x6). 
Table 4-48 summarizes these assignments.

Table 4-47. IP-Relative Branch Types

Opcode
Bits 40:37

btype
Bits 8:6

4

0 br.cond B1

1  e

2 br.wexit B1

3 br.wtop B1

4  e

5 br.cloop B2

6 br.cexit B2

7 br.ctop B2

Table 4-48. Indirect/Miscellaneous Branch Opcode Extensions

Opcode
Bits 40:37

x6

Bits 
30:27

Bits 32:31

0 1 2 3

0

0 break.b B9 epc B8
Indirect Branch 

(Table 4-49)
 e

1  e Indirect Return 
(Table 4-50)

 e

2 cover B8  e  e  e

3  e  e  e  e

4 clrrrb B8  e  e  e

5 clrrrb.pr B8  e  e  e

6  e  e  e  e

7  e  e  e  e

8 rfi B8 vmsw.0 B8  e  e

9 vmsw.1 B8  e  e

A  e  e  e  e

B  e  e  e  e

C bsw.0 B8  e  e  e

D bsw.1 B8  e  e  e

E  e  e  e  e

F  e  e  e  e
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The indirect branch instructions encoded within major opcodes 0 use a 3-bit opcode 
extension field in bits 8:6 (btype) to distinguish the branch types as shown in 
Table 4-49.

The indirect return branch instructions encoded within major opcodes 0 use a 3-bit 
opcode extension field in bits 8:6 (btype) to distinguish the branch types as shown in 
Table 4-50.

All of the branch instructions have a 1-bit sequential prefetch opcode hint extension 
field, p, in bit 12. Table 4-51 summarizes these assignments.

The IP-relative and indirect branch instructions all have a 2-bit branch prediction 
“whether” opcode hint extension field in bits 34:33 (wh) as shown in Table 4-52. 
Indirect call instructions have a 3-bit “whether” opcode hint extension field in bits 
34:32 (wh) as shown in Table 4-53.

Table 4-49. Indirect Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 20

0 br.cond B4

1 br.ia B4

2  e

3  e

4  e

5  e

6  e

7  e

Table 4-50. Indirect Return Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 21

0  e

1  e

2  e

3  e

4 br.ret B4

5  e

6  e

7  e

Table 4-51. Sequential Prefetch Hint Completer

p
Bit 12

ph

0 .few

1 .many
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The branch instructions also have a 1-bit branch cache deallocation opcode hint 
extension field in bit 35 (d) as shown in Table 4-54.

4.5.1.1 IP-Relative Branch

B1

Table 4-52. Branch Whether Hint Completer

wh
Bits 34:33

bwh

0 .sptk

1 .spnt

2 .dptk

3 .dpnt

Table 4-53. Indirect Call Whether Hint Completer

wh
Bits 34:32

bwh

0

1 .sptk

2

3 .spnt

4

5 .dptk

6

7 .dpnt

Table 4-54. Branch Cache Deallocation Hint Completer

d
Bit 35

dh

0 none 

1 .clr

40 373635343332 1312 11 9 8 6 5 0

4 s d wh imm20b p btype qp

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d

br.cond.bwh.ph.dh e

target25 4

0 See 
Table 4-51 on 
page 3:351

See 
Table 4-52 on 
page 3:352

See 
Table 4-54 on 
page 3:352

br.wexit.bwh.ph.dh e t 2

br.wtop.bwh.ph.dh e t 3
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4.5.1.2 IP-Relative Counted Branch

B2

4.5.1.3 IP-Relative Call

B3

4.5.1.4 Indirect Branch

B4

4.5.1.5 Indirect Call

B5

4.5.2 Branch Predict/Nop/Hint

The branch predict, nop, and hint instructions are encoded in major opcodes 2 (Indirect 
Predict/Nop/Hint) and 7 (IP-relative Predict). The indirect predict, nop, and hint 
instructions in major opcode 2 use a 6-bit opcode extension field in bits 32:27 (x6). 
Table 4-55 summarizes these assignments.

40 373635343332 1312 11 9 8 6 5 0

4 s d wh imm20b p btype 0

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d

br.cloop.bwh.ph.dh e t

target25 4

5 See 
Table 4-51 on 
page 3:351

See 
Table 4-52 on 
page 3:352

See 
Table 4-54 on 
page 3:352

br.cexit.bwh.ph.dh e t 6

br.ctop.bwh.ph.dh e t 7

40 373635343332 1312 11 9 8 6 5 0

5 s d wh imm20b p b1 qp

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh e b1 = target25 5
See Table 4-51 
on page 3:351

See Table 4-52 
on page 3:352

See Table 4-54 
on page 3:352

40 373635343332 2726 1615 1312 11 9 8 6 5 0

0 d wh x6 b2 p btype qp

4 1 1 2 6 11 3 1 3 3 6

Instruction Operands Opcode
Extension

x6 btype p wh d

br.cond.bwh.ph.dh e

b2 0
20

0 See 
Table 4-51 

on 
page 3:351

See 
Table 4-52 

on 
page 3:352

See 
Table 4-54 

on 
page 3:352

br.ia.bwh.ph.dh e 1

br.ret.bwh.ph.dh e 21 4

40 37363534 3231 1615 1312 11 9 8 6 5 0

1 d wh b2 p b1 qp

4 1 1 3 16 3 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh e b1 = b2 1
See Table 4-51 
on page 3:351

See Table 4-53 
on page 3:352

See Table 4-54 
on page 3:352
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The branch predict instructions all have a 1-bit branch importance opcode hint 
extension field in bit 35 (ih). The mov to BR instruction (page 3:320) also has this hint 
in bit 23. Table 4-56 shows these assignments.

The IP-relative branch predict instructions have a 2-bit branch prediction “whether” 
opcode hint extension field in bits 4:3 (wh) as shown in Table 4-57. Note that the 
combination of the .loop or .exit whether hint completer with the none importance hint 
completer is undefined.

The indirect branch predict instructions have a 2-bit branch prediction “whether” 
opcode hint extension field in bits 4:3 (wh) as shown in Table 4-58.

Table 4-55. Indirect Predict/Nop/Hint Opcode Extensions

Opcode
Bits 

40:37

x6

Bits 
30:27

Bits 32:31

0 1 2 3

2

0 nop.b B9 brp B7

1 hint.b B9 brp.ret B7

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Table 4-56. Branch Importance Hint Completer

ih
Bit 23 or

Bit 35
ih

0 none 

1 .imp

Table 4-57. IP-Relative Predict Whether Hint Completer

wh
Bits 4:3

ipwh

0 .sptk

1 .loop

2 .dptk

3 .exit
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4.5.2.1 IP-Relative Predict

B6

4.5.2.2 Indirect Predict

B7

4.5.3 Miscellaneous B-Unit Instructions

The miscellaneous branch-unit instructions include a number of instructions encoded 
within major opcode 0 using a 6-bit opcode extension field in bits 32:27 (x6) as 
described in Table 4-48 on page 3:350.

4.5.3.1 Miscellaneous (B-Unit)

B8

Table 4-58. Indirect Predict Whether Hint Completer

wh
Bits 4:3

indwh

0 .sptk

1

2 .dptk

3

40 373635343332 1312 6 5 4 3 2 0

7 s ih t2e imm20b timm7a wh

4 1 1 2 20 7 1 2 3

Instruction Operands Opcode
Extension

ih wh

brp.ipwh.ih target25, tag13 7
See Table 4-56 on 

page 3:354
See Table 4-57 on 

page 3:354

40 373635343332 2726 1615 1312 6 5 4 3 2 0

2 ih t2e x6 b2 timm7a wh

4 1 1 2 6 11 3 7 1 2 3

Instruction Operands Opcode
Extension

x6 ih wh

brp.indwh.ih
b2, tag13 2

10 See Table 4-56 on 
page 3:354

See Table 4-58 on 
page 3:355brp.ret.indwh.ih 11

40 3736 3332 2726 6 5 0

0 x6 0

4 4 6 21 6

Instruction Opcode
Extension

x6

cover l

0

02

clrrrb l 04

clrrrb.pr l 05

rfi e l p 08

bsw.0 l p 0C

bsw.1 l p 0D

epc 10
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4.5.3.2 Break/Nop/Hint (B-Unit)

B9

4.6 F-Unit Instruction Encodings

The floating-point instructions are encoded in major opcodes 8 – E for floating-point 
and fixed-point arithmetic, opcode 4 for floating-point compare, opcode 5 for 
floating-point class, and opcodes 0 and 1 for miscellaneous floating-point instructions.

The miscellaneous and reciprocal approximation floating-point instructions are encoded 
within major opcodes 0 and 1 using a 1-bit opcode extension field (x) in bit 33 and 
either a second 1-bit extension field in bit 36 (q) or a 6-bit opcode extension field (x6) 
in bits 32:27. Table 4-59 shows the 1-bit x assignments, Table 4-62 shows the 
additional 1-bit q assignments for the reciprocal approximation instructions; Table 4-60 
and Table 4-61 summarize the 6-bit x6 assignments.

vmsw.0 p

0
18

vmsw.1 p 19

40 373635 3332 272625 6 5 0

0/2 i x6 imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x6

break.b e

imm21

0
00

nop.b
2

hint.b 01

Table 4-59. Miscellaneous Floating-point 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 33

0
0 6-bit Ext (Table 4-60)

1 Reciprocal Approximation (Table 4-62)

1
0 6-bit Ext (Table 4-61)

1 Reciprocal Approximation (Table 4-62)

Instruction Opcode
Extension

x6
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Table 4-60. Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits 

40:37

x
Bit 
33

x6

Bits 
30:27

Bits 32:31

0 1 2 3

0 0

0 break.f F15 fmerge.s F9

1 1-bit Ext 
(Table 4-68)

fmerge.ns F9

2 fmerge.se F9

3

4 fsetc F12 fmin F8 fswap F9

5 fclrf F13 fmax F8 fswap.nl F9

6 famin F8 fswap.nr F9

7 famax F8

8 fchkf F14 fcvt.fx F10 fpack F9

9 fcvt.fxu F10 fmix.lr F9

A fcvt.fx.trunc F10 fmix.r F9

B fcvt.fxu.trunc F10 fmix.l F9

C fcvt.xf F11 fand F9 fsxt.r F9

D fandcm F9 fsxt.l F9

E for F9

F fxor F9

Table 4-61. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits 

40:37

x
Bit 
33

x6

Bits 
30:27

Bits 32:31

0 1 2 3

1 0

0 fpmerge.s F9 fpcmp.eq F8

1 fpmerge.ns F9 fpcmp.lt F8

2 fpmerge.se F9 fpcmp.le F8

3 fpcmp.unord F8

4 fpmin F8 fpcmp.neq F8

5 fpmax F8 fpcmp.nlt F8

6 fpamin F8 fpcmp.nle F8

7 fpamax F8 fpcmp.ord F8

8 fpcvt.fx F10

9 fpcvt.fxu F10

A fpcvt.fx.trunc F10

B fpcvt.fxu.trunc F10

C

D

E

F
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Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf) 
which encodes the FPSR status field to be used. Table 4-63 summarizes these 
assignments.

4.6.1 Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 – D using 
a 1-bit opcode extension field (x) in bit 36 and a 2-bit opcode extension field (sf) in bits 
35:34. The opcode and x assignments are shown in Table 4-64.

The fixed-point arithmetic and parallel floating-point select instructions are encoded 
within major opcode E using a 1-bit opcode extension field (x) in bit 36. The fixed-point 
arithmetic instructions also have a 2-bit opcode extension field (x2) in bits 35:34. These 
assignments are shown in Table 4-65.

Table 4-62. Reciprocal Approximation 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 33

q
Bit 36

0

1

0 frcpa F6

1 frsqrta F7

1
0 fprcpa F6

1 fprsqrta F7

Table 4-63. Floating-point Status Field Completer

sf
Bits 35:34

sf

0 .s0

1 .s1

2 .s2

3 .s3

Table 4-64. Floating-point Arithmetic 1-bit Opcode Extensions

x
Bit 36

Opcode
Bits 40:37

8 9 A B C D

0 fma F1 fma.d F1 fms F1 fms.d F1 fnma F1 fnma.d F1

1 fma.s F1 fpma F1 fms.s F1 fpms F1 fnma.s F1 fpnma F1

Table 4-65. Fixed-point Multiply Add and Select Opcode Extensions

Opcode
Bits 40:37

x
Bit 36

x2
Bits 35:34

0 1 2 3

E
0 fselect F3

1 xma.l F2 xma.hu F2 xma.h F2
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4.6.1.1 Floating-point Multiply Add

F1

4.6.1.2 Fixed-point Multiply Add

F2

4.6.2 Parallel Floating-point Select

F3

4.6.3 Compare and Classify

The predicate setting floating-point compare instructions are encoded within major 
opcode 4 using three 1-bit opcode extension fields in bits 33 (ra), 36 (rb), and 12 (ta), 
and a 2-bit opcode extension field (sf) in bits 35:34. The opcode, ra, rb, and ta 
assignments are shown in Table 4-66. The sf assignments are shown in Table 4-63 on 
page 3:358.

The parallel floating-point compare instructions are described on page 3:362.

40 3736353433 2726 2019 1312 6 5 0

8 - D x sf f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x sf

fma.sf

f1 = f3, f4, f2

8
0

See Table 4-63 on 
page 3:358

fma.s.sf 1

fma.d.sf
9

0

fpma.sf 1

fms.sf
A

0

fms.s.sf 1

fms.d.sf
B

0

fpms.sf 1

fnma.sf
C

0

fnma.s.sf 1

fnma.d.sf
D

0

fpnma.sf 1

40 3736353433 2726 2019 1312 6 5 0

E x x2 f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x x2

xma.l

f1 = f3, f4, f2 E 1

0

xma.h 3

xma.hu 2

40 3736353433 2726 2019 1312 6 5 0

E x f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x

fselect f1 = f3, f4, f2 E 0
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The floating-point class instructions are encoded within major opcode 5 using a 1-bit 
opcode extension field in bit 12 (ta) as shown in Table 4-67.

4.6.3.1 Floating-point Compare

F4

4.6.3.2 Floating-point Class

F5

Table 4-66. Floating-point Compare Opcode Extensions

Opcode
Bits 

40:37

ra
Bit 33

rb
Bit 36

ta
Bit 12

0 1

4

0
0 fcmp.eq F4 fcmp.eq.unc F4

1 fcmp.lt F4 fcmp.lt.unc F4

1
0 fcmp.le F4 fcmp.le.unc F4

1 fcmp.unord F4 fcmp.unord.unc F4

Table 4-67. Floating-point Class 1-bit Opcode Extensions

Opcode
Bits 40:37

ta
Bit 12

5
0 fclass.m F5

1 fclass.m.unc F5

40 373635343332 2726 2019 1312 11 6 5 0

4 rb sf ra p2 f3 f2 ta p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ra rb ta sf

fcmp.eq.sf

p1, p2 = f2, f3 4

0
0

0

See Table 4-63 
on page 3:358

fcmp.lt.sf 1

fcmp.le.sf
1

0

fcmp.unord.sf 1

fcmp.eq.unc.sf
0

0

1
fcmp.lt.unc.sf 1

fcmp.le.unc.sf
1

0

fcmp.unord.unc.sf 1

40 373635343332 2726 2019 1312 11 6 5 0

5 fc2 p2 fclass7c f2 ta p1 qp

4 2 2 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ta
fclass.m

p1, p2 = f2, fclass9 5
0

fclass.m.unc 1
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4.6.4 Approximation

4.6.4.1 Floating-point Reciprocal Approximation

There are two Reciprocal Approximation instructions. The first, in major op 0, encodes 
the full register variant. The second, in major op 1, encodes the parallel variant.

F6

4.6.4.2 Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op 
0, encodes the full register variant. The second, in major op 1, encodes the parallel 
variant.

F7

40 373635343332 2726 2019 1312 6 5 0

0 - 1 q sf x p2 f3 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frcpa.sf
f1, p2 = f2, f3

0
1 0

See Table 4-63 on 
page 3:358

fprcpa.sf 1

40 373635343332 2726 2019 1312 6 5 0

0 - 1 q sf x p2 f3 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frsqrta.sf
f1, p2 = f3

0
1 1

See Table 4-63 on 
page 3:358fprsqrta.sf 1
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4.6.5 Minimum/Maximum and Parallel Compare

There are two groups of Minimum/Maximum instructions. The first group, in major op 
0, encodes the full register variants. The second group, in major op 1, encodes the 
parallel variants. The parallel compare instructions are all encoded in major op 1.

F8

40 373635343332 2726 2019 1312 6 5 0

0 - 1 sf x x6 f3 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fmin.sf

f1 = f2, f3

0

0

14

See Table 4-63 on 
page 3:358

fmax.sf 15

famin.sf 16

famax.sf 17

fpmin.sf

1

14

fpmax.sf 15

fpamin.sf 16

fpamax.sf 17

fpcmp.eq.sf 30

fpcmp.lt.sf 31

fpcmp.le.sf 32

fpcmp.unord.sf 33

fpcmp.neq.sf 34

fpcmp.nlt.sf 35

fpcmp.nle.sf 36

fpcmp.ord.sf 37
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4.6.6 Merge and Logical

F9

4.6.7 Conversion

4.6.7.1 Convert Floating-point to Fixed-point

F10

40 3736 343332 2726 2019 1312 6 5 0

0 - 1 x x6 f3 f2 f1 qp

4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6

fmerge.s

f1 = f2, f3

0

0

10

fmerge.ns 11

fmerge.se 12

fmix.lr 39

fmix.r 3A

fmix.l 3B

fsxt.r 3C

fsxt.l 3D

fpack 28

fswap 34

fswap.nl 35

fswap.nr 36

fand 2C

fandcm 2D

for 2E

fxor 2F

fpmerge.s

1

10

fpmerge.ns 11

fpmerge.se 12

40 373635343332 2726 2019 1312 6 5 0

0 - 1 sf x x6 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fcvt.fx.sf

f1 = f2

0

0

18

See Table 4-63 on 
page 3:358

fcvt.fxu.sf 19

fcvt.fx.trunc.sf 1A

fcvt.fxu.trunc.sf 1B

fpcvt.fx.sf

1

18

fpcvt.fxu.sf 19

fpcvt.fx.trunc.sf 1A

fpcvt.fxu.trunc.sf 1B
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4.6.7.2 Convert Fixed-point to Floating-point

F11

4.6.8 Status Field Manipulation

4.6.8.1 Floating-point Set Controls

F12

4.6.8.2 Floating-point Clear Flags

F13

4.6.8.3 Floating-point Check Flags

F14

40 3736 343332 2726 2019 1312 6 5 0

0 x x6 f2 f1 qp

4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6

fcvt.xf f1 = f2 0 0 1C

40 373635343332 2726 2019 1312 6 5 0

0 sf x x6 omask7c amask7b qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fsetc.sf amask7, omask7 0 0 04
See Table 4-63 on 

page 3:358

40 373635343332 2726 6 5 0

0 sf x x6 qp

4 1 2 1 6 21 6

Instruction Opcode
Extension

x x6 sf

fclrf.sf 0 0 05 See Table 4-63 on page 3:358

40 373635343332 272625 6 5 0

0 s sf x x6 imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6 sf

fchkf.sf target25 0 0 08
See Table 4-63 on 

page 3:358
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4.6.9 Miscellaneous F-Unit Instructions

4.6.9.1 Break (F-Unit)

F15

4.6.9.2 Nop/Hint (F-Unit)

F-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit 
opcode extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 
(x6), and a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-46.

F16

4.7 X-Unit Instruction Encodings

The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode 
extensions and hints, qp, and small immediate fields occupy the X instruction slot. For 
movl, break.x, and nop.x, the imm41 field occupies the L instruction slot. For brl, the 
imm39 field and a 2-bit Ignored field occupy the L instruction slot.

4.7.1 Miscellaneous X-Unit Instructions

The miscellaneous X-unit instructions are encoded in major opcode 0 using a 3-bit 
opcode extension field (x3) in bits 35:33 and a 6-bit opcode extension field (x6) in bits 
32:27. Table 4-69 shows the 3-bit assignments and Table 4-70 summarizes the 6-bit 
assignments. These instructions are executed by an I-unit.

40 373635343332 272625 6 5 0

0 i x x6 imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6

break.f imm21 0 0 00

Table 4-68. Misc F-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit :33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.f

1 hint.f

40 373635343332 272625 6 5 0

0 i x x6 y imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6 y

nop.f
imm21 0 0 01

0

hint.f 1
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4.7.1.1 Break (X-Unit)

X1

4.7.2 Move Long Immediate64

The move long immediate instruction is encoded within major opcode 6 using a 1-bit 
reserved opcode extension in bit 20 (vc) as shown in Table 4-71. This instruction is 
executed by an I-unit.

Table 4-69. Misc X-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0 6-bit Ext (Table 4-70)

1

2

3

4

5

6

7

Table 4-70. Misc X-Unit 6-bit Opcode Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x6

Bits 
30:27

Bits 32:31

0 1 2 3

0 0

0 break.x X1

1 1-bit Ext 
(Table 4-73)

2

3

4

5

6

7

8

9

A

B

C

D

E

F

40 373635 3332 272625 6 5 0 40 0

0 i x3 x6 imm20a qp imm41

4 1 3 6 1 20 6 41

Instruction Operands Opcode
Extension

x3 x6

break.x imm62 0 0 00
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X2

4.7.3 Long Branches

Long branches are executed by a B-unit. Opcode C is used for long branch and opcode 
D for long call.

The long branch instructions encoded within major opcode C use a 3-bit opcode 
extension field in bits 8:6 (btype) to distinguish the branch types as shown in 
Table 4-72.

The long branch instructions have the same opcode hint fields in bit 12 (p), bits 34:33 
(wh), and bit 35 (d) as normal IP-relative branches. These are shown in Table 4-51 on 
page 3:351, Table 4-52 on page 3:352, and Table 4-54 on page 3:352.

4.7.3.1 Long Branch

X3

Table 4-71. Move Long 1-bit Opcode Extensions

Opcode
Bits 40:37

vc
Bit 20

6
0 movl X2

1

40 373635 2726 22212019 1312 6 5 0 40 0

6 i imm9d imm5c ic vc imm7b r1 qp imm41

4 1 9 5 1 1 7 7 6 41

Instruction Operands Opcode
Extension

vc

movl i r1 = imm64 6 0

Table 4-72. Long Branch Types

Opcode
Bits 40:37

btype
Bits 8:6

C

0 brl.cond X3

1

2

3

4

5

6

7

40 373635343332 1312 11 9 8 6 5 0 40 2 1 0

C i d wh imm20b p btype qp imm39

4 1 1 2 20 1 3 3 6 39 2

Instruction Operands Opcode
Extension

btype p wh d

brl.cond.bwh.ph.dh e l target64 C 0
See Table 4-51 
on page 3:351

See Table 4-52 
on page 3:352

See Table 4-54 
on page 3:352
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4.7.3.2 Long Call

X4

4.7.4 Nop/Hint (X-Unit)

X-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit 
opcode extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 
(x6), and a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-73. These 
instructions are executed by an I-unit.

X5

4.8 Immediate Formation

Table 4-74 shows, for each instruction format that has one or more immediates, how 
those immediates are formed. In each equation, the symbol to the left of the equals is 
the assembly language name for the immediate. The symbols to the right are the field 
names in the instruction encoding.

40 373635343332 1312 11 9 8 6 5 0 40 2 1 0

D i d wh imm20b p b1 qp imm39

4 1 1 2 20 1 3 3 6 39 2

Instruction Operands Opcode
Extension

p wh d

brl.call.bwh.ph.dh e l b1 = target64 D
See Table 4-51 
on page 3:351

See Table 4-52 
on page 3:352

See Table 4-54 
on page 3:352

Table 4-73. Misc X-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.x

1 hint.x

40 373635 3332 272625 6 5 0 40 0

0 i x3 x6 y imm20a qp imm41

4 1 3 6 1 20 6 41

Instruction Operands Opcode
Extension

x3 x6 y

nop.x
imm62 0 0 01

0

hint.x 1

Table 4-74. Immediate Formation

Instruction
Format

Immediate Formation

A2 count2 = ct2d + 1

A3 A8 I27 M30 imm8 = sign_ext(s << 7 | imm7b, 8)

A4 imm14 = sign_ext(s << 13 | imm6d << 7 | imm7b, 14)

A5 imm22 = sign_ext(s << 21 | imm5c << 16 | imm9d << 7 | imm7b, 22)

A10 count2 = (ct2d > 2) ? reservedQPa : ct2d + 1

I1 count2 = (ct2d == 0) ? 0 : (ct2d == 1) ? 7 : (ct2d == 2) ? 15 : 16
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I3
mbtype4 = (mbt4c == 0) ? @brcst : (mbt4c == 8) ? @mix : (mbt4c == 9) ? @shuf : (mbt4c == 

0xA) ? @alt : (mbt4c == 0xB) ? @rev : reservedQPa

I4 mhtype8 = mht8c

I6 count5 = count5b

I8 count5 = 31 – ccount5c

I10 count6 = count6d

I11
len6 = len6d + 1

pos6 = pos6b

I12
len6 = len6d + 1

pos6 = 63 – cpos6c

I13
len6 = len6d + 1

pos6 = 63 – cpos6c
imm8 = sign_ext(s << 7 | imm7b, 8)

I14
len6 = len6d + 1

pos6 = 63 – cpos6b
imm1 = sign_ext(s, 1)

I15
len4 = len4d + 1

pos6 = 63 – cpos6d

I16 pos6 = pos6b

I18 I19 M37 M48 imm21 = i << 20 | imm20a

I21 tag13 = IP + (sign_ext(timm9c, 9) << 4)

I23 mask17 = sign_ext(s << 16 | mask8c << 8 | mask7a << 1, 17)

I24 imm44 = sign_ext(s << 43 | imm27a << 16, 44)

I30 imm5 = imm5b + 32

M3 M8 M22 imm9 = sign_ext(s << 8 | i << 7 | imm7b, 9)

M5 M10 imm9 = sign_ext(s << 8 | i << 7 | imm7a, 9)

M17 inc3 = sign_ext(((s) ? –1 : 1) * ((i2b == 3) ? 1 : 1 << (4 – i2b)), 6)

I20 M20 M21 target25 = IP + (sign_ext(s << 20 | imm13c << 7 | imm7a, 21) << 4)

M22 M23 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

M34
il = sol

o = sof – sol
r = sor << 3

M39 M40 imm2 = i2b

M44 imm24 = i << 23 | i2d << 21 | imm21a

B1 B2 B3 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

B6
target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

tag13 = IP + (sign_ext(t2e << 7 | timm7a, 9) << 4)

B7 tag13 = IP + (sign_ext(t2e << 7 | timm7a, 9) << 4)

B9 imm21 = i << 20 | imm20a

F5 fclass9 = fclass7c << 2 | fc2

F12
amask7 = amask7b
omask7 = omask7c

F14 target25 = IP + (sign_ext(s << 20 | imm20a, 21) << 4)

F15 F16 imm21 = i << 20 | imm20a

X1 X5 imm62 = imm41 << 21 | i << 20 | imm20a

X2 imm64 = i << 63 | imm41 << 22 | ic << 21 | imm5c << 16 | imm9d << 7 | imm7b

X3 X4 target64 = IP + ((i << 59 | imm39 << 20 | imm20b) << 4)

Table 4-74. Immediate Formation (Continued)

Instruction
Format

Immediate Formation
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§

a. This encoding causes an Illegal Operation fault if the value of the qualifying predicate is 1.
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Resource and Dependency Semantics 5

5.1 Reading and Writing Resources

An Itanium instruction is said to be a reader of a resource if the instruction’s qualifying 
predicate is 1 or it has no qualifying predicate or is one of the instructions that reads a 
resource even when its qualifying predicate is 0, and the execution of the instruction 
depends on that resource.

An Itanium instruction is said to be an writer of a resource if the instruction’s 
qualifying predicate is 1 or it has no qualifying predicate or writes the resource even 
when the qualifying predicate is 0, and the execution of the instruction writes that 
resource.

An Itanium instruction is said to be a reader or writer of a resource even if it only 
sometimes depends on that resource and it cannot be determined statically whether 
the resource will be read or written. For example, cover only writes CR[IFS] when 
PSR.ic is 0, but for purposes of dependency, it is treated as if it always writes the 
resource since this condition cannot be determined statically. On the other hand, rsm 
conditionally writes several bits in the PSR depending on a mask which is encoded as an 
immediate in the instruction. Since the PSR bits to be written can be determined by 
examining the encoded instruction, the instruction is treated as only writing those bits 
which have a corresponding mask bit set. All exceptions to these general rules are 
described in this appendix.

5.2 Dependencies and Serialization

A RAW (Read-After-Write) dependency is a sequence of two events where the first is a 
writer of a resource and the second is a reader of the same resource. Events may be 
instructions, interruptions, or other ‘uses’ of the resource such as instruction stream 
fetches and VHPT walks. Table 5-2 covers only dependencies based on instruction 
readers and writers.

A WAW (Write-After-Write) dependency is a sequence of two events where both events 
write the resource in question. Events may be instructions, interruptions, or other 
‘updates’ of the resource. Table 5-3 covers only dependencies based on instruction 
writers.

A WAR (Write-After-Read) dependency is a sequence of two instructions, where the 
first is a reader of a resource and the second is a writer of the same resource. Such 
dependencies are always allowed except as indicated in Table 5-4 and only those 
related to instruction readers and writers are included.

A RAR (Read-After-Read) dependency is a sequence of two instructions where both are 
readers of the same resource. Such dependencies are always allowed.
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RAW and WAW dependencies are generally not allowed without some type of 
serialization event (an implied, data, or instruction serialization after the first writing 
instruction. (See Section 3.2, “Serialization” on page 2:17 for details on serialization.) 
The tables and associated rules in this appendix provide a comprehensive list of readers 
and writers of resources and describe the serialization required for the dependency to 
be observed and possible outcomes if the required serialization is not met. Even when 
targeting code for machines which do not check for particular disallowed dependencies, 
such code sequences are considered architecturally undefined and may cause code to 
behave differently across processors, operating systems, or even separate executions 
of the code sequence during the same program run. In some cases, different 
serializations may yield different, but well-defined results.

The serialization of application level (non-privileged) resources is always implied. This 
means that if a writer of that resource and a subsequent read of that same resource are 
in different instruction groups, then the reader will see the value written. In addition, 
for dependencies on PRs and BRs, where the writer is a non-branch instruction and the 
reader is a branch instruction, the writer and reader may be in the same instruction 
group.

System resources generally require explicit serialization, i.e., the use of a srlz.i or 
srlz.d instruction, between the writing and the reading of that resource. Note that 
RAW accesses to CRs are not exceptional – they require explicit data or instruction 
serialization. However, in some cases (other than CRs) where pairs of instructions 
explicitly encode the same resource, serialization is implied.

There are cases where it is architecturally allowed to omit a serialization, and that the 
response from the CPU must be atomic (act as if either the old or the new state were 
fully in place). The tables in this appendix indicate dependency requirements under the 
assumption that the desired result is for the dependency to always be observed. In 
some such cases, the programmer may not care if the old or new state is used; such 
situations are allowed, but the value seen is not deterministic.

On the other hand, if an impliedF dependency is violated, then the program is 
incorrectly coded and the processor's behavior is undefined.

5.3 Resource and Dependency Table Format Notes

• The “Writers” and “Readers” columns of the dependency tables contain instruction 
class names and instruction mnemonic prefixes as given in the format section of 
each instruction page. To avoid ambiguity, instruction classes are shown in bold, 
while instruction mnemonic prefixes are in regular font. For instruction mnemonic 
prefixes, all instructions that exactly match the name specified or those that begin 
with the specified text and are followed by a ‘.’ and then followed by any other text 
will match.

• The dependency on a listed instruction is in effect no matter what values are 
encoded in the instruction or what dynamic values occur in operands, unless a 
superscript is present or one of the special case instruction rules in Section 5.3.1 
applies.  Instructions listed are still subject to rules regarding qualifying predicates.

• Instruction classes are groups of related instructions. Such names appear in 
boldface for clarity. The list of all instruction classes is contained in Table 5-5. Note 
that an instruction may appear in multiple instruction classes, instruction classes 
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may expand to contain other classes, and that when fully expanded, a set of 
classes (e.g., the readers of some resource) may contain the same instruction 
multiple times.

• The syntax ‘x\y’ where x and y are both instruction classes, indicates an unnamed 
instruction class that includes all instructions in instruction class x but that are not 
in instruction class y. Similarly, the notation ‘x\y\z’ means all instructions in 
instruction class x, but that are not in either instruction class y or instruction class 
z.

• Resources on separate rows of a table are independent resources. This means that 
there are no serialization requirements for an event which references one of them 
followed by an event which uses a different resource. In cases where resources are 
broken into subrows, dependencies only apply between instructions within a 
subrow. Instructions that do not appear in a subrow together have no 
dependencies (reader/writer or writer/writer dependencies) for the resource in 
question, although they may still have dependencies on some other resource.

• The dependencies listed for pairs of instructions on each resource are not unique – 
the same pair of instructions might also have a dependency on some other resource 
with a different semantics of dependency. In cases where there are multiple 
resource dependencies for the same pair of instructions, the most stringent 
semantics are assumed: instr overrides data which overrides impliedF which 
overrides implied which overrides none.

• Arrays of numbered resources are represented in a single row of a table using the 
% notation as a substitute for the number of the resource. In such cases, the 
semantics of the table are as if each numbered resource had its own row in that 
table and is thus an independent resource. The range of values that the % can take 
are given in the “Resource Name” column.

• An asterisk ‘*’ in the “Resource Name” column indicates that this resource may not 
have a physical resource associated with it, but is added to enforce special 
dependencies.

• A pound sign ‘#’ in the “Resource Name” column indicates that this resource is an 
array of resources that are indexed by a value in a GR. The number of individual 
elements in the array is described in the detailed description of each resource.

• The “Semantics of Dependency” column describes the outcome given various 
serialization and instruction group boundary conditions. The exact definition for 
each keyword is given in Table 5-1.

Table 5-1. Semantics of Dependency Codes

Semantics of 
Dependency Code

Serialization Type Required Effects of Serialization Violation

instr Instruction Serialization (See “Instruction 
Serialization” on page 2:18).

Atomic: Any attempt to read a resource after one or 
more insufficiently serialized writes is either the 
value previously in the register (before any of the 
unserialized writes) or the value of one of any 
unserialized writes. Which value is returned is 
unpredictable and multiple insufficiently serialized 
reads may see different results. No fault will be 
caused by the insufficient serialization.

data Data Serialization (See “Data Serialization” on 
page 2:18)

implied Instruction Group Break. Writer and reader must be in 
separate instruction groups. (See “Instruction 
Sequencing Considerations” on page 1:39).
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5.3.1 Special Case Instruction Rules

The following rules apply to the specified instructions when they appear in Table 5-2, 
Table 5-3, Table 5-4, or Table 5-5:

• An instruction always reads a given resource if its qualifying predicate is 1 and it 
appears in the “Reader” column of the table (except as noted). An instruction 
always writes a given resource if its qualifying predicate is 1 and it appears in the 
“Writer” column of the table (except as noted). An instruction never reads or writes 
the specified resource if its qualifying predicate is 0 (except as noted). These rules 
include branches and their qualifying predicate. Instructions in the 
unpredicatable-instructions class have no qualifying predicate and thus always 
read or write their resources (except as noted).

• An instruction of type mov-from-PR reads all PRs if its PR[qp] is true. If the 
PR[qp] is false, then only the PR[qp] is read.

• An instruction of type mov-to-PR writes only those PRs as indicated by the 
immediate mask encoded in the instruction.

• A st8.spill only writes AR[UNAT]{X} where X equals the value in bits 8:3 of the 
store’s data address. A ld8.fill instruction only reads AR[UNAT]{Y} where Y 
equals the value in bits 8:3 of the load’s data address.

• Instructions of type mod-sched-brs always read AR[EC] and the rotating register 
base registers in CFM, and always write AR[EC], the rotating register bases in CFM, 
and PR[63] even if they do not change their values or if their PR[qp] is false.

• Instructions of type mod-sched-brs-counted always read and write AR[LC], even 
if they do not change its value.

• For instructions of type pr-or-writers or pr-and-writers, if their completer is 
or.andcm, then only the first target predicate is an or-compare and the second 
target predicate is an and-compare. Similarly, if their completer is and.orcm, then 
only the second target predicate is an or-compare and the first target predicate is 
an and-compare.

• rum and sum only read PSR.sp when the bit corresponding to PSR.up (bit 2) is set in 
the immediate field of the instruction.

5.3.2 RAW Dependency Table

Table 5-2 architecturally defines the following information:

impliedF Instruction Group Break (same as above). An undefined value is returned, or an Illegal 
Operation fault may be taken. If no fault is taken, 
the value returned is unpredictable, and may be 
unrelated to past writes, but will not be data which 
could not be accessed by the current process (e.g., 
if PSR.cpl != 0, the undefined value to return 
cannot be read from some control register).

stop Stop. Writer and reader must be separated by a stop.

none None N/A

specific Implementation Specific

SC Special Case Described elsewhere in book, see referenced 
section in the entry.

Table 5-1. Semantics of Dependency Codes (Continued)

Semantics of 
Dependency Code

Serialization Type Required Effects of Serialization Violation
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• A list of all architecturally-defined, independently-writable resources in the Itanium 
architecture. Each row represents an ‘atomic’ resource. Thus, for each row in the 
table, hardware will probably require a separate write-enable control signal.

• For each resource, a complete list of readers and writers.

• For each instruction, a complete list of all resources read and written. Such a list 
can be obtained by taking the union of all the rows in which each instruction 
appears.

Table 5-2. RAW Dependencies Organized by Resource

Resource Name Writers Readers
Semantics of
Dependency

ALAT chk.a.clr, 
mem-readers-alat, 
mem-writers, invala-all

mem-readers-alat, 
mem-writers, chk-a,
invala.e

none

AR[BSP] br.call, brl.call, br.ret, cover, 
mov-to-AR-BSPSTORE, rfi

br.call, brl.call, br.ia, br.ret, cover, 
flushrs, loadrs, 
mov-from-AR-BSP, rfi

impliedF

AR[BSPSTORE] alloc, loadrs, flushrs, 
mov-to-AR-BSPSTORE

alloc, br.ia, flushrs, 
mov-from-AR-BSPSTORE

impliedF

AR[CCV] mov-to-AR-CCV br.ia, cmpxchg, 
mov-from-AR-CCV

impliedF

AR[CFLG] mov-to-AR-CFLG br.ia, mov-from-AR-CFLG impliedF

AR[CSD] ld16, mov-to-AR-CSD br.ia, cmp8xchg16,
mov-from-AR-CSD, st16

impliedF

AR[EC] mod-sched-brs, br.ret, 
mov-to-AR-EC

br.call, brl.call, br.ia, mod-sched-brs,
mov-from-AR-EC

impliedF

AR[EFLAG] mov-to-AR-EFLAG br.ia, mov-from-AR-EFLAG impliedF

AR[FCR] mov-to-AR-FCR br.ia, mov-from-AR-FCR impliedF

AR[FDR] mov-to-AR-FDR br.ia, mov-from-AR-FDR impliedF

AR[FIR] mov-to-AR-FIR br.ia, mov-from-AR-FIR impliedF

AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.s0 br.ia, fp-arith-s0, fcmp-s0, fpcmp-s0, 
fsetc, mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 br.ia, fp-arith-s1, fcmp-s1, fpcmp-s1, 
mov-from-AR-FPSR

AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 br.ia, fp-arith-s2, fcmp-s2, fpcmp-s2, 
mov-from-AR-FPSR

AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 br.ia, fp-arith-s3, fcmp-s3, fpcmp-s3, 
mov-from-AR-FPSR

AR[FPSR].sf0.flags fp-arith-s0, fclrf.s0, fcmp-s0, 
fpcmp-s0, mov-to-AR-FPSR

br.ia, fchkf, 
mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.flags fp-arith-s1, fclrf.s1, fcmp-s1, 
fpcmp-s1, mov-to-AR-FPSR

br.ia, fchkf.s1, 
mov-from-AR-FPSR

AR[FPSR].sf2.flags fp-arith-s2, fclrf.s2, fcmp-s2, 
fpcmp-s2, mov-to-AR-FPSR

br.ia, fchkf.s2, 
mov-from-AR-FPSR

AR[FPSR].sf3.flags fp-arith-s3, fclrf.s3, fcmp-s3, 
fpcmp-s3, mov-to-AR-FPSR

br.ia, fchkf.s3, 
mov-from-AR-FPSR

AR[FPSR].traps mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, 
mov-from-AR-FPSR

impliedF

AR[FPSR].rv mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, 
mov-from-AR-FPSR

impliedF

AR[FSR] mov-to-AR-FSR br.ia, mov-from-AR-FSR impliedF
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AR[ITC] mov-to-AR-ITC br.ia, mov-from-AR-ITC impliedF

AR[K%],
% in 0 - 7

mov-to-AR-K1 br.ia, mov-from-AR-K1 impliedF

AR[LC] mod-sched-brs-counted, 
mov-to-AR-LC

br.ia, mod-sched-brs-counted, 
mov-from-AR-LC

impliedF

AR[PFS] br.call, brl.call alloc, br.ia, br.ret, epc,
mov-from-AR-PFS

impliedF

mov-to-AR-PFS alloc, br.ia, epc, 
mov-from-AR-PFS

impliedF

br.ret none

AR[RNAT] alloc, flushrs, loadrs, 
mov-to-AR-RNAT, 
mov-to-AR-BSPSTORE

alloc, br.ia, flushrs, loadrs, 
mov-from-AR-RNAT

impliedF

AR[RSC] mov-to-AR-RSC alloc, br.ia, flushrs, loadrs, 
mov-from-AR-RSC, 
mov-from-AR-BSPSTORE, 
mov-to-AR-RNAT, 
mov-from-AR-RNAT, 
mov-to-AR-BSPSTORE

impliedF

AR[RUC] mov-to-AR-RUC br.ia, mov-from-AR-RUC impliedF

AR[SSD] mov-to-AR-SSD br.ia, mov-from-AR-SSD impliedF

AR[UNAT]{%}, 
% in 0 - 63

mov-to-AR-UNAT, st8.spill br.ia, ld8.fill,
mov-from-AR-UNAT

impliedF

AR%,
% in 8-15, 20, 22-23, 31, 
33-35, 37-39, 41-43, 46-47, 
67-111

none br.ia, mov-from-AR-rv1 none

AR%,
% in 48-63, 112-127

mov-to-AR-ig1 br.ia, mov-from-AR-ig1 impliedF

BR%,
% in 0 - 7

br.call1, brl.call1 indirect-brs1, indirect-brp1, 
mov-from-BR1

impliedF

mov-to-BR1 indirect-brs1 none

indirect-brp1,
mov-from-BR1

impliedF

CFM mod-sched-brs mod-sched-brs impliedF

cover, alloc, rfi, loadrs, br.ret, br.call, 
brl.call

impliedF

cfm-readers2 impliedF

br.call, brl.call, br.ret, clrrrb, cover, 
rfi

cfm-readers impliedF

alloc cfm-readers none

CPUID# none mov-from-IND-CPUID3 specific

CR[CMCV] mov-to-CR-CMCV mov-from-CR-CMCV data

CR[DCR] mov-to-CR-DCR mov-from-CR-DCR,
mem-readers-spec

data

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
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CR[EOI] mov-to-CR-EOI none SC Section 
5.8.3.4, “End of 
External 
Interrupt 
Register (EOI – 
CR67)” on 
page 2:124

CR[IFA] mov-to-CR-IFA itc.i, itc.d, itr.i, itr.d implied

mov-from-CR-IFA data

CR[IFS] mov-to-CR-IFS mov-from-CR-IFS data

rfi implied

cover rfi, mov-from-CR-IFS implied

CR[IHA] mov-to-CR-IHA mov-from-CR-IHA data

CR[IIB%],
% in 0 - 1

mov-to-CR-IIB mov-from-CR-IIB data

CR[IIM] mov-to-CR-IIM mov-from-CR-IIM data

CR[IIP] mov-to-CR-IIP mov-from-CR-IIP data

rfi implied

CR[IIPA] mov-to-CR-IIPA mov-from-CR-IIPA data

CR[IPSR] mov-to-CR-IPSR mov-from-CR-IPSR data

rfi implied

CR[IRR%],
% in 0 - 3

mov-from-CR-IVR mov-from-CR-IRR1 data

CR[ISR] mov-to-CR-ISR mov-from-CR-ISR data

CR[ITIR] mov-to-CR-ITIR mov-from-CR-ITIR data

itc.i, itc.d, itr.i, itr.d implied

CR[ITM] mov-to-CR-ITM mov-from-CR-ITM data

CR[ITO] mov-to-CR-ITO mov-from-AR-ITC, mov-from-CR-ITO data

CR[ITV] mov-to-CR-ITV mov-from-CR-ITV data

CR[IVA] mov-to-CR-IVA mov-from-CR-IVA instr

CR[IVR] none mov-from-CR-IVR SC Section 
5.8.3.2, 
“External 
Interrupt Vector 
Register (IVR – 
CR65)” on 
page 2:123

CR[LID] mov-to-CR-LID mov-from-CR-LID SC Section 
5.8.3.1, “Local 
ID (LID – 
CR64)” on 
page 2:122

CR[LRR%],
% in 0 - 1

mov-to-CR-LRR1 mov-from-CR-LRR1 data

CR[PMV] mov-to-CR-PMV mov-from-CR-PMV data

CR[PTA] mov-to-CR-PTA mov-from-CR-PTA, mem-readers, 
mem-writers, non-access, thash

data

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
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CR[TPR] mov-to-CR-TPR mov-from-CR-TPR, 
mov-from-CR-IVR

data

mov-to-PSR-l17, ssm17 SC Section 
5.8.3.3, “Task 
Priority Register 
(TPR – CR66)” 
on page 2:123

rfi implied

CR%,
% in 3, 5-7, 10-15, 18, 28-63, 
75-79, 82-127

none mov-from-CR-rv1 none

DBR# mov-to-IND-DBR3 mov-from-IND-DBR3 impliedF

probe-all, lfetch-all, 
mem-readers, mem-writers

data

DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, 
itc.i, itc.d, itr.i, itr.d

mem-readers, mem-writers, 
non-access

data

itc.i, itc.d, itr.i, itr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, 
itc.d, itr.i, itr.d

impliedF

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

itc.i, itc.d, itr.i, itr.d impliedF

DTC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

DTR itr.d mem-readers, mem-writers, 
non-access

data

ptc.g, ptc.ga, ptc.l, ptr.d, itr.d impliedF

ptr.d mem-readers, mem-writers, 
non-access

data

ptc.g, ptc.ga, ptc.l, ptr.d none

itr.d, itc.d impliedF

FR%,
% in 0 - 1

none fr-readers1 none

FR%,
% in 2 - 127

fr-writers1\ldf-c1\ldfp-c1 fr-readers1 impliedF

ldf-c1, ldfp-c1 fr-readers1 none

GR0 none gr-readers1 none

GR%,
% in 1 - 127

ld-c1,13 gr-readers1 none

gr-writers1\ld-c1,13 gr-readers1 impliedF

IBR# mov-to-IND-IBR3 mov-from-IND-IBR3 impliedF

InService* mov-to-CR-EOI mov-from-CR-IVR data

mov-from-CR-IVR mov-from-CR-IVR impliedF

mov-to-CR-EOI mov-to-CR-EOI impliedF

IP all all none

ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d epc, vmsw instr

itc.i, itc.d, itr.i, itr.d impliedF

ptr.i, ptr.d, ptc.e, ptc.g, ptc.ga, ptc.l none

itc.i, itc.d, itr.i, itr.d epc, vmsw instr

itc.d, itc.i, itr.d, itr.i, ptr.d, ptr.i, ptc.g, 
ptc.ga, ptc.l

impliedF

ITC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
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ITR itr.i itr.i, itc.i, ptc.g, ptc.ga, ptc.l, ptr.i impliedF

epc, vmsw instr

ptr.i itc.i, itr.i impliedF

ptc.g, ptc.ga, ptc.l, ptr.i none

epc, vmsw instr

memory mem-writers mem-readers none

PKR# mov-to-IND-PKR3 mem-readers, mem-writers,
mov-from-IND-PKR4, probe-all

data

mov-to-IND-PKR4 none

mov-from-IND-PKR3 impliedF

mov-to-IND-PKR3 impliedF

PMC# mov-to-IND-PMC3 mov-from-IND-PMC3 impliedF

mov-from-IND-PMD3 SC Section 
7.2.1, “Generic 
Performance 
Counter 
Registers” for 
PMC[0].fr on 
page 2:156

PMD# mov-to-IND-PMD3 mov-from-IND-PMD3 impliedF

PR0 pr-writers1 pr-readers-br1, 
pr-readers-nobr-nomovpr1, 
mov-from-PR12,
mov-to-PR12

none

PR%,
% in 1 - 15

pr-writers1, 
mov-to-PR-allreg7

pr-readers-nobr-nomovpr1, 
mov-from-PR, 
mov-to-PR12

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1, 
mov-to-PR-allreg7

pr-readers-br1 none

PR%,
% in 16 - 62

pr-writers1, 
mov-to-PR-allreg7, 
mov-to-PR-rotreg

pr-readers-nobr-nomovpr1, 
mov-from-PR, 
mov-to-PR12

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1, 
mov-to-PR-allreg7, 
mov-to-PR-rotreg

pr-readers-br1 none

PR63 mod-sched-brs, 
pr-writers1, 
mov-to-PR-allreg7, 
mov-to-PR-rotreg

pr-readers-nobr-nomovpr1, 
mov-from-PR, 
mov-to-PR12

impliedF

pr-writers-fp1, 
mod-sched-brs

pr-readers-br1 impliedF

pr-writers-int1, 
mov-to-PR-allreg7, 
mov-to-PR-rotreg

pr-readers-br1 none
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PSR.ac user-mask-writers-partial7, 
mov-to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7, 
mov-to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7, 
mov-to-PSR-um, 
sys-mask-writers-partial7, 
mov-to-PSR-l

mov-from-PSR, 
mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers, 
mov-from-PSR, mov-from-PSR-um

impliedF

PSR.be user-mask-writers-partial7, 
mov-to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7, 
mov-to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7, 
mov-to-PSR-um,
sys-mask-writers-partial7, 
mov-to-PSR-l

mov-from-PSR, 
mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers, 
mov-from-PSR, mov-from-PSR-um

impliedF

PSR.bn bsw, rfi gr-readers10, gr-writers10 impliedF

PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all

implied

rfi priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all

impliedF

PSR.da rfi mem-readers, lfetch-all, mem-writers, 
probe-fault

impliedF

PSR.db mov-to-PSR-l lfetch-all, mem-readers,
mem-writers, probe-fault

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers,
mem-writers,
mov-from-PSR, probe-fault

impliedF

PSR.dd rfi lfetch-all, mem-readers, probe-fault,
mem-writers

impliedF
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PSR.dfh sys-mask-writers-partial7, 
mov-to-PSR-l

fr-readers8, fr-writers8 data

mov-from-PSR impliedF

rfi fr-readers8, fr-writers8, 
mov-from-PSR

impliedF

PSR.dfl sys-mask-writers-partial7, 
mov-to-PSR-l

fr-writers8, fr-readers8 data

mov-from-PSR impliedF

rfi fr-writers8, fr-readers8, 
mov-from-PSR

impliedF

PSR.di sys-mask-writers-partial7, 
mov-to-PSR-l

br.ia data

mov-from-PSR impliedF

rfi br.ia, mov-from-PSR impliedF

PSR.dt sys-mask-writers-partial7, 
mov-to-PSR-l

mem-readers, mem-writers, 
non-access

data

mov-from-PSR impliedF

rfi mem-readers, mem-writers, 
non-access, mov-from-PSR

impliedF

PSR.ed rfi lfetch-all,
mem-readers-spec

impliedF

PSR.i sys-mask-writers-partial7, 
mov-to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ia rfi all none

PSR.ic sys-mask-writers-partial7, 
mov-to-PSR-l

mov-from-PSR impliedF

cover, itc.i, itc.d, itr.i, itr.d, 
mov-from-interruption-CR, 
mov-to-interruption-CR

data

rfi mov-from-PSR, cover, itc.i, itc.d, itr.i, 
itr.d, mov-from-interruption-CR, 
mov-to-interruption-CR

impliedF

PSR.id rfi all none

PSR.is br.ia, rfi none none

PSR.it rfi branches, mov-from-PSR, chk, epc, 
fchkf, vmsw

impliedF

PSR.lp mov-to-PSR-l mov-from-PSR impliedF

br.ret data

rfi mov-from-PSR, br.ret impliedF

PSR.mc rfi mov-from-PSR impliedF

PSR.mfh fr-writers9, 
user-mask-writers-partial7, 
mov-to-PSR-um, 
sys-mask-writers-partial7, 
mov-to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

PSR.mfl fr-writers9,
user-mask-writers-partial7, 
mov-to-PSR-um,
sys-mask-writers-partial7, 
mov-to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF
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PSR.pk sys-mask-writers-partial7, 
mov-to-PSR-l

lfetch-all, mem-readers, 
mem-writers, probe-all

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers, 
mem-writers, mov-from-PSR, 
probe-all

impliedF

PSR.pp sys-mask-writers-partial7, 
mov-to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ri rfi all none

PSR.rt mov-to-PSR-l mov-from-PSR impliedF

alloc, flushrs, loadrs data

rfi mov-from-PSR, alloc, flushrs, loadrs impliedF

PSR.si sys-mask-writers-partial7, 
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-AR-ITC, mov-from-AR-RUC data

rfi mov-from-AR-ITC, 
mov-from-AR-RUC, mov-from-PSR

impliedF

PSR.sp sys-mask-writers-partial7, 
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-IND-PMD,
mov-to-PSR-um, rum, sum

data

rfi mov-from-IND-PMD, mov-from-PSR, 
mov-to-PSR-um, rum, sum

impliedF

PSR.ss rfi all impliedF

PSR.tb mov-to-PSR-l branches, chk, fchkf data

mov-from-PSR impliedF

rfi branches, chk, fchkf, mov-from-PSR impliedF

PSR.up user-mask-writers-partial7, 
mov-to-PSR-um,
sys-mask-writers-partial7, 
mov-to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

PSR.vm vmsw mem-readers, mem-writers, 
mov-from-AR-ITC, 
mov-from-AR-RUC, 
mov-from-IND-CPUID, 
mov-to-AR-ITC, mov-to-AR-RUC, 
priv-ops\vmsw, cover,  thash, ttag

implied

rfi mem-readers, mem-writers, 
mov-from-AR-ITC, 
mov-from-AR-RUC, 
mov-from-IND-CPUID, 
mov-to-AR-ITC, mov-to-AR-RUC, 
priv-ops\vmsw, cover,  thash, ttag

impliedF

RR# mov-to-IND-RR6 mem-readers, mem-writers, itc.i, itc.d, 
itr.i, itr.d, non-access, ptc.g, ptc.ga, 
ptc.l, ptr.i, ptr.d, thash, ttag

data

mov-from-IND-RR6 impliedF

RSE rse-writers14 rse-readers14 impliedF
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5.3.3 WAW Dependency Table

General rules specific to the WAW table:

• All resources require at most an instruction group break to provide sequential 
behavior.

• Some resources require no instruction group break to provide sequential behavior.

• There are a few special cases that are described in greater detail elsewhere in the 
manual and are indicated with an SC (special case) result.

• Each sub-row of writers represents a group of instructions that when taken in pairs 
in any combination has the dependency result indicated. If the column is split in 
sub-columns, then the dependency semantics apply to any pair of instructions 
where one is chosen from left sub-column and one is chosen from the right 
sub-column.

Table 5-3. WAW Dependencies Organized by Resource

Resource Name Writers
Semantics of
Dependency

ALAT mem-readers-alat, mem-writers, chk.a.clr,
invala-all

none

AR[BSP] br.call, brl.call, br.ret, cover, mov-to-AR-BSPSTORE, rfi impliedF

AR[BSPSTORE] alloc, loadrs, flushrs, mov-to-AR-BSPSTORE impliedF

AR[CCV] mov-to-AR-CCV impliedF

AR[CFLG] mov-to-AR-CFLG impliedF

AR[CSD] ld16, mov-to-AR-CSD impliedF

AR[EC] br.ret, mod-sched-brs, mov-to-AR-EC impliedF

AR[EFLAG] mov-to-AR-EFLAG impliedF

AR[FCR] mov-to-AR-FCR impliedF

AR[FDR] mov-to-AR-FDR impliedF

AR[FIR] mov-to-AR-FIR impliedF

AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.s0 impliedF

AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 impliedF

AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 impliedF

AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 impliedF

AR[FPSR].sf0.flags fp-arith-s0, fcmp-s0, fpcmp-s0 none

fclrf.s0, fcmp-s0, fp-arith-s0, 
fpcmp-s0, mov-to-AR-FPSR

fclrf.s0, mov-to-AR-FPSR impliedF

AR[FPSR].sf1.flags fp-arith-s1, fcmp-s1, fpcmp-s1 none

fclrf.s1, fcmp-s1, fp-arith-s1, 
fpcmp-s1, mov-to-AR-FPSR

fclrf.s1, mov-to-AR-FPSR impliedF

AR[FPSR].sf2.flags fp-arith-s2, fcmp-s2, fpcmp-s2 none

fclrf.s2, fcmp-s2, fp-arith-s2, 
fpcmp-s2, mov-to-AR-FPSR

fclrf.s2, mov-to-AR-FPSR impliedF

AR[FPSR].sf3.flags fp-arith-s3, fcmp-s3, fpcmp-s3 none

fclrf.s3, fcmp-s3, fp-arith-s3, 
fpcmp-s3, mov-to-AR-FPSR

fclrf.s3, mov-to-AR-FPSR impliedF

AR[FPSR].rv mov-to-AR-FPSR impliedF

AR[FPSR].traps mov-to-AR-FPSR impliedF

AR[FSR] mov-to-AR-FSR impliedF

AR[ITC] mov-to-AR-ITC impliedF
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AR[K%],
% in 0 - 7

mov-to-AR-K1 impliedF

AR[LC] mod-sched-brs-counted, mov-to-AR-LC impliedF

AR[PFS] br.call, brl.call none

br.call, brl.call mov-to-AR-PFS impliedF

AR[RNAT] alloc, flushrs, loadrs,
mov-to-AR-RNAT, 

mov-to-AR-BSPSTORE

impliedF

AR[RSC] mov-to-AR-RSC impliedF

AR[RUC] mov-to-AR-RUC impliedF

AR[SSD] mov-to-AR-SSD impliedF

AR[UNAT]{%}, 
% in 0 - 63

mov-to-AR-UNAT, st8.spill impliedF

AR%,
% in 8-15, 20, 22-23, 31, 
33-35, 37-39, 41-43, 46-47, 
67-111

none none

AR%,
% in 48 - 63, 112-127

mov-to-AR-ig1 impliedF

BR%,
% in 0 - 7

br.call1, brl.call1 mov-to-BR1 impliedF

mov-to-BR1 impliedF

br.call1, brl.call1 none

CFM mod-sched-brs, br.call, brl.call, br.ret, alloc, clrrrb, cover, rfi impliedF

CPUID# none none

CR[CMCV] mov-to-CR-CMCV impliedF

CR[DCR] mov-to-CR-DCR impliedF

CR[EOI] mov-to-CR-EOI SC Section 
5.8.3.4, “End of 
External Interrupt 
Register (EOI – 
CR67)” on 
page 2:124

CR[IFA] mov-to-CR-IFA impliedF

CR[IFS] mov-to-CR-IFS, cover impliedF

CR[IHA] mov-to-CR-IHA impliedF

CR[IIB%],
% in 0 - 1

mov-to-CR-IIB impliedF

CR[IIM] mov-to-CR-IIM impliedF

CR[IIP] mov-to-CR-IIP impliedF

CR[IIPA] mov-to-CR-IIPA impliedF

CR[IPSR] mov-to-CR-IPSR impliedF

CR[IRR%],
% in 0 - 3

mov-from-CR-IVR impliedF

CR[ISR] mov-to-CR-ISR impliedF

CR[ITIR] mov-to-CR-ITIR impliedF

CR[ITM] mov-to-CR-ITM impliedF

CR[ITO] mov-to-CR-ITO impliedF
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CR[ITV] mov-to-CR-ITV impliedF

CR[IVA] mov-to-CR-IVA impliedF

CR[IVR] none SC

CR[LID] mov-to-CR-LID SC

CR[LRR%],
% in 0 - 1

mov-to-CR-LRR1 impliedF

CR[PMV] mov-to-CR-PMV impliedF

CR[PTA] mov-to-CR-PTA impliedF

CR[TPR] mov-to-CR-TPR impliedF

CR%,
% in 3, 5-7, 10-15, 18, 28-63, 
75-79, 82-127

none none

DBR# mov-to-IND-DBR3 impliedF

DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, 
itc.i, itc.d, itr.i, itr.d

itc.i, itc.d, itr.i, itr.d impliedF

DTC_LIMIT* ptc.g, ptc.ga impliedF

DTR itr.d impliedF

itr.d ptr.d impliedF

ptr.d none

FR%,
% in 0 - 1

none none

FR%,
% in 2 - 127

fr-writers1, ldf-c1, ldfp-c1 impliedF

GR0 none none

GR%,
% in 1 - 127

ld-c1, gr-writers1 impliedF

IBR# mov-to-IND-IBR3 impliedF

InService* mov-to-CR-EOI, mov-from-CR-IVR SC

IP all none

ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, 
itc.i, itc.d, itr.i, itr.d

itc.i, itc.d, itr.i, itr.d impliedF

ITR itr.i itr.i, ptr.i impliedF

ptr.i none

memory mem-writers none

PKR# mov-to-IND-PKR3 mov-to-IND-PKR4 none

mov-to-IND-PKR3 impliedF

PMC# mov-to-IND-PMC3 impliedF

PMD# mov-to-IND-PMD3 impliedF

PR0 pr-writers1 none
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PR%,
% in 1 - 15

pr-and-writers1 none

pr-or-writers1 none

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7

impliedF

PR%,
% in 16 - 62

pr-and-writers1 none

pr-or-writers1 none

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

impliedF

PR63 pr-and-writers1 none

pr-or-writers1 none

mod-sched-brs, 
pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

mod-sched-brs,
pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

impliedF

PSR.ac user-mask-writers-partial7, mov-to-PSR-um, 
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.be user-mask-writers-partial7, mov-to-PSR-um, 
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.bn bsw, rfi impliedF

PSR.cpl epc, br.ret, rfi impliedF

PSR.da rfi impliedF

PSR.db mov-to-PSR-l, rfi impliedF

PSR.dd rfi impliedF

PSR.dfh sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.dfl sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.di sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.dt sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ed rfi impliedF

PSR.i sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ia rfi impliedF

PSR.ic sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.id rfi impliedF

PSR.is br.ia, rfi impliedF

PSR.it rfi impliedF

PSR.lp mov-to-PSR-l, rfi impliedF

PSR.mc rfi impliedF
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5.3.4 WAR Dependency Table

A general rule specific to the WAR table:

1. WAR dependencies are always allowed within instruction groups except for the 
entry in Table 5-4 below. The readers and subsequent writers specified must be 
separated by a stop in order to have defined behavior.

5.3.5 Listing of Rules Referenced in Dependency Tables

The following rules restrict the specific instances in which some of the instructions in 
the tables cause a dependency and must be applied where referenced to correctly 
interpret those entries. Rules only apply to the instance of the instruction class, or 
instruction mnemonic prefix where the rule is referenced as a superscript. If the rule is 
referenced in Table 5-5 where instruction classes are defined, then it applies to all 
instances of the instruction class.

Rule 1. These instructions only write a register when that register’s number is explicitly 
encoded as a target of the instruction and is only read when it is encoded as a 
source of the instruction (or encoded as its PR[qp]).

PSR.mfh fr-writers9 none

 user-mask-writers-partial7, 
mov-to-PSR-um, fr-writers9,
sys-mask-writers-partial7, 

mov-to-PSR-l, rfi

user-mask-writers-partial7, 
mov-to-PSR-um, 

sys-mask-writers-partial7, 
mov-to-PSR-l, rfi

impliedF

PSR.mfl fr-writers9 none

user-mask-writers-partial7, 
mov-to-PSR-um, fr-writers9,
sys-mask-writers-partial7, 

mov-to-PSR-l, rfi

user-mask-writers-partial7, 
mov-to-PSR-um, 

sys-mask-writers-partial7, 
mov-to-PSR-l, rfi

impliedF

PSR.pk sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.pp sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ri rfi impliedF

PSR.rt mov-to-PSR-l, rfi impliedF

PSR.si sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.sp sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ss rfi impliedF

PSR.tb mov-to-PSR-l, rfi impliedF

PSR.up user-mask-writers-partial7, mov-to-PSR-um,
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.vm rfi, vmsw impliedF

RR# mov-to-IND-RR6 impliedF

RSE rse-writers14 impliedF

Table 5-4. WAR Dependencies Organized by Resource
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Rule 2. These instructions only read CFM when they access a rotating GR, FR, or PR.  
mov-to-PR and mov-from-PR only access CFM when their qualifying 
predicate is in the rotating region.

Rule 3. These instructions use a general register value to determine the specific indirect 
register accessed. These instructions only access the register resource specified 
by the value in bits {7:0} of the dynamic value of the index register.

Rule 4. These instructions only read the given resource when bits {7:0} of the indirect 
index register value does not match the register number of the resource.

Rule 5. All rules are implementation specific.

Rule 6. There is a dependency only when both the index specified by the reader and 
the index specified by the writer have the same value in bits {63:61}.

Rule 7. These instructions access the specified resource only when the corresponding 
mask bit is set.

Rule 8. PSR.dfh is only read when these instructions reference FR32-127. PSR.dfl is 
only read when these instructions reference FR2-31.

Rule 9. PSR.mfl is only written when these instructions write FR2-31. PSR.mfh is only 
written when these instructions write FR32-127.

Rule 10.The PSR.bn bit is only accessed when one of GR16-31 is specified in the 
instruction.

Rule 11.The target predicates are written independently of PR[qp], but source registers 
are only read if PR[qp] is true.

Rule 12.This instruction only reads the specified predicate register when that register is 
the PR[qp].

Rule 13.This reference to ld-c only applies to the GR whose value is loaded with data 
returned from memory, not the post-incremented address register. Thus, a stop 
is still required between a post-incrementing ld-c and a consumer that reads 
the post-incremented GR.

Rule 14.The RSE resource includes implementation-specific internal state. At least one 
(and possibly more) of these resources are read by each instruction listed in the 
rse-readers class. At least one (and possibly more) of these resources are 
written by each instruction listed in the rse-writers class. To determine exactly 
which instructions read or write each individual resource, see the corresponding 
instruction pages. 

Rule 15.This class represents all instructions marked as Reserved if PR[qp] is 1 B-type 
instructions as described in “Format Summary” on page 3:294.

Rule 16.This class represents all instructions marked as Reserved if PR[qp] is 1 
instructions as described in “Format Summary” on page 3:294.

Rule 17.CR[TPR] has a RAW dependency only between mov-to-CR-TPR and 
mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
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5.4 Support Tables

Table 5-5. Instruction Classes

Class Events/Instructions

all predicatable-instructions, unpredicatable-instructions

branches indirect-brs, ip-rel-brs

cfm-readers fr-readers, fr-writers, gr-readers, gr-writers, mod-sched-brs, 
predicatable-instructions, pr-writers, alloc, br.call, brl.call, br.ret, cover, loadrs, rfi, chk-a, 
invala.e

chk-a chk.a.clr, chk.a.nc

cmpxchg cmpxchg1, cmpxchg2, cmpxchg4, cmpxchg8, cmp8xchg16

czx czx1, czx2

fcmp-s0 fcmp[Field(sf)==s0]

fcmp-s1 fcmp[Field(sf)==s1]

fcmp-s2 fcmp[Field(sf)==s2]

fcmp-s3 fcmp[Field(sf)==s3]

fetchadd fetchadd4, fetchadd8

fp-arith fadd, famax, famin, fcvt.fx, fcvt.fxu, fcvt.xuf, fma, fmax, fmin, fmpy, fms, fnma, fnmpy, fnorm, 
fpamax, fpamin, fpcvt.fx, fpcvt.fxu, fpma, fpmax, fpmin, fpmpy, fpms, fpnma, fpnmpy, fprcpa, 
fprsqrta, frcpa, frsqrta, fsub

fp-arith-s0 fp-arith[Field(sf)==s0]

fp-arith-s1 fp-arith[Field(sf)==s1]

fp-arith-s2 fp-arith[Field(sf)==s2]

fp-arith-s3 fp-arith[Field(sf)==s3]

fp-non-arith fabs, fand, fandcm, fclass, fcvt.xf, fmerge, fmix, fneg, fnegabs, for, fpabs, fpmerge, fpack, 
fpneg, fpnegabs, fselect, fswap, fsxt, fxor, xma, xmpy

fpcmp-s0 fpcmp[Field(sf)==s0]

fpcmp-s1 fpcmp[Field(sf)==s1]

fpcmp-s2 fpcmp[Field(sf)==s2]

fpcmp-s3 fpcmp[Field(sf)==s3]

fr-readers fp-arith, fp-non-arith, mem-writers-fp, pr-writers-fp, chk.s[Format in {M21}], getf

fr-writers fp-arith, fp-non-arith\fclass, mem-readers-fp, setf

gr-readers gr-readers-writers, mem-readers, mem-writers, chk.s, cmp, cmp4, fc, itc.i, itc.d, itr.i, itr.d, 
mov-to-AR-gr, mov-to-BR, mov-to-CR, mov-to-IND, mov-from-IND, mov-to-PR-allreg, 
mov-to-PSR-l, mov-to-PSR-um, probe-all, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, setf, tbit, 
tnat

gr-readers-writers mov-from-IND, add, addl, addp4, adds, and, andcm, clz, czx, dep\dep[Format in {I13}], 
extr, mem-readers-int, ld-all-postinc, lfetch-postinc, mix, mux, or, pack, padd, pavg, 
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-regular, psad, pshl, 
pshladd, pshr, pshradd, psub, shl, shladd, shladdp4, shr, shrp, st-postinc, sub, sxt, tak, 
thash, tpa, ttag, unpack, xor, zxt

gr-writers alloc, dep, getf, gr-readers-writers, mem-readers-int, mov-from-AR, mov-from-BR, 
mov-from-CR, mov-from-PR, mov-from-PSR, mov-from-PSR-um, mov-ip, movl

indirect-brp brp[Format in {B7}]

indirect-brs br.call[Format in {B5}], br.cond[Format in {B4}], br.ia, br.ret

invala-all invala[Format in {M24}], invala.e

ip-rel-brs mod-sched-brs, br.call[Format in {B3}], brl.call, brl.cond, br.cond[Format in {B1}], br.cloop

ld ld1, ld2, ld4, ld8, ld8.fill, ld16

ld-a ld1.a, ld2.a, ld4.a, ld8.a
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ld-all-postinc ld[Format in {M2 M3}], ldfp[Format in {M12}], ldf[Format in {M7 M8}]

ld-c ld-c-nc, ld-c-clr

ld-c-clr ld1.c.clr, ld2.c.clr, ld4.c.clr, ld8.c.clr, ld-c-clr-acq

ld-c-clr-acq ld1.c.clr.acq, ld2.c.clr.acq, ld4.c.clr.acq, ld8.c.clr.acq

ld-c-nc ld1.c.nc, ld2.c.nc, ld4.c.nc, ld8.c.nc

ld-s ld1.s, ld2.s, ld4.s, ld8.s

ld-sa ld1.sa, ld2.sa, ld4.sa, ld8.sa

ldf ldfs, ldfd, ldfe, ldf8, ldf.fill

ldf-a ldfs.a, ldfd.a, ldfe.a, ldf8.a

ldf-c ldf-c-nc, ldf-c-clr

ldf-c-clr ldfs.c.clr, ldfd.c.clr, ldfe.c.clr, ldf8.c.clr

ldf-c-nc ldfs.c.nc, ldfd.c.nc, ldfe.c.nc, ldf8.c.nc

ldf-s ldfs.s, ldfd.s, ldfe.s, ldf8.s

ldf-sa ldfs.sa, ldfd.sa, ldfe.sa, ldf8.sa

ldfp ldfps, ldfpd, ldfp8

ldfp-a ldfps.a, ldfpd.a, ldfp8.a

ldfp-c ldfp-c-nc, ldfp-c-clr

ldfp-c-clr ldfps.c.clr, ldfpd.c.clr, ldfp8.c.clr

ldfp-c-nc ldfps.c.nc, ldfpd.c.nc, ldfp8.c.nc

ldfp-s ldfps.s, ldfpd.s, ldfp8.s

ldfp-sa ldfps.sa, ldfpd.sa, ldfp8.sa

lfetch-all lfetch

lfetch-fault lfetch[Field(lftype)==fault]

lfetch-nofault lfetch[Field(lftype)==]

lfetch-postinc lfetch[Format in {M20 M22}]

mem-readers mem-readers-fp, mem-readers-int

mem-readers-alat ld-a, ldf-a, ldfp-a, ld-sa, ldf-sa, ldfp-sa, ld-c, ldf-c, ldfp-c

mem-readers-fp ldf, ldfp

mem-readers-int cmpxchg, fetchadd, xchg, ld

mem-readers-spec ld-s, ld-sa, ldf-s, ldf-sa, ldfp-s, ldfp-sa

mem-writers mem-writers-fp, mem-writers-int

mem-writers-fp stf

mem-writers-int cmpxchg, fetchadd, xchg, st

mix mix1, mix2, mix4

mod-sched-brs br.cexit, br.ctop, br.wexit, br.wtop

mod-sched-brs-counted br.cexit, br.cloop, br.ctop 

mov-from-AR mov-from-AR-M, mov-from-AR-I, mov-from-AR-IM

mov-from-AR-BSP mov-from-AR-M[Field(ar3) == BSP]

mov-from-AR-BSPSTORE mov-from-AR-M[Field(ar3) == BSPSTORE]

mov-from-AR-CCV mov-from-AR-M[Field(ar3) == CCV]

mov-from-AR-CFLG mov-from-AR-M[Field(ar3) == CFLG]

mov-from-AR-CSD mov-from-AR-M[Field(ar3) == CSD]

mov-from-AR-EC mov-from-AR-I[Field(ar3) == EC]

mov-from-AR-EFLAG mov-from-AR-M[Field(ar3) == EFLAG]

mov-from-AR-FCR mov-from-AR-M[Field(ar3) == FCR]

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions
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mov-from-AR-FDR mov-from-AR-M[Field(ar3) == FDR]

mov-from-AR-FIR mov-from-AR-M[Field(ar3) == FIR]

mov-from-AR-FPSR mov-from-AR-M[Field(ar3) == FPSR]

mov-from-AR-FSR mov-from-AR-M[Field(ar3) == FSR]

mov-from-AR-I mov_ar[Format in {I28}]

mov-from-AR-ig mov-from-AR-IM[Field(ar3) in {48-63 112-127}]

mov-from-AR-IM mov_ar[Format in {I28 M31}]

mov-from-AR-ITC mov-from-AR-M[Field(ar3) == ITC]

mov-from-AR-K mov-from-AR-M[Field(ar3) in {K0 K1 K2 K3 K4 K5 K6 K7}]

mov-from-AR-LC mov-from-AR-I[Field(ar3) == LC]

mov-from-AR-M mov_ar[Format in {M31}]

mov-from-AR-PFS mov-from-AR-I[Field(ar3) == PFS]

mov-from-AR-RNAT mov-from-AR-M[Field(ar3) == RNAT]

mov-from-AR-RSC mov-from-AR-M[Field(ar3) == RSC]

mov-from-AR-RUC mov-from-AR-M[Field(ar3) == RUC]

mov-from-AR-rv none

mov-from-AR-SSD mov-from-AR-M[Field(ar3) == SSD]

mov-from-AR-UNAT mov-from-AR-M[Field(ar3) == UNAT]

mov-from-BR mov_br[Format in {I22}]

mov-from-CR mov_cr[Format in {M33}]

mov-from-CR-CMCV mov-from-CR[Field(cr3) == CMCV]

mov-from-CR-DCR mov-from-CR[Field(cr3) == DCR]

mov-from-CR-EOI mov-from-CR[Field(cr3) == EOI]

mov-from-CR-IFA mov-from-CR[Field(cr3) == IFA]

mov-from-CR-IFS mov-from-CR[Field(cr3) == IFS]

mov-from-CR-IHA mov-from-CR[Field(cr3) == IHA]

mov-from-CR-IIB mov-from-CR[Field(cr3) in {IIB0 IIB1}]

mov-from-CR-IIM mov-from-CR[Field(cr3) == IIM]

mov-from-CR-IIP mov-from-CR[Field(cr3) == IIP]

mov-from-CR-IIPA mov-from-CR[Field(cr3) == IIPA]

mov-from-CR-IPSR mov-from-CR[Field(cr3) == IPSR]

mov-from-CR-IRR mov-from-CR[Field(cr3) in {IRR0 IRR1 IRR2 IRR3}]

mov-from-CR-ISR mov-from-CR[Field(cr3) == ISR]

mov-from-CR-ITIR mov-from-CR[Field(cr3) == ITIR]

mov-from-CR-ITM mov-from-CR[Field(cr3) == ITM]

mov-from-CR-ITO mov-from-CR[Field(cr3) == ITO]

mov-from-CR-ITV mov-from-CR[Field(cr3) == ITV]

mov-from-CR-IVA mov-from-CR[Field(cr3) == IVA]

mov-from-CR-IVR mov-from-CR[Field(cr3) == IVR]

mov-from-CR-LID mov-from-CR[Field(cr3) == LID]

mov-from-CR-LRR mov-from-CR[Field(cr3) in {LRR0 LRR1}]

mov-from-CR-PMV mov-from-CR[Field(cr3) == PMV]

mov-from-CR-PTA mov-from-CR[Field(cr3) == PTA]

mov-from-CR-rv none

mov-from-CR-TPR mov-from-CR[Field(cr3) == TPR]

Table 5-5. Instruction Classes (Continued)
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mov-from-IND mov_indirect[Format in {M43}]

mov-from-IND-CPUID mov-from-IND[Field(ireg) == cpuid]

mov-from-IND-DBR mov-from-IND[Field(ireg) == dbr]

mov-from-IND-IBR mov-from-IND[Field(ireg) == ibr]

mov-from-IND-PKR mov-from-IND[Field(ireg) == pkr]

mov-from-IND-PMC mov-from-IND[Field(ireg) == pmc]

mov-from-IND-PMD mov-from-IND[Field(ireg) == pmd]

mov-from-IND-priv mov-from-IND[Field(ireg) in {dbr ibr pkr pmc rr}]

mov-from-IND-RR mov-from-IND[Field(ireg) == rr]

mov-from-interruption-CR mov-from-CR-ITIR, mov-from-CR-IFS, mov-from-CR-IIB, mov-from-CR-IIM, 
mov-from-CR-IIP, mov-from-CR-IPSR, mov-from-CR-ISR, mov-from-CR-IFA, 
mov-from-CR-IHA, mov-from-CR-IIPA

mov-from-PR mov_pr[Format in {I25}]

mov-from-PSR mov_psr[Format in {M36}]

mov-from-PSR-um mov_um[Format in {M36}]

mov-ip mov_ip[Format in {I25}]

mov-to-AR mov-to-AR-M, mov-to-AR-I

mov-to-AR-BSP mov-to-AR-M[Field(ar3) == BSP]

mov-to-AR-BSPSTORE mov-to-AR-M[Field(ar3) == BSPSTORE]

mov-to-AR-CCV mov-to-AR-M[Field(ar3) == CCV]

mov-to-AR-CFLG mov-to-AR-M[Field(ar3) == CFLG]

mov-to-AR-CSD mov-to-AR-M[Field(ar3) == CSD]

mov-to-AR-EC mov-to-AR-I[Field(ar3) == EC]

mov-to-AR-EFLAG mov-to-AR-M[Field(ar3) == EFLAG]

mov-to-AR-FCR mov-to-AR-M[Field(ar3) == FCR]

mov-to-AR-FDR mov-to-AR-M[Field(ar3) == FDR]

mov-to-AR-FIR mov-to-AR-M[Field(ar3) == FIR]

mov-to-AR-FPSR mov-to-AR-M[Field(ar3) == FPSR]

mov-to-AR-FSR mov-to-AR-M[Field(ar3) == FSR]

mov-to-AR-gr mov-to-AR-M[Format in {M29}], mov-to-AR-I[Format in {I26}]

mov-to-AR-I mov_ar[Format in {I26 I27}]

mov-to-AR-ig mov-to-AR-IM[Field(ar3) in {48-63 112-127}]

mov-to-AR-IM mov_ar[Format in {I26 I27 M29 M30}]

mov-to-AR-ITC mov-to-AR-M[Field(ar3) == ITC]

mov-to-AR-K mov-to-AR-M[Field(ar3) in {K0 K1 K2 K3 K4 K5 K6 K7}]

mov-to-AR-LC mov-to-AR-I[Field(ar3) == LC]

mov-to-AR-M mov_ar[Format in {M29 M30}]

mov-to-AR-PFS mov-to-AR-I[Field(ar3) == PFS]

mov-to-AR-RNAT mov-to-AR-M[Field(ar3) == RNAT]

mov-to-AR-RSC mov-to-AR-M[Field(ar3) == RSC]

mov-to-AR-RUC mov-to-AR-M[Field(ar3) == RUC]

mov-to-AR-SSD mov-to-AR-M[Field(ar3) == SSD]

mov-to-AR-UNAT mov-to-AR-M[Field(ar3) == UNAT]

mov-to-BR mov_br[Format in {I21}]

mov-to-CR mov_cr[Format in {M32}]

mov-to-CR-CMCV mov-to-CR[Field(cr3) == CMCV]

Table 5-5. Instruction Classes (Continued)
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mov-to-CR-DCR mov-to-CR[Field(cr3) == DCR]

mov-to-CR-EOI mov-to-CR[Field(cr3) == EOI]

mov-to-CR-IFA mov-to-CR[Field(cr3) == IFA]

mov-to-CR-IFS mov-to-CR[Field(cr3) == IFS]

mov-to-CR-IHA mov-to-CR[Field(cr3) == IHA]

mov-to-CR-IIB mov-to-CR[Field(cr3) in {IIB0 IIB1}]

mov-to-CR-IIM mov-to-CR[Field(cr3) == IIM]

mov-to-CR-IIP mov-to-CR[Field(cr3) == IIP]

mov-to-CR-IIPA mov-to-CR[Field(cr3) == IIPA]

mov-to-CR-IPSR mov-to-CR[Field(cr3) == IPSR]

mov-to-CR-IRR mov-to-CR[Field(cr3) in {IRR0 IRR1 IRR2 IRR3}]

mov-to-CR-ISR mov-to-CR[Field(cr3) == ISR]

mov-to-CR-ITIR mov-to-CR[Field(cr3) == ITIR]

mov-to-CR-ITM mov-to-CR[Field(cr3) == ITM]

mov-to-CR-ITO mov-to-CR[Field(cr3) == ITO]

mov-to-CR-ITV mov-to-CR[Field(cr3) == ITV]

mov-to-CR-IVA mov-to-CR[Field(cr3) == IVA]

mov-to-CR-IVR mov-to-CR[Field(cr3) == IVR]

mov-to-CR-LID mov-to-CR[Field(cr3) == LID]

mov-to-CR-LRR mov-to-CR[Field(cr3) in {LRR0 LRR1}]

mov-to-CR-PMV mov-to-CR[Field(cr3) == PMV]

mov-to-CR-PTA mov-to-CR[Field(cr3) == PTA]

mov-to-CR-TPR mov-to-CR[Field(cr3) == TPR]

mov-to-IND mov_indirect[Format in {M42}]

mov-to-IND-CPUID mov-to-IND[Field(ireg) == cpuid]

mov-to-IND-DBR mov-to-IND[Field(ireg) == dbr]

mov-to-IND-IBR mov-to-IND[Field(ireg) == ibr]

mov-to-IND-PKR mov-to-IND[Field(ireg) == pkr]

mov-to-IND-PMC mov-to-IND[Field(ireg) == pmc]

mov-to-IND-PMD mov-to-IND[Field(ireg) == pmd]

mov-to-IND-priv mov-to-IND

mov-to-IND-RR mov-to-IND[Field(ireg) == rr]

mov-to-interruption-CR mov-to-CR-ITIR, mov-to-CR-IFS, mov-to-CR-IIB, mov-to-CR-IIM, mov-to-CR-IIP, 
mov-to-CR-IPSR, mov-to-CR-ISR, mov-to-CR-IFA, mov-to-CR-IHA, mov-to-CR-IIPA

mov-to-PR mov-to-PR-allreg, mov-to-PR-rotreg

mov-to-PR-allreg mov_pr[Format in {I23}]

mov-to-PR-rotreg mov_pr[Format in {I24}]

mov-to-PSR-l mov_psr[Format in {M35}]

mov-to-PSR-um mov_um[Format in {M35}]

mux mux1, mux2

non-access fc, lfetch, probe-all, tpa, tak

none -

pack pack2, pack4

padd padd1, padd2, padd4

pavg pavg1, pavg2

Table 5-5. Instruction Classes (Continued)
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pavgsub pavgsub1, pavgsub2

pcmp pcmp1, pcmp2, pcmp4

pmax pmax1, pmax2

pmin pmin1, pmin2

pmpy pmpy2

pmpyshr pmpyshr2

pr-and-writers pr-gen-writers-int[Field(ctype) in {and andcm}], 
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-gen-writers-fp fclass, fcmp

pr-gen-writers-int cmp, cmp4, tbit, tf, tnat

pr-norm-writers-fp pr-gen-writers-fp[Field(ctype)==]

pr-norm-writers-int pr-gen-writers-int[Field(ctype)==]

pr-or-writers pr-gen-writers-int[Field(ctype) in {or orcm}], 
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-readers-br br.call, br.cond, brl.call, brl.cond, br.ret, br.wexit, br.wtop, break.b, hint.b, nop.b, 
ReservedBQP

pr-readers-nobr-nomovpr add, addl, addp4, adds, and, andcm, break.f, break.i, break.m, break.x, chk.s, chk-a, cmp, 
cmp4, cmpxchg, clz, czx, dep, extr, fp-arith, fp-non-arith, fc, fchkf, fclrf, fcmp, fetchadd, 
fpcmp, fsetc, fwb, getf, hint.f, hint.i, hint.m, hint.x, invala-all, itc.i, itc.d, itr.i, itr.d, ld, ldf, ldfp, 
lfetch-all, mf, mix, mov-from-AR-M, mov-from-AR-IM, mov-from-AR-I, mov-to-AR-M, 
mov-to-AR-I, mov-to-AR-IM, mov-to-BR, mov-from-BR, mov-to-CR, mov-from-CR, 
mov-to-IND, mov-from-IND, mov-ip, mov-to-PSR-l, mov-to-PSR-um, mov-from-PSR, 
mov-from-PSR-um, movl, mux, nop.f, nop.i, nop.m, nop.x, or, pack, padd, pavg, 
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-all, psad, pshl, pshladd, 
pshr, pshradd, psub, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.d, ptr.i, ReservedQP, rsm, setf, shl, 
shladd, shladdp4, shr, shrp, srlz.i, srlz.d, ssm, st, stf, sub, sum, sxt, sync, tak, tbit, tf, thash, 
tnat, tpa, ttag, unpack, xchg, xma, xmpy, xor, zxt

pr-unc-writers-fp pr-gen-writers-fp[Field(ctype)==unc]11, fprcpa11, fprsqrta11, frcpa11, frsqrta11

pr-unc-writers-int pr-gen-writers-int[Field(ctype)==unc]11

pr-writers pr-writers-int, pr-writers-fp

pr-writers-fp pr-norm-writers-fp, pr-unc-writers-fp

pr-writers-int pr-norm-writers-int, pr-unc-writers-int, pr-and-writers, pr-or-writers

predicatable-instructions mov-from-PR, mov-to-PR, pr-readers-br, pr-readers-nobr-nomovpr

priv-ops mov-to-IND-priv, bsw, itc.i, itc.d, itr.i, itr.d, mov-to-CR, mov-from-CR, mov-to-PSR-l, 
mov-from-PSR, mov-from-IND-priv, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, rfi, rsm, ssm, tak, 
tpa, vmsw

probe-all probe-fault, probe-regular

probe-fault probe[Format in {M40}]

probe-regular probe[Format in {M38 M39}]

psad psad1

pshl pshl2, pshl4

pshladd pshladd2

pshr pshr2, pshr4

pshradd pshradd2

psub psub1, psub2, psub4

ReservedBQP -15

ReservedQP -16
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§

rse-readers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-from-AR-BSP, 
mov-from-AR-BSPSTORE, mov-to-AR-BSPSTORE, mov-from-AR-RNAT, 
mov-to-AR-RNAT, rfi

rse-writers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-to-AR-BSPSTORE, rfi

st st1, st2, st4, st8, st8.spill, st16

st-postinc stf[Format in {M10}], st[Format in {M5}]

stf stfs, stfd, stfe, stf8, stf.spill

sxt sxt1, sxt2, sxt4

sys-mask-writers-partial rsm, ssm

unpack unpack1, unpack2, unpack4

unpredicatable-instructions alloc, br.cloop, br.ctop, br.cexit, br.ia, brp, bsw, clrrrb, cover, epc, flushrs, loadrs, rfi, vmsw

user-mask-writers-partial rum, sum

xchg xchg1, xchg2, xchg4, xchg8

zxt zxt1, zxt2, zxt4

Table 5-5. Instruction Classes (Continued)
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About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such 
as explicit parallelism, predication, speculation and more. The architecture is designed 
to be highly scalable to fill the ever increasing performance requirements of various 
server and workstation market segments. The Itanium architecture features a 
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor 
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key 
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a 
comprehensive description of the programming environment, resources, and instruction 
set visible to both the application and system programmer. In addition, it also describes 
how programmers can take advantage of the features of the Itanium architecture to 
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level 
resources, programming environment, and the IA-32 application interface. This volume 
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of 
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by 
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of 
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point 
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System 
Environment” describes the operation of IA-32 instructions within the Itanium System 
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® 
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.



4:2 Volume 4: About this Manual

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” 
provides an overview of the application programming environment for the Itanium 
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control 
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization 
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on 
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in 
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources 
and programming state, interrupt model, and processor firmware interface. This 
volume also provides a useful system programmer's guide for writing high performance 
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment 
designed to support execution of Itanium architecture-based operating systems running 
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural 
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating 
system for virtual to physical address translation, virtual aliasing, physical addressing, 
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a 
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which 
automatically saves and restores the stacked subset (GR32 – GR 127) of the general 
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance 
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.
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Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts 
and intercepts that can occur during IA-32 instruction set execution in the Itanium 
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with 
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium 
System Environment from the perspective of an Itanium architecture-based operating 
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts 
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second 
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing 
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes 
execution around interruptions and what state is preserved and made available to 
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve 
Itanium register contents and state. This chapter also describes system architecture 
mechanisms that allow an operating system to reduce the number of registers that 
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating 
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of 
instruction emulation handlers that Itanium architecture-based operating systems are 
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the 
Itanium architecture handle floating-point numeric exceptions and how the software 
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium 
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt 
architecture with a focus on how external asynchronous interrupt handling can be 
controlled by software. 

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform 
issues and support for the existing IA-32 I/O port space.
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Chapter 12, “Performance Monitoring Support” describes the performance monitor 
architecture with a focus on what kind of support is needed from Itanium 
architecture-based operating systems. 

Chapter 13, “Firmware Overview” introduces the firmware model, and how various 
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system 
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium® 
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium 
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which 
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format 
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules 
that are applicable when generating code for processors based on the Itanium 
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set 
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all 
base IA-32 instructions, organized in alphabetical order by assembly language 
mnemonic.
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Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed 
description of all IA-32 Intel® MMX™ technology instructions designed to increase 
performance of multimedia intensive applications. Organized in alphabetical order by 
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all 
IA-32 SSE instructions designed to increase performance of multimedia intensive 
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be 
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level 
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new 
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports 
the execution of both IA-32 and Itanium architecture-based code.

IA-32 System Environment – The operating system privileged environment and 
resources as defined by the Intel Architecture Software Developer’s Manual. Resources 
include virtual paging, control registers, debugging, performance monitoring, machine 
checks, and the set of privileged instructions.

Itanium® Architecture-based Firmware – The Processor Abstraction Layer (PAL) 
and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor 
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system 
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at 
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual 
for Software Development and Optimization– Document number 308065 
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development 
and Optimization – This document (Document number 251110) describes 
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model-specific architectural features incorporated into the Intel® Itanium® 2 
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development – 
This document (Document number 245320) describes model-specific architectural 
features incorporated into the Intel® Itanium® processor, the first processor based 
on the Itanium architecture.

• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set 
of manuals describes the Intel 32-bit architecture. They are available from the Intel 
Literature Department by calling 1-800-548-4725 and requesting Document 
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide – 
This document (Document number 245358) defines general information necessary 
to compile, link, and execute a program on an Itanium architecture-based 
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification – 
This document (Document number 245359) specifies requirements to develop 
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at 
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines 
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of 
Revision

Revision 
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and 
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current 
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and 
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.
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August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking 
on interruption messages by processors optional. See Vol 2, Part I, Ch 5 
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers 
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure 
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2, 
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states). 
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for 
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined 
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD 
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY, 
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER, 
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional. 
Undefined behavior for 1-byte accesses to the non-architected regions in the 
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the 
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol 
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in 
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL 
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and 
check_target_register_sof. 
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II, 
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of 
Revision

Revision 
Number Description
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August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2, 
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1; 
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2; 
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3, 
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I, 
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I, 
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s) 
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I, 
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation 
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part 
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the 
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I, 
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2, 
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section 
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of 
Revision

Revision 
Number Description
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Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return 
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new 
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1, 
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow 
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative 
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section 
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications 
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section 
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2, 
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of 
Revision

Revision 
Number Description
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§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32 
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI 
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the 
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry 
order; SAL needs to initialize all the IA-32 registers properly before making 
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/ 
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of 
Revision

Revision 
Number Description
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Base IA-32 Instruction Reference 2

This section lists all IA-32 instructions and their behavior in the Itanium System 
Environment and IA-32 System Environments on an processor based on the Itanium 
architecture. Unless noted otherwise all IA-32 and MMX technology and SSE 
instructions operate as defined in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual.

This volume describes the complete IA-32 Architecture instruction set, including the 
integer, floating-point, MMX technology and SSE technology, and system instructions. 
The instruction descriptions are arranged in alphabetical order. For each instruction, the 
forms are given for each operand combination, including the opcode, operands 
required, and a description. Also given for each instruction are a description of the 
instruction and its operands, an operational description, a description of the effect of 
the instructions on flags in the EFLAGS register, and a summary of the exceptions that 
can be generated.

For all IA-32 the following relationships hold:

• Writes – Writes of any IA-32 general purpose, floating-point or SSE, MMX 
technology registers by IA-32 instructions are reflected in the Itanium registers 
defined to hold that IA-32 state when IA-32 instruction set completes execution.

• Reads – Reads of any IA-32 general purpose, floating-point or SSE, MMX 
technology registers by IA-32 instructions see the state of the Itanium registers 
defined to hold the IA-32 state after entering the IA-32 instruction set.

• State mappings – IA-32 numeric instructions are controlled by and reflect their 
status in FCW, FSW, FTW, FCS, FIP, FOP, FDS and FEA. On exit from the IA-32 
instruction set, Itanium numeric status and control resources defined to hold IA-32 
state reflect the results of all IA-32 prior numeric instructions in FCR, FSR, FIR and 
FDR. Itanium numeric status and control resources defined to hold IA-32 state are 
honored by IA-32 numeric instructions when entering the IA-32 instruction set.

2.1 Additional Intel® Itanium® Faults

The following fault behavior is defined for all IA-32 instructions in the Itanium System 
Environment:

• IA-32 Faults – All IA-32 faults are performed as defined in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, unless otherwise noted. 
IA-32 faults are delivered on the IA_32_Exception interruption vector.

• IA-32 GPFault – Null segments are signified by the segment descriptor register’s 
P-bit being set to zero. IA-32 memory references through DSD, ESD, FSD, and GSD 
with the P-bit set to zero result in an IA-32 GPFault.

• Itanium Low FP Reg Fault – If PSR.dfl is 1, execution of any IA-32 MMX 
technology, SSE or floating-point instructions results in a Disabled FP Register fault 
(regardless of whether FR2-31 is referenced). 

• Itanium High FP Reg Fault – If PSR.dfh is 1, execution of the first target IA-32 
instruction following an br.ia or rfi results in a Disabled FP Register fault 
(regardless of whether FR32-127 is referenced).
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• Itanium Instruction Mem Faults – The following additional Itanium memory 
faults can be generated on each virtual page referenced when fetching IA-32 or 
MMX technology or SSE instructions for execution:

• Alternative instruction TLB fault

• VHPT instruction fault

• Instruction TLB fault

• Instruction Page Not Present fault

• Instruction NaT Page Consumption Abort

• Instruction Key Miss fault

• Instruction Key Permission fault

• Instruction Access Rights fault

• Instruction Access Bit fault

• Itanium Data Mem Faults – The following additional Itanium memory faults can 
be generated on each virtual page touched when reading or writing memory 
operands from the IA-32 instruction set including MMX technology and SSE 
instructions:

• Nested TLB fault

• Alternative data TLB fault

• VHPT data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption Abort

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty bit fault

• Data Access bit fault

2.2 Interpreting the IA-32 Instruction Reference 
Pages

This section describes the information contained in the various sections of the 
instruction reference pages that make up the majority of this chapter. It also explains 
the notational conventions and abbreviations used in these sections.

2.2.1 IA-32 Instruction Format

The following is an example of the format used for each Intel architecture instruction 
description in this chapter.

2.2.1.0.0.1 CMC—Complement Carry Flag

Opcode Instruction Description

F5 CMC Complement carry flag
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2.2.1.1 Opcode Column

The “Opcode” column gives the complete object code produced for each form of the 
instruction. When possible, the codes are given as hexadecimal bytes, in the same 
order in which they appear in memory. Definitions of entries other than hexadecimal 
bytes are as follows:

• /digit – A digit between 0 and 7 indicates that the ModR/M byte of the instruction 
uses only the r/m (register or memory) operand. The reg field contains the digit 
that provides an extension to the instruction's opcode.

• /r – Indicates that the ModR/M byte of the instruction contains both a register 
operand and an r/m operand.

• cb, cw, cd, cp – A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value 
following the opcode that is used to specify a code offset and possibly a new value 
for the code segment register.

• ib, iw, id – A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the 
instruction that follows the opcode, ModR/M bytes or scale-indexing bytes. The 
opcode determines if the operand is a signed value. All words and doublewords are 
given with the low-order byte first.

• +rb, +rw, +rd – A register code, from 0 through 7, added to the hexadecimal byte 
given at the left of the plus sign to form a single opcode byte. The register codes 
are given in Table 2-1.

• +i – A number used in floating-point instructions when one of the operands is ST(i) 
from the FPU register stack. The number i (which can range from 0 to 7) is added to 
the hexadecimal byte given at the left of the plus sign to form a single opcode byte.

2.2.1.2 Instruction Column

The “Instruction” column gives the syntax of the instruction statement as it would 
appear in an ASM386 program. The following is a list of the symbols used to represent 
operands in the instruction statements:

• rel8 – A relative address in the range from 128 bytes before the end of the 
instruction to 127 bytes after the end of the instruction.

• rel16 and rel32 – A relative address within the same code segment as the 
instruction assembled. The rel16 symbol applies to instructions with an 
operand-size attribute of 16 bits; the rel32 symbol applies to instructions with an 
operand-size attribute of 32 bits.

Table 2-1. Register Encodings Associated with the +rb, +rw, and +rd 
Nomenclature

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7
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• ptr16:16 and ptr16:32 – A far pointer, typically in a code segment different from 
that of the instruction. The notation 16:16 indicates that the value of the pointer 
has two parts. The value to the left of the colon is a 16-bit selector or value 
destined for the code segment register. The value to the right corresponds to the 
offset within the destination segment. The ptr16:16 symbol is used when the 
instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when 
the operand-size attribute is 32 bits.

• r8 – One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16 – One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32 – One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP, 
EBP, ESI, or EDI.

• imm8 – An immediate byte value. The imm8 symbol is a signed number between –
128 and +127 inclusive. For instructions in which imm8 is combined with a word or 
doubleword operand, the immediate value is sign-extended to form a word or 
doubleword. The upper byte of the word is filled with the topmost bit of the 
immediate value.

• imm16 – An immediate word value used for instructions whose operand-size 
attribute is 16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32 – An immediate doubleword value used for instructions whose 
operand-size attribute is 32 bits. It allows the use of a number between 
+2,147,483,647 and -2,147,483,648 inclusive.

• r/m8 – A byte operand that is either the contents of a byte general-purpose 
register (AL, BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

• r/m16 – A word general-purpose register or memory operand used for instructions 
whose operand-size attribute is 16 bits. The word general-purpose registers are: 
AX, BX, CX, DX, SP, BP, SI, and DI. The contents of memory are found at the 
address provided by the effective address computation.

• r/m32 – A doubleword general-purpose register or memory operand used for 
instructions whose operand-size attribute is 32 bits. The doubleword 
general-purpose registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The 
contents of memory are found at the address provided by the effective address 
computation.

• m – A 16- or 32-bit operand in memory.

• m8 – A byte operand in memory, usually expressed as a variable or array name, 
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used 
only with the string instructions and the XLAT instruction.

• m16 – A word operand in memory, usually expressed as a variable or array name, 
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used 
only with the string instructions.

• m32 – A doubleword operand in memory, usually expressed as a variable or array 
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is 
used only with the string instructions.

• m64 – A memory quadword operand in memory. This nomenclature is used only 
with the CMPXCHG8B instruction.

• m16:16, m16:32 – A memory operand containing a far pointer composed of two 
numbers. The number to the left of the colon corresponds to the pointer's segment 
selector. The number to the right corresponds to its offset.

• m16&32, m16&16, m32&32 – A memory operand consisting of data item pairs 
whose sizes are indicated on the left and the right side of the ampersand. All 
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memory addressing modes are allowed. The m16&16 and m32&32 operands are 
used by the BOUND instruction to provide an operand containing an upper and 
lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to 
provide a word with which to load the limit field, and a doubleword with which to 
load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32 – A simple memory variable (memory offset) of type 
byte, word, or doubleword used by some variants of the MOV instruction. The 
actual address is given by a simple offset relative to the segment base. No ModR/M 
byte is used in the instruction. The number shown with moffs indicates its size, 
which is determined by the address-size attribute of the instruction. 

• Sreg – A segment register. The segment register bit assignments are ES=0, CS=1, 
SS=2, DS=3, FS=4, and GS=5.

• m32real, m64real, m80real – A single-, double-, and extended-real 
(respectively) floating-point operand in memory.

• m16int, m32int, m64int – A word-, short-, and long-integer (respectively) 
floating-point operand in memory.

• ST or ST(0) – The top element of the FPU register stack.

• ST(i) – The ith element from the top of the FPU register stack. (i = 0 through 7).

• mm – An MMX technology register. The 64-bit MMX technology registers are: MM0 
through MM7.

• mm/m32 – The low order 32 bits of an MMX technology register or a 32-bit 
memory operand. The 64-bit MMX technology registers are: MM0 through MM7. 
The contents of memory are found at the address provided by the effective address 
computation.

• mm/m64 – An MMX technology register or a 64-bit memory operand. The 64-bit 
MMX technology registers are: MM0 through MM7. The contents of memory are 
found at the address provided by the effective address computation.

2.2.1.3 Description Column

The “Description” column following the “Instruction” column briefly explains the various 
forms of the instruction. The following “Description” and “Operation” sections contain 
more details of the instruction's operation.

2.2.1.4 Description

The “Description” section describes the purpose of the instructions and the required 
operands. It also discusses the effect of the instruction on flags.

2.2.2 Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of 
the instruction. The pseudo-code uses a notation similar to the Algol or Pascal 
language. The algorithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”. 

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for 
an if statement, DO and OD for a do statement, or CASE... OF and ESAC for a case 
statement.
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• A register name implies the contents of the register. A register name enclosed in 
brackets implies the contents of the location whose address is contained in that 
register. For example, ES:[DI] indicates the contents of the location whose ES 
segment relative address is in register DI. [SI] indicates the contents of the 
address contained in register SI relative to SI’s default segment (DS) or overridden 
segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, 
indicates that an offset is read from the SI register if the current address-size 
attribute is 16 or is read from the ESI register if the address-size attribute is 32.

• Brackets are also used for memory operands, where they mean that the contents of 
the memory location is a segment-relative offset. For example, [SRC] indicates that 
the contents of the source operand is a segment-relative offset.

• A  B; indicates that the value of B is assigned to A.

• The symbols =, , , and  are relational operators used to compare two values, 
meaning equal, not equal, greater or equal, less or equal, respectively. A relational 
expression such as A = B is TRUE if the value of A is equal to B; otherwise it is 
FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination 
operand should be shifted left or right, respectively, by the number of bits indicated 
by the count operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize – The OperandSize identifier represents the 
operand-size attribute of the instruction, which is either 16 or 32 bits. The 
AddressSize identifier represents the address-size attribute, which is either 16 or 
32 bits. For example, the following pseudo-code indicates that the operand-size 
attribute depends on the form of the CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize  16;
ELSE

IF instruction = CMPSD
THEN OperandSize  32;

FI;
FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel 
Architecture Software Developer’s Manual, Volume 1, for general guidelines on how 
these attributes are determined.

• StackAddrSize – Represents the stack address-size attribute associated with the 
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for 
Stack” in Chapter 4 of the Intel Architecture Software Developer’s Manual, Volume 
1).

• SRC – Represents the source operand.

• DEST – Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value) – Returns a value zero-extended to the operand-size attribute 
of the instruction. For example, if the operand-size attribute is 32, zero extending a 
byte value of -10 converts the byte from F6H to a doubleword value of 000000F6H. 
If the value passed to the ZeroExtend function and the operand-size attribute are 
the same size, ZeroExtend returns the value unaltered.
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• SignExtend(value) – Returns a value sign-extended to the operand-size attribute 
of the instruction. For example, if the operand-size attribute is 32, sign extending a 
byte containing the value -10 converts the byte from F6H to a doubleword value of 
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size 
attribute are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte – Converts a signed 16-bit value to a signed 
8-bit value. If the signed 16-bit value is less than -128, it is represented by the 
saturated value -128 (80H); if it is greater than 127, it is represented by the 
saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord – Converts a signed 32-bit value to a 
signed 16-bit value. If the signed 32-bit value is less than -32768, it is represented 
by the saturated value
-32768 (8000H); if it is greater than 32767, it is represented by the saturated 
value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte – Converts a signed 16-bit value to an 
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented 
by the saturated value zero (00H); if it is greater than 255, it is represented by the 
saturated value 255 (FFH).

• SaturateToSignedByte – Represents the result of an operation as a signed 8-bit 
value. If the result is less than -128, it is represented by the saturated value -128 
(80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord – Represents the result of an operation as a signed 
16-bit value. If the result is less than -32768, it is represented by the saturated 
value -32768 (8000H); if it is greater than 32767, it is represented by the 
saturated value 32767 (7FFFH).

• SaturateToUnsignedByte – Represents the result of an operation as a signed 
8-bit value. If the result is less than zero it is represented by the saturated value 
zero (00H); if it is greater than 255, it is represented by the saturated value 255 
(FFH).

• SaturateToUnsignedWord – Represents the result of an operation as a signed 
16-bit value. If the result is less than zero it is represented by the saturated value 
zero (00H); if it is greater than 65535, it is represented by the saturated value 
65535 (FFFFH).

• LowOrderWord(DEST * SRC) – Multiplies a word operand by a word operand and 
stores the least significant word of the doubleword result in the destination 
operand.

• HighOrderWord(DEST * SRC) – Multiplies a word operand by a word operand 
and stores the most significant word of the doubleword result in the destination 
operand.

• Push(value) – Pushes a value onto the stack. The number of bytes pushed is 
determined by the operand-size attribute of the instruction.

• Pop() – Removes the value from the top of the stack and returns it. The statement 
EAX  Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will 
return either a word or a doubleword depending on the operand-size attribute.

• PopRegisterStack – Marks the FPU ST(0) register as empty and increments the 
FPU register stack pointer (TOP) by 1.

• Switch-Tasks – Performs a task switch.

• Bit(BitBase, BitOffset) – Returns the value of a bit within a bit string, which is a 
sequence of bits in memory or a register. Bits are numbered from low-order to 
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high-order within registers and within memory bytes. If the base operand is a 
register, the offset can be in the range 0..31. This offset addresses a bit within the 
indicated register. An example, the function Bit[EAX, 21] is illustrated in Figure 2-2.

If BitBase is a memory address, BitOffset can range from -2 GBits to 2 GBits. The 
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + 
(BitOffset DIV 8)), where DIV is signed division with rounding towards negative infinity, 
and MOD returns a positive number. This operation is illustrated in Figure 2-3.

2.2.3 Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by 
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. 
The arithmetic and logical instructions usually assign values to the status flags in a 
uniform manner (see Appendix A, EFLAGS Cross-Reference, in the Intel Architecture 
Software Developer’s Manual, Volume 1). Non-conventional assignments are described 
in the “Operation” section. The values of flags listed as undefined may be changed by 
the instruction in an indeterminate manner. Flags that are not listed are unchanged by 
the instruction.

2.2.4 FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how 
each instruction can affect the four condition code flags of the FPU status word.

Figure 2-2. Bit Offset for BIT[EAX,21]

Figure 2-3. Memory Bit Indexing

02131

BitOffset = 21

0777 5 0 0

0777 50 0

BitBase +1 BitBase BitBase -1

BitOffset = +13

BitBase BitBase -1 BitBase -2

BitOffset = -11
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2.2.5 Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the 
instruction is executed in protected mode and the reasons for the exceptions. Each 
exception is given a mnemonic that consists of a pound sign (#) followed by two letters 
and an optional error code in parentheses. For example, #GP(0) denotes a general 
protection exception with an error code of 0. Table 2-2 associates each two-letter 
mnemonic with the corresponding interrupt vector number and exception name. See 
Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software 
Developer’s Manual, Volume 3, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their 
operating systems to determine the actions taken when exceptions occur.

2.2.6 Real-address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when 
the instruction is executed in real-address mode.

2.2.7 Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when 
the instruction is executed in virtual-8086 mode.

Table 2-2. Exception Mnemonics, Names, and Vector Numbers

Vector 
No.

Mnemonic Name Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) UD2 instruction or reserved opcode.a

a. The UD2 instruction was introduced in the Pentium® Pro processor.

 7 #NM Device Not Available (No Math 
Coprocessor)

Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an 
exception, an NMI, or an INTR.

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing 
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other protection 
checks.

14 #PF Page Fault Any memory reference.

16 #MF Floating-point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.b

b. This exception was introduced in the Intel® 486 processor.

18 #MC Machine Check Model dependent.c

c. This exception was introduced in the Pentium processor and enhanced in the Pentium Pro processor.
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2.2.8 Floating-point Exceptions

The “Floating-point Exceptions” section lists additional exceptions that can occur when 
a floating-point instruction is executed in any mode. All of these exception conditions 
result in a floating-point error exception (#MF, vector number 16) being generated. 
Table 2-3 associates each one- or two-letter mnemonic with the corresponding 
exception name. See “Floating-Point Exception Conditions” in Chapter 7 of the Intel 
Architecture Software Developer’s Manual, Volume 1, for a detailed description of these 
exceptions.

2.3 IA-32 Base Instruction Reference

The remainder of this chapter provides detailed descriptions of each of the Intel 
architecture instructions.

Table 2-3. Floating-point Exception Mnemonics and Names

Vector 
No.

Mnemonic Name Source

16
#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- FPU stack overflow or underflow
- Invalid FPU arithmetic operation

16 #Z Floating-point divide-by-zero FPU divide-by-zero

16 #D Floating-point denormalized operation Attempting to operate on a denormal 
number

16 #O Floating-point numeric overflow FPU numeric overflow

16 #U Floating-point numeric underflow FPU numeric underflow

16 #P Floating-point inexact result (precision) Inexact result (precision)
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AAA—ASCII Adjust After Addition

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL 
register is the implied source and destination operand for this instruction. The AAA 
instruction is only useful when it follows an ADD instruction that adds (binary addition) 
two unpacked BCD values and stores a byte result in the AL register. The AAA 
instruction then adjusts the contents of the AL register to contain the correct 1-digit 
unpacked BCD result. 

If the addition produces a decimal carry, the AH register is incremented by 1, and the 
CF and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared 
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register are 
cleared to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL  (AL + 6);
AH  AH + 1;
AF  1;
CF  1;

ELSE
AF  0;
CF  0;

FI;
AL   AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise 
they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

37 AAA ASCII adjust AL after addition
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AAD—ASCII Adjust AX Before Division

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the 
most-significant digit in the AH register) so that a division operation performed on the 
result will yield a correct unpacked BCD value. The AAD instruction is only useful when 
it precedes a DIV instruction that divides (binary division) the adjusted value in the AL 
register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then 
clears the AH register to 00H. The value in the AX register is then equal to the binary 
equivalent of the original unpacked two-digit number in registers AH and AL.

Operation

tempAL  AL;
tempAH  AH;
AL  (tempAL + (tempAH  imm8)) AND FFH;
AH  0

The immediate value (imm8) is taken from the second byte of the instruction, which 
under normal assembly is 0AH (10 decimal). However, this immediate value can be 
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are 
undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D5  0A AAD ASCII adjust AX before division
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AAM—ASCII Adjust AX After Multiply

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of 
unpacked BCD values. The AX register is the implied source and destination operand for 
this instruction. The AAM instruction is only useful when it follows an MUL instruction 
that multiplies (binary multiplication) two unpacked BCD values and stores a word 
result in the AX register. The AAM instruction then adjusts the contents of the AX 
register to contain the correct 2-digit unpacked BCD result. 

Operation

tempAL  AL;
AH  tempAL / imm8; 
AL  tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction, which 
under normal assembly is 0AH (10 decimal). However, this immediate value can be 
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are 
undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D4  0A AAM ASCII adjust AX after multiply
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AAS—ASCII Adjust AL After Subtraction

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked 
BCD result. The AL register is the implied source and destination operand for this 
instruction. The AAS instruction is only useful when it follows a SUB instruction that 
subtracts (binary subtraction) one unpacked BCD value from another and stores a byte 
result in the AL register. The AAA instruction then adjusts the contents of the AL 
register to contain the correct 1-digit unpacked BCD result. 

If the subtraction produced a decimal carry, the AH register is decremented by 1, and 
the CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are 
cleared, and the AH register is unchanged. In either case, the AL register is left with its 
top nibble set to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL  AL - 6;
AH  AH - 1;
AF  1;
CF  1;

ELSE
CF  0;
AF  0;

FI;
AL  AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are 
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

3F AAS ASCII adjust AL after subtraction



Volume 4: Base IA-32 Instruction Reference 4:25

ADC—Add with Carry

Description

Adds the destination operand (first operand), the source operand (second operand), 
and the carry (CF) flag and stores the result in the destination operand. The destination 
operand can be a register or a memory location; the source operand can be an 
immediate, a register, or a memory location. The state of the CF flag represents a carry 
from a previous addition. When an immediate value is used as an operand, it is 
sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. 
Instead, the processor evaluates the result for both data types and sets the OF and CF 
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag 
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in 
which an ADD instruction is followed by an ADC instruction.

Operation

DEST  DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32
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ADC—Add with Carry (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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ADD—Add

Description

Adds the first operand (destination operand) and the second operand (source operand) 
and stores the result in the destination operand. The destination operand can be a 
register or a memory location; the source operand can be an immediate, a register, or a 
memory location. When an immediate value is used as an operand, it is sign-extended 
to the length of the destination operand format.

The ADD instruction does not distinguish between signed or unsigned operands. 
Instead, the processor evaluates the result for both data types and sets the OF and CF 
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag 
indicates the sign of the signed result.

Operation

DEST  DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32 

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32
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ADD—Add (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0)If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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AND—Logical AND

Description

Performs a bitwise AND operation on the destination (first) and source (second) 
operands and stores the result in the destination operand location. The source operand 
can be an immediate, a register, or a memory location; the destination operand can be 
a register or a memory location.

Operation

DEST  DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. 
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8

83 /4 ib AND r/m32,imm8 r/m32 AND imm8

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32
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AND—Logical AND (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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ARPL—Adjust RPL Field of Segment Selector

Description

Compares the RPL fields of two segment selectors. The first operand (the destination 
operand) contains one segment selector and the second operand (source operand) 
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the RPL 
field of the destination operand is less than the RPL field of the source operand, the ZF 
flag is set and the RPL field of the destination operand is increased to match that of the 
source operand. Otherwise, the ZF flag is cleared and no change is made to the 
destination operand. (The destination operand can be a word register or a memory 
location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it 
can also be used by applications). It is generally used to adjust the RPL of a segment 
selector that has been passed to the operating system by an application program to 
match the privilege level of the application program. Here the segment selector passed 
to the operating system is placed in the destination operand and segment selector for 
the application program’s code segment is placed in the source operand. (The RPL field 
in the source operand represents the privilege level of the application program.) 
Execution of the ARPL instruction then insures that the RPL of the segment selector 
received by the operating system is no lower (does not have a higher privilege) than 
the privilege level of the application program. (The segment selector for the application 
program’s code segment can be read from the procedure stack following a procedure 
call.)

See the Intel Architecture Software Developer’s Manual, Volume 3 for more information 
about the use of this instruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF  1;
DEST(RPL)  SRC(RPL);

ELSE
ZF  0;

FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the 
source operand; otherwise, is cleared to 0.

Opcode Instruction Description

63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16
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ARPL—Adjust RPL Field of Segment Selector (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The ARPL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual 8086 mode.
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BOUND—Check Array Index Against Bounds

Description

Determines if the first operand (array index) is within the bounds of an array specified 
the second operand (bounds operand). The array index is a signed integer located in a 
register. The bounds operand is a memory location that points to a pair of signed 
doubleword-integers (when the operand-size attribute is 32) or a pair of signed 
word-integers (when the operand-size attribute is 16). The first doubleword (or word) 
is the lower bound of the array and the second doubleword (or word) is the upper 
bound of the array. The array index must be greater than or equal to the lower bound 
and less than or equal to the upper bound plus the operand size in bytes. If the index is 
not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When a this 
exception is generated, the saved return instruction pointer points to the BOUND 
instruction.)

The bounds limit data structure (two words or doublewords containing the lower and 
upper limits of the array) is usually placed just before the array itself, making the limits 
addressable via a constant offset from the beginning of the array. Because the address 
of the array already will be present in a register, this practice avoids extra bus cycles to 
obtain the effective address of the array bounds.

Operation
IF (ArrayIndex < LowerBound OR ArrayIndex > (UppderBound + OperandSize/8]))

(* Below lower bound or above upper bound *)
THEN 

#BR;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by m16&16

62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by m16&16
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BOUND—Check Array Index Against Bounds (Continued)

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#BR If the bounds test fails.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#BR If the bounds test fails.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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BSF—Bit Scan Forward

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If 
a least significant 1 bit is found, its bit index is stored in the destination operand (first 
operand). The source operand can be a register or a memory location; the destination 
operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the contents source operand are 0, the contents of the destination operand 
is undefined.

Operation

IF SRC = 0
THEN

ZF  1;
DEST is undefined;

ELSE
ZF  0;
temp  0;

WHILE Bit(SRC, temp) = 0
DO

temp  temp + 1;
DEST  temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. 
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BC BSF r16,r/m16 Bit scan forward on r/m16

0F BC BSF r32,r/m32 Bit scan forward on r/m32
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BSF—Bit Scan Forward (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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BSR—Bit Scan Reverse

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If 
a most significant 1 bit is found, its bit index is stored in the destination operand (first 
operand). The source operand can be a register or a memory location; the destination 
operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the contents source operand are 0, the contents of the destination operand 
is undefined.

Operation

IF SRC = 0
THEN

ZF  1;
DEST is undefined;

ELSE
ZF  0;
temp  OperandSize - 1;

WHILE Bit(SRC, temp) = 0
DO

temp  temp  1;
DEST  temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. 
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BD BSR r16,r/m16 Bit scan reverse on r/m16

0F BD BSR r32,r/m32 Bit scan reverse on r/m32
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BSR—Bit Scan Reverse (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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BSWAP—Byte Swap

Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped 
with bits 24 through 31, and bits 8 through 15 are swapped with bits 16 through 23. 
This instruction is provided for converting little-endian values to big-endian format and 
vice versa. 

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the 
BSWAP instruction references a 16-bit register, the result is undefined.

Operation

TEMP  DEST
DEST(7..0)  TEMP(31..24)
DEST(15..8)  TEMP(23..16)
DEST(23..16)  TEMP(15..8)
DEST(31..24)  TEMP(7..0)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility Information

The BSWAP instruction is not supported on Intel architecture processors earlier than 
the Intel486™ processor family. For compatibility with this instruction, include 
functionally-equivalent code for execution on Intel processors earlier than the Intel486 
processor family.

Opcode Instruction Description

0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.
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BT—Bit Test

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the 
bit-position designated by the bit offset operand (second operand) and stores the value 
of the bit in the CF flag. The bit base operand can be a register or a memory location; 
the bit offset operand can be a register or an immediate value. If the bit base operand 
specifies a register, the instruction takes the modulo 16 or 32 (depending on the 
register size) of the bit offset operand, allowing any bit position to be selected in a 16- 
or 32-bit register, respectively. If the bit base operand specifies a memory location, it 
represents the address of the byte in memory that contains the bit base (bit 0 of the 
specified byte) of the bit string. The offset operand then selects a bit position within the 
range 231 to 231  1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate 
bit offset field in combination with the displacement field of the memory operand. In 
this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the 
immediate bit offset are stored in the immediate bit offset field, and the high-order bits 
are shifted and combined with the byte displacement in the addressing mode by the 
assembler. The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the 
memory address for a 32-bit operand size, using by the following relationship:

Effective Address + (4  (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using 
this relationship:

Effective Address + (2  (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. 
When using this bit addressing mechanism, software should avoid referencing areas of 
memory close to address space holes. In particular, it should avoid references to 
memory-mapped I/O registers. Instead, software should use the MOV instructions to 
load from or store to these addresses, and use the register form of these instructions to 
manipulate the data.

Operation

CF  Bit(BitBase, BitOffset)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are 
undefined.

Opcode Instruction Description

0F A3 BT r/m16,r16 Store selected bit in CF flag

0F A3 BT r/m32,r32 Store selected bit in CF flag

0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag

0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag
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BT—Bit Test (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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BTC—Bit Test and Complement

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the 
bit-position designated by the bit offset operand (second operand), stores the value of 
the bit in the CF flag, and complements the selected bit in the bit string. The bit base 
operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value. If the bit base operand specifies a register, the instruction takes 
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing 
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base 
operand specifies a memory location, it represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset 
operand then selects a bit position within the range 231 to 231  1 for a register offset 
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate 
bit offset field in combination with the displacement field of the memory operand. See 
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF  Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset)  NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, 
ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BB BTC r/m16,r16 Store selected bit in CF flag and complement

0F BB BTC r/m32,r32 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement
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BTC—Bit Test and Complement (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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BTR—Bit Test and Reset

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the 
bit-position designated by the bit offset operand (second operand), stores the value of 
the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit base 
operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value. If the bit base operand specifies a register, the instruction takes 
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing 
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base 
operand specifies a memory location, it represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset 
operand then selects a bit position within the range 231 to 231  1 for a register offset 
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate 
bit offset field in combination with the displacement field of the memory operand. See 
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF  Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset)  0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, 
and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear

0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear
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BTR—Bit Test and Reset (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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BTS—Bit Test and Set

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the 
bit-position designated by the bit offset operand (second operand), stores the value of 
the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit base 
operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value. If the bit base operand specifies a register, the instruction takes 
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing 
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base 
operand specifies a memory location, it represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset 
operand then selects a bit position within the range 231 to 231  1 for a register offset 
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate 
bit offset field in combination with the displacement field of the memory operand. See 
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF  Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset)  1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and 
PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F AB BTS r/m16,r16 Store selected bit in CF flag and set

0F AB BTS r/m32,r32 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set
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BTS—Bit Test and Set (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.



4:48 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure

Description

Saves procedure linking information on the procedure stack and jumps to the 
procedure (called procedure) specified with the destination (target) operand. The target 
operand specifies the address of the first instruction in the called procedure. This 
operand can be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call – A call to a procedure within the current code segment (the segment 
currently pointed to by the CS register), sometimes referred to as an intrasegment 
call.

• Far call – A call to a procedure located in a different segment than the current code 
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call – A far call to a procedure in a segment at a different 
privilege level than that of the currently executing program or procedure. Results 
in an IA-32_Intercept(Gate) in Itanium System Environment.

• Task switch – A call to a procedure located in a different task. Results in an 
IA-32_Intercept(Gate) in Itanium System Environment.

The latter two call types (inter-privilege-level call and task switch) can only be executed 
in protected mode. See Chapter 6 in the Intel Architecture Software Developer’s 
Manual, Volume 3 for information on task switching with the CALL instruction.

When executing a near call, the processor pushes the value of the EIP register (which 
contains the address of the instruction following the CALL instruction) onto the 
procedure stack (for use later as a return-instruction pointer. The processor then jumps 
to the address specified with the target operand for the called procedure. The target 
operand specifies either an absolute address in the code segment (that is an offset from 
the base of the code segment) or a relative offset (a signed offset relative to the 
current value of the instruction pointer in the EIP register, which points to the 
instruction following the call). An absolute address is specified directly in a register or 
indirectly in a memory location (r/m16 or r/m32 target-operand form). (When 
accessing an absolute address indirectly using the stack pointer (ESP) as a base 
register, the base value used is the value of the ESP before the instruction executes.) A 
relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at 
the machine code level, it is encoded as a signed, 16- or 32-bit immediate value, which 
is added to the instruction pointer. 

Opcode Instruction Description

E8 cw CALL rel16 Call near, displacement relative to next instruction

E8 cd CALL rel32 Call near, displacement relative to next instruction

FF /2 CALL r/m16 Call near, r/m16 indirect

FF /2 CALL r/m32 Call near, r/m32 indirect

9A cd CALL ptr16:16 Call far, to full pointer given

9A cp CALL ptr16:32 Call far, to full pointer given

FF /3 CALL m16:16 Call far, address at r/m16

FF /3 CALL m16:32 Call far, address at r/m32
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When executing a near call, the operand-size attribute determines the size of the target 
operand (16 or 32 bits) for absolute addresses. Absolute addresses are loaded directly 
into the EIP register. When a relative offset is specified, it is added to the value of the 
EIP register. If the operand-size attribute is 16, the upper two bytes of the EIP register 
are cleared to 0s, resulting in a maximum instruction pointer size of 16 bits. The CS 
register is not changed on near calls.

When executing a far call, the processor pushes the current value of both the CS and 
EIP registers onto the procedure stack for use as a return-instruction pointer. The 
processor then performs a far jump to the code segment and address specified with the 
target operand for the called procedure. Here the target operand specifies an absolute 
far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a 
memory location (m16:16 or m16:32). With the pointer method, the segment and 
address of the called procedure is encoded in the instruction using a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect 
method, the target operand specifies a memory location that contains a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute 
determines the size of the offset (16 or 32 bits) in the far address. The far address is 
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the 
upper two bytes of the EIP register are cleared to 0s.

Any far call from a 32-bit code segment to a 16-bit code segment should be made from 
the first 64 Kbytes of the 32-bit code segment, because the operand-size attribute of 
the instruction is set to 16, allowing only a 16-bit return address offset to be saved. 
Also, the call should be made using a 16-bit call gate so that 16-bit values will be 
pushed on the stack.

When the processor is operating in protected mode, a far call can also be used to 
access a code segment at a different privilege level or to switch tasks. Here, the 
processor uses the segment selector part of the far address to access the segment 
descriptor for the segment being jumped to. Depending on the value of the type and 
access rights information in the segment selector, the CALL instruction can perform:

• A far call to the same privilege level (described in the previous paragraph).

• An far call to a different privilege level. Results in an IA-32_Intercept(Gate) in 
Itanium System Environment.

• A task switch. Results in an IA-32_Intercept(Gate) in Itanium System 
Environment.

When executing an inter-privilege-level far call, the code segment for the procedure 
being called is accessed through a call gate. The segment selector specified by the 
target operand identifies the call gate. In executing a call through a call gate where a 
change of privilege level occurs, the processor switches to the stack for the privilege 
level of the called procedure, pushes the current values of the CS and EIP registers and 
the SS and ESP values for the old stack onto the new stack, then performs a far jump to 
the new code segment. The new code segment is specified in the call gate descriptor; 
the new stack segment is specified in the TSS for the currently running task. The jump 
to the new code segment occurs after the stack switch. On the new stack, the processor 
pushes the segment selector and stack pointer for the calling procedure’s stack, a set of 
parameters from the calling procedures stack, and the segment selector and instruction 
pointer for the calling procedure’s code segment. (A value in the call gate descriptor 
determines how many parameters to copy to the new stack.) 

Finally, the processor jumps to the address of the procedure being called within the new 
code segment. The procedure address is the offset specified by the target operand. 
Here again, the target operand can specify the far address of the call gate and 
procedure either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a 
memory location (m16:16 or m16:32).
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Executing a task switch with the CALL instruction, is similar to executing a call through 
a call gate. Here the target operand specifies the segment selector of the task gate for 
the task being switched to and the address of the procedure being called in the task. 
The task gate in turn points to the TSS for the task, which contains the segment 
selectors for the task’s code and stack segments. The CALL instruction can also specify 
the segment selector of the TSS directly. See the Intel Architecture Software 
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task 
switch.

Operation

IF near call
THEN IF near relative call 

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP  EIP + DEST; (* DEST is rel32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP  (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI; 
FI;
ELSE (* near absolute call *)

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP); 
EIP  DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *) 
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP  DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI; 
FI:
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI; 
IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)

THEN
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS  DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP  DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
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Push(IP);
CS  DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP  DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP  EIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

THEN #GP(new code selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF not present THEN #NP(selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS  DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  DEST(offset);

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS  DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL  CPL) THEN #GP(new code segment selector); FI;
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IF stack not large enough for return address THEN #SS(0); FI;
tempEIP  DEST(offset)
IF OperandSize=16

THEN
tempEIP  tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS  DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *)
CS(RPL)  CPL;
EIP  tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS  DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *)
CS(RPL)  CPL;
EIP  tempEIP;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF not present THEN #NP(call gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL 

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN 
TSSstackAddress  new code segment (DPL  8) + 4
IF (TSSstackAddress + 7)  TSS limit

THEN #TS(current TSS selector); FI;
newSS  TSSstackAddress + 4;
newESP  stack address;

ELSE (* TSS is 16-bit *)
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TSSstackAddress  new code segment (DPL  4) + 2
IF (TSSstackAddress + 4)  TSS limit

THEN #TS(current TSS selector); FI;
newESP  TSSstackAddress;
newSS  TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector's RPL  DPL of code segment

OR stack segment DPL  DPL of code segment 
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS  newSS; 
(* segment descriptor information also loaded *)
ESP  newESP; 
CS:EIP  CallGate(CS:InstructionPointer); 
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp  parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit 

THEN #GP(0); FI;
SS  newSS; 
(* segment descriptor information also loaded *)
ESP  newESP; 
CS:IP  CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp  parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

FI;
CPL  CodeSegment(DPL)
CS(RPL)  CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;



4:54 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

IF EIP not within code segment limit then #GP(0); FI;
CS:EIP  CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 4 bytes

THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP  CallGate(CS:instruction pointer) 
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

FI;
CS(RPL)  CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL 

THEN #GP(task gate selector); 
FI;
IF task gate not present 

THEN #NP(task gate selector); 
FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector); 

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); 

FI;
IF TSS not present 

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); 
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
ORTSS segment selector local/global bit is set to local
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present 

THEN #NP(TSS selector); 
FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit 
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THEN #GP(0); 
FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does 
not occur.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Gate Intercept for CALLs through CALL Gates, Task Gates and Task 
Segments

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code 
segment limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor 
table limits. 

If the segment descriptor pointed to by the segment selector in the 
destination operand is not for a conforming-code segment, 
nonconforming-code segment, call gate, task gate, or task state 
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL 
or the RPL for the segment’s segment selector is greater than the 
CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is 
less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s 
segment selector.

If the segment descriptor for a segment selector from a call gate 
does not indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor 
table limits.

If the DPL for a code-segment obtained from a call gate is greater 
than the CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not 
available.
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#SS(0) If pushing the return address, parameters, or stack segment pointer 
onto the stack exceeds the bounds of the stack segment, when no 
stack switch occurs.

If a memory operand effective address is outside the SS segment 
limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer 
onto the stack exceeds the bounds of the stack segment, when a 
stack switch occurs.

If the SS register is being loaded as part of a stack switch and the 
segment pointed to is marked not present.

If stack segment does not have room for the return address, 
parameters, or stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task 
gate, or TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of 
the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal 
to the DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is 
not equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor 
table limits. 

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and 
alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the target offset is beyond the code segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is 
enabled.
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CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Description

Double the size of the source operand by means of sign extension. The CBW (convert 
byte to word) instruction copies the sign (bit 7) in the source operand into every bit in 
the AH register. The CWDE (convert word to doubleword) instruction copies the sign (bit 
15) of the word in the AX register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is 
intended for use when the operand-size attribute is 16 and the CWDE instruction for 
when the operand-size attribute is 32. Some assemblers may force the operand size to 
16 when CBW is used and to 32 when CWDE is used. Others may treat these 
mnemonics as synonyms (CBW/CWDE) and use the current setting of the operand-size 
attribute to determine the size of values to be converted, regardless of the mnemonic 
used.

The CWDE instruction is different from the CWD (convert word to double) instruction. 
The CWD instruction uses the DX:AX register pair as a destination operand; whereas, 
the CWDE instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX  SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX  SignExtend(AX);
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

98 CBW AX  sign-extend of AL

98 CWDE EAX  sign-extend of AX
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CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Double/Convert Double to Quad.
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CLC—Clear Carry Flag

Description

Clears the CF flag in the EFLAGS register.

Operation

CF  0;

Flags Affected

The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F8 CLC Clear CF flag
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CLD—Clear Direction Flag

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations 
increment the index registers (ESI and/or EDI).

Operation

DF  0;

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FC CLD Clear DF flag
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CLI—Clear Interrupt Flag

Description

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF 
flag causes the processor to ignore maskable external interrupts. The IF flag and the 
CLI and STI instruction have no affect on the generation of exceptions and NMI 
interrupts. In the Itanium System Environment, external interrupts are enabled 
for IA-32 instructions if PSR.i and (~CFLG.if or EFLAG.if) is 1 and for Itanium 
instructions if PSR.i is 1.

The following decision table indicates the action of the CLI instruction (bottom of the 
table) depending on the processor’s mode of operating and the CPL and IOPL of the 
currently running program or procedure (top of the table). 

Notes:
XDon't care.
NAction in column 1 not taken.
YAction in column 1 taken.

Operation

OLD_IF <- IF;

IF PE = 0 (* Executing in real-address mode *)
THEN

IF  0;  
ELSE

IF VM = 0   (* Executing in protected mode *)
THEN

IF CR4.PVI = 1
THEN

IF CPL = 3
THEN

IF IOPL<3
THEN VIF <- 0;
ELSE IF <- 0;
FI;

ELSE (*CPL < 3*)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <- 0;

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt flag 
cleared

PE = 0 1 1 1 1

VM = X 0 X 0 1

CPL X  IOPL X > IOPL X

IOPL X X  3 X < 3

IF 0 Y Y Y N N

#GP(0) N N N Y Y
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FI;
FI;

ELSE (*CR4.PVI==0 *)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <- 0;
FI;

FI;
ELSE  (* Executing in Virtual-8086 mode  *)

IF IOPL = 3
THEN 

IF  
ELSE 

IF CR4.VME= 0
THEN #GP(0);
ELSE VIF <- 0;
FI;

FI;
FI;

FI;
IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF 

THEN IA-32_Intercept(System_Flag,CLI);

Flags Affected

The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, the it is not 
affected. The other flags in the EFLAGS register are unaffected.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes 
state.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 
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CLTS—Clear Task-Switched Flag in CR0

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for 
use in operating-system procedures. It is a privileged instruction that can only be 
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow 
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to 
synchronize the saving of FPU context in multitasking applications. See the description 
of the TS flag in the Intel Architecture Software Developer’s Manual, Volume 3 for more 
information about this flag.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,CLTS);

CR0(TS)  0;

Flags Affected

The TS flag in CR0 register is cleared.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept fault.

Protected Mode Exceptions

#GP(0) If the CPL is greater than 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater than 0.

Opcode Instruction Description

0F 06 CLTS Clears TS flag in CR0
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CMC—Complement Carry Flag

Description

Complements the CF flag in the EFLAGS register.

Operation

CF  NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF 
flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F5 CMC Complement CF flag
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CMOVcc—Conditional Move

Opcode Instruction Description

0F 47 cw/cd CMOVA r16, r/m16 Move if above (CF=0 and ZF=0)

0F 47 cw/cd CMOVA r32, r/m32 Move if above (CF=0 and ZF=0)

0F 43 cw/cd CMOVAE r16, r/m16 Move if above or equal (CF=0)

0F 43 cw/cd CMOVAE r32, r/m32 Move if above or equal (CF=0)

0F 42 cw/cd CMOVB r16, r/m16 Move if below (CF=1)

0F 42 cw/cd CMOVB r32, r/m32 Move if below (CF=1)

0F 46 cw/cd CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1)

0F 46 cw/cd CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1)

0F 42 cw/cd CMOVC r16, r/m16 Move if carry (CF=1)

0F 42 cw/cd CMOVC r32, r/m32 Move if carry (CF=1)

0F 44 cw/cd CMOVE r16, r/m16 Move if equal (ZF=1)

0F 44 cw/cd CMOVE r32, r/m32 Move if equal (ZF=1)

0F 4F cw/cd CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF)

0F 4F cw/cd CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF)

0F 4D cw/cd CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

0F 4D cw/cd CMOVGE r32, r/m32 Move if greater or equal (SF=OF)

0F 4C cw/cd CMOVL r16, r/m16 Move if less (SF<>OF)

0F 4C cw/cd CMOVL r32, r/m32 Move if less (SF<>OF)

0F 4E cw/cd CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

0F 46 cw/cd CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

0F 46 cw/cd CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1)

0F 42 cw/cd CMOVNAE r16, r/m16 Move if not above or equal (CF=1)

0F 42 cw/cd CMOVNAE r32, r/m32 Move if not above or equal (CF=1)

0F 43 cw/cd CMOVNB r16, r/m16 Move if not below (CF=0)

0F 43 cw/cd CMOVNB r32, r/m32 Move if not below (CF=0)

0F 47 cw/cd CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0)

0F 47 cw/cd CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0)

0F 43 cw/cd CMOVNC r16, r/m16 Move if not carry (CF=0)

0F 43 cw/cd CMOVNC r32, r/m32 Move if not carry (CF=0)

0F 45 cw/cd CMOVNE r16, r/m16 Move if not equal (ZF=0)

0F 45 cw/cd CMOVNE r32, r/m32 Move if not equal (ZF=0)

0F 4E cw/cd CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF)

0F 4C cw/cd CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF)

0F 4C cw/cd CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF)

0F 4D cw/cd CMOVNL r16, r/m16 Move if not less (SF=OF)

0F 4D cw/cd CMOVNL r32, r/m32 Move if not less (SF=OF)

0F 4F cw/cd CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF)

0F 4F cw/cd CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF)
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CMOVcc—Conditional Move (Continued)

Description

The CMOVcc instructions check the state of one or more of the status flags in the 
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are 
in a specified state (or condition). A condition code (cc) is associated with each 
instruction to indicate the condition being tested for. If the condition is not satisfied, a 
move is not performed and execution continues with the instruction following the 
CMOVcc instruction.

If the condition is false for the memory form, some processor implementations will 
initiate the load (and discard the loaded data), possible memory faults can be 
generated. Other processor models will not initiate the load and not generate any faults 
if the condition is false.

These instructions can move a 16- or 32-bit value from memory to a general-purpose 
register or from one general-purpose register to another. Conditional moves of 8-bit 
register operands are not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the 
above table. The terms “less” and “greater” are used for comparisons of signed integers 
and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two 
ways, two mnemonics are defined for some opcodes. For example, the CMOVA 
(conditional move if above) instruction and the CMOVNBE (conditional move if not 
below or equal) instruction are alternate mnemonics for the opcode 0F 47H.

Opcode Instruction Description

0F 41 cw/cd CMOVNO r16, r/m16 Move if not overflow (OF=0)

0F 41 cw/cd CMOVNO r32, r/m32 Move if not overflow (OF=0)

0F 4B cw/cd CMOVNP r16, r/m16 Move if not parity (PF=0)

0F 4B cw/cd CMOVNP r32, r/m32 Move if not parity (PF=0)

0F 49 cw/cd CMOVNS r16, r/m16 Move if not sign (SF=0)

0F 49 cw/cd CMOVNS r32, r/m32 Move if not sign (SF=0)

0F 45 cw/cd CMOVNZ r16, r/m16 Move if not zero (ZF=0)

0F 45 cw/cd CMOVNZ r32, r/m32 Move if not zero (ZF=0)

0F 40 cw/cd CMOVO r16, r/m16 Move if overflow (OF=0)

0F 40 cw/cd CMOVO r32, r/m32 Move if overflow (OF=0)

0F 4A cw/cd CMOVP r16, r/m16 Move if parity (PF=1)

0F 4A cw/cd CMOVP r32, r/m32 Move if parity (PF=1)

0F 4A cw/cd CMOVPE r16, r/m16 Move if parity even (PF=1)

0F 4A cw/cd CMOVPE r32, r/m32 Move if parity even (PF=1)

0F 4B cw/cd CMOVPO r16, r/m16 Move if parity odd (PF=0)

0F 4B cw/cd CMOVPO r32, r/m32 Move if parity odd (PF=0)

0F 48 cw/cd CMOVS r16, r/m16 Move if sign (SF=1)

0F 48 cw/cd CMOVS r32, r/m32 Move if sign (SF=1)

0F 44 cw/cd CMOVZ r16, r/m16 Move if zero (ZF=1)

0F 44 cw/cd CMOVZ r32, r/m32 Move if zero (ZF=1)
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CMOVcc—Conditional Move (Continued)

The CMOVcc instructions are new for the Pentium Pro processor family; however, they 
may not be supported by all the processors in the family. Software can determine if the 
CMOVcc instructions are supported by checking the processor’s feature information 
with the CPUID instruction (see “CPUID—CPU Identification” on page 4:78).

Operation

temp  DEST
IF condition TRUE

THEN
DEST  SRC

ELSE
DEST  temp

FI;

Flags Affected

None.

If the condition is false for the memory form, some processor implementations will 
initiate the load (and discard the loaded data), possible memory faults can be 
generated. Other processor models will not initiate the load and not generate any faults 
if the condition is false.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.
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CMOVcc—Conditional Move (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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CMP—Compare Two Operands

Description

Compares the first source operand with the second source operand and sets the status 
flags in the EFLAGS register according to the results. The comparison is performed by 
subtracting the second operand from the first operand and then setting the status flags 
in the same manner as the SUB instruction. When an immediate value is used as an 
operand, it is sign-extended to the length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), 
condition move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, 
CMOVcc, and SETcc instructions are based on the results of a CMP instruction. 

Operation

temp  SRC1  SignExtend(SRC2); 
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

3C ib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32

83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16

83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32

38 /r CMP r/m8,r8 Compare r8 with r/m8

39 /r CMP r/m16,r16 Compare r16 with r/m16

39 /r CMP r/m32,r32 Compare r32 with r/m32

3A /r CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32
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CMP—Compare Two Operands (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Description

Compares the byte, word, or double word specified with the first source operand with 
the byte, word, or double word specified with the second source operand and sets the 
status flags in the EFLAGS register according to the results. The first source operand 
specifies the memory location at the address DS:ESI and the second source operand 
specifies the memory location at address ES:EDI. (When the operand-size attribute is 
16, the SI and DI register are used as the source-index and destination-index registers, 
respectively.) The DS segment may be overridden with a segment override prefix, but 
the ES segment cannot be overridden.

The CMPSB, CMPSW, and CMPSD mnemonics are synonyms of the byte, word, and 
doubleword versions of the CMPS instructions. They are simpler to use, but provide no 
type or segment checking. (For the CMPS instruction, “DS:ESI” and “ES:EDI” must be 
explicitly specified in the instruction.)

After the comparison, the ESI and EDI registers are incremented or decremented 
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF 
flag is 0, the ESI and EDI register are incremented; if the DF flag is 1, the ESI and EDI 
registers are decremented.) The registers are incremented or decremented by 1 for 
byte operations, by 2 for word operations, or by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix 
for block comparisons of ECX bytes, words, or doublewords. More often, however, these 
instructions will be used in a LOOP construct that takes some action based on the 
setting of the status flags before the next comparison is made. 

Opcode Instruction Description

A6 CMPS DS:(E)SI, ES:(E)DI Compares byte at address DS:(E)SI with byte at address 
ES:(E)DI and sets the status flags accordingly

A7 CMPS DS:SI, ES:DI Compares byte at address DS:SI with byte at address 
ES:DI and sets the status flags accordingly

A7 CMPS DS:ESI, ES:EDI Compares byte at address DS:ESI with byte at address 
ES:EDI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at address 
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares byte at address DS:SI with byte at address 
ES:DI and sets the status flags accordingly

A7 CMPSD Compares byte at address DS:ESI with byte at address 
ES:EDI and sets the status flags accordingly
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CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Operation

temp SRC1  SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
THEN (E)DI  1; (E)SI  1;
ELSE (E)DI  -1; (E)SI  -1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
THEN DI  2; (E)SI  2;
ELSE DI  -2; (E)SI  -2;

FI;
ELSE (* doubleword comparison *)

THEN IF DF = 0
THEN EDI  4; (E)SI  4;
ELSE EDI  -4; (E)SI  -4;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the 
comparison.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.
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CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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CMPXCHG—Compare and Exchange

Description

Compares the value in the AL, AX, or EAX register (depending on the size of the 
operand) with the first operand (destination operand). If the two values are equal, the 
second operand (source operand) is loaded into the destination operand. Otherwise, 
the destination operand is loaded into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed 
atomically. To simplify the interface to the processor’s bus, the destination operand 
receives a write cycle without regard to the result of the comparison. The destination 
operand is written back if the comparison fails; otherwise, the source operand is written 
into the destination. (The processor never produces a locked read without also 
producing a locked write.)

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)

IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc
THEN IA-32_Intercept(LOCK,CMPXCHG);

IF accumulator = DEST
THEN

ZF  1
DEST  SRC

ELSE
ZF  0
accumulator  DEST

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX 
are; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the 
results of the comparison operation.

Opcode Instruction Description

0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded into 
r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is loaded 
into r/m16. Else, clear ZF and load r/m16 into AL

0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is loaded 
into r/m32. Else, clear ZF and load r/m32 into AL
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CMPXCHG—Compare and Exchange (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to 
complete this operation and DCR.lc is 1, no atomic transaction 
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault 
is generated. The software lock handler is responsible for the 
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 
processors.



4:76 Volume 4: Base IA-32 Instruction Reference

CMPXCHG8B—Compare and Exchange 8 Bytes

Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the 
values are equal, the 64-bit value in ECX:EBX is stored in the destination operand. 
Otherwise, the value in the destination operand is loaded into EDX:EAX. The destination 
operand is an 8-byte memory location. For the EDX:EAX and ECX:EBX register pairs, 
EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-order 32 
bits of a 64-bit value. 

This instruction can be used with a LOCK prefix to allow the instruction to be executed 
atomically. To simplify the interface to the processor’s bus, the destination operand 
receives a write cycle without regard to the result of the comparison. The destination 
operand is written back if the comparison fails; otherwise, the source operand is written 
into the destination. (The processor never produces a locked read without also 
producing a locked write.)

Operation
IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK,CMPXCHG);

IF (EDX:EAX = DEST)
ZF  1
DEST  ECX:EBX

ELSE
ZF  0
EDX:EAX  DEST

FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is 
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to 
complete this operation and DCR.lc is 1, no atomic transaction 
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault 
is generated. The software lock handler is responsible for the 
emulation of this instruction

Opcode Instruction Description

0F C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load 
ECX:EBX into m64. Else, clear ZF and load m64 into 
EDX:EAX.
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CMPXCHG8B—Compare and Exchange 8 Bytes (Continued)

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Pentium 
processors.
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CPUID—CPU Identification

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX 
registers. The information returned is selected by entering a value in the EAX register 
before the instruction is executed. Table 2-4 shows the information returned, 
depending on the initial value loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. 
If a software procedure can set and clear this flag, the processor executing the 
procedure supports the CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic 
information and extended function information. Basic information is returned by 
entering an input value starting at 0 in the EAX register; extended function information 
is returned by entering an input value starting at 80000000H.  When the input value in 
the EAX register is 0, the processor returns the highest value the CPUID instruction 
recognizes in the EAX register for returning basic information.  Always use an EAX 
parameter value that is equal to or greater than zero and less than or equal to this 
highest EAX return value for basic information.  When the input value in the EAX 
register is 80000000H, the processor returns the highest value the CPUID instruction 
recognizes in the EAX register for returning extended function information.  Always use 
an EAX parameter value that is equal to or greater than zero and less than or equal to 
this highest EAX return value for extended function information.

The CPUID instruction can be executed at any privilege level to serialize instruction 
execution.  Serializing instruction execution guarantees that any modifications to flags, 
registers, and memory for previous instructions are completed before the next 
instruction is fetched and executed.

Opcode Instruction Description

0F A2 CPUID Returns processor identification and feature information in the 
EAX, EBX, ECX, and EDX registers, according to the input 
value entered initially in the EAX register.

Table 2-4. Information Returned by CPUID Instruction

Initial EAX Value Information Provided about the Processor

Basic CPUID Information

0 EAX
EBX
ECX
EDX

Maximum CPUID Input Value
756E6547H “Genu” (G in BL)
6C65746EH “ntel” (n in CL)
49656E69H “ineI” (i in DL)

1H EAX
EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0: Brand Indexa

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor
Bits 31-24: Local APIC IDb

Reserved
Feature Information (see Table 2-5)

2H EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
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When the input value is 1, the processor returns version information in the EAX register 
(see Figure 2-4).  The version information consists of an Intel architecture family 
identifier, a model identifier, a stepping ID, and a processor type.

If the values in the family and/or model fields reach or exceed FH, the CPUID 
instruction will generate two additional fields in the EAX register: the extended family 
field and the extended model field. Here, a value of FH in either the model field or the 
family field indicates that the extended model or family field, respectively, is valid. 
Family and model numbers beyond FH range from 0FH to FFH, with the least significant 
hexadecimal digit always FH.

See AP-485, Intel® Processor Identification and the CPUID Instruction (Order Number 
241618) for more information on identifying Intel architecture processors.

Extended Function CPUID Information

8000000H EAX
EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information
Reserved
Reserved
Reserved

8000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently 
reserved.)
Reserved
Reserved
Reserved

8000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

8000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

a. This field is not supported for processors based on Itanium architecture, zero (unsupported encoding) is 
returned.

b. This field is invalid for processors based on Itanium architecture, reserved value is returned.

Figure 2-4. Version Information in Registers EAX

Table 2-4. Information Returned by CPUID Instruction (Continued)

Initial EAX Value Information Provided about the Processor

31 1211 8 7 4 3

EAX ModelFamily
Stepping

ID

1519 1627 2028

Extended
Model

Extended Family

1314 0

Processor Type
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CPUID—CPU Identification (Continued)

When the input value in EAX is 1, three unrelated pieces of information are returned to 
the EBX register:

• Brand index (low byte of EBX) – this number provides an entry into a brand string 
table that contains brand strings for IA-32 processors. Please refer to AP-485, 
Intel® Processor Identification and the CPUID Instruction (Order Number 241618) 
for information on brand indices.

Note: The Brand index field is not supported for processors based on Itanium 
architecture, zero (unsupported encoding) is returned.

• CLFLUSH instruction cache line size (second byte of EBX) – this number indicates 
the size of the cache line flushed with CLFLUSH instruction in 8-byte increments. 
This field is valid only when the CLFSH feature flag is set.

• Local APIC ID (high byte of EBX) – this number is the 8-bit ID that is assigned to 
the local APIC on the processor during power up.

Note: The local APIC ID field is invalid for processors based on the Itanium 
architecture, reserved value is returned.  Software should check the 
feature flags to make sure they are not running on processors based on 
the Itanium architecture before interpreting the return value in this 
field.

When the EAX register contains a value of 1, the CPUID instruction (in addition to 
loading the processor signature in the EAX register) loads the EDX register with the 
feature flags. The feature flags (when a Flag = 1) indicate what features the processor 
supports. Table 2-5 lists the currently defined feature flag values.

A feature flag set to 1 indicates the corresponding feature is supported. Software 
should identify Intel as the vendor to properly interpret the feature flags.

Table 2-5. Feature Flags Returned in EDX Register

Bit Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode 
enhancements, including CR4.VME for controlling the feature, 
CR4.PVI for protected mode virtual interrupts, software interrupt 
indirection, expansion of the TSS with the software indirection bitmap, 
and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including 
CR4.DE for controlling the feature, and optional trapping of accesses 
to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported, 
including CR4.PSE for controlling the feature, the defined dirty bit in 
PDE (Page Directory Entries), optional reserved bit trapping in CR3, 
PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including 
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The 
RDMSR and WRMSR instructions are supported. Some of the MSRs 
are implementation dependent.
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6 PAE Physical Address Extension. Physical addresses greater than 32 
bits are supported: extended page table entry formats, an extra level 
in the page translation tables is defined, 2 Mbyte pages are supported 
instead of 4 Mbyte pages if PAE bit is 1. The actual number of address 
bits beyond 32 is not defined, and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine 
Checks, including CR4.MCE for controlling the feature. This feature 
does not define the model-specific implementations of machine-check 
error logging, reporting, and processor shutdowns. Machine Check 
exception handlers may have to depend on processor version to do 
model-specific processing of the exception, or test for the presence of 
the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 
bits) instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable 
Interrupt Controller (APIC), responding to memory mapped 
commands in the physical address range FFFE0000H to FFFE0FFFH 
(by default – some processors permit the APIC to be relocated).

10 Reserved Reserved.

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and 
SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The 
MTRRcap MSR contains feature bits that describe what memory 
types are supported, how many variable MTRRs are supported, and 
whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and 
page table entries (PTEs) is supported, indicating TLB entries that are 
common to different processes and need not be flushed. The 
CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, 
which provides a compatible mechanism for error reporting is 
supported. The MCG_CAP MSR contains feature bits describing how 
many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction 
CMOV is supported. In addition, if x87 FPU is present as indicated by 
the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions 
are supported.

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature 
augments the Memory Type Range Registers (MTRRs), allowing an 
operating system to specify attributes of memory on a 4K granularity 
through a linear address.

17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are 
capable of addressing physical memory beyond 4 GBytes are 
supported. This feature indicates that the upper four bits of the 
physical address of the 4-MByte page is encoded by bits 13-16 of the 
page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit 
processor identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 NX Execute Disable Bit.

21 DS Debug Store. The processor supports the ability to write debug 
information into a memory resident buffer. This feature is used by the 
branch trace store (BTS) and precise event-based sampling (PEBS) 
facilities.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description
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When the input value is 2, the processor returns information about the processor’s 
internal caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of 
these registers is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of 
times the CPUID instruction must be executed with an input value of 2 to get a 
complete description of the processor’s caches and TLBs.

• The most significant bit (bit 31) of each register indicates whether the register 
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte 
descriptors.

Please see the processor-specific supplement for further information on how to decode 
the return values for the processors internal caches and TLBs.

CPUID performs instruction serialization and a memory fence operation.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The 
processor implements internal MSRs that allow processor 
temperature to be monitored and processor performance to be 
modulated in predefined duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX 
technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR 
instructions are supported for fast save and restore of the floating 
point context. Presence of this bit also indicates that CR4.OSFXSR is 
available for an operating system to indicate that it supports the 
FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting 
memory types by performing a snoop of its own cache structure for 
transactions issued to the bus.

28 HTT Hyper-Threading Technology. The processor implements 
Hyper-Threading technology.

29 TM Thermal Monitor. The processor implements the thermal monitor 
automatic thermal control circuitry (TCC).

30 Processor based on the Intel 
Itanium architecture

The processor is based on the Intel Itanium architecture and is 
capable of executing the Intel Itanium instruction set. IA-32 application 
level software MUST also check with the running operating system to 
see if the system can also support Itanium architecture-based code 
before switching to the Intel Itanium instruction set.

31 PBE Pending Break Enable. The processor supports the use of the 
FERR#/PBE# pin when the processor is in the stop-clock state 
(STPCLK# is asserted) to signal the processor that an interrupt is 
pending and that the processor should return to normal operation to 
handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE 
MSR enables this capability.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description
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CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = 0H:

EAX  Highest input value understood by CPUID;
EBX  Vendor identification string;
EDX  Vendor identification string;
ECX  Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0]  Stepping ID;
EAX[7:4]  Model;
EAX[11:8]  Family;
EAX[13:12]  Processor Type;
EAX[15:14]  Reserved;
EAX[19:16]  Extended Model;
EAX[27:20]  Extended Family;
EAX[31:28]  Reserved;
EBX[7:0]  Brand Index; (* Always zero for processors based on Itanium architecture *)
EBX[15:8]  CLFLUSH Line Size;
EBX[16:23]  Number of logical processors per physical processor;
EBX[31:24]  Initial APIC ID; (* Reserved for processors based on Itanium architecture *)
ECX  Reserved;
EDX  Feature flags;

BREAK;
EAX = 2H:

EAX  Cache and TLB information;
EBX  Cache and TLB information;
ECX  Cache and TLB information;
EDX  Cache and TLB information;

BREAK;
EAX = 80000000H:

EAX  Highest extended function input value understood by CPUID;
EBX  Reserved;
ECX  Reserved;
EDX  Reserved;

BREAK;
EAX = 80000001H:

EAX  Extended Processor Signature and Feature Bits; (* Currently Reserved *)
EBX  Reserved;
ECX  Reserved;
EDX  Reserved;

BREAK;
EAX = 80000002H:

EAX  Processor Name;
EBX  Processor Name;
ECX  Processor Name;
EDX  Processor Name;

BREAK;
EAX = 80000003H:

EAX  Processor Name;
EBX  Processor Name;
ECX  Processor Name;
EDX  Processor Name;
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CPUID—CPU Identification (Continued)

BREAK;
EAX = 80000004H:

EAX  Processor Name;
EBX  Processor Name;
ECX  Processor Name;
EDX  Processor Name;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX  Reserved, Undefined;
EBX  Reserved, Undefined;
ECX  Reserved, Undefined;
EDX  Reserved, Undefined;

BREAK;
ESAC;

memory_fence();
instruction_serialize();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in 
any Intel architecture processor earlier than the Intel486 processor. The ID flag in the 
EFLAGS register can be used to determine if this instruction is supported. If a procedure 
is able to set or clear this flag, the CPUID is supported by the processor running the 
procedure.
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CWD/CDQ—Convert Word to Doubleword/Convert Doubleword to 
Quadword

Description

Doubles the size of the operand in register AX or EAX (depending on the operand size) 
by means of sign extension and stores the result in registers DX:AX or EDX:EAX, 
respectively. The CWD instruction copies the sign (bit 15) of the value in the AX register 
into every bit position in the DX register. The CDQ instruction copies the sign (bit 31) of 
the value in the EAX register into every bit position in the EDX register. 

The CWD instruction can be used to produce a doubleword dividend from a word before 
a word division, and the CDQ instruction can be used to produce a quadword dividend 
from a doubleword before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is 
intended for use when the operand-size attribute is 16 and the CDQ instruction for 
when the operand-size attribute is 32. Some assemblers may force the operand size to 
16 when CWD is used and to 32 when CDQ is used. Others may treat these mnemonics 
as synonyms (CWD/CDQ) and use the current setting of the operand-size attribute to 
determine the size of values to be converted, regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX  SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX  SignExtend(EAX);
FI;

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

99 CWD DX:AX  sign-extend of AX

99 CDQ EDX:EAX  sign-extend of EAX
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CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword. 
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DAA—Decimal Adjust AL after Addition

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL 
register is the implied source and destination operand. The DAA instruction is only 
useful when it follows an ADD instruction that adds (binary addition) two 2-digit, 
packed BCD values and stores a byte result in the AL register. The DAA instruction then 
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. 
If a decimal carry is detected, the CF and AF flags are set accordingly.

Operation

IF (((AL AND 0FH) > 9) or AF = 1)
THEN

AL AL + 6;
CF CF OR CarryFromLastAddition; (* CF OR carry from AL AL + 6 *)
AF 1;

ELSE
AF 0;

FI;
IF ((AL AND F0H) > 90H) or CF = 1)

THEN
AL   AL + 60H;
CF   1;

ELSE
CF 0;

FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=79H BL=35H EFLAGS(OSZAPC)=110000
After: AL=AEH BL=35H EFLAGS(0SZAPC)=X00111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in 
either digit of the result (see “Operation” above). The SF, ZF, and PF flags are set 
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

27 DAA Decimal adjust AL after addition
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DAS—Decimal Adjust AL after Subtraction

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD 
result. The AL register is the implied source and destination operand. The DAS 
instruction is only useful when it follows a SUB instruction that subtracts (binary 
subtraction) one 2-digit, packed BCD value from another and stores a byte result in the 
AL register. The DAS instruction then adjusts the contents of the AL register to contain 
the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF and AF 
flags are set accordingly.

Operation

IF (AL AND 0FH) > 9 OR AF = 1
THEN

AL  AL  6;
CF CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL AL  6 *)
AF  1;

ELSE AF  0;
FI;
IF ((AL > 9FH) or CF = 1)

THEN
AL  AL  60H;
CF  1;

ELSE CF  0;
FI;

Example

SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX
After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111

DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111
After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in 
either digit of the result (see “Operation” above). The SF, ZF, and PF flags are set 
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

2F DAS Decimal adjust AL after subtraction
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DEC—Decrement by 1

Description

Subtracts 1 from the operand, while preserving the state of the CF flag. The source 
operand can be a register or a memory location. This instruction allows a loop counter 
to be updated without disturbing the CF flag. (Use a SUB instruction with an immediate 
operand of 1 to perform a decrement operation that does updates the CF flag.)

Operation

DEST  DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the 
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1
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DEC—Decrement by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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DIV—Unsigned Divide

Description

Divides (unsigned) the value in the AL, AX, or EAX register (dividend) by the source 
operand (divisor) and stores the result in the AX, DX:AX, or EDX:EAX registers. The 
source operand can be a general-purpose register or a memory location. The action of 
this instruction depends on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The remainder is always less 
than the divisor in magnitude. Overflow is indicated with the #DE (divide error) 
exception rather than with the CF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *) 

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp  AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL  temp;
AH  AX MOD SRC;

FI;
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

temp  DX:AX / SRC;
IF temp > FFFFH

THEN #DE; (* divide error *) ;
ELSE

AX  temp;
DX  DX:AX MOD SRC;

FI;

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL  Quotient, 
AH  Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16; AX  Quotient, 
DX  Remainder

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword; 
EAX  Quotient, EDX  Remainder

Operand Size Dividend Divisor Quotient Remainder
Maximum 
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232  1



4:92 Volume 4: Base IA-32 Instruction Reference

DIV—Unsigned Divide (Continued)

ELSE (* quadword/doubleword operation *)
temp  EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX  temp;
EDX  EDX:EAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
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DIV—Unsigned Divide (Continued)

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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ENTER—Make Stack Frame for Procedure Parameters

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the 
size of the stack frame (that is, the number of bytes of dynamic storage allocated on 
the stack for the procedure). The second operand (nesting level operand) gives the 
lexical nesting level (0 to 31) of the procedure. The nesting level determines the 
number of stack frame pointers that are copied into the “display area” of the new stack 
frame from the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register 
specifies the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies 
the stack pointer. 

The ENTER and companion LEAVE instructions are provided to support block structured 
languages. They do not provide a jump or call to another procedure; they merely set up 
a new stack frame for an already called procedure. An ENTER instruction is commonly 
followed by a CALL, JMP, or Jcc instruction to transfer program control to the procedure 
being called.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register 
onto the stack, copies the current stack pointer from the ESP register into the EBP 
register, and loads the ESP register with the current stack-pointer value minus the value 
in the size operand. For nesting levels of 1 or greater, the processor pushes additional 
frame pointers on the stack before adjusting the stack pointer. These additional frame 
pointers provide the called procedure with access points to other nested frames on the 
stack. 

Operation

NestingLevel  NestingLevel MOD 32
IF StackSize = 32

THEN 
Push(EBP) ;
FrameTemp  ESP; 

ELSE (* StackSize = 16*)
Push(BP); 
FrameTemp  SP; 

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;
IF (NestingLevel  0) 

FOR i  1 TO (NestingLevel  1)
DO 

IF OperandSize = 32
THEN

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure
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ENTER—Make Stack Frame for Procedure Parameters (Continued)

IF StackSize = 32
EBP  EBP  4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP  BP  4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

EBP  EBP  2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP  BP  2;
Push([BP]); (* word push *)

FI;
FI;

OD;
IF OperandSize = 32

THEN 
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32 

THEN
EBP  FrameTemp
ESP  EBP  Size;

ELSE (* StackSize = 16*)
BP  FrameTemp
SP  BP  Size;

FI;
END;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption Abort, Data Key 
Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data Access Bit Fault, 
Data Dirty Bit Fault
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ENTER—Make Stack Frame for Procedure Parameters (Continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack 
segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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F2XM1—Compute 2x-1

Description

Calculates the exponential value of 2 to the power of the source operand minus 1. The 
source operand is located in register ST(0) and the result is also stored in ST(0). The 
value of the source operand must lie in the range -1.0 to +1.0. If the source value is 
outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential value 
of various classes of numbers, assuming that neither overflow nor underflow occurs:

Values other than 2 can be exponentiated using the following formula:

xy = 2(y  log
2
x)

Operation

ST(0)  (2ST(0)  1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Opcode Instruction Description

D9 F0 F2XM1 Replace ST(0) with (2ST(0) - 1)

ST(0) SRC ST(0) DEST

-1.0 to 0 0.5 to 0

0 0

0 +0

+0 to +1.0 +0 to 1.0 
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F2XM1—Compute 2x-1 (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set. 

Real Address Mode Exceptions

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set. 
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FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following 
table shows the results obtained when creating the absolute value of various classes of 
numbers.

Note:
Fmeans finite-real number.

Operation

ST(0)  |ST(0)|

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set. 

Real Address Mode Exceptions

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set. 

Opcode Instruction Description

D9 E1 FABS Replace ST with its absolute value.

ST(0) SRC ST(0) DEST

• +

F +F

0 +0

0 +0

+F +F

+ +

NaN NaN 
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FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination 
location. The destination operand is always an FPU register; the source operand can be 
a register or a memory location. Source operands in memory can be in single-real, 
double-real, word-integer, or short-integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register to the 
ST(1) register. The one-operand version adds the contents of a memory location (either 
a real or an integer value) to the contents of the ST(0) register. The two-operand 
version, adds the contents of the ST(0) register to the ST(i) register or vice versa. The 
value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register 
stack after storing the result. To pop the register stack, the processor marks the ST(0) 
register as empty and increments the stack pointer (TOP) by 1. (The no-operand 
version of the floating-point add instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FADD rather than 
FADDP.)

The FIADD instructions convert an integer source operand to extended-real format 
before performing the addition.

The table on the following page shows the results obtained when adding various classes 
of numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the 
round toward  mode, in which case the result is 0. When the source operand is an 
integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is  of the expected sign. 
If both operands are infinities of opposite signs, an invalid-operation exception is 
generated.

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD m64real Add m64real to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the register 
stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the register 
stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)
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FADD/FADDP/FIADD—Add (Continued)

.

Notes:
Fmeans finite-real number.
Lmeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIADD
THEN

DEST  DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST + SRC;
FI;
IF instruction = FADDP 

THEN 
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

DEST

-• F 0 +0 +F + NaN

- - - - - - * NaN

F or I - F SRC SRC F or 0 + NaN

SRC 0 - DEST 0 0 DEST + NaN

+0 - DEST 0 +0 DEST + NaN

+For +I - F or 0 SRC SRC +F + NaN

+ * + + + + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FADD/FADDP/FIADD—Add (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Result is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.



Volume 4: Base IA-32 Instruction Reference 4:103

FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into extended-real format and pushes the value onto 
the FPU stack. The source operand is loaded without rounding errors. The sign of the 
source operand is preserved, including that of 0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does 
not check for invalid digits (AH through FH). Attempting to load an invalid encoding 
produces an undefined result.

Operation

TOP  TOP  1;
ST(0)  ExtendedReal(SRC); 

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack overflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.
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FBLD—Load Binary Coded Decimal (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the 
result in the destination operand, and pops the register stack. If the source value is a 
non-integral value, it is rounded to an integer value, according to rounding mode 
specified by the RC field of the FPU control word. To pop the register stack, the 
processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 
1.

The destination operand specifies the address where the first byte destination value is 
to be stored. The BCD value (including its sign bit) requires 10 bytes of space in 
memory. 

The following table shows the results obtained when storing various classes of numbers 
in packed BCD format.

Notes:
Fmeans finite-real number.
Dmeans packed-BCD number.
*indicates floating-point invalid-operation (#IA) exception.
**0 or 1, depending on the rounding mode.

If the source value is too large for the destination format and the invalid-operation 
exception is not masked, an invalid-operation exception is generated and no value is 
stored in the destination operand. If the invalid-operation exception is masked, the 
packed BCD indefinite value is stored in memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet 
NaNs do not normally cause this exception to be generated.

Operation

DEST  BCD(ST(0));
PopRegisterStack;

Opcode Instruction Description

DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

ST(0) DEST

• *

F < 1 D

1 < F < 0 **

0 0

0 +0

+0 < +F < +1 **

+F > +1 +D

+ *

NaN *
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FBSTP—Store BCD Integer and Pop (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is empty; contains a NaN, , or unsupported 
format; or contains value that exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that 
points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 
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FBSTP—Store BCD Integer and Pop (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a 
negative value of equal magnitude or vice-versa. The following table shows the results 
obtained when creating the absolute value of various classes of numbers.

Note:
Fmeans finite-real number.

Operation

SignBit(ST(0))  NOT (SignBit(ST(0)))

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set. 

Real Address Mode Exceptions

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set. 

Opcode Instruction Description

D9 E0 FCHS Complements sign of ST(0)

ST(0) SRC ST(0) DEST

• +

F +F

0 0

0 0

+F F

+ •

NaN NaN 
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FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception 
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU 
status word. The FCLEX instruction checks for and handles any pending unmasked 
floating-point exceptions before clearing the exception flags; the FNCLEX instruction 
does not.

Operation

FPUStatusWord[0..7]  0;
FPUStatusWord[15]  0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The 
C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set. 

Real Address Mode Exceptions

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set. /

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for pending 
unmasked floating-point exceptions.

DB E2 FNCLEX Clear floating-point exception flags without checking for 
pending unmasked floating-point exceptions.
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FCMOVcc—Floating-point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second 
operand) to the destination operand (first operand) if the given test condition is true. 
The source operand is always in the ST(i) register and the destination operand is always 
ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also 
help eliminate branching overhead for IF operations and the possibility of branch 
mispredictions by the processor. 

A processor in the Pentium Pro processor family may not support the FCMOVcc 
instructions. Software can check if the FCMOVcc instructions are supported by checking 
the processor’s feature information with the CPUID instruction (see “CPUID—CPU 
Identification” on page 4:78). If both the CMOV and FPU feature bits are set, the 
FCMOVcc instructions are supported.

Operation

IF condition TRUE
ST(0)  ST(i)

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Opcode Instruction Description

DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)
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FCMOVcc—Floating-point Conditional Move (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set. 

Real Address Mode Exceptions

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set. 
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FCOM/FCOMP/FCOMPP—Compare Real

Description

Compares the contents of register ST(0) and source value and sets condition code flags 
C0, C2, and C3 in the FPU status word according to the results (see the table below). 
The source operand can be a data register or a memory location. If no source operand 
is given, the value in ST(0) is compared with the value in ST(1). The sign of zero is 
ignored, so that -0.0 = +0.0. 

This instruction checks the class of the numbers being compared. If either operand is a 
NaN or is in an unsupported format, an invalid-arithmetic-operand exception (#IA) is 
raised and, if the exception is masked, the condition flags are set to “unordered.” If the 
invalid-arithmetic-operand exception is unmasked, the condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and 
the FCOMPP instruction pops the register stack twice following the comparison 
operation. To pop the register stack, the processor marks the ST(0) register as empty 
and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only 
difference is how they handle QNaN operands. The FCOM instructions raise an 
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a 
NaN value or is in an unsupported format. The FUCOM instructions perform the same 
operation as the FCOM instructions, except that they do not generate an 
invalid-arithmetic-operand exception for QNaNs.

Opcode Instruction Description

D8 /2 FCOM m32real Compare ST(0) with m32real.

DC /2 FCOM m64real Compare ST(0) with m64real.

D8  D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.

DC /3 FCOMP m64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is 
generated.

1 1 1
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FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0  000;
ST < SRC: C3, C2, C0  001;
ST = SRC: C3, C2, C0  100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN 
#IA
IF FPUControlWord.IM = 1

THEN 
C3, C2, C0  111;

FI;
FI;
IF instruction = FCOMP 

THEN 
PopRegisterStack;

FI;
IF instruction = FCOMPP 

THEN 
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See table on previous page.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.
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FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS

Description

Compares the contents of register ST(0) and ST(i) and sets the status flags ZF, PF, and 
CF in the EFLAGS register according to the results (see the table below). The sign of 
zero is ignored for comparisons, so that -0.0 = +0.0. 

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP 
instructions. The only difference is how they handle QNaN operands. The 
FCOMI/FCOMIP instructions set the status flags to “unordered” and generate an 
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a 
NaN value (SNaN or QNaN) or is in an unsupported format. 

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP 
instructions, except that they do not generate an invalid-arithmetic-operand exception 
for QNaNs.

If invalid-operation exception is unmasked, the status flags are not set if the 
invalid-arithmetic-operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the 
comparison operation. To pop the register stack, the processor marks the ST(0) register 
as empty and increments the stack pointer (TOP) by 1.

Opcode Instruction Description

DB F0+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly

DF F0+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and pop 
register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and set 
status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set status 
flags accordingly, and pop register stack

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic- operand 
(#IA) exception is generated.

1 1 1
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FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS 
(Continued)

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF  000;
ST(0) < ST(i): ZF, PF, CF  001;
ST(0) = ST(i): ZF, PF, CF  100;

ESAC;
IF instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN 
#IA
IF FPUControlWord.IM = 1

THEN 
ZF, PF, CF  111;

FI;
FI;

FI;
IF instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN 
ZF, PF, CF  111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN 
ZF, PF, CF  111;

FI;
FI;

FI;
IF instruction is FCOMIP or FUCOMIP 

THEN 
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Not affected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.
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FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS 
(Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values 
or have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN 
values (but not QNaNs) or have undefined formats. Detection of a 
QNaN value does not raise an invalid-operand exception.

Protected Mode Exceptions

#NM EM or TS in CR0 is set. 

Real Address Mode Exceptions

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set./
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FCOS—Cosine

Description

Calculates the cosine of the source operand in register ST(0) and stores the result in 
ST(0). The source operand must be given in radians and must be within the range 263 
to +263. The following table shows the results obtained when taking the cosine of 
various classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
* indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the program 
to check the C2 flag for out-of-range conditions. Source values outside the range 263 
to +263 can be reduced to the range of the instruction by subtracting an appropriate 
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF |ST(0)|  263

THEN
C2  0;
ST(0)  cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2  1;

FI;

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine

ST(0) SRC ST(0) DEST

 *

F 1 to +1

0 +1

0 +1

+F 1 to +1

+ *

NaN NaN 



Volume 4: Base IA-32 Instruction Reference 4:119

FCOS—Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the range 263 to +263; 
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set. 

Real Address Mode Exceptions

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.
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FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack 
pointer). The contents of the FPU data registers and tag register are not affected.

Operation

IF TOP = 0
THEN TOP  7;
ELSE TOP  TOP - 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

D9 F6 FDECSTP Decrement TOP field in FPU status word.
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FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the 
destination location. The destination operand (dividend) is always in an FPU register; 
the source operand (divisor) can be a register or a memory location. Source operands 
in memory can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by 
the contents of the ST(0) register. The one-operand version divides the contents of the 
ST(0) register by the contents of a memory location (either a real or an integer value). 
The two-operand version, divides the contents of the ST(0) register by the contents of 
the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register 
stack after storing the result. To pop the register stack, the processor marks the ST(0) 
register as empty and increments the stack pointer (TOP) by 1. The no-operand version 
of the floating-point divide instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FDIV rather than 
FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format 
before performing the division. When the source operand is an integer 0, it is treated as 
a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the 
exception is masked, an  of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of 
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV m64real Divide ST(0) by m64real and store result in ST(0)

D8 F0+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the register 
stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the 
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by m64int and store result in ST(0)
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FDIV/FDIVP/FIDIV—Divide (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

Operation

IF SRC 0
THEN

#Z
ELSE

IF instruction is FIDIV
THEN

DEST  DEST  ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST  SRC;
FI;

FI;
IF instruction = FDIVP 

THEN 
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

DEST

-• F 0 +0 +F + NaN

- * +0 +0 0 0 * NaN

F + +F +0 0 F -• NaN

I + +F +0 0 F -• NaN

SRC 0 + ** * * ** -• NaN

+0 -• ** * * ** + NaN

+I -• F 0 +0 +F + NaN

+F -• F 0 +0 +F + NaN

+ * 0 0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FDIV/FDIVP/FIDIV—Divide (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

; 0 / 0

#D Result is a denormal value.

#Z DEST / 0, where DEST is not equal to 0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the 
destination location. The destination operand (divisor) is always in an FPU register; the 
source operand (dividend) can be a register or a memory location. Source operands in 
memory can be in single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV 
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by 
the contents of the ST(1) register. The one-operand version divides the contents of a 
memory location (either a real or an integer value) by the contents of the ST(0) 
register. The two-operand version, divides the contents of the ST(i) register by the 
contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register 
stack after storing the result. To pop the register stack, the processor marks the ST(0) 
register as empty and increments the stack pointer (TOP) by 1. The no-operand version 
of the floating-point divide instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FDIVR rather than 
FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format 
before performing the division.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the 
exception is masked, an  of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of 
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide m64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC F0+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE F0+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the register 
stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the 
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m64int by ST(0) and store result in ST(0)
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FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation

IF DEST 0
THEN

#Z
ELSE

IF instruction is FIDIVR
THEN

DEST  ConvertExtendedReal(SRC)  DEST;
ELSE (* source operand is real number *)

DEST  SRC  DEST;
FI;

FI;
IF instruction = FDIVRP 

THEN 
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

DEST

 F 0 +0 +F + NaN

 * + + -•  * NaN

SRC F +0 +F ** ** -F 0 NaN

I +0 +F ** ** -F 0 NaN

0 +0 +0 * * 0 0 NaN

+0 0 0 * * +0 +0 NaN

+I 0 -F ** ** +F + NaN

+F 0 -F ** ** +F + NaN

+ *   + + * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

; 0 / 0

#D Result is a denormal value.

#Z SRC / 0, where SRC is not equal to 0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set. 

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.



Volume 4: Base IA-32 Instruction Reference 4:127

FFREE—Free Floating-point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The 
contents of ST(i) and the FPU stack-top pointer (TOP) are not affected.

Operation

TAG(i)  11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

DD C0+i FFREE ST(i) Sets tag for ST(i) to empty
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FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition 
code flags C0, C2, and C3 in the FPU status word according to the results (see table 
below). The integer value is converted to extended-real format before the comparison 
is made.

These instructions perform an “unordered comparison.” An unordered comparison also 
checks the class of the numbers being compared. If either operand is a NaN or is in an 
undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that -0.0 = +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the 
register stack, the processor marks the ST(0) register empty and increments the stack 
pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0  000;
ST(0) < SRC: C3, C2, C0  001;
ST(0) = SRC: C3, C2, C0  100;
Unordered: C3, C2, C0  111;

ESAC;
IF instruction = FICOMP 

THEN 
PopRegisterStack; 

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1
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FICOM/FICOMP—Compare Integer (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FILD—Load Integer

Description

Converts the signed-integer source operand into extended-real format and pushes the 
value onto the FPU register stack. The source operand can be a word, short, or long 
integer value. It is loaded without rounding errors. The sign of the source operand is 
preserved.

Operation

TOP  TOP  1;
ST(0)  ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD m64int Push m64int onto the FPU register stack.
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FILD—Load Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). 
The contents of the FPU data registers and tag register are not affected. This operation 
is not equivalent to popping the stack, because the tag for the previous top-of-stack 
register is not marked empty.

Operation

IF TOP = 7
THEN TOP  0;
ELSE TOP  TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, generates an #IS fault. The C0, C2, and C3 flags are 
undefined.

Floating-point Exceptions

#IS

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

D9 F7 FINCSTP Increment the TOP field in the FPU status register
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FINIT/FNINIT—Initialize Floating-point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their 
default states. The FPU control word is set to 037FH (round to nearest, all exceptions 
masked, 64-bit precision). The status word is cleared (no exception flags set, TOP is set 
to 0). The data registers in the register stack are left unchanged, but they are all 
tagged as empty (11B). Both the instruction and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point 
exceptions before performing the initialization; the FNINIT instruction does not.

Operation

FPUControlWord  037FH;
FPUStatusWord  0;
FPUTagWord  FFFFH;
FPUDataPointer  0;
FPUInstructionPointer  0;
FPULastInstructionOpcode  0;

FPU Flags Affected

C0, C1, C2, C3 cleared to 0.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked 
floating-point exceptions.

DB E3 FNINIT Initialize FPU without checking for pending unmasked 
floating-point exceptions.
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FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and 
stores the result in the destination operand. Values can be stored in word- or 
short-integer format. The destination operand specifies the address where the first byte 
of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then 
pops the register stack. To pop the register stack, the processor marks the ST(0) 
register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction 
can also stores values in long-integer format.

The following table shows the results obtained when storing various classes of numbers 
in integer format.

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-operation (#IA) exception.
**0 or 1, depending on the rounding mode.

If the source value is a non-integral value, it is rounded to an integer value, according 
to the rounding mode specified by the RC field of the FPU control word. 

If the value being stored is too large for the destination format, is an , is a NaN, or is 
in an unsupported format and if the invalid-arithmetic-operand exception (#IA) is 
unmasked, an invalid-operation exception is generated and no value is stored in the 
destination operand. If the invalid-operation exception is masked, the integer indefinite 
value is stored in the destination operand.

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP m64int Store ST(0) in m64int and pop register stack

ST(0) DEST

 *

F <1 I

1 < F < 0 **

0 0

0 0

+0 < +F < +1 **

+F > +1 +I

+ *

NaN *
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FIST/FISTP—Store Integer (Continued)

Operation

DEST  Integer(ST(0));
IF instruction = FISTP 

THEN 
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

Cleared to 0 otherwise.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.
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FIST/FISTP—Store Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FLD—Load Real

Description

Pushes the source operand onto the FPU register stack. If the source operand is in 
single- or double-real format, it is automatically converted to the extended-real format 
before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the 
stack. Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(i)
THEN

temp  ST(i)
TOP  TOP  1;
FI;
IF SRC is memory-operand

THEN
ST(0)  ExtendedReal(SRC);

ELSE (* SRC is ST(i) *)
ST(0) temp;

FI;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value. Does not occur if the source 
operand is in extended-real format.

FLD—Load Real (Continued)

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD m64real Push m64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 C0+i FLD ST(i) Push ST(i) onto the FPU register stack.
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FLD—Load Real (Continued)

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load 
Constant

Description

Push one of seven commonly-used constants (in extended-real format) onto the FPU 
register stack. The constants that can be loaded with these instructions include +1.0, 
+0.0, log210, log2e, , log102, and loge2. For each constant, an internal 66-bit constant 
is rounded (as specified by the RC field in the FPU control word) to external-real format. 
The inexact-result exception (#P) is not generated as a result of the rounding.

Operation

TOP  TOP  1;
ST(0)  CONSTANT;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Floating-point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push log210 onto the FPU register stack.

D9 EA FLDL2E Push log2e onto the FPU register stack.

D9 EB FLDPI Push  onto the FPU register stack.

D9 EC FLDLG2 Push log102 onto the FPU register stack.

D9 ED FLDLN2 Push loge2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.
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FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load 
Constant (Continued)

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Intel Architecture Compatibility Information

When the RC field is set to round-to-nearest, the FPU produces the same constants that 
is produced by the Intel 8087 and Intel287 math coprocessors.
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FLDCW—Load Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a 
memory location. This instruction is typically used to establish or change the FPU’s 
mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU 
control word and the new control word unmasks one or more of those exceptions, a 
floating-point exception will be generated upon execution of the next floating-point 
instruction (except for the no-wait floating-point instructions. To avoid raising 
exceptions when changing FPU operating modes, clear any pending exceptions (using 
the FCLEX or FNCLEX instruction) before loading the new control word.

Operation

FPUControlWord  SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None; however, this operation might unmask a pending exception in the FPU status 
word. That exception is then generated upon execution of the next waiting 
floating-point instruction.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

D9 /5 FLDCW m2byte Load FPU control word from m2byte.
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FLDCW—Load Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FLDENV—Load FPU Environment

Description

Loads the complete FPU operating environment from memory into the FPU registers. 
The source operand specifies the first byte of the operating-environment data in 
memory.This data is typically written to the specified memory location by a FSTENV or 
FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag 
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for the layout in memory of the loaded 
environment, depending on the operating mode of the processor (protected or real) 
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, 
the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the 
corresponding FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a 
floating-point exception will be generated upon execution of the next floating-point 
instruction (except for the no-wait floating-point instructions. To avoid generating 
exceptions when loading a new environment, clear all the exception flags in the FPU 
status word that is being loaded.

Operation

FPUControlWord  SRC(FPUControlWord);
FPUStatusWord  SRC(FPUStatusWord);
FPUTagWord  SRC(FPUTagWord);
FPUDataPointer  SRC(FPUDataPointer);
FPUInstructionPointer  SRC(FPUInstructionPointer);
FPULastInstructionOpcode  SRC(FPULastInstructionOpcode);

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated 
upon execution of the next waiting floating-point instruction.

Opcode Instruction Description

D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.
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FLDENV—Load FPU Environment (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destination 
location. The destination operand is always an FPU data register; the source operand 
can be a register or a memory location. Source operands in memory can be in 
single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(0) register 
by the contents of the ST(1) register. The one-operand version multiplies the contents 
of a memory location (either a real or an integer value) by the contents of the ST(0) 
register. The two-operand version, multiplies the contents of the ST(0) register by the 
contents of the ST(i) register or vice versa. 

The FMULP instructions perform the additional operation of popping the FPU register 
stack after storing the product. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand 
version of the floating-point multiply instructions always results in the register stack 
being popped. In some assemblers, the mnemonic for this instruction is FMUL rather 
than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format 
before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or 
more of the values being multiplied is 0 or . When the source operand is an integer 0, 
it is treated as a +0.

The following table shows the results obtained when multiplying various classes of 
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC /1 FMUL m64real Multiply ST(0) by m64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the 
register stack

DE C9 FMULP Multiply ST(0) by ST(1), store result in ST(0), and pop the 
register stack

DA /1 FIMUL m32int Multiply m32int by ST(0) and store result in ST(0)

DE /1 FIMUL m16int Multiply m16int by ST(0) and store result in ST(0)
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FMUL/FMULP/FIMUL—Multiply (Continued)

Notes:
Fmeans finite-real number.
Imeans Integer.
*indicates invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIMUL
THEN

DEST  DEST  ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST  SRC;
FI;
IF instruction = FMULP 

THEN 
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault 
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

One operand is 0 and the other is .

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

DEST

 F 0 +0 +F + NaN

 + + * *   NaN

F + +F +0 0 F  NaN

I + +F +0 0 F  NaN

SRC 0 * +0 +0 0 0 * NaN

+0 * 0 0 +0 +0 * NaN

+I  F 0 +0 +F + NaN

+F  F 0 +0 +F + NaN

+   * * + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FMUL/FMULP/FIMUL—Multiply (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but 
does not affect the FPU or machine context, except the EIP register.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

D9 D0 FNOP No operation is performed.
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FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the source 
operand in register ST(0), stores the result in ST(1), and pops the FPU register stack. 
The result in register ST(0) has the same sign as the source operand ST(1) and a 
magnitude less than .

The following table shows the results obtained when computing the arctangent of 
various classes of numbers, assuming that underflow does not occur.

Note:
Fmeans finite-real number.

There is no restriction on the range of source operands that FPATAN can accept.

Operation

ST(1)  arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)ST(0)) and pop the register 
stack

Table 2-6. FPATAN Zeros and NaNs

ST(0)

-• F 0 +0 +F + NaN

-• 34 /2 /2 /2 /2 /4 NaN

ST(1) F -p to2 /2 /2 2 to 0 -0 NaN

0 -p -p -p 0 0 0 NaN

+0 + + + +0 +0 +0 NaN

+F + +to+2 +2 +2 +2 to +0 +0 NaN

+ +34 +2 +2 +2 +2 +/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FPATAN—Partial Arctangent (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Intel Architecture Compatibility Information

The source operands for this instruction are restricted for the 80287 math coprocessor 
to the following range:

0  |ST(1)|  |ST(0)|  
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FPREM—Partial Remainder

Description

Computes the remainder obtained on dividing the value in the ST(0) register (the 
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the 
result in ST(0). The remainder represents the following value:

Remainder = ST(0)  (N  ST(1))

Here, N is an integer value that is obtained by truncating the real-number quotient of 
[ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the sign of the 
dividend. The magnitude of the remainder is less than that of the modulus, unless a 
partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not 
occur and the rounding control has no effect. The following table shows the results 
obtained when computing the remainder of various classes of numbers, assuming that 
underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is 
, the result is equal to the value in ST(0). 

The FPREM instruction does not compute the remainder specified in IEEE Std. 754. The 
IEEE specified remainder can be computed with the FPREM1 instruction. The FPREM 
instruction is provided for compatibility with the Intel 8087 and Intel287 math 
coprocessors.

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained on dividing ST(0) 
by ST(1)

Table 2-7. FPREM Zeros and NaNs

ST(1)

-• F 0 +0 +F + NaN

-• * * * * * * NaN

ST(0) F ST(0) F or 0 ** ** F or 0 ST(0) NaN

0 0 0 * * 0 0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN



4:152 Volume 4: Base IA-32 Instruction Reference

FPREM—Partial Remainder (Continued)

The FPREM instruction gets its name “partial remainder” because of the way it 
computes the remainder. This instructions arrives at a remainder through iterative 
subtraction. It can, however, reduce the exponent of ST(0) by no more than 63 in one 
execution of the instruction. If the instruction succeeds in producing a remainder that is 
less than the modulus, the operation is complete and the C2 flag in the FPU status word 
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder. 
The exponent of the partial remainder will be less than the exponent of the original 
dividend by at least 32. Software can re-execute the instruction (using the partial 
remainder in ST(0) as the dividend) until C2 is cleared.

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the 
instructions in the loop.

An important use of the FPREM instruction is to reduce the arguments of periodic 
functions. When reduction is complete, the instruction stores the three least-significant 
bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This information 
is important in argument reduction for the tangent function (using a modulus of /4), 
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation

D  exponent(ST(0)) - exponent(ST(1));
IF D < 64

THEN
Q  Integer(TruncateTowardZero(ST(0)  ST(1)));
ST(0)  ST(0) - (ST(1)  Q);
C2  0;
C0, C3, C1  LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2  1;
N  an implementation-dependent number between 32 and 63;
QQ  Integer(TruncateTowardZero((ST(0) ST(1)) / 2(D N)));
ST(0)  ST(0) - (ST(1)  QQ  2(D  N)); 

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least 
significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.
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FPREM—Partial Remainder (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is , or 
unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   



4:154 Volume 4: Base IA-32 Instruction Reference

FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained on dividing the value in the ST(0) register (the 
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the 
result in ST(0). The remainder represents the following value:

Remainder = ST(0)  (N  ST(1))

Here, N is an integer value that is obtained by rounding the real-number quotient of 
[ST(0) / ST(1)] toward the nearest integer value. The sign of the remainder is the same 
as the sign of the dividend. The magnitude of the remainder is less than half the 
magnitude of the modulus, unless a partial remainder was computed (as described 
below).

This instruction produces an exact result; the precision (inexact) exception does not 
occur and the rounding control has no effect. The following table shows the results 
obtained when computing the remainder of various classes of numbers, assuming that 
underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is 
, the result is equal to the value in ST(0). 

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This 
instruction operates differently from the FPREM instruction in the way that it rounds the 
quotient of ST(0) divided by ST(1) to an integer (see the “Operation” below).

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained on dividing 
ST(0) by ST(1)

Table 2-8. FPREM1 Zeros and NaNs

ST(1)

-• F 0 +0 +F + NaN

-• * * * * * * NaN

ST(0) F ST(0) F or 0 ** ** F or 0 ST(0) NaN

0 0 0 * * 0 0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FPREM1—Partial Remainder (Continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative 
subtraction, but can reduce the exponent of ST(0) by no more than 63 in one execution 
of the instruction. If the instruction succeeds in producing a remainder that is less than 
one half the modulus, the operation is complete and the C2 flag in the FPU status word 
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder. 
The exponent of the partial remainder will be less than the exponent of the original 
dividend by at least 32. Software can re-execute the instruction (using the partial 
remainder in ST(0) as the dividend) until C2 is cleared. 

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the 
instructions in the loop.

An important use of the FPREM1 instruction is to reduce the arguments of periodic 
functions. When reduction is complete, the instruction stores the three least-significant 
bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This information 
is important in argument reduction for the tangent function (using a modulus of /4), 
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation 

D  exponent(ST(0)) - exponent(ST(1));
IF D < 64

THEN
Q  Integer(RoundTowardNearestInteger(ST(0)  ST(1)));
ST(0)  ST(0) - (ST(1)  Q);
C2  0;
C0, C3, C1  LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2  1;
N  an implementation-dependent number between 32 and 63;
QQ  Integer(TruncateTowardZero((ST(0) ST(1)) / 2(D N)));
ST(0)  ST(0) - (ST(1)  QQ  2(D  N)); 

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least 
significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.
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FPREM1—Partial Remainder (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is 
, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in 
ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be given 
in radians and must be less than ±263. The following table shows the unmasked results 
obtained when computing the partial tangent of various classes of numbers, assuming 
that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the program 
to check the C2 flag for out-of-range conditions. Source values outside the range 263 
to +263 can be reduced to the range of the instruction by subtracting an appropriate 
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

The value 1.0 is pushed onto the register stack after the tangent has been computed to 
maintain compatibility with the Intel 8087 and Intel287 math coprocessors. This 
operation also simplifies the calculation of other trigonometric functions. For instance, 
the cotangent (which is the reciprocal of the tangent) can be computed by executing a 
FDIVR instruction after the FPTAN instruction.

Operation

IF ST(0)  263

THEN
C2  0;
ST(0)  tan(ST(0));
TOP  TOP  1;
ST(0)  1.0;

ELSE (*source operand is out-of-range *)
C2  1;

FI;

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1 onto 
the FPU stack.

ST(0) SRC ST(0) DEST

 *

F F to +F

0 0

0 +0

+F F to +F

+ *

NaN NaN 
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FPTAN—Partial Tangent (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow 
occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263; 
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, depending 
on the current rounding mode (setting of the RC field of the FPU control word), and 
stores the result in ST(0).

If the source value is , the value is not changed. If the source value is not an integral 
value, the floating-point inexact-result exception (#P) is generated.

Operation

ST(0)  RoundToIntegralValue(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

D9 FC FRNDINT Round ST(0) to an integer.
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FRSTOR—Restore FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area 
specified with the source operand. This state data is typically written to the specified 
memory location by a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag 
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for the layout in memory of the stored 
environment, depending on the operating mode of the processor (protected or real) 
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, 
the real mode layouts are used. The contents of the FPU register stack are stored in the 
80 bytes immediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the 
corresponding FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a 
floating-point exception will be generated. To avoid raising exceptions when loading a 
new operating environment, clear all the exception flags in the FPU status word that is 
being loaded.

Operation

FPUControlWord  SRC(FPUControlWord);
FPUStatusWord  SRC(FPUStatusWord);
FPUTagWord  SRC(FPUTagWord);
FPUDataPointer  SRC(FPUDataPointer);
FPUInstructionPointer  SRC(FPUInstructionPointer);
FPULastInstructionOpcode  SRC(FPULastInstructionOpcode);
ST(0)  SRC(ST(0));
ST(1)  SRC(ST(1));
ST(2)  SRC(ST(2));
ST(3)  SRC(ST(3));
ST(4)  SRC(ST(4));
ST(5)  SRC(ST(5));
ST(6)  SRC(ST(6));
ST(7)  SRC(ST(7));

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-point Exceptions

None; however, this operation might unmask an existing exception that has been 
detected but not generated, because it was masked. Here, the exception is generated 
at the completion of the instruction.

Opcode Instruction Description

DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.
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FRSTOR—Restore FPU State (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FSAVE/FNSAVE—Store FPU State

Description

Stores the current FPU state (operating environment and register stack) at the specified 
destination in memory, and then re-initializes the FPU. The FSAVE instruction checks for 
and handles pending unmasked floating-point exceptions before storing the FPU state; 
the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag 
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32 
Architectures Software Developer’s Manual for the layout in memory of the stored 
environment, depending on the operating mode of the processor (protected or real) 
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, 
the real mode layouts are used. The contents of the FPU register stack are stored in the 
80 bytes immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions 
preceding the FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set 
to with the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-point Unit” 
on page 4:133).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to 
perform a context switch, an exception handler needs to use the FPU, or an application 
program needs to pass a “clean” FPU to a procedure.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord)  FPUControlWord;
DEST(FPUStatusWord)  FPUStatusWord;
DEST(FPUTagWord)  FPUTagWord;
DEST(FPUDataPointer)  FPUDataPointer;
DEST(FPUInstructionPointer)  FPUInstructionPointer;
DEST(FPULastInstructionOpcode)  FPULastInstructionOpcode;
DEST(ST(0))  ST(0);
DEST(ST(1))  ST(1);
DEST(ST(2))  ST(2);
DEST(ST(3))  ST(3);
DEST(ST(4))  ST(4);
DEST(ST(5))  ST(5);
DEST(ST(6))  ST(6);
DEST(ST(7))  ST(7);
(* Initialize FPU *)
FPUControlWord  037FH;

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for pending 
unmasked floating-point exceptions. Then re-initialize the FPU.

DD /6 FNSAVE m94/108byte Store FPU environment to m94byte or m108byte without checking 
for pending unmasked floating-point exceptions. Then re-initialize 
the FPU.
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FSAVE/FNSAVE—Store FPU State (Continued)

FPUStatusWord  0;
FPUTagWord  FFFFH;
FPUDataPointer  0;
FPUInstructionPointer  0;
FPULastInstructionOpcode  0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   
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FSAVE/FNSAVE—Store FPU State (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

Intel Architecture Compatibility Information

For Intel math coprocessors and FPUs prior to the Pentium processor, an FWAIT 
instruction should be executed before attempting to read from the memory image 
stored with a prior FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that 
the storage operation has been completed.
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FSCALE—Scale

Description

Multiplies the destination operand by 2 to the power of the source operand and stores 
the result in the destination operand. This instruction provides rapid multiplication or 
division by integral powers of 2. The destination operand is a real value that is located 
in register ST(0). The source operand is the nearest integer value that is smaller than 
the value in the ST(1) register (that is, the value in register ST(1) is truncate toward 0 
to its nearest integer value to form the source operand). The actual scaling operation is 
performed by adding the source operand (integer value) to the exponent of the value in 
register ST(0). The following table shows the results obtained when scaling various 
classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
Nmeans integer.

In most cases, only the exponent is changed and the mantissa (significand) remains 
unchanged. However, when the value being scaled in ST(0) is a denormal value, the 
mantissa is also changed and the result may turn out to be a normalized number. 
Similarly, if overflow or underflow results from a scale operation, the resulting mantissa 
will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT 
instruction, as shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from 
the value in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then 
scales the significand in ST(0) by the exponent in ST(1), recreating the original value 
before the FXTRACT operation was performed. The FSTP ST(1) instruction returns the 
recreated value to the FPU register where it originally resided.

Opcode Instruction Description

D9 FD FSCALE Scale ST(0) by ST(1).

ST(1)

N 0 +N

   

ST(0) F F F F

0 0 0 0

+0 +0 +0 +0

+F +F +F +F

+ + + +

NaN NaN NaN NaN 
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FSCALE—Scale (Continued)

Operation

ST(0)  ST(0) 2ST(1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FSIN—Sine

Description

Calculates the sine of the source operand in register ST(0) and stores the result in 
ST(0). The source operand must be given in radians and must be within the range 263 
to +263. The following table shows the results obtained when taking the sine of various 
classes of numbers, assuming that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the program 
to check the C2 flag for out-of-range conditions. Source values outside the range 263 
to +263 can be reduced to the range of the instruction by subtracting an appropriate 
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF ST(0)  263

THEN
C2  0;
ST(0)  sin(ST(0));

ELSE (* source operand out of range *)
C2  1;

FI:

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.

SRC (ST(0)) DEST (ST(0))

 *

F 1 to +1

0 0

0 0

+F 1 to +1

+ *

NaN NaN 
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FSIN—Sine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263; 
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0), stores 
the sine in ST(0), and pushes the cosine onto the top of the FPU register stack. (This 
instruction is faster than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range 263 to 
+263. The following table shows the results obtained when taking the sine and cosine of 
various classes of numbers, assuming that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the program 
to check the C2 flag for out-of-range conditions. Source values outside the range 263 
to +263 can be reduced to the range of the instruction by subtracting an appropriate 
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF ST(0)  263

THEN
C2  0;
TEMP  cosine(ST(0));
ST(0)  sine(ST(0));
TOP  TOP  1;
ST(0)  TEMP;

ELSE (* source operand out of range *)
C2  1;

FI:

Opcode Instruction Description

D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with the 
sine, and push the cosine onto the register stack.

SRC DEST

ST(0)) ST(0) Cosine ST(1) Sine

 * *

F 1 to +1 1 to +1

0 1 0

0 1 0

+F 1 to +1 1 to +1

+ * *

NaN NaN NaN
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FSINCOS—Sine and Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow 
occurs.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263; 
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FSQRT—Square Root

Description

Calculates the square root of the source value in the ST(0) register and stores the 
result in ST(0).

The following table shows the results obtained when taking the square root of various 
classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

ST(0)  SquareRoot(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for 0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Opcode Instruction Description

D9 FA FSQRT Calculates square root of ST(0) and stores the result in ST(0)

SRC (ST(0)) DEST (ST(0))

 *

F *

0 0

0 0

+F +F

+ +

NaN NaN 
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FSQRT—Square Root (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FST/FSTP—Store Real

Description

The FST instruction copies the value in the ST(0) register to the destination operand, 
which can be a memory location or another register in the FPU registers stack. When 
storing the value in memory, the value is converted to single- or double-real format. 

The FSTP instruction performs the same operation as the FST instruction and then pops 
the register stack. To pop the register stack, the processor marks the ST(0) register as 
empty and increments the stack pointer (TOP) by 1. The FSTP instruction can also 
stores values in memory in extended-real format.

If the destination operand is a memory location, the operand specifies the address 
where the first byte of the destination value is to be stored. If the destination operand 
is a register, the operand specifies a register in the register stack relative to the top of 
the stack.

If the destination size is single- or double-real, the significand of the value being stored 
is rounded to the width of the destination (according to rounding mode specified by the 
RC field of the FPU control word), and the exponent is converted to the width and bias 
of the destination format. If the value being stored is too large for the destination 
format, a numeric overflow exception (#O) is generated and, if the exception is 
unmasked, no value is stored in the destination operand. If the value being stored is a 
denormal value, the denormal exception (#D) is not generated. This condition is simply 
signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±, or a NaN, the least-significant bits of the significand 
and the exponent are truncated to fit the destination format. This operation preserves 
the value’s identity as a 0,  or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is 
not generated.

Operation

DEST  ST(0);
IF instruction = FSTP 

THEN 
PopRegisterStack;

FI; 

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real 

DD /2 FST m64real Copy ST(0) to m64real

DD D0+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack

DD /3 FSTP m64real Copy ST(0) to m64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack
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FST/FSTP—Store Real (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception 
(#P) is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   
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FST/FSTP—Store Real (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FSTCW/FNSTCW—Store Control Word

Description

Stores the current value of the FPU control word at the specified destination in memory. 
The FSTCW instruction checks for and handles pending unmasked floating-point 
exceptions before storing the control word; the FNSTCW instruction does not.

Operation

DEST  FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for pending 
unmasked floating-point exceptions.

D9 /7 FNSTCW m2byte Store FPU control word to m2byte without checking for pending 
unmasked floating-point exceptions.
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FSTCW/FNSTCW—Store Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FSTENV/FNSTENV—Store FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with the 
destination operand, and then masks all floating-point exceptions. The FPU operating 
environment consists of the FPU control word, status word, tag word, instruction 
pointer, data pointer, and last opcode. See the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual for the layout in memory of the stored environment, 
depending on the operating mode of the processor (protected or real) and the size of 
the current address attribute (16-bit or 32-bit). (In virtual-8086 mode, the real mode 
layouts are used.)

The FSTENV instruction checks for and handles any pending unmasked floating-point 
exceptions before storing the FPU environment; the FNSTENV instruction does not.The 
saved image reflects the state of the FPU after all floating-point instructions preceding 
the FSTENV/FNSTENV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to 
the FPU instruction and data pointers. The environment is typically saved in the 
procedure stack. Masking all exceptions after saving the environment prevents 
floating-point exceptions from interrupting the exception handler.

Operation

DEST(FPUControlWord)  FPUControlWord;
DEST(FPUStatusWord)  FPUStatusWord;
DEST(FPUTagWord)  FPUTagWord;
DEST(FPUDataPointer)  FPUDataPointer;
DEST(FPUInstructionPointer)  FPUInstructionPointer;
DEST(FPULastInstructionOpcode)  FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after checking 
for pending unmasked floating-point exceptions. Then mask all 
floating-point exceptions.

D9 /6 FNSTENV m14/28byte Store FPU environment to m14byte or m28byte without 
checking for pending unmasked floating-point exceptions. Then 
mask all floating-point exceptions.
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FSTENV/FNSTENV—Store FPU Environment (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FSTSW/FNSTSW—Store Status Word

Description

Stores the current value of the FPU status word in the destination location. The 
destination operand can be either a two-byte memory location or the AX register. The 
FSTSW instruction checks for and handles pending unmasked floating-point exceptions 
before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for 
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM 
instruction), where the direction of the branch depends on the state of the FPU 
condition code flags. This instruction can also be used to invoke exception handlers (by 
examining the exception flags) in environments that do not use interrupts. When the 
FNSTSW AX instruction is executed, the AX register is updated before the processor 
executes any further instructions. The status stored in the AX register is thus 
guaranteed to be from the completion of the prior FPU instruction. 

Operation

DEST  FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for pending 
unmasked floating-point exceptions.

9B DF E0 FSTSW AX Store FPU status word in AX register after checking for pending 
unmasked floating-point exceptions.

DD /7 FNSTSW m2byte Store FPU status word at m2byte without checking for pending 
unmasked floating-point exceptions.

DF E0 FNSTSW AX Store FPU status word in AX register without checking for 
pending unmasked floating-point exceptions.
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FSTSW/FNSTSW—Store Status Word (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference in 
the destination location. The destination operand is always an FPU data register; the 
source operand can be a register or a memory location. Source operands in memory 
can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register 
from the ST(1) register and stores the result in ST(1). The one-operand version 
subtracts the contents of a memory location (either a real or an integer value) from the 
contents of the ST(0) register and stores the result in ST(0). The two-operand version, 
subtracts the contents of the ST(0) register from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register 
stack following the subtraction. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand 
version of the floating-point subtract instructions always results in the register stack 
being popped. In some assemblers, the mnemonic for this instruction is FSUB rather 
than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format 
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of 
numbers from one another, assuming that neither overflow nor underflow occurs. Here, 
the SRC value is subtracted from the DEST value (DEST  SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for 
the round toward  mode, in which case the result is 0. This instruction also 
guarantees that +0  (0) = +0, and that 0  (+0) = 0. When the source operand is 
an integer 0, it is treated as a +0.

When one operand is , the result is  of the expected sign. If both operands are  of 
the same sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB m64real Subtract m64real from ST(0) and store result in ST(0)

D8 E0+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop register 
stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop 
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)
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FSUB/FSUBP/FISUB—Subtract (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUB
THEN

DEST  DEST  ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST  SRC;
FI;
IF instruction = FSUBP 

THEN 
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault 
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Table 2-9. FSUB Zeros and NaNs

SRC

 F or I 0 +0 +F or +I + NaN

 *      NaN

F + F or 0 DEST DEST F  NaN

DEST 0 + SRC 0 0 SRC  NaN

+0 + SRC +0 0 SRC  NaN

+F + +F DEST DEST F or 0  NaN

+ + + + + + * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FSUB/FSUBP/FISUB—Subtract (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference in 
the destination location. The destination operand is always an FPU register; the source 
operand can be a register or a memory location. Source operands in memory can be in 
single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB 
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register 
from the ST(0) register and stores the result in ST(1). The one-operand version 
subtracts the contents of the ST(0) register from the contents of a memory location 
(either a real or an integer value) and stores the result in ST(0). The two-operand 
version, subtracts the contents of the ST(i) register from the ST(0) register or vice 
versa.

The FSUBRP instructions perform the additional operation of popping the FPU register 
stack following the subtraction. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand 
version of the floating-point reverse subtract instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FSUBR 
rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format 
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of 
numbers from one another, assuming that neither overflow nor underflow occurs. Here, 
the DEST value is subtracted from the SRC value (SRC  DEST = result).

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR m64real Subtract ST(0) from m64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC E0+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0)and store result in ST(i)

DE E0+i FSUBRP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop register 
stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop 
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)



4:186 Volume 4: Base IA-32 Instruction Reference

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

When the difference between two operands of like sign is 0, the result is +0, except for 
the round toward  mode, in which case the result is 0. This instruction also 
guarantees that +0  (0) = +0, and that 0  (+0) = 0. When the source operand is 
an integer 0, it is treated as a +0.

When one operand is , the result is  of the expected sign. If both operands are  of 
the same sign, an invalid-operation exception is generated.

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUBR
THEN

DEST  ConvertExtendedReal(SRC)  DEST;
ELSE (* source operand is real number *)

DEST  SRC  DEST;
FI;
IF instruction = FSUBRP 

THEN 
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault 
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Table 2-10. FSUBR Zeros and NaNs

SRC

 F 0 +0 +F + NaN

 * + + + + + NaN

DEST F or I  F or 0 DEST DEST +F + NaN

0  SRC 0 +0 SRC + NaN

+0  SRC 0 0 SRC + NaN

+F or +I  F DEST DEST F or 0 + NaN

+      * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NM EM or TS in CR0 is set.   

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, 
C2, and C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also 
checks the class of the numbers being compared (see “FXAM—Examine” on 
page 4:193). If the value in register ST(0) is a NaN or is in an undefined format, the 
condition flags are set to “unordered.”)

The sign of zero is ignored, so that -0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0  111;
ST(0) > 0.0: C3, C2, C0  000;
ST(0) < 0.0: C3, C2, C0  001;
ST(0) = 0.0: C3, C2, C0  100;

ESAC;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See above table.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.

Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0) 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1
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FTST—TEST (Continued)

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets 
condition code flags C0, C2, and C3 in the FPU status word according to the results (see 
the table below). If no operand is specified, the contents of registers ST(0) and ST(1) 
are compared. The sign of zero is ignored, so that -0.0 = +0.0.

An unordered comparison checks the class of the numbers being compared (see 
“FXAM—Examine” on page 4:193). The FUCOM instructions perform the same 
operation as the FCOM instructions. The only difference is that the FUCOM instruction 
raises the invalid-arithmetic-operand exception (#IA) only when either or both 
operands is an SNaN or is in an unsupported format; QNaNs cause the condition code 
flags to be set to unordered, but do not cause an exception to be generated. The FCOM 
instruction raises an invalid-operation exception when either or both of the operands is 
a NaN value of any kind or is in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand 
exception being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instructions pop the register stack following the comparison operation and 
the FUCOMPP instructions pops the register stack twice following the comparison 
operation. To pop the register stack, the processor marks the ST(0) register as empty 
and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0  000;
ST < SRC: C3, C2, C0  001;
ST = SRC: C3, C2, C0  100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

Opcode Instruction Description

DD E0+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice

Comparison Results C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic- operand 
(#IA) exception is generated.

1 1 1
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FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real (Continued)

THEN 
C3, C2, C0  111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN 
C3, C2, C0  111;

FI;
FI;
IF instruction = FUCOMP 

THEN 
PopRegisterStack;

FI;
IF instruction = FUCOMPP 

THEN 
PopRegisterStack; 
PopRegisterStack; 

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See table on previous page.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported 
formats. Detection of a QNaN value in and of itself does not raise an 
invalid-operand exception.

#D One or both operands are denormal values.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FWAIT—Wait

See entry for WAIT.
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FXAM—Examine

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2, 
and C3 in the FPU status word to indicate the class of value or number in the register 
(see the table below).

.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is 
empty or full.

Operation

C1  sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0  000;
NaN: C3, C2, C0  001;
Normal: C3, C2, C0  010;
Infinity: C3, C2, C0  011;
Zero: C3, C2, C0  100;
Empty: C3, C2, C0  101;
Denormal: C3, C2, C0  110;

ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).

C0, C2, C3 See table above.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Opcode Instruction Description

D9 E5 FXAM Classify value or number in ST(0)

Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0
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FXAM—Examine (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, 
the contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to 
the top of the stack [ST(0)], so that they can be operated on by those floating-point 
instructions that can only operate on values in ST(0). For example, the following 
instruction sequence takes the square root of the third register from the top of the 
register stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

Operation

IF number-of-operands is 1
THEN

temp  ST(0);
ST(0)  SRC;
SRC  temp;

ELSE
temp  ST(0);
ST(0)  ST(1);
ST(1)  temp;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)
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FXCH—Exchange Register Contents (Continued)

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand, 
stores the exponent in ST(0), and pushes the significand onto the register stack. 
Following this operation, the new top-of-stack register ST(0) contains the value of the 
original significand expressed as a real number. The sign and significand of this value 
are the same as those found in the source operand, and the exponent is 3FFFH (biased 
value for a true exponent of zero). The ST(1) register contains the value of the original 
operand’s true (unbiased) exponent expressed as a real number. (The operation 
performed by this instruction is a superset of the IEEE-recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range 
scaling operations. The FXTRACT instruction is also useful for converting numbers in 
extended-real format to decimal representations (e.g. for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is 
zero, an exponent value of - is stored in register ST(1) and 0 with the sign of the 
source operand is stored in register ST(0).

Operation

TEMP  Significand(ST(0));
ST(0)  Exponent(ST(0));
TOP TOP  1;
ST(0)  TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow 
occurred.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is 0.

#D Source operand is a denormal value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand, store 
exponent in ST(0), and push the significand onto the register 
stack.
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FXTRACT—Extract Exponent and Significand (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FYL2X—Compute y  log2x

Description

Calculates (ST(1)  log2 (ST(0))), stores the result in resister ST(1), and pops the FPU 
register stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of 
numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-operation (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains 0, the 
instruction returns  with a sign that is the opposite of the sign of the source operand in 
register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the 
calculation of logarithms with an arbitrary positive base (b):

logbx = (log2b)-1 log2x

Operation

ST(1)  ST(1) log2ST(0);
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) log2ST(0)) and pop the register 
stack

Table 2-11. FYL2X Zeros and NaNs

ST(0)

 F 0 0 F + NaN

 * * + + +  NaN

ST(1) F * * ** ** F  NaN

0 * * * * 0 * NaN

0 * * * * 0 * NaN

F * * ** ** F + NaN

+ * *    + NaN

NaN NaN NaN NaN NaN NaN NaN NaN



4:200 Volume 4: Base IA-32 Instruction Reference

FYL2X—Compute y  log2x (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not 0).

#Z Source operand in register ST(0) is 0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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FYL2XP1—Compute y  log2(x +1)

Description

Calculates the log epsilon (ST(1)  log2(ST(0) + 1.0)), stores the result in register 
ST(1), and pops the FPU register stack. The source operand in ST(0) must be in the 
range:

The source operand in ST(1) can range from  to . If either of the source operands 
is outside its acceptable range, the result is undefined and no exception is generated. 

The following table shows the results obtained when taking the log epsilon of various 
classes of numbers, assuming that underflow does not occur:

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register 
ST(0)] that are close to 0. When the epsilon value () is small, more significant digits 
can be retained by using the FYL2XP1 instruction than by using (+1) as an argument 
to the FYL2X instruction. The (+1) expression is commonly found in compound interest 
and annuity calculations. The result can be simply converted into a value in another 
logarithm base by including a scale factor in the ST(1) source operand. The following 
equation is used to calculate the scale factor for a particular logarithm base, where n is 
the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor = logn 2

Operation

ST(1)  ST(1)  log2(ST(0) + 1.0);
PopRegisterStack;

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) log2(ST(0) + 1.0) and pop the 
register stack

Table 2-12. FYL2XP1 Zeros and NaNs

ST(0)

 (1  )) to 0 0 0 +0 to +(1 ( )) + NaN

 * + * *   NaN

ST(1) F * +F +0 0 F  NaN

0 * +0 +0 0 0 * NaN

0 * 0 0 +0 +0 * NaN

F * F 0 +0 +F + NaN

+ *  * * + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

1 2 2–  to 1 2 2– –

2 2 2 2
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FYL2XP1—Compute y  log2(x +1) (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.   

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.   

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.   
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HLT—Halt

Description

Stops instruction execution and places the processor in a HALT state. An enabled 
interrupt, NMI, or a reset will resume execution. If an interrupt (including NMI) is used 
to resume execution after a HLT instruction, the saved instruction pointer (CS:EIP) 
points to the instruction following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in 
protected or virtual 8086 mode, the privilege level of a program or procedure must to 0 
to execute the HLT instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,HALT);

Enter Halt state;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

Opcode Instruction Description

F4 HLT Halt
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IDIV—Signed Divide

Description

Divides (signed) the value in the AL, AX, or EAX register by the source operand and 
stores the result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a 
general-purpose register or a memory location. The action of this instruction depends 
on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is 
always the same as the sign of the dividend. The absolute value of the remainder is 
always less than the absolute value of the divisor. Overflow is indicated with the #DE 
(divide error) exception rather than with the OF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *) 

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp  AX / SRC; (* signed division *)
IF (temp > 7FH) OR (temp < 80H) 
(* if a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* divide error *) ;
ELSE

AL  temp;
AH  AX SignedModulus SRC;

FI;
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

Opcode Instruction Description

F6 /7 IDIV r/m8 Signed divide AX (where AH must contain sign-extension of 
AL) by r/m byte. (Results: AL=Quotient, AH=Remainder)

F7 /7 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-extension 
of AX) by r/m word. (Results: AX=Quotient, DX=Remainder) 

F7 /7 IDIV r/m32 Signed divide EDX:EAX (where EDX must contain 
sign-extension of EAX) by r/m doubleword. (Results: 
EAX=Quotient, EDX=Remainder)

Table 2-13. IDIV Operands

Operand Size Dividend Divisor Quotient Remainder
Quotient
Range

Word/byte AX r/m8 AL AH 128 to +127

Doubleword/word DX:AX r/m16 AX DX 32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX 231 to 232 1



Volume 4: Base IA-32 Instruction Reference 4:205

IDIV—Signed Divide (Continued)

temp  DX:AX / SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H) 
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)

THEN #DE; (* divide error *) ;
ELSE

AX  temp;
DX  DX:AX SignedModulus SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp  EDX:EAX / SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H) 
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)

THEN #DE; (* divide error *) ;
ELSE

EAX  temp;
EDX  EDXE:AX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.
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IDIV—Signed Divide (Continued)

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms, 
depending on the number of operands. 

• One-operand form. This form is identical to that used by the MUL instruction. 
Here, the source operand (in a general-purpose register or memory location) is 
multiplied by the value in the AL, AX, or EAX register (depending on the operand 
size) and the product is stored in the AX, DX:AX, or EDX:EAX registers, 
respectively.

• Two-operand form. With this form the destination operand (the first operand) is 
multiplied by the source operand (second operand). The destination operand is a 
general-purpose register and the source operand is an immediate value, a 
general-purpose register, or a memory location. The product is then stored in the 
destination operand location.

• Three-operand form. This form requires a destination operand (the first operand) 
and two source operands (the second and the third operands). Here, the first 
source operand (which can be a general-purpose register or a memory location) is 
multiplied by the second source operand (an immediate value). The product is then 
stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of 
the destination operand format.

The CF and OF flags are set when significant bits are carried into the upper half of the 
result. The CF and OF flags are cleared when the result fits exactly in the lower half of 
the result.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX AL  r/m byte

F7 /5 IMUL r/m16 DX:AX  AX  r/m word

F7 /5 IMUL r/m32 EDX:EAX  EAX  r/m doubleword

0F AF /r IMUL r16,r/m16 word register  word register  r/m word

0F AF /r IMUL r32,r/m32 doubleword register  doubleword register  r/m doubleword

6B /r ib IMUL r16,r/m16,imm8 word register  r/m16  sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register  r/m32  sign-extended immediate byte

6B /r ib IMUL r16,imm8 word register  word register  sign-extended immediate byte

6B /r ib IMUL r32,imm8 doubleword register  doubleword register  sign-extended 
immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register  r/m16  immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register  r/m32  immediate doubleword

69 /r iw IMUL r16,imm16 word register  r/m16  immediate word

69 /r id IMUL r32,imm32 doubleword register  r/m32  immediate doubleword
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IMUL—Signed Multiply (Continued)

The three forms of the IMUL instruction are similar in that the length of the product is 
calculated to twice the length of the operands. With the one-operand form, the product 
is stored exactly in the destination. With the two- and three- operand forms, however, 
result is truncated to the length of the destination before it is stored in the destination 
register. Because of this truncation, the CF or OF flag should be tested to ensure that no 
significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because 
the lower half of the product is the same regardless if the operands are signed or 
unsigned. The CF and OF flags, however, cannot be used to determine if the upper half 
of the result is non-zero.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX  AL  SRC  (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE IF OperandSize = 16

THEN 
DX:AX  AX  SRC  (* signed multiplication *)
IF ((DX = 0000H) OR (DX = FFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE (* OperandSize = 32 *)

EDX:EAX  EAX  SRC  (* signed multiplication *)
IF ((EDX = 00000000H) OR (EDX = FFFFFFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN 

temp  DEST  SRC    (* signed multiplication; temp is double DEST size*)
DEST  DEST  SRC  (* signed multiplication *)
IF temp  DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;

ELSE (* NumberOfOperands = 3 *)
DEST  SRC1  SRC2   (* signed multiplication *)
temp SRC1 SRC2     (* signed multiplication; temp is double SRC1 size *)
IF temp  DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;
FI;

FI;
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IMUL—Signed Multiply (Continued)

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when 
significant bits are carried into the upper half of the result and cleared when the result 
fits exactly in the lower half of the result. For the two- and three-operand forms of the 
instruction, the CF and OF flags are set when the result must be truncated to fit in the 
destination operand size and cleared when the result fits exactly in the destination 
operand size. The SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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IN—Input from Port

Description

Copies the value from the I/O port specified with the second operand (source operand) 
to the destination operand (first operand). The source operand can be a 
byte-immediate or the DX register; the destination operand can be register AL, AX, or 
EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respectively). 
Using the DX register as a source operand allows I/O port addresses from 0 to 65,535 
to be accessed; using a byte immediate allows I/O port addresses 0 to 255 to be 
accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing 
a 16- and 32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. 
Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O 
address space.

I/O transactions are performed after all prior data memory operations. No 
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the 
64-bit virtual address pointed to by the IOBase register, with four ports per 
4K-byte virtual page. Operating systems can utilize the TLB in the Itanium 
architecture to grant or deny permission to any four I/O ports. The I/O port 
space can be mapped into any arbitrary 64-bit physical memory location by 
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for 
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted 
regardless of the state of the TSS I/O permission bitmap (the bitmap is not 
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via 
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a 
GPFault is generated on the referencing IN instruction. 

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 I/O port address into AL

E5 ib IN AX,imm8 Input byte from imm8 I/O port address into AX

E5 ib IN EAX,imm8 Input byte from imm8 I/O port address into EAX

EC IN AL,DX Input byte from I/O port in DX into AL

ED IN AX,DX Input word from I/O port in DX into AX

ED IN EAX,DX Input doubleword from I/O port in DX into EAX
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ELSE ( * Real-address mode or protected mode with CPL  IOPL *)
(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)

FI;

IF (Itanium_System_Environment THEN
SRC_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST  [SRC_PA]; (* Reads from I/O port *)

FI;

memory_fence();
DEST <-SRC;
memory-fence();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is 
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level 
(IOPL) and any of the corresponding I/O permission bits in TSS for 
the I/O port being accessed is 1 when CFLG.io is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 
accessed is 1.
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INC—Increment by 1

Description

Adds 1 to the operand, while preserving the state of the CF flag. The source operand 
can be a register or a memory location. This instruction allows a loop counter to be 
updated without disturbing the CF flag. (Use a ADD instruction with an immediate 
operand of 1 to perform a increment operation that does updates the CF flag.)

Operation

DEST  DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the 
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1
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INC—Increment by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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INS/INSB/INSW/INSD—Input from Port to String

Description

Copies the data from the I/O port specified with the second operand (source operand) 
to the destination operand (first operand). The source operand must be the DX register, 
allowing I/O port addresses from 0 to 65,535 to be accessed. When accessing an 8-bit 
I/O port, the opcode determines the port size; when accessing a 16- and 32-bit I/O 
port, the operand-size attribute determines the port size.

The destination operand is a memory location at the address ES:EDI. (When the 
operand-size attribute is 16, the DI register is used as the destination-index register.) 
The ES segment cannot be overridden with a segment override prefix.

The INSB, INSW, and INSD mnemonics are synonyms of the byte, word, and 
doubleword versions of the INS instructions. (For the INS instruction, “ES:EDI” must be 
explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the I/O port to the memory 
location, the EDI register is incremented or decremented automatically according to the 
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is 
incremented; if the DF flag is 1, the EDI register is decremented.) The EDI register is 
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 
for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for 
block input of ECX bytes, words, or doublewords. 

This instruction is only useful for accessing I/O ports located in the processor’s I/O 
address space. 

I/O transactions are performed after all prior data memory operations. No 
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the 
64-bit virtual address pointed to by the IOBase register, with four ports per 
4K-byte virtual page. Operating systems can utilize the TLBs in the Itanium 
architecture to grant or deny permission to any four I/O ports. The I/O port 
space can be mapped into any arbitrary 64-bit physical memory location by 
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for 
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted 
regardless of the state of the TSS I/O permission bitmap (the bitmap is not 
referenced).

Opcode Instruction Description

6C INS ES:(E)DI, DX Input byte from port DX into ES:(E)DI

6D INS ES:DI, DX Input word from port DX into ES:DI

6D INS ES:EDI, DX Input doubleword from port DX into ES:EDI

6C INSB Input byte from port DX into ES:(E)DI

6D INSW Input word from port DX into ES:DI

6D INSD Input doubleword from port DX into ES:EDI
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INS/INSB/INSW/INSD—Input from Port to String (Continued)

If the referenced I/O port is mapped to an unimplemented virtual address (via 
the IOBase register) or if data translations are disabled (PSR.dt is 0) a 
GPFault is generated on the referencing INS instruction. 

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE ( * I/O operation is allowed *)

FI;
IF (Itanium_System_Environment) THEN

SRC_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST  [SRC_PA]; (* Reads from I/O port *)

FI;

memory_fence();
DEST <- SRC;
memory_fence();

IF (byte transfer)
THEN IF DF = 0

THEN (E)DI  1; 
ELSE (E)DI  -1; 

FI;
ELSE IF (word transfer)

THEN IF DF = 0
THEN DI  2; 
ELSE DI  -2; 

FI;
ELSE (* doubleword transfer *)

THEN IF DF = 0
THEN EDI  4; 
ELSE EDI  -4; 

FI;
FI;

FI;
FI;

Flags Affected

None.
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INS/INSB/INSW/INSD—Input from Port to String (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is 
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level 
(IOPL) and any of the corresponding I/O permission bits in TSS for 
the I/O port being accessed is 1 and when CFLG.io is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments 
is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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INTn/INTO/INT3—Call to Interrupt Procedure

Description

The INTn instruction generates a call to the interrupt or exception handler specified 
with the destination operand. The destination operand specifies an interrupt vector 
from 0 to 255, encoded as an 8-bit unsigned intermediate value. The first 32 interrupt 
vectors are reserved by Intel for system use. Some of these interrupts are used for 
internally generated exceptions.

The INTn instruction is the general mnemonic for executing a software-generated call 
to an interrupt handler. The INTO instruction is a special mnemonic for calling overflow 
exception (#OF), interrupt vector 4. The overflow interrupt checks the OF flag in the 
EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. 

The INT3 instruction is a special mnemonic for calling the debug exception handler. The 
action of the INT3 instruction (opcode CC) is slightly different from the operation of the 
INT 3 instruction (opcode CC03), as follows:

• Interrupt redirection does not happen when in VME mode; the interrupt is handled 
by a protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without 
faulting at any IOPL level.

The action of the INTn instruction (including the INTO and INT3 instructions) is similar 
to that of a far call made with the CALL instruction. The primary difference is that with 
the INTn instruction, the EFLAGS register is pushed onto the stack before the return 
address. (The return address is a far address consisting of the current values of the CS 
and EIP registers.) Returns from interrupt procedures are handled with the IRET 
instruction, which pops the EFLAGS information and return address from the stack.

The interrupt vector specifies an interrupt descriptor in the interrupt descriptor table 
(IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn 
contains a pointer to an interrupt or exception handler procedure. In protected mode, 
the IDT contains an array of 8-byte descriptors, each of which points to an interrupt 
gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far 
pointers (2-byte code segment selector and a 2-byte instruction pointer), each of which 
point directly to procedure in the selected segment. 

The following decision table indicates which action in the lower portion of the table is 
taken given the conditions in the upper portion of the table. Each Y in the lower section 
of the decision table represents a procedure defined in the “Operation” section for this 
instruction (except #GP).

Opcode Instruction Description

CC INT3 Interrupt 3—trap to debugger

CD  ib INT imm8 Interrupt vector numbered by immediate byte

CE INTO Interrupt 4—if overflow flag is 1
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INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Notes:
 Don't Care
Y Yes, Action Taken
BlankAction Not Taken

When the processor is executing in virtual-8086 mode, the IOPL determines the action 
of the INTn instruction. If the IOPL is less than 3, the processor generates a general 
protection exception (#GP); if the IOPL is 3, the processor executes a protected mode 
interrupt to privilege level 0. The interrupt gate's DPL must be set to three and the 
target CPL of the interrupt handler procedure must be 0 to execute the protected mode 
interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit 
of the IDT. The initial base address value of the IDTR after the processor is powered up 
or reset is 0.

Operation

The following operational description applies not only to the INTn and INTO 
instructions, but also to external interrupts and exceptions.

IF Itanium System EnvironmentTHEN

IF INT3 Form THEN IA_32_Exception(3);

IF INTO Form THEN IA_32_Exception(4);

IF INT Form THEN IA-32_Interrupt(N);

FI;

Table 2-14. INT Cases

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL 
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-G
ATE

Y Y Y Y Y

INTER-PRIVILEGE-LEVEL
-INTERRUPT

Y

INTRA-PRIVILEGE-LEVE
L-INTERRUPT

Y

INTERRUPT-FROM-VIRT
UAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y
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INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

/*IN the Itanium System Environment all of the following operations are intercepted*/

IF PE=0
THEN 

GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1 *)

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE:
IF ((DEST  4) + 3) is not within IDT limit THEN #GP; FI;
IF stack not large enough for a 6-byte return information THEN #SS; FI;
Push (EFLAGS[15:0]);
IF  0; (* Clear interrupt flag *)
TF  0; (* Clear trap flag *)
AC  0; (*Clear AC flag*)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS  IDT(Descriptor (vector  4), selector));
EIP  IDT(Descriptor (vector  4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:
IF ((DEST  8) + 7) is not within IDT limits

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST  8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* generated by INTn, INT3, or INTO *)

THEN
IF gate descriptor DPL < CPL

THEN #GP((vector number  8) + 2 ); 
(* PE=1, DPL<CPL, software interrupt *)

FI;
FI;
IF gate not present THEN #NP((vector number  8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)

FI;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local
OR index not within GDT limits

THEN #GP(TSS selector); 
FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector); 
FI;
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INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

IF TSS not present 
THEN #NP(TSS selector); 

FI;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of two bytes

THEN #SS(0);
FI;
Push(error code);

FI;
IF EIP not within code segment limit 

THEN #GP(0); 
FI;

END;
TRAP-OR-INTERRUPT-GATE

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null 

THEN #GP(0H + EXT); (* null selector with EXT flag set *)
FI;
IF segment selector is not within its descriptor table limits 

THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment 

OR code segment descriptor DPL CPL
THEN #GP(selector + EXT);

FI;
IF trap or interrupt gate segment is not present, 

THEN #NP(selector + EXT);
FI;
IF code segment is non-conforming AND DPL  CPL

THEN IF VM=0
THEN 

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT; 
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPLCPL, VM=0 *)

ELSE (* VM=1 *)
IF code segment DPL  0 THEN #GP(new code segment selector); FI;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; 
(* PE=1, interrupt or trap gate, DPLCPL, VM=1 *)

FI;
ELSE (* PE=1, interrupt or trap gate, DPL  CPL *)

IF VM=1 THEN #GP(new code segment selector); FI;
IF code segment is conforming OR code segment DPL = CPL

THEN 
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT; 

ELSE 
#GP(CodeSegmentSelector + EXT);  
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)

FI;
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FI;
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT

(* PE=1, interrupt or trap gate, non-conforming code segment, DPLCPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN 
TSSstackAddress  new code segment (DPL  8) + 4
IF (TSSstackAddress + 7)  TSS limit

THEN #TS(current TSS selector); FI;
NewSS  TSSstackAddress + 4;
NewESP  stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress  new code segment (DPL  4) + 2
IF (TSSstackAddress + 4)  TSS limit

THEN #TS(current TSS selector); FI;
NewESP  TSSstackAddress;
NewSS  TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL  DPL of code segment, 
THEN #TS(SS selector + EXT);

FI;
Read segment descriptor for stack segment in GDT or LDT;

IF stack segment DPL  DPL of code segment, 
OR stack segment does not indicate writable data segment, 

THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed) 

OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT); 

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 12 bytes (error code pushed) 
OR 10 bytes (no error code pushed);

THEN #SS(segment selector + EXT); 
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP  TSS(SS:ESP) (* segment descriptor information also loaded *)
IF 32-bit gate

THEN 
CS:EIP  Gate(CS:EIP); (* segment descriptor information also loaded *)

ELSE (* 16-bit gate *)
CS:IP  Gate(CS:IP); (* segment descriptor information also loaded *)

FI;
IF 32-bit gate

THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
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INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)

FI;
CPL  CodeSegmentDescriptor(DPL);
CS(RPL)  CPL;
IF interrupt gate 

THEN IF  0 (* interrupt flag to 0 (disabled) *); FI;
TF  0;
VM  0;
RF  0;
NT  0;

I END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN 
TSSstackAddress  new code segment (DPL  8) + 4
IF (TSSstackAddress + 7)  TSS limit

THEN #TS(current TSS selector); FI;
NewSS  TSSstackAddress + 4;
NewESP  stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress  new code segment (DPL  4) + 2
IF (TSSstackAddress + 4)  TSS limit

THEN #TS(current TSS selector); FI;
NewESP  TSSstackAddress;
NewSS  TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL  DPL of code segment, 
THEN #TS(SS selector + EXT);

FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL  DPL of code segment, 

OR stack segment does not indicate writable data segment, 
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed) 

OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT); 

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 20 bytes (error code pushed) 
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OR 18 bytes (no error code pushed);
THEN #SS(segment selector + EXT); 

FI;
FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;

IF CR4.VME = 0
THEN 

IF IOPL=3
THEN

IF Gate DPL = 3
THEN (*CPL=3, VM=1, IOPL=3, VME=0, gate DPL=3)

IF Target CPL != 0
THEN #GP(0);
ELSE Goto VM86_INTERURPT_TO_PRIV0;

FI;
ELSE (*Gate DPL < 3*)

#GP(0);
FI;

ELSE (*IOPL < 3*)
#GP(0);

FI;
ELSE (*VME = 1*)

(*Check whether interrupt is directed for INT n instruction only,
(*executes virtual 8086 interupt, protected mode interrupt or faults*)
Ptr <- [TSS + 66]; (*Fetch IO permission bitmpa pointer*)
IF BIT[Ptr-32,N] = 0 (*software redirection bitmap is 32 bytes below IO 

Permission*)
THEN (*Interrupt redirected*)

Goto VM86_INTERRUPT_TO_VM86;
ELSE

IF IOPL = 3
THEN

IF Gate DPL = 3
THEN

IF Target CPL != 0
THEN #GP(0);
ELSE Goto VM86_INTERRUPT_TO_PRIV0;
FI;

ELSE #GP(0);
FI;

ELSE (*IOPL < 3*)
#GP(0);

FI;
FI;

FI;
END;

VM86_INTERRUPT_TO_PRIV0:
tempEFLAGS  EFLAGS;
VM  0;
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TF  0;
RF  0;
IF service through interrupt gate THEN IF  0; FI;
TempSS  SS;
TempESP  ESP;
SS:ESP  TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS  0; (*segment registers nullified, invalid in protected mode *)
FS  0;
DS  0;
ES  0;
CS  Gate(CS);
IF OperandSize=32

THEN
EIP  Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP  Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Starts execution of new routine in Protected Mode *)

END;

VM86_INTERRUPT_TO_VM86:
IF IOPL = 3

THEN
push(FLAGS OR 3000H); (*Push FLAGS w/ IOPL bits as 11B or IOPL 3*)
push(CS);
push(IP);
CS <- [N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 7CD5H; (*Clear TF and IF in EFLAGS like 8086*)

ELSE
TempFlags <- FLAGS OR 3000H; (*Set IOPL to 11B or IOPL 3*)
TempFlags.IF <- EFLAGS.VIF;
push(TempFlags);
push(CS);
push(IP);
CS <- [N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 77ED5H; (*Clear VIF and TF and IF in EFLAGS like 8086*)

FI;
END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
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(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate

THEN
IF current stack does not have room for 16 bytes (error code pushed) 

OR 12 bytes (no error code pushed); THEN #SS(0);
FI;

ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed) 

OR 6 bytes (no error code pushed); THEN #SS(0);
FI;

IF instruction pointer not within code segment limit THEN #GP(0); FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP  Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP  Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

FI;
CS(RPL)  CPL;
IF interrupt gate 

THEN
IF  0; FI;
TF  0;
NT  0;
VM  0;
RF  0;

FI;
END;

Flags Affected

The EFLAGS register is pushed onto stack. The IF, TF, NT, AC, RF, and VM flags may be 
cleared, depending on the mode of operation of the processor when the INT instruction 
is executed (see “Operation” section.)

Additional Itanium System Environment Exceptions

IA_32_Exception If INT3 or INTO form, vector numbers are 3 and 4 respectively.

IA-32_Interrupt If INT n form, vector number is N.
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Protected Mode Exceptions

#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task 
gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment 
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of 
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point 
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not 
available.

#SS(0) If pushing the return address, flags, or error code onto the stack 
exceeds the bounds of the stack segment and no stack switch 
occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

If pushing the return address, flags, error code, or stack segment 
pointer exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not 
present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to 
the DPL of the code segment being accessed by the interrupt or trap 
gate.

If DPL of the stack segment descriptor pointed to by the stack 
segment selector in the TSS is not equal to the DPL of the code 
segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor 
table limits. 

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the interrupt vector is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack 
exceeds the bounds of the stack segment when a stack switch 
occurs.
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Virtual 8086 Mode Exceptions

#GP(0) (For INTn instruction) If the IOPL is less than 3 and the DPL of the 
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task 
gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment 
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of 
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point 
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

If pushing the return address, flags, error code, stack segment 
pointer, or data segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not 
present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to 
the DPL of the code segment being accessed by the interrupt or trap 
gate.

If DPL of the stack segment descriptor for the TSS’s stack segment 
is not equal to the DPL of the code segment descriptor for the 
interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor 
table limits. 

#PF(fault-code) If a page fault occurs.

#BP If the INT3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.
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Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus 
cycle that directs external caches to also flush themselves. Data held in internal caches 
is not written back to main memory. 

After executing this instruction, the processor does not wait for the external caches to 
complete their flushing operation before proceeding with instruction execution. It is the 
responsibility of hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in 
protected mode, the CPL of a program or procedure must be 0 to execute this 
instruction. This instruction is also implementation-dependent; its function may be 
implemented differently on future Intel architecture processors.

Use this instruction with care. Data cached internally and not written back to main 
memory will be lost. Unless there is a specific requirement or benefit to flushing caches 
without writing back modified cache lines (for example, testing or fault recovery where 
cache coherency with main memory is not a concern), software should use the WBINVD 
instruction. 

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVD);

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVD instruction cannot be executed at the virtual 8086 mode.

Opcode Instruction Description

0F 08 INVD Flush internal caches; initiate flushing of external caches.
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Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the 
Intel486 processor.
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Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the 
source operand. The source operand is a memory address. The processor determines 
the page that contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in 
protected mode, the CPL of a program or procedure must be 0 to execute this 
instruction. This instruction is also implementation-dependent; its function may be 
implemented differently on future Intel architecture processors.

The INVLPG instruction normally flushes the TLB entry only for the specified page; 
however, in some cases, it flushes the entire TLB. 

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVLPG);

Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual 8086 
mode.

Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the 
Intel486 processor.

Opcode Instruction Description

0F 01/7 INVLPG m Invalidate TLB Entry for page that contains m
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Description

Returns program control from an exception or interrupt handler to a program or 
procedure that was interrupted by an exception, an external interrupt or, a 
software-generated interrupt, or returns from a nested task. IRET and IRETD are 
mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is 
intended for use when returning from an interrupt when using the 32-bit operand size; 
however, most assemblers use the IRET mnemonic interchangeably for both operand 
sizes.

In Real Address Mode, the IRET instruction preforms a far return to the interrupted 
program or procedure. During this operation, the processor pops the return instruction 
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS, 
and EFLAGS registers, respectively, and then resumes execution of the interrupted 
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT 
(nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image 
stored on the current stack. Depending on the setting of these flags, the processor 
performs the following types of interrupt returns:

• Real Mode. 

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

Return from nested task (task switch)

All forms of IRET result in an IA-32_Intercept(Inst,IRET) in the Itanium 
System Environment.

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return 
from the interrupt procedure, without a task switch. The code segment being returned 
to must be equally or less privileged than the interrupt handler routine (as indicated by 
the RPL field of the code segment selector popped from the stack). As with a 
real-address mode interrupt return, the IRET instruction pops the return instruction 
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS, 
and EFLAGS registers, respectively, and then resumes execution of the interrupted 
program or procedure. If the return is to another privilege level, the IRET instruction 
also pops the stack pointer and SS from the stack, before resuming program execution. 
If the return is to virtual-8086 mode, the processor also pops the data segment 
registers from the stack.

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)
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If the NT flag is set, the IRET instruction performs a return from a nested task (switches 
from the called task back to the calling task) or reverses the operation of an interrupt 
or exception that caused a task switch. The updated state of the task executing the 
IRET instruction is saved in its TSS. If the task is reentered later, the code that follows 
the IRET instruction is executed.

IRET performs an instruction serialization and a memory fence operation.

Operation

IF(Itanium System Environment)
THEN IA-32_Intercept(Inst,IRET);

IF PE = 0
THEN 

GOTO REAL-ADDRESS-MODE:;
ELSE 

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
tempEFLAGS  Pop();
EFLAGS  (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
EFLAGS[15:0]  Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)

THEN 
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

FI;
IF NT = 1

THEN 
GOTO TASK-RETURN;( *PE=1, VM=0, NT=1 *)

FI;
IF OperandSize=32

THEN
IF top 12 bytes of stack not within stack limits
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THEN #SS(0)
FI;
tempEIP  Pop();
tempCS  Pop();
tempEFLAGS  Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0);
FI;
tempEIP  Pop();
tempCS  Pop();
tempEFLAGS  Pop();
tempEIP  tempEIP AND FFFFH;
tempEFLAGS  tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 AND CPL=0

THEN 
GOTO RETURN-TO-VIRTUAL-8086-MODE; 
(* PE=1, VM=1 in EFLAGS image *)

ELSE 
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)

FI;

RETURN-FROM-VIRTUAL-8086-MODE: 
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF CR4.VME = 0
THEN

IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN 

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
EFLAGS  Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
EFLAGS[15:0]  Pop(); (* IOPL in EFLAGS is not modified by pop *)

FI;
ELSE #GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)

FI;
ELSE (*VME is 1*)

IF IOPL = 3 
THEN

IF OperandSize = 32
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THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
TempEFlags  Pop();
FLAGS = (EFLAGS AND 1B3000H) OR (TempEFlags AND 244FD7H)
(*VM,IOPL,RF,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
TempFlags <- Pop();
FLAGS = (FLAGS AND 3000H) OR (TempFLags AND 4FD5H)
(*IOPL unmodified*)

FI;
ELSE (*IOPL < 3*)

IF OperandSize = 16
THEN 

IF ((STACK.TF !-0) OR (EFLAGS.VIP=1 AND STACK.IF=1))
THEN #GP(0);
ELSE

IP <- Pop(); (*Word Pops*)
CS <- Pop(0);
TempFlags <- Pop();
(*FLAGS IOPL, IF and TF are not modified*)
FLAGS = (FLAGS AND 3302H) OR (TempFlags AND 4CD5H)
EFLAGS.VIF <- TempFlags.IF;

FI;
ELSE (*OperandSize = 32 *)

#GP(0);
FI;

FI;

END;

RETURN-TO-VIRTUAL-8086-MODE: 
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)

IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);

FI;
IF instruction pointer not within code segment limits

THEN #GP(0);
FI;
CS  tempCS;
EIP  tempEIP;
EFLAGS  tempEFLAGS
TempESP  Pop();
TempSS  Pop();
ES  Pop(); (* pop 2 words; throw away high-order word *)
DS  Pop(); (* pop 2 words; throw away high-order word *)
FS  Pop(); (* pop 2 words; throw away high-order word *)
GS  Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP  TempSS:TempESP;
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(* Resume execution in Virtual 8086 mode *)
END;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector); 

FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #GP(TSS selector); 
FI;
IF TSS not present 

THEN #NP(TSS selector); 
FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit 

THEN #GP(0);
FI;

END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit 

THEN GP(selector; FI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP  tempEIP;
CS  tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT)  tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID)  tempEFLAGS;

FI;
IF CPL  IOPL

THEN
EFLAGS(IF)  tempEFLAGS;

FI;
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IF CPL = 0
THEN

EFLAGS(IOPL)  tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP)  tempEFLAGS;
FI;

FI;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:

IF OperandSize=32
THEN

IF top 8 bytes on stack are not within limits THEN #SS(0); FI;
ELSE (* OperandSize=16 *)

IF top 4 bytes on stack are not within limits THEN #SS(0); FI;
FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL  RPL of the return code segment selector

IF stack segment selector RPL  RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL  RPL of the return code segment selector

THEN #GP(SS selector); 
FI;
IF stack segment is not present THEN #NP(SS selector); FI;

IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP  tempEIP;
CS  tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT)  tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID)  tempEFLAGS;

FI;
IF CPO  IOPL

THEN
EFLAGS(IF)  tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL)  tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP)  tempEFLAGS;
FI;

FI;
CPL  RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
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AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)
THEN (* segment register invalid *)

SegmentSelector  0; (* null segment selector *)
FI;

OD;
END:

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on 
the mode of operation of the processor.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Instruction Intercept Trap for ALL forms of IRET.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code 
segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return 
code segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL 
of the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the 
return code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector.

If the segment descriptor for a code segment does not indicate it is 
a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not 
available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and 
alignment checking is enabled.
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Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code 
segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code 
segment limit.

IF IOPL not equal to 3

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is 
enabled.
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Jcc—Jump if Condition Is Met

Opcode Instruction Description

77 cb JA rel8 Jump short if above (CF=0 and ZF=0)

73 cb JAE rel8 Jump short if above or equal (CF=0)

72 cb JB rel8 Jump short if below (CF=1)

76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1)

72 cb JC rel8 Jump short if carry (CF=1)

E3 cb JCXZ rel8 Jump short if CX register is 0

E3 cb JECXZ rel8 Jump short if ECX register is 0

74 cb JE rel8 Jump short if equal (ZF=1)

7F cb JG rel8 Jump short if greater (ZF=0 and SF=OF)

7D cb JGE rel8 Jump short if greater or equal (SF=OF)

7C cb JL rel8 Jump short if less (SF<>OF)

7E cb JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF)

76 cb JNA rel8 Jump short if not above (CF=1 or ZF=1)

72 cb JNAE rel8 Jump short if not above or equal (CF=1)

73 cb JNB rel8 Jump short if not below (CF=0)

77 cb JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0)

73 cb JNC rel8 Jump short if not carry (CF=0)

75 cb JNE rel8 Jump short if not equal (ZF=0)

7E cb JNG rel8 Jump short if not greater (ZF=1 or SF<>OF)

7C cb JNGE rel8 Jump short if not greater or equal (SF<>OF)

7D cb JNL rel8 Jump short if not less (SF=OF)

7F cb JNLE rel8 Jump short if not less or equal (ZF=0 and SF=OF)

71 cb JNO rel8 Jump short if not overflow (OF=0)

7B cb JNP rel8 Jump short if not parity (PF=0)

79 cb JNS rel8 Jump short if not sign (SF=0)

75 cb JNZ rel8 Jump short if not zero (ZF=0)

70 cb JO rel8 Jump short if overflow (OF=1)

7A cb JP rel8 Jump short if parity (PF=1)

7A cb JPE rel8 Jump short if parity even (PF=1)

7B cb JPO rel8 Jump short if parity odd (PF=0)

78 cb JS rel8 Jump short if sign (SF=1)

74 cb JZ rel8 Jump short if zero (ZF = 1)

0F 87 cw/cd JA rel16/32 Jump near if above (CF=0 and ZF=0)

0F 83 cw/cd JAE rel16/32 Jump near if above or equal (CF=0)

0F 82 cw/cd JB rel16/32 Jump near if below (CF=1)

0F 86 cw/cd JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)

0F 82 cw/cd JC rel16/32 Jump near if carry (CF=1)

0F 84 cw/cd JE rel16/32 Jump near if equal (ZF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

0F 8F cw/cd JG rel16/32 Jump near if greater (ZF=0 and SF=OF)
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Jcc—Jump if Condition Is Met (Continued)

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, 
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to 
the target instruction specified by the destination operand. A condition code (cc) is 
associated with each instruction to indicate the condition being tested for. If the 
condition is not satisfied, the jump is not performed and execution continues with the 
instruction following the Jcc instruction. 

The target instruction is specified with a relative offset (a signed offset relative to the 
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16, 
or rel32) is generally specified as a label in assembly code, but at the machine code 
level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the 
instruction pointer. Instruction coding is most efficient for offsets of -128 to +127. If 
the operand-size attribute is 16, the upper two bytes of the EIP register are cleared to 
0s, resulting in a maximum instruction pointer size of 16 bits. 

The conditions for each Jcc mnemonic are given in the “Description” column of the 
above table. The terms “less” and “greater” are used for comparisons of signed integers 
and the terms “above” and “below” are used for unsigned integers.

Opcode Instruction Description

0F 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF)

0F 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)

0F 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)

0F 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)

0F 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)

0F 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)

0F 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)

0F 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)

0F 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)

0F 8E cw/cd JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF)

0F 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)

0F 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF)

0F 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=OF)

0F 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)

0F 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)

0F 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)

0F 85 cw/cd JNZ rel16/32 Jump near if not zero (ZF=0)

0F 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)

0F 8A cw/cd JP rel16/32 Jump near if parity (PF=1)

0F 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)

0F 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)

0F 88 cw/cd JS rel16/32 Jump near if sign (SF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)
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Jcc—Jump if Condition Is Met (Continued)

Because a particular state of the status flags can sometimes be interpreted in two 
ways, two mnemonics are defined for some opcodes. For example, the JA (jump if 
above) instruction and the JNBE (jump if not below or equal) instruction are alternate 
mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When 
the target for the conditional jump is in a different segment, use the opposite condition 
from the condition being tested for the Jcc instruction, and then access the target with 
an unconditional far jump (JMP instruction) to the other segment. For example, the 
following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do 
not check the status flags. Instead they check the contents of the ECX and CX registers, 
respectively, for 0. These instructions are useful at the beginning of a conditional loop 
that terminates with a conditional loop instruction (such as LOOPNE). They prevent 
entering the loop when the ECX or CX register is equal to 0, which would cause the loop 
to execute 232 or 64K times, respectively, instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines, 
regardless of jump address or cacheability.

Operation

IF condition
THEN

  EIP  EIP + SignExtend(DEST);
IF OperandSize = 16

THEN 
EIP  EIP AND 0000FFFFH;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
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Jcc—Jump if Condition Is Met (Continued)

Real Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment 
or is outside of the effective address space from 0 to FFFFH. This 
condition can occur if 32-address size override prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment 
or is outside of the effective address space from 0 to FFFFH. This 
condition can occur if 32-address size override prefix is used.
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JMP—Jump

Description

Transfers program control to a different point in the instruction stream without 
recording return information. The destination (target) operand specifies the address of 
the instruction being jumped to. This operand can be an immediate value, a 
general-purpose register, or a memory location.

• Near jump – A jump to an instruction within the current code segment (the 
segment currently pointed to by the CS register), sometimes referred to as an 
intrasegment call.

• Far jump – A jump to an instruction located in a different segment than the current 
code segment, sometimes referred to as an intersegment call.

• Task switch – A jump to an instruction located in a different task. (This is a form of 
a far jump.) Results in an IA-32_Intercept(Gate) in Itanium System 
Environment.

A task switch can only be executed in protected mode (see Chapter 6 in the Intel 
Architecture Software Developer’s Manual, Volume 3 for information on task switching 
with the JMP instruction).

When executing a near jump, the processor jumps to the address (within the current 
code segment) that is specified with the target operand. The target operand specifies 
either an absolute address (that is an offset from the base of the code segment) or a 
relative offset (a signed offset relative to the current value of the instruction pointer in 
the EIP register). An absolute address is specified directly in a register or indirectly in a 
memory location (r/m16 or r/m32 operand form). A relative offset (rel8, rel16, or 
rel32) is generally specified as a label in assembly code, but at the machine code level, 
it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the value 
in the EIP register (that is, to the instruction following the JMP instruction). The 
operand-size attribute determines the size of the target operand (16 or 32 bits) for 
absolute addresses. Absolute addresses are loaded directly into the EIP register. When 
a relative offset is specified, it is added to the value of the EIP register. If the 
operand-size attribute is 16, the upper two bytes of the EIP register are cleared to 0s, 
resulting in a maximum instruction pointer size of 16 bits. The CS register is not 
changed on near jumps.

Opcode Instruction Description

EB cb JMP rel8 Jump near, relative address

E9 cw JMP rel16 Jump near, relative address

E9 cd JMP rel32 Jump near, relative address

FF /4 JMP r/m16 Jump near, indirect address

FF /4 JMP r/m32 Jump near, indirect address

EA cd JMP ptr16:16 Jump far, absolute address

EA cp JMP ptr16:32 Jump far, absolute address

FF /5 JMP m16:16 Jump far, indirect address

FF /5 JMP m16:32 Jump far, indirect address
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JMP—Jump (Continued)

When executing a far jump, the processor jumps to the code segment and address 
specified with the target operand. Here the target operand specifies an absolute far 
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a 
memory location (m16:16 or m16:32). With the pointer method, the segment and 
address of the called procedure is encoded in the instruction using a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect 
method, the target operand specifies a memory location that contains a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute 
determines the size of the offset (16 or 32 bits) in the far address. The far address is 
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the 
upper two bytes of the EIP register are cleared to 0s.

When the processor is operating in protected mode, a far jump can also be used to 
access a code segment through a call gate or to switch tasks. Here, the processor uses 
the segment selector part of the far address to access the segment descriptor for the 
segment being jumped to. Depending on the value of the type and access rights 
information in the segment selector, the JMP instruction can perform:

• A far jump to a conforming or non-conforming code segment (same mechanism as 
the far jump described in the previous paragraph, except that the processor checks 
the access rights of the code segment being jumped to).

• An far jump through a call gate.

• A task switch. Results in an IA-32_Intercept(Gate) in Itanium System 
Environment.

The JMP instruction cannot be used to perform inter-privilege level jumps.

When executing an far jump through a call gate, the segment selector specified by the 
target operand identifies the call gate. (The offset part of the target operand is 
ignored.) The processor then jumps to the code segment specified in the call gate 
descriptor and begins executing the instruction at the offset specified in the gate. No 
stack switch occurs. Here again, the target operand can specify the far address of the 
call gate and instruction either directly with a pointer (ptr16:16 or ptr16:32) or 
indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction, is similar to executing a jump through 
a call gate. Here the target operand specifies the segment selector of the task gate for 
the task being switched to. (The offset part of the target operand is ignored). The task 
gate in turn points to the TSS for the task, which contains the segment selectors for the 
task’s code, data, and stack segments and the instruction pointer to the target 
instruction. One form of the JMP instruction allows the jump to be made directly to a 
TSS, without going through a task gate. See Chapter 13 in Intel Architecture Software 
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task 
switch.

All branches are converted to code fetches of one or two cache lines, regardless of jump 
address or cacheability.
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JMP—Jump (Continued)

Operation

IF near jump
THEN IF near relative jump

THEN
tempEIP  EIP + DEST; (* EIP is instruction following JMP instruction*)

ELSE (* near absolute jump *)
tempEIP  DEST;

FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN 
EIP  tempEIP; 

ELSE (* OperandSize=16 *)
EIP  tempEIP AND 0000FFFFH;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI:

IF far jump AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN

tempEIP  DEST(offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS  DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32

THEN
EIP  tempEIP; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
EIP  tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;
IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)

THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

OR segment selector in target operand null
THEN #GP(0);

FI;
IF segment selector index not within descriptor table limits

THEN #GP(new selector);
FI;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

ELSE 
#GP(segment selector);

FI;
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JMP—Jump (Continued)

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP  DEST(offset);
IF OperandSize=16 

THEN tempEIP  tempEIP AND 0000FFFFH; 
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS  DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  tempEIP;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL  CPL) THEN #GP(code segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP  DEST(offset);
IF OperandSize=16 

THEN tempEIP  tempEIP AND 0000FFFFH; 
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS  DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  tempEIP;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

CALL-GATE:

IF call gate DPL < CPL 
OR call gate DPL < call gate segment-selector RPL 

THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment

OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL  CPL

THEN #GP(code segment selector); FI;
IF code segment is not present THEN #NP(code-segment selector); FI;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP  DEST(offset);
IF GateSize=16 

THEN tempEIP  tempEIP AND 0000FFFFH; 
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS  DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  tempEIP;
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JMP—Jump (Continued)

END;

TASK-GATE:
IF task gate DPL < CPL 

OR task gate DPL < task gate segment-selector RPL 
THEN #GP(task gate selector); FI;

IF task gate not present THEN #NP(gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
IF TSS not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL 

OR TSS DPL < TSS segment-selector RPL 
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present THEN #NP(TSS selector); FI;
IF Itanium System Environment THENIA-32_Intercept(Gate,JMP);
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does 
not occur.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Gate Intercept for JMP through CALL Gates, Task Gates and Task 
Segments

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code 
segment limits.

If the segment selector in the destination operand, call gate, task 
gate, or TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.



4:248 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits. 

If the segment descriptor pointed to by the segment selector in the 
destination operand is not for a conforming-code segment, 
nonconforming-code segment, call gate, task gate, or task state 
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment 
selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is 
less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s 
segment selector.

If the segment descriptor for selector in a call gate does not indicate 
it is a code segment.

If the segment descriptor for the segment selector in a task gate 
does not indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not 
available.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3. (Only occurs 
when fetching target from memory.)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made. (Only occurs when fetching target from memory.)
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JMPE—Jump to Intel® Itanium® Instruction Set

Description

This instruction is available only on processors based on the Itanium architecture in the 
Itanium System Environment. Otherwise, execution of this instruction at privilege levels 
1, 2, and 3 results in an Illegal Opcode fault, and at privilege level 0, termination of the 
IA-32 System Environment on a processor based on the Itanium architecture.

JMPE switches the processor to the Itanium instruction set and starts execution at the 
specified target address There are two forms; an indirect form, r/mr16/32, and an 
unsigned absolute form, disp16/32. Both 16 and 32-bit formats are supported.

The absolute form computes the 16-byte aligned 64-bit virtual target address in the 
Itanium instruction set by adding the unsigned 16 or 32-bit displacement to the current 
CS base (IP{31:0} = disp16/32 + CSD.base). The indirect form specifies the virtual 
target address by the contents of a register or memory location (IP{31:0} = 
[r/m16/32] + CSD.base). Target addresses are constrained to the lower 4G-bytes of 
the 64-bit virtual address space within virtual region 0. 

GR[1] is loaded with the next sequential instruction address following JMPE. 

If PSR.di is 1, the instruction is nullified and a Disabled Instruction Set Transition fault is 
generated. If Itanium branch debugging is enabled, an IA_32_Exception(Debug) 
trap is taken after JMPE completes execution. 

JMPE can be performed at any privilege level and does not change the privilege level of 
the processor. 

JMPE performs a FWAIT operation, any pending IA-32 unmasked floating-point 
exceptions are reported as faults on the JMPE instruction. 

JMPE does not perform a memory fence or serialization operation.

Successful execution of JMPE clears EFLAG.rf and PSR.id to zero.

If the register stack engine is enabled for eager execution, the register stack engine 
may immediately start loading registers when the processor enters the Itanium 
instruction set.

Opcode Instruction Description

0F 00 /6 JMPE r/m16 Jump to Intel Itanium instruction set, indirect address specified by 
r/m16

0F 00 /6 JMPE r/m32 Jump to Intel Itanium instruction set, indirect address specified by 
r/m32

0F B8 JMPE disp16 Jump to Intel Itanium instruction set, absolute address specified by 
addr16

0F B8 JMPE disp32 Jump to Intel Itanium instruction set, absolute address specified by 
addr32
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JMPE—Jump to Intel® Itanium® Instruction Set (Continued)

Operation

IF(NOT Itanium System Environment) {
IF (PSR.cpl==0) Terminate_IA-32_System_Env();
ELSE IA_32_Exception(IllegalOpcode);

} ELSE IF(PSR.di==1) {

Disabled_Instruction_Set_Transition_Fault();

} ELSE IF(pending_numeric_exceptions()) {

IA_32_exception(FPError);

} ELSE {

IF(absolute_form) { //compute virtual target
IP{31:0} = disp16/32 + AR[CSD].base;//disp is 16/32-bit unsigned value

} ELSE IF(indirect_form) {

IP{31:0} = [r/m16/32] + AR[CSD].base;

} 

PSR.is = 0; //set Itanium Instruction Set bit

IP{3:0}= 0; //Force 16-byte alignment

IP{63:32} = 0; //zero extend from 32-bits to 64-bits

GR[1]{31:0} = EIP + AR[CSD].base; //next sequential instruction address

GR[1]{63:32} = 0;

PSR.id = EFLAG.rf = 0;

IF (PSR.tb) //taken branch trap
IA_32_Exception(Debug);

}

Flags Affected

None (other than EFLAG.rf)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Fault.

Disabled ISA Disabled Instruction Set Transition Fault, if PSR.di is 1

IA_32_Exception Floating-point Error, if any floating-point exceptions are pending

IA_32_Exception Taken Branch trap, if PSR.tb is 1.

IA-32 System Environment Exceptions (All Operating Modes)

#UD JMPE raises an invalid opcode exception at privilege levels 1, 2 and 
3. Privilege level 0 results in termination of the IA-32 System 
Environment on a processor based on the Itanium architecture.



Volume 4: Base IA-32 Instruction Reference 4:251

LAHF—Load Status Flags into AH Register

Description

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, 
and CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in 
the AH register as shown in the “Operation” below.

Operation

AH  EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected

None (that is, the state of the flags in the EFLAGS register are not affected).

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

9F LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)
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LAR—Load Access Rights Byte

Description

Loads the access rights from the segment descriptor specified by the second operand 
(source operand) into the first operand (destination operand) and sets the ZF flag in the 
EFLAGS register. The source operand (which can be a register or a memory location) 
contains the segment selector for the segment descriptor being accessed. The 
destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in 
the destination register, software can preform additional checks on the access rights 
information. 

When the operand size is 32 bits, the access rights for a segment descriptor comprise 
the type and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in 
the second doubleword (bytes 4 through 7) of the segment descriptor. The doubleword 
is masked by 00FXFF00H before it is loaded into the destination operand. When the 
operand size is 16 bits, the access rights comprise the type and DPL fields. Here, the 
two lower-order bytes of the doubleword are masked by FF00H before being loaded into 
the destination operand.

This instruction performs the following checks before it loads the access rights in the 
destination register: 

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of 
the GDT or LDT being accessed.

• Checks that the descriptor type is valid for this instruction. All code and data 
segment descriptors are valid for (can be accessed with) the LAR instruction. The 
valid system segment and gate descriptor types are given in the following table. 

• If the segment is not a conforming code segment, it checks that the specified 
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the 
segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, 
the ZF flag is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Opcode Instruction Description

0F 02 /r LAR r16,r/m16 r16  r/m16 masked by FF00H

0F 02 /r LAR r32,r/m32 r32  r/m32 masked by 00FxFF00H
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LAR—Load Access Rights Byte (Continued)

Operation
IF SRC(Offset) > descriptor table limit THEN ZF  0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF  0

ELSE
IF OperandSize = 32

THEN
DEST  [SRC] AND 00FxFF00H;

ELSE (*OperandSize = 16*)
DEST  [SRC] AND FF00H;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is 
cleared to 0.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Table 2-15. LAR Descriptor Validity

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate Yes

5 16-bit/32-bit task gate Yes

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate Yes

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No
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LAR—Load Access Rights Byte (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3. (Only occurs 
when fetching target from memory.)

Real Address Mode Exceptions

#UD The LAR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LAR instruction cannot be executed in virtual 8086 mode.
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LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description

Load a far pointer (segment selector and offset) from the second operand (source 
operand) into a segment register and the first operand (destination operand). The 
source operand specifies a 48-bit or a 32-bit pointer in memory depending on the 
current setting of the operand-size attribute (32 bits or 16 bits, respectively). The 
instruction opcode and the destination operand specify a segment 
register/general-purpose register pair. The 16-bit segment selector from the source 
operand is loaded into the segment register implied with the opcode (DS, SS, ES, FS, or 
GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination 
operand.

If one of these instructions is executed in protected mode, additional information from 
the segment descriptor pointed to by the segment selector in the source operand is 
loaded in the hidden part of the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into 
DS, ES, FS, or GS registers without causing a protection exception. (Any subsequent 
reference to a segment whose corresponding segment register is loaded with a null 
selector, causes a general-protection exception (#GP) and no memory reference to the 
segment occurs.)

Operation

IF ProtectedMode
THEN IF SS is loaded 

THEN IF SegementSelector = null
THEN #GP(0); 

FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL  CPL
OR Access rights indicate nonwritable data segment
OR DPL  CPL

THEN #GP(selector);
FI;
ELSE IF Segment marked not present

THEN #SS(selector);
FI;
SS  SegmentSelector(SRC);

Opcode Instruction Description

C5 /r LDS r16,m16:16 Load DS:r16 with far pointer from memory

C5 /r LDS r32,m16:32 Load DS:r32 with far pointer from memory

0F B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory

0F B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory

C4 /r LES r16,m16:16 Load ES:r16 with far pointer from memory

C4 /r LES r32,m16:32 Load ES:r32 with far pointer from memory

0F B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory

0F B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory

0F B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory

0F B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory



4:256 Volume 4: Base IA-32 Instruction Reference

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

SS  SegmentDescriptor([SRC]);
ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector

THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment 

AND both RPL and CPL > DPL)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #NP(selector);
FI;
SegmentRegister  SegmentSelector(SRC) AND RPL;
SegmentRegister  SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister  NullSelector;
SegmentRegister(DescriptorValidBit)  0; (*hidden flag; not accessible by software*)

FI;
FI;
IF (Real-Address or Virtual 8086 Mode)

THEN
SS  SegmentSelector(SRC);

FI;
DEST  Offset(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true: 
the segment selector index is not within the descriptor table limits, 
the segment selector RPL is not equal to CPL, the segment is a 
nonwritable data segment, or DPL is not equal to CPL.
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LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

If the DS, ES, FS, or GS register is being loaded with a non-null 
segment selector and any of the following is true: the segment 
selector index is not within descriptor table limits, the segment is 
neither a data nor a readable code segment, or the segment is a 
data or nonconforming-code segment and both RPL and CPL are 
greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#SS(selector) If the SS register is being loaded and the segment is marked not 
present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment 
selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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LEA—Load Effective Address

Description

Computes the effective address of the second operand (the source operand) and stores 
it in the first operand (destination operand). The source operand is a memory address 
(offset part) specified with one of the processors addressing modes; the destination 
operand is a general-purpose register. The address-size and operand-size attributes 
affect the action performed by this instruction, as shown in the following table. The 
operand-size attribute of the instruction is determined by the chosen register; the 
address-size attribute is determined by the attribute of the code segment.

Different assemblers may use different algorithms based on the size attribute and 
symbolic reference of the source operand.

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN

DEST  EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 AND AddressSize = 32

THEN
temp  EffectiveAddress(SRC); (* 32-bit address *)
DEST  temp[0..15]; (* 16-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 16
THEN

temp  EffectiveAddress(SRC); (* 16-bit address *)
DEST  ZeroExtend(temp); (* 32-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 32
THEN 

DEST  EffectiveAddress(SRC); (* 32-bit address *)
FI;

FI;

Opcode Instruction Description

8D /r LEA r16,m Store effective address for m in register r16

8D /r LEA r32,m Store effective address for m in register r32

Table 2-16. LEA Address and Operand Sizes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested 16-bit 
register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the address 
are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is 
zero-extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested 
32-bit register destination.
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LEA—Load Effective Address (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.
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LEAVE—High Level Procedure Exit

Description

Executes a return from a procedure or group of nested procedures established by an 
earlier ENTER instruction. The instruction copies the frame pointer (in the EBP register) 
into the stack pointer register (ESP), releasing the stack space used by a procedure for 
its local variables. The old frame pointer (the frame pointer for the calling procedure 
that issued the ENTER instruction) is then popped from the stack into the EBP register, 
restoring the calling procedure’s frame. 

A RET instruction is commonly executed following a LEAVE instruction to return 
program control to the calling procedure and remove any arguments pushed onto the 
stack by the procedure being returned from.

Operation

IF StackAddressSize = 32
THEN

ESP  EBP;
ELSE (* StackAddressSize = 16*)

SP  BP;
FI;
IF OperandSize = 32

THEN
EBP  Pop();

ELSE (* OperandSize = 16*)
BP  Pop();

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of 
the current stack segment.

Opcode Instruction Description

C9 LEAVE Set SP to BP, then pop BP

C9 LEAVE Set ESP to EBP, then pop EBP
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LEAVE—High Level Procedure Exit (Continued)

Real Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective 
address space from 0 to 0FFFFH.

Virtual 8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective 
address space from 0 to 0FFFFH.
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LES—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.
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LFS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.
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LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Description

Loads the values in the source operand into the global descriptor table register (GDTR) 
or the interrupt descriptor table register (IDTR). The source operand is a pointer to 6 
bytes of data in memory that contains the base address (a linear address) and the limit 
(size of table in bytes) of the global descriptor table (GDT) or the interrupt descriptor 
table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 bytes of the 
6-byte data operand) and a 32-bit base address (upper 4 bytes of the data operand) 
are loaded into the register. If the operand-size attribute is 16 bits, a 16-bit limit (lower 
2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, the 
high-order byte of the operand is not used and the high-order byte of the base address 
in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are 
not used in application programs. They are the only instructions that directly load a 
linear address (that is, not a segment-relative address) and a limit in protected mode. 
They are commonly executed in real-address mode to allow processor initialization prior 
to switching to protected mode.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,LGDT/LIDT);

IF instruction is LIDT
THEN

IF OperandSize = 16
THEN 

IDTR(Limit)  SRC[0:15];
IDTR(Base)  SRC[16:47] AND 00FFFFFFH; 

ELSE (* 32-bit Operand Size *)
IDTR(Limit)  SRC[0:15];
IDTR(Base)  SRC[16:47]; 

FI;
ELSE (* instruction is LGDT *)

IF OperandSize = 16
THEN 

GDTR(Limit)  SRC[0:15];
GDTR(Base)  SRC[16:47] AND 00FFFFFFH; 

ELSE (* 32-bit Operand Size *)
GDTR(Limit)  SRC[0:15];
GDTR(Base)  SRC[16:47]; 

FI;
FI;

Flags Affected

None.

Opcode Instruction Description

0F 01 /2 LGDT m16&32 Load m into GDTR

0F 01 /3 LIDT m16&32 Load m into IDTR
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LGDT/LIDT—Load Global/Interrupt Descriptor Table Register (Continued)

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept for LIDT and LGDT

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.
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LGS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.
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LLDT—Load Local Descriptor Table Register

Description

Loads the source operand into the segment selector field of the local descriptor table 
register (LDTR). The source operand (a general-purpose register or a memory location) 
contains a segment selector that points to a local descriptor table (LDT). After the 
segment selector is loaded in the LDTR, the processor uses to segment selector to 
locate the segment descriptor for the LDT in the global descriptor table (GDT). It then 
loads the segment limit and base address for the LDT from the segment descriptor into 
the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not affected by this 
instruction, nor is the LDTR field in the task state segment (TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors 
in the LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general 
protection exception (#GP).

The operand-size attribute has no effect on this instruction. 

The LLDT instruction is provided for use in operating-system software; it should not be 
used in application programs. Also, this instruction can only be executed in protected 
mode.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LLDT);

IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI;
Read segment descriptor;
IF SegmentDescriptor(Type) LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector)  SRC;
LDTR(SegmentDescriptor)  GDTSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

0F 00 /2 LLDT r/m16 Load segment selector r/m16 into LDTR
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LLDT—Load Local Descriptor Table Register (Continued)

#GP(selector) If the selector operand does not point into the Global Descriptor 
Table or if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LLDT instruction is recognized in virtual 8086 mode.
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LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global Descriptor Table Register/Load Interrupt 
Descriptor Table Register. 
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LMSW—Load Machine Status Word

Description

Loads the source operand into the machine status word, bits 0 through 15 of register 
CR0. The source operand can be a 16-bit general-purpose register or a memory 
location. Only the low-order 4 bits of the source operand (which contains the PE, MP, 
EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of 
CR0 are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the 
processor to switch to protected mode. The PE flag in the CR0 register is a sticky bit. 
Once set to 1, the LMSW instruction cannot be used clear this flag and force a switch 
back to real address mode.

The LMSW instruction is provided for use in operating-system software; it should not be 
used in application programs. In protected or virtual 8086 mode, it can only be 
executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and 
procedures intended to run on processors more recent than the Intel 286 should use 
the MOV (control registers) instruction to load the machine status word.

This instruction is a serializing instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LMSW);

CR0[0:3]  SRC[0:3];

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CR0
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LMSW—Load Machine Status Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.
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LOCK—Assert LOCK# Signal Prefix

Description

Causes the processor’s LOCK# signal to be asserted during execution of the 
accompanying instruction (turns the instruction into an atomic instruction). In a 
multiprocessor environment, the LOCK# signal insures that the processor has exclusive 
use of any shared memory while the signal is asserted.

The LOCK prefix can be prepended only to the following instructions and to those forms 
of the instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS, 
CMPXCHG, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined 
opcode exception will be generated if the LOCK prefix is used with any other instruction. 
The XCHG instruction always asserts the LOCK# signal regardless of the presence or 
absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a 
read-modify-write operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. 
Memory locking is observed for arbitrarily misaligned fields.

Operation
IF Itanium System Environment AND External_Bus_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK);

AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to 
complete this operation and DCR.lc is 1, no atomic transaction 
occurs, the instruction is faulted and an IA-32_Intercept(Lock) fault 
is generated. The software lock handler is responsible for the 
emulation of the instruction.

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the 
“Description” section above. Other exceptions can be generated by 
the instruction that the LOCK prefix is being applied to.

Opcode Instruction Description

F0 LOCK Asserts LOCK# signal for duration of the accompanying 
instruction
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LOCK—Assert LOCK# Signal Prefix (Continued)

Real Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the 
“Description” section above. Other exceptions can be generated by 
the instruction that the LOCK prefix is being applied to.

Virtual 8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the 
“Description” section above. Other exceptions can be generated by 
the instruction that the LOCK prefix is being applied to.
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LODS/LODSB/LODSW/LODSD—Load String Operand

Description

Load a byte, word, or doubleword from the source operand into the AL, AX, or EAX 
register, respectively. The source operand is a memory location at the address DS:ESI. 
(When the operand-size attribute is 16, the SI register is used as the source-index 
register.) The DS segment may be overridden with a segment override prefix.

The LODSB, LODSW, and LODSD mnemonics are synonyms of the byte, word, and 
doubleword versions of the LODS instructions. (For the LODS instruction, “DS:ESI” 
must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location into the AL, 
AX, or EAX register, the ESI register is incremented or decremented automatically 
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the 
ESI register is incremented; if the DF flag is 1, the ESI register is decremented.) The 
ESI register is incremented or decremented by 1 for byte operations, by 2 for word 
operations, or by 4 for doubleword operations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix 
for block loads of ECX bytes, words, or doublewords. More often, however, these 
instructions are used within a LOOP construct, because further processing of the data 
moved into the register is  usually necessary before the next transfer can be made. See 
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337 for a 
description of the REP prefix.

Operation

IF (byte load)
THEN

AL  SRC; (* byte load *)
THEN IF DF = 0

THEN (E)SI  1; 
ELSE (E)SI  -1; 

FI;
ELSE IF (word load)

THEN
AX  SRC; (* word load *)

THEN IF DF = 0
THEN SI  2; 
ELSE SI  -2; 

FI;
ELSE (* doubleword transfer *)

EAX  SRC; (* doubleword load *)

Opcode Instruction Description

AC LODS DS:(E)SI Load byte at address DS:(E)SI into AL

AD LODS DS:SI Load word at address DS:SI into AX

AD LODS DS:ESI Load doubleword at address DS:ESI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:SI into AX

AD LODSD Load doubleword at address DS:ESI into EAX
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LODS/LODSB/LODSW/LODSD—Load String Operand (Continued)

THEN IF DF = 0
THEN ESI  4; 
ELSE ESI  -4; 

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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LOOP/LOOPcc—Loop According to ECX Counter

Description

Performs a loop operation using the ECX or CX register as a counter. Each time the 
LOOP instruction is executed, the count register is decremented, then checked for 0. If 
the count is 0, the loop is terminated and program execution continues with the 
instruction following the LOOP instruction. If the count is not zero, a near jump is 
performed to the destination (target) operand, which is presumably the instruction at 
the beginning of the loop. If the address-size attribute is 32 bits, the ECX register is 
used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the 
current value of the instruction pointer in the EIP register). This offset is generally 
specified as a label in assembly code, but at the machine code level, it is encoded as a 
signed, 8-bit immediate value, which is added to the instruction pointer. Offsets of -128 
to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for 
terminating the loop before the count reaches zero. With these forms of the instruction, 
a condition code (cc) is associated with each instruction to indicate the condition being 
tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF flag; 
the ZF flag is changed by other instructions in the loop.

All branches are converted to code fetches of one or two cache lines, regardless of jump 
address or cacheability.

Operation

IF AddressSize = 32
THEN 

Count is ECX; 
ELSE (* AddressSize = 16 *) 

Count is CX;
FI;
Count  Count - 1;

IF instruction is not LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN 

IF (ZF =1) AND (Count  0)
THEN BranchCond  1;
ELSE BranchCond  0;

FI;
FI;

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count  0

E1 cb LOOPE rel8 Decrement count; jump short if count  0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count  0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count  0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count  0 and ZF=0
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LOOP/LOOPcc—Loop According to ECX Counter (Continued)

IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
THEN 

IF (ZF =0 ) AND (Count  0)
THEN BranchCond  1;
ELSE BranchCond  0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count  0)

THEN BranchCond  1;
ELSE BranchCond  0;

FI;
FI;
IF BranchCond = 1

THEN
  EIP  EIP + SignExtend(DEST);

IF OperandSize = 16
THEN 

EIP  EIP AND 0000FFFFH;
FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

ELSE
Terminate loop and continue program execution at EIP;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.
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LSL—Load Segment Limit

Description

Loads the unscrambled segment limit from the segment descriptor specified with the 
second operand (source operand) into the first operand (destination operand) and sets 
the ZF flag in the EFLAGS register. The source operand (which can be a register or a 
memory location) contains the segment selector for the segment descriptor being 
accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in 
the destination register, software can compare the segment limit with the offset of a 
pointer. 

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of 
byte 6 of the segment descriptor. If the descriptor has a byte granular segment limit 
(the granularity flag is set to 0), the destination operand is loaded with a byte granular 
value (byte limit). If the descriptor has a page granular segment limit (the granularity 
flag is set to 1), the LSL instruction will translate the page granular limit (page limit) 
into a byte limit before loading it into the destination operand. The translation is 
performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-order 12 bits 
with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination 
operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however, 
the upper 16 bits are truncated and only the low-order 16 bits are loaded into the 
destination operand.

This instruction performs the following checks before it loads the segment limit into the 
destination register: 

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of 
the GDT or LDT being accessed.

• Checks that the descriptor type is valid for this instruction. All code and data 
segment descriptors are valid for (can be accessed with) the LSL instruction. The 
valid special segment and gate descriptor types are given in the following table. 

• If the segment is not a conforming code segment, the instruction checks that the 
specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL of 
the segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, 
the ZF flag is cleared and no value is loaded in the destination operand.

Opcode Instruction Description

0F 03 /r LSL r16,r/m16 Load: r16  segment limit, selector r/m16

0F 03 /r LSL r32,r/m32 Load: r32  segment limit, selector r/m32)
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LSL—Load Segment Limit (Continued)

Operation
IF SRC(Offset) > descriptor table limit

THEN ZF  0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF  0

ELSE
temp SegmentLimit([SRC]);
IF (G = 1)

THEN
temp ShiftLeft(12, temp) OR 00000FFFH;

FI;
IF OperandSize = 32

THEN
DEST  temp;

ELSE (*OperandSize = 16*)
DEST  temp AND FFFFH;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared 
to 0.

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate No

5 16-bit/32-bit task gate No

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate No

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No
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LSL—Load Segment Limit (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The LSL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD  The LSL instruction is not recognized in virtual 8086 mode.
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LSS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.
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LTR—Load Task Register

Description

Loads the source operand into the segment selector field of the task register. The 
source operand (a general-purpose register or a memory location) contains a segment 
selector that points to a task state segment (TSS). After the segment selector is loaded 
in the task register, the processor uses to segment selector to locate the segment 
descriptor for the TSS in the global descriptor table (GDT). It then loads the segment 
limit and base address for the TSS from the segment descriptor into the task register. 
The task pointed to by the task register is marked busy, but a switch to the task does 
not occur.

The LTR instruction is provided for use in operating-system software; it should not be 
used in application programs. It can only be executed in protected mode when the CPL 
is 0. It is commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction. 

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LTR);
IF SRC(Offset) > descriptor table limit OR IF SRC(type) global

THEN #GP(segment selector); 
FI;
Reat segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy)  1; 
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector)  SRC;
TaskRegister(SegmentDescriptor)  TSSSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

Opcode Instruction Description

0F 00 /3 LTR r/m16 Load r/m16 into TR
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LTR—Load Task Register (Continued)

#GP(selector) If the source selector points to a segment that is not a TSS or to one 
for a task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LTR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD  The LTR instruction is not recognized in virtual 8086 mode.
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MOV—Move

Notes:
*The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where 8, 16, 

and 32 refer to the size of the data. The address-size attribute of the instruction determines the size of the 
offset, either 16 or 32 bits.

**In 32-bit mode, the assembler may require the use of the 16-bit operand size prefix (a byte with the value 66H 
preceding the instruction).

Description

Copies the second operand (source operand) to the first operand (destination operand). 
The source operand can be an immediate value, general-purpose register, segment 
register, or memory location; the destination register can be a general-purpose register, 
segment register, or memory location. Both operands must be the same size, which can 
be a byte, a word, or a doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results 
in an invalid opcode exception (#UD). To load the CS register, use the RET instruction.

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to r/m8

89 /r MOV r/m16,r16 Move r16 to r/m16

89 /r MOV r/m32,r32 Move r32 to r/m32

8A /r MOV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16 to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8C /r MOV r/m16,Sreg** Move segment register to r/m16

8E /r MOV Sreg,r/m16 Move r/m16 to segment register

A0 MOV AL,moffs8* Move byte at (seg:offset) to AL

A1 MOV AX,moffs16* Move word at (seg:offset) to AX

A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX

A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

B0+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16 to r16

B8+ rd MOV r32,imm32 Move imm32 to r32

C6 /0 MOV r/m8,imm8 Move imm8 to r/m8

C7 /0 MOV r/m16,imm16 Move imm16 to r/m16

C7 /0 MOV r/m32,imm32 Move imm32 to r/m32
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MOV—Move (Continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source 
operand must be a valid segment selector. In protected mode, moving a segment 
selector into a segment register automatically causes the segment descriptor 
information associated with that segment selector to be loaded into the hidden 
(shadow) part of the segment register. While loading this information, the segment 
selector and segment descriptor information is validated (see the “Operation” algorithm 
below). The segment descriptor data is obtained from the GDT or LDT entry for the 
specified segment selector. 

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS 
registers without causing a protection exception. However, any subsequent attempt to 
reference a segment whose corresponding segment register is loaded with a null value 
causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all external interrupts 
and traps until after the execution of the next instruction in the IA-32 System 
Environment. For the Itanium System Environment, MOV to SS results in a 
IA-32_Intercept(SystemFlag) trap after the instruction completes. This 
operation allows a stack pointer to be loaded into the ESP register with the next 
instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS 
instruction offers a more efficient method of loading the SS and ESP registers.

When moving data in 32-bit mode between a segment register and a 32-bit 
general-purpose register, the Pentium Pro processor does not require the use of a 
16-bit operand size prefix; however, some assemblers do require this prefix. The 
processor assumes that the sixteen least-significant bits of the general-purpose register 
are the destination or source operand. When moving a value from a segment selector 
to a 32-bit register, the processor fills the two high-order bytes of the register with 
zeros.

Operation
DEST SRC;

Loading a segment register while in protected mode results in special checks and 
actions, as described in the following listing. These checks are performed on the 
segment selector and the segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null 
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits 

OR segment selector's RPL  CPL 
OR segment is not a writable data segment
OR DPL  CPL

THEN #GP(selector);
FI;
IF segment not marked present 

THEN #SS(selector);
ELSE
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MOV—Move (Continued)

SS segment selector;
SS segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister segment selector;
SegmentRegister segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister null segment selector;
SegmentRegister null segment descriptor;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept trap for Move to SS
Itanium Reg Faults  NaT Register Consumption Abort.
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.
If the destination operand is in a nonwritable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL and 
the segment descriptor’s DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a 
nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment 
pointed to is not a data or readable code segment.
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MOV—Move (Continued)

If the DS, ES, FS, or GS register is being loaded and the segment 
pointed to is a data or nonconforming code segment, but both the 
RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment 
pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

#UD If attempt is made to load the CS register.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

#UD If attempt is made to load the CS register.
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MOV—Move to/from Control Registers

Description

Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose 
register or vice versa. The operand size for these instructions is always 32 bits, 
regardless of the operand-size attribute. (See the Intel Architecture Software 
Developer’s Manual, Volume 3 for a detailed description of the flags and fields in the 
control registers.)

When loading a control register, a program should not attempt to change any of the 
reserved bits; that is, always set reserved bits to the value previously read. 

At the opcode level, the reg field within the ModR/M byte specifies which of the control 
registers is loaded or read. The 2 bits in the mod field are always 11B. The r/m field 
specifies the general-purpose register loaded or read.

These instructions have the following side effects:

• When writing to control register CR3, all non-global TLB entries are flushed (see the 
Intel Architecture Software Developer’s Manual, Volume 3.

• When modifying any of the paging flags in the control registers (PE and PG in 
register CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, 
including global entries. This operation is implementation specific for the Pentium 
Pro processor. Software should not depend on this functionality in future Intel 
architecture processors.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 
(to enable the physical address extension mode), the pointers (PDPTRs) in the 
page-directory pointers table will be loaded into the processor (into internal, 
non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 
will cause the PDPTRs to be reloaded into the processor. 

• If the PAE flag is set to 1 and control register CR0 is written to set the PG flag, the 
PDPTRs are reloaded into the processor.

Operation

IF Itanium System Environment AND Move To CR Form THEN IA-32_Intercept(INST,MOVCR);

DEST  SRC;

Opcode Instruction Description

0F 22 /r MOV CR0,r32 Move r32 to CR0

0F 22 /r MOV CR2,r32 Move r32 to CR2

0F 22 /r MOV CR3,r32 Move r32 to CR3

0F 22 /r MOV CR4,r32 Move r32 to CR4

0F 20 /r MOV r32,CR0 Move CR0 to r32

0F 20 /r MOV r32,CR2 Move CR2 to r32

0F 20 /r MOV r32,CR3 Move CR3 to r32

0F 20 /r MOV r32,CR4 Move CR4 to r32
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MOV—Move to/from Control Registers (Continued)

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

IA-32_Intercept Move To CR#, Mandatory Instruction Intercept.

Move From CR#, read the virtualized control register values, 
CR0{15:6} return zeros.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write reserved bits in the page-directory 
pointers table (used in the extended physical addressing mode) 
when the PAE flag in control register CR4 and the PG flag in control 
register CR0 are set to 1.

Real Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

Virtual 8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual 8086 mode.
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MOV—Move to/from Debug Registers

Description

Moves the contents of two or more debug registers (DR0 through DR3, DR4 and DR5, 
or DR6 and DR7) to a general-purpose register or vice versa. The operand size for these 
instructions is always 32 bits, regardless of the operand-size attribute. (See the Intel 
Architecture Software Developer’s Manual, Volume 3 for a detailed description of the 
flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate 
on debug registers in a manner that is compatible with Intel386™ and Intel486 
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7, 
respectively. When the DE set in CR4 is set, attempts to reference DR4 and DR5 result 
in an undefined opcode (#UD) exception.

At the opcode level, the reg field within the ModR/M byte specifies which of the debug 
registers is loaded or read. The two bits in the mod field are always 11. The r/m field 
specifies the general-purpose register loaded or read.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,MOVDR);

IF ((DE = 1)  and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE 

DEST  SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction 
is executed involving DR4 or DR5.

Opcode Instruction Description

0F 21/r MOV r32, DR0-DR3 Move debug registers to r32 

0F 21/r MOV r32, DR4-DR5 Move debug registers to r32 

0F 21/r MOV r32, DR6-DR7 Move debug registers to r32 

0F 23 /r MOV DR0-DR3, r32 Move r32 to debug registers

0F 23 /r MOV DR4-DR5, r32 Move r32 to debug registers

0F 23 /r MOV DR6-DR7,r32 Move r32 to debug registers
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MOV—Move to/from Debug Registers (Continued)

#DB If any debug register is accessed while the GD flag in debug register 
DR7 is set.

Real Address Mode Exceptions

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction 
is executed involving DR4 or DR5. 

#DB If any debug register is accessed while the GD flag in debug register 
DR7 is set.

Virtual 8086 Mode Exceptions

#GP(0) The debug registers cannot be loaded or read when in virtual 8086 
mode.
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MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Description

Moves the byte, word, or doubleword specified with the second operand (source 
operand) to the location specified with the first operand (destination operand). The 
source operand specifies the memory location at the address DS:ESI and the 
destination operand specifies the memory location at address ES:EDI. (When the 
operand-size attribute is 16, the SI and DI register are used as the source-index and 
destination-index registers, respectively.) The DS segment may be overridden with a 
segment override prefix, but the ES segment cannot be overridden.

The MOVSB, MOVSW, and MOVSD mnemonics are synonyms of the byte, word, and 
doubleword versions of the MOVS instructions. They are simpler to use, but provide no 
type or segment checking. (For the MOVS instruction, “DS:ESI” and “ES:EDI” must be 
explicitly specified in the instruction.)

After the transfer, the ESI and EDI registers are incremented or decremented 
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF 
flag is 0, the ESI and EDI register are incremented; if the DF flag is 1, the ESI and EDI 
registers are decremented.) The registers are incremented or decremented by 1 for 
byte operations, by 2 for word operations, or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP 
prefix (see “REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation” on 
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337) for 
block moves of ECX bytes, words, or doublewords.

Operation

DEST SRC;
IF (byte move)

THEN IF DF = 0
THEN (E)DI  1; 
ELSE (E)DI  -1; 

FI;
ELSE IF (word move)

THEN IF DF = 0
THEN DI  2; 
ELSE DI  -2; 

Opcode Instruction Description

A4 MOVS ES:(E)DI, DS:(E)SI Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVS ES:DI,DS:SI Move word at address DS:SI to address ES:DI

A5 MOVS ES:EDI, DS:ESI Move doubleword at address DS:ESI to address ES:EDI

A4 MOVSB Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVSW Move word at address DS:SI to address ES:DI

A5 MOVSD Move doubleword at address DS:ESI to address ES:EDI
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MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String 
(Continued)

FI;
ELSE (* doubleword move*)

THEN IF DF = 0
THEN EDI  4; 
ELSE EDI  -4; 

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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MOVSX—Move with Sign-Extension

Description

Copies the contents of the source operand (register or memory location) to the 
destination operand (register) and sign extends the value to 16 or 32 bits. The size of 
the converted value depends on the operand-size attribute.

Operation

DEST  SignExtend(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F BE /r MOVSX r16,r/m8 Move byte to word with sign-extension

0F BE /r MOVSX r32,r/m8 Move byte to doubleword, sign-extension

0F BF /r MOVSX r32,r/m16 Move word to doubleword, sign-extension
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MOVZX—Move with Zero-Extend

Description

Copies the contents of the source operand (register or memory location) to the 
destination operand (register) and sign extends the value to 16 or 32 bits. The size of 
the converted value depends on the operand-size attribute.

Copies the contents of the source operand (register or memory location) to the 
destination operand (register) and zero extends the value to 16 or 32 bits. The size of 
the converted value depends on the operand-size attribute.

Operation

DEST  ZeroExtend(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Opcode Instruction Description

0F B6 /r MOVZX r16,r/m8 Move byte to word with zero-extension

0F B6 /r MOVZX r32,r/m8 Move byte to doubleword, zero-extension

0F B7 /r MOVZX r32,r/m16 Move word to doubleword, zero-extension
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MOVZX—Move with Zero-Extend (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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MUL—Unsigned Multiplication of AL, AX, or EAX

Description

Performs an unsigned multiplication of the first operand (destination operand) and the 
second operand (source operand) and stores the result in the destination operand. The 
destination operand is an implied operand located in register AL, AX or EAX (depending 
on the size of the operand); the source operand is located in a general-purpose register 
or a memory location. The action of this instruction and the location of the result 
depends on the opcode and the operand size as shown in the following table.

:

The AH, DX, or EDX registers (depending on the operand size) contain the high-order 
bits of the product. If the contents of one of these registers are 0, the CF and OF flags 
are cleared; otherwise, the flags are set.

Operation

IF byte operation
THEN 

AX  AL  SRC
ELSE (* word or doubleword operation *)

IF OperandSize = 16
THEN 

DX:AX  AX  SRC
ELSE (* OperandSize = 32 *)

EDX:EAX  EAX  SRC
FI;

FI;

Flags Affected

The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they 
are set to 1. The SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX  AL  r/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX  AX  r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX  EAX  r/m32)

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX
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MUL—Unsigned Multiplication of AL, AX, or EAX (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement. The 
destination operand is located in a general-purpose register or a memory location.

Operation

IF DEST = 0 
THEN CF  0 
ELSE CF  1; 

FI;
DEST  - (DEST)

Flags Affected

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, 
ZF, AF, and PF flags are set according to the result. 

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate r/m8

F7 /3 NEG r/m16 Two's complement negate r/m16

F7 /3 NEG r/m32 Two's complement negate r/m32
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NEG—Two's Complement Negation (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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NOP—No Operation

Description

Performs no operation. This instruction is a one-byte instruction that takes up space in 
the instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction performs no operation, no registers are accessed and no 
faults are generated.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

90 NOP No operation
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NOT—One's Complement Negation

Description

Performs a bitwise NOT operation (1’s complement) on the destination operand and 
stores the result in the destination operand location. The destination operand can be a 
register or a memory location.

Operation

DEST  NOT DEST;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Opcode Instruction Description

F6 /2 NOT r/m8 Reverse each bit of r/m8

F7 /2 NOT r/m16 Reverse each bit of r/m16

F7 /2 NOT r/m32 Reverse each bit of r/m32
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NOT—One's Complement Negation (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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OR—Logical Inclusive OR

Description

Performs a bitwise OR operation on the destination (first) and source (second) 
operands and stores the result in the destination operand location. The source operand 
can be an immediate, a register, or a memory location; the destination operand can be 
a register or a memory location.

Operation

DEST  DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. 
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0C ib OR AL,imm8 AL OR imm8

0D iw OR AX,imm16 AX OR imm16

0D id OR EAX,imm32 EAXOR imm32

80 /1 ib OR r/m8,imm8 r/m8 OR imm8

81 /1 iw OR r/m16,imm16  r/m16 OR imm16

81 /1 id OR r/m32,imm32  r/m32 OR imm32

83 /1 ib OR r/m16,imm8 r/m16 OR imm8

83 /1 ib OR r/m32,imm8 r/m32 OR imm8

08 /r OR r/m8,r8 r/m8 OR r8

09 /r OR r/m16,r16 r/m16 OR r16

09 /r OR r/m32,r32 r/m32 OR r32

0A /r OR r8,r/m8 r8 OR r/m8

0B /r OR r16,r/m16 r16 OR r/m16

0B /r OR r32,r/m32 r32 OR r/m32
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OR—Logical Inclusive OR (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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OUT—Output to Port

Description

Copies the value from the second operand (source operand) to the I/O port specified 
with the destination operand (first operand). The source operand can be register AL, 
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, 
respectively); the destination operand can be a byte-immediate or the DX register. 
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the 
DX register as a source operand allows I/O ports from 0 to 65,535 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing 
a 16- and 32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. 
Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O 
address space. 

I/O transactions are performed after all prior data memory operations. No 
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the 
64-bit virtual address pointed to by the IOBase register, with four ports per 
4K-byte virtual page. Operating systems can utilize TLBs in the Itanium 
architecture to grant or deny permission to any four I/O ports. The I/O port 
space can be mapped into any arbitrary 64-bit physical memory location by 
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for 
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted 
regardless of the state of the TSS I/O permission bitmap (the bitmap is not 
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via 
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a 
GPFault is generated on the referencing OUT instruction. 

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE ( * Real-address mode or protected mode with CPL  IOPL *)

Opcode Instruction Description

E6 ib OUT imm8, AL Output byte AL to imm8 I/O port address

E7 ib OUT imm8, AX Output word AX to imm8 I/O port address

E7 ib OUT imm8, EAX Output doubleword EAX to imm8 I/O port address

EE OUT DX, AL Output byte AL to I/O port address in DX

EF OUT DX, AX Output word AX to I/O port address in DX

EF OUT DX, EAX Output doubleword EAX to I/O port address in DX
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OUT—Output to Port (Continued)

(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)
FI;
IF (Itanium_System_Environment) THEN

DEST_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
DEST_PA = translate(DEST_VA);
[DEST_PA]  SRC; (* Writes to selected I/O port *)

FI;

memory_fence();
[DEST_PA]  SRC; (* Writes to selected I/O port *)
memory_fence();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is 
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level 
(IOPL) and any of the corresponding I/O permission bits in TSS for 
the I/O port being accessed is 1 and when CFLG.io is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 
accessed is 1.
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OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Description

Copies data from the second operand (source operand) to the I/O port specified with 
the first operand (destination operand). The source operand is a memory location at the 
address DS:ESI. (When the operand-size attribute is 16, the SI register is used as the 
source-index register.) The DS register may be overridden with a segment override 
prefix.

The destination operand must be the DX register, allowing I/O port addresses from 0 to 
65,535 to be accessed. When accessing an 8-bit I/O port, the opcode determines the 
port size; when accessing a 16- and 32-bit I/O port, the operand-size attribute 
determines the port size. 

The OUTSB, OUTSW and OUTSD mnemonics are synonyms of the byte, word, and 
doubleword versions of the OUTS instructions. (For the OUTS instruction, “DS:ESI” 
must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location to the I/O 
port, the ESI register is incremented or decremented automatically according to the 
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI register is 
incremented; if the DF flag is 1, the EDI register is decremented.) The ESI register is 
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 
for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix 
for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE 
/REPNZ—Repeat String Operation Prefix” on page 4:337 for a description of the REP 
prefix.

After an OUTS, OUTSB, OUTSW, or OUTSD instruction is executed, the processor waits 
for the acknowledgment of the OUT transaction before beginning to execute the next 
instruction. Note that the next instruction may be prefetched, even if the OUT 
transaction has not completed.

This instruction is only useful for accessing I/O ports located in the processor’s I/O 
address space. 

I/O transactions are performed after all prior data memory operations. No 
subsequent data memory operations can pass an I/O transaction.

Opcode Instruction Description

6E OUTS DX, DS:(E)SI Output byte at address DS:(E)SI to I/O port in DX

6F OUTS DX, DS:SI Output word at address DS:SI to I/O port in DX

6F OUTS DX, DS:ESI Output doubleword at address DS:ESI to I/O port in DX

6E OUTSB Output byte at address DS:(E)SI to I/O port in DX

6F OUTSW Output word at address DS:SI to I/O port in DX

6F OUTSD Output doubleword at address DS:ESI to I/O port in DX
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OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

In the Itanium System Environment, I/O port references are mapped into the 
64-bit virtual address pointed to by the IOBase register, with four ports per 
4K-byte virtual page. Operating systems can utilize TLBs in the Itanium 
architecture to grant or deny permission to any four I/O ports. The I/O port 
space can be mapped into any arbitrary 64-bit physical memory location by 
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for 
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted 
regardless of the state of the TSS I/O permission bitmap (the bitmap is not 
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via 
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a 
GPFault is generated on the referencing OUTS instruction. 

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE ( * I/O operation is allowed *)

FI;

IF (Itanium_System_Environment) THEN
DEST_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
DEST_PA = translate(DEST_VA);
[DEST_PA]  SRC; (* Writes to selected I/O port *)

FI;
memory_fence();
[DEST_PA]  SRC; (* Writes to selected I/O port *)
memory_fence();

IF (byte operation)
THEN IF DF = 0

THEN (E)DI  1; 
ELSE (E)DI  -1; 

FI;
ELSE IF (word operation)

THEN IF DF = 0
THEN DI  2; 
ELSE DI  -2; 

FI;
ELSE (* doubleword operation *)

THEN IF DF = 0
THEN EDI  4; 
ELSE EDI  -4; 

FI;
FI;

FI;
FI;
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OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is 
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level 
(IOPL) and any of the corresponding I/O permission bits in TSS for 
the I/O port being accessed is 1 and when CFLG.io is 1.

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES 
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segments 
is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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POP—Pop a Value from the Stack

Description

Loads the value from the top of the procedure stack to the location specified with the 
destination operand and then increments the stack pointer. The destination operand 
can be a general-purpose register, memory location, or segment register. 

The current address-size attribute for the stack segment and the operand-size attribute 
determine the amount the stack pointer is incremented (see the “Operation” below). 
For example, if 32-bit addressing and operands are being used, the ESP register (stack 
pointer) is incremented by 4 and, if 16-bit addressing and operands are being used, the 
SP register (stack pointer for 16-bit addressing) is incremented by 2. The B flag in the 
stack segment’s segment descriptor determines the stack’s address-size attribute.

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the 
value loaded into the register must be a valid segment selector. In protected mode, 
popping a segment selector into a segment register automatically causes the descriptor 
information associated with that segment selector to be loaded into the hidden 
(shadow) part of the segment register and causes the selector and the descriptor 
information to be validated (see the “Operation” below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without 
causing a general protection fault. However, any subsequent attempt to reference a 
segment whose corresponding segment register is loaded with a null value causes a 
general protection exception (#GP). In this situation, no memory reference occurs and 
the saved value of the segment register is null.

The POP instruction cannot pop a value into the CS register. To load the CS register, use 
the RET instruction.

A POP SS instruction inhibits all external interrupts, including the NMI interrupt, and 
traps until after execution of the next instruction. in the IA-32 System Environment. 
For the Itanium System Environment, POP SS results in an 
IA-32_Intercept(SystemFlag) trap after the instruction completes.This 
operation allows a stack pointer to be loaded into the ESP register with the next 
instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS 
instruction offers a more efficient method of loading the SS and ESP registers.

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer
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POP—Pop a Value from the Stack (Continued)

This action allows sequential execution of POP SS and MOV ESP, EBP instructions 
without the danger of having an invalid stack during an interrupt. However, use of the 
LSS instruction is the preferred method of loading the SS and ESP registers.

If the ESP register is used as a base register for addressing a destination operand in 
memory, the POP instructions computes the effective address of the operand after it 
increments the ESP register.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top 
of stack is written into the destination.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST  SS:ESP; (* copy a doubleword *)
ESP  ESP + 4;

ELSE (* OperandSize = 16*)
DEST  SS:ESP; (* copy a word *)

ESP  ESP + 2;
FI;

ELSE (* StackAddrSize = 16* )
IF OperandSize = 16

THEN
DEST  SS:SP; (* copy a word *)
SP  SP + 2;

ELSE (* OperandSize = 32 *)
DEST  SS:SP; (* copy a doubleword *)
SP  SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and 
actions, as described in the following listing. These checks are performed on the 
segment selector and the segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null 
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits 

OR segment selector's RPL  CPL 
OR segment is not a writable data segment
OR DPL  CPL

THEN #GP(selector);
FI;
IF segment not marked present 

THEN #SS(selector);
ELSE

SS segment selector;
SS segment descriptor;
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POP—Pop a Value from the Stack (Continued)

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister segment selector;
SegmentRegister segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister null segment selector;
SegmentRegister null segment descriptor;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept trap for POP SS

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits. 

If the SS register is being loaded and the segment selector's RPL and 
the segment descriptor’s DPL are not equal to the CPL. 

If the SS register is being loaded and the segment pointed to is a 
nonwritable data segment.
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POP—Pop a Value from the Stack (Continued)

If the DS, ES, FS, or GS register is being loaded and the segment 
pointed to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment 
pointed to is a data or nonconforming code segment, but both the 
RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS segment 
limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment 
pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current 
privilege level is 3 and alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking 
is enabled.
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POPA/POPAD—Pop All General-Purpose Registers

Description

Pops doublewords (POPAD) or words (POPA) from the procedure stack into the 
general-purpose registers. The registers are loaded in the following order: EDI, ESI, 
EBP, EBX, EDX, ECX, and EAX (if the current operand-size attribute is 32) and DI, SI, 
BP, BX, DX, CX, and AX (if the operand-size attribute is 16). (These instructions reverse 
the operation of the PUSHA/PUSHAD instructions.) The value on the stack for the ESP 
or SP register is ignored. Instead, the ESP or SP register is incremented after each 
register is loaded (see the “Operation” below).

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. 
The POPA instruction is intended for use when the operand-size attribute is 16 and the 
POPAD instruction for when the operand-size attribute is 32. Some assemblers may 
force the operand size to 16 when POPA is used and to 32 when POPAD is used. Others 
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting of 
the operand-size attribute to determine the size of values to be popped from the stack, 
regardless of the mnemonic used.

Operation

IF OperandSize = 32 (* instruction = POPAD *)
THEN

EDIPop();
ESIPop();
EBPPop();
increment ESP by 4 (* skip next 4 bytes of stack *)
EBXPop();
EDXPop();
ECXPop();
EAXPop();

ELSE (* OperandSize = 16, instruction = POPA *)
DIPop();
SIPop();
BPPop();
increment ESP by 2 (* skip next 2 bytes of stack *)
BXPop();
DXPop();
CXPop();
AXPop();

FI;

Flags Affected

None.

Opcode Instruction Description

61 POPA Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX
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POPA/POPAD—Pop All General-Purpose Registers (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack 
segment. 

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.
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POPF/POPFD—Pop Stack into EFLAGS Register

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size 
attribute is 32) and stores the value in the EFLAGS register or pops a word from the top 
of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits of the 
EFLAGS register. (These instructions reverse the operation of the PUSHF/PUSHFD 
instructions.) 

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same 
opcode. The POPF instruction is intended for use when the operand-size attribute is 16 
and the POPFD instruction for when the operand-size attribute is 32. Some assemblers 
may force the operand size to 16 when POPF is used and to 32 when POPFD is used. 
Others may treat these mnemonics as synonyms (POPF/POPFD) and use the current 
setting of the operand-size attribute to determine the size of values to be popped from 
the stack, regardless of the mnemonic used.

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly, 
depending on the mode of operation of the processor. When the processor is operating 
in protected mode at privilege level 0 (or in real-address mode, which is equivalent to 
privilege level 0), all the non-reserved flags in the EFLAGS register except the VIP and 
VIF flags can be modified. The VIP and VIF flags are cleared.

When operating in protected mode, but with a privilege level greater an 0, all the flags 
can be modified except the IOPL field and the VIP and VIF flags. Here, the IOPL flags 
are masked and the VIP and VIF flags are cleared.

When operating in virtual-8086 mode, the I/O privilege level (IOPL) must be equal to 3 
to use POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are masked. If 
the IOPL is less than 3, the POPF/POPFD instructions cause a general protection 
exception (#GP).

The IOPL is altered only when executing at privilege level 0. The interrupt flag is altered 
only when executing at a level at least as privileged as the IOPL. (Real-address mode is 
equivalent to privilege level 0.) If a POPF/POPFD instruction is executed with insufficient 
privilege, an exception does not occur, but the privileged bits do not change.

Operation

OLD_IF <- IF; OLD_AC <- AC; OLD_TF <- TF;

IF CR0.PE = 0 (*Real Mode *)

THEN
IF OperandSize = 32;

THEN 
EFLAGS  Pop(); 
(* All non-reserved flags except VM, RF, VIP and VIF can be modified; *)
ELSE (* OperandSize = 16 *)
EFLAGS[15:0]  Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (*In Protected Mode *)

Opcode Instruction Description

9D POPF Pop top of stack into EFLAGS

9D POPFD Pop top of stack into EFLAGS
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POPF/POPFD—Pop Stack into EFLAGS Register (Continued)

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN 

IF CPL=0
THEN

IF OperandSize = 32;
THEN 

EFLAGS  Pop(); 
(* All non-reserved flags except VM, RF, VIP and VIF can be *)
(* modified; *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0]  Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32;
THEN 

EFLAGS  Pop()
(* All non-reserved bits except IOPL, RF, VM, VIP, and VIF can *)
(* be modified; *)
(* IOPL is masked *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0]  Pop();
(* All non-reserved bits except IOPL can be modified; IOPL is 

masked *)
FI;

FI;
ELSE  (* In Virtual-8086 Mode *)

IF IOPL=3 
THEN 

IF OperandSize=32 
THEN 

EFLAGS  Pop()
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF *)
(* can be modified; VM, RF, IOPL, VIP, and VIF are masked*)

ELSE 
EFLAGS[15:0]  Pop()
(* All non-reserved bits except IOPL can be modified; IOPL is *)

(* masked *)
FI;

ELSE (* IOPL < 3 *)
IF CR4.VME = 0

THEN #GP(0);
ELSE

IF ((OperandSize = 32) OR (STACK.TF = 1) OR (EFLAGS.VIP = 1
AND STACK.IF = 1)
THEN #GP(0);
ELSE

TempFlags <- pop();
FLAGS <- TempFlags; (*IF and IOPL bits are unchanged*)
EFLAGS.VIF <- TempFlags.IF;

FI;
FI;

FI;
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POPF/POPFD—Pop Stack into EFLAGS Register (Continued)

FI;
FI;

IF(Itanium System Environment AND (AC, TF != OLD_AC, OLD_TF)
THEN IA-32_Intercept(System_Flag,POPF);

IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF 
THEN IA-32_Intercept(System_Flag,POPF);

Flags Affected

All flags except the reserved bits. 

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes 
state or if the AC, RF or TF changes state.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with 
an operand-size override prefix.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.
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PUSH—Push Word or Doubleword Onto the Stack

Description

Decrements the stack pointer and then stores the source operand on the top of the 
procedure stack. The current address-size attribute for the stack segment and the 
operand-size attribute determine the amount the stack pointer is decremented (see the 
“Operation” below). For example, if 32-bit addressing and operands are being used, the 
ESP register (stack pointer) is decremented by 4 and, if 16-bit addressing and operands 
are being used, the SP register (stack pointer for 16-bit addressing) is decremented by 
2. Pushing 16-bit operands when the stack address-size attribute is 32 can result in a 
misaligned the stack pointer (that is, the stack pointer not aligned on a doubleword 
boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the 
instruction was executed. Thus, if a PUSH instruction uses a memory operand in which 
the ESP register is used as a base register for computing the operand address, the 
effective address of the operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is 
executed, the processor shuts down due to a lack of stack space. No exception is 
generated to indicate this condition.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

ESP  ESP  4;
SS:ESP  SRC; (* push doubleword *)

ELSE (* OperandSize = 16*)
ESP  ESP  2;
SS:ESP  SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16*)

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS
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PUSH—Push Word or Doubleword Onto the Stack (Continued)

IF OperandSize = 16
THEN

SP  SP  2;
 SS:SP  SRC; (* push word *)

ELSE (* OperandSize = 32*)
SP  SP  4;
SS:SP  SRC; (* push doubleword *)

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

If the new value of the SP or ESP register is outside the stack 
segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.
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PUSH—Push Word or Doubleword Onto the Stack (Continued)

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

Intel Architecture Compatibility

For Intel architecture processors from the Intel 286 on, the PUSH ESP instruction 
pushes the value of the ESP register as it existed before the instruction was executed. 
(This is also true in the real-address and virtual-8086 modes.) For the Intel 8086 
processor, the PUSH SP instruction pushes the new value of the SP register (that is the 
value after it has been decremented by 2).
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PUSHA/PUSHAD—Push All General-Purpose Registers

Description

Push the contents of the general-purpose registers onto the procedure stack. The 
registers are stored on the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP 
(original value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, 
CX, DX, BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). 
(These instructions perform the reverse operation of the POPA/POPAD instructions.) 
The value pushed for the ESP or SP register is its value before prior to pushing the first 
register (see the “Operation” below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same 
opcode. The PUSHA instruction is intended for use when the operand-size attribute is 
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some 
assemblers may force the operand size to 16 when PUSHA is used and to 32 when 
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD) 
and use the current setting of the operand-size attribute to determine the size of values 
to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the 
PUSHA/PUSHAD instruction is executed, the processor shuts down due to a lack of 
stack space. No exception is generated to indicate this condition.

Operation

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp  (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp  (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Opcode Instruction Description

60 PUSHA Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI, and EDI
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PUSHA/PUSHAD—Push All General-Purpose Registers (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment 
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual 8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.
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PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Description

Decrement the stack pointer by 4 (if the current operand-size attribute is 32) and push 
the entire contents of the EFLAGS register onto the procedure stack or decrement the 
stack pointer by 2 (if the operand-size attribute is 16) push the lower 16 bits of the 
EFLAGS register onto the stack. (These instructions reverse the operation of the 
POPF/POPFD instructions.) 

When copying the entire EFLAGS register to the stack, bits 16 and 17, called the VM 
and RF flags, are not copied. Instead, the values for these flags are cleared in the 
EFLAGS image stored on the stack.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the 
same opcode. The PUSHF instruction is intended for use when the operand-size 
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32. 
Some assemblers may force the operand size to 16 when PUSHF is used and to 32 
when PUSHFD is used. Others may treat these mnemonics as synonyms 
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to 
determine the size of values to be pushed from the stack, regardless of the mnemonic 
used.

When the I/O privilege level (IOPL) is less than 3 in virtual-8086 mode, the 
PUSHF/PUSHFD instructions causes a general protection exception (#GP). The IOPL is 
altered only when executing at privilege level 0. The interrupt flag is altered only when 
executing at a level at least as privileged as the IOPL. (Real-address mode is equivalent 
to privilege level 0.) If a PUSHF/PUSHFD instruction is executed with insufficient 
privilege, an exception does not occur, but the privileged bits do not change.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the 
PUSHA/PUSHAD instruction is executed, the processor shuts down due to a lack of 
stack space. No exception is generated to indicate this condition.

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF OperandSize = 32
THEN 

push(EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack*)

ELSE 
push(EFLAGS); (* Lower 16 bits only *)

FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN

IF OperandSize = 32

Opcode Instruction Description

9C PUSHF Push EFLAGS

9C PUSHFD Push EFLAGS
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THEN push(EFLAGS AND 0FCFFFFH); 
(* VM and RF EFLAGS bits are cleared in image stored on the stack*)
ELSE push(EFLAGS); (* Lower 16 bits only *)

FI;
ELSE (*IOPL < 3*)

IF OperandSize =32 OR CR$.VME=0
THEN #GP(0); (* Trap to virtual-8086 monitor *)
ELSE

TempFlags <- FLAGS OR 3000H; (*Set IOPL bits to 11B or IOPL 3 *)
TempFlags.IF <- EFLAGS.VIF;
push(TempFlags);

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment 
boundary. 

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3. 
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RCL/RCR/ROL/ROR-—Rotate

Opcode Instruction Description

D0 /2 RCL r/m8,1 Rotate 9 bits (CF,r/m8) left once

D2 /2 RCL r/m8,CL Rotate 9 bits (CF,r/m8) left CL times

C0 /2 ib RCL r/m8,imm8 Rotate 9 bits (CF,r/m8) left imm8 times

D1 /2 RCL r/m16,1 Rotate 17 bits (CF,r/m16) left once

D3 /2 RCL r/m16,CL Rotate 17 bits (CF,r/m16) left CL times

C1 /2 ib RCL r/m16,imm8 Rotate 17 bits (CF,r/m16) left imm8 times

D1 /2 RCL r/m32,1 Rotate 33 bits (CF,r/m32) left once

D3 /2 RCL r/m32,CL Rotate 33 bits (CF,r/m32) left CL times

C1 /2 ib RCL r/m32,imm8 Rotate 33 bits (CF,r/m32) left imm8 times

D0 /3 RCR r/m8,1 Rotate 9 bits (CF,r/m8) right once

D2 /3 RCR r/m8,CL Rotate 9 bits (CF,r/m8) right CL times

C0 /3 ib RCR r/m8,imm8 Rotate 9 bits (CF,r/m8) right imm8 times

D1 /3 RCR r/m16,1 Rotate 17 bits (CF,r/m16) right once

D3 /3 RCR r/m16,CL Rotate 17 bits (CF,r/m16) right CL times

C1 /3 ib RCR r/m16,imm8 Rotate 17 bits (CF,r/m16) right imm8 times

D1 /3 RCR r/m32,1 Rotate 33 bits (CF,r/m32) right once

D3 /3 RCR r/m32,CL Rotate 33 bits (CF,r/m32) right CL times

C1 /3 ib RCR r/m32,imm8 Rotate 33 bits (CF,r/m32) right imm8 times

D0 /0 ROL r/m8,1 Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8,CL Rotate 8 bits r/m8 left CL times

C0 /0 ib ROL r/m8,imm8 Rotate 8 bits r/m8 left imm8 times

D1 /0 ROL r/m16,1 Rotate 16 bits r/m16 left once

D3 /0 ROL r/m16,CL Rotate 16 bits r/m16 left CL times

C1 /0 ib ROL r/m16,imm8 Rotate 16 bits r/m16 left imm8 times

D1 /0 ROL r/m32,1 Rotate 32 bits r/m32 left once

D3 /0 ROL r/m32,CL Rotate 32 bits r/m32 left CL times

C1 /0 ib ROL r/m32,imm8 Rotate 32 bits r/m32 left imm8 times

D0 /1 ROR r/m8,1 Rotate 8 bits r/m8 right once

D2 /1 ROR r/m8,CL Rotate 8 bits r/m8 right CL times

C0 /1 ib ROR r/m8,imm8 Rotate 8 bits r/m16 right imm8 times

D1 /1 ROR r/m16,1 Rotate 16 bits r/m16 right once

D3 /1 ROR r/m16,CL Rotate 16 bits r/m16 right CL times

C1 /1 ib ROR r/m16,imm8 Rotate 16 bits r/m16 right imm8 times

D1 /1 ROR r/m32,1 Rotate 32 bits r/m32 right once

D3 /1 ROR r/m32,CL Rotate 32 bits r/m32 right CL times

C1 /1 ib ROR r/m32,imm8 Rotate 32 bits r/m32 right imm8 times
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Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit 
positions specified in the second operand (count operand) and stores the result in the 
destination operand. The destination operand can be a register or a memory location; 
the count operand is an unsigned integer that can be an immediate or a value in the CL 
register. The processor restricts the count to a number between 0 and 31 by masking 
all the bits in the count operand except the 5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits 
toward more-significant bit positions, except for the most-significant bit, which is 
rotated to the least-significant bit location. The rotate right (ROR) and rotate through 
carry right (RCR) instructions shift all the bits toward less significant bit positions, 
except for the least-significant bit, which is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction 
shifts the CF flag into the least-significant bit and shifts the most-significant bit into the 
CF flag. The RCR instruction shifts the CF flag into the most-significant bit and shifts the 
least-significant bit into the CF flag. For the ROL and ROR instructions, the original 
value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit 
that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases. For 
left rotates, the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the 
most-significant bit of the result. For right rotates, the OF flag is set to the exclusive OR 
of the two most-significant bits of the result.

Operation
SIZE  OperandSize
CASE (determine count) OF

SIZE = 8: tempCOUNT  (COUNT AND 1FH) MOD 9;
SIZE = 16: tempCOUNT  (COUNT AND 1FH) MOD 17;
SIZE = 32: tempCOUNT  COUNT AND 1FH;

ESAC;
(* ROL instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  MSB(DEST);
DEST  (DEST  2)  tempCF;
tempCOUNT  tempCOUNT - 1;

OD;
ELIHW;
CF  tempCF;
IF COUNT = 1

THEN OF  MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* ROR instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  LSB(SRC);
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DEST  (DEST / 2) + (tempCF  2SIZE);
tempCOUNT  tempCOUNT - 1;

OD;
IF COUNT = 1

THEN OF  MSB(DEST) XOR MSB  1(DEST);
ELSE OF is undefined;

FI;
(* RCL instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  MSB(DEST);
DEST  (DEST  2)  tempCF;
tempCOUNT  tempCOUNT - 1;

OD;
ELIHW;
CF  tempCF;
IF COUNT = 1

THEN OF  MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* RCR instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  LSB(SRC);
DEST  (DEST / 2) + (tempCF * 2SIZE);
tempCOUNT  tempCOUNT - 1;

OD;
IF COUNT = 1
IF COUNT = 1

THEN OF  MSB(DEST) XOR MSB  1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for 
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, 
ZF, AF, and PF flags are not affected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault
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Protected Mode Exceptions

#GP(0) If the source operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

Intel Architecture Compatibility

The 8086 does not mask the rotation count. All Intel architecture processors from the 
Intel386™ processor on do mask the rotation count in all operating modes.
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RDMSR—Read from Model Specific Register

Description

Loads the contents of a 64-bit model specific register (MSR) specified in the ECX 
register into registers EDX:EAX. The EDX register is loaded with the high-order 32 bits 
of the MSR and the EAX register is loaded with the low-order 32 bits. If less than 64 bits 
are implemented in the MSR being read, the values returned to EDX:EAX in 
unimplemented bit locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode; 
otherwise, a general protection exception #GP(0) will be generated. Specifying a 
reserved or unimplemented MSR address in ECX will also cause a general protection 
exception.

The MSRs control functions for testability, execution tracing, performance-monitoring 
and machine check errors. 

The CPUID instruction should be used to determine whether MSRs are supported 
(EDX[5]=1) before using this instruction.

See model-specific instructions for all the MSRs that can be written to with this 
instruction and their addresses

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,RDMSR);

EDX:EAX  MSR[ECX];

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR 
address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR 
address.

Opcode Instruction Description

0F 32 RDMSR Load MSR specified by ECX into EDX:EAX
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Virtual 8086 Mode Exceptions

#GP(0)  The RDMSR instruction is not recognized in virtual 8086 mode.

Intel Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into 
the Intel architecture with the Pentium processor. Execution of this instruction by an 
Intel architecture processor earlier than the Pentium processor results in an invalid 
opcode exception #UD.
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RDPMC—Read Performance-Monitoring Counters

Description

Loads the contents of the N-bit performance-monitoring counter specified in the ECX 
register into registers EDX:EAX. The EDX register is loaded with the high-order N-32 
bits of the counter and the EAX register is loaded with the low-order 32 bits.

The RDPMC instruction allows application code running at a privilege level of 1, 2, or 3 
to read the performance-monitoring counters if the PCE flag in the CR4 register is set 
for IA-32 System Environment operation or in the Itanium System Environment if the 
performance counters have been configured as user level counters. This instruction is 
provided to allow performance monitoring by application code without incurring the 
overhead of a call to an operating-system procedure.

The performance-monitoring counters are event counters that can be programmed to 
count events such as the number of instructions decoded, number of interrupts 
received, or number of cache loads.

The RDPMC instruction does not serialize instruction execution. That is, it does not 
imply that all the events caused by the preceding instructions have been completed or 
that events caused by subsequent instructions have not begun. If an exact event count 
is desired, software must use a serializing instruction (such as the CPUID instruction) 
before and/or after the execution of the RDPCM instruction.

The RDPMC instruction can execute in 16-bit addressing mode or virtual 8086 mode; 
however, the full contents of the ECX register are used to determine the counter to 
access and a full N-bit result is returned (the low-order 32 bits in the EAX register and 
the high-order N-32 bits in the EDX register).

Operation

IF (ECX != Implemented Counters) THEN #GP(0)

IF (Itanium System Environment)

THEN

SECURED = PSR.sp || CR4.pce==0;

IF ((PSR.cpl ==0) || (PSR.cpl!=0 && ~PMC[ECX].pm && ~SECURED)))
THEN 

EDX:EAX  PMD[ECX+4];
ELSE

#GP(0)
FI;

ELSE

IF ((CR4.PCE = 1 OR ((CR4.PCE = 0 ) AND (CPL=0)))
THEN 

EDX:EAX  PMD[ECX+4];
ELSE (* CR4.PCE is 0 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

Opcode Instruction Description

0F 33 RDPMC Read performance-monitoring counter specified by ECX into 
EDX:EAX
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FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

#GP(0) If the current privilege level is not 0 and the selected PMD register’s 
PM bit is 1, or if PSR.sp is 1.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 
register is clear 
/*In IA-32 System Environment*/.

If the value in the ECX register does not match an implemented 
performance counter.

Real Address Mode Exceptions

#GP If the PCE flag in the CR4 register is clear. /*In the IA-32 System 
Environment*/

If the value in the ECX register does not match an implemented 
performance counter.

Virtual 8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear. /*In the IA-32 System 
Environment*/

If the value in the ECX register does not match an implemented 
performance counter.
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RDTSC—Read Time-Stamp Counter

Description

Loads the current value of the processor’s time-stamp counter into the EDX:EAX 
registers. The time-stamp counter is contained in a 64-bit MSR. The high-order 32 bits 
of the MSR are loaded into the EDX register, and the low-order 32 bits are loaded into 
the EAX register. The processor increments the time-stamp counter MSR every clock 
cycle and resets it to 0 whenever the processor is reset.

In the IA-32 System Environment, the time stamp disable (TSD) flag in register CR4 
restricts the use of the RDTSC instruction. When the TSD flag is clear, the RDTSC 
instruction can be executed at any privilege level; when the flag is set, the instruction 
can only be executed at privilege level 0. The time-stamp counter can also be read with 
the RDMSR instruction.

In the Itanium System Environment, PSR.si and CR4.TSD restricts the use of the 
RDTSC instruction. When PSR.si is clear and CR4.TSD is clear, the RDTSC instruction 
can be executed at any privilege level; when PSR.si is set or CR4.TSD is set, the 
instruction can only be executed at privilege level 0.

The RDTSC instruction is not serializing instruction. Thus, it does not necessarily wait 
until all previous instructions have been executed before reading the counter. Similarly, 
subsequent instructions may begin execution before the read operation is performed.

This instruction was introduced into the Intel architecture in the Pentium processor.

Operation

IF (IA-32 System Environement)

IF (CR4.TSD = 0) OR ((CR4.TSD = 1) AND (CPL=0))
THEN

EDX:EAX  TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

ELSE /*Itanium System Environment*/

SECURED = PSR.si || CR4.TSD;

IF (!SECURED) OR (SECURED AND (CPL=0))
THEN

EDX:EAX  TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

FI;

Flags Affected

None.

Opcode Instruction Description

0F 31 RDTSC Read time-stamp counter into EDX:EAX
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Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

#GP(0) If PSR.si is 1 or CR4.TSD is 1 and the CPL is greater than 0. 

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0. 
/*For the IA-32 System Environment only*/

Real Address Mode Exceptions

#GP If the TSD flag in register CR4 is set. /*For the IA-32 System 
Environment only*/

Virtual 8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set. /*For the IA-32 System 
Environment only*/
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REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix

Description

Repeats a string instruction the number of times specified in the count register (ECX) or 
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE 
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and 
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of the 
string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS, and 
STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be added to 
the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synonymous forms 
of the REPE and REPNE prefixes, respectively.) The behavior of the REP prefix is 
undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of 
instructions, use the LOOP instruction or another looping construct. 

F3 6C REP INS r/m8, DX Input ECX bytes from port DX into ES:[EDI]

F3 6D REP INS r/m16,DX Input ECX words from port DX into ES:[EDI]

F3 6D REP INS r/m32,DX Input ECX doublewords from port DX into ES:[EDI]

F3 A4 REP MOVS m8,m8 Move ECX bytes from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m16,m16 Move ECX words from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m32,m32 Move ECX doublewords from DS:[ESI] to ES:[EDI]

F3 6E REP OUTS DX,r/m8 Output ECX bytes from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m16 Output ECX words from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m32 Output ECX doublewords from DS:[ESI] to port DX

F3 AC REP LODS AL Load ECX bytes from DS:[ESI] to AL

F3 AD REP LODS AX Load ECX words from DS:[ESI] to AX

F3 AD REP LODS EAX Load ECX doublewords from DS:[ESI] to EAX

F3 AA REP STOS m8 Fill ECX bytes at ES:[EDI] with AL

F3 AB REP STOS m16 Fill ECX words at ES:[EDI] with AX

F3 AB REP STOS m32 Fill ECX doublewords at ES:[EDI] with EAX

F3 A6 REPE CMPS m8,m8 Find nonmatching bytes in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m16,m16 Find nonmatching words in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m32,m32 Find nonmatching doublewords in ES:[EDI] and DS:[ESI]

F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[EDI]

F3 AF REPE SCAS m16 Find non-AX word starting at ES:[EDI]

F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[EDI]

F2 A6 REPNE CMPS m8,m8 Find matching bytes in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m16,m16 Find matching words in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m32,m32 Find matching doublewords in ES:[EDI] and DS:[ESI]

F2 AE REPNE SCAS m8 Find AL, starting at ES:[EDI]

F2 AF REPNE SCAS m16 Find AX, starting at ES:[EDI]

F2 AF REPNE SCAS m32 Find EAX, starting at ES:[EDI]
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REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix 
(Continued)

All of these repeat prefixes cause the associated instruction to be repeated until the 
count in register ECX is decremented to 0 (see the following table). The REPE, REPNE, 
REPZ, and REPNZ prefixes also check the state of the ZF flag after each iteration and 
terminate the repeat loop if the ZF flag is not in the specified state. When both 
termination conditions are tested, the cause of a repeat termination can be determined 
either by testing the ECX register with a JECXZ instruction or by testing the ZF flag with 
a JZ, JNZ, and JNE instruction.

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require 
initialization because both the CMPS and SCAS instructions affect the ZF flag according 
to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this 
happens, the state of the registers is preserved to allow the string operation to be 
resumed upon a return from the exception or interrupt handler. The source and 
destination registers point to the next string elements to be operated on, the EIP 
register points to the string instruction, and the ECX register has the value it held 
following the last successful iteration of the instruction. This mechanism allows long 
string operations to proceed without affecting the interrupt response time of the 
system.

When a page fault occurs during CMPS or SCAS instructions that are prefixed with 
REPNE, the EFLAGS value may NOT be restored to the state prior to the execution of 
the instruction. Since SCAS and CMPS do not use EFLAGS as an input, the processor 
can resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle 
the rate at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

Operation

IF AddressSize = 16
THEN 

use CX for CountReg;
ELSE (* AddressSize = 32 *) 

use ECX for CountReg;
FI;
WHILE CountReg  0

DO
service pending interrupts (if any);
execute associated string instruction;
CountReg  CountReg - 1;

Table 2-17. Repeat Conditions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=0 None

REPE/REPZ ECX=0 ZF=0

REPNE/REPNZ ECX=0 ZF=1
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REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix 
(Continued)

IF CountReg = 0
THEN exit WHILE loop

FI;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)

THEN exit WHILE loop
FI;

OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS 
register.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is 
associated with.
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RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The 
address is usually placed on the stack by a CALL instruction, and the return is made to 
the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after 
the return address is popped; the default is none. This operand can be used to release 
parameters from the stack that were passed to the called procedure and are no longer 
needed.

The RET instruction can be used to execute three different types of returns:

• Near return – A return to a calling procedure within the current code segment (the 
segment currently pointed to by the CS register), sometimes referred to as an 
intrasegment return.

• Far return – A return to a calling procedure located in a different segment than the 
current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return – A far return to a different privilege level than that 
of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode.

When executing a near return, the processor pops the return instruction pointer (offset) 
from the top of the procedure stack into the EIP register and begins program execution 
at the new instruction pointer. The CS register is unchanged. 

When executing a far return, the processor pops the return instruction pointer from the 
top of the procedure stack into the EIP register, then pops the segment selector from 
the top of the stack into the CS register. The processor then begins program execution 
in the new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment 
return, except that the processor examines the privilege levels and access rights of the 
code and stack segments being returned to determine if the control transfer is allowed 
to be made. The DS, ES, FS, and GS segment registers are cleared by the RET 
instruction during an inter-privilege-level return if they refer to segments that are not 
allowed to be accessed at the new privilege level. Since a stack switch also occurs on an 
inter-privilege level return, the ESP and SS registers are loaded from the stack.

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from 
stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from stack
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RET—Return from Procedure (Continued)

Operation

(* Near return *)
IF instruction = near return 

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP  Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP  Pop();
tempEIP  tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP  tempEIP;

FI;
IF instruction has immediate operand 

THEN IF StackAddressSize=32
THEN 

ESP  ESP + SRC;
ELSE (* StackAddressSize=16 *)

SP  SP + SRC; 
FI;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) OR (PE = 1 AND VM = 1)) AND instruction = far return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits THEN #SS(0); FI;
tempEIP  Pop();
tempEIP  tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP  tempEIP;
CS  Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand THEN SP  SP + (SRC AND FFFFH); FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

(* Protected mode, not virtual 8086 mode *)
IF (PE = 1 AND VM = 0) AND instruction = far RET

THEN
IF OperandSize = 32

THEN 
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RET—Return from Procedure (Continued)

IF second doubleword on stack is not within stack limits THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits THEN #SS(0); FI;
FI;

IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond diescriptor table limit 

THEN GP(selector; FI;
Obtain descriptor to which return code segment selector points from descriptor table
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
if return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is condorming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within ther return code segment limit 

THEN #GP(0); 
FI;
IF OperandSize=32

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
ESP  ESP + SRC;

ELSE (* OperandSize=16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
ESP  ESP + SRC;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize=32) 

OR top (8 + SRC) bytes of stack are not within stack limits (OperandSize=16)
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL  RPL of the return code segment selector

OR stack segment is not a writable data segment
OR stack segment descriptor DPL  RPL of the return code segment selector

THEN #GP(selector); FI;
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RET—Return from Procedure (Continued)

IF stack segment not present THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit THEN #GP(0); FI:
 CPL  ReturnCodeSegmentSelector(RPL);
IF OperandSize=32

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
CS(RPL)  CPL;
ESP  ESP + SRC;
tempESP  Pop();
tempSS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
ESP  tempESP;
SS  tempSS;

ELSE (* OperandSize=16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL)  CPL;
ESP  ESP + SRC;
tempESP  Pop();
tempSS  Pop(); (* 16-bit pop; segment descriptor information also loaded *)
 (* segment descriptor information also loaded *)
ESP  tempESP;
SS  tempSS;

FI;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector/Descriptor  0; (* null segment selector *)

FI;
OD;

For each of ES, FS, GS, and DS
DO

IF segment descriptor indicates the segment is not a data or 
readable code segment

OR if the segment is a data or non-conforming code segment and the segment
descriptor’s DPL < CPL or RPL of code segment’s segment selector
THEN

segment selector register  null selector;
OD;

Flags Affected

None.
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RET—Return from Procedure (Continued)

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector null.
If the return instruction pointer is not within the return code 
segment limit 

#GP(selector) If the RPL of the return code segment selector is less then the CPL.
If the return code or stack segment selector index is not within its 
descriptor table limits.
If the return code segment descriptor does not indicate a code 
segment.
If the return code segment is non-conforming and the segment 
selector’s DPL is not equal to the RPL of the code segment’s segment 
selector
If the return code segment is conforming and the segment selector’s 
DPL greater than the RPL of the code segment’s segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of the 
return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and 

alignment checking is enabled.

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code 
segment limit 

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code 
segment limit 

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is 
enabled.
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ROL/ROR—Rotate

See entry for RCL/RCR/ROL/ROR.
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RSM—Resume from System Management Mode

Description

Returns program control from system management mode (SMM) to the application 
program or operating system procedure that was interrupted when the processor 
received an SSM interrupt. The processor’s state is restored from the dump created 
upon entering SMM. If the processor detects invalid state information during state 
restoration, it enters the shutdown state. The following invalid information can cause a 
shutdown:

• Any reserved bit of CR4 is set to 1.

• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and 
CD=0).

• (Intel Pentium and Intel486 only.) The value stored in the state dump base field is 
not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

See Chapter 9 in the Intel Architecture Software Developer’s Manual, Volume 3 for 
more information about SMM and the behavior of the RSM instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,RSM);

ReturnFromSSM;
ProcessorState  Restore(SSMDump);

Flags Affected

All.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor 
is not in SMM.

Real Address Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor 
is not in SMM.

Virtual 8086 Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor 
is not in SMM.

Opcode Instruction Description

0F AA RSM Resume operation of interrupted program
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SAHF—Store AH into Flags

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the 
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 
5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the 
EFLAGS registers are set as shown in the “Operation” below

Operation

EFLAGS(SF:ZF:0:AF:0:PF:1:CF)  AH;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, 
and 5 of the EFLAGS register are set to 1, 0, and 0, respectively.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Clocks Description

9E SAHF 2 Loads SF, ZF, AF, PF, and CF from AH into 
EFLAGS register
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SAL/SAR/SHL/SHR—Shift Instructions

Note:
*Not the same form of division as IDIV; rounding is toward negative infinity.

Opcode Instruction Description

D0 /4 SAL r/m8,1 Multiply r/m8 by 2, once 

D2 /4 SAL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SAL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SAL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SAL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SAL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SAL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SAL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SAL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /7 SAR r/m8,1 Signed divide* r/m8 by 2, once

D2 /7 SAR r/m8,CL Signed divide* r/m8 by 2, CL times

C0 /7 ib SAR r/m8,imm8 Signed divide* r/m8 by 2, imm8 times

D1 /7 SAR r/m16,1 Signed divide* r/m16 by 2, once

D3 /7 SAR r/m16,CL Signed divide* r/m16 by 2, CL times

C1 /7 ib SAR r/m16,imm8 Signed divide* r/m16 by 2, imm8 times

D1 /7 SAR r/m32,1 Signed divide* r/m32 by 2, once

D3 /7 SAR r/m32,CL Signed divide* r/m32 by 2, CL times

C1 /7 ib SAR r/m32,imm8 Signed divide* r/m32 by 2, imm8 times

D0 /4 SHL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SHL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SHL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SHL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SHL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SHL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SHL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SHL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SHL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /5 SHR r/m8,1 Unsigned divide r/m8 by 2, once

D2 /5 SHR r/m8,CL Unsigned divide r/m8 by 2, CL times

C0 /5 ib SHR r/m8,imm8 Unsigned divide r/m8 by 2, imm8 times

D1 /5 SHR r/m16,1 Unsigned divide r/m16 by 2, once

D3 /5 SHR r/m16,CL Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16,imm8 Unsigned divide r/m16 by 2, imm8 times

D1 /5 SHR r/m32,1 Unsigned divide r/m32 by 2, once

D3 /5 SHR r/m32,CL Unsigned divide r/m32 by 2, CL times

C1 /5 ib SHR r/m32,imm8 Unsigned divide r/m32 by 2, imm8 times
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SAL/SAR/SHL/SHR—Shift Instructions (Continued)

Description

Shift the bits in the first operand (destination operand) to the left or right by the 
number of bits specified in the second operand (count operand). Bits shifted beyond the 
destination operand boundary are first shifted into the CF flag, then discarded. At the 
end of the shift operation, the CF flag contains the last bit shifted out of the destination 
operand. 

The destination operand can be a register or a memory location. The count operand can 
be an immediate value or register CL. The count is masked to 5 bits, which limits the 
count range to from 0 to 31. A special opcode encoding is provide for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same 
operation; they shift the bits in the destination operand to the left (toward more 
significant bit locations). For each shift count, the most significant bit of the destination 
operand is shifted into the CF flag, and the least significant bit is cleared.

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of 
the destination operand to the right (toward less significant bit locations). For each shift 
count, the least significant bit of the destination operand is shifted into the CF flag, and 
the most significant bit is either set or cleared depending on the instruction type. The 
SHR instruction clears the most significant bit; the SAR instruction sets or clears the 
most significant bit to correspond to the sign (most significant bit) of the original value 
in the destination operand. In effect, the SAR instruction fills the empty bit position’s 
shifted value with the sign of the unshifted value.

The SAR and SHR instructions can be used to perform signed or unsigned division, 
respectively, of the destination operand by powers of 2. For example, using the SAR 
instruction shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same 
result as the IDIV instruction. The quotient from the IDIV instruction is rounded toward 
zero, whereas the “quotient” of the SAR instruction is rounded toward negative infinity. 
This difference is apparent only for negative numbers. For example, when the IDIV 
instruction is used to divide -9 by 4, the result is -2 with a remainder of -1. If the SAR 
instruction is used to shift -9 right by two bits, the result is -3 and the “remainder” is 
+3; however, the SAR instruction stores only the most significant bit of the remainder 
(in the CF flag). 

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is cleared to 0 if 
the most-significant bit of the result is the same as the CF flag (that is, the top two bits 
of the original operand were the same); otherwise, it is set to 1. For the SAR 
instruction, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag 
is set to the most-significant bit of the original operand.

Operation

tempCOUNT  COUNT;
tempDEST  DEST;
WHILE (tempCOUNT  0)
DO
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SAL/SAR/SHL/SHR—Shift Instructions (Continued)

IF instruction is SAL or SHL
THEN 

CF  MSB(DEST);
ELSE (* instruction is SAR or SHR *)

CF  LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN 
DEST  DEST  2;

ELSE 
IF instruction is SAR

THEN 
DEST  DEST  2 (*Signed divide, rounding toward negative infinity*);

ELSE (* instruction is SHR *)
DEST  DEST  2 ; (* Unsigned divide *);

FI;
FI;
temp  temp - 1;

OD;
(* Determine overflow for the various instructions *)
IF COUNT = 1

THEN
IF instruction is SAL or SHL

THEN 
OF  MSB(DEST) XORCF;

ELSE 
IF instruction is SAR

THEN 
OF  0;

ELSE (* instruction is SHR *)
OF  MSB(tempDEST);

FI;
FI;

ELSE 
OF  undefined;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is 
undefined for SHL and SHR instructions count is greater than or equal to the size of the 
destination operand. The OF flag is affected only for 1-bit shifts (see “Description” 
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the 
result. If the count is 0, the flags are not affected.
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SAL/SAR/SHL/SHR—Shift Instructions (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

Intel Architecture Compatibility

The 8086 does not mask the shift count. All Intel architecture processors from the 
Intel386 processor on do mask the rotation count in all operating modes.
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SBB—Integer Subtraction with Borrow

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the 
result from the destination operand (first operand). The result of the subtraction is 
stored in the destination operand. The destination operand can be a register or a 
memory location; the source operand can be an immediate, a register, or a memory 
location. The state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of 
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands. 
Instead, the processor evaluates the result for both data types and sets the OF and CF 
flags to indicate a borrow in the signed or unsigned result, respectively. The SF flag 
indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction 
in which a SUB instruction is followed by a SBB instruction.

Operation

DEST  DEST - (SRC + CF);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Opcode Instruction Description

1C ib SBB AL,imm8 Subtract with borrow imm8 from AL

1D iw SBB AX,imm16 Subtract with borrow imm16 from AX

1D id SBB EAX,imm32 Subtract with borrow imm32 from EAX

80 /3 ib SBB r/m8,imm8 Subtract with borrow imm8 from r/m8

81 /3 iw SBB r/m16,imm16 Subtract with borrow imm16 from r/m16

81 /3 id SBB r/m32,imm32 Subtract with borrow imm32 from r/m32

83 /3 ib SBB r/m16,imm8 Subtract with borrow sign-extended imm8 from r/m16

83 /3 ib SBB r/m32,imm8 Subtract with borrow sign-extended imm8 from r/m32

18 /r SBB r/m8,r8 Subtract with borrow r8 from r/m8

19 /r SBB r/m16,r16 Subtract with borrow r16 from r/m16

19 /r SBB r/m32,r32 Subtract with borrow r32 from r/m32

1A /r SBB r8,r/m8 Subtract with borrow r/m8 from r8

1B /r SBB r16,r/m16 Subtract with borrow r/m16 from r16

1B /r SBB r32,r/m32 Subtract with borrow r/m32 from r32
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SBB—Integer Subtraction with Borrow (Continued)

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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SCAS/SCASB/SCASW/SCASD—Scan String Data

Description

Compares the byte, word, or double word specified with the source operand with the 
value in the AL, AX, or EAX register, respectively, and sets the status flags in the 
EFLAGS register according to the results. The source operand specifies the memory 
location at the address ES:EDI. (When the operand-size attribute is 16, the DI register 
is used as the source-index register.) The ES segment cannot be overridden with a 
segment override prefix.

The SCASB, SCASW, and SCASD mnemonics are synonyms of the byte, word, and 
doubleword versions of the SCAS instructions. They are simpler to use, but provide no 
type or segment checking. (For the SCAS instruction, “ES:EDI” must be explicitly 
specified in the instruction.)

After the comparison, the EDI register is incremented or decremented automatically 
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the 
EDI register is incremented; if the DF flag is 1, the EDI register is decremented.) The 
EDI register is incremented or decremented by 1 for byte operations, by 2 for word 
operations, or by 4 for doubleword operations.

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix 
for block comparisons of ECX bytes, words, or doublewords. More often, however, these 
instructions will be used in a LOOP construct that takes some action based on the 
setting of the status flags before the next comparison is made. See 
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337 for a 
description of the REP prefix.

Operation

IF (byte cmparison)
THEN

temp  AL  SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI  1; 
ELSE (E)DI  -1; 

FI;
ELSE IF (word comparison)

THEN
temp  AX  SRC;
SetStatusFlags(temp)

THEN IF DF = 0

Opcode Instruction Description

AE SCAS ES:(E)DI Compare AL with byte at ES:(E)DI and set status flags

AF SCAS ES:DI Compare AX with word at ES:DI and set status flags

AF SCAS ES:EDI Compare EAX with doubleword at ES:EDI and set status flags

AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:DI and set status flags

AF SCASD Compare EAX with doubleword at ES:EDI and set status flags
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SCAS/SCASB/SCASW/SCASD—Scan String Data (Continued)

THEN DI  2; 
ELSE DI  -2;

FI;
ELSE (* doubleword comparison *)

temp  EAX  SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN EDI  4; 
ELSE EDI  -4; 

FI;
FI;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the 
comparison.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES 
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segment is 
given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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SETcc—Set Byte on Condition

Description

Set the destination operand to the value 0 or 1, depending on the settings of the status 
flags (CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to 
a byte register or a byte in memory. The condition code suffix (cc) indicates the 
condition being tested for. 

The terms “above” and “below” are associated with the CF flag and refer to the 
relationship between two unsigned integer values. The terms “greater” and “less” are 
associated with the SF and OF flags and refer to the relationship between two signed 
integer values.

Opcode Instruction Description

0F 97 SETA r/m8 Set byte if above (CF=0 and ZF=0)

0F 93 SETAE r/m8 Set byte if above or equal (CF=0)

0F 92 SETB r/m8 Set byte if below (CF=1)

0F 96 SETBE r/m8 Set byte if below or equal (CF=1 or (ZF=1)

0F 92 SETC r/m8 Set if carry (CF=1)

0F 94 SETE r/m8 Set byte if equal (ZF=1)

0F 9F SETG r/m8 Set byte if greater (ZF=0 and SF=OF)

0F 9D SETGE r/m8 Set byte if greater or equal (SF=OF)

0F 9C SETL r/m8 Set byte if less (SF<>OF)

0F 9E SETLE r/m8 Set byte if less or equal (ZF=1 or SF<>OF)

0F 96 SETNA r/m8 Set byte if not above (CF=1 or ZF=1)

0F 92 SETNAE r/m8 Set byte if not above or equal (CF=1)

0F 93 SETNB r/m8 Set byte if not below (CF=0)

0F 97 SETNBE r/m8 Set byte if not below or equal (CF=0 and ZF=0)

0F 93 SETNC r/m8 Set byte if not carry (CF=0)

0F 95 SETNE r/m8 Set byte if not equal (ZF=0)

0F 9E SETNG r/m8 Set byte if not greater (ZF=1 or SF<>OF)

0F 9C SETNGE r/m8 Set if not greater or equal (SF<>OF)

0F 9D SETNL r/m8 Set byte if not less (SF=OF)

0F 9F SETNLE r/m8 Set byte if not less or equal (ZF=0 and SF=OF)

0F 91 SETNO r/m8 Set byte if not overflow (OF=0)

0F 9B SETNP r/m8 Set byte if not parity (PF=0)

0F 99 SETNS r/m8 Set byte if not sign (SF=0)

0F 95 SETNZ r/m8 Set byte if not zero (ZF=0)

0F 90 SETO r/m8 Set byte if overflow (OF=1)

0F 9A SETP r/m8 Set byte if parity (PF=1)

0F 9A SETPE r/m8 Set byte if parity even (PF=1)

0F 9B SETPO r/m8 Set byte if parity odd (PF=0)

0F 98 SETS r/m8 Set byte if sign (SF=1)

0F 94 SETZ r/m8 Set byte if zero (ZF=1)
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SETcc—Set Byte on Condition (Continued)

Many of the SETcc instruction opcodes have alternate mnemonics. For example, the 
SETG (set byte if greater) and SETNLE (set if not less or equal) both have the same 
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alternate 
mnemonics are provided to make code more intelligible. 

Some languages represent a logical one as an integer with all bits set. This 
representation can be arrived at by choosing the mutually exclusive condition for the 
SETcc instruction, then decrementing the result. For example, to test for overflow, use 
the SETNO instruction, then decrement the result.

Operation

IF condition
THEN DEST  1 
ELSE DEST  0; 

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.
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SETcc—Set Byte on Condition (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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SGDT/SIDT—Store Global/Interrupt Descriptor Table Register

Description

Stores the contents of the global descriptor table register (GDTR) or the interrupt 
descriptor table register (IDTR) in the destination operand. The destination operand is a 
pointer to 6-byte memory location. If the operand-size attribute is 32 bits, the 16-bit 
limit field of the register is stored in the lower 2 bytes of the memory location and the 
32-bit base address is stored in the upper 4 bytes. If the operand-size attribute is 16 
bits, the limit is stored in the lower 2 bytes and the 24-bit base address is stored in the 
third, fourth, and fifth byte, with the sixth byte is filled with 0s.

The SGDT and SIDT instructions are useful only in operating-system software; however, 
they can be used in application programs.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,SGDT/SIDT);

IF instruction is IDTR
THEN

IF OperandSize = 16
THEN 

DEST[0:15]  IDTR(Limit);
DEST[16:39]  IDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47]  0;

ELSE (* 32-bit Operand Size *)
DEST[0:15]  IDTR(Limit);
DEST[16:47]  IDTR(Base); (* full 32-bit base address loaded *)

FI;
ELSE (* instruction is SGDT *)

IF OperandSize = 16
THEN 

DEST[0:15]  GDTR(Limit);
DEST[16:39]  GDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47]  0;

ELSE (* 32-bit Operand Size *)
DEST[0:15]  GDTR(Limit);
DEST[16:47]  GDTR(Base); (* full 32-bit base address loaded *)

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Instruction Intercept for SIDT and SGDT.

Opcode Instruction Description

0F 01 /0 SGDT m Store GDTR to m

0F 01 /1 SIDT m Store IDTR to m
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SGDT/SIDT—Store Global/Interrupt Descriptor Table Register (Continued)

Protected Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and 
alignment checking is enabled.

Real Address Mode Exceptions

#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is 
enabled.

Intel Architecture Compatibility

The 16-bit forms of the SGDT and SIDT instructions are compatible with the Intel 286 
processor, if the upper 8 bits are not referenced. The Intel 286 processor fills these bits 
with 1s; the Pentium Pro processor fills these bits with 0s.
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SHL/SHR—Shift Instructions

See entry for SAL/SAR/SHL/SHR.



4:362 Volume 4: Base IA-32 Instruction Reference

SHLD—Double Precision Shift Left

Description

Shifts the first operand (destination operand) to the left the number of bits specified by 
the third operand (count operand). The second operand (source operand) provides bits 
to shift in from the right (starting with bit 0 of the destination operand). The destination 
operand can be a register or a memory location; the source operand is a register. The 
count operand is an unsigned integer that can be an immediate byte or the contents of 
the CL register. Only bits 0 through 4 of the count are used, which masks the count to a 
value between 0 and 31. If the count is greater than the operand size, the result in the 
destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the 
destination operand. For a 1-bit shift, the OF flag is set if a sign change occurred; 
otherwise, it is cleared. If the count operand is 0, the flags are not affected.

The SHLD instruction is useful for multi-precision shifts of 64 bits or more.

Operation

COUNT  COUNT MOD 32;
SIZE  OperandSize
IF COUNT = 0

THEN 
no operation

ELSE
IF COUNT  SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF  BIT[DEST, SIZE - COUNT];
(* Last bit shifted out on exit *)
FOR i  SIZE - 1 DOWNTO COUNT
DO

Bit(DEST, i)  Bit(DEST, i - COUNT);
OD;
FOR i  COUNT - 1 DOWNTO 0

Opcode Instruction Description

0F A4 SHLD r/m16,r16,imm8 Shift r/m16 to left imm8 places while shifting bits from r16 in 
from the right

0F A5 SHLD r/m16,r16,CL Shift r/m16 to left CL places while shifting bits from r16 in from 
the right

0F A4 SHLD r/m32,r32,imm8 Shift r/m32 to left imm8 places while shifting bits from r32 in 
from the right

0F A5 SHLD r/m32,r32,CL Shift r/m32 to left CL places while shifting bits from r32 in from 
the right
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SHLD—Double Precision Shift Left (Continued)

DO
BIT[DEST, i]  BIT[SRC, i - COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the 
destination operand and the SF, ZF, and PF flags are set according to the value of the 
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is 
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF 
flag is undefined. If the count operand is 0, the flags are not affected. If the count is 
greater than the operand size, the flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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SHRD—Double Precision Shift Right

Description

Shifts the first operand (destination operand) to the right the number of bits specified 
by the third operand (count operand). The second operand (source operand) provides 
bits to shift in from the left (starting with the most significant bit of the destination 
operand). The destination operand can be a register or a memory location; the source 
operand is a register. The count operand is an unsigned integer that can be an 
immediate byte or the contents of the CL register. Only bits 0 through 4 of the count 
are used, which masks the count to a value between 0 and 31. If the count is greater 
than the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the 
destination operand. For a 1-bit shift, the OF flag is set if a sign change occurred; 
otherwise, it is cleared. If the count operand is 0, the flags are not affected.

The SHRD instruction is useful for multiprecision shifts of 64 bits or more.

Operation

COUNT  COUNT MOD 32;
SIZE  OperandSize
IF COUNT = 0

THEN 
no operation

ELSE
IF COUNT  SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF  BIT[DEST, COUNT - 1]; (* last bit shifted out on exit *)
FOR i  0 TO SIZE - 1 - COUNT

DO
BIT[DEST, i]  BIT[DEST, i - COUNT];

OD;
FOR i  SIZE - COUNT TO SIZE - 1

DO
BIT[DEST,i]  BIT[inBits,i+COUNT - SIZE];

OD;
FI;

FI;

Opcode Instruction Description

0F AC SHRD r/m16,r16,imm8 Shift r/m16 to right imm8 places while shifting bits from r16 in 
from the left

0F AD SHRD r/m16,r16,CL Shift r/m16 to right CL places while shifting bits from r16 in from 
the left

0F AC SHRD r/m32,r32,imm8 Shift r/m32 to right imm8 places while shifting bits from r32 in 
from the left

0F AD SHRD r/m32,r32,CL Shift r/m32 to right CL places while shifting bits from r32 in from 
the left
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SHRD—Double Precision Shift Right (Continued)

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the 
destination operand and the SF, ZF, and PF flags are set according to the value of the 
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is 
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF 
flag is undefined. If the count operand is 0, the flags are not affected. If the count is 
greater than the operand size, the flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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SIDT—Store Interrupt Descriptor Table Register

See entry for SGDT/SIDT.
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SLDT—Store Local Descriptor Table Register

Description

Stores the segment selector from the local descriptor table register (LDTR) in the 
destination operand. The destination operand can be a general-purpose register or a 
memory location. The segment selector stored with this instruction points to the LDT.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied 
into the lower 16 bits of the register and the upper 16 bits of the register are cleared to 
0s. With the destination operand is a memory location, the segment selector is written 
to memory as a 16-bit quantity, regardless of the operand size.

The SLDT instruction is only useful in operating-system software; however, it can be 
used in application programs. Also, this instruction can only be executed in protected 
mode.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,SLDT);

DEST  LDTR(SegmentSelector);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept SLDT results in an IA-32 Intercept

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F 00 /0 SLDT r/m16 Stores segment selector from LDTR in r/m16

0F 00 /0 SLDT r/m32 Store segment selector from LDTR in low-order 16 bits of r/m32; 
high-order 16 bits are undefined
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SLDT—Store Local Descriptor Table Register (Continued)

Real Address Mode Exceptions

#UD The SLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD  The SLDT instruction is not recognized in virtual 8086 mode.
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SMSW—Store Machine Status Word

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the 
destination operand. The destination operand can be a 16-bit general-purpose register 
or a memory location.

When the destination operand is a 32-bit register, the low-order 16 bits of register CR0 
are copied into the low-order 16 bits of the register and the upper 16 bits of the register 
are undefined. With the destination operand is a memory location, the low-order 16 bits 
of register CR0 are written to memory as a 16-bit quantity, regardless of the operand 
size.

The SMSW instruction is only useful in operating-system software; however, it is not a 
privileged instruction and can be used in application programs.

This instruction is provided for compatibility with the Intel 286 processor; programs and 
procedures intended to run on processors more recent than the Intel 286 should use 
the MOV (control registers) instruction to load the machine status word.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,SMSW);

DEST  CR0[15:0]; (* MachineStatusWord *);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F 01 /4 SMSW r32/m16 Store machine status word in low-order 16 bits of r32/m16; 
high-order 16 bits of r32 are undefined
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SMSW—Store Machine Status Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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STC—Set Carry Flag

Description

Sets the CF flag in the EFLAGS register.

Operation

CF  1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F9 STC Set CF flag
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STD—Set Direction Flag

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations 
decrement the index registers (ESI and/or EDI).

Operation

DF  1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Operation

DF  1;

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FD STD Set DF flag
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STI—Set Interrupt Flag

Description

Sets the interrupt flag (IF) in the EFLAGS register. In the IA-32 System 
Environment, after the IF flag is set, the processor begins responding to external 
maskable interrupts after the next instruction is executed. If the STI instruction is 
followed by a CLI instruction (which clears the IF flag) the effect of the STI instruction is 
negated. In the Itanium System Environment, the processor will immediately 
respond do interrupts after STI, unless execution of STI results in a trap or 
intercept. External interrupts are enabled for IA-32 instructions if PSR.i and 
(~CFLG.if or EFLAG.if).

The IF flag and the STI and CLI instruction have no affect on the generation of 
exceptions and NMI interrupts.

The following decision table indicates the action of the STI instruction (bottom of the 
table) depending on the processor’s mode of operating and the CPL and IOPL of the 
currently running program or procedure (top of the table). 

Notes:
XDon't care.
NAction in Column 1 not taken.
YAction in Column 1 taken.

Operation

OLD_IF <- IF;

IF PE=0  (* Executing in real-address mode *)
THEN 

IF  1;  (* Set Interrupt Flag *)
ELSE  (* Executing in protected mode or virtual-8086 mode *)

IF VM=0  (* Executing in protected mode*)
THEN 

IF CR4.PVI = 0
THEN

IF CPL <= IOPL
THEN IF <- 1
ELSE #GP(0);
FI;

ELSE (*PVI is 1 *)

Opcode Instruction Description

FB STI Set interrupt flag; interrupts enabled at the end of the next 
instruction

PE = 0 1 1 1

VM = X 0 0 1

CPL X  IOPL > IOPL =3

IOPL X X X =3

IF  1 Y Y N Y

#GP(0) N N Y N
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STI—Set Interrupt Flag (Continued)

IF CPL = 3
THENSTI—Set Interrupt Flag (Continued)

IF IOPL < 3
THEN 

IF VIP = 0
THEN VIF <- 1;
ELSE #GP(0);
FI;

ELSE (*IOPL = 3 *)
IF <- 1;

FI;
ELSE (*CPL < 3*)

IF IOPL < CPL THEN #GP(0); FI;
IF IOPL>=CPL OR IOPL=3 THEN IF <-1; FI;

FI;
FI;

ELSE (*Executing in Virtual-8086 Mode*)
IF IOPL = 3

THEN IF <- 1;
ELSE

IF CR4.VME = 0
THEN #GP(0);
ELSE

IF VIP = 1 (*virtual interrupt is pending*)
THEN #GP(0);
ELSE VIF <- 1;
FI;

FI;
FI;

FI;
FI;

FI;

IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF 
THEN IA-32_Intercept(System_Flag,STI);

Flags Affected

The IF flag is set to 1. 

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes 
state.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 
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STI—Set Interrupt Flag (Continued)

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 
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STOS/STOSB/STOSW/STOSD—Store String Data

Description

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into 
the destination operand. The destination operand is a memory location at the address 
ES:EDI. (When the operand-size attribute is 16, the DI register is used as the 
source-index register.) The ES segment cannot be overridden with a segment override 
prefix.

The STOSB, STOSW, and STOSD mnemonics are synonyms of the byte, word, and 
doubleword versions of the STOS instructions. They are simpler to use, but provide no 
type or segment checking. (For the STOS instruction, “ES:EDI” must be explicitly 
specified in the instruction.)

After the byte, word, or doubleword is transfer from the AL, AX, or EAX register to the 
memory location, the EDI register is incremented or decremented automatically 
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the 
EDI register is incremented; if the DF flag is 1, the EDI register is decremented.) The 
EDI register is incremented or decremented by 1 for byte operations, by 2 for word 
operations, or by 4 for doubleword operations.

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix 
for block loads of ECX bytes, words, or doublewords. More often, however, these 
instructions are used within a LOOP construct, because data needs to be moved into the 
AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ/REPNE /REPNZ—
Repeat String Operation Prefix” on page 4:337 for a description of the REP prefix.

Operation

IF (byte store)
THEN

DEST  AL;
THEN IF DF = 0

THEN (E)DI  1; 
ELSE (E)DI  -1; 

FI;
ELSE IF (word store)

THEN
DEST  AX;

THEN IF DF = 0
THEN DI  2; 
ELSE DI  -2; 

FI;
ELSE (* doubleword store *)

Opcode Instruction Description

AA STOS ES:(E)DI Store AL at address ES:(E)DI

AB STOS ES:DI Store AX at address ES:DI

AB STOS ES:EDI Store EAX at address ES:EDI

AA STOSB Store AL at address ES:(E)DI

AB STOSW Store AX at address ES:DI

AB STOSD Store EAX at address ES:EDI
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STOS/STOSB/STOSW/STOSD—Store String Data (Continued)

DEST  EAX;
THEN IF DF = 0

THEN EDI  4; 
ELSE EDI  -4; 

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES 
segment.

If the ES register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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STR—Store Task Register

Description

Stores the segment selector from the task register (TR) in the destination operand. The 
destination operand can be a general-purpose register or a memory location. The 
segment selector stored with this instruction points to the task state segment (TSS) for 
the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied 
into the lower 16 bits of the register and the upper 16 bits of the register are cleared to 
0s. With the destination operand is a memory location, the segment selector is written 
to memory as a 16-bit quantity, regardless of operand size.

The STR instruction is useful only in operating-system software. It can only be executed 
in protected mode.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,STR);

DEST  TR(SegmentSelector);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a 
nonwritable segment or if the effective address is outside the CS, 
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The STR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD  The STR instruction is not recognized in virtual 8086 mode.

Opcode Instruction Description

0F 00 /1 STR r/m16 Stores segment selector from TR in r/m16



Volume 4: Base IA-32 Instruction Reference 4:379

SUB—Integer Subtraction

Description

Subtracts the second operand (source operand) from the first operand (destination 
operand) and stores the result in the destination operand. The destination operand can 
be a register or a memory location; the source operand can be an immediate, register, 
or memory location. When an immediate value is used as an operand, it is 
sign-extended to the length of the destination operand format.

The SUB instruction does not distinguish between signed or unsigned operands. 
Instead, the processor evaluates the result for both data types and sets the OF and CF 
flags to indicate a borrow in the signed or unsigned result, respectively. The SF flag 
indicates the sign of the signed result.

Operation

DEST  DEST - SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

2C ib SUB AL,imm8 Subtract imm8 from AL

2D iw SUB AX,imm16 Subtract imm16 from AX

2D id SUB EAX,imm32 Subtract imm32 from EAX

80 /5 ib SUB r/m8,imm8 Subtract imm8 from r/m8

81 /5 iw SUB r/m16,imm16 Subtract imm16 from r/m16

81 /5 id SUB r/m32,imm32 Subtract imm32 from r/m32

83 /5 ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16

83 /5 ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32

28 /r SUB r/m8,r8 Subtract r8 from r/m8

29 /r SUB r/m16,r16 Subtract r16 from r/m16

29 /r SUB r/m32,r32 Subtract r32 from r/m32

2A /r SUB r8,r/m8 Subtract r/m8 from r8

2B /r SUB r16,r/m16 Subtract r/m16 from r16

2B /r SUB r32,r/m32 Subtract r/m32 from r32
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SUB—Integer Subtraction (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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TEST—Logical Compare

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second 
operand (source 2 operand) and sets the SF, ZF, and PF status flags according to the 
result. The result is then discarded.

Operation

TEMP  SRC1 AND SRC2;
SF  MSB(TEMP);
IF TEMP = 0

THEN ZF  0;
ELSE ZF  1;

FI:
PF  BitwiseXNOR(TEMP[0:7]);
CF  0;
OF  0;
(*AF is Undefined*)

Flags Affected

The OF and CF flags are cleared to 0. The SF, ZF, and PF flags are set according to the 
result (see “Operation” above). The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

A8 ib TEST AL,imm8 AND imm8 with AL; set SF, ZF, PF according to result

A9 iw TEST AX,imm16 AND imm16 with AX; set SF, ZF, PF according to result

A9 id TEST EAX,imm32 AND imm32 with EAX; set SF, ZF, PF according to result

F6 /0 ib TEST r/m8,imm8 AND imm8 with r/m8; set SF, ZF, PF according to result

F7 /0 iw TEST r/m16,imm16 AND imm16 with r/m16; set SF, ZF, PF according to result

F7 /0 id TEST r/m32,imm32 AND imm32 with r/m32; set SF, ZF, PF according to result

84 /r TEST r/m8,r8 AND r8 with r/m8; set SF, ZF, PF according to result

85 /r TEST r/m16,r16 AND r16 with r/m16; set SF, ZF, PF according to result

85 /r TEST r/m32,r32 AND r32 with r/m32; set SF, ZF, PF according to result
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TEST—Logical Compare (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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UD2—Undefined Instruction

Description

Generates an invalid opcode. This instruction is provided for software testing to 
explicitly generate an invalid opcode. The opcode for this instruction is reserved for this 
purpose.

Other than raising the invalid opcode exception, this instruction is the same as the NOP 
instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,0F0B);

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Exceptions (All Operating Modes)

#UD Instruction is guaranteed to raise an invalid opcode exception in all 
operating modes).

Opcode Instruction Description

0F 0B UD2 Raise invalid opcode exception
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VERR, VERW—Verify a Segment for Reading or Writing

Description

Verifies whether the code or data segment specified with the source operand is 
readable (VERR) or writable (VERW) from the current privilege level (CPL). The source 
operand is a 16-bit register or a memory location that contains the segment selector for 
the segment to be verified. If the segment is accessible and readable (VERR) or 
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments 
are never verified as writable. This check cannot be performed on system segments. 

To set the ZF flag, the following conditions must be met:

• The segment selector is not null.

• The selector must denote a descriptor within the bounds of the descriptor table 
(GDT or LDT).

• The selector must denote the descriptor of a code or data segment (not that of a 
system segment or gate).

• For the VERR instruction, the segment must be readable; the VERW instruction, the 
segment must be a writable data segment.

• If the segment is not a conforming code segment, the segment’s DPL must be 
greater than or equal to (have less or the same privilege as) both the CPL and the 
segment selector's RPL.

The validation performed is the same as if the segment were loaded into the DS, ES, 
FS, or GS register, and the indicated access (read or write) were performed. The 
selector's value cannot result in a protection exception, enabling the software to 
anticipate possible segment access problems.

Operation

IF SRC(Offset) > (GDTR(Limit) OR (LDTR(Limit))
THEN

ZF  0
Read segment descriptor;
IF SegmentDescriptor(DescriptorType) = 0 (* system segment *)

OR (SegmentDescriptor(Type)  conforming code segment) 
AND (CPL > DPL) OR (RPL > DPL)

THEN
ZF  0

ELSE
IF ((Instruction = VERR) AND (segment = readable))

OR ((Instruction = VERW) AND (segment = writable))
THEN 

ZF  1;
FI;

FI;

Opcode Instruction Description

0F 00 /4 VERR r/m16 Set ZF=1 if segment specified with r/m16 can be read

0F 00 /5 VERW r/m16 Set ZF=1 if segment specified with r/m16 can be written
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VERR, VERW—Verify a Segment for Reading or Writing (Continued)

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable 
(VERW); otherwise, it is cleared to 0.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal 
addressing of the source operand.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it 
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real address 
mode.

Virtual 8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual 8086 
mode.
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WAIT/FWAIT—Wait

Description

Causes the processor to check for and handle pending unmasked floating-point 
exceptions before proceeding. (FWAIT is an alternate mnemonic for the WAIT).

This instruction is useful for synchronizing exceptions in critical sections of code. Coding 
a WAIT instruction after a floating-point instruction insures that any unmasked 
floating-point exceptions the instruction may raise are handled before the processor 
can modify the instruction’s results.

Operation
CheckPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None. 

Protected Mode Exceptions

#NM MP and TS in CR0 is set.

Real Address Mode Exceptions

#NM MP and TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM MP and TS in CR0 is set.

Opcode Instruction Description

9B WAIT Check pending unmasked floating-point exceptions.

9B FWAIT Check pending unmasked floating-point exceptions.
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WBINVD—Write-Back and Invalidate Cache

Description

Writes back all modified cache lines in the processor’s internal cache to main memory, 
invalidates (flushes) the internal caches, and issues a special-function bus cycle that 
directs external caches to also write back modified data.

After executing this instruction, the processor does not wait for the external caches to 
complete their write-back and flushing operations before proceeding with instruction 
execution. It is the responsibility of hardware to respond to the cache write-back and 
flush signals.

The WBINVD instruction is a privileged instruction. When the processor is running in 
protected mode, the CPL of a program or procedure must be 0 to execute this 
instruction. This instruction is also a serializing instruction.

In situations where cache coherency with main memory is not a concern, software can 
use the INVD instruction. 

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,WBINVD);

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Opcode Instruction Description

0F 09 WBINVD Write-back and flush Internal caches; initiate writing-back and 
flushing of external caches.
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WBINVD—Write-Back and Invalidate Cache (Continued)

Virtual 8086 Mode Exceptions

#GP(0) The WBINVD instruction cannot be executed at the virtual 8086 
mode.

Intel Architecture Compatibility

The WDINVD instruction implementation-dependent; its function may be implemented 
differently on future Intel architecture processors. The instruction is not supported on 
Intel architecture processors earlier than the Intel486 processor.
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WRMSR—Write to Model Specific Register

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) 
specified in the ECX register. The high-order 32 bits are copied from EDX and the 
low-order 32 bits are copied from EAX. Always set undefined or reserved bits in an MSR 
to the values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; 
otherwise, a general protection exception #GP(0) will be generated. Specifying a 
reserved or unimplemented MSR address in ECX will also cause a general protection 
exception.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated, 
including the global entries see the Intel Architecture Software Developer’s Manual, 
Volume 3).

The MSRs control functions for testability, execution tracing, performance-monitoring 
and machine check errors. See model-specific instructions for all the MSRs that can be 
written to with this instruction and their addresses.

The WRMSR instruction is a serializing instruction.

The CPUID instruction should be used to determine whether MSRs are supported 
(EDX[5]=1) before using this instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,WRMSR);

MSR[ECX]  EDX:EAX;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR 
address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR 
address.

Opcode Instruction Description

0F 30 WRMSR Write the value in EDX:EAX to MSR specified by ECX 
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WRMSR—Write to Model Specific Register (Continued)

Virtual 8086 Mode Exceptions

#GP(0)  The WRMSR instruction is not recognized in virtual 8086 mode.

Intel Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into 
the Intel architecture with the Pentium processor. Execution of this instruction by an 
Intel architecture processor earlier than the Pentium processor results in an invalid 
opcode exception #UD.
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XADD—Exchange and Add

Description

Exchanges the first operand (destination operand) with the second operand (source 
operand), then loads the sum of the two values into the destination operand. The 
destination operand can be a register or a memory location; the source operand is a 
register.

This instruction can be used with a LOCK prefix. 

Operation

IF Itanium System Environment AND External_Bus_Lock_Required AND DCR.lc
THEN IA-32_Intercept(LOCK,XADD);

TEMP  SRC + DEST
SRC  DEST
DEST  TEMP

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result stored in the 
destination operand. 

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to 
complete this operation and DCR.lc is 1, no atomic transaction 
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault 
is generated. The software lock handler is responsible for the 
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F C0/r XADD r/m8,r8 Exchange r8 and r/m8; load sum into r/m8.

0F C1/r XADD r/m16,r16 Exchange r16 and r/m16; load sum into r/m16.

0F C1/r XADD r/m32,r32 Exchange r32 and r/m32; load sum into r/m32.
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XADD—Exchange and Add (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

Intel Architecture Compatibility

Intel architecture processors earlier than the Intel486 processor do not recognize this 
instruction. If this instruction is used, you should provide an equivalent code sequence 
that runs on earlier processors.
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XCHG—Exchange Register/Memory with Register

Description

Exchanges the contents of the destination (first) and source (second) operands. The 
operands can be two general-purpose registers or a register and a memory location. 
When the operands are two registers, one of the registers must be the EAX or AX 
register. If a memory operand is referenced, the LOCK# signal is automatically asserted 
for the duration of the exchange operation, regardless of the presence or absence of 
the LOCK prefix or of the value of the IOPL.

This instruction is useful for implementing semaphores or similar data structures for 
process synchronization. (See Chapter 5, Processor Management and Initialization, in 
the Intel Architecture Software Developer’s Manual, Volume 3 for more information on 
bus locking.) 

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit 
operands.

Operation
IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK,XCHG);

TEMP  DEST
DEST  SRC
SRC  TEMP

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

90+rw XCHG AX,r16 Exchange r16 with AX

90+rw XCHG r16,AX Exchange r16 with AX

90+rd XCHG EAX,r32 Exchange r32 with EAX

90+rd XCHG r32,EAX Exchange r32 with EAX

86 /r XCHG r/m8,r8 Exchange byte register with EA byte

86 /r XCHG r8,r/m8 Exchange byte register with EA byte

87 /r XCHG r/m16,r16 Exchange r16 with EA word

87 /r XCHG r16,r/m16 Exchange r16 with EA word

87 /r XCHG r/m32,r32 Exchange r32 with EA doubleword

87 /r XCHG r32,r/m32 Exchange r32 with EA doubleword
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XCHG—Exchange Register/Memory with Register (Continued)

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to 
complete this operation and DCR.lc is 1, no atomic transaction 
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault 
is generated. The software lock handler is responsible for the 
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If either operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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XLAT/XLATB—Table Look-up Translation

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a 
table index, then copies the contents of the table entry back into the AL register. The 
index in the AL register is treated as unsigned integer. The XLAT and XLATB instructions 
get the base address of the table in memory from the DS:EBX registers (or the DS:BX 
registers when the address-size attribute of 16 bits.) The XLAT instruction allows a 
different segment register to be specified with a segment override. When assembled, 
the XLAT and XLATB instructions produce the same machine code.

Operation

IF AddressSize = 16
THEN

AL  (DS:BX + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)

AL  (DS:EBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Opcode Instruction Description

D7 XLAT m8 Set AL to memory byte DS:[(E)BX + unsigned AL]

D7 XLATB Set AL to memory byte DS:[(E)BX + unsigned AL]
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XLAT/XLATB—Table Look-up Translation (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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XOR—Logical Exclusive OR

Description

Performs a bitwise exclusive-OR (XOR) operation on the destination (first) and source 
(second) operands and stores the result in the destination operand location. The source 
operand can be an immediate, a register, or a memory location; the destination 
operand can be a register or a memory location.

Operation

DEST  DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. 
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults  NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

34 ib XOR AL,imm8 AL XOR imm8

35 iw XOR AX,imm16 AX XOR imm16

35 id XOR EAX,imm32 EAX XOR imm32

80 /6 ib XOR r/m8,imm8 r/m8 XOR imm8

81 /6 iw XOR r/m16,imm16 r/m16 XOR imm16

81 /6 id XOR r/m32,imm32 r/m32 XOR imm32

83 /6 ib XOR r/m16,imm8 r/m16 XOR imm8

83 /6 ib XOR r/m32,imm8 r/m32 XOR imm8

30 /r XOR r/m8,r8 r/m8 XOR r8

31 /r XOR r/m16,r16 r/m16 XOR r16

31 /r XOR r/m32,r32 r/m32 XOR r32

32 /r XOR r8,r/m8 r8 XOR r/m8

33 /r XOR r16,r/m16 r8 XOR r/m8

33 /r XOR r32,r/m32 r8 XOR r/m8
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XOR—Logical Exclusive OR (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment 
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, 
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment 
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

§
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IA-32 Intel® MMX™ Technology Instruction 
Reference 3

This section lists the IA-32 MMX technology instructions designed to increase 
performance of multimedia intensive applications.
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EMMS—Empty MMX State

Description 

Sets the values of all the tags in the FPU tag word to empty (all ones). This operation 
marks the MMX technology registers as available, so they can subsequently be used by 
floating-point instructions. (See Figure 7-11 in the Intel Architecture Software 
Developer’s Manual, Volume 1, for the format of the FPU tag word.) All other MMX 
technology instructions (other than the EMMS instruction) set all the tags in FPU tag 
word to valid (all zeros).

The EMMS instruction must be used to clear the MMX technology state at the end of all 
MMX technology routines and before calling other procedures or subroutines that may 
execute floating-point instructions. If a floating-point instruction loads one of the 
registers in the FPU register stack before the FPU tag word has been reset by the EMMS 
instruction, a floating-point stack overflow can occur that will result in a floating-point 
exception or incorrect result.

Operation

FPUTagWord  FFFFH;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Opcode Instruction Description

0F 77 EMMS Set the FP tag word to empty.
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MOVD—Move 32 Bits

Description

Copies doubleword from the source operand (second operand) to the destination 
operand (first operand). Source and destination operands can be MMX technology 
registers, memory locations, or 32-bit general-purpose registers; however, data cannot 
be transferred from an MMX technology register to an MMX technology register, from 
one memory location to another memory location, or from one general-purpose register 
to another general-purpose register.

When the destination operand is an MMX technology register, the 32-bit source value is 
written to the low-order 32 bits of the 64-bit MMX technology register and 
zero-extended to 64 bits (see Figure 3-1). When the source operand is an MMX 
technology register, the low-order 32 bits of the MMX technology register are written to 
the 32-bit general-purpose register or 32-bit memory location selected with the 
destination operand.

Operation

IF DEST is MMX register
THEN 

DEST  ZeroExtend(SRC);
ELSE (* SRC is MMX register *)

DEST  LowOrderDoubleword(SRC);

Opcode Instruction Description

0F 6E /r MOVD mm, r/m32 Move doubleword from r/m32 to mm.

0F 7E /r MOVD r/m32, mm Move doubleword from mm to r/m32.

Figure 3-1. Operation of the MOVD Instruction
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MOVD—Move 32 Bits (continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.



Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:403

MOVQ—Move 64 Bits

Description

Copies quadword from the source operand (second operand) to the destination operand 
(first operand). (See Figure 3-2.) A source or destination operand can be either an MMX 
technology register or a memory location; however, data cannot be transferred from 
one memory location to another memory location. Data can be transferred from one 
MMX technology register to another MMX technology register.

Operation

DEST  SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F 6F /r MOVQ mm, mm/m64 Move quadword from mm/m64 to mm.

0F 7F /r MOVQ mm/m64, mm Move quadword from mm to mm/m64.

Figure 3-2. Operation of the MOVQ Instruction
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MOVQ—Move 64 Bits (continued)

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PACKSSWB/PACKSSDW—Pack with Signed Saturation

Description

Packs and saturates signed words into bytes (PACKSSWB) or signed doublewords into 
words (PACKSSDW). The PACKSSWB instruction packs 4 signed words from the 
destination operand (first operand) and 4 signed words from the source operand 
(second operand) into 8 signed bytes in the destination operand. If the signed value of 
a word is beyond the range of a signed byte (that is, greater than 7FH or less than 
80H), the saturated byte value of 7FH or 80H, respectively, is stored into the 
destination.

The PACKSSDW instruction packs 2 signed doublewords from the destination operand 
(first operand) and 2 signed doublewords from the source operand (second operand) 
into 4 signed words in the destination operand (see Figure 3-3). If the signed value of a 
doubleword is beyond the range of a signed word (that is, greater than 7FFFH or less 
than 8000H), the saturated word value of 7FFFH or 8000H, respectively, is stored into 
the destination.

The destination operand for either the PACKSSWB or PACKSSDW instruction must be an 
MMX technology register; the source operand may be either an MMX technology 
register or a quadword memory location.

Operation

IF instruction is PACKSSWB
THEN

DEST(7..0)  SaturateSignedWordToSignedByte DEST(15..0); 
DEST(15..8)  SaturateSignedWordToSignedByte DEST(31..16);
DEST(23..16)  SaturateSignedWordToSignedByte DEST(47..32);
DEST(31..24)  SaturateSignedWordToSignedByte DEST(63..48);
DEST(39..32)  SaturateSignedWordToSignedByte SRC(15..0);
DEST(47..40)  SaturateSignedWordToSignedByte SRC(31..16);
DEST(55..48)  SaturateSignedWordToSignedByte SRC(47..32);
DEST(63..56)  SaturateSignedWordToSignedByte SRC(63..48);

Opcode Instruction Description

0F 63 /r PACKSSWB mm, 
mm/m64

Packs and saturate pack 4 signed words from mm and 4 
signed words from mm/m64 into 8 signed bytes in mm.

0F 6B /r PACKSSDW mm, 
mm/m64

Pack and saturate 2 signed doublewords from mm and 2 
signed doublewords from mm/m64 into 4 signed words in mm.

Figure 3-3. Operation of the PACKSSDW Instruction
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PACKSSWB/PACKSSDW—Pack with Signed Saturation (continued)

ELSE (* instruction is PACKSSDW *)
DEST(15..0)  SaturateSignedDoublewordToSignedWord DEST(31..0);
DEST(31..16)  SaturateSignedDoublewordToSignedWord DEST(63..32);
DEST(47..32)  SaturateSignedDoublewordToSignedWord SRC(31..0);
DEST(63..48)  SaturateSignedDoublewordToSignedWord SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.
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PACKSSWB/PACKSSDW—Pack with Signed Saturation (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PACKUSWB—Pack with Unsigned Saturation

Description

Packs and saturates 4 signed words from the destination operand (first operand) and 4 
signed words from the source operand (second operand) into 8 unsigned bytes in the 
destination operand (see Figure 3-4). If the signed value of a word is beyond the range 
of an unsigned byte (that is, greater than FFH or less than 00H), the saturated byte 
value of FFH or 00H, respectively, is stored into the destination.

The destination operand must be an MMX technology register; the source operand may 
be either an MMX technology register or a quadword memory location.

Operation

DEST(7..0)  SaturateSignedWordToUnsignedByte DEST(15..0); 
DEST(15..8)  SaturateSignedWordToUnsignedByte DEST(31..16);
DEST(23..16)  SaturateSignedWordToUnsignedByte DEST(47..32);
DEST(31..24)  SaturateSignedWordToUnsignedByte DEST(63..48);
DEST(39..32)  SaturateSignedWordToUnsignedByte SRC(15..0);
DEST(47..40)  SaturateSignedWordToUnsignedByte SRC(31..16);
DEST(55..48)  SaturateSignedWordToUnsignedByte SRC(47..32);
DEST(63..56)  SaturateSignedWordToUnsignedByte SRC(63..48);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F 67 /r PACKUSWB mm, mm/m64 Pack and saturate 4 signed words from mm and 4 signed 
words from mm/m64 into 8 unsigned bytes in mm.

Figure 3-4. Operation of the PACKUSWB Instruction
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PACKUSWB—Pack with Unsigned Saturation (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PADDB/PADDW/PADDD—Packed Add

Description

Adds the individual data elements (bytes, words, or doublewords) of the source 
operand (second operand) to the individual data elements of the destination operand 
(first operand). (See Figure 3-5.) If the result of an individual addition exceeds the 
range for the specified data type (overflows), the result is wrapped around, meaning 
that the result is truncated so that only the lower (least significant) bits of the result are 
returned (that is, the carry is ignored).

The destination operand must be an MMX technology register; the source operand can 
be either an MMX technology register or a quadword memory location.

The PADDB instruction adds the bytes of the source operand to the bytes of the 
destination operand and stores the results to the destination operand. When an 
individual result is too large to be represented in 8 bits, the lower 8 bits of the result 
are written to the destination operand and therefore the result wraps around.

The PADDW instruction adds the words of the source operand to the words of the 
destination operand and stores the results to the destination operand. When an 
individual result is too large to be represented in 16 bits, the lower 16 bits of the result 
are written to the destination operand and therefore the result wraps around.

The PADDD instruction adds the doublewords of the source operand to the doublewords 
of the destination operand and stores the results to the destination operand. When an 
individual result is too large to be represented in 32 bits, the lower 32 bits of the result 
are written to the destination operand and therefore the result wraps around.

Opcode Instruction Description

0F FC /r PADDB mm, mm/m64 Add packed bytes from mm/m64 to packed bytes in mm.

0F FD /r PADDW mm, mm/m64 Add packed words from mm/m64 to packed words in mm.

0F FE /r PADDD mm, mm/m64 Add packed doublewords from mm/m64 to packed 
doublewords in mm.

Figure 3-5. Operation of the PADDW Instruction
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PADDB/PADDW/PADDD—Packed Add (continued)

Note that like the integer ADD instruction, the PADDB, PADDW, and PADDD instructions 
can operate on either unsigned or signed (two's complement notation) packed integers. 
Unlike the integer instructions, none of the MMX technology instructions affect the 
EFLAGS register. With MMX technology instructions, there are no carry or overflow flags 
to indicate when overflow has occurred, so the software must control the range of 
values or else use the “with saturation” MMX technology instructions.

Operation

IF instruction is PADDB
THEN

DEST(7..0)  DEST(7..0) + SRC(7..0); 
DEST(15..8)  DEST(15..8) + SRC(15..8);
DEST(23..16)  DEST(23..16)+ SRC(23..16);
DEST(31..24)  DEST(31..24) + SRC(31..24);
DEST(39..32)  DEST(39..32) + SRC(39..32);
DEST(47..40)  DEST(47..40)+ SRC(47..40);
DEST(55..48)  DEST(55..48) + SRC(55..48);
DEST(63..56)  DEST(63..56) + SRC(63..56);

ELSEIF instruction is PADDW
THEN

DEST(15..0)  DEST(15..0) + SRC(15..0);
DEST(31..16)  DEST(31..16) + SRC(31..16);
DEST(47..32)  DEST(47..32) + SRC(47..32);
DEST(63..48)  DEST(63..48) + SRC(63..48);

ELSE (* instruction is PADDD *)
DEST(31..0)  DEST(31..0) + SRC(31..0);
DEST(63..32)  DEST(63..32) + SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault
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PADDB/PADDW/PADDD—Packed Add (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PADDSB/PADDSW—Packed Add with Saturation

Description

Adds the individual signed data elements (bytes or words) of the source operand 
(second operand) to the individual signed data elements of the destination operand 
(first operand). (See Figure 3-6.) If the result of an individual addition exceeds the 
range for the specified data type, the result is saturated. The destination operand must 
be an MMX technology register; the source operand can be either an MMX technology 
register or a quadword memory location.

The PADDSB instruction adds the signed bytes of the source operand to the signed 
bytes of the destination operand and stores the results to the destination operand. 
When an individual result is beyond the range of a signed byte (that is, greater than 
7FH or less than 80H), the saturated byte value of 7FH or 80H, respectively, is written 
to the destination operand.

The PADDSW instruction adds the signed words of the source operand to the signed 
words of the destination operand and stores the results to the destination operand. 
When an individual result is beyond the range of a signed word (that is, greater than 
7FFFH or less than 8000H), the saturated word value of 7FFFH or 8000H, respectively, 
is written to the destination operand.

Operation

IF instruction is PADDSB
THEN

DEST(7..0)  SaturateToSignedByte(DEST(7..0) + SRC (7..0)) ;
DEST(15..8)  SaturateToSignedByte(DEST(15..8) + SRC(15..8) );
DEST(23..16)  SaturateToSignedByte(DEST(23..16)+ SRC(23..16) );
DEST(31..24)  SaturateToSignedByte(DEST(31..24) + SRC(31..24) );
DEST(39..32)  SaturateToSignedByte(DEST(39..32) + SRC(39..32) );
DEST(47..40)  SaturateToSignedByte(DEST(47..40)+ SRC(47..40) );
DEST(55..48)  SaturateToSignedByte(DEST(55..48) + SRC(55..48) );
DEST(63..56)  SaturateToSignedByte(DEST(63..56) + SRC(63..56) );

Opcode Instruction Description

0F EC /r PADDSB mm, mm/m64 Add signed packed bytes from mm/m64 to signed packed 
bytes in mm and saturate.

0F ED /r PADDSW mm, mm/m64 Add signed packed words from mm/m64 to signed packed 
words in mm and saturate.

Figure 3-6. Operation of the PADDSW Instruction
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PADDSB/PADDSW—Packed Add with Saturation (continued)

ELSE { (* instruction is PADDSW *)
DEST(15..0)  SaturateToSignedWord(DEST(15..0) + SRC(15..0) );
DEST(31..16)  SaturateToSignedWord(DEST(31..16) + SRC(31..16) );
DEST(47..32)  SaturateToSignedWord(DEST(47..32) + SRC(47..32) );
DEST(63..48)  SaturateToSignedWord(DEST(63..48) + SRC(63..48) );

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.
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PADDSB/PADDSW—Packed Add with Saturation (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PADDUSB/PADDUSW—Packed Add Unsigned with Saturation

Description

Adds the individual unsigned data elements (bytes or words) of the packed source 
operand (second operand) to the individual unsigned data elements of the packed 
destination operand (first operand). (See Figure 3-7.) If the result of an individual 
addition exceeds the range for the specified unsigned data type, the result is saturated. 
The destination operand must be an MMX technology register; the source operand can 
be either an MMX technology register or a quadword memory location.

The PADDUSB instruction adds the unsigned bytes of the source operand to the 
unsigned bytes of the destination operand and stores the results to the destination 
operand. When an individual result is beyond the range of an unsigned byte (that is, 
greater than FFH), the saturated unsigned byte value of FFH is written to the 
destination operand.

The PADDUSW instruction adds the unsigned words of the source operand to the 
unsigned words of the destination operand and stores the results to the destination 
operand. When an individual result is beyond the range of an unsigned word (that is, 
greater than FFFFH), the saturated unsigned word value of FFFFH is written to the 
destination operand.

Opcode Instruction Description

0F DC /r PADDUSB mm, mm/m64 Add unsigned packed bytes from mm/m64 to unsigned 
packed bytes in mm and saturate.

0F DD /r PADDUSW mm, mm/m64 Add unsigned packed words from mm/m64 to unsigned 
packed words in mm and saturate.

Figure 3-7. Operation of the PADDUSB Instruction
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PADDUSB/PADDUSW—Packed Add Unsigned with Saturation (continued)

Operation

IF instruction is PADDUSB
THEN

DEST(7..0)  SaturateToUnsignedByte(DEST(7..0) + SRC (7..0) );
DEST(15..8)  SaturateToUnsignedByte(DEST(15..8) + SRC(15..8) );
DEST(23..16)  SaturateToUnsignedByte(DEST(23..16)+ SRC(23..16) );
DEST(31..24)  SaturateToUnsignedByte(DEST(31..24) + SRC(31..24) );
DEST(39..32)  SaturateToUnsignedByte(DEST(39..32) + SRC(39..32) );
DEST(47..40)  SaturateToUnsignedByte(DEST(47..40)+ SRC(47..40) );
DEST(55..48)  SaturateToUnsignedByte(DEST(55..48) + SRC(55..48) );
DEST(63..56)  SaturateToUnsignedByte(DEST(63..56) + SRC(63..56) );

ELSE { (* instruction is PADDUSW *)
DEST(15..0)  SaturateToUnsignedWord(DEST(15..0) + SRC(15..0) );
DEST(31..16)  SaturateToUnsignedWord(DEST(31..16) + SRC(31..16) );
DEST(47..32)  SaturateToUnsignedWord(DEST(47..32) + SRC(47..32) );
DEST(63..48)  SaturateToUnsignedWord(DEST(63..48) + SRC(63..48) );

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.



4:418 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation (continued)

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PAND—Logical AND

Description

Performs a bitwise logical AND operation on the quadword source (second) and 
destination (first) operands and stores the result in the destination operand location 
(see Figure 3-8). The source operand can be an MMX technology register or a quadword 
memory location; the destination operand must be an MMX technology register. Each 
bit of the result of the PAND instruction is set to 1 if the corresponding bits of the 
operands are both 1; otherwise it is made zero

Operation

DEST  DEST AND SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F DB /r PAND mm, mm/m64 AND quadword from mm/m64 to quadword in mm.

Figure 3-8. Operation of the PAND Instruction
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PAND—Logical AND (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.



Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:421

PANDN—Logical AND NOT

Description

Performs a bitwise logical NOT on the quadword destination operand (first operand). 
Then, the instruction performs a bitwise logical AND operation on the inverted 
destination operand and the quadword source operand (second operand). (See 
Figure 3-9.) Each bit of the result of the AND operation is set to one if the 
corresponding bits of the source and inverted destination bits are one; otherwise it is 
set to zero. The result is stored in the destination operand location. 

The source operand can be an MMX technology register or a quadword memory 
location; the destination operand must be an MMX technology register.

Operation

DEST (NOT DEST) AND SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F DF /r PANDN mm, mm/m64 AND quadword from mm/m64 to NOT quadword in mm.

Figure 3-9. Operation of the PANDN Instruction
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PANDN—Logical AND NOT (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal

Description

Compares the individual data elements (bytes, words, or doublewords) in the 
destination operand (first operand) to the corresponding data elements in the source 
operand (second operand). (See Figure 3-10.) If a pair of data elements are equal, the 
corresponding data element in the destination operand is set to all ones; otherwise, it is 
set to all zeros. The destination operand must be an MMX technology register; the 
source operand may be either an MMX technology register or a 64-bit memory location.

The PCMPEQB instruction compares the bytes in the destination operand to the 
corresponding bytes in the source operand, with the bytes in the destination operand 
being set according to the results.

The PCMPEQW instruction compares the words in the destination operand to the 
corresponding words in the source operand, with the words in the destination operand 
being set according to the results.

The PCMPEQD instruction compares the doublewords in the destination operand to the 
corresponding doublewords in the source operand, with the doublewords in the 
destination operand being set according to the results.

Opcode Instruction Description

0F 74 /r PCMPEQB mm, mm/m64 Compare packed bytes in mm/m64 with packed bytes in mm for 
equality.

0F 75 /r PCMPEQW mm, mm/m64 Compare packed words in mm/m64 with packed words in mm for 
equality.

0F 76 /r PCMPEQD mm, mm/m64 Compare packed doublewords in mm/m64 with packed 
doublewords in mm for equality.

Figure 3-10. Operation of the PCMPEQW Instruction
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PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal (continued)

Operation

IF instruction is PCMPEQB
THEN

IF DEST(7..0) = SRC(7..0)
THEN DEST(7  0)  FFH; 
ELSE DEST(7..0)  0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) = SRC(63..56)

THEN DEST(63..56)  FFH;
ELSE DEST(63..56)  0; 

ELSE IF instruction is PCMPEQW
THEN

IF DEST(15..0) = SRC(15..0) 
THEN DEST(15..0)  FFFFH;
ELSE DEST(15..0)  0;

* Continue comparison of second and third words in DEST and SRC *
IF DEST(63..48) = SRC(63..48)

THEN DEST(63..48)  FFFFH;
ELSE DEST(63..48)  0;

ELSE (* instruction is PCMPEQD *)
IF DEST(31..0) = SRC(31..0)

THEN DEST(31..0)  FFFFFFFFH; 
ELSE DEST(31..0)  0;

IF DEST(63..32) = SRC(63..32)
THEN DEST(63..32)  FFFFFFFFH;
ELSE DEST(63..32)  0;

FI;

Flags Affected

None:

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.
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PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal (continued)

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than

Description

Compare the individual signed data elements (bytes, words, or doublewords) in the 
destination operand (first operand) to the corresponding signed data elements in the 
source operand (second operand). (See Figure 3-11.) If a data element in the 
destination operand is greater than its corresponding data element in the source 
operand, the data element in the destination operand is set to all ones; otherwise, it is 
set to all zeros. The destination operand must be an MMX technology register; the 
source operand may be either an MMX technology register or a 64-bit memory location.

The PCMPGTB instruction compares the signed bytes in the destination operand to the 
corresponding signed bytes in the source operand, with the bytes in the destination 
operand being set according to the results.

The PCMPGTW instruction compares the signed words in the destination operand to the 
corresponding signed words in the source operand, with the words in the destination 
operand being set according to the results.

The PCMPGTD instruction compares the signed doublewords in the destination operand 
to the corresponding signed doublewords in the source operand, with the doublewords 
in the destination operand being set according to the results.

Opcode Instruction Description

0F 64 /r PCMPGTB mm, mm/m64 Compare packed bytes in mm with packed bytes in mm/m64 
for greater value.

0F 65 /r PCMPGTW mm, mm/m64 Compare packed words in mm with packed words in 
mm/m64 for greater value.

0F 66 /r PCMPGTD mm, mm/m64 Compare packed doublewords in mm with packed 
doublewords in mm/m64 for greater value.

Figure 3-11. Operation of the PCMPGTW Instruction
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PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than 
(continued)

Operation

IF instruction is PCMPGTB 
THEN

IF DEST(7..0) > SRC(7..0)
THEN DEST(7  0)  FFH; 
ELSE DEST(7..0)  0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) > SRC(63..56)

THEN DEST(63..56)  FFH;
ELSE DEST(63..56)  0; 

ELSE IF instruction is PCMPGTW
THEN 

IF DEST(15..0) > SRC(15..0)
THEN DEST(15..0)  FFFFH;
ELSE DEST(15..0) 0;

* Continue comparison of second and third bytes in DEST and SRC *
IF DEST(63..48) > SRC(63..48)

THEN DEST(63..48)  FFFFH;
ELSE DEST(63..48)  0;

ELSE { (* instruction is PCMPGTD *)
IF DEST(31..0) > SRC(31..0)

THEN DEST(31..0)  FFFFFFFFH; 
ELSE DEST(31..0)  0;

IF DEST(63..32) > SRC(63..32)
THEN DEST(63..32)  FFFFFFFFH;
ELSE DEST(63..32)  0;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault
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PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than 
(continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PMADDWD—Packed Multiply and Add

Description

Multiplies the individual signed words of the destination operand by the corresponding 
signed words of the source operand, producing four signed, doubleword results (see 
Figure 3-12). The two doubleword results from the multiplication of the high-order 
words are added together and stored in the upper doubleword of the destination 
operand; the two doubleword results from the multiplication of the low-order words are 
added together and stored in the lower doubleword of the destination operand. The 
destination operand must be an MMX technology register; the source operand may be 
either an MMX technology register or a 64-bit memory location.

The PMADDWD instruction wraps around to 80000000H only when all four words of 
both the source and destination operands are 8000H.

Operation

DEST(31..0)  (DEST(15..0)  SRC(15..0)) + (DEST(31..16)  SRC(31..16));
DEST(63..32)  (DEST(47..32)  SRC(47..32)) + (DEST(63..48)  SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F F5 /r PMADDWD mm, mm/m64 Multiply the packed words in mm by the packed words in 
mm/m64. Add the 32-bit pairs of results and store in mm 
as doubleword

Figure 3-12. Operation of the PMADDWD Instruction
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PMADDWD—Packed Multiply and Add (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PMULHW—Packed Multiply High

Description

Multiplies the four signed words of the source operand (second operand) by the four 
signed words of the destination operand (first operand), producing four signed, 
doubleword, intermediate results (see Figure 3-13). The high-order word of each 
intermediate result is then written to its corresponding word location in the destination 
operand. The destination operand must be an MMX technology register; the source 
operand may be either an MMX technology register or a 64-bit memory location.

Operation

DEST(15..0)  HighOrderWord(DEST(15..0)  SRC(15..0));
DEST(31..16)  HighOrderWord(DEST(31..16)  SRC(31..16));
DEST(47..32)  HighOrderWord(DEST(47..32)  SRC(47..32));
DEST(63..48)  HighOrderWord(DEST(63..48)  SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F E5 /r PMULHW mm, mm/m64 Multiply the signed packed words in mm by the signed 
packed words in mm/m64, then store the high-order word 
of each doubleword result in mm. 

Figure 3-13. Operation of the PMULHW Instruction
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PMULHW—Packed Multiply High (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PMULLW—Packed Multiply Low

Description

Multiplies the four signed or unsigned words of the source operand (second operand) 
with the four signed or unsigned words of the destination operand (first operand), 
producing four doubleword, intermediate results (see Figure 3-14). The low-order word 
of each intermediate result is then written to its corresponding word location in the 
destination operand. The destination operand must be an MMX technology register; the 
source operand may be either an MMX technology register or a 64-bit memory location.

Operation

DEST(15..0)  LowOrderWord(DEST(15..0)  SRC(15..0));
DEST(31..16)  LowOrderWord(DEST(31..16)  SRC(31..16));
DEST(47..32)  LowOrderWord(DEST(47..32)  SRC(47..32));
DEST(63..48)  LowOrderWord(DEST(63..48)  SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F D5 /r PMULLW mm, 
mm/m64

Multiply the packed words in mm with the packed words in 
mm/m64, then store the low-order word of each doubleword 
result in mm.

Figure 3-14. Operation of the PMULLW Instruction
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PMULLW—Packed Multiply Low (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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POR—Bitwise Logical OR

Description

Performs a bitwise logical OR operation on the quadword source (second) and 
destination (first) operands and stores the result in the destination operand location 
(see Figure 3-15). The source operand can be an MMX technology register or a 
quadword memory location; the destination operand must be an MMX technology 
register. Each bit of the result is made 0 if the corresponding bits of both operands are 
0; otherwise the bit is set to 1.

Operation

DEST  DEST OR SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F EB /r POR mm, mm/m64 OR quadword from mm/m64 to quadword in mm.

Figure 3-15. Operation of the POR Instruction.
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POR—Bitwise Logical OR (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.



Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:437

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the 
destination operand (first operand) to the left by the number of bits specified in the 
unsigned count operand (second operand). (See Figure 3-16.) The result of the shift 
operation is written to the destination operand. As the bits in the data elements are 
shifted left, the empty low-order bits are cleared (set to zero). If the value specified by 
the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a 
quadword), then the destination operand is set to all zeros. 

The destination operand must be an MMX technology register; the count operand can 
be either an MMX technology register, a 64-bit memory location, or an 8-bit immediate.

The PSLLW instruction shifts each of the four words of the destination operand to the 
left by the number of bits specified in the count operand; the PSLLD instruction shifts 
each of the two doublewords of the destination operand; and the PSLLQ instruction 
shifts the 64-bit quadword in the destination operand. As the individual data elements 
are shifted left, the empty low-order bit positions are filled with zeros.

Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift words in mm left by amount specified in mm/m64, while 
shifting in zeros.

0F 71 /6, ib PSLLW mm, imm8 Shift words in mm left by imm8, while shifting in zeros.

0F F2 /r PSLLD mm, mm/m64 Shift doublewords in mm left by amount specified in mm/m64, 
while shifting in zeros.

0F 72 /6 ib PSLLD mm, imm8 Shift doublewords in mm by imm8, while shifting in zeros.

0F F3 /r PSLLQ mm, mm/m64 Shift mm left by amount specified in mm/m64, while shifting in 
zeros.

0F 73 /6 ib PSLLQ mm, imm8 Shift mm left by Imm8, while shifting in zeros.

Figure 3-16. Operation of the PSLLW Instruction
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PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (continued)

Operation

IF instruction is PSLLW
THEN

DEST(15..0)  DEST(15..0) << COUNT;
DEST(31..16)  DEST(31..16) << COUNT;
DEST(47..32)  DEST(47..32) << COUNT;
DEST(63..48)  DEST(63..48) << COUNT;

ELSE IF instruction is PSLLD
THEN {

DEST(31..0)  DEST(31..0) << COUNT;
DEST(63..32)  DEST(63..32) << COUNT;

ELSE  (* instruction is PSLLQ *)
DEST  DEST << COUNT;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.
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PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PSRAW/PSRAD—Packed Shift Right Arithmetic

Description

Shifts the bits in the data elements (words or doublewords) in the destination operand 
(first operand) to the right by the amount of bits specified in the unsigned count 
operand (second operand). (See Figure 3-17.) The result of the shift operation is 
written to the destination operand. The empty high-order bits of each element are filled 
with the initial value of the sign bit of the data element. If the value specified by the 
count operand is greater than 15 (for words) or 31 (for doublewords), each destination 
data element is filled with the initial value of the sign bit of the element. 

The destination operand must be an MMX technology register; the count operand 
(source operand) can be either an MMX technology register, a 64-bit memory location, 
or an 8-bit immediate.

The PSRAW instruction shifts each of the four words in the destination operand to the 
right by the number of bits specified in the count operand; the PSRAD instruction shifts 
each of the two doublewords in the destination operand. As the individual data 
elements are shifted right, the empty high-order bit positions are filled with the sign 
value.

Opcode Instruction Description

0F E1 /r PSRAW mm, mm/m64 Shift words in mm right by amount specified in mm/m64 while 
shifting in sign bits.

0F 71 /4 ib PSRAW mm, imm8 Shift words in mm right by imm8 while shifting in sign bits

0F E2 /r PSRAD mm, mm/m64 Shift doublewords in mm right by amount specified in mm/m64 
while shifting in sign bits.

0F 72 /4 ib PSRAD mm, imm8 Shift doublewords in mm right by imm8 while shifting in sign 
bits.

Figure 3-17. Operation of the PSRAW Instruction
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PSRAW/PSRAD—Packed Shift Right Arithmetic (continued)

Operation
IF instruction is PSRAW

THEN
DEST(15..0)  SignExtend (DEST(15..0) >> COUNT);
DEST(31..16)  SignExtend (DEST(31..16) >> COUNT);
DEST(47..32)  SignExtend (DEST(47..32) >> COUNT);
DEST(63..48)  SignExtend (DEST(63..48) >> COUNT);

ELSE { (*instruction is PSRAD *)
DEST(31..0)  SignExtend (DEST(31..0) >> COUNT);
DEST(63..32)  SignExtend (DEST(63..32) >> COUNT);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.
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PSRAW/PSRAD—Packed Shift Right Arithmetic (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the 
destination operand (first operand) to the right by the number of bits specified in the 
unsigned count operand (second operand). (See Figure 3-18.) The result of the shift 
operation is written to the destination operand. As the bits in the data elements are 
shifted right, the empty high-order bits are cleared (set to zero). If the value specified 
by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a 
quadword), then the destination operand is set to all zeros. 

The destination operand must be an MMX technology register; the count operand can 
be either an MMX technology register, a 64-bit memory location, or an 8-bit immediate.

The PSRLW instruction shifts each of the four words of the destination operand to the 
right by the number of bits specified in the count operand; the PSRLD instruction shifts 
each of the two doublewords of the destination operand; and the PSRLQ instruction 
shifts the 64-bit quadword in the destination operand. As the individual data elements 
are shifted right, the empty high-order bit positions are filled with zeros.

Opcode Instruction Description

0F D1 /r PSRLW mm, mm/m64 Shift words in mm right by amount specified in mm/m64 
while shifting in zeros.

0F 71 /2 ib PSRLW mm, imm8 Shift words in mm right by imm8.

0F D2 /r PSRLD mm, mm/m64 Shift doublewords in mm right by amount specified in 
mm/m64 while shifting in zeros.

0F 72 /2 ib PSRLD mm, imm8 Shift doublewords in mm right by imm8.

0F D3 /r PSRLQ mm, mm/m64 Shift mm right by amount specified in mm/m64 while 
shifting in zeros.

0F 73 /2 ib PSRLQ mm, imm8 Shift mm right by imm8 while shifting in zeros.

Figure 3-18. Operation of the PSRLW Instruction
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PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (continued)

Operation

IF instruction is PSRLW
THEN {

DEST(15..0)  DEST(15..0) >> COUNT;
DEST(31..16)  DEST(31..16) >> COUNT;
DEST(47..32)  DEST(47..32) >> COUNT;
DEST(63..48)  DEST(63..48) >> COUNT;

ELSE IF instruction is PSRLD
THEN {

DEST(31..0)  DEST(31..0) >> COUNT;
DEST(63..32)  DEST(63..32) >> COUNT;

ELSE  (* instruction is PSRLQ *)
DEST  DEST >> COUNT;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.
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PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PSUBB/PSUBW/PSUBD—Packed Subtract

Description

Subtracts the individual data elements (bytes, words, or doublewords) of the source 
operand (second operand) from the individual data elements of the destination operand 
(first operand). (See Figure 3-19.) If the result of a subtraction exceeds the range for 
the specified data type (overflows), the result is wrapped around, meaning that the 
result is truncated so that only the lower (least significant) bits of the result are 
returned (that is, the carry is ignored).

The destination operand must be an MMX technology register; the source operand can 
be either an MMX technology register or a quadword memory location. 

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the 
destination operand and stores the results to the destination operand. When an 
individual result is too large to be represented in 8 bits, the lower 8 bits of the result 
are written to the destination operand and therefore the result wraps around.

The PSUBW instruction subtracts the words of the source operand from the words of the 
destination operand and stores the results to the destination operand. When an 
individual result is too large to be represented in 16 bits, the lower 16 bits of the result 
are written to the destination operand and therefore the result wraps around.

The PSUBD instruction subtracts the doublewords of the source operand from the 
doublewords of the destination operand and stores the results to the destination 
operand. When an individual result is too large to be represented in 32 bits, the lower 
32 bits of the result are written to the destination operand and therefore the result 
wraps around.

Opcode Instruction Description

0F F8 /r PSUBB mm, mm/m64 Subtract packed bytes in mm/m64 from packed bytes in mm.

0F F9 /r PSUBW mm, mm/m64 Subtract packed words inmm/m64 from packed words in mm.

0F FA /r PSUBD mm, mm/m64 Subtract packed doublewords in mm/m64 from packed 
doublewords in mm.

Figure 3-19. Operation of the PSUBW Instruction
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PSUBB/PSUBW/PSUBD—Packed Subtract (continued)

Note that like the integer SUB instruction, the PSUBB, PSUBW, and PSUBD instructions 
can operate on either unsigned or signed (two's complement notation) packed integers. 
Unlike the integer instructions, none of the MMX technology instructions affect the 
EFLAGS register. With MMX technology instructions, there are no carry or overflow flags 
to indicate when overflow has occurred, so the software must control the range of 
values or else use the “with saturation” MMX technology instructions.

Operation

IF instruction is PSUBB
THEN

DEST(7..0)  DEST(7..0) - SRC(7..0); 
DEST(15..8)  DEST(15..8) - SRC(15..8);
DEST(23..16)  DEST(23..16) - SRC(23..16);
DEST(31..24)  DEST(31..24) - SRC(31..24);
DEST(39..32)  DEST(39..32) - SRC(39..32);
DEST(47..40)  DEST(47..40) - SRC(47..40);
DEST(55..48)  DEST(55..48) - SRC(55..48);
DEST(63..56)  DEST(63..56) - SRC(63..56);

ELSEIF instruction is PSUBW
THEN

DEST(15..0)  DEST(15..0) - SRC(15..0);
DEST(31..16)  DEST(31..16) - SRC(31..16);
DEST(47..32)  DEST(47..32) - SRC(47..32);
DEST(63..48)  DEST(63..48) - SRC(63..48);

ELSE { (* instruction is PSUBD *)
DEST(31..0)  DEST(31..0) - SRC(31..0);
DEST(63..32)  DEST(63..32) - SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault
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PSUBB/PSUBW/PSUBD—Packed Subtract (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PSUBSB/PSUBSW—Packed Subtract with Saturation

Description

Subtracts the individual signed data elements (bytes or words) of the source operand 
(second operand) from the individual signed data elements of the destination operand 
(first operand). (See Figure 3-20.) If the result of a subtraction exceeds the range for 
the specified data type, the result is saturated. The destination operand must be an 
MMX technology register; the source operand can be either an MMX technology register 
or a quadword memory location.

The PSUBSB instruction subtracts the signed bytes of the source operand from the 
signed bytes of the destination operand and stores the results to the destination 
operand. When an individual result is beyond the range of a signed byte (that is, 
greater than 7FH or less than 80H), the saturated byte value of 7FH or 80H, 
respectively, is written to the destination operand.

The PSUBSW instruction subtracts the signed words of the source operand from the 
signed words of the destination operand and stores the results to the destination 
operand. When an individual result is beyond the range of a signed word (that is, 
greater than 7FFFH or less than 8000H), the saturated word value of 7FFFH or 8000H, 
respectively, is written to the destination operand.

Opcode Instruction Description

0F E8 /r PSUBSB mm, mm/m64 Subtract signed packed bytes in mm/m64 from signed 
packed bytes in mm and saturate.

0F E9 /r PSUBSW mm, mm/m64 Subtract signed packed words in mm/m64 from signed 
packed words in mm and saturate.

Figure 3-20. Operation of the PSUBSW Instruction
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PSUBSB/PSUBSW—Packed Subtract with Saturation (continued)

Operation

IF instruction is PSUBSB
THEN

DEST(7..0)  SaturateToSignedByte(DEST(7..0) - SRC (7..0));
DEST(15..8)  SaturateToSignedByte(DEST(15..8) - SRC(15..8));
DEST(23..16)  SaturateToSignedByte(DEST(23..16) - SRC(23..16));
DEST(31..24)  SaturateToSignedByte(DEST(31..24) - SRC(31..24));
DEST(39..32)  SaturateToSignedByte(DEST(39..32) - SRC(39..32));
DEST(47..40)  SaturateToSignedByte(DEST(47..40) - SRC(47..40));
DEST(55..48)  SaturateToSignedByte(DEST(55..48) - SRC(55..48));
DEST(63..56)  SaturateToSignedByte(DEST(63..56) - SRC(63..56))

ELSE (* instruction is PSUBSW *)
DEST(15..0)  SaturateToSignedWord(DEST(15..0) - SRC(15..0));
DEST(31..16)  SaturateToSignedWord(DEST(31..16) - SRC(31..16));
DEST(47..32)  SaturateToSignedWord(DEST(47..32) - SRC(47..32));
DEST(63..48)  SaturateToSignedWord(DEST(63..48) - SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.
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PSUBSB/PSUBSW—Packed Subtract with Saturation (continued)

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation

Description

Subtracts the individual unsigned data elements (bytes or words) of the source operand 
(second operand) from the individual unsigned data elements of the destination 
operand (first operand). (See Figure 3-21.) If the result of an individual subtraction 
exceeds the range for the specified unsigned data type, the result is saturated. The 
destination operand musts be an MMX technology register; the source operand can be 
either an MMX technology register or a quadword memory location.

The PSUBUSB instruction subtracts the unsigned bytes of the source operand from the 
unsigned bytes of the destination operand and stores the results to the destination 
operand. When an individual result is less than zero (a negative value), the saturated 
unsigned byte value of 00H is written to the destination operand.

The PSUBUSW instruction subtracts the unsigned words of the source operand from the 
unsigned words of the destination operand and stores the results to the destination 
operand. When an individual result is less than zero (a negative value), the saturated 
unsigned word value of 0000H is written to the destination operand.

Opcode Instruction Description

0F D8 /r PSUBUSB mm, mm/m64 Subtract unsigned packed bytes in mm/m64 from 
unsigned packed bytes in mm and saturate.

0F D9 /r PSUBUSW mm, 
mm/m64

Subtract unsigned packed words in mm/m64 from 
unsigned packed words in mm and saturate.

Figure 3-21. Operation of the PSUBUSB Instruction
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PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation 
(continued)

Operation

IF instruction is PSUBUSB
THEN

DEST(7..0)  SaturateToUnsignedByte (DEST(7..0 - SRC (7..0) );
DEST(15..8)  SaturateToUnsignedByte ( DEST(15..8) - SRC(15..8) );
DEST(23..16)  SaturateToUnsignedByte (DEST(23..16) - SRC(23..16) );
DEST(31..24)  SaturateToUnsignedByte (DEST(31..24) - SRC(31..24) );
DEST(39..32)  SaturateToUnsignedByte (DEST(39..32) - SRC(39..32) );
DEST(47..40)  SaturateToUnsignedByte (DEST(47..40) - SRC(47..40) );
DEST(55..48)  SaturateToUnsignedByte (DEST(55..48) - SRC(55..48) );
DEST(63..56)  SaturateToUnsignedByte (DEST(63..56) - SRC(63..56) );

ELSE { (* instruction is PSUBUSW *)
DEST(15..0)  SaturateToUnsignedWord (DEST(15..0) - SRC(15..0) );
DEST(31..16)  SaturateToUnsignedWord (DEST(31..16) - SRC(31..16) );
DEST(47..32)  SaturateToUnsignedWord (DEST(47..32) - SRC(47..32) );
DEST(63..48)  SaturateToUnsignedWord (DEST(63..48) - SRC(63..48) );

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.
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PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation 
(continued)

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed 
Data

Description

Unpacks and interleaves the high-order data elements (bytes, words, or doublewords) 
of the destination operand (first operand) and source operand (second operand) into 
the destination operand (see Figure 3-22). The low-order data elements are ignored. 
The destination operand must be an MMX technology register; the source operand may 
be either an MMX technology register or a 64-bit memory location. When the source 
data comes from a memory operand, the full 64-bit operand is accessed from memory, 
but the instruction uses only the high-order 32 bits.

The PUNPCKHBW instruction interleaves the four high-order bytes of the source 
operand and the four high-order bytes of the destination operand and writes them to 
the destination operand.

The PUNPCKHWD instruction interleaves the two high-order words of the source 
operand and the two high-order words of the destination operand and writes them to 
the destination operand.

The PUNPCKHDQ instruction interleaves the high-order doubleword of the source 
operand and the high-order doubleword of the destination operand and writes them to 
the destination operand.

If the source operand is all zeros, the result (stored in the destination operand) 
contains zero extensions of the high-order data elements from the original value in the 
destination operand. With the PUNPCKHBW instruction the high-order bytes are zero 
extended (that is, unpacked into unsigned words), and with the PUNPCKHWD 
instruction, the high-order words are zero extended (unpacked into unsigned 
doublewords).

Opcode Instruction Description

0F 68 /r PUNPCKHBW mm, mm/m64 Interleave high-order bytes from mm and mm/m64 into mm.

0F 69 /r PUNPCKHWD mm, 
mm/m64

Interleave high-order words from mm and mm/m64 into mm.

0F 6A /r PUNPCKHDQ mm, mm/m64 Interleave high-order doublewords from mm and mm/m64 into 
mm.

Figure 3-22. High-order Unpacking and Interleaving of Bytes with the 
PUNPCKHBW Instruction
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PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed Data 
(continued)

Operation

IF instruction is PUNPCKHBW
THEN

DEST(7..0)  DEST(39..32);
DEST(15..8)  SRC(39..32);
DEST(23..16)  DEST(47..40);
DEST(31..24)  SRC(47..40);
DEST(39..32)  DEST(55..48);
DEST(47..40)  SRC(55..48);
DEST(55..48)  DEST(63..56);
DEST(63..56)  SRC(63..56);

ELSE IF instruction is PUNPCKHW
THEN

DEST(15..0)  DEST(47..32); 
DEST(31..16)  SRC(47..32);
DEST(47..32)  DEST(63..48);
DEST(63..48)  SRC(63..48);

ELSE (* instruction is PUNPCKHDQ *)
DEST(31..0)  DEST(63..32)
DEST(63..32)  SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.
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PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed Data 
(continued)

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data

Description

Unpacks and interleaves the low-order data elements (bytes, words, or doublewords) of 
the destination and source operands into the destination operand (see Figure 3-23). 
The destination operand must be an MMX technology register; the source operand may 
be either an MMX technology register or a memory location. When source data comes 
from an MMX technology register, the upper 32 bits of the register are ignored. When 
the source data comes from a memory, only 32-bits are accessed from memory.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand 
and the four low-order bytes of the destination operand and writes them to the 
destination operand.

The PUNPCKLWD instruction interleaves the two low-order words of the source operand 
and the two low-order words of the destination operand and writes them to the 
destination operand.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source 
operand and the low-order doubleword of the destination operand and writes them to 
the destination operand.

If the source operand is all zeros, the result (stored in the destination operand) 
contains zero extensions of the high-order data elements from the original value in the 
destination operand. With the PUNPCKLBW instruction the low-order bytes are zero 
extended (that is, unpacked into unsigned words), and with the PUNPCKLWD 
instruction, the low-order words are zero extended (unpacked into unsigned 
doublewords).

Opcode Instruction Description

0F 60 /r PUNPCKLBW mm, 
mm/m32

Interleave low-order bytes from mm and mm/m64 into 
mm.

0F 61 /r PUNPCKLWD mm, 
mm/m32

Interleave low-order words from mm and mm/m64 into 
mm.

0F 62 /r PUNPCKLDQ mm, mm/m32 Interleave low-order doublewords from mm and mm/m64 
into mm.

Figure 3-23. Low-order Unpacking and Interleaving of Bytes with the 
PUNPCKLBW Instruction

3006032

PUNPCKLBW mm, mm/m32
mm/m32 mm

1 1 1 1 1 1 1 12 2 2 2

mm
2 1 2 1 2 1 2 13 3 2 2 1 1 0 0

3 2 1 0 7 6 5 4 3 2 1 0



Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:459

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data 
(continued)

Operation

IF instruction is PUNPCKLBW
THEN

DEST(63..56) SRC(31..24);
DEST(55..48)  DEST(31..24);
DEST(47..40)  SRC(23..16);
DEST(39..32)  DEST(23..16);
DEST(31..24)  SRC(15..8);
DEST(23..16) DEST(15..8);
DEST(15..8)  SRC(7..0);
DEST(7..0)  DEST(7..0);

ELSE IF instruction is PUNPCKLWD
THEN

DEST(63..48)  SRC(31..16);
DEST(47..32)  DEST(31..16);
DEST(31..16)  SRC(15..0);
DEST(15..0)  DEST(15..0);

ELSE (* instruction is PUNPCKLDQ *)
DEST(63..32)  SRC(31..0);
DEST(31..0)  DEST(31..0);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.
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PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data 
(continued)

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.
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PXOR—Logical Exclusive OR

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the quadword source 
(second) and destination (first) operands and stores the result in the destination 
operand location (see Figure 3-24). The source operand can be an MMX technology 
register or a quadword memory location; the destination operand must be an MMX 
technology register. Each bit of the result is 1 if the corresponding bits of the two 
operands are different; each bit is 0 if the corresponding bits of the operands are the 
same.

Operation

DEST  DEST XOR SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption 
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data 
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption 
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access 
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F EF /r PXOR mm, mm/m64 XOR quadword from mm/m64 to quadword in mm.

Figure 3-24. Operation of the PXOR Instruction
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PXOR—Logical Exclusive OR (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS 
or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment 
limit. 

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions 

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space 
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

§
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IA-32 SSE Instruction Reference 4

4.1 IA-32 SSE Instructions

This section lists the IA-32 SSE instructions designed to increase performance of IA-32 
3D and floating-point intensive applications. For details on SSE please refer to the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

4.2 About the Intel® SSE Architecture

The Intel SSE architecture accelerates performance of 3D graphics applications over the 
current P6 generation of the Pentium Pro, Pentium II and Pentium III processors. The 
programming model is similar to the MMX technology model except that instructions 
now operate on new packed floating-point data types which contain four 
single-precision floating-point numbers.

The Intel SSE architecture introduces new general purpose floating-point instructions, 
which operate on a new set of eight 128-bit SSE registers. This gives the programmer 
the ability to develop algorithms that can finely mix packed single-precision 
floating-point and integer using both SSE and MMX technology instructions respectively. 
In addition to these instructions, the Intel SSE architecture also provides new 
instructions to control cacheability of all MMX technology data types. These include 
ability to stream data into and from the processor while minimizing pollution of the 
caches and the ability to prefetch data before it is actually used. The main focus of 
packed floating-point instructions is the acceleration of 3D geometry. The new definition 
also contains additional SIMD Integer instructions to accelerate 3D rendering and video 
encoding and decoding. Together with the cacheability control instruction, this 
combination enables the development of new algorithms that can significantly 
accelerate 3D graphics. 

The new SSE state requires OS support for saving and restoring the new state during a 
context switch. A new set of extended FSAVE/FRSTOR instructions will permit 
saving/restoring new and existing state for applications and OS. To make use of these 
new instructions, an application must verify that the processor supports the Intel SSE 
architecture and the operating system supports this new extension. If both the 
extension and support is enabled, then the software application can use the new 
features.

The SSE instruction set is fully compatible with all software written for Intel architecture 
microprocessors. All existing software continues to run correctly, without modification, 
on microprocessors that incorporate the Intel SSE architecture, as well as in the 
presence of existing and new applications that incorporate this technology.
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4.3 Single Instruction Multiple Data

The Intel SSE architecture uses the Single Instruction Multiple Data (SIMD) technique. 
This technique speeds up software performance by processing multiple data elements 
in parallel, using a single instruction. The Intel SSE architecture supports operations on 
packed single-precision floating-point data types, and the additional SIMD Integer 
instructions support operations on packed quadrate data types (byte, word, or 
double-word). This approach was chosen because most 3D graphics and DSP 
applications have the following characteristics:

• Inherently parallel

•  Wide dynamic range, hence floating-point based

•  Regular and re-occurring memory access patterns

•  Localized re-occurring operations performed on the data

•  Data independent control flow

The Intel SSE architecture is 100% compatible with the IEEE Standard 754 for Binary 
Floating-point Arithmetic. The SSE instructions are accessible from all IA execution 
modes: Protected mode, Real address mode, and Virtual 8086 mode.New Features

The Intel SSE architecture provides the following new features, while maintaining 
backward compatibility with all existing Intel architecture microprocessors, IA 
applications and operating systems.

• New data type

• Eight SSE registers

• Enhanced instruction set 

The Intel SSE architecture can enhance the performance of applications that use these 
features.

4.4 New Data Types

The principal data type of the Intel SSE architecture is a packed single-precision 
floating-point operand, specifically:

• Four 32-bit single-precision (SP) floating-point numbers (Figure 4-1).

The SIMD Integer instructions will operate on the packed byte, word or doubleword 
data types. The prefetch instruction works on typeless data of size 32 bytes or greater.

Figure 4-1. Packed Single-FP Data Type

Packed Single-FP

127 96 95 65 63 32 31 0
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4.5 SSE Registers

The Intel SSE architecture provides eight 128-bit general purpose registers, each of 
which can be directly addressed. These registers are new state, and require support 
from the operating system to use them.

The SSE registers can hold packed 128-bit data. The SSE instructions access the SSE 
registers directly using the registers names XMM0 to XMM7 (Figure 4-2).

SSE registers can be used to perform calculation on data. They cannot be used to 
address memory; addressing is accomplished by using the integer registers and 
existing IA addressing modes. 

The contents of SSE registers are cleared upon reset.

There is a new control/status register MXCSR which is used to mask/unmask numerical 
exception handling, to set rounding modes, to set flush-to-zero mode, and to view 
status flags.

4.6 Extended Instruction Set

The Intel SSE architecture supplies a rich set of instructions that operate on either all or 
the least significant pairs of packed data operands, in parallel. The packed instructions 
operate on a pair of operands as shown in Figure 4-3 while scalar instructions always 
operate on the least significant pair of the two operands as shown in Figure 4-4; for 
scalar operations, the three upper components from the first operand are passed 
through to the destination. In general, the address of a memory operand has to be 
aligned on a 16-byte boundary for all instructions, except for unaligned loads and 
stores.

Figure 4-2. SSE Register Set
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4.6.1 Instruction Group Review

4.6.1.1 Arithmetic Instructions

Packed/Scalar Addition and Subtraction
The ADDPS (Add packed single-precision floating-point) and SUBPS (Subtract packed 
single-precision floating-point) instructions add or subtract four pairs of packed 
single-precision floating-point operands.

The ADDSS (Add scalar single-precision floating-point) and SUBSS (Subtract scalar 
single-precision floating-point) instructions add or subtract the least significant pair of 
packed single-precision floating-point operands; the upper three fields are passed 
through from the source operand.

Packed/Scalar Multiplication and Division
The MULPS (Multiply packed single-precision floating-point) instruction multiplies four 
pairs of packed single-precision floating-point operands.

The MULSS (Multiply scalar single-precision floating-point) instruction multiplies the 
least significant pair of packed single-precision floating-point operands; the upper three 
fields are passed through from the source operand.

Figure 4-3. Packed Operation

Figure 4-4. Scalar Operation

X1 (SP) X2 (SP) X3 (SP) X4 (SP)
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The DIVPS (Divide packed single-precision floating-point) instruction divides four pairs 
of packed single-precision floating-point operands.

The DIVSS (Divide scalar single-precision floating-point) instruction divides the least 
significant pair of packed single-precision floating-point operands; the upper three 
fields are passed through from the source operand.

Packed/Scalar Square Root
The SQRTPS (Square root packed single-precision floating-point) instruction returns the 
square root of the packed four single-precision floating-point numbers from the source 
to a destination register.

The SQRTSS (Square root scalar single-precision floating-point) instruction returns the 
square root of the least significant component of the packed single-precision 
floating-point numbers from source to a destination register; the upper three fields are 
passed through from the source operand.

Packed Maximum/Minimum
The MAXPS (Maximum packed single-precision floating-point) instruction returns the 
maximum of each pair of packed single-precision floating-point numbers into the 
destination register.

The MAXSS (Maximum scalar single-precision floating-point) instructions returns the 
maximum of the least significant pair of packed single-precision floating-point numbers 
into the destination register; the upper three fields are passed through from the source 
operand, to the destination register.

The MINPS (Minimum packed single-precision floating-point) instruction returns the 
minimum of each pair of packed single-precision floating-point numbers into the 
destination register.

The MINSS (Minimum scalar single-precision floating-point) instruction returns the 
minimum of the least significant pair of packed single-precision floating-point numbers 
into the destination register; the upper three fields are passed through from the source 
operand, to the destination register

4.6.1.2 Logical Instructions

The ANDPS (Bit-wise packed logical AND for single-precision floating-point) instruction 
returns a bitwise AND between the two operands.

The ANDNPS (Bit-wise packed logical AND NOT for single-precision floating-point) 
instruction returns a bitwise AND NOT between the two operands.

The ORPS (Bit-wise packed logical OR for single-precision floating-point) instruction 
returns a bitwise OR between the two operands.

The XORPS (Bit-wise packed logical XOR for single-precision floating-point) instruction 
returns a bitwise XOR between the two operands.
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4.6.1.3 Compare Instructions

The CMPPS (Compare packed single-precision floating-point) instruction compares four 
pairs of packed single-precision floating-point numbers using the immediate operand as 
a predicate, returning per SP field an all “1” 32-bit mask or an all “0” 32-bit mask as a 
result. The instruction supports a full set of 12 conditions: equal, less than, less than 
equal, greater than, greater than or equal, unordered, not equal, not less than, not less 
than or equal, not greater than, not greater than or equal, ordered.

The CMPSS (Compare scalar single-precision floating-point) instruction compares the 
least significant pairs of packed single-precision floating-point numbers using the 
immediate operand as a predicate (same as CMPPS), returning per SP field an all “1” 
32-bit mask or an all “0” 32-bit mask as a result. 

The COMISS (Compare scalar single-precision floating-point ordered and set EFLAGS) 
instruction compares the least significant pairs of packed single-precision floating-point 
numbers and sets the ZF,PF,CF bits in the EFLAGS register (the OF, SF and AF bits are 
cleared).

The UCOMISS (Unordered compare scalar single-precision floating-point ordered and 
set EFLAGS) instruction compares the least significant pairs of packed single-precision 
floating-point numbers and sets the ZF,PF,CF bits in the EFLAGS register as described 
above (the OF, SF and AF bits are cleared). 

4.6.1.4 Shuffle Instructions

The SHUFPS (Shuffle packed single-precision floating-point) instruction is able to 
shuffle any of the packed four single-precision floating-point numbers from one source 
operand to the lower two destination fields; the upper two destination fields are 
generated from a shuffle of any of the four SP FP numbers from the second source 
operand (Figure 4-5). By using the same register for both sources, SHUFPS can return 
any combination of the four SP FP numbers from this register. 

The UNPCKHPS (Unpacked high packed single-precision floating-point) instruction 
performs an interleaved unpack of the high-order data elements of first and second 
packed single-precision floating-point operands. It ignores the lower half part of the 

Figure 4-5. Packed Shuffle Operation
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sources (Figure 4-6). When unpacking from a memory operand, the full 128-bit 
operand is accessed from memory but only the high order 64 bits are utilized by the 
instruction.

The UNPCKLPS (Unpacked low packed single-precision floating-point) instruction 
performs an interleaved unpack of the low-order data elements of first and second 
packed single-precision floating-point operands. It ignores the higher half part of the 
sources (Figure 4-7). When unpacking from a memory operand, the full 128-bit 
operand is accessed from memory but only the low order 64 bits are utilized by the 
instruction.

4.6.1.5 Conversion Instructions

These instructions support packed and scalar conversions between 128-bit SSE 
registers and either 64-bit integer MMX technology registers or 32-bit integer IA-32 
registers. The packed versions behave identically to original MMX technology 
instructions, in the presence of x87-FP instructions, including: 

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the 
corresponding x87-FP register.

• Use of EMMS for transition from MMX technology to x87-FP.

Figure 4-6. Unpack High Operation

Figure 4-7. Unpack Low Operation
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The CVTPI2PS (Convert packed 32-bit integer to packed single-precision floating-point) 
instruction converts two 32-bit signed integers in a MMX technology register to the two 
least significant single-precision floating-point numbers; when the conversion is 
inexact, the rounded value according to the rounding mode in MXCSR is returned. The 
upper two significant numbers in the destination register are retained.

The CVTSI2SS (Convert scalar 32-bit integer to scalar single-precision floating-point) 
instruction converts a 32-bit signed integer in a MMX technology register to the least 
significant single-precision floating-point number; when the conversion is inexact, the 
rounded value according to the rounding mode in MXCSR is returned. The upper three 
significant numbers in the destination register are retained.

The CVTPS2PI (Convert packed single-precision floating-point to packed 32-bit integer) 
instruction converts the two least significant single-precision floating-point numbers to 
two 32-bit signed integers in a MMX technology register; when the conversion is 
inexact, the rounded value according to the rounding mode in MXCSR is returned. The 
CVTTPS2PI (Convert truncate packed single-precision floating-point to packed 32-bit 
integer) instruction is similar to CVTPS2PI except if the conversion is inexact, in which 
case the truncated result is returned.

The CVTSS2SI (Convert scalar single-precision floating-point to a 32-bit integer) 
instruction converts the least significant single-precision floating-point number to a 
32-bit signed integer in an Intel architecture 32-bit integer register; when the 
conversion is inexact, the rounded value according to the rounding mode in MXCSR is 
returned.The CVTTSS2SI (Convert truncate scalar single-precision floating-point to 
scalar 32-bit integer) instruction is similar to CVTSS2SI except if the conversion is 
inexact, the truncated result is returned.

4.6.1.6 Data Movement Instructions

The MOVAPS (Move aligned packed single-precision floating-point) instruction transfers 
128-bits of packed data from memory to SSE registers and vice versa, or between SSE 
registers. The memory address is aligned to 16-byte boundary; if not then a general 
protection exception will occur.

The MOVUPS (Move unaligned packed single-precision floating-point) instruction 
transfers 128-bits of packed data from memory to SSE registers and vice versa, or 
between SSE registers. No assumption is made for alignment.

The MOVHPS (Move aligned high packed single-precision floating-point) instruction 
transfers 64-bits of packed data from memory to the upper two fields of a SSE register 
and vice versa. The lower field is left unchanged. 

The MOVLPS (Move aligned low packed single-precision floating-point) instruction 
transfers 64-bits of packed data from memory to the lower two fields of a SSE register 
and vice versa. The upper field is left unchanged. 

The MOVMSKPS (Move mask packed single-precision floating-point) instruction 
transfers the most significant bit of each of the four packed single-precision 
floating-point number to an IA integer register. This 4-bit value can then be used as a 
condition to perform branching.
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The MOVSS (Move scalar single-precision floating-point) instruction transfers a single 
32-bit floating-point number from memory to a SSE register or vice versa, and between 
registers.

4.6.1.7 State Management Instructions

The LDMXCSR (Load SSE Control and Status Register) instruction loads the SSE control 
and status register from memory. STMXCSR (Store SSE Control and Status Register) 
instruction stores the SSE control and status word to memory.

The FXSAVE instruction saves FP and MMX technology state and SSE state to memory. 
Unlike FSAVE, FXSAVE does not clear the x87-FP state. FXRSTOR loads FP and MMX 
technology state and SSE state from memory. 

4.6.1.8 Additional SIMD Integer Instructions 

Similar to the conversions instructions discussed in Section 4.6.1.5, “Conversion 
Instructions” on page 4:469, these SIMD Integer instructions also behave identically to 
original MMX technology instructions, in the presence of x87-FP instructions.

The PAVGB/PAVGW (Average unsigned source sub-operands, without incurring a loss in 
precision) instructions add the unsigned data elements of the source operand to the 
unsigned data elements of the destination register. The results of the add are then each 
independently right shifted right by one bit position. The high order bits of each 
element are filled with the carry bits of the sums. To prevent cumulative round-off 
errors, an averaging is performed. The low order bit of each final shifted result is set to 
1 if at least one of the two least significant bits of the intermediate unshifted shifted 
sum is 1. 

The PEXTRW (Extract 16-bit word from MMX technology register) instruction moves the 
word in a MMX technology register selected by the two least significant bits of the 
immediate operand to the lower half of a 32-bit integer register; the upper word in the 
integer register is cleared.

The PINSRW (Insert 16-bit word into MMX technology register) instruction moves the 
lower word in a 32-bit integer register or 16-bit word from memory into one of the four 
word locations in a MMX technology register, selected by the two least significant bits of 
the immediate operand.

The PMAXUB/PMAXSW (Maximum of packed unsigned integer bytes or signed integer 
words) instruction returns the maximum of each pair of packed elements into the 
destination register.

The PMINUB/PMINSW (Minimum of packed unsigned integer bytes or signed integer 
words) instructions returns the minimum of each pair of packed data elements into the 
destination register.

The PMOVMSKB (Move Byte Mask from MMX technology register) instruction returns an 
8-bit mask formed of the most significant bits of each byte of its source operand in a 
MMX technology register to an IA integer register. 
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The PMULHUW (Unsigned high packed integer word multiply in MMX technology 
register) instruction performs an unsigned multiply on each word field of the two source 
MMX technology registers, returning the high word of each result to a MMX technology 
register.

The PSADBW (Sum of absolute differences) instruction computes the absolute 
difference for each pair of sub-operand byte sources and then accumulates the 8 
differences into a single 16-bit result. 

The PSHUFW (Shuffle packed integer word in MMX technology register) instruction 
performs a full shuffle of any source word field to any result word field, using an 8-bit 
immediate operand.

4.6.1.9 Cacheability Control Instructions

Data referenced by a programmer can have temporal (data will be used again) or 
spatial (data will be in adjacent locations, e.g. same cache line) locality. Some 
multimedia data types, such as the display list in a 3D graphics application, are 
referenced once and not reused in the immediate future. We will refer to this data type 
as non-temporal data. Thus the programmer does not want the application’s cached 
code and data to be overwritten by this non-temporal data. The cacheability control 
instructions enable the programmer to control caching so that non-temporal accesses 
will minimize cache pollution. 

In addition, the execution engine needs to be fed such that it does not become stalled 
waiting for data. SSE instructions allow the programmer to prefetch data long before 
it’s final use. These instructions are not architectural since they do not update any 
architectural state, and are specific to each implementation. The programmer may have 
to tune his application for each implementation to take advantage of these instructions. 
These instructions merely provide a hint to the hardware, and they will not generate 
exceptions or faults. Excessive use of prefetch instructions may be throttled by the 
processor.

The following four instructions provide hints to the cache hierarchy which enables the 
data to be prefetched to different levels of the cache hierarchy and avoid polluting 
cache with non-temporal data.

The MASKMOVQ (Non-temporal byte mask store of packed integer in a MMX technology 
register) instruction stores data from a MMX technology register to the location 
specified by the EDI register. The most significant bit in each byte of the second MMX 
technology mask register is used to selectively write the data of the first register on a 
per-byte basis. The instruction is implicitly weakly-ordered, with all of the 
characteristics of the WC memory type; successive non-temporal stores may not write 
memory in program-order, do not write-allocate (i.e. the processor will not fetch the 
corresponding cache line into the cache hierarchy, prior to performing the store), write 
combine/collapse, and minimize cache pollution.

The MOVNTQ (Non-temporal store of packed integer in a MMX technology register) 
instruction stores data from a MMX technology register to memory. The instruction is 
implicitly weakly-ordered, does not write-allocate and minimizes cache pollution.
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The MOVNTPS (Non-temporal store of packed single-precision floating-point) 
instruction stores data from a SSE register to memory. The memory address must be 
aligned to a 16-byte boundary; if it is not aligned, a general protection exception will 
occur. The instruction is implicitly weakly-ordered, does not write-allocate and 
minimizes cache pollution.

The main difference between a non-temporal store and a regular cacheable store is in 
the write-allocation policy. The memory type of the region being written to can override 
the non-temporal hint, leading to the following considerations:

• If the programmer specifies a non-temporal store to uncacheable memory, then the 
store behaves like an uncacheable store; the non-temporal hint is ignored and the 
memory type for the region is retained. Uncacheable as referred to here means that 
the region being written to has been mapped with either a UC or WP memory type. 
If the memory region has been mapped as WB, WT or WC, the non-temporal store 
will implement weakly-ordered (WC) semantic behavior.

• If the programmer specifies a non-temporal store to cacheable memory, two cases 
may result:

• If the data is present in the cache hierarchy, the instruction will ensure 
consistency. A given processor may choose different ways to implement this; 
some examples include: updating data in-place in the cache hierarchy while 
preserving the memory type semantics assigned to that region, or evicting the 
data from the caches and writing the new non-temporal data to memory (with 
WC semantics).

• If the data is not present in the cache hierarchy, and the destination region is 
mapped as WB, WT or WC, the transaction will be weakly ordered, and is 
subject to all WC memory semantics. The non-temporal store will not write 
allocate. Different implementations may choose to collapse and combine these 
stores.

• In general, WC semantics require software to ensure coherence, with respect to 
other processors and other system agents (such as graphics cards). Appropriate 
use of synchronization and a fencing operation (see SFENCE, below) must be 
performed for producer-consumer usage models. Fencing ensures that all system 
agents have global visibility of the stored data; for instance, failure to fence may 
result in a written cache line staying within a processor, and the line would not be 
visible to other agents. For processors which implement non-temporal stores by 
updating data in-place that already resides in the cache hierarchy, the destination 
region should also be mapped as WC. Otherwise if mapped as WB or WT, there is 
the potential for speculative processor reads to bring the data into the caches; in 
this case, non-temporal stores would then update in place, and data would not be 
flushed from the processor by a subsequent fencing operation.

• The memory type visible on the bus in the presence of memory type aliasing is 
implementation specific. As one possible example, the memory type written to the 
bus may reflect the memory type for the first store to this line, as seen in program 
order; other alternatives are possible. This behavior should be considered reserved, 
and dependency on the behavior of any particular implementation risks future 
incompatibility.

The PREFETCH (Load 32 or greater number of bytes) instructions load either 
non-temporal data or temporal data in the specified cache level. This access and the 
cache level are specified as a hint. The prefetch instructions do not affect functional 
behavior of the program and will be implementation specific.
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The SFENCE (Store Fence) instruction guarantees that every store instruction that 
precedes the store fence instruction in program order is globally visible before any store 
instruction which follows the fence. The SFENCE instruction provides an efficient way of 
ensuring ordering between routines that produce weakly-ordered results and routines 
that consume this data.

4.7 IEEE Compliance

SSE floating-point computation is IEEE-754 compliant except when the control word is 
set to flush to zero mode. IEEE-754 compliance includes support for single-precision 
signed infinities, QNaNs, SNaNs, integer indefinite, signed zeros, denormals, masked 
and unmasked exceptions. single-precision floating-point values are represented 
identically both internally and in memory, and are of the following form:

This is a change from x87 floating-point which internally represents all numbers in 
80-bit extended format. This change implies that x87-FP libraries re-written to use SSE 
instructions may not produce results that are identical to the those of the x87-FP 
implementation.Real Numbers and Floating-point Formats.

This section describes how real numbers are represented in floating-point format in the 
processor. It also introduces terms such as normalized numbers, denormalized 
numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar 
with floating-point processing techniques and the IEEE standards may wish to skip this 
section.

4.7.1 Real Number System

As shown in Figure 4-8, the real-number system comprises the continuum of real 
numbers from minus infinity () to plus infinity (+).

Sign Exponent Significand

31 30...23 22...0
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Because the size and number of registers that any computer can have is limited, only a 
subset of the real-number continuum can be used in real-number calculations. As 
shown at the bottom of Figure 4-1, the subset of real numbers that a particular 
processor supports represents an approximation of the real number system. The range 
and precision of this real-number subset is determined by the format that the processor 
uses to represent real numbers.

4.7.1.1 Floating-point Format

To increase the speed and efficiency of real-number computations, computers typically 
represent real numbers in a binary floating-point format. In this format, a real number 
has three parts: a sign, a significand, and an exponent. Figure 4-9 shows the binary 
floating-point format that SSE data uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative 
(1). The significand has two parts: a 1-bit binary integer (also referred to as the J-bit) 
and a binary fraction. The J-bit is often not represented, but instead is an implied value. 
The exponent is a binary integer that represents the base-2 power that the significand 
is raised to.

Figure 4-8. Binary Real Number System

Binary Real Number System
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Table 4-1 shows how the real number 178.125 (in ordinary decimal format) is stored in 
floating-point format. The table lists a progression of real number notations that leads 
to the format that the processor uses. In this format, the binary real number is 
normalized and the exponent is biased.

4.7.1.2 Normalized Numbers

In most cases, the processor represents real numbers in normalized form. This means 
that except for zero, the significand is always made up of an integer of 1 and the 
following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, 
the exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits 
that can be accommodated in a significand of a given width. To summarize, a 
normalized real number consists of a normalized significand that represents a real 
number between 1 and 2 and an exponent that specifies the number’s binary point.

4.7.1.3 Biased Exponent

The processor represents exponents in a biased form. This means that a constant is 
added to the actual exponent so that the biased exponent is always a positive number. 
The value of the biasing constant depends on the number of bits available for 
representing exponents in the floating-point format being used. The biasing constant is 
chosen so that the smallest normalized number can be reciprocated without overflow.

Figure 4-9. Binary Floating-point Format

Table 4-1. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 10110010001E210000110

Single Format (Normalized) Sign Biased Exponent Significand

0 10000110 01100100010000000000000
1 (Implied)

Sign

Integer or J-Bit

Exponent Significand

Fraction
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4.7.1.4 Real Number and Non-Number Encodings

A variety of real numbers and special values can be encoded in the processor’s 
floating-point format. These numbers and values are generally divided into the 
following classes:

• Signed zeros

• Denormalized finite numbers

• Normalized finite numbers

• Signed infinities

• NaNs

• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-10 shows how the encodings for these numbers and non-numbers fit into the 
real number continuum. The encodings shown here are for the IEEE single-precision 
(32-bit) format, where the term “S” indicates the sign bit, “E” the biased exponent, and 
“F” the fraction. (The exponent values are given in decimal.)

The processor can operate on and/or return any of these values, depending on the type 
of computation being performed. The following sections describe these number and 
non-number classes.

4.7.1.5 Signed Zeros

Zero can be represented as a +0 or a 0 depending on the sign bit. Both encodings are 
equal in value. The sign of a zero result depends on the operation being performed and 
the rounding mode being used. Signed zeros have been provided to aid in 
implementing interval arithmetic. The sign of a zero may indicate the direction from 
which underflow occurred, or it may indicate the sign of an that has been 
reciprocated.

4.7.1.6 Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized. 
The normalized finite numbers comprise all the non-zero finite values that can be 
encoded in a normalized real number format between zero and . In the format shown 
in Figure 4-10, this group of numbers includes all the numbers with biased exponents 
ranging from 1 to 25410 (unbiased, the exponent range is from 12610 to +12710).
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When real numbers become very close to zero, the normalized-number format can no 
longer be used to represent the numbers. This is because the range of the exponent is 
not large enough to compensate for shifting the binary point to the right to eliminate 
leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making 
the integer bit (and perhaps other leading bits) of the significand zero. The numbers in 
this range are called denormalized (or tiny) numbers. The use of leading zeros with 
denormalized numbers allows smaller numbers to be represented. However, this 
denormalization causes a loss of precision (the number of significant bits in the fraction 
is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally 
operates on normalized numbers and produces normalized numbers as results. 
Denormalized numbers represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. 
Table 4-2 gives an example of gradual underflow in the denormalization process. Here 
the single-real format is being used, so the minimum exponent (unbiased) is 12610. 
The true result in this example requires an exponent of 12910 in order to have a 
normalized number.   Since  12910 is beyond the allowable exponent range, the result 
is denormalized by inserting leading zeros until the minimum exponent of 12610 is 
reached.

Figure 4-10. Real Numbers and NaNs

Table 4-2. Denormalization Process

Operation Sign Exponenta Significand

True Result 0 129 1.01011100000...00

Denormalize 0 128 0.10101110000...00

Denormalize 0 127 0.01010111000...00

1 0 0
S E F

-0

1 0 -Denormalized
Finite

NaN

1 1...254 Any Value -Normalized
Finite

1 255 0 -

255 1.0XX2 -SNaN

255 1.1XX -QNaN

Notes
1. Sign bit ignored
2. Fractions must be non-zero

0 0 0
S E F

0 0

NaN

0 1...254 Any Value

0 255 0

X1 255 1.0XX2

255 1.1XX

+0

+Denormalized
Finite

+Normalized
Finite

+

+SNaN

+QNaN X1

X1

X1

Real Number and NaN Encodings For 32-bit Floating-point Format

-Denormalized Finite

-Normalized Finite -0- +
+Denormalized Finite

+Normalized Finite+0

0.XXX2 0.XXX2
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In the extreme case, all the significant bits are shifted out to the right by leading zeros, 
creating a zero result.

The processor deals with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to detect 
cases when denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures or 
programs to detect when denormals are being used as source operands for 
computations.

4.7.1.7 Signed Infinities

The two infinities, + and , represent the maximum positive and negative real 
numbers, respectively, that can be represented in the floating-point format. Infinity is 
always represented by a zero significand (fraction and integer bit) and the maximum 
biased exponent allowed in the specified format (for example, 25510 for the single-real 
format).

The signs of infinities are observed, and comparisons are possible. Infinities are always 
interpreted in the affine sense; that is, - is less than any finite number and +is 
greater than any finite number. Arithmetic on infinities is always exact. Exceptions are 
generated only when the use of an infinity as a source operand constitutes an invalid 
operation.

Whereas denormalized numbers represent an underflow condition, the two infinity 
numbers represent the result of an overflow condition. Here, the normalized result of a 
computation has a biased exponent greater than the largest allowable exponent for the 
selected result format.

4.7.1.8 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-10, 
the encoding space for NaNs in the processor floating-point formats is shown above the 
ends of the real number line. This space includes any value with the maximum 
allowable biased exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two classes of NaN: quiet NaNs (QNaNs) and signaling NaNs 
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN 
with the most significant fraction bit clear. QNaNs are allowed to propagate through 
most arithmetic operations without signaling an exception. SNaNs generally signal an 
invalid-operation exception whenever they appear as operands in arithmetic operations. 
Exceptions, as well as detailed information on how the processor handles NaNs, are 
discussed in Section 4.7.2, “Operating on NaNs”.

Denormalize 0 126 0.00101011100...00

Denormal Result 0 126 0.00101011100...00

a. Expressed as an unbiased, decimal number.

Table 4-2. Denormalization Process

Operation Sign Exponenta Significand
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4.7.1.9 Indefinite

In response to a masked invalid-operation floating-point exceptions, the indefinite 
value QNAN is produced. The integer indefinite, which can be produced during 
conversion from single-precision floating-point to 32-bit integer, is defined to be 
80000000H.

4.7.2 Operating on NaNs

As was described in Section 4.7.1.8, “NaNs” on page 4:479, the Intel SSE architecture 
supports two types of NaNs: SNaNs and QNaNs. An SNaN is any NaN value with its 
most-significant fraction bit set to 0 and at least one other fraction bit set to 1. (If all 
the fraction bits are set to 0, the value is an .) A QNaN is any NaN value with the 
most-significant fraction bit set to 1. The sign bit of a NaN is not interpreted.

As a general rule, when a QNaN is used in one or more arithmetic floating-point 
instructions, it is allowed to propagate through a computation. An SNaN on the other 
hand causes a floating-point invalid-operation exception to be signaled. SNaNs are 
typically used to trap or invoke an exception handler. 

The invalid operation exception has a flag and a mask bit associated with it in MXCSR. 
The mask bit determines how the an SNaN value is handled. If the invalid operation 
mask bit is set, the SNaN is converted to a QNaN by setting the most-significant 
fraction bit of the value to 1. The result is then stored in the destination operand and 
the invalid operation flag is set. If the invalid operation mask is clear, an invalid 
operation fault is signaled and no result is stored in the destination operand.

When a real operation or exception delivers a QNaN result, the value of the result 
depends on the source operands, as shown in Table 4-3. The exceptions to the behavior 
described in Table 4-3 are the MINPS and MAXPS instructions. If only one source is a 
NaN for these instructions, the Src2 operand (either NaN or real value) is written to the 
result; this differs from the behavior for other instructions as defined in Table 4-3, 
which is to always write the NaN to the result, regardless of which source operand 
contains the NaN. This approach for MINPS/MAXPS allows NaN data to be screened out 
of the bounds-checking portion of an algorithm. If instead of this behavior, it is required 
that the NaN source operand be returned, the min/max functionality can be emulated 
using a sequence of instructions: comparison followed by AND, ANDN and OR. 

In general Src1 and Src2 relate to an SSE instruction as follows:

ADDPS Src1, Src2/m128

Except for the rules given at the beginning of this section for encoding SNaNs and 
QNaNs, software is free to use the bits in the significand of a NaN for any purpose. Both 
SNaNs and QNaNs can be encoded to carry and store data, such as diagnostic 
information.
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4.8 Data Formats

4.8.1 Memory Data Formats

The Intel SSE architecture introduces a new packed 128-bit data type which consists of 
4 single-precision floating-point numbers. The 128 bits are numbered 0 through 127. 
Bit 0 is the least significant bit (LSB), and bit 127 is the most significant bit (MSB).

Bytes in the new data type format have consecutive memory addresses. The ordering is 
always little endian, that is, the bytes with the lower addresses are less significant than 
the bytes with the higher addresses.

4.8.2 SSE Register Data Formats

Values in SSE registers have the same format as a 128-bit quantity in memory. They 
have two data access modes: 128-bit access mode and 32-bit access mode. The data 
type corresponds directly to the single-precision format in the IEEE standard. Table 4-4 
gives the precision and range of this data type. Only the fraction part of the significand 
is encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized 
finite numbers. The exponent of the single-precision data type is encoded in biased 
format. The biasing constant is 127 for the single-precision format.

Table 4-3. Results of Operations with NAN Operands

Source Operands
NaN Result

(invalid operation exception is masked)

An SNaN and a QNaN. Src1 NaN (converted to QNaN if Src1 is an SNaN).

Two SNaNs. Src1 NaN (converted to QNaN)

Two QNaNs. Src1 QNaN 

An SNaN and a real value. The SNaN converted into a QNaN.

A QNaN and a real value. The QNaN source operand.

An SNaN/QNaN value (for instructions 
which take only one operand i.e. 
RCPPS, RCPSS, RSQRTPS, 
RSQRTSS)

The SNaN converted into a QNaN/the source QNaN.

Neither source operand is a NaN and a 
floating-point invalid-operation 
exception is signaled.

The default QNaN real indefinite.

Figure 4-11. Four Packed FP Data in Memory (at address 1000H)

02 16 34579 813 10111215 14

Byte 0

Memory Address 1000dMemory Address 1016d

Byte 15
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Table 4-5 shows the encodings for all the classes of real numbers (that is, zero, 
denormalized-finite, normalized-finite, and ) and NaNs for the single-real data-type. It 
also gives the format for the real indefinite value, which is a QNaN encoding that is 
generated by several SSE instructions in response to a masked floating-point 
invalid-operation exception. 

When storing real values in memory, single-real values are stored in 4 consecutive 
bytes in memory. The 128-bit access mode is used for 128-bit memory accesses, 
128-bit transfers between SSE registers, and all logical, unpack and arithmetic 
instructions.The 32-bit access mode is used for 32-bit memory access, 32-bit transfers 
between SSE registers, and all arithmetic instructions.

There are sixty-eight new instructions in SSE instruction set. This chapter describes the 
packed and scalar floating-point instructions in alphabetical order, with a full description 
of each instruction. The last two sections of this chapter describe the SIMD Integer 
instructions and the cacheability control instructions.

Table 4-4. Precision and Range of SSE Datatype

Data Type Length
Precision

(Bits)

Approximate Normalized Range

Binary Decimal

Single-precision 32 24 2-126 to 2127 1.18  10-38 to 3.40  1038

Table 4-5. Real Number and NaN Encodings

Class Sign Biased Exponent
Significand

Integer1 Fraction

Positive + 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
    .
    .

00..01

1
.
.
1

11..11
    .
    .

00..00

+Denormals 0
.
.
0

00..00
    .
    .

00..00

0
.
.
0

11.11
    .
    .

00..01

+Zero 0 00..00 0 00..00

Negative Zero 1 00..00 0 00..00

Denormals 1
.
.
1

00..00
    .
    .

00..00

0
.
.
0

00..01
    .
    .

11..11

Normals 1
.
.
1

00..01
    .
    .

11..10

1
.
.
1

00..00
    .
    .

11..11

- 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

Real Indefinite 
(QNaN)

1 11..11 1 10..00

Single 8 Bits   23 Bits 
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4.9 Instruction Formats

The nature of the Intel SSE architecture allows the use of existing instruction formats. 
Instructions use the ModR/M format and are preceded by the 0F prefix byte. In general, 
operations are not duplicated to provide two directions (i.e. separate load and store 
variants). 

4.10 Instruction Prefixes

The SSE instructions use prefixes as specified in Table 4-6, Table 4-7, and Table 4-8. 
The effect of multiple prefixes (more than one prefix from a group) is unpredictable and 
may vary from processor to processor.

Applying a prefix, in a manner not defined in this document, is considered reserved 
behavior. For example, Table 4-6 shows general behavior for most SSE instructions; 
however, the application of a prefix (Repeat, Repeat NE, Operand Size) is reserved for 
the following instructions:

ANDPS, ANDNPS, COMISS, FXRSTOR, FXSAVE, ORPS, LDMXCSR, MOVAPS, MOVHPS, 
MOVLPS, MOVMSKPS, MOVNTPS, MOVUPS, SHUFPS, STMXCSR, UCOMISS, UNPCKHPS, 
UNPCKLPS, XORPS.

Table 4-6. SSE Instruction Behavior with Prefixes  

Prefix Type Effect on SSE Instructions 
Address Size Prefix (67H) Affects SSE instructions with memory operand

Ignored by SSE instructions without memory operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects SSE instructions with mem.operand
Ignored by SSE instructions without mem operand

Repeat Prefix (F3H) Affects SSE instructions 

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates invalid opcode exception.

Table 4-7. SIMD Integer Instructions – Behavior with Prefixes

Prefix Type Effect on Intel® MMX™ Technology Instructions 

Address Size Prefix (67H) Affects Intel MMX technology instructions with mem. operand
Ignored by Intel MMX technology instructions without mem. operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects Intel MMX technology instructions with mem. operand
Ignored by Intel MMX technology instructions without mem operand

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates invalid opcode exception.

Table 4-8. Cacheability Control Instruction Behavior with Prefixes 

Prefix Type Effect on SSE Instructions 

Address Size Prefix (67H) Affects cacheability control instruction with a mem. operand
Ignored by cacheability control instruction w/o a mem. operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.
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4.11 Reserved Behavior and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. 
When bits are marked as reserved, it is essential for compatibility with future 
processors that software treat these bits as having a future, though unknown, effect. 
The behavior of reserved bits should be regarded as not only reserved, but 
unpredictable. In general, reserved behavior may also be applied in other areas. 
Software should follow these guidelines in dealing with reserved behavior:

• Do not depend on the states of any reserved fields when testing the values of 
registers which contain such bits. Mask out the reserved fields before testing.

• Do not depend on the states of any reserved fields when storing to memory or to a 
register.

• Do not depend on the ability to retain information written into any reserved fields.

• When loading a register, always load the reserved fields with the values indicated in 
the documentation, if any, or reload them with values previously read from the 
same register.

Note: Avoid any software dependency upon the reserved state/behavior. Depending 
upon reserved behavior will make the software dependent upon the unspecified 
manner in which the processor handles this behavior and risks incompatibility 
with future processors.

4.12 Notations

Besides opcodes, two kinds of notations are found which both describe information 
found in the ModR/M byte:

1. /digit: (digit between 0 and 7) indicates that the instruction uses only the r/m 
(register and memory) operand. The reg field contains the digit that provides an 
extension to the instruction's opcode.

2. /r: indicates that the ModR/M byte of an instruction contains both a register 
operand and an r/m operand.

In addition, the following abbreviations are used:

• r32: Intel architecture 32-bit integer register.

• xmm/m128:Indicates a 128-bit multimedia register or a 128-bit memory location.

• xmm/m64: Indicates a 128-bit multimedia register or a 64-bit memory location.

• xmm/m32: Indicates a 128-bit multimedia register or a 32-bit memory location.

• mm/m64: Indicates a 64-bit multimedia register or a 64-bit memory location.

Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects cacheability control instructions with mem. operand
Ignored by cacheability control instruction without mem operand

Repeat Prefix(F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates an invalid opcode exception for all cacheability 
instructions.

Table 4-8. Cacheability Control Instruction Behavior with Prefixes 

Prefix Type Effect on SSE Instructions 
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• imm8: Indicates an immediate 8-bit operand.

• ib: Indicates that an immediate byte operand follows the opcode, 
ModR/M byte or

scaled-indexing byte.

When there is ambiguity, xmm1 indicates the first source operand and xmm2 the 
second source operand.

Table 4-9 describes the naming conventions used in the SSE instruction mnemonics.

Table 4-9. Key to SSE Naming Convention

Mnemonic Description

PI Packed integer qword (e.g. mm0)

PS Packed single FP (e.g. xmm0)

SI Scalar integer (e.g. eax)

SS Scalar single-FP (e.g. low 32 bits of xmm0)
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ADDPS: Packed Single-FP Add

Operation: xmm1[31-0]   = xmm1[31-0]   + xmm2/m128[31-0];

xmm1[63-32]  = xmm1[63-32]  + xmm2/m128[63-32];

xmm1[95-64]  = xmm1[95-64]  + xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] + xmm2/m128[127-96];

Description: The ADDPS instruction adds the packed SP FP numbers of both their operands.

Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0)

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,58,/r ADDPS xmm1, xmm2/m128 Add packed SP FP numbers from XMM2/Mem to XMM1.
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ADDSS: Scalar Single-FP Add

Operation: xmm1[31-0]   = xmm1[31-0] + xmm2/m32[31-0];

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The ADDSS instruction adds the lower SP FP numbers of both their operands; the upper 
3 fields are passed through from xmm1.

FP Exceptions:  None.

Numeric Exceptions:  Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,58, /r ADDSS xmm1, xmm2/m32 Add the lower SP FP number from XMM2/Mem to XMM1.
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ANDNPS: Bit-wise Logical And Not for Single-FP

Operation: xmm1[127-0] = ~(xmm1[127-0]) & xmm2/m128[127-0];

Description: The ANDNPS instructions returns a bit-wise logical AND between the complement of 
XMM1 and XMM2/Mem. 

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ANDNPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with ANDNPS 
risks incompatibility with future processors.

Opcode Instruction Description

0F,55,/r ANDNPS xmm1, xmm2/m128 Invert the 128 bits in XMM1and then AND the result with 128 
bits from XMM2/Mem.
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ANDPS: Bit-wise Logical And for Single-FP

Operation: xmm1[127-0] &= xmm2/m128[127-0];

Description: The ANDPS instruction returns a bit-wise logical AND between XMM1 and XMM2/Mem. 

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ANDPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with ANDPS 
risks incompatibility with future processors.

Opcode Instruction Description

0F,54,/r ANDPS xmm1, xmm2/m128 Logical AND of 128 bits from XMM2/Mem to XMM1 register.
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CMPPS: Packed Single-FP Compare

Operation: switch (imm8) {

case eq:  op = eq;

case lt:  op = lt;

case le:  op = le;

case unord:  op = unord;

case neq:  op = neq;

case nlt:  op = nlt;

case nle:  op = nle;

case ord:  op = ord;

default: Reserved;

}

cmp0 = op(xmm1[31-0],xmm2/m128[31-0]);

cmp1 = op(xmm1[63-32],xmm2/m128[63-32]);

cmp2 = op(xmm1[95-64],xmm2/m128[95-64]);

cmp3 = op(xmm1[127-96],xmm2/m128[127-96]);

xmm1[31-0]   = (cmp0) ? 0xffffffff : 0x00000000;

xmm1[63-32]   = (cmp1) ? 0xffffffff : 0x00000000;

xmm1[95-64]   = (cmp2) ? 0xffffffff : 0x00000000;

xmm1[127-96]   = (cmp3) ? 0xffffffff : 0x00000000;

Description: For each individual pairs of SP FP numbers, the CMPPS instruction returns an all “1” 
32-bit mask or an all “0” 32-bit mask, using the comparison predicate specified by 
imm8; note that a subsequent computational instruction which uses this mask as an 
input operand will not generate a fault, since a mask of all “0’s” corresponds to a FP 
value of +0.0 and a mask of all “1’s” corresponds to a FP value of -qNaN. Some of the 
comparisons can be achieved only through software emulation. For these comparisons 
the programmer must swap the operands, copying registers when necessary to protect 
the data that will now be in the destination, and then perform the compare using a 
different predicate. The predicate to be used for these emulations is listed in under the 
heading “Emulation.” The following table shows the different comparison types:

Opcode Instruction Description

0F,C2,/r,ib CMPPS xmm1, xmm2/m128, 
imm8

Compare packed SP FP numbers from XMM2/Mem to 
packed SP FP numbers in XMM1 register using imm8 as 
predicate.
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CMPPS: Packed Single-FP Compare (Continued)

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Invalid if sNaN operand, invalid if qNaN and predicate as listed in above table, 
denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Predicate Descriptiona

a. The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not directly implemented 
in hardware.

Relation Emulation
imm8 

Encoding

Result if 
NaN 

Operand

QNaN 
Operand 
Signals 
Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap, protect, lt False Yes

greater-than-or-equal xmm1 >= xmm2 swap protect, le False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-equal !(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap, protect, nlt True Yes

not-greater-than-or-equal !(xmm1 >= xmm2) swap, protect, nle True Yes

ord ordered !(xmm1 ? xmm2) 111B False No
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CMPPS: Packed Single-FP Compare (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: Compilers and assemblers should implement the following 2-operand pseudo-ops in 
addition to the 3-operand CMPPS instruction:

The greater-than relations not implemented in hardware require more than one 
instruction to emulate in software and therefore should not be implemented as 
pseudo-ops. (For these, the programmer should reverse the operands of the 
corresponding less than relations and use move instructions to ensure that the mask is 
moved to the correct destination register and that the source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them 
differently. Usage of these bits risks incompatibility with future processors.

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1,xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1,xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1,xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1,xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1,xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1,xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1,xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1,xmm2, 7
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CMPSS: Scalar Single-FP Compare

Operation: switch (imm8) {

case eq:  op = eq;

case lt:  op = lt;

case le:  op = le;

case unord:  op = unord;

case neq:  op = neq;

case nlt:  op = nlt;

case nle:  op = nle;

case ord:  op = ord;

default: Reserved;

}

cmp0 = op(xmm1[31-0],xmm2/m32[31-0]);

xmm1[31-0]   = (cmp0) ? 0xffffffff : 0x00000000;

xmm1[63-32]   = xmm1[63-32];

xmm1[95-64]   = xmm1[95-64];

xmm1[127-96]   = xmm1[127-96];

Description: For the lowest pair of SP FP numbers, the CMPSS instruction returns an all “1” 32-bit 
mask or an all “0” 32-bit mask, using the comparison predicate specified by imm8; the 
values for the upper three pairs of SP FP numbers are not compared. Note that a 
subsequent computational instruction which uses this mask as an input operand will not 
generate a fault, since a mask of all “0’s” corresponds to a FP value of +0.0 and a mask 
of all “1’s” corresponds to a FP value of -qNaN. Some of the comparisons can be 
achieved only through software emulation. For these comparisons the programmer 
must swap the operands, copying registers when necessary to protect the data that will 
now be in the destination, and then perform the compare using a different predicate. 
The predicate to be used for these emulations is listed in under the heading 
“Emulation.” The following table shows the different comparison types:

Opcode Instruction Description

F3,0F,C2,/r,ib CMPSS xmm1, xmm2/m32, 
imm8

Compare lowest SP FP number from XMM2/Mem to lowest 
SP FP number in XMM1 register using imm8 as predicate.
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CMPSS: Scalar Single-FP Compare (Continued)

FP Exceptions: None.

Numeric Exceptions:  Invalid if sNaN operand, invalid if qNaN and predicate as listed in above table, 
denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true (CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Predicate Descriptiona

a. The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not directly implemented 
in hardware.

Relation Emulation
imm8 

Encoding

Result if 
NaN 

Operand

qNaN 
OperandSig
nals Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap, protect, lt False Yes

greater-than-or-equal xmm1 >= xmm2 swap protect, le False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-
equal

!(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap, protect, nlt True Yes

not-greater-than-or-equal !(xmm1 >= xmm2) swap, protect, nle True Yes

ord ordered !(xmm1 ? xmm2) 111B False No
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CMPSS: Scalar Single-FP Compare (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: Compilers and assemblers should implement the following 2-operand pseudo-ops in 
addition to the 3-operand CMPSS instruction:

The greater-than relations not implemented in hardware require more than one 
instruction to emulate in software and therefore should not be implemented as 
pseudo-ops. (For these, the programmer should reverse the operands of the 
corresponding less than relations and use move instructions to ensure that the mask is 
moved to the correct destination register and that the source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them 
differently. Usage of these bits risks incompatibility with future processors.

Pseudo-Op Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1,xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1,xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1,xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1,xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1,xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1,xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1,xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1,xmm2, 7
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COMISS: Scalar Ordered Single-FP Compare and set EFLAGS

Operation: switch (xmm1[31-0] <> xmm2/m32[31-0]) {

OF,SF,AF = 000;

case UNORDERED:     ZF,PF,CF = 111;

case GREATER_THAN:  ZF,PF,CF = 000;

case LESS_THAN:     ZF,PF,CF = 001;

case EQUAL:         ZF,PF,CF = 100;

}

Description: The COMISS instructions compare two SP FP numbers and sets the ZF,PF,CF bits in the 
EFLAGS register as described above. Although the data type is packed single-FP, only 
the lower SP numbers are compared. In addition, the OF, SF and AF bits in the EFLAGS 
register are zeroed out. The unordered predicate is returned if either source operand is 
a NaN (qNaN or sNaN).

FP Exceptions: None.

Numeric Exceptions:  Invalid (if SNaN or QNaN operands), Denormal. Integer EFLAGS values will not be 
updated in the presence of unmasked numeric exceptions.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

0F,2F,/r COMISS xmm1, xmm2/m32 Compare lower SP FP number in XMM1 register with lower 
SP FP number in XMM2/Mem and set the status flags 
accordingly
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COMISS: Scalar Ordered Single-FP Compare and set EFLAGS (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: COMISS differs from UCOMISS in that it signals an invalid numeric exception when a 
source operand is either a qNaN or sNaN; UCOMISS signals invalid only if a source 
operand is an sNaN.

The usage of Repeat (F2H, F3H) and Operand-Size (66H) prefixes with COMISS is 
reserved. Different processor implementations may handle this prefix differently. Usage 
of this prefix with COMISS risks incompatibility with future processors.
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CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion

Operation: xmm[31-0]   = (float) (mm/m64[31-0]);

xmm[63-32]  = (float) (mm/m64[63-32]);

xmm[95-64]  = xmm[95-64];

xmm[127-96] = xmm[127-96];

Description: The CVTPI2PS instruction converts signed 32-bit integers to SP FP numbers; when the 
conversion is inexact, rounding is done according to MXCSR. 

FP Exceptions: None.

Numeric Exceptions:  Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference; #AC for unaligned memory reference. 
To enable #AC exceptions, three conditions must be true(CR0.AM is set; EFLAGS.AC is 
set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception; #AC for unaligned memory reference; #XM for an unmasked 
SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,2A,/r CVTPI2PS xmm, mm/m64 Convert two 32-bit signed integers from MM/Mem to two SP 
FP.
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CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion 
(Continued)

Comments: This instruction behaves identically to original MMX technology instructions, in the 
presence of x87-FP instructions: 

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the 
corresponding x87-FP register.

However, the use of a memory source operand with this instruction will not result in the 
above transition from x87-FP to MMX technology.

Prioritization for fault and assist behavior for CVTPI2PS is as follows:

Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #SS or #GP, for limit violation

4. #PF, page fault 

5. SSE numeric fault (i.e. precision)

Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition 

5. SSE numeric fault (i.e. precision)
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CVTPS2PI: Packed Single-FP to Packed INT32 Conversion

Operation: mm[31-0]   = (int) (xmm/m64[31-0]);

mm[63-32]  = (int) (xmm/m64[63-32]);

Description: The CVTPS2PI instruction converts the lower 2 SP FP numbers in xmm/m64 to signed 
32-bit integers in mm; when the conversion is inexact, the value rounded according to 
the MXCSR is returned. If the converted result(s) is/are larger than the maximum 
signed 32 bit value, the Integer Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions:  Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3); #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception; #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: This instruction behaves identically to original MMX technology instructions, in the 
presence of x87-FP instructions, including: 

Opcode Instruction Description

0F,2D,/r CVTPS2PI mm, xmm/m64 Convert lower 2 SP FP from XMM/Mem to 2 32-bit signed 
integers in MM using rounding specified by MXCSR.
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CVTPS2PI: Packed Single-FP to Packed INT32 Conversion (Continued)

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the 
corresponding x87-FP register.

Prioritization for fault and assist behavior for CVTPS2PI is as follows:

 Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition 

5. #SS or #GP, for limit violation

6. #PF, page fault 

7. SSE numeric fault (i.e. invalid, precision)

 Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition 

5. SSE numeric fault (i.e. precision)
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CVTSI2SS: Scalar signed INT32 to Single-FP Conversion

Operation: xmm[31-0]   = (float) (r/m32);

xmm[63-32]  = xmm[63-32];

xmm[95-64]  = xmm[95-64];

xmm[127-96] = xmm[127-96];

Description: The CVTSI2SS instruction converts a signed 32-bit integer from memory or from a 
32-bit integer register to a SP FP number; when the conversion is inexact, rounding is 
done according to the MXCSR.

FP Exceptions: None.

Numeric Exceptions:  Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2A,/r CVTSI2SS xmm, r/m32 Convert one 32-bit signed integer from Integer Reg/Mem to 
one SP FP.
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CVTSS2SI: Scalar Single-FP to Signed INT32 Conversion

Operation: r32 = (int) (xmm/m32[31-0]);

Description: The CVTSS2SI instruction converts a SP FP number to a signed 32-bit integer and 
returns it in the 32-bit integer register; when the conversion is inexact, the rounded 
value according to the MXCSR is returned. If the converted result is larger than the 
maximum signed 32 bit integer, the Integer Indefinite value (0x80000000) will be 
returned.

FP Exceptions: None.

Numeric Exceptions:  Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT = 0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2D,/r CVTSS2SI r32, xmm/m32 Convert one SP FP from XMM/Mem to one 32 bit signed 
integer using rounding mode specified by MXCSR, and move 
the result to an integer register. 
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CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion 
(truncate)

Operation: mm[31-0]   = (int) (xmm/m64[31-0]);

mm[63-32]  = (int) (xmm/m64[63-32]);

Description: The CVTTPS2PI instruction converts the lower 2 SP FP numbers in xmm/m64 to 2 32-bit 
signed integers in mm; if the conversion is inexact, the truncated result is returned. If 
the converted result(s) is/are larger than the maximum signed 32 bit value, the Integer 
Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions:  Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3); #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception; #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,2C,/r CVTTPS2PI mm, xmm/m64 Convert lower 2 SP FP from XMM/Mem to 2 32-bit signed 
integers in MM using truncate.
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CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion (truncate) 
(Continued)

Comments: This instruction behaves identically to original MMX technology instructions, in the 
presence of x87-FP instructions, including: 

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the 
corresponding x87-FP register.

Prioritization for fault and assist behavior for CVTTPS2PI is as follows:

 Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition 

5. #SS or #GP, for limit violation

6. #PF, page fault 

7. SSE numeric fault (i.e. invalid, precision)

 Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition 

5. SSE numeric fault (i.e. precision)
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CVTTSS2SI: Scalar Single-FP to signed INT32 Conversion (truncate)

Operation: r32 = (int) (xmm/m32[31-0]);

Description: The CVTTSS2SI instruction converts a SP FP number to a signed 32-bit integer and 
returns it in the 32-bit integer register; if the conversion is inexact, the truncated result 
is returned. If the converted result is larger than the maximum signed 32 bit value, the 
Integer Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions:  Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3; #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2C,/r CVTTSS2SI r32, xmm/m32 Convert lowest SP FP from XMM/Mem to one 32 bit signed 
integer using truncate, and move the result to an integer 
register. 
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DIVPS: Packed Single-FP Divide

Operation: xmm1[31-0]   = xmm1[31-0]   / (xmm2/m128[31-0]);

xmm1[63-32]  = xmm1[63-32]  / (xmm2/m128[63-32]);

xmm1[95-64]  = xmm1[95-64]  / (xmm2/m128[95-64]);

xmm1[127-96] = xmm1[127-96] / (xmm2/m128[127-96]);

Description: The DIVPS instruction divides the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,5E,/r DIVPS xmm1, xmm2/m128 Divide packed SP FP numbers in XMM1 by XMM2/Mem
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DIVSS: Scalar Single-FP Divide

Operation: xmm1[31-0]   = xmm1[31-0] / (xmm2/m32[31-0]);

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The DIVSS instructions divide the lowest SP FP numbers of both operands; the upper 3 
fields are passed through from xmm1.

FP Exceptions: None.

Numeric Exceptions:  Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,5E,/r DIVSS xmm1, xmm2/m32 Divide lower SP FP numbers in XMM1 by XMM2/Mem
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FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE 
State

Operation: FP and MMX technology state and SSE state = m512byte;

Description: The FXRSTOR instruction reloads the FP and MMX technology state and SSE state 
(environment and registers) from the memory area defined by m512byte. This data 
should have been written by a previous FXSAVE.

The FP and MMX technology and SSE environment and registers consist of the following 
data structure (little-endian byte order as arranged in memory, with byte offset into 
row described by right column):

     

Opcode Instruction Description

0F,AE,/1 FXRSTOR
m512byte

Load FP/Intel MMX technology and SSE state from m512byte.

  15    14    13    12     11    10    9       8     7       6      5      4      3       2     1       0

Rsrvd CS IP FOP FTW FSW FCW 0

Reserved MXCSR Rsrvd DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448
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Three fields in the floating-point save area contain reserved bits that are not indicated 
in the table:

• FOP: The lower 11-bits contain the opcode, upper 5-bits are reserved.

• IP & DP:32-bit mode: 32-bit IP-offset.

• 16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

If the MXCSR state contains an unmasked exception with corresponding status flag also 
set, loading it will not result in a floating-point error condition being asserted; only the 
next occurrence of this unmasked exception will result in the error condition being 
asserted.

Some bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared; 
attempting to write a non-zero value to these bits will result in a general protection 
exception.

FXRSTOR does not flush pending x87-FP exceptions, unlike FRSTOR. To check and raise 
exceptions when loading a new operating environment, use FWAIT after FXRSTOR.

The SSE fields in the save image (XMM0-XMM7 and MXCSR) may not be loaded into the 
processor if the CR4.OSFXSR bit is not set. This CR4 bit must be set in order to enable 
execution of SSE instructions.

FP Exceptions: If #AC exception detection is disabled, a general protection exception is signalled if the 
address is not aligned on 16-byte boundary. Note that if #AC is enabled (and CPL is 3), 
signalling of #AC is not guaranteed and may vary with implementation; in all 
implementations where #AC is not signalled, a general protection fault will instead be 
signalled. In addition, the width of the alignment check when #AC is enabled may also 
vary with implementation; for instance, for a given implementation #AC might be 
signalled for a 2-byte misalignment, whereas #GP might be signalled for all other 
misalignments (4/8/16-byte). Invalid opcode exception if instruction is preceded by a 
LOCK override prefix. General protection fault if reserved bits of MXCSR are loaded with 
non-zero values

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set.

Reserved 464

Reserved 480

Reserved 496

  15    14    13    12     11    10    9       8     7       6      5      4      3       2     1       0

Rsrvd CS IP FOP FTW FSW FCW 0
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FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE State 
(Continued)

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Notes: State saved with FXSAVE and restored with FRSTOR (and vice versa) will result in 
incorrect restoration of state in the processor. The address size prefix will have the 
usual effect on address calculation but will have no effect on the format of the FXRSTOR 
image. 

The use of Repeat (F2H, F3H) and Operand Size (66H) prefixes with FXRSTOR is 
reserved. Different processor implementations may handle this prefix differently. Use of 
this prefix with FXRSTOR risks incompatibility with future processors.
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FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State

Operation: m512byte = FP and MMX technology state and SSE state;

Description: The FXSAVE instruction writes the current FP and MMX technology state and SSE state 
(environment and registers) to the specified destination defined by m512byte. It does 
this without checking for pending unmasked floating-point exceptions, similar to the 
operation of FNSAVE. Unlike the FSAVE/FNSAVE instructions, the processor retains the 
contents of the FP and MMX technology state and SSE state in the processor after the 
state has been saved. This instruction has been optimized to maximize floating-point 
save performance. The save data structure is as follows (little-endian byte order as 
arranged in memory, with byte offset into row described by right column):

Opcode Instruction Description

0F,AE,/0 FXSAVE
m512byte

Store FP and Intel MMX technology state and SSE state to m512byte.

  15    14    13    12     11    10    9       8     7       6      5      4      3       2     1       0

Rsrvd CS IP FOP FTW FSW FCW 0

Reserved MXCSR Rsrvd DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400
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Three fields in the floating-point save area contain reserved bits that are not indicated 
in the table:

• FOP: The lower 11-bits contain the opcode, upper 5-bits are reserved.

• IP & DP: 32-bit mode: 32-bit IP-offset.

• 16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

The FXSAVE instruction is used when an operating system needs to perform a context 
switch or when an exception handler needs to use the FP and MMX technology and SSE 
units. It cannot be used by an application program to pass a “clean” FP state to a 
procedure, since it retains the current state. An application must explicitly execute an 
FINIT instruction after FXSAVE to provide for this functionality.

All of the x87-FP fields retain the same internal format as in FSAVE except for FTW. 

Unlike FSAVE, FXSAVE saves only the FTW valid bits rather than the entire x87-FP FTW 
field. The FTW bits are saved in a non-TOS relative order, which means that FR0 is 
always saved first, followed by FR1, FR2 and so forth. As an example, if TOS=4 and 
only ST0, ST1 and ST2 are valid, FSAVE saves the FTW field in the following format:

ST3 ST2 ST1 ST0 ST7 ST6 ST5 ST4 (TOS=4)
FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0
11 xx xx xx 11 11 11 11

where xx is one of (00, 01, 10). (11) indicates an empty stack elements, and the 00, 
01, and 10 indicate Valid, Zero, and Special, respectively. In this example, FXSAVE 
would save the following vector:

FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0
0 1 1 1 0 0 0 0

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 
80-bit FP data (assuming the stored data was not the contents of MMX technology 
registers) using the following table:

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

  15    14    13    12     11    10    9       8     7       6      5      4      3       2     1       0

Rsrvd CS IP FOP FTW FSW FCW 0
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The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the 
significand. The M-bit is defined to be the most significant bit of the fractional portion of 
the significand (i.e. the bit immediately to the right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it 
must be 0 if the fraction is all 0’s.

If the FXSAVE instruction is immediately preceded by an FP instruction which does not 
use a memory operand, then the FXSAVE instruction does not write/update the DP 
field, in the FXSAVE image.

MXCSR holds the contents of the SSE Control/Status Register. See the LDMXCSR 
instruction for a full description of this field.

The fields XMM0-XMM7 contain the content of registers XMM0-XMM7 in exactly the 
same format as they exist in the registers.

The SSE fields in the save image (XMM0-XMM7 and MXCSR) may not be loaded into the 
processor if the CR4.OSFXSR bit is not set. This CR4 bit must be set in order to enable 
execution of SSE instructions.

The destination m512byte is assumed to be aligned on a 16-byte boundary. If 
m512byte is not aligned on a 16-byte boundary, FXSAVE generates a general protection 
exception.

FP Exceptions: If #AC exception detection is disabled, a general protection exception is signalled if the 
address is not aligned on 16-byte boundary. Note that if #AC is enabled (and CPL is 3), 
signalling of #AC is not guaranteed and may vary with implementation; in all 
implementations where #AC is not signalled, a general protection fault will instead be 
signalled. In addition, the width of the alignment check when #AC is enabled may also 
vary with implementation; for instance, for a given implementation #AC might be 
signalled for a 2-byte misalignment, whereas #GP might be signalled for all other 
misalignments (4/8/16-byte). Invalid opcode exception if instruction is preceded by a 
LOCK override prefix.

Numeric Exceptions:  None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3).

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above 0 Empty 11

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit x87 FTW
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FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State 
(Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Notes: State saved with FXSAVE and restored with FRSTOR (and vice versa) will result in 
incorrect restoration of state in the processor. The address size prefix will have the 
usual effect on address calculation but will have no effect on the format of the FXSAVE 
image.

If there is a pending unmasked FP exception at the time FXSAVE is executed, the 
sequence of FXSAVE-FWAIT-FXRSTOR will result in incorrect state in the processor. The 
FWAIT instruction causes the processor to check and handle pending unmasked FP 
exceptions.   Since the processor does not clear the FP state with FXSAVE (unlike 
FSAVE), the exception is handled but that fact is not reflected in the saved image. 
When the image is reloaded using FXRSTOR, the exception bits in FSW will be 
incorrectly reloaded.

The use of Repeat (F2H, F3H) and Operand Size (66H) prefixes with FXSAVE is 
reserved. Different processor implementations may handle this prefix differently. Use of 
these prefixes with FXSAVE risks incompatibility with future processors.
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LDMXCSR: Load SSE Control/Status 

Operation: MXCSR = m32;

Description: The MXCSR control/status register is used to enable masked/unmasked exception 
handling, to set rounding modes, to set flush-to-zero mode, and to view exception 
status flags. The following figure shows the format and encoding of the fields in MXCSR.

  

31-16 15 10 5
0

Bits 5-0 indicate whether an SSE numerical exception has been detected. They are 
“sticky” flags, and can be cleared by using the LDMXCSR instruction to write zeroes to 
these fields. If a LDMXCSR instruction clears a mask bit and sets the corresponding 
exception flag bit, an exception will not be immediately generated. The exception will 
occur only upon the next SSE instruction to cause this type of exception. The Intel SSE 
architecture uses only one exception flag for each exception. There is no provision for 
individual exception reporting within a packed data type. In situations where multiple 
identical exceptions occur within the same instruction, the associated exception flag is 
updated and indicates that at least one of these conditions happened. These flags are 
cleared upon reset.

Bits 12-7 configure numerical exception masking; an exception type is masked if the 
corresponding bit is set and it is unmasked if the bit is clear. These enables are set upon 
reset, meaning that all numerical exceptions are masked.

Bits 14-13 encode the rounding-control, which provides for the common 
round-to-nearest mode, as well as directed rounding and true chop. Rounding control 
affects the arithmetic instructions and certain conversion instructions. The encoding for 
RC is as follows:

 

The rounding-control is set to round to nearest upon reset.

Opcode Instruction Description

0F,AE,/2 LDMXCSR m32 Load SSE control/status word from m32.

Reserved FZ RC RC PM UM OM ZM DM IM Rsvd PE UE OE ZE DE IE

Rounding Mode RC Field Description

Round to nearest (even) 00B Rounded result is the closest to the infinitely 
precise result. If two values are equally 
close, the result is the even value (that is, 
the one with the least-significant bit of zero).

Round down (to minus infinity) 01B Rounded result is close to but no greater 
than the infinitely precise result

Round up (toward positive infinity) 10B Rounded result is close to but no less than 
the infinitely precise result.

Round toward zero (truncate) 11B Rounded result is close to but no greater in 
absolute value than the infinitely precise 
result.
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LDMXCSR: Load SSE Control/Status (Continued)

Bit 15 (FZ) is used to turn on the Flush To Zero mode (bit is set). Turning on the Flush 
To Zero mode has the following effects during underflow situations:

• Zero results are returned with the sign of the true result.

• Precision and underflow exception flags are set.

The IEEE mandated masked response to underflow is to deliver the denormalized result 
(i.e. gradual underflow); consequently, the flush to zero mode is not compatible with 
IEEE Std. 754. It is provided primarily for performance reasons. At the cost of a slight 
precision loss, faster execution can be achieved for applications where underflows are 
common. Unmasking the underflow exception takes precedence over Flush To Zero 
mode; this means that an exception handler will be invoked for a SSE instruction that 
generates an underflow condition while this exception is unmasked, regardless of 
whether flush to zero is enabled.

The other bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared; 
attempting to write a non-zero value to these bits, using either the FXRSTOR or 
LDMXCSR instructions, will result in a general protection exception.

The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. 

FP Exceptions: General protection fault if reserved bits are loaded with non-zero values.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. #AC for 
unaligned memory reference. 
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LDMXCSR: Load SSE Control/Status (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults NaT Register Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with LDMXCSR is 
reserved. Different processor implementations may handle this prefix differently. Usage 
of this prefix with LDMXCSR risks incompatibility with future processors.
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MAXPS: Packed Single-FP Maximum

Operation: xmm1[31-0]   = (xmm1[31-0] == NAN) ? xmm2[31-0] :

(xmm2[31-0] == NAN) ? xmm2[31-0] :

               (xmm1[31-0] > xmm2/m128[31-0]) ? xmm1[31-0] ? 
xmm2/m128[31-0];

xmm1[63-32]   = (xmm1[63-32] == NAN) ? xmm2[63-32] :

(xmm2[63-32] == NAN) ? xmm2[63-32] :

               (xmm1[63-32] > xmm2/m128[63-32]) ? xmm1[63-32] ? 
xmm2/m128[63-32];

xmm1[95-64]   = (xmm1[95-64] == NAN) ? xmm2[95-64] :

(xmm2[95-64] == NAN) ? xmm2[95-64] :

               (xmm1[95-64] > xmm2/m128[95-64]) ? xmm1[95-64] ? 
xmm2/m128[95-64];

xmm1[127-96]   = (xmm1[127-96] == NAN) ? xmm2[127-96] :

(xmm2[127-96] == NAN) ? xmm2[127-96] :

               (xmm1[127-96] > xmm2/m128[127-96]) ? xmm1[127-96] ? 
xmm2/m128[127-96];

Description: The MAXPS instruction returns the maximum SP FP numbers from XMM1 and 
XMM2/Mem. If the values being compared are both zeros, source2 (xmm2/m128) 
would be returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded 
unchanged to the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Opcode Instruction Description

0F,5F,/r MAXPS xmm1, xmm2/m128 Return the maximum SP FP numbers between XMM2/Mem 
and XMM1.
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MAXPS: Packed Single-FP Maximum (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either 
NaN or real value) is written to the result; this differs from the behavior for other 
instructions as defined in Table 4-3, which is to always write the NaN to the result, 
regardless of which source operand contains the NaN. This approach for MAXPS allows 
compilers to use the MAXPS instruction for common C conditional constructs. If instead 
of this behavior, it is required that the NaN source operand be returned, the min/max 
functionality can be emulated using a sequence of instructions: comparison followed by 
AND, ANDN and OR.
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MAXSS: Scalar Single-FP Maximum

Operation: xmm1[31-0]   = (xmm1[31-0] == NAN) ? xmm2[31-0] :

   (xmm2[31-0] == NAN) ? xmm2[31-0] :

               (xmm1[31-0] > xmm2/m32[31-0]) ? xmm1[31-0] : xmm2/m32[31-0];

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MAXSS instruction returns the maximum SP FP number from the lower SP FP 
numbers of XMM1 and XMM2/Mem; the upper 3 fields are passed through from xmm1. 
If the values being compared are both zeros, source2 (xmm2/m128) would be 
returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded unchanged to 
the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: None

Numeric Exceptions:  Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

F3,0F,5F,/r MAXSS xmm1, xmm2/m32 Return the maximum SP FP number between the lower SP 
FP numbers from XMM2/Mem and XMM1.
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MAXSS: Scalar Single-FP Maximum (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either 
NaN or real value) is written to the result; this differs from the behavior for other 
instructions as defined in Table 4-3, which is to always write the NaN to the result, 
regardless of which source operand contains the NaN. The upper three operands are 
still bypassed from the src1 operand, as in all other scalar operations. This approach for 
MAXSS allows compilers to use the MAXSS instruction for common C conditional 
constructs. If instead of this behavior, it is required that the NaN source operand be 
returned, the min/max functionality can be emulated using a sequence of instructions: 
comparison followed by AND, ANDN and OR.
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MINPS: Packed Single-FP Minimum 

Operation: xmm1[31-0]   = (xmm1[31-0] == NAN) ? xmm2[31-0] :

(xmm2[31-0] == NAN) ? xmm2[31-0] :

               (xmm1[31-0] < xmm2/m128[31-0]) : xmm1[31-0] ? 
xmm2/m128[31-0];

xmm1[63-32]   = (xmm1[63-32] == NAN) ? xmm2[63-32] :

(xmm2[63-32] == NAN) ? xmm2[63-32] :

               (xmm1[63-32] < xmm2/m128[63-32]) : xmm1[63-32] ? 
xmm2/m128[63-32];

xmm1[95-64]   = (xmm1[95-64] == NAN) ? xmm2[95-64] :

(xmm2[95-64] == NAN) ? xmm2[95-64] :

               (xmm1[95-64] < xmm2/m128[95-64]) : xmm1[95-64] ? 
xmm2/m128[95-64];

xmm1[127-96]   = (xmm1[127-96] == NAN) ? xmm2[127-96] :

(xmm2[127-96] == NAN) ? xmm2[127-96] :

               (xmm1[127-96] < xmm2/m128[127-96]) : xmm1[127-96] ? 
xmm2/m128[127-96];

Description: The MINPS instruction returns the minimum SP FP numbers from XMM1 and 
XMM2/Mem. If the values being compared are both zeros, source2 (xmm2/m128) 
would be returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded 
unchanged to the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Opcode Instruction Description

0F,5D,/r MINPS xmm1, xmm2/m128 Return the minimum SP numbers between XMM2/Mem and 
XMM1.
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MINPS: Packed Single-FP Minimum (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either 
NaN or real value) is written to the result; this differs from the behavior for other 
instructions as defined in Table 4-3, which is to always write the NaN to the result, 
regardless of which source operand contains the NaN. This approach for MINPS allows 
compilers to use the MINPS instruction for common C conditional constructs. If instead 
of this behavior, it is required that the NaN source operand be returned, the min/max 
functionality can be emulated using a sequence of instructions: comparison followed by 
AND, ANDN and OR.
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MINSS: Scalar Single-FP Minimum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

   (xmm2[31-0] == NAN) ? xmm2[31-0] :

             (xmm1[31-0] < xmm2/m32[31-0]) ? xmm1[31-0] : xmm2/m32[31-0];

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MINSS instruction returns the minimum SP FP number from the lower SP FP 
numbers from XMM1 and XMM2/Mem; the upper 3 fields are passed through from 
xmm1.If the values being compared are both zeros, source2 (xmm2/m128) would be 
returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded unchanged to 
the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: None

Numeric Exceptions:  Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for 
unaligned memory references. 

Opcode Instruction Description

F3,0F,5D,/r MINSS xmm1, xmm2/m32 Return the minimum SP FP number between the lowest SP 
FP numbers from XMM2/Mem and XMM1.
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MINSS: Scalar Single-FP Minimum (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either 
NaN or real value) is written to the result; this differs from the behavior for other 
instructions as defined in Table 4-3, which is to always write the NaN to the result, 
regardless of which source operand contains the NaN. The upper three operands are 
still bypassed from the src1 operand, as in all other scalar operations. This approach for 
MINSS allows compilers to use the MINSS instruction for common C conditional 
constructs. If instead of this behavior, it is required that the NaN source operand be 
returned, the min/max functionality can be emulated using a sequence of instructions: 
comparison followed by AND, ANDN and OR.
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MOVAPS: Move Aligned Four Packed Single-FP

Operation: if (destination == xmm1) {

if (source == m128) {

// load instruction 

xmm1[127-0] = m128;

}

else {

// move instruction

xmm1[127=0] = xmm2[127-0];

}

}

else {

if (destination == m128) {

// store instruction

m128 = xmm1[127-0];

}

else {

// move instruction

xmm2[127-0] = xmm1[127-0];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When a memory address is indicated, the 16 bytes of data at 
memory location m128 are loaded or stored. When the register-register form of this 
operation is used, the content of the 128-bit source register is copied into 128-bit 
destination register.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions: None

Opcode Instruction Description

0F,28,/r

0F,29,/r

MOVAPS xmm1, xmm2/m128

MOVAPS xmm2/m128, xmm1

Move 128 bits representing 4 packed SP data from 
XMM2/Mem to XMM1 register.
Move 128 bits representing 4 packed SP from XMM1 register 
to XMM2/Mem.
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MOVAPS: Move Aligned Four Packed Single-FP (Continued)

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: MOVAPS should be used when dealing with 16-byte aligned SP FP numbers. If the data 
is not known to be aligned, MOVUPS should be used instead of MOVAPS. The usage of 
this instruction should be limited to the cases where the aligned restriction is easy to 
meet. Processors that support the Intel SSE architecture will provide optimal aligned 
performance for the MOVAPS instruction.

The usage of Repeat Prefixes (F2H, F3H) with MOVAPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with MOVAPS 
risks incompatibility with future processors.
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MOVHLPS: Move High to Low Packed Single-FP

Operation: // move instruction

xmm1[127-64] = xmm1[127-64];

xmm1[63-0] = xmm2[127-64];

Description: The upper 64-bits of the source register xmm2 are loaded into the lower 64-bits of the 
128-bit register xmm1 and the upper 64-bits of xmm1 are left unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD 
if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD 
if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with MOVHLPS is 
reserved. Different processor implementations may handle these prefixes differently. 
Usage of these prefixes with MOVHLPS risks incompatibility with future processors.

Opcode Instruction Description

0F,12,/r MOVHLPS xmm1, xmm2 Move 64 bits representing higher two SP operands from 
XMM2 to lower two fields of XMM1 register.
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MOVHPS: Move High Packed Single-FP

Operation: if (destination == xmm) {

// load instruction

xmm[127-64]   = m64;

xmm[31-0]  = xmm[31-0];

xmm[63-32] = xmm[63-32];

}

else {

// store instruction

m64 = xmm[127-64];        

}

Description: The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When the load form of this operation is used, m64 is loaded 
into the upper 64-bits of the 128-bit register xmm and the lower 64-bits are left 
unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Opcode Instruction Description

0F,16,/r

0F,17,/r

MOVHPS xmm, m64

MOVHPS m64, xmm

Move 64 bits representing two SP operands from Mem to 
upper two fields of XMM register.
Move 64 bits representing two SP operands from upper two 
fields of XMM register to Mem.



Volume 4: IA-32 SSE Instruction Reference 4:531

MOVHPS: Move High Packed Single-FP (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVHPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with MOVHPS 
risks incompatibility with future processors.



4:532 Volume 4: IA-32 SSE Instruction Reference

MOVLHPS: Move Low to High Packed Single-FP

Operation: // move instruction

xmm1[127-64] = xmm2[63-0];

xmm1[63-0] = xmm1[63-0];

Description: The lower 64-bits of the source register xmm2 are loaded into the upper 64-bits of the 
128-bit register xmm1 and the lower 64-bits of xmm1 are left unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD 
if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD 
if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments:

Example: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with MOVLHPS is 
reserved. Different processor implementations may handle these prefixes differently. 
Usage of these prefixes with MOVLHPS risks incompatibility with future processors.

Opcode Instruction Description

0F,16,/r MOVLHPS xmm1, xmm2 Move 64 bits representing lower two SP operands from XMM2 
to upper two fields of XMM1 register.
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MOVLPS: Move Low Packed Single-FP

Operation: if (destination == xmm) {

// load instruction

xmm[63-0]   = m64;

xmm[95-64]  = xmm[95-64];

xmm[127-96] = xmm[127-96];

}

else {

// store instruction

m64 = xmm[63-0];        

}

Description: The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When the load form of this operation is used, m64 is loaded 
into the lower 64-bits of the 128-bit register xmm and the upper 64-bits are left 
unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Opcode Instruction Description

0F,12,/r

0F,13,/r

MOVLPS xmm, m64

MOVLPS m64, xmm

Move 64 bits representing two SP operands from Mem to 
lower two fields of XMM register.
Move 64 bits representing two SP operands from lower two 
fields of XMM register to Mem.
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MOVLPS: Move Low Packed Single-FP (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVLPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with MOVLPS 
risks incompatibility with future processors.
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MOVMSKPS: Move Mask to Integer

Operation: r32[3] = xmm[127]; r32[2] = xmm[95];

r32[1] = xmm[63];  r32[0] = xmm[31];

r32[7-4] = 0x0; r32[15-8] = 0x00; 

r32[31-16] = 0x0000;

Description: The MOVMSKPS instruction returns to the integer register r32 a 4-bit mask formed of 
the most significant bits of each SP FP number of its operand.

FP Exceptions: None

Numeric Exceptions:  None.

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception.; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set.; #UD if CRCR4.OSFXSR(bit 9) = 0; 
#UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVMSKPS is reserved. Different 
processor implementations may handle this prefix differently. Usage of this prefix with 
MOVMSKPS risks incompatibility with future processors.

Opcode Instruction Description

0F,50,/r MOVMSKPS r32, xmm Move the single mask to r32. 



4:536 Volume 4: IA-32 SSE Instruction Reference

MOVSS: Move Scalar Single-FP

Operation: if (destination == xmm1) {

if (source == m32) {

// load instruction

xmm1[31-0]   = m32;

xmm1[63-32]  = 0x00000000;

xmm1[95-64]  = 0x00000000;

xmm1[127-96] = 0x00000000;

}

else {

// move instruction

xmm1[31-0]   = xmm2[31-0];

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

}

}

else {

if (destination == m32) {

// store instruction

m32 = xmm1[31-0];

}        

else {

// move instruction

xmm2[31-0]   = xmm1[31-0] 

xmm2[63-32]  = xmm2[63-32];

xmm2[95-64]  = xmm2[95-64];

Opcode Instruction Description

F3,0F,10,/r

F3,0F,11,/r

MOVSS xmm1, xmm2/m32

MOVSS xmm2/m32, xmm1

Move 32 bits representing one scalar SP operand from 
XMM2/Mem to XMM1 register.
Move 32 bits representing one scalar SP operand from XMM1 
register to XMM2/Mem.
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MOVSS: Move Scalar Single-FP (Continued)

xmm2[127-96] = xmm2[127-96];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When a memory address is indicated, the 4 bytes of data at 
memory location m32 are loaded or stored. When the load form of this operation is 
used, the 32-bits from memory are copied into the lower 32 bits of the 128-bit register 
xmm, the 96 most significant bits being cleared.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault
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MOVUPS: Move Unaligned Four Packed Single-FP

Operation: if (destination == xmm1) {

if (source == m128) {

// load instruction

xmm1[127-0] = m128;

}

else {

// move instruction

xmm1[127-0] = xmm2[127-0];

}

}

else {

if (destination == m128) {

// store instruction

m128 = xmm1[127-0];

}

else {

// move instruction

xmm2[127-0] = xmm1[127-0];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When a memory address is indicated, the 16 bytes of data at 
memory location m128 are loaded to the 128-bit multimedia register xmm or stored 
from the 128-bit multimedia register xmm. When the register-register form of this 
operation is used, the content of the 128-bit source register is copied into 128-bit 
register xmm. No assumption is made about alignment.

FP Exceptions: None

Numeric Exceptions: None

Opcode Instruction Description

0F,10,/r

0F,11,/r

MOVUPS xmm1, xmm2/m128

MOVUPS xmm2/m128, xmm1

Move 128 bits representing four SP data from XMM2/Mem to 
XMM1 register.
Move 128 bits representing four SP data from XMM1 register to 
XMM2/Mem.
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MOVUPS: Move Unaligned Four Packed Single-FP (Continued)

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #AC for unaligned memory reference if the current privilege 
level is 3; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVUPS should be used with SP FP numbers when that data is known to be 
unaligned.The usage of this instruction should be limited to the cases where the aligned 
restriction is hard or impossible to meet. SSE implementations guarantee optimum 
unaligned support for MOVUPS. Efficient SSE applications should mainly rely on 
MOVAPS, not MOVUPS, when dealing with aligned data.

The usage of Repeat-NE Prefix (F2H) and Operand Size Prefix (66H) with MOVUPS is 
reserved. Different processor implementations may handle this prefix differently. Usage 
of this prefix with MOVUPS risks incompatibility with future processors.

A linear address of the 128 bit data access, while executing in 16-bit mode, that 
overlaps the end of a 16-bit segment is not allowed and is defined as reserved behavior. 
Different processor implementations may/may not raise a GP fault in this case if the 
segment limit has been exceeded; additionally, the address that spans the end of the 
segment may/may not wrap around to the beginning of the segment.
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MULPS: Packed Single-FP Multiply

Operation: xmm1[31-0]   = xmm1[31-0]   * xmm2/m128[31-0];

xmm1[63-32]  = xmm1[63-32]  * xmm2/m128[63-32];

xmm1[95-64]  = xmm1[95-64]  * xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] * xmm2/m128[127-96];

Description: The MULPS instructions multiply the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0).

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,59,/r MULPS xmm1, xmm2/m128  Multiply packed SP FP numbers in XMM2/Mem to XMM1.
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MULSS: Scalar Single-FP Multiply

xmm1[31-0]   = xmm1[31-0] * xmm2/m32[31-0];

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MULSS instructions multiply the lowest SP FP numbers of both their operands; the 
upper 3 fields are passed through from xmm1.

FP Exceptions: None

Numeric Exceptions:  Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0).

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,59,/r MULSS xmm1 xmm2/m32 Multiply the lowest SP FP number in XMM2/Mem to XMM1.
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ORPS: Bit-wise Logical OR for Single-FP Data

Operation: xmm1[127-0] |= xmm2/m128[127-0];

Description: The ORPS instructions return a bit-wise logical OR between xmm1 and xmm2/mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ORPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with ORPS risks 
incompatibility with future processors.

Opcode Instruction Description

0F,56,/r ORPS xmm1, xmm2/m128 OR 128 bits from XMM2/Mem to XMM1 register.
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RCPPS: Packed Single-FP Reciprocal

 

Operation: xmm1[31-0]   = approx (1.0/(xmm2/m128[31-0])); 

xmm1[63-32]  = approx (1.0/(xmm2/m128[63-32])); 

xmm1[95-64]  = approx (1.0/(xmm2/m128[95-64])); 

xmm1[127-96] = approx (1.0/(xmm2/m128[127-96])); 

Description: RCPPS returns an approximation of the reciprocal of the SP FP numbers from 
xmm2/m128. The relative error for this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: RCPPS is not affected by the rounding control in MXCSR. Denormal inputs are treated 
as zeros (of the same sign) and tiny results are always flushed to zero, with the sign of 
the operand.

Results are guaranteed not to be tiny, and therefore not flushed to zero, for input 
values x which satisfy

|x| <= 1.11111111110100000000000B×2125

Opcode Instruction Description

0F,53,/r RCPPS xmm1, xmm2/m128 Return a packed approximation of the reciprocal of 
XMM2/Mem.
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RCPPS: Packed Single-FP Reciprocal (Continued)

For input values x which satisfy

1.11111111110100000000001B×2125 <= |x| <= 
1.00000000000110000000000B×2126

flush-to-zero might or might not occur, depending on the implementation (this interval 
contains 6144 + 3072 = 9216 single precision floating-point numbers).

Results are guaranteed to be tiny, and therefore flushed to zero, for input values x 
which satisfy

|x| <= 1.00000000000110000000001B×2126

The decimal approximations of the single precision numbers that delimit the three 
intervals specified above, are as follows:

1.11111111110100000000000B×2125 ~= 8.5039437×1037

1.11111111110100000000001B×2125 ~= 8.5039443×1037

1.00000000000110000000000B×2126 ~= 4.2550872×1037

1.00000000000110000000001B×2126 ~= 4.2550877×1037

The hexadecimal representations of the single precision numbers that delimit the three 
intervals specified above, are as follows:

1.11111111110100000000000B×2125 = 0x7e7fe800

1.11111111110100000000001B×2125 = 0x7e7fe801

1.00000000000110000000000B×2126 = 0x7e800c00

1.00000000000110000000001B×2126 = 0x7e800c01



Volume 4: IA-32 SSE Instruction Reference 4:545

RCPSS: Scalar Single-FP Reciprocal

 

Operation: xmm1[31-0]   = approx (1.0/(xmm2/m32[31-0])); 

xmm1[63-32]  = xmm1[63-32]; 

xmm1[95-64]  = xmm1[95-64]; 

xmm1[127-96] = xmm1[127-96]; 

Description: RCPSS returns an approximation of the reciprocal of the lower SP FP number from 
xmm2/m32; the upper 3 fields are passed through from xmm1. The relative error for 
this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #AC for unaligned memory reference if the current privilege 
level is 3; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: RCPSS is not affected by the rounding control in MXCSR. Denormal inputs are treated 
as zeros (of the same sign) and tiny results are always flushed to zero, with the sign of 
the operand.

Results are guaranteed not to be tiny, and therefore not flushed to zero, for input 
values x which satisfy

|x| <= 1.11111111110100000000000B×2125

Opcode Instruction Description

F3,0F,53,/r RCPSS xmm1, xmm2/m32 Return an approximation of the reciprocal of the lower SP FP 
number in XMM2/Mem.
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RCPSS: Scalar Single-FP Reciprocal (Continued)

For input values x which satisfy

1.11111111110100000000001B×2125 <= |x| <= 
1.00000000000110000000000B×2126

flush-to-zero might or might not occur, depending on the implementation (this interval 
contains 6144 + 3072 = 9216 single precision floating-point numbers).

Results are guaranteed to be tiny, and therefore flushed to zero, for input values x 
which satisfy

|x| <= 1.00000000000110000000001B×2126

The decimal approximations of the single precision numbers that delimit the three 
intervals specified above, are as follows:

1.11111111110100000000000B×2125 ~= 8.5039437×1037

1.11111111110100000000001B×2125 ~= 8.5039443×1037

1.00000000000110000000000B×2126 ~= 4.2550872×1037

1.00000000000110000000001B×2126 ~= 4.2550877×1037

The hexadecimal representations of the single precision numbers that delimit the three 
intervals specified above, are as follows:

1.11111111110100000000000B×2125 = 0x7e7fe800

1.11111111110100000000001B×2125 = 0x7e7fe801

1.00000000000110000000000B×2126 = 0x7e800c00

1.00000000000110000000001B×2126 = 0x7e800c01
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RSQRTPS: Packed Single-FP Square Root Reciprocal

Operation: xmm1[31-0]   = approx (1.0/sqrt(xmm2/m128[31-0]));

xmm1[63-32]  = approx (1.0/sqrt(xmm2/m128[63-32]));

xmm1[95-64]  = approx (1.0/sqrt(xmm2/m128[95-64]));

xmm1[127-96] = approx (1.0/sqrt(xmm2/m128[127-96]));

Description: RSQRTPS returns an approximation of the reciprocal of the square root of the SP FP 
numbers from xmm2/m128. The relative error for this approximation is Error, which 
satisfies:

|Error| <= 1.5x2-12

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: RSQRTPS is not affected by the rounding control in MXCSR. Denormal inputs are 
treated as zeros (of the same sign).

Opcode Instruction Description

0F,52,/r RSQRTPS xmm1, xmm2/m128 Return a packed approximation of the square root of the 
reciprocal of XMM2/Mem.
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RSQRTSS: Scalar Single-FP Square Root Reciprocal

Operation: xmm1[31-0]   = approx (1.0/sqrt(xmm2/m32[31-0]));

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: RSQRTSS returns an approximation of the reciprocal of the square root of the lowest SP 
FP number from xmm2/m32; the upper 3 fields are passed through from xmm1. The 
relative error for this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments:

Example: RSQRTSS is not affected by the rounding control in MXCSR. Denormal inputs are 
treated as zeros (of the same sign).

Opcode Instruction Description

F3,0F,52,/r RSQRTSS xmm1, xmm2/m32 Return an approximation of the square root of the reciprocal of 
the lowest SP FP number in XMM2/Mem.
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SHUFPS: Shuffle Single-FP

Operation: fp_select  = (imm8 >> 0) & 0x3;

xmm1[31-0]   = (fp_select == 0) ? xmm1[31-0]   :

               (fp_select == 1) ? xmm1[63-32]  :

               (fp_select == 2) ? xmm1[95-64]  :

                                  xmm1[127-96];

fp_select  = (imm8 >> 2) & 0x3;

xmm1[63-32]  = (fp_select == 0) ? xmm1[31-0]   :

               (fp_select == 1) ? xmm1[63-32]  :

               (fp_select == 2) ? xmm1[95-64]  :

                                  xmm1[127-96];

fp_select  = (imm8 >> 4) & 0x3;

xmm1[95-64]  = (fp_select == 0) ? xmm2/m128[31-0]   :

               (fp_select == 1) ? xmm2/m128[63-32]  :

               (fp_select == 2) ? xmm2/m128[95-64]  :

                                  xmm2/m128[127-96];

fp_select  = (imm8 >> 6) & 0x3;

xmm1[127-96] = (fp_select == 0) ? xmm2/m128[31-0]   :

               (fp_select == 1) ? xmm2/m128[63-32]  :

               (fp_select == 2) ? xmm2/m128[95-64]  :

                                  xmm2/m128[127-96];

Description: The SHUFPS instruction is able to shuffle any of the four SP FP numbers from xmm1 to 
the lower 2 destination fields; the upper 2 destination fields are generated from a 
shuffle of any of the four SP FP numbers from xmm2/m128. By using the same register 
for both sources, SHUFPS can return any combination of the four SP FP numbers from 
this register. Bits 0 and 1 of the immediate field are used to select which of the four 
input SP FP numbers will be put in the first SP FP number of the result; bits 3 and 2 of 
the immediate field are used to select which of the four input SP FP will be put in the 
second SP FP number of the result; etc.

Opcode Instruction Description

0F,C6,/r, ib SHUFPS xmm1, xmm2/m128, imm8 Shuffle Single.
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SHUFPS: Shuffle Single-FP (Continued)

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with SHUFPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with SHUFPS 
risks incompatibility with future processors.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

{Y4 ... Y1} {Y4 ... Y1} {X4 ... X1} {X4 ... X1}

xmm1

xmm2/m128

xmm1
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SQRTPS: Packed Single-FP Square Root

Operation: xmm1[31-0]   = sqrt (xmm2/m128[31-0]);

xmm1[63-32]  = sqrt (xmm2/m128[63-32]);

xmm1[95-64]  = sqrt (xmm2/m128[95-64]);

xmm1[127-96] = sqrt (xmm2/m128[127-96]);

Description: The SQRTPS instruction returns the square root of the packed SP FP numbers from 
xmm2/m128. 

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,51,/r SQRTPS xmm1, xmm2/m128 Square Root of the packed SP FP numbers in XMM2/Mem.
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SQRTSS: Scalar Single-FP Square Root

Operation: xmm1[31-0]   = sqrt (xmm2/m32[31-0]);

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The SQRTSS instructions return the square root of the lowest SP FP numbers of their 
operand.

FP Exceptions: None

Numeric Exceptions:  Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,51,/r SQRTSS xmm1, xmm2/m32 Square Root of the lower SP FP number in XMM2/Mem.
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STMXCSR: Store SSE Control/Status 

Operation: m32 = MXCSR;

Description: The MXCSR control/status register is used to enable masked/unmasked exception 
handling, to set rounding modes, to set flush-to-zero mode, and to view exception 
status flags. Refer to LDMXCSR for a description of the format of MXCSR. The linear 
address corresponds to the address of the least-significant byte of the referenced 
memory data. The reserved bits in the MXCSR are stored as zeroes.

FP Exceptions: None.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. #AC for 
unaligned memory reference.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults NaT Register Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with STMXCSR is 
reserved. Different processor implementations may handle this prefix differently. Usage 
of this prefix with STMXCSR risks incompatibility with future processors.

Opcode Instruction Description

0F,AE,/3 STMXCSR m32 Store SSE control/status word to m32.
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SUBPS: Packed Single-FP Subtract

Operation: xmm1[31-0]   = xmm1[31-0]   - xmm2/m128[31-0];

xmm1[63-32]  = xmm1[63-32]  - xmm2/m128[63-32];

xmm1[95-64]  = xmm1[95-64]  - xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] - xmm2/m128[127-96];

Description: The SUBPS instruction subtracts the packed SP FP numbers of both their operands. 

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric 
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault;.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,5C,/r SUBPS xmm1 xmm2/m128 Subtract packed SP FP numbers in XMM2/Mem from XMM1.
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SUBSS: Scalar Single-FP Subtract

Operation: xmm1[31-0]   = xmm1[31-0] - xmm2/m32[31-0];

xmm1[63-32]  = xmm1[63-32];

xmm1[95-64]  = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The SUBSS instruction subtracts the lower SP FP numbers of both their operands.

FP Exceptions: None.

Numeric Exceptions:  Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,5C, /r SUBSS xmm1, xmm2/m32 Subtract the lower SP FP numbers in XMM2/Mem from 
XMM1.
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UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS

Operation: switch (xmm1[31-0] <> xmm2/m32[31-0]) {

OF,SF,AF = 000;

case UNORDERED:     ZF,PF,CF = 111;

case GREATER_THAN:  ZF,PF,CF = 000;

case LESS_THAN:     ZF,PF,CF = 001;

case EQUAL:         ZF,PF,CF = 100;

}

Description: The UCOMISS instructions compare the two lowest scalar SP FP numbers and sets the 
ZF,PF,CF bits in the EFLAGS register as described above. In addition, the OF, SF and AF 
bits in the EFLAGS register are zeroed out. The unordered predicate is returned if either 
source operand is a NaN (qNaN or sNaN).

FP Exceptions: None.

Numeric Exceptions: Invalid (if SNaN operands), Denormal. Integer EFLAGS values will not be updated 
in the presence of unmasked numeric exceptions.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory 
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set; 
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception 
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX 
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an 
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE 
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if 
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

0F,2E,/r UCOMISS xmm1, xmm2/m32 Compare lower SP FP number in XMM1 register with lower 
SP FP number in XMM2/Mem and set the status flags 
accordingly.
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UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS 
(Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: UCOMISS differs from COMISS in that it signals an invalid numeric exception when a 
source operand is an sNaN; COMISS signals invalid if a source operand is either a qNaN 
or an sNaN.

The usage of Repeat (F2H, F3H) and Operand-Size prefixes with UCOMISS is reserved. 
Different processor implementations may handle this prefix differently. Usage of this 
prefix with UCOMISS risks incompatibility with future processors.
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UNPCKHPS: Unpack High Packed Single-FP Data

Operation: xmm1[31-0]   = xmm1[95-64];

xmm1[63-32]  = xmm2/m128[95-64];

xmm1[95-64]  = xmm1[127-96]; 

xmm1[127-96] = xmm2/m128[127-96];

Description: The UNPCKHPS instruction performs an interleaved unpack of the high-order data 
elements of XMM1 and XMM2/Mem. It ignores the lower half of the sources. 

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Opcode Instruction Description

0F,15,/r UNPCKHPS xmm1, xmm2/m128 Interleaves SP FP numbers from the high halves of XMM1 
and XMM2/Mem into XMM1 register.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y4 X4 Y3 X3

xmm1

xmm2/m128

xmm1
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UNPCKHPS: Unpack High Packed Single-FP Data (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: When unpacking from a memory operand, an implementation may decide to fetch only 
the appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking 
will still be enforced.

The usage of Repeat Prefixes (F2H, F3H) with UNPCKHPS is reserved. Different 
processor implementations may handle this prefix differently. Usage of this prefix with 
UNPCKHPS risks incompatibility with future processors.



4:560 Volume 4: IA-32 SSE Instruction Reference

UNPCKLPS: Unpack Low Packed Single-FP Data

Operation: xmm1[31-0]   = xmm1[31-0];

xmm1[63-32]  = xmm2/m128[31-0];

xmm1[95-64]  = xmm1[63-32];

xmm1[127-96] = xmm2/m128[63-32];

Description: The UNPCKLPS instruction performs an interleaved unpack of the low-order data 
elements of XMM1 and XMM2/Mem. It ignores the upper half part of the sources. 

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Opcode Instruction Description

0F,14,/r UNPCKLPS xmm1, xmm2/m128 Interleaves SP FP numbers from the low halves of XMM1 
and XMM2/Mem into XMM1 register.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y2 X2 Y1 X1

xmm1

xmm2/m128

xmm1
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UNPCKLPS: Unpack Low Packed Single-FP Data (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments: When unpacking from a memory operand, an implementation may decide to fetch only 
the appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking 
will still be enforced.

The usage of Repeat Prefixes (F2H, F3H) with UNPCKLPS is reserved. Different 
processor implementations may handle this prefix differently. Usage of this prefix with 
UNPCKLPS risks incompatibility with future processors.
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XORPS: Bit-wise Logical Xor for Single-FP Data

Operation: xmm[127-0] ^= xmm/m128[127-0];

Description: The XORPS instruction returns a bit-wise logical XOR between XMM1 and XMM2/Mem. 

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Comments:

The usage of Repeat Prefixes (F2H, F3H) with XORPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with XORPS 
risks incompatibility with future processors.

4.13 SIMD Integer Instruction Set Extensions

Additional new SIMD Integer instructions have been added to accelerate the 
performance of 3D graphics, video decoding and encoding and other applications. 
These instructions operate on the MMX technology registers and on 64-bit memory 
operands.

Opcode Instruction Description

0F,57,/r XORPS xmm1, xmm2/m128 XOR 128 bits from XMM2/Mem to XMM1 register.
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PAVGB/PAVGW: Packed Average

Operation: if (instruction == PAVGB) {

x[0] = mm1[7-0] y[0] = mm2/m64[7-0]; 

x[1] = mm1[15-8] y[1] = mm2/m64[15-8];

x[2] = mm1[23-16] y[2] = mm2/m64[23-16];

x[3] = mm1[31-24] y[3] = mm2/m64[31-24];

x[4] = mm1[39-32] y[4] = mm2/m64[39-32];

x[5] = mm1[47-40] y[5] = mm2/m64[47-40];

x[6] = mm1[55-48] y[6] = mm2/m64[55-48];

x[7] = mm1[63-56] y[7] = mm2/m64[63-56];

for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

res[i] = (temp[i] +1) >> 1; 

}

mm1[7-0] = res[0];

...

mm1[63-56] = res[7];

}

else if (instruction == PAVGW){

x[0] = mm1[15-0] y[0] = mm2/m64[15-0];

x[1] = mm1[31-16] y[1] = mm2/m64[31-16];

x[2] = mm1[47-32] y[2] = mm2/m64[47-32];

x[3] = mm1[63-48] y[3] = mm2/m64[63-48];

for (i = 0; i < 4; i++) {

Opcode Instruction Description

0F,E0, /r PAVGB mm1,mm2/m64 Average with rounding packed unsigned bytes from 
MM2/Mem to packed bytes in MM1 register.

0F,E3, /r PAVGW mm1, mm2/m64 Average with rounding packed unsigned words from 
MM2/Mem to packed words in MM1 register.
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PAVGB/PAVGW: Packed Average (Continued)

temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

res[i] = (temp[i] +1) >> 1; 

}

mm1[15-0] = res[0];

...

mm1[63-48] = res[3];

}

Description: The PAVG instructions add the unsigned data elements of the source operand to the 
unsigned data elements of the destination register, along with a carry-in. The results of 
the add are then each independently right shifted by one bit position. The high order 
bits of each element are filled with the carry bits of the corresponding sum. 

The destination operand is a MMX technology register. The source operand can either 
be a MMX technology register or a 64-bit memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction 
operates on packed unsigned words. 

Numeric Exceptions:  None.

Protected Mode Exceptions:

 #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory references (if the current privilege level is 3).

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault
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PEXTRW: Extract Word

Operation: sel = imm8 & 0x3;

mm_temp = (mm >> (sel * 16)) & 0xffff;

r[15-0] = mm_temp[15-0];

r[31-16] = 0x0000;

Description: The PEXTRW instruction moves the word in MM selected by the two least significant bits 
of imm8 to the lower half of a 32-bit integer register.

Numeric Exceptions:  None.

Protected Mode Exceptions:

 #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a pending FPU 
exception.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Opcode Instruction Description

0F,C5, /r, ib PEXTRW r32, mm, imm8 Extract the word pointed to by imm8 from MM and move it to a 
32-bit integer register.
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 PINSRW: Insert Word

Operation: sel = imm8 & 0x3;

mask = (sel == 0)? 0x000000000000ffff :

       (sel == 1)? 0x00000000ffff0000 :

       (sel == 2)? 0x0000ffff00000000 :

                0xffff000000000000;

mm = (mm & ~mask) | ((m16/r32[15-0] << (sel * 16)) & mask);

Description: The PINSRW instruction loads a word from the lower half of a 32-bit integer register (or 
from memory) and inserts it in the MM destination register at a position defined by the 
two least significant bits of the imm8 constant. The insertion is done in such a way that 
the three other words from the destination register are left untouched.

Numeric Exceptions:  None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,C4,/r,ib PINSRW mm, r32/m16, imm8 Insert the word from the lower half of r32 or from Mem16 into 
the position in MM pointed to by imm8 without touching the 
other words.
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PMAXSW: Packed Signed Integer Word Maximum

Operation: mm1[15-0]   = (mm1[15-0] > mm2/m64[15-0]) ? mm1[15-0] : mm2/m64[15-0];

mm1[31-16]  = (mm1[31-16] > mm2/m64[31-16]) ? mm1[31-16] : mm2/m64[31-16];

mm1[47-32]  = (mm1[47-32] > mm2/m64[47-32]) ? mm1[47-32] : mm2/m64[47-32];

mm1[63-48]  = (mm1[63-48] > mm2/m64[63-48]) ? mm1[63-48] : mm2/m64[63-48];

Description: The PMAXSW instruction returns the maximum between the four signed words in MM1 
and MM2/Mem.

Numeric Exceptions:  None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,EE, /r PMAXSW mm1, mm2/m64 Return the maximum words between MM2/Mem and MM1.
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PMAXUB: Packed Unsigned Integer Byte Maximum

Operation: mm1[7-0]   = (mm1[7-0] > mm2/m64[7-0]) ? mm1[7-0] : mm2/m64[7-0]; 

mm1[15-8]  = (mm1[15-8] > mm2/m64[15-8]) ? mm1[15-8] : mm2/m64[15-8];

mm1[23-16]  = (mm1[23-16] > mm2/m64[23-16]) ? mm1[23-16] : mm2/m64[23-16];

mm1[31-24]  = (mm1[31-24] > mm2/m64[31-24]) ? mm1[31-24] : mm2/m64[31-24];

mm1[39-32]  = (mm1[39-32] > mm2/m64[39-32]) ? mm1[39-32] : mm2/m64[39-32];

mm1[47-40]  = (mm1[47-40] > mm2/m64[47-40]) ? mm1[47-40] : mm2/m64[47-40];

mm1[55-48]  = (mm1[55-48] > mm2/m64[55-48]) ? mm1[55-48] : mm2/m64[55-48];

mm1[63-56]  = (mm1[63-56] > mm2/m64[63-56]) ? mm1[63-56] : mm2/m64[63-56];

Description: The PMAXUB instruction returns the maximum between the eight unsigned words in 
MM1 and MM2/Mem.

Numeric Exceptions:  None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,DE, /r PMAXUB mm1, mm2/m64 Return the maximum bytes between MM2/Mem and MM1.
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PMINSW: Packed Signed Integer Word Minimum

Operation: mm1[15-0]   = (mm1[15-0] < mm2/m64[15-0]) ? mm1[15-0] : mm2/m64[15-0];

mm1[31-16]  = (mm1[31-16] < mm2/m64[31-16]) ? mm1[31-16] : mm2/m64[31-16];

mm1[47-32]  = (mm1[47-32] < mm2/m64[47-32]) ? mm1[47-32] : mm2/m64[47-32];

mm1[63-48]  = (mm1[63-48] < mm2/m64[63-48]) ? mm1[63-48] : mm2/m64[63-48];

Description: The PMINSW instruction returns the minimum between the four signed words in MM1 
and MM2/Mem.

Numeric Exceptions:  None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception#AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,EA, /r PMINSW mm1, mm2/m64 Return the minimum words between MM2/Mem and MM1.
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PMINUB: Packed Unsigned Integer Byte Minimum

Operation: mm1[7-0]   = (mm1[7-0] < mm2/m64[7-0]) ? mm1[7-0] : mm2/m64[7-0]; 

mm1[15-8]  = (mm1[15-8] < mm2/m64[15-8]) ? mm1[15-8] : mm2/m64[15-8];

mm1[23-16]  = (mm1[23-16] < mm2/m64[23-16]) ? mm1[23-16] : mm2/m64[23-16];

mm1[31-24]  = (mm1[31-24] < mm2/m64[31-24]) ? mm1[31-24] : mm2/m64[31-24];

mm1[39-32]  = (mm1[39-32] < mm2/m64[39-32]) ? mm1[39-32] : mm2/m64[39-32];

mm1[47-40]  = (mm1[47-40] < mm2/m64[47-40]) ? mm1[47-40] : mm2/m64[47-40];

mm1[55-48]  = (mm1[55-48] < mm2/m64[55-48]) ? mm1[55-48] : mm2/m64[55-48];

mm1[63-56]  = (mm1[63-56] < mm2/m64[63-56]) ? mm1[63-56] : mm2/m64[63-56];

Description: The PMINUB instruction returns the minimum between the eight unsigned words in 
MM1 and MM2/Mem.

Numeric Exceptions:  None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,DA, /r PMINUB mm1, mm2/m64 Return the minimum bytes between MM2/Mem and MM1.
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PMOVMSKB: Move Byte Mask To Integer

Operation: r32[7]  = mm[63];  r32[6]  = mm[55];

r32[5]  = mm[47];  r32[4]  = mm[39];

r32[3]  = mm[31];  r32[2]  = mm[23];

r32[1]  = mm[15];  r32[0]  = mm[7];

r32[31-8] = 0x000000;

Description: The PMOVMSKB instruction returns a 8-bit mask formed of the most significant bits of 
each byte of its source operand. 

Numeric Exceptions:  None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Opcode Instruction Description

0F,D7,/r PMOVMSKB r32, mm Move the byte mask of MM to r32.
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PMULHUW: Packed Multiply High Unsigned

Operation: mm1[15-0]    = (mm1[15-0]    * mm2/m64[15-0])[31-16];

mm1[31-16]   = (mm1[31-16]   * mm2/m64[31-16])[31-16];

mm1[47-32]   = (mm1[47-32]   * mm2/m64[47-32])[31-16];

mm1[63-48]   = (mm1[63-48]   * mm2/m64[63-48])[31-16];

Description: The PMULHUW instruction multiplies the four unsigned words in the destination operand 
with the four unsigned words in the source operand. The high-order 16 bits of the 
32-bit intermediate results are written to the destination operand. 

Numeric Exceptions:  None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,E4,/r PMULHUW mm1, mm2/m64 Multiply the packed unsigned words in MM1 register 
with the packed unsigned words in MM2/Mem, then 
store the high-order 16 bits of the results in MM1. 
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PSADBW: Packed Sum of Absolute Differences

Operation: temp1   = ABS(mm1[7-0]     - mm2/m64[7-0]); 

temp2   = ABS(mm1[15-8]    - mm2/m64[15-8]);

temp3   = ABS(mm1[23-16]   - mm2/m64[23-16]);

temp4   = ABS(mm1[31-24]   - mm2/m64[31-24]);

temp5   = ABS(mm1[39-32]   - mm2/m64[39-32]);

temp6   = ABS(mm1[47-40]   - mm2/m64[47-40]);

temp7   = ABS(mm1[55-48]   - mm2/m64[55-48]);

temp8   = ABS(mm1[63-56]   - mm2/m64[63-56]);

mm1[15:0] = temp1 + temp2 + temp3 + temp4 + temp5 + temp6 + temp7 + temp8;

mm1[31:16] = 0x00000000;

mm1[47:32] = 0x00000000;

mm1[63:48] = 0x00000000;

Description: The PSADBW instruction computes the absolute value of the difference of unsigned 
bytes for mm1 and mm2/m64. These differences are then summed to produce a word 
result in the lower 16-bit field; the upper 3 words are cleared.

The destination operand is a MMX technology register. The source operand can either 
be a MMX technology register or a 64-bit memory operand.

Numeric Exceptions:  None

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Opcode Instruction Description

0F,F6, /r PSADBW mm1,mm2/m64 Absolute difference of packed unsigned bytes from MM2 
/Mem and MM1; these differences are then summed to 
produce a word result.
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PSADBW: Packed Sum of Absolute Differences (Continued)

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault
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PSHUFW: Packed Shuffle Word

Operation: mm1[15-0]   = (mm2/m64 >> (imm8[1-0] * 16) )[15-0]

mm1[31-16]  = (mm2/m64 >> (imm8[3-2] * 16) )[15-0]

mm1[47-32]  = (mm2/m64 >> (imm8[5-4] * 16) )[15-0]

mm1[63-48]  = (mm2/m64 >> (imm8[7-6] * 16) )[15-0]

Description: The PSHUF instruction uses the imm8 operand to select which of the four words in 
MM2/Mem will be placed in each of the words in MM1. Bits 1 and 0 of imm8 encode the 
source for destination word 0 (MM1[15-0]), bits 3 and 2 encode for word 1, bits 5 and 4 
encode for word 2, and bits 7 and 6 encode for word 3 (MM1[63-48]). Similarly, the two 
bit encoding represents which source word is to be used, e.g. an binary encoding of 10 
indicates that source word 2 (MM2/Mem[47-32]) will be used.

Numeric Exceptions:  None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault

4.14 Cacheability Control Instructions

This section describes the cacheability control instructions which enable an application 
writer to minimize data access latency and cache pollution.

Opcode Instruction Description

0F,70,/r,ib PSHUFW mm1, mm2/m64, imm8 Shuffle the words in MM2/Mem based on the 
encoding in imm8 and store in MM1.
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MASKMOVQ: Byte Mask Write 

Operation: if (mm2[7])   m64[edi]    = mm1[7-0];

if (mm2[15])  m64[edi+1]  = mm1[15-8];

if (mm2[23])  m64[edi+2]  = mm1[23-16];

if (mm2[31])  m64[edi+3]  = mm1[31-24];

if (mm2[39])  m64[edi+4]  = mm1[39-32];

if (mm2[47])  m64[edi+5]  = mm1[47-40];

if (mm2[55])  m64[edi+6]  = mm1[55-48];

if (mm2[63])  m64[edi+7]  = mm1[63-56];

Description: Data is stored from the mm1 register to the location specified by the di/edi register 
(using DS segment). The size of the store address depends on the address-size 
attribute. The most significant bit in each byte of the mask register mm2 is used to 
selectively write the data (0 = no write, 1 = write), on a per-byte basis. Behavior with a 
mask of all zeroes is as follows:

• No data will be written to memory. However, transition from FP to MMX technology 
state (if necessary) will occur, irrespective of the value of the mask.

• For memory references, a zero byte mask does not prevent addressing faults (i.e. 
#GP, #SS) from being signalled.

• Signalling of page faults (#PF) is implementation specific. 

• #UD, #NM, #MF, and #AC faults are signalled irrespective of the value of the mask.

• Signalling of breakpoints (code or data) is not guaranteed; different processor 
implementations may signal or not signal these breakpoints.

• If the destination memory region is mapped as UC or WP, enforcement of 
associated semantics for these memory types is not guaranteed (i.e. is reserved) 
and is implementation specific. Dependency on the behavior of a specific 
implementation in this case is not recommended, and may lead to future 
incompatibility. 

The Mod field of the ModR/M byte must be 11, or an Invalid Opcode Exception will 
result.

Numeric Exceptions:  None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Opcode Instruction Description

0F,F7,/r MASKMOVQ mm1, mm2 Move 64-bits representing integer data from MM1 register to 
memory location specified by the edi register, using the byte 
mask in MM2 register.
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MASKMOVQ: Byte Mask Write (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments: MASKMOVQ can be used to improve performance for algorithms which need to merge 
data on a byte granularity.MASKMOVQ should not cause a read for ownership; doing so 
generates unnecessary bandwidth since data is to be written directly using the 
byte-mask without allocating old data prior to the store. Similar to the SSE 
non-temporal store instructions, MASKMOVQ minimizes pollution of the cache 
hierarchy. MASKMOVQ implicitly uses weakly-ordered, write-combining stores (WC). 
See Section 4.6.1.9, “Cacheability Control Instructions” for further information about 
non-temporal stores.

As a consequence of the resulting weakly-ordered memory consistency model, a 
fencing operation such as SFENCE should be used if multiple processors may use 
different memory types to read/write the same memory location specified by edi.

This instruction behaves identically to MMX technology instructions, in the presence of 
x87-FP instructions: transition from x87-FP to MMX technology (TOS=0, FP valid bits 
set to all valid).

MASMOVQ ignores the value of CR4.OSFXSR. Since it does not affect the new SSE 
state, they will not generate an invalid exception if CR4.OSFXSR = 0.
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MOVNTPS: Move Aligned Four Packed Single-FP Non-temporal

Operation: m128 = xmm;

Description: The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. This store instruction minimizes cache pollution.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions:  None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if 
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVTNPS should be used when dealing with 16-byte aligned single-precision FP 
numbers. MOVNTPS minimizes pollution in the cache hierarchy. As a consequence of 
the resulting weakly-ordered memory consistency model, a fencing operation should be 
used if multiple processors may use different memory types to read/write the memory 
location. See Section 4.6.1.9, “Cacheability Control Instructions” for further information 
about non-temporal stores.

The usage of Repeat Prefixes(F2H, F3H) with MOVNTPS is reserved. Different processor 
implementations may handle this prefix differently. Usage of this prefix with MOVNTPS 
risks incompatibility with future processors.

Opcode Instruction Description

0F,2B, /r MOVNTPS m128, xmm Move 128 bits representing four packed SP FP data from XMM 
register to Mem, minimizing pollution in the cache hierarchy.
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MOVNTQ: Move 64 Bits Non-temporal

Operation: m64 = mm;

Description: The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. This store instruction minimizes cache pollution.

Numeric Exceptions:  None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU 
exception; #AC for unaligned memory reference. To enable #AC exceptions, three 
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a 
pending FPU exception.

Virtual 8086 Mode  Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register 
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data 
Page Not Present Fault, Data NaT Page Consumption Abort, Data 
Key Miss Fault, Data Key Permission Fault, Data Access Rights 
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVNTQ minimizes pollution in the cache hierarchy. As a consequence of the resulting 
weakly-ordered memory consistency model, a fencing operation should be used if 
multiple processors may use different memory types to read/write the memory 
location. See Section 4.6.1.9, “Cacheability Control Instructions” for further information 
about non-temporal stores.

MOVNTQ ignores the value of CR4.OSFXSR. Since it does not affect the new SSE state, 
they will not generate an invalid exception if CR4.OSFXSR = 0.

Opcode Instruction Description

0F,E7,/r MOVNTQ m64, mm Move 64 bits representing integer operands (8b, 16b, 32b) from 
MM register to memory, minimizing pollution within cache 
hierarchy.
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PREFETCH: Prefetch

Operation: fetch (m8);

Description: If there are no excepting conditions, the prefetch instruction fetches the line containing 
the addresses byte to a location in the cache hierarchy specified by a locality hint. If the 
line is already present in the cache hierarchy at a level closer to the processor, no data 
movement occurs. The bits 5:3 of the ModR/M byte specify locality hints as follows:

• Temporal data(t0) - prefetch data into all cache levels.

• Temporal with respect to first level cache (t1) – prefetch data in all cache levels 
except 0th cache level.

• Temporal with respect to second level cache (t2) – prefetch data in all cache levels, 
except 0th and 1st cache levels. 

• Non-temporal with respect to all cache levels (nta) – prefetch data into 
non-temporal cache structure.

Locality hints do not affect the functional behavior of the program. They are 
implementation dependent, and can be overloaded or ignored by an implementation. 
The prefetch instruction does not cause any exceptions (except for code breakpoints), 
does not affect program behavior and may be ignored by the implementation. The 
amount of data prefetched is implementation dependent. It will however be a minimum 
of 32 bytes. Prefetches to uncacheable memory (UC or WC memory types) will be 
ignored. Additional ModRM encodings, besides those specified above, are defined to be 
reserved and the use of reserved encodings risks future incompatibility.

Numeric Exceptions:  None

Protected Mode Exceptions: None

Real Address Mode Exceptions: None

Virtual 8086 Mode  Exceptions: None

Additional Itanium System Environment Exceptions: None

Comments: This instruction is merely a hint.If executed, this instruction moves data closer to the 
processor in anticipation of future use. The performance of these instructions in 
application code can be implementation specific. To achieve maximum speedup, code 
tuning might be necessary for each implementation. The non temporal hint also 
minimizes pollution of useful cache data.

PREFETCH instructions ignore the value of CR4.OSFXSR. Since they do not affect the 
new SSE state, they will not generate an invalid exception if CR4.OSFXSR = 0.

Opcode Instruction Description

0F,18,/1

0F,18,/2

0F,18,/3

0F,18,/0

PREFETCHT0 m8

PREFETCHT1 m8

PREFETCHT2 m8

PREFETCHNTA m8

Move data specified by address closer to the processor using 
the t0 hint.
Move data specified by address closer to the processor using 
the t1 hint.
Move data specified by address closer to the processor using 
the t2 hint.
Move data specified by address closer to the processor using 
the nta hint.
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SFENCE: Store Fence

Operation: while (!(preceding_stores_globally_visible)) wait();

Description: Weakly ordered memory types can enable higher performance through such techniques 
as out-of-order issue, write-combining, and write-collapsing. Memory ordering issues 
can arise between a producer and a consumer of data and there are a number of 
common usage models which may be affected by weakly ordered stores: (1) library 
functions, which use weakly ordered memory to write results (2) compiler-generated 
code, which also benefit from writing weakly-ordered results, and (3) hand-written 
code. The degree to which a consumer of data knows that the data is weakly ordered 
can vary for these cases. As a result, the SFENCE instruction provides a 
performance-efficient way of ensuring ordering between routines that produce 
weakly-ordered results and routines that consume this data.

SFENCE uses the following ModRM encoding:

Mod (7:6) = 11B

Reg/Opcode (5:3) = 111B

R/M (2:0) = 000B

All other ModRM encodings are defined to be reserved, and use of these encodings risks 
incompatibility with future processors.

Numeric Exceptions:  None

Protected Mode Exceptions: None

Real Address Mode Exceptions: None

Virtual 8086 Mode  Exceptions: None

Additional Itanium System Environment Exceptions: None

Comments: SFENCE ignores the value of CR4.OSFXSR. SFENCE will not generate an invalid 
exception if CR4.OSFXSR = 0

 

Opcode Instruction Description

0F AE /7 SFENCE Guarantees that every store instruction that precedes in 
program order the store fence instruction is globally visible 
before any store instruction which follows the fence is globally 
visible.
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fpmin Instruction 3:113
fpmpy Instruction 3:115
fpms Instruction 3:116
fpneg Instruction 3:118
fpnegabs Instruction 3:119
fpnma Instruction 3:120
fpnmpy Instruction 3:122
fprcpa Instruction 3:123
FPREM Instruction 4:151
FPREM1 Instruction 4:154
fprsqrta Instruction 3:126
FPSR (Floating-point Status Register) 1:31, 1:88
FPSWA (Floating-point Software Assistance 

Handler) 2:587
FPTAN Instruction 4:157
FR (Floating-point Register) 1:139
frcpa Instruction 3:128
FRNDINT Instruction 4:159
frsqrta Instruction 3:131
FRSTOR Instruction 4:160
FSAVE Instruction 4:162
FSCALE Instruction 4:165
fselect Instruction 3:134
fsetc Instruction 3:135
FSIN Instruction 4:167
FSINCOS Instruction 4:169
FSQRT Instruction 4:171
FSR (IA-32 Floating-point Status Register) 1:126
FST Instruction 4:173
FSTCW Instruction 4:176
FSTENV Instruction 4:178
FSTP Instruction 4:173
FSTSW Instruction 4:180
FSUB Instruction 4:182, 4:183
fsub Instruction 3:136
FSUBP Instruction 4:182, 4:183
FSUBR Instruction 4:185
FSUBRP Instruction 4:185
fswap Instruction 3:137
fsxt Instruction 3:139
FTST Instruction 4:188
FUCOM Instruction 4:190
FUCOMI Instruction 4:115
FUCOMIP Instruction 4:115
FUCOMP Instruction 4:190
FUCOMPP Instruction 4:190
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FWAIT Instruction 4:386
fwb Instruction 3:141
FXAM Instruction 4:193
FXCH Instruction 4:195
fxor Instruction 3:142
FXRSTOR Instruction 4:509
FXSAVE Instruction 4:512, 4:515
FXTRACT Instruction 4:197
FYL2X Instruction 4:199
FYL2XP1 Instruction 4:201

G
General Register (GR) 1:25, 1:139
getf Instruction 3:143
GR (General Register) 1:139

H
hint Instruction 3:145
HLT Instruction 4:203

I
I/O Architecture 2:615
IA-32

IA-32 Application Execution 1:109
IA-32 Applications 2:239, 2:595
IA-32 Architecture 1:7, 1:21
IA-32 Current Privilege Level (PSR.cpl) 2:243
IA-32 EFLAG Register 1:123, 2:243
IA-32 Exception

Alignment Check Fault 2:229
Code Breakpoint Fault 2:215
Data Breakpoint, Single Step, Taken

Branch Trap 2:216
Device Not Available Fault 2:221
Divide Fault 2:214
Double Fault 2:222
General Protection Fault 2:226
INT 3 Trap 2:217
Invalid Opcode Fault 2:220
Invalid TSS Fault 2:223
Machine Check 2:230
Overflow Trap 2:218
Page Fault 2:227
Pending Floating-point Error 2:228
Segment Not Present Fault 2:224
SSE Numeric Error Fault 2:231
Stack Fault 2:225

IA-32 Execution Layer 1:109
IA-32 Floating-point Control Registers 1:126
IA-32 Instruction Reference 4:11
IA-32 Instruction Set 2:253
IA-32 Intel® MMX™ Technology 1:129
IA-32 Intercept

Gate Intercept Trap 2:235
Instruction Intercept Fault 2:233

Locked Data Reference Fault 2:237
System Flag Trap 2:236

IA-32 Interrupt
Software Trap 2:232

IA-32 Interruption 2:111
IA-32 Interruption Vector Definitions 2:213
IA-32 Interruption Vector Descriptions 2:213
IA-32 Memory Ordering 2:265
IA-32 Physical Memory References 2:262
IA-32 SSE Extensions 1:20, 1:130
IA-32 System Registers 2:246
IA-32 System Segment Registers 2:241
IA-32 Trap Code 2:213
IA-32 Virtual Memory References 2:261

IBR (Index Breakpoint Register) 2:151, 2:152
IDIV Instruction 4:204
IFA (interuption Faulting Address) 2:541
IFS (Interruption Function State) 2:541
IHA (Interruption Hash Address) 2:41, 2:541
IIB0 (Interruption Instruction Bundle 0) 2:541
IIB1 (Interruption Instruction Bundle 1) 2:541
IIM (Interruption Immediate) 2:541
IIP (Interruption Instruction Pointer) 2:541
IIPA (Interruption Instruction Previous Address) 

2:541
Implicit Prefetch 1:70
IMUL Instruction 4:207
IN Instruction 4:210
INC Instruction 4:212
In-flight Resources 2:19
INIT (Initialization Event) 2:96, 2:306, 2:635
Initialization Event (INIT) 2:96
INS Instruction 4:214
INSB Instruction 4:214
INSD Instruction 4:214
Instruction Breakpoint Register (IBR) 2:151, 

2:152
Instruction Debug Faults 2:151
Instruction Dependencies 1:148
Instruction Encoding 1:38
Instruction Formats 3:293

SSE 4:483
Instruction Group 1:40
Instruction Level Parallelism 1:15
Instruction Pointer (IP) 1:27, 1:140
Instruction Scheduling 1:148, 1:150, 1:164
Instruction Serialization 2:18
Instruction Set Architecture (ISA) 1:7
Instruction Set Modes 1:110
Instruction Set Transition 1:14
Instruction Set Transitions 2:239, 2:596
Instruction Slot Mapping 1:38
Instruction Slots 1:38
INSW Instruction 4:214
INT (External Interrupt) 2:96
INT3 Instruction 4:217
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INTA (Interrupt Acknowledge) 2:130
Inter-processor Interrupt (IPI) 2:127
Interrupt Acknowledge Cycle 2:130
Interruption Control Registers (CR16-27) 2:36
Interruption Handler 2:537
Interruption Handling 2:543
Interruption Hash Address 2:41
Interruption Instruction Bundle Registers (IIB0-1) 

2:42
Interruption Processor Status Register (IPSR) 2:36
Interruption Register State 2:540
Interruption Registers 2:538
Interruption Status Register (ISR) 2:36
Interruption Vector 2:165

Alternate Data TLB 2:178
Alternate Instruction TLB 2:177
Break Instruction 2:185
Data Access Rights 2:191
Data Access-Bit 2:184
Data Key Miss 2:181
Data Nested TLB 2:179
Data TLB 2:176
Debug 2:200
Dirty-Bit 2:182
Disabled FP-Register 2:195
External Interrupt 2:186
Floating-point Fault 2:203
Floating-point Trap 2:204
General Exception 2:192
IA-32 Exception 2:210
IA-32 Intercept 2:211
IA-32 Interrupt 2:212
Instruction Access Rights 2:190
Instruction Access-Bit 2:183
Instruction Key Miss 2:180
Instruction TLB 2:175
Key Permission 2:189
Lower-Privilege Transfer Trap 2:205
NaT Consumption 2:196
Page Not Present 2:188
Single Step Trap 2:208
Speculation 2:198
Taken Branch Trap 2:207
Unaligned Reference 2:201
Unsupported Data Reference 2:202
Virtual External Interrupt 2:187
Virtualization 2:209

Interruption Vector Address 2:35, 2:538
Interruption Vector Table 2:538
Interruptions 2:95, 2:537
Interrupts 2:96, 2:114

External Interrupt Architecture 2:603
Interval Time Counter (ITC) 1:31
Interval Timer Match Register (ITM) 2:32
Interval Timer Offset (ITO) 2:34
Interval Timer Vector (ITV) 2:125

INTn Instruction 4:217
INTO Instruction 4:217
invala Instruction 3:146
INVD instructions 4:228
INVLPG Instruction 4:230
IP (Instruction Pointer) 1:27, 1:140
IPI (Inter-processor Interrupt) 2:127
IPSR (Interruption Processor Status Register) 

2:36, 2:541
IRET Instruction 4:231
IRETD Instruction 4:231
IRR (External Interrupt Request Registers) 2:125
ISR (Interruption Status Register) 2:36, 2:165, 

2:541
Itanium Architecture 1:7
Itanium Instruction Set 1:21
Itanium System Architecture 1:20
Itanium System Environment 1:7, 1:21
ITC (Interval Time Counter) 1:31, 2:32
itc Instruction 3:147
ITIR (Interruption TLB Insertion Register) 2:541
ITM (Interval Time Match Register) 2:32
ITO (Interval Timer Offset) 2:34
itr Instruction 3:149
ITV (Interval Timer Vector) 2:125
IVA (Interruption Vector Address) 2:35, 2:538
IVA-based interruptions 2:95, 2:537
IVR (External Interrupt Vector Register) 2:123

J
Jcc Instruction 4:239
JMP Instruction 4:243
JMPE Instruction 1:111, 2:597, 4:249

K
Kernel Register (KR) 1:29
KR (Kernel Register) 1:29

L
LAHF Instruction 4:251
Lamport’s Algorithm 2:530
LAR Instruction 4:252
Large Constants 1:53
LC (Loop Count Register) 1:33
ld Instruction 3:151
ldf Instruction 3:157
ldfp Instruction 3:161
LDMXCSR Instruction 4:516
LDS Instruction 4:255
LEA Instruction 4:258
LEAVE Instruction 4:260
LES Instruction 4:255
lfetch Instruction 3:164
LFS Instruction 4:255
LGDT Instruction 4:264
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LGS Instruction 4:255
LIDT Instruction 4:264
LLDT Instruction 4:267
LMSW Instruction 4:270
Load Instructions 1:58
loadrs Instruction 3:167
Loads from Memory 1:147
Local Redirection Registers (LRR0-1) 2:126
Locality Hints 1:70
LOCK Instruction 4:272
LODS Instruction 4:274
LODSB Instruction 4:274
LODSD Instruction 4:274
LODSW Instruction 4:274
Logical Instructions 1:51
Loop Count Register (LC) 1:33
LOOP Instruction 4:276
Loop Optimization 1:160, 1:181
LOOPcc Instruction 4:276
Lower Privilege Transfer Trap 2:151
LRR (Local Redirection Registers) 2:126
LSL Instruction 4:278
LSS Instruction 4:255
LTR Instruction 4:282

M
Machine Check (MC) 2:95, 2:296, 2:351
Machine Check Abort (MCA) 2:632
MASKMOVQ Instruction 4:576
MAXPS Instruction 4:519
MAXSS Instruction 4:521
MC (Machine Check) 2:351
MCA (Machine Check Abort) 2:95, 2:296, 2:632
Memory 1:36

Cacheable Page 2:77
Memory Access 1:142
Memory Access Ordering 1:73
Memory Attribute Transition 2:88
Memory Attributes 2:75, 2:524
Memory Consistency 1:72
Memory Fences 2:510
Memory Instructions 1:57
Memory Management 2:561
Memory Ordering 2:507, 2:510

IA-32 2:525
Memory Reference 1:147
Memory Regions 2:561
Memory Synchronization 2:526

mf Instruction 2:510, 2:526, 3:168
mf.a 2:615

MINPS Instruction 4:523
MINSS Instruction 4:525
mix Instruction 3:169
MMX technology 1:20
MOV Instruction 4:284
mov Instruction 3:172

MOVAPS Instruction 4:527
MOVD Instruction 4:401
MOVHLPS Instruction 4:529
MOVHPS Instruction 4:530
movl Instruction 3:187
MOVLHPS Instruction 4:532
MOVLPS Instruction 4:533
MOVMSKPS Instruction 4:535
MOVNTPS Instruction 4:578
MOVNTQ Instruction 4:579
MOVQ Instruction 4:403
MOVS Instruction 4:292
MOVSB Instruction 4:292
MOVSD Instruction 4:292
MOVSS Instruction 4:536
MOVSW Instruction 4:292
MOVSX Instruction 4:294
MOVUPS Instruction 4:538
MOVZX Instruction 4:295
MP Coherence 2:507
mpy4 Instruction 3:188
mpyshl4 Instruction 3:189
MUL Instruction 4:297
MULPS Instruction 4:540
MULSS Instruction 4:541
Multimedia Instructions 1:79
Multimedia Support 1:20
Multi-threading 1:177
Multiway Branches 1:173
mux Instruction 3:190

N
NaT (Not a Thing) 1:155
NaTPage (Not a Thing Attribute) 2:86
NaTVal (Not a Thing Value) 1:26
NEG Instruction 4:299
NMI (Non-Maskable Interrupt) 2:96
Non-Maskable Interrupt (NMI) 2:96
NOP Instruction 4:301
nop Instruction 3:193
Not A Thing (NaT) 1:155
Not a Thing Attribute (NaTPage) 2:86
Not a Thing Value (NatVal) 1:26
NOT Instruction 4:302

O
OLR (On Line Replacement) 2:351
Operating Environments 1:14
Operating System - See OS (Operating System)
OR Instruction 4:304
or Instruction 3:194
ORPS Instruction 4:542
OS (Operating System)

Boot Flow Sample Code 2:639
Boot Sequence 2:625
FPSWA handler 2:587



Index for Volumes 1, 2, 3 and 4 Index:7

INDEX

Illegal Dependency Fault 2:584
Long Branch Emulation 2:585
Multiple Address Spaces 1:20, 2:562
OS_BOOT Entrypoint 2:283
OS_INIT Entrypoint 2:283
OS_MCA Entrypoint 2:283
OS_RENDEZ Entrypoint 2:283
Performance Monitoring Support 2:620
Single Address Space 1:20, 2:565
Unaligned Reference Handler 2:583
Unsupported Data Reference Handler 2:584

OUT Instruction 4:306
OUTS Instruction 4:308
OUTSB Instruction 4:308
OUTSD Instruction 4:308
OUTSW Instruction 4:308

P
pack Instruction 3:195
PACKSSDW Instruction 4:405
PACKSSWB Instruction 4:405
PACKUSWB Instruction 4:408
padd Instruction 3:197
PADDB Instruction 4:410
PADDD Instruction 4:410
PADDSB Instruction 4:413
PADDSW Instruction 4:413
PADDUSB Instruction 4:416
PADDUSW Instruction 4:416
PADDW Instruction 4:410
Page Access Rights 2:56
Page Sizes 2:57
Page Table Address 2:35
PAL (Processor Abstraction Layer) 1:7, 1:21, 

2:279, 2:351
PAL Entrypoints 2:282
PAL Initialization 2:306
PAL Intercepts 2:351
PAL Intercepts in Virtual Environment 2:332
PAL Procedure Calls 2:628
PAL Procedures 2:353
PAL Self-test Control Word 2:295
PAL Virtualization 2:324
PAL Virtualization Optimizations 2:335
PAL Virtualization Services 2:486
PAL Virtuallization Disables 2:346
PAL_A 2:283
PAL_B 2:283
PAL_BRAND_INFO 2:366
PAL_BUS_GET_FEATURES 2:367
PAL_BUS_SET_FEATURES 2:369
PAL_CACHE_FLUSH 2:370
PAL_CACHE_INFO 2:374
PAL_CACHE_INIT 2:376
PAL_CACHE_LINE_INIT 2:377
PAL_CACHE_PROT_INFO 2:378

PAL_CACHE_READ 2:380
PAL_CACHE_SHARED_INFO 2:382
PAL_CACHE_SUMMARY 2:384
PAL_CACHE_WRITE 2:385
PAL_COPY_INFO 2:388
PAL_COPY_PAL 2:389
PAL_DEBUG_INFO 2:390
PAL_FIXED_ADDR 2:391
PAL_FREQ_BASE 2:392
PAL_FREQ_RATIOS 2:393
PAL_GET_HW_POLICY 2:394
PAL_GET_PSTATE 2:320, 2:396, 2:637
PAL_HALT 2:314
PAL_HALT_INFO 2:401
PAL_HALT_LIGHT 2:314, 2:403
PAL_LOGICAL_TO_PHYSICAL 2:404
PAL_MC_CLEAR_LOG 2:407
PAL_MC_DRAIN 2:408
PAL_MC_DYNAMIC_STATE 2:409
PAL_MC_ERROR_INFO 2:410
PAL_MC_ERROR_INJECT 2:421
PAL_MC_EXPECTED 2:434
PAL_MC_HW_TRACKING 2:432
PAL_MC_RESUME 2:436
PAL_MEM_ATTRIB 2:437
PAL_MEMORY_BUFFER 2:438
PAL_PERF_MON_INFO 2:440
PAL_PLATFORM_ADDR 2:442
PAL_PMI_ENTRYPOINT 2:443
PAL_PREFETCH_VISIBILITY 2:444
PAL_PROC_GET_FEATURES 2:446
PAL_PROC_SET_FEATURES 2:450
PAL_PSTATE_INFO 2:319, 2:451
PAL_PTCE_INFO 2:453
PAL_REGISTER_INFO 2:454
PAL_RSE_INFO 2:455
PAL_SET_HW_POLICY 2:456
PAL_SET_PSTATE 2:319, 2:458, 2:637
PAL_SHUTDOWN 2:460
PAL_TEST_INFO 2:461
PAL_TEST_PROC 2:462
PAL_VERSION 2:465
PAL_VM_INFO 2:466
PAL_VM_PAGE_SIZE 2:467
PAL_VM_SUMMARY 2:468
PAL_VM_TR_READ 2:470
PAL_VP_CREATE 2:471
PAL_VP_ENV_INFO 2:473
PAL_VP_EXIT_ENV 2:475
PAL_VP_INFO 2:476
PAL_VP_INIT_ENV 2:478
PAL_VP_REGISTER 2:481
PAL_VP_RESTORE 2:483
PAL_VP_SAVE 2:484
PAL_VP_TERMINATE 2:485
PAL_VPS_RESTORE 2:499
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PAL_VPS_RESUME_HANDLER 2:492
PAL_VPS_RESUME_NORMAL 2:489
PAL_VPS_SAVE 2:500
PAL_VPS_SET_PENDING_INTERRUPT 2:495
PAL_VPS_SYNC_READ 2:493
PAL_VPS_SYNC_WRITE 2:494
PAL_VPS_THASH 2:497
PAL_VPS_TTAG 2:498
PAL-based Interruptions 2:95, 2:537
PALE_CHECK 2:282, 2:296
PALE_INIT 2:282, 2:306
PALE_PMI 2:282, 2:310
PALE_RESET 2:282, 2:289

PAND Instruction 4:419
PANDN Instruction 4:421
Parallel Arithmetic 1:79
Parallel Compares 1:172
Parallel Shifts 1:81
pavg Instruction 3:201
PAVGB Instruction 4:563
pavgsub Instruction 3:204
PAVGW Instruction 4:563
pcmp Instruction 3:206
PCMPEQB Instruction 4:423
PCMPEQD Instruction 4:423
PCMPEQW Instruction 4:423
PCMPGTB Instruction 4:426
PCMPGTD Instruction 4:426
PCMPGTW Instruction 4:426
Performance Monitor Data Register (PMD) 1:33
Performance Monitor Events 2:162
Performance Monitoring 2:155, 2:619
Performance Monitoring Vector 2:126
PEXTRW Instruction 4:565
PFS (Previous Function State Register) 1:32
Physical Addressing 2:73
PIB (Processor Interrupt Block) 2:127
PINSRW Instruction 4:566
PKR (Protection Key Register) 2:564
Platform Management Interrupt (PMI) 2:96, 

2:310, 2:538, 2:637
PMADDWD Instruction 4:429
pmax Instruction 3:209
PMAXSW Instruction 4:567
PMAXUB Instruction 4:568
PMC (Performance Monitor Configuration) 2:155
PMD (Performance Monitor Data Register) 1:33
PMD (Performance Monitor Data) 2:155
PMI (Platform Management Interrupt) 2:96, 

2:310, 2:538, 2:637
pmin Instruction 3:211
PMINSW Instruction 4:569
PMINUB Instruction 4:570
PMOVMSKB Instruction 4:571
pmpy Instruction 3:213
pmpyshr Instruction 3:214

PMULHUW Instruction 4:572
PMULHW Instruction 4:431
PMULLW Instruction 4:433
PMV (Performance Monitoring Vector) 2:126
POP Instruction 4:311
POPA Instruction 4:315
POPAD Instruction 4:315
popcnt Instruction 3:216
POPF Instruction 4:317
POPFD Instruction 4:317
POR Instruction 4:435
Power Management 2:313
Power-on Event 2:351
PR (Predicate Register) 1:26, 1:140
Predicate Register (PR) 1:26, 1:140
Predication 1:17, 1:54, 1:143, 1:163, 1:164
Prefetch Hints 1:176
PREFETCH Instruction 4:580
Preserved Values 2:351
Previous Function State (PFS) 1:32
Privilege Level Transfer 1:84
Privilege Levels 2:17
probe Instruction 3:217
Procedure Calls 2:549
Processor Abstraction Layer - See PAL (Processor 

Abstraction Layer)
Processor Abstraction Layer (PAL) 2:279
Processor Boot Flow 2:623
Processor Identification Registers (CPUID) 1:34
Processor Interrupt Block (PIB) 2:127
Processor Min-state Save Area 2:302
Processor Reset 2:95
Processor State Parameter (PSP) 2:299, 2:308
Processor Status Register (PSR) 2:23
Programmed I/O 2:534
Protection Keys 2:59, 2:564
psad Instruction 3:220
PSADBW Instruction 4:573
Pseudo-Code Functions 3:281
pshl Instruction 3:222
pshladd Instruction 3:223
pshr Instruction 3:224
pshradd Instruction 3:226
PSHUFW Instruction 4:575
PSLLD Instruction 4:437
PSLLQ Instruction 4:437
PSLLW Instruction 4:437
PSP (Processor State Parameter) 2:308
PSR (Processor Status Register) 2:23
PSRAD Instruction 4:440
PSRAW Instruction 4:440
PSRLD Instruction 4:443
PSRLQ Instruction 4:443
PSRLW Instruction 4:443
psub Instruction 3:227
PSUBB Instruction 4:446
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PSUBD Instruction 4:446
PSUBSB Instruction 4:449
PSUBSW Instruction 4:449
PSUBUSB Instruction 4:452
PSUBUSW Instruction 4:452
PSUBW Instruction 4:446
PTA (Page Table Address Register) 2:35
ptc Instruction

ptc.e 2:569, 3:230
ptc.g 2:570, 3:231
ptc.ga 2:570, 3:231
ptc.l 2:568, 3:233

ptr Instruction 3:234
PUNPCKHBW Instruction 4:455
PUNPCKHDQ Instruction 4:455
PUNPCKHWD Instruction 4:455
PUNPCKLBW Instruction 4:458
PUNPCKLDQ Instruction 4:458
PUNPCKLWD Instruction 4:458
PUSH Instruction 4:320
PUSHA Instruction 4:323
PUSHAD Instruction 4:323
PUSHF Instruction 4:325
PUSHFD Instruction 4:325
PXOR Instruction 4:461

R
RAW Dependency 1:149
RCL Instruction 4:327
RCPPS Instruction 4:543
RCPSS Instruction 4:545
RCR Instruction 4:327
RDMSR Instruction 4:331
RDPMC Instruction 4:333
RDTSC Instruction 4:335
Read-after-write Dependency 1:149
Recoverable Error 2:351
Recovery Code 1:153, 1:154, 1:156
Region Identifier (RID) 2:561
Region Register (RR) 2:58, 2:561
Register File Transfers 1:82
Register Rotation 1:19, 1:185
Register Spill and Fill 1:62
Register Stack 1:18, 1:47
Register Stack Configuration Register (RSC) 1:29
Register Stack Engine (RSE) 1:144, 2:133
Register State 2:549
Release Semantics 2:507
Rendezvous 2:301
REP Instruction 4:337
REPE Instruction 4:337
REPNE Instruction 4:337
REPNZ Instruction 4:337
REPZ Instruction 4:337
Reserved Variables 2:351
Reset Event 2:95, 2:351

Resource Utilization Counter (RUC) 1:31, 2:33
RET Instruction 4:340
rfi Instruction 2:543, 3:236
RID (Region Identifier) 2:561
RNAT(RSE NaT Collection Register) 1:30
ROL Instruction 4:327
ROR Instruction 4:327
Rotating Registers 1:145
RR (Region Register) 2:58, 2:561
RSC (Register Stack Configuration Register) 1:29
RSE (Register Stack Engine) 2:133
RSE Backing Store Pointer (BSP) 1:29
RSE Backing Store Pointer for Memory Stores 

(BSPSTORE) 1:30
RSE NaT Collection Register (RNAT) 1:30
RSM Instruction 4:346
rsm Instruction 3:239
RSQRTPS Instruction 4:547
RSQRTSS Instruction 4:548
RUC (Resource Utilization Counter) 1:31, 2:33
rum Instruction 3:241

S
SAHF Instruction 4:347
SAL (System Abstraction Layer) 1:7, 1:21, 2:352, 

2:630
SAL_B 2:283
SALE_ENTRY 2:282, 2:291, 2:305
SALE_PMI 2:282, 2:310

SAL Instruction 4:348
SAR Instruction 4:348
SBB Instruction 4:352
SCAS Instruction 4:354
SCASB Instruction 4:354
SCASD Instruction 4:354
SCASW Instruction 4:354
Scratch Register 2:352
Self Test State Parameter 2:293
Self-modifying Code 2:532
Semaphore Instructions 1:59
Semaphores 2:508
Serialization 2:17, 2:537
SETcc Instruction 4:356
setf Instruction 3:242
SFENCE Instruction 4:581
SGDT Instruction 4:359
SHL Instruction 4:348
shl Instruction 3:244
shladd Instruction 3:245
shladdp4 Instruction 3:246
SHLD Instruction 4:362
SHR Instruction 4:348
shr Instruction 3:247
SHRD Instruction 4:364
shrp Instruction 3:248
SHUFPS Instruction 4:549
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SIDT Instruction 4:359
Single Step Trap 2:151
SLDT Instruction 4:367
SMSW Instruction 4:369
Software Pipelining 1:19, 1:75, 1:145, 1:181
Speculation 1:16, 1:142, 1:151

Control Speculation 1:16
Data Speculation 1:17
Recovery Code 1:17, 2:580
Speculation Check 1:156

SQRTPS Instruction 4:551
SQRTSS Instruction 4:552
srlz Instruction 3:249
SSE Instructions 4:463
ssm Instruction 3:250
st Instruction 3:251
Stacked Calling Convention 2:352
Stacked General Registers 2:550
Stacked Registers 1:144
Static Calling Convention 2:352
Static General Registers 2:550
STC Instruction 4:371
STD Instruction 4:372
stf Instruction 3:254
STI Instruction 4:373
STMXCSR Instruction 4:553
Stops 1:38
Store Instructions 1:59
Stores to Memory 1:147
STOS Instruction 4:376
STOSB Instruction 4:376
STOSD Instruction 4:376
STOSW Instruction 4:376
STR Instruction 4:378
SUB Instruction 4:379
sub Instruction 3:256
SUBPS Instruction 4:554
SUBSS Instruction 4:555
sum Instruction 3:257
sxt Instruction 3:258
sync Instruction 3:259

sync.i 2:526
System Abstraction Layer - See SAL (System 

Abstraction Layer)
System Architecture 1:20
System Environment 2:13
System Programmer’s Guide 2:501
System State 2:20

T
tak Instruction 3:260
Taken Branch trap 2:151
Task Priority Register (TPR) 2:123, 2:605
tbit Instruction 3:261
TC (Translation Cache) 2:49, 2:567

Template Field Encoding 1:38
Templates 1:141
TEST Instruction 4:381
tf Instruction 3:263
thash Instruction 3:265
TLB (Translation Lookaside Buffer) 2:47, 2:565
tnat Instruction 3:266
tpa Instruction 3:268
TPR (Task Priority Register) 2:123, 2:605
TR (Translation Register) 2:48, 2:566
Translation Cache (TC) 2:49, 2:567

purge 2:568
Translation Instructions 2:60
Translation Lookaside Buffer (TLB) 2:47, 2:565
Translation Register (TR) 2:48, 2:566
Traps 2:96, 2:537
ttag Instruction 3:269

U
UCOMISS Instruction 4:556
UD2 Instruction 4:383
UEFI (Unified Extensible Firmware Interface) 

2:630
UM (User Mask Register) 1:33
UNAT (User NaT Collection Register) 1:31, 1:156
Uncacheable Page 2:77
Unchanged Register 2:352
Unordered Semantics 2:507
unpack Instruction 3:270
UNPCKHPS Instruction 4:558
UNPCKLPS Instruction 4:560
User Mask (UM) 1:33
User NaT Collection Register (UNAT) 1:31, 1:156

V
VERR Instruction 4:384
VERW Instruction 4:384
VHPT (Virtual Hash Page Table) 2:61, 2:571
VHPT Translation Vector 2:173
Virtual Addressing 2:45
Virtual Hash Page Table (VHPT) 2:61, 2:571
Virtual Machine Monitor (VMM) 2:352
Virtual Processor Descriptor (VPD) 2:325, 2:352
Virtual Processor State 2:352
Virtual Processor Status Register (VPSR) 2:327
Virtual Region Number (VRN) 2:561
Virtualization 2:44, 2:324
Virtualization Acceleration Control (vac) 2:329
Virtualization Disable Control (vdc) 2:329
VMM (Virtual Machine Monitor) 2:352
vmsw Instruction 3:273
VPD (Virtual Processor Descriptor) 2:325, 2:352
VPSR (Virtual Processor Status Register) 2:327
VRN (Virtual Region Number) 2:561
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W
WAIT Instruction 4:386
WAR Dependency 1:149
WAW Dependency 1:149
WBINVD Instruction 4:387
Write-after-read Dependency 1:149
Write-after-write Dependency 1:149
WRMSR Instruction 4:389

X
XADD Instruction 4:391
XCHG Instruction 4:393
xchg Instruction 2:508, 3:274
XLAT Instruction 4:395
XLATB Instruction 4:395
xma Instruction 3:276
xmpy Instruction 3:278
XOR Instruction 4:397
xor Instruction 3:279
XORPS Instruction 4:562
XTP (External Task Priority Cycle) 2:130
XTPR (External Task Priority Register) 2:605

Z
zxt Instruction 3:280
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