

Intel® Itanium® Architecture
Software Developer’s Manual
Volume 1: Application Architecture

Revision 2.3

May 2010

Document Number: 245317

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 ii

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 iii

Contents

Part I: Application Architecture Guide

1 About this Manual . 1:3

1.1 Overview of Volume 1: Application Architecture . 1:3
1.1.1 Part 1: Application Architecture Guide . 1:3
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 1:3

1.2 Overview of Volume 2: System Architecture. 1:4
1.2.1 Part 1: System Architecture Guide . 1:4
1.2.2 Part 2: System Programmer’s Guide . 1:5
1.2.3 Appendices. 1:6

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 1:6
1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 1:6
1.5 Terminology . 1:7
1.6 Related Documents . 1:7
1.7 Revision History . 1:8

2 Introduction to the Intel® Itanium® Architecture . 1:13

2.1 Operating Environments . 1:13
2.2 Instruction Set Transition Model Overview . 1:14
2.3 Intel® Itanium® Instruction Set Features. 1:15
2.4 Instruction Level Parallelism . 1:15
2.5 Compiler to Processor Communication . 1:16
2.6 Speculation . 1:16

2.6.1 Control Speculation . 1:16
2.6.2 Data Speculation . 1:17
2.6.3 Predication . 1:17

2.7 Register Stack . 1:18
2.8 Branching . 1:19
2.9 Register Rotation . 1:19
2.10 Floating-point Architecture . 1:19
2.11 Multimedia Support. 1:20
2.12 Intel® Itanium® System Architecture Features . 1:20

2.12.1 Support for Multiple Address Space Operating Systems 1:20
2.12.2 Support for Single Address Space Operating Systems 1:20
2.12.3 System Performance and Scalability . 1:21
2.12.4 System Security and Supportability . 1:21

2.13 Terminology . 1:21

3 Execution Environment. 1:23

3.1 Application Register State . 1:23
3.1.1 Reserved and Ignored Registers and Fields . 1:23
3.1.2 General Registers. 1:25
3.1.3 Floating-point Registers . 1:26
3.1.4 Predicate Registers . 1:26
3.1.5 Branch Registers . 1:26
3.1.6 Instruction Pointer. 1:27
3.1.7 Current Frame Marker . 1:27
3.1.8 Application Registers . 1:28
3.1.9 Performance Monitor Data Registers (PMD) . 1:33
3.1.10 User Mask (UM) . 1:33
3.1.11 Processor Identification Registers . 1:34

3.2 Memory. 1:36
3.2.1 Application Memory Addressing Model . 1:36
3.2.2 Addressable Units and Alignment . 1:36

iv Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

3.2.3 Byte Ordering . 1:36
3.3 Instruction Encoding Overview . 1:38
3.4 Instruction Sequencing Considerations . 1:39

3.4.1 RAW Dependency Special Cases. 1:42
3.4.2 WAW Dependency Special Cases . 1:43
3.4.3 WAR Dependency Special Cases. 1:44
3.4.4 Processor Behavior on Dependency Violations . 1:44

3.5 Undefined Behavior . 1:44

4 Application Programming Model . 1:47

4.1 Register Stack . 1:47
4.1.1 Register Stack Operation . 1:47
4.1.2 Register Stack Instructions . 1:49

4.2 Integer Computation Instructions. 1:50
4.2.1 Arithmetic Instructions . 1:51
4.2.2 Logical Instructions . 1:51
4.2.3 32-bit Addresses and Integers . 1:52
4.2.4 Bit Field and Shift Instructions. 1:52
4.2.5 Large Constants . 1:53

4.3 Compare Instructions and Predication . 1:54
4.3.1 Predication . 1:54
4.3.2 Compare Instructions . 1:54
4.3.3 Compare Types. 1:55
4.3.4 Predicate Register Transfers. 1:57

4.4 Memory Access Instructions . 1:57
4.4.1 Load Instructions . 1:58
4.4.2 Store Instructions . 1:59
4.4.3 Semaphore Instructions . 1:59
4.4.4 Control Speculation . 1:60
4.4.5 Data Speculation . 1:63
4.4.6 Memory Hierarchy Control and Consistency . 1:69
4.4.7 Memory Access Ordering . 1:73

4.5 Branch Instructions . 1:74
4.5.1 Modulo-scheduled Loop Support . 1:75
4.5.2 Branch Prediction Hints . 1:78
4.5.3 Branch Predict Instructions . 1:79

4.6 Multimedia Instructions . 1:79
4.6.1 Parallel Arithmetic . 1:79
4.6.2 Parallel Shifts . 1:81
4.6.3 Data Arrangement . 1:81

4.7 Register File Transfers . 1:82
4.8 Character and Bit Strings . 1:83

4.8.1 Character Strings . 1:83
4.8.2 Bit Strings . 1:84

4.9 Privilege Level Transfer . 1:84

5 Floating-point Programming Model . 1:85

5.1 Data Types and Formats . 1:85
5.1.1 Real Types . 1:85
5.1.2 Floating-point Register Format . 1:85
5.1.3 Representation of Values in Floating-point Registers 1:86

5.2 Floating-point Status Register . 1:88
5.3 Floating-point Instructions . 1:91

5.3.1 Memory Access Instructions . 1:91
5.3.2 Floating-point Register to/from General Register Transfer Instructions . . 1:97
5.3.3 Arithmetic Instructions . 1:98
5.3.4 Non-arithmetic Instructions . 1:99
5.3.5 Floating-point Status Register (FPSR) Status Field Instructions. 1:100
5.3.6 Integer Multiply and Add Instructions . 1:101

5.4 Additional IEEE Considerations. 1:101
5.4.1 Floating-point Interruptions . 1:101

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 v

5.4.2 Definition of Overflow . 1:105
5.4.3 Definition of Tininess, Inexact and Underflow . 1:106
5.4.4 Integer Invalid Operations . 1:107
5.4.5 Definition of Arithmetic Operations . 1:107
5.4.6 Definition and Propagation of NaNs . 1:107
5.4.7 IEEE Standard Mandated Operations Deferred to Software 1:107
5.4.8 Additions beyond the IEEE Standard . 1:107

6 IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:109

6.1 IA-32 Execution Layer . 1:109
6.2 Hardware-based IA-32 Application Execution . 1:109

6.2.1 Instruction Set Modes. 1:110
6.2.2 IA-32 Application Register State Model . 1:113
6.2.3 Memory Model Overview . 1:130
6.2.4 IA-32 Usage of Intel® Itanium® Registers. 1:133

Part II: Optimization Guide for the Intel® Itanium® Architecture

1 About the Optimization Guide . 1:137

1.1 Overview of the Optimization Guide . 1:137

2 Introduction to Programming for the Intel® Itanium® Architecture 1:139

2.1 Overview. 1:139
2.2 Registers. 1:139
2.3 Using Intel® Itanium® Instructions . 1:140

2.3.1 Format . 1:140
2.3.2 Expressing Parallelism . 1:140
2.3.3 Bundles and Templates . 1:141

2.4 Memory Access and Speculation . 1:142
2.4.1 Functionality . 1:142
2.4.2 Speculation. 1:142
2.4.3 Control Speculation . 1:142
2.4.4 Data Speculation . 1:143

2.5 Predication . 1:143
2.6 Architectural Support for Procedure Calls . 1:144

2.6.1 Stacked Registers . 1:144
2.6.2 Register Stack Engine . 1:144

2.7 Branches and Hints . 1:144
2.7.1 Branch Instructions. 1:145
2.7.2 Loops and Software Pipelining . 1:145
2.7.3 Rotating Registers . 1:145

2.8 Summary . 1:146

3 Memory Reference. 1:147

3.1 Overview. 1:147
3.2 Non-speculative Memory References. 1:147

3.2.1 Stores to Memory . 1:147
3.2.2 Loads from Memory . 1:147
3.2.3 Data Prefetch Hint . 1:148

3.3 Instruction Dependencies . 1:148
3.3.1 Control Dependencies . 1:148
3.3.2 Data Dependencies . 1:149

3.4 Using Speculation in the Intel® Itanium® Architecture to Overcome Dependencies 1:151
3.4.1 Speculation Model in the Intel® Itanium® Architecture 1:152
3.4.2 Using Data Speculation in the Intel® Itanium® Architecture 1:152
3.4.3 Using Control Speculation in the Intel® Itanium® Architecture 1:155
3.4.4 Combining Data and Control Speculation . 1:156

3.5 Optimization of Memory References . 1:157
3.5.1 Speculation Considerations . 1:157

vi Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

3.5.2 Data Interference. 1:158
3.5.3 Optimizing Code Size . 1:158
3.5.4 Using Post-increment Loads and Stores. 1:159
3.5.5 Loop Optimization . 1:160
3.5.6 Minimizing Check Code. 1:161

3.6 Summary . 1:162

4 Predication, Control Flow, and Instruction Stream. 1:163

4.1 Overview . 1:163
4.2 Predication. 1:163

4.2.1 Performance Costs of Branches . 1:163
4.2.2 Predication in the Intel® Itanium® Architecture . 1:164
4.2.3 Optimizing Program Performance Using Predication 1:165
4.2.4 Predication Considerations . 1:168
4.2.5 Guidelines for Removing Branches. 1:171

4.3 Control Flow Optimizations . 1:171
4.3.1 Reducing Critical Path with Parallel Compares . 1:172
4.3.2 Reducing Critical Path with Multiway Branches 1:173
4.3.3 Selecting Multiple Values for One Variable or Register with Predication 1:174
4.3.4 Improving Instruction Stream Fetching . 1:175

4.4 Branch and Prefetch Hints. 1:176
4.5 Hints for Controlling Multi-threading . 1:177

4.5.1 Wait Loops . 1:177
4.5.2 Idle Loops . 1:178
4.5.3 Critical Sections. 1:178

4.6 Summary . 1:179

5 Software Pipelining and Loop Support . 1:181

5.1 Overview . 1:181
5.2 Loop Terminology and Basic Loop Support . 1:181
5.3 Optimization of Loops . 1:181

5.3.1 Loop Unrolling . 1:182
5.3.2 Software Pipelining . 1:183

5.4 Loop Support Features in the Intel® Itanium® Architecture 1:184
5.4.1 Register Rotation. 1:185
5.4.2 Note on Initializing Rotating Predicates. 1:186
5.4.3 Software-pipelined Loop Branches . 1:186
5.4.4 Terminology Review . 1:189

5.5 Optimization of Loops in the Intel® Itanium® Architecture . 1:190
5.5.1 While Loops. 1:190
5.5.2 Loops with Predicated Instructions . 1:192
5.5.3 Multiple-exit Loops . 1:193
5.5.4 Software Pipelining Considerations. 1:195
5.5.5 Software Pipelining and Advanced Loads. 1:196
5.5.6 Loop Unrolling Prior to Software Pipelining . 1:198
5.5.7 Implementing Reductions . 1:200
5.5.8 Explicit Prolog and Epilog . 1:201
5.5.9 Redundant Load Elimination in Loops. 1:204

5.6 Summary . 1:204

6 Floating-point Applications . 1:205

6.1 Overview . 1:205
6.2 FP Application Performance Limiters . 1:205

6.2.1 Execution Latency . 1:205
6.2.2 Execution Bandwidth. 1:206
6.2.3 Memory Latency . 1:206
6.2.4 Memory Bandwidth . 1:207

6.3 Floating-point Features in the Intel® Itanium® Architecture. 1:207
6.3.1 Large and Wide Floating-point Register Set . 1:207
6.3.2 Multiply-Add Instruction . 1:210

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 vii

6.3.3 Software Divide/Square Root Sequence . 1:211
6.3.4 Computational Models . 1:212
6.3.5 Multiple Status Fields . 1:213
6.3.6 Other Features . 1:214
6.3.7 Memory Access Control . 1:216

6.4 Summary . 1:217

Index . 1:219

Figures

Part I: Application Architecture Guide

2-1 System Environment . 1:14
3-1 Application Register Model . 1:25
3-2 Frame Marker Format . 1:27
3-3 RSC Format. 1:29
3-4 BSP Register Format. 1:30
3-5 BSPSTORE Register Format . 1:30
3-6 RNAT Register Format . 1:30
3-7 PFS Format . 1:32
3-8 Epilog Count Register Format . 1:33
3-9 User Mask Format . 1:33
3-10 CPUID Registers 0 and 1 – Vendor Information . 1:34
3-11 CPUID Register 3 – Version Information . 1:34
3-12 CPUID Register 4 – General Features/Capability Bits . 1:35
3-13 Little-endian Loads . 1:37
3-14 Big-endian Loads. 1:37
3-15 Bundle Format . 1:38
4-1 Register Stack Behavior on Procedure Call and Return . 1:49
4-2 Data Speculation Recovery Using ld.c . 1:64
4-3 Data Speculation Recovery Using chk.a . 1:65
4-1 Memory Hierarchy . 1:70
4-2 Allocation Paths Supported in the Memory Hierarchy . 1:71
5-1 Floating-point Register Format . 1:86
5-2 Floating-point Status Register Format . 1:88
5-3 Floating-point Status Field Format. 1:89
5-4 Memory to Floating-point Register Data Translation – Single Precision 1:92
5-5 Memory to Floating-point Register Data Translation – Double Precision 1:93
5-6 Memory to Floating-point Register Data Translation – Double Extended, Integer, Parallel FP and

Fill1:94
5-7 Floating-point Register to Memory Data Translation – Single Precision 1:95
5-8 Floating-point Register to Memory Data Translation – Double Precision 1:95
5-9 Floating-point Register to Memory Data Translation – Double Extended, Integer, Parallel FP and

Spill1:96
5-10 Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats 1:97
5-11 Floating-point Exception Fault Prioritization . 1:103
5-12 Floating-point Exception Trap Prioritization . 1:105
6-1 Instruction Set Transition Model . 1:110
6-1 Instruction Set Mode Transitions . 1:113
6-2 IA-32 Application Register Model . 1:114

viii Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

6-3 IA-32 General Registers (GR8 to GR15) . 1:117
6-4 IA-32 Segment Register Selector Format. 1:118
6-5 IA-32 Code/Data Segment Register Descriptor Format . 1:118
6-1 IA-32 EFLAG Register (AR24) . 1:123
6-1 IA-32 Floating-point Control Register (FCR) . 1:127
6-2 IA-32 Floating-point Status Register (FSR) . 1:127
6-1 Floating-point Data Register (FDR) . 1:129
6-2 Floating-point Instruction Register (FIR). 1:129
6-3 IA-32 Intel® MMX™ Technology Registers (MM0 to MM7). 1:129
6-4 SSE Registers (XMM0-XMM7). 1:130
6-5 Memory Addressing Model. 1:131

Part II: Optimization Guide for the Intel® Itanium® Architecture

3-1 Control Dependency Preventing Code Motion . 1:149
3-2 Speculation Model in the Intel® Itanium® Architecture . 1:152
3-3 Minimizing Code Size During Speculation . 1:159
3-4 Using a Single Check for Three Advanced Loads . 1:161
4-1 Flow Graph Illustrating Opportunities for Off-path Predication . 1:167
5-1 ctop and cexit Execution Flow . 1:187
5-2 wtop and wexit Execution Flow . 1:189

Tables

Part I: Application Architecture Guide
2-1 Major Operating Environments .1:14
3-1 Reserved and Ignored Registers and Fields .1:24
3-2 Frame Marker Field Description . .1:27
3-3 Application Registers .1:28
3-4 RSC Field Description . .1:29
3-5 PFS Field Description . .1:32
3-6 User Mask Field Descriptions . .1:33
3-7 CPUID Register 3 Fields .1:35
3-8 CPUID Register 4 Fields .1:35
3-9 Relationship between Instruction Type and Execution Unit Type1:38
3-10 Template Field Encoding and Instruction Slot Mapping1:38
4-1 Architectural Visible State Related to the Register Stack1:50
4-2 Register Stack Management Instructions . .1:50
4-3 Integer Arithmetic Instructions . .1:51
4-4 Integer Logical Instructions .1:52
4-5 32-bit Pointer and 32-bit Integer Instructions .1:52
4-6 Bit Field and Shift Instructions . .1:53
4-7 Instructions to Generate Large Constants. .1:53
4-8 Compare Instructions .1:54
4-9 Compare Type Function . .1:55
4-10 Compare Outcome with NaT Source Input .1:56
4-11 Instructions and Compare Types Provided .1:56
4-12 Memory Access Instructions. .1:58
4-13 State Relating to Memory Access . .1:58
4-14 State Related to Control Speculation .1:63

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 ix

4-15 Instructions Related to Control Speculation . 1:63
4-16 State Relating to Data Speculation . 1:69
4-17 Instructions Relating to Data Speculation . 1:69
4-18 Locality Hints Specified by Each Instruction Class . 1:70
4-19 Memory Hierarchy Control Instructions and Hint Mechanisms 1:72
4-20 Memory Ordering Rules . 1:73
4-21 Memory Ordering Instructions . 1:74
4-22 Branch Types . 1:74
4-23 State Relating to Branching . 1:75
4-24 Instructions Relating to Branching . 1:75
4-25 Instructions that Modify RRBs . 1:76
4-26 Whether Prediction Hint on Branches . 1:78
4-27 Sequential Prefetch Hint on Branches. 1:78
4-28 Predictor Deallocation Hint . 1:79
4-29 Parallel Arithmetic Instructions . 1:80
4-30 Parallel Shift Instructions . 1:81
4-31 Parallel Data Arrangement Instructions . 1:82
4-32 Register File Transfer Instructions. 1:82
4-33 String Support Instructions . 1:84
4-34 Bit Support Instructions . 1:84
5-1 IEEE Real-type Properties. 1:85
5-2 Floating-point Register Encodings. 1:86
5-3 Floating-point Status Register Field Description. 1:89
5-4 Floating-point Status Register’s Status Field Description 1:89
5-5 Floating-point Rounding Control Definitions . 1:90
5-6 Floating-point Computation Model Control Definitions 1:90
5-7 Floating-point Memory Access Instructions . 1:91
5-8 Floating-point Register Transfer Instructions . 1:97
5-9 General Register (Integer) to Floating-point Register Data Translation (setf) 1:98
5-10 Floating-point Register to General Register (Integer) Data Translation (getf) 1:98
5-11 Floating-point Instruction Status Field Specifier Definition 1:98
5-12 Arithmetic Floating-point Instructions . 1:98
5-13 Arithmetic Floating-point Pseudo-operations . 1:99
5-14 Non-arithmetic Floating-point Instructions . 1:100
5-15 Non-arithmetic Floating-point Pseudo-operations . 1:100
5-16 FPSR Status Field Instructions . 1:101
5-17 Integer Multiply and Add Instructions . 1:101
6-1 IA-32 Application Register Mapping . 1:115
6-2 IA-32 Segment Register Fields . 1:118
6-3 IA-32 Environment Initial Register State. . 1:120
6-4 IA-32 Environment Runtime Integrity Checks . 1:122
6-5 IA-32 EFLAGS Register Fields . 1:124
6-6 IA-32 Floating-point Register Mappings . 1:125
6-7 IA-32 Floating-point Status Register Mapping (FSR) . 1:127

Part II: Optimization Guide for the Intel® Itanium® Architecture
5-1 ctop Loop Trace . 1:188
5-2 wtop Loop Trace . 1:191

§

x Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

1:1 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Part I: Application Architecture
Guide

1:2 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Volume 1, Part 1:About this Manual 1:3

About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA), which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.Intel® Itanium® Architecture
Software Developer’s Manual

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

1:4 Volume 1, Part 1: About this Manual

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 – GR 127) of the general
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 1, Part 1: About this Manual 1:5

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

1:6 Volume 1, Part 1: About this Manual

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 1, Part 1: About this Manual 1:7

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

Itanium Architecture-based Firmware – The Processor Abstraction Layer (PAL) and
System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization– Document number 308065
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization – This document (Document number 251110) describes
model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development –
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

1:8 Volume 1, Part 1: About this Manual

• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide –
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification –
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of
Revision

Revision
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

Volume 1, Part 1: About this Manual 1:9

August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part I, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of
Revision

Revision
Number Description

1:10 Volume 1, Part 1: About this Manual

August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1;
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2;
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3,
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s)
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I,
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2,
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of
Revision

Revision
Number Description

Volume 1, Part 1: About this Manual 1:11

Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of
Revision

Revision
Number Description

1:12 Volume 1, Part 1: About this Manual

§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description

Volume 1, Part 1:Introduction to the Intel® Itanium® Architecture 1:13

Introduction to the Intel® Itanium®
Architecture 2

The Itanium architecture was designed to overcome the performance limitations of
traditional architectures and provide maximum headroom for the future. To achieve
this, the Itanium architecture was designed with an array of innovative features to
extract greater instruction level parallelism including speculation, predication, large
register files, a register stack, advanced branch architecture, and many others. 64-bit
memory addressability was added to meet the increasing large memory footprint
requirements of data warehousing, e-business, and other high performance server
applications. The Itanium architecture has an innovative floating-point architecture and
other enhancements that support the high performance requirements of workstation
applications such as digital content creation, design engineering, and scientific analysis.

The Itanium architecture also provides binary compatibility with the IA-32 instruction
set. Processors based on the Itanium architecture can run IA-32 applications on an
Itanium architecture-based operating system that supports execution of IA-32
applications. Such processors can run IA-32 application binaries on IA-32 legacy
operating systems assuming the platform and firmware support exists in the system.
The Itanium architecture also provides the capability to support mixed IA-32 and
Itanium architecture-based code execution.

2.1 Operating Environments

The architectural model supports a mixture of IA-32 and Itanium architecture-based
applications within a single Itanium architecture-based operating system. Table 2-1
defines the major supported operating environments.

1:14 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

2.2 Instruction Set Transition Model Overview

Within the Itanium System Environment, the processor can execute either IA-32 or
Itanium instructions at any time. Three special instructions and interruptions are
defined to transition the processor between the IA-32 and the Itanium instruction set.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to an IA-32
or Itanium instruction.

• Interrupts transition the processor to the Itanium instruction set for all interrupt
conditions.

Figure 2-1. System Environment

Table 2-1. Major Operating Environments

System
Environment

Application
Environment

Usage

Itanium System
Environment

IA-32 Protected Mode IA-32 Protected Mode applications in the Intel® Itanium® System
Environment.

IA-32 Real Mode IA-32 Real Mode applications in the Intel® Itanium® System
Environment.

IA-32 Virtual Mode IA-32 Virtual 86 Mode applications in the Intel® Itanium® System
Environment.

Intel® Itanium®
Instruction Set

Itanium architecture-based applications on Intel® Itanium
architecture-based operating systems.

 Itanium®IA-32 Instructions

 Segmentation

Intel® Itanium® System Environment

Paging

Instructions

& Interruption

Handling

in the Intel® Itanium®

Architecture

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:15

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control
between the instruction sets. These instructions are typically incorporated into “thunks”
or “stubs” that implement the required call linkage and calling conventions to call
dynamic or statically linked libraries. See Section 6.2.1, “Instruction Set Modes” for
additional details.

2.3 Intel® Itanium® Instruction Set Features

Itanium architecture incorporates features which enable high sustained performance
and remove barriers to further performance increases. The Itanium architecture is
based on the following principles:

• Explicit parallelism

• Mechanisms for synergy between the compiler and the processor

• Massive resources to take advantage of instruction level parallelism

• 128 integer and floating-point registers, 64 1-bit predicate registers, 8 branch
registers

• Support for many execution units and memory ports

• Features that enhance instruction level parallelism

• Speculation (which minimizes memory latency impact).

• Predication (which removes branches).

• Software pipelining of loops with low overhead

• Branch prediction to minimize the cost of branches

• Focused enhancements for improved software performance

• Special support for software modularity

• High performance floating-point architecture

• Specific multimedia instructions

The following sections highlight these important features of the Itanium architecture.

2.4 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the
same time. The Itanium architecture allows issuing of independent instructions in
bundles (three instructions per bundle) for parallel execution and can issue multiple
bundles per clock. Supported by a large number of parallel resources such as large
register files and multiple execution units, the Itanium architecture enables the
compiler to manage work in progress and schedule simultaneous threads of
computation.

The Itanium architecture incorporates mechanisms to take advantage of ILP. Compilers
for traditional architectures are often limited in their ability to utilize speculative
information because it cannot always be guaranteed to be correct. The Itanium
architecture enables the compiler to exploit speculative information without sacrificing
the correct execution of an application (see “Speculation” on page 1:16). In traditional
architectures, procedure calls limit performance since registers need to be spilled and

1:16 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

filled. The Itanium architecture enables procedures to communicate register usage to
the processor. This allows the processor to schedule procedure register operations even
when there is a low degree of ILP. See “Register Stack” on page 1:18.

2.5 Compiler to Processor Communication

The Itanium architecture provides mechanisms, such as instruction templates, branch
hints, and cache hints to enable the compiler to communicate compile-time information
to the processor. In addition, it allows compiled code to manage the processor
hardware using runtime information. These communication mechanisms are vital in
minimizing the performance penalties associated with branches and cache misses.

The cost of branches is minimized by permitting code to communicate branch
information to the hardware in advance of the actual branch.

Every memory load and store in the Itanium architecture has a 2-bit cache hint field in
which the compiler encodes its prediction of the spatial and/or temporal locality of the
memory area being accessed. A processor based on the Itanium architecture can use
this information to determine the placement of cache lines in the cache hierarchy to
improve utilization. This is particularly important as the cost of cache misses is
expected to increase.

2.6 Speculation

There are two types of speculation: control and data. In both control and data
speculation, the compiler exposes ILP by issuing an operation early and removing the
latency of this operation from critical path. The compiler will issue an operation
speculatively if it is reasonably sure that the speculation will be beneficial. To be
beneficial two conditions should hold: (1) it must be statistically frequent enough that
the probability it will require recovery is small, and (2) issuing the operation early
should expose further ILP-enhancing optimization. Speculation is one of the primary
mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore
tolerating, the latencies of operations.

2.6.1 Control Speculation

Control speculation is the execution of an operation before the branch which guards it.
Consider the code sequence below:

if (a>b) load(ld_addr1,target1)
else load(ld_addr2, target2)

If the operation load(ld_addr1,target1)were to be performed prior to the
determination of (a>b), then the operation would be control speculative with respect to
the controlling condition (a>b). Under normal execution, the operation
load(ld_addr1,target1) may or may not execute. If the new control speculative load
causes an exception, then the exception should only be serviced if (a>b) is true. When

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:17

the compiler uses control speculation, it leaves a check operation at the original
location. The check verifies whether an exception has occurred and if so it branches to
recovery code. The code sequence above now translates into:

/* off critical path */
sload(ld_addr1,target1)
sload(ld_addr2,target2)

/* other operations including uses of target1/target2 */
if (a>b) scheck(target1,recovery_addr1)
else scheck(target2, recovery_addr2)

2.6.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and
that may potentially alias with it. Data speculative loads are also referred to as
“advanced loads.” Consider the code sequence below:

store(st_addr,data)
load(ld_addr,target)
use(target)

The process of determining at compile time the relationship between memory
addresses is called disambiguation. In the example above, if ld_addr and st_addr
cannot be disambiguated, and if the load were to be performed prior to the store, then
the load would be data speculative with respect to the store. If memory addresses
overlap during execution, a data-speculative load issued before the store might return a
different value than a regular load issued after the store. Therefore analogous to
control speculation, when the compiler data speculates a load, it leaves a check
instruction at the original location of the load. The check verifies whether an overlap
has occurred and if so it branches to recovery code. The code sequence above now
translates into:

/* off critical path */
aload(ld_addr,target)

/* other operations including uses of target */
store(st_addr,data)
acheck(target,recovery_addr)
use(target)

2.6.3 Predication

Predication is the conditional execution of instructions. Conditional execution is
implemented through branches in traditional architectures. The Itanium architecture
implements this function through the use of predicated instructions. Predication
removes branches used for conditional execution resulting in larger basic blocks and the
elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction

r1 = r2 + r3

when predicated, would be of the form

1:18 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

if (p5) r1 = r2 + r3

In this example p5 is the controlling predicate that decides whether or not the
instruction executes and updates state. If the predicate value is true, then the
instruction updates state. Otherwise it generally behaves like a nop. Predicates are
assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by
converting a control dependency to a data dependency. Consider the original code:

if (a>b) c = c + 1
else d = d * e + f

The branch at (a>b) can be avoided by converting the code above to the predicated
code:

pT, pF = compare(a>b)
if (pT) c = c + 1
if (pF) d = d * e + f

The predicate pT is set to 1 if the condition evaluates to true, and to 0 if the condition
evaluates to false. The predicate pF is the complement of pT. The control dependency of
the instructions c = c + 1 and d = d * e + f on the branch with the condition (a>b)
is now converted into a data dependency on compare(a>b) through predicates pT and
pF (the branch is eliminated). An added benefit is that the compiler can schedule the
instructions under pT and pF to execute in parallel. It is also worth noting that there are
several different types of compare instructions that write predicates in different
manners including unconditional compares and parallel compares.

2.7 Register Stack

The Itanium architecture avoids the unnecessary spilling and filling of registers at
procedure call and return interfaces through compiler-controlled renaming. At a call
site, a new frame of registers is available to the called procedure without the need for
register spill and fill (either by the caller or by the callee). Register access occurs by
renaming the virtual register identifiers in the instructions through a base register into
the physical registers. The callee can freely use available registers without having to
spill and eventually restore the caller’s registers. The callee executes an alloc
instruction specifying the number of registers it expects to use in order to ensure that
enough registers are available. If sufficient registers are not available (stack overflow),
the alloc stalls the processor and spills the caller’s registers until the requested
number of registers are available.

At the return site, the base register is restored to the value that the caller was using to
access registers prior to the call. Some of the caller’s registers may have been spilled
by the hardware and not yet restored. In this case (stack underflow), the return stalls
the processor until the processor has restored an appropriate number of the caller’s
registers. The hardware can exploit the explicit register stack frame information to spill
and fill registers from the register stack to memory at the best opportunity
(independent of the calling and called procedures).

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:19

2.8 Branching

In addition to removing branches through the use of predication, several mechanisms
are provided to decrease the branch misprediction rate and the cost of the remaining
mispredicted branches. These mechanisms provide ways for the compiler to
communicate information about branch conditions to the processor.

Branch predict instructions are provided which can be used to communicate an early
indication of the target address and the location of the branch. The compiler will try to
indicate whether a branch should be predicted dynamically or statically. The processor
can use this information to initialize branch prediction structures, enabling good
prediction even the first time a branch is encountered. This is beneficial for
unconditional branches or in situations where the compiler has information about likely
branch behavior.

For indirect branches, a branch register is used to hold the target address. Branch
predict instructions provide an indication of which register will be used in situations
when the target address can be computed early. A branch predict instruction can also
signal that an indirect branch is a procedure return, enabling the efficient use of
call/return stack prediction structures.

Special loop-closing branches are provided to accelerate counted loops and
modulo-scheduled loops. These branches and their associated branch predict
instructions provide information that allows for perfect prediction of loop termination,
thereby eliminating costly mispredict penalties and a reduction of the loop overhead.

2.9 Register Rotation

Modulo scheduling of a loop is analogous to hardware pipelining of a functional unit
since the next iteration of the loop starts before the previous iteration has finished. The
iteration is split into stages similar to the stages of an execution pipeline. Modulo
scheduling allows the compiler to execute loop iterations in parallel rather than
sequentially. The concurrent execution of multiple iterations traditionally requires
unrolling of the loop and software renaming of registers. The Itanium architecture
allows the renaming of registers which provide every iteration with its own set of
registers, avoiding the need for unrolling. This kind of register renaming is called
register rotation. The result is that software pipelining can be applied to a much wider
variety of loops – both small as well as large with significantly reduced overhead.

2.10 Floating-point Architecture

The Itanium architecture defines a floating-point architecture with full IEEE support for
the single, double, and double-extended (80-bit) data types. Some extensions, such as
a fused multiply and add operation, minimum and maximum functions, and a register
file format with a larger range than the double-extended memory format, are also
included. 128 floating-point registers are defined. Of these, 96 registers are rotating
(not stacked) and can be used to modulo schedule loops compactly. Multiple
floating-point status registers are provided for speculation.

1:20 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

The Itanium architecture has parallel FP instructions which operate on two 32-bit single
precision numbers, resident in a single floating-point register, in parallel and
independently. These instructions significantly increase the single precision
floating-point computation throughput and enhance the performance of 3D intensive
applications and games.

2.11 Multimedia Support

The Itanium architecture has multimedia instructions which treat the general registers
as concatenations of eight 8-bit, four 16-bit, or two 32-bit elements. These instructions
operate on each element in parallel, independent of the others. They are useful for
creating high performance compression/decompression algorithms that are used by
applications which have sound and video. Itanium multimedia instructions are
semantically compatible with HP’s MAX-2* multimedia technology and Intel’s MMX and
SSE technology instructions.

2.12 Intel® Itanium® System Architecture Features

2.12.1 Support for Multiple Address Space Operating Systems

Most contemporary commercial operating systems utilize a Multiple Address Space
(MAS) model with the following characteristics:

Protection is enforced among processes by placing each process within a unique
address space. Translation Lookaside Buffers (TLBs), which hold virtual to physical
mappings, often need to be flushed on a process context switch.

Some memory areas may be shared among processes, e.g. kernel areas and shared
libraries. Most operating systems assume at least one local and one global space.

To promote sharing of data between processes, MAS operating systems aggressively
use virtual aliases to map physical memory locations into the address spaces of
multiple processes. Virtual aliases create multiple TLB entries for the same physical
data leading to reduced TLB efficiency.

The MAS model is supported by dividing the virtual address space into several regions.
Region identifiers associated with each region are used to tag translations to a given
address space. On a process switch, region identifiers uniquely identify the set of
translations belonging to a process, thereby avoiding TLB flushes. Region identifiers
also provide a unique intermediate virtual address that help avoid thrashing problems
in virtual-indexed caches and TLBs. Regions provide efficient global/shared areas
between processes, while reducing the occurrences of virtual aliasing.

2.12.2 Support for Single Address Space Operating Systems

A single address space (SAS) operating system style architecture is the basis for much
of the current design work on future 64-bit operating systems. As operating systems
(and other large, complex programs like databases) migrate from monolithic programs

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:21

into cooperating subsystems, an SAS architecture becomes an important performance
differentiation in future systems. The SAS or hybrid environments enable a more
efficient use of hardware resources.

Common mechanisms are used in both SAS and MAS models such as page level access
rights to enforce protection, although the reliance on the feature set will differ under
each model. While most of the architected features are utilized in each model,
protection keys exist to enable a single global address space operating environment.

2.12.3 System Performance and Scalability

Performance and scalability are achieved through a variety of features. Memory
attributes, locking primitives, cache coherency, and memory ordering model work
together to allow the efficient sharing of data in a multiprocessor environment. In
addition, the Itanium architecture enables low latency fault, trap, and interrupt
handlers along with light-weight domain crossings. Performance analysis is aided by the
inclusion of several performance monitors, and mechanisms to support software
profiling.

2.12.4 System Security and Supportability

Security and supportability result from a number of primitives which provide a very
powerful runtime and debug environment. The protection model includes four
protection rings and enables increased system integrity by offering a more
sophisticated protection scheme than has generally been available. The machine check
model allows detailed information to be provided describing the type of error involved
and supports recovery for many types of errors. Several mechanisms are provided for
debugging both system and application software.

2.13 Terminology

This following terms are used in the remainder of this document:

• Itanium Instruction Set – The Itanium architecture defines the 64-bit instruction
set extensions to the IA-32 architecture.

• IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

• Itanium System Environment – System environment that supports the
execution of both IA-32 and Itanium architecture-based code.

• Platform – Application and operating system resources external to the processor
such as: memory maps, external devices (e.g. DMA), keyboard controllers, buses
(e.g. PCI), option cards, interrupt controllers, bridges, etc.

• Itanium architecture-based Firmware – The Processor Abstraction Layer (PAL)
and System Abstraction Layer (SAL).

• Processor Abstraction Layer (PAL) – The firmware layer which abstracts
processor features that are implementation dependent.

• System Abstraction Layer (SAL) – The firmware layer which abstracts platform
features that are implementation dependent.

1:22 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

§

Volume 1, Part 1: Execution Environment 1:23

Execution Environment 3

The architectural state consists of registers and memory. The results of instruction
execution become architecturally visible according to a set of execution sequencing
rules. This chapter describes the application architectural state and the rules for
execution sequencing. See Chapter 6 for details on IA-32 instruction set execution.

3.1 Application Register State

The following is a list of the registers available to application programs (see
Figure 3-1):

• General Registers (GRs) – General purpose 64-bit register file, GR0 - GR127.
IA-32 integer and segment registers are contained in GR8 - GR31 when executing
IA-32 instructions.

• Floating-point Registers (FRs) – Floating-point register file, FR0 - FR127. IA-32
floating-point and multi-media registers are contained in FR8 - FR31 when
executing IA-32 instructions.

• Predicate Registers (PRs) – Single-bit registers, used in predication and
branching, PR0 - PR63.

• Branch Registers (BRs) – Registers used in branching, BR0 - BR7.

• Instruction Pointer (IP) – Register which holds the bundle address of the
currently executing instruction, or byte address of the currently executing IA-32
instruction.

• Current Frame Marker (CFM) – State that describes the current general register
stack frame, and FR/PR rotation.

• Application Registers (ARs) – A collection of special-purpose registers.

• Performance Monitor Data Registers (PMD) – Data registers for performance
monitor hardware.

• User Mask (UM) – A set of single-bit values used for alignment traps,
performance monitors, and to monitor floating-point register usage.

• Processor Identifiers (CPUID) – Registers that describe processor
implementation-dependent features.

IA-32 application register state is entirely contained within the larger Itanium
application register set and is accessible by Itanium instructions. IA-32 instructions
cannot access the Itanium register set. See Section 6.2.2, “IA-32 Application Register
State Model” for details on IA-32 register assignments.

3.1.1 Reserved and Ignored Registers and Fields

Registers which are not defined are either reserved or ignored. An access to a
reserved register raises an Illegal Operation fault. A read of an ignored register
returns zero. Software may write any value to an ignored register and the hardware will

1:24 Volume 1, Part 1: Execution Environment

ignore the value written. In variable-sized register sets, registers which are
unimplemented in a particular processor are also reserved registers. An access to one
of these unimplemented registers causes a Reserved Register/Field fault.

Within defined registers, fields which are not defined are either reserved or ignored. For
reserved fields, hardware will always return a zero on a read. Software must always
write zeros to these fields. Any attempt to write a non-zero value into a reserved field
will raise a Reserved Register/Field fault. Reserved fields may have a possible future
use.

For ignored fields, hardware will return a 0 on a read, unless noted otherwise.
Software may write any value to these fields since the hardware will ignore any value
written. Except where noted otherwise some IA-32 ignored fields may have a possible
future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and
fields.

For defined fields in registers, values which are not defined are reserved. Software
must always write defined values to these fields. Any attempt to write a reserved
value will raise a Reserved Register/Field fault. Certain registers are read-only
registers. A write to a read-only register raises an Illegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future
processors that software treat these fields as having a future, though unknown effect.
Software should follow these guidelines when dealing with reserved fields:

• Do not depend on the state of any reserved fields. Mask all reserved fields before
testing.

• Do not depend on the state of any reserved fields when storing to memory or a
register.

• Do not depend on the ability to retain information written into reserved or ignored
fields.

• Where possible reload reserved or ignored fields with values previously returned
from the same register, otherwise load zeros.

Table 3-1. Reserved and Ignored Registers and Fields

Type Read Write

Reserved register Illegal Operation fault Illegal Operation fault

Ignored register 0 Value written is discarded

Reserved field 0 Write of non-zero causes Reserved Reg/Field fault

Ignored field 0 (unless noted otherwise) Value written is discarded

Volume 1, Part 1: Execution Environment 1:25

3.1.2 General Registers

A set of 128 (64-bit) general registers provide the central resource for all integer and
integer multimedia computation. They are numbered GR0 through GR127, and are
available to all programs at all privilege levels. Each general register has 64 bits of
normal data storage plus an additional bit, the NaT bit (Not a Thing), which is used to
track deferred speculative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31
are termed the static general registers. Of these, GR0 is special in that it always
reads as zero when sourced as an operand, and attempting to write to GR 0 causes an
Illegal Operation fault. General registers 32 through 127 are termed the stacked
general registers. The stacked registers are made available to a program by
allocating a register stack frame consisting of a programmable number of local and
output registers. See “Register Stack” on page 1:47 for a description. A portion of the
stacked registers can be programmatically renamed to accelerate loops. See
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-1. Application Register Model

APPLICATION REGISTER SET

pr0

 IP

PredicatesFloating-point Registers

Instruction Pointer

fr0
pr1
pr2

fr1
fr2

1
81 0

63 0

Branch Registers

 br0
 br1
 br2

63 0

 br7

gr0
gr1
gr2

63 0

gr127
fr127

gr16

gr31

gr32
fr32

fr31

0 +0.0
+1.0

General Registers

0

 NaTs

CFM

Current Frame Marker

Performance Monitor

63 0

pr63

pr15
pr16

37 0

pmd0
pmd1

pmdm

Processor Identifiers
63 0

cpuid0
cpuid1

cpuidn

Data Registers

User Mask
5 0

ar64

Application Registers

KR0

KR7

RSC
BSPar17

ar16

BSPSTORE
RNAT

ar18
ar19

CCV

UNATar36

ar32

FPSR

ITC

ar40

ar44

EC
LCar65

ar66

PFS

ar127

ar0

ar7

EFLAG
CSDar25

ar24

SSD
CFLG

ar26
ar27

FSR
FIRar29

ar28

FDRar30

FCRar21

63 0

Advanced Load
Address Table

RUCar45

1:26 Volume 1, Part 1: Execution Environment

General registers 8 through 31 contain the IA-32 integer, segment selector and
segment descriptor registers. See “IA-32 General Purpose Registers” on page 1:117 for
details on IA-32 register assignments.

3.1.3 Floating-point Registers

A set of 128 (82-bit) floating-point registers are used for all floating-point
computation. They are numbered FR0 through FR127, and are available to all programs
at all privilege levels. The floating-point registers are partitioned into two subsets.
Floating-point registers 0 through 31 are termed the static floating-point registers.
Of these, FR0 and FR1 are special. FR0 always reads as +0.0 when sourced as an
operand, and FR 1 always reads as +1.0. When either of these is used as a destination,
a fault is raised. Deferred speculative exceptions are recorded with a special register
value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point
registers. These registers can be programmatically renamed to accelerate loops. See
“Modulo-scheduled Loop Support” on page 1:75.

Floating-point registers 8 through 31 contain the IA-32 floating-point and multi-media
registers when executing IA-32 instructions. For details, see “IA-32 Floating-point
Registers” on page 1:124.

3.1.4 Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of compare
instructions. These registers are numbered PR0 through PR63, and are available to all
programs at all privilege levels. These registers are used for conditional execution of
instructions.

The predicate registers are partitioned into two subsets. Predicate registers 0 through
15 are termed the static predicate registers. Of these, PR0 always reads as ‘1’ when
sourced as an operand, and when used as a destination, the result is discarded. The
static predicate registers are also used in conditional branching. See “Predication” on
page 1:54.

Predicate registers 16 through 63 are termed the rotating predicate registers. These
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled
Loop Support” on page 1:75.

3.1.5 Branch Registers

A set of 8 (64-bit) branch registers are used to hold branching information. They are
numbered BR 0 through BR 7, and are available to all programs at all privilege levels.
The branch registers are used to specify the branch target addresses for indirect
branches. For more information see “Branch Instructions” on page 1:74.

Volume 1, Part 1: Execution Environment 1:27

3.1.6 Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current
executing instruction. The IP can be read directly with a mov ip instruction. The IP
cannot be directly written, but is incremented as instructions are executed, and can be
set to a new value with a branch. Because instruction bundles are 16 bytes, and are
16-byte aligned, the least significant 4 bits of IP are always zero. See “Instruction
Encoding Overview” on page 1:38. For IA-32 instruction set execution, IP holds the
zero extended 32-bit virtual linear address of the currently executing IA-32 instruction.
IA-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are
preserved for IA-32 instruction set execution. See “IA-32 Instruction Pointer” on
page 1:117 for IA-32 instruction set execution details.

3.1.7 Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker
describes the state of the general register stack. The Current Frame Marker (CFM)
holds the state of the current stack frame. The CFM cannot be directly read or written
(see “Register Stack” on page 1:47).

The frame markers contain the sizes of the various portions of the stack frame, plus
three Register Rename Base values (used in register rotation). The layout of the frame
markers is shown in Figure 3-2 and the fields are described in Table 3-2.

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function
State register (see Section 3.1.8.12, “Previous Function State (PFS – AR 64)”). A new
value is written to the CFM, creating a new stack frame with no locals or rotating
registers, but with a set of output registers which are the caller’s output registers.
Additionally, all Register Rename Base registers (RRBs) are set to 0. See
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-2. Frame Marker Format

37 32 31 25 24 18 17 14 13 7 6 0

rrb.pr rrb.fr rrb.gr sor sol sof

6 7 7 4 7 7

Table 3-2. Frame Marker Field Description

Field Bits Description

sof 6:0 Size of stack frame

sol 13:7 Size of locals portion of stack frame

sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers

rrb.fr 31:25 Register Rename Base for floating-point registers

rrb.pr 37:32 Register Rename Base for predicate registers

1:28 Volume 1, Part 1: Execution Environment

3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers
for application-visible processor functions for both the IA-32 and Itanium instruction set
architectures. These registers can be accessed by Itanium architecture-based
applications (except where noted). Table 3-3 contains a list of the application registers.

Table 3-3. Application Registers

Register Name Description
Execution Unit

Type

AR 0-7 KR 0-7a

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are
always allowed.

Kernel Registers 0-7 M

AR 8-15 Reserved

AR 16 RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)

AR 18 BSPSTORE Backing Store Pointer for Memory Stores

AR 19 RNAT RSE NaT Collection Register

AR 20 Reserved

AR 21 FCR IA-32 Floating-point Control Register

AR 22 - AR 23 Reserved

AR 24 EFLAGb

b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero. See Section 10.3.2, “IA-32
System EFLAG Register” on page 2:243 for details.

IA-32 EFLAG register

AR 25 CSD IA-32 Code Segment Descriptor / Compare and
Store Data register

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLGa IA-32 Combined CR0 and CR4 register

AR 28 FSR IA-32 Floating-point Status Register

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 31 Reserved

AR 32 CCV Compare and Exchange Compare Value Register

AR 33 - AR 35 Reserved

AR 36 UNAT User NaT Collection Register

AR 37 - AR 39 Reserved

AR 40 FPSR Floating-point Status Register

AR 41 - AR 43 Reserved

AR 44 ITC Interval Time Counter

AR 45 RUC Resource Utilization Counter

AR 46 - AR 47 Reserved

AR 48 - AR 63 Ignored M or I

AR 64 PFS Previous Function State I

AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 67 - AR 111 Reserved

AR 112 - AR 127 Ignored M or I

Volume 1, Part 1: Execution Environment 1:29

Application registers can only be accessed by either a M or I execution unit. This is
specified in the last column of the table. The ignored registers are for future
backward-compatible extensions.

See Section 10.2, “System Register Model” on page 2:239 for the field definition of
each IA-32 application register.

3.1.8.1 Kernel Registers (KR 0-7 – AR 0-7)

Eight user-visible 64-bit data kernel registers are provided to convey information from
the operating system to the application. These registers can be read at any privilege
level but are writable only at the most privileged level. KR0 - KR2 are also used to hold
additional IA-32 register state when the IA-32 instruction set is executing. See
Section 10.1, “Instruction Set Transitions” on page 2:239 for register details when
calling IA-32 code.

3.1.8.2 Register Stack Configuration Register (RSC – AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the
operation of the Register Stack Engine (RSE). Refer to Chapter 6, “Register Stack
Engine” in Volume 2 for details. The RSC format is shown in Figure 3-3 and the field
description is contained in Table 3-4. Instructions that modify the RSC can never set
the privilege level field to a more privileged level than the currently executing process.

3.1.8.3 RSE Backing Store Pointer (BSP – AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the
address of the location in memory which is the save location for GR 32 in the current
stack frame. See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

Figure 3-3. RSC Format

63 30 29 16 15 5 4 3 2 1 0

rv loadrs rv be pl mode

34 14 11 1 2 2

Table 3-4. RSC Field Description

Field Bits Description

mode 1:0 RSE mode – controls how aggressively the RSE saves and restores register
frames. Eager and intensive settings are hints and can be implemented as lazy.

Bit Pattern RSE Mode Bit 1:
eager loads

Bit 0:
eager stores

00 enforced lazy disabled disabled

10 load intensive enabled disabled

01 store intensive disabled enabled

11 eager enabled enabled

pl 3:2 RSE privilege level – loads and stores issued by the RSE are at this privilege
level

be 4 RSE endian mode – loads and stores issued by the RSE use this byte ordering
(0: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point – value used in the loadrs instruction for
synchronizing the RSE to a tear point

rv 15:5, 63:30 Reserved

1:30 Volume 1, Part 1: Execution Environment

3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE – AR 18)

The RSE Backing Store Pointer for memory stores is a 64-bit register (Figure 3-5). It
holds the address of the location in memory to which the RSE will spill the next value.
See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

3.1.8.5 RSE NaT Collection Register (RNAT – AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to
temporarily hold NaT bits when it is spilling general registers. Bit 63 always reads as
zero and ignores all writes. See Section 6.1, “RSE and Backing Store Overview” on
page 2:133.

3.1.8.6 Compare and Store Data register (CSD – AR 25)

The Compare and Store Data register is a 64-bit register that provides data to be
stored by the Itanium st16 and cmp8xchg16 instructions, and receives data loaded by
the Itanium ld16 instruction.

For implementations that do not support the ld16, st16 and cmp8xchg16 instructions,
bits 61:60 may be optionally implemented. This means that on move application
register instructions the implementation can either ignore writes and return zero on
reads, or write the value and return the last value written on reads. For
implementations that do support the ld16, st16 and cmp8xchg16 instructions, all bits of
CSD are implemented.

For IA-32 execution, this register is the IA-32 Code Segment Descriptor. See
Section 6.2.2.3, “IA-32 Segment Registers” on page 1:118.

3.1.8.7 Compare and Exchange Value Register (CCV – AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the
compare value used as the third source operand in the Itanium cmpxchg instruction.

Figure 3-4. BSP Register Format

63 3 2 1 0

pointer 0

61 3

Figure 3-5. BSPSTORE Register Format

63 3 2 1 0

pointer ig

61 3

Figure 3-6. RNAT Register Format

63 0

ig RSE NaT Collection

1 63

Volume 1, Part 1: Execution Environment 1:31

3.1.8.8 User NaT Collection Register (UNAT – AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits
when saving and restoring general registers with the ld8.fill and st8.spill
instructions.

3.1.8.9 Floating-point Status Register (FPSR – AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision
control, flags, and other control bits for Itanium floating-point instructions. FPSR does
not control or reflect the status of IA-32 floating-point instructions. For more details on
the FPSR, see “Floating-point Status Register” on page 1:88.

3.1.8.10 Interval Time Counter (ITC – AR 44)

The Interval Time Counter (ITC) is a 64-bit register which counts up at a fixed
relationship to the input clock to the processor. The ITC may be clocked at a somewhat
lower frequency than the instruction execution frequency. This clocking relationship is
described in the PAL procedure PAL_FREQ_RATIOS on page 2:392. The ITC is
guaranteed to be clocked at a constant rate, even if the instruction execution frequency
may vary.

A sequence of reads of the ITC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads. Applications can directly sample the ITC for time-based calculations.

System software can secure the interval time counter from non-privileged access.
When secured, a read of the ITC at any privilege level other than the most privileged
causes a Privileged Register fault. The ITC can be written only at the most privileged
level. The IA-32 Time Stamp Counter (TSC) is similar to ITC counter. ITC can directly be
read by the IA-32 rdtsc (read time stamp counter) instruction. System software can
secure the ITC from non-privileged IA-32 access. When secured, an IA-32 read of the
ITC at any privilege level other than the most privileged raises an
IA_32_Exception(GPfault).

3.1.8.11 Resource Utilization Counter (RUC – AR 45)

The Resource Utilization Counter (RUC) is a 64-bit register which counts up at a fixed
relationship to the input clock to the processor, when the processor is active. RUC
provides an estimate of the portion of resources used by a logical processor with
respect to all resources provided by the underlying physical processor.

The Resource Utilization Counter (RUC) is a 64-bit register which provides an estimate
of the portion of resources used by a logical processor with respect to all resources
provided by the underlying physical processor.

In a given time interval, the difference in the RUC values for all of the logical processors
on a given physical processor add up to the difference seen in the ITC on that physical
processor for that same interval.

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads.

1:32 Volume 1, Part 1: Execution Environment

System software can secure the resource utilization counter from non-privileged
access. When secured, a read of the RUC at any privilege level other than the most
privileged causes a Privileged Register fault.

The RUC for a logical processor does not count when that logical processor is in
LIGHT_HALT, unless all logical processors on a given physical processor are in
LIGHT_HALT, in which case the last logical on a given physical processor to enter
LIGHT_HALT has its RUC continue to count.

With processor virtualization, the RUC can be used to communicate the portion of
resources used by a virtual processor. See Section 3.4, “Processor Virtualization” on
page 2:44 and Section 11.7, “PAL Virtualization Support” on page 2:324 for details on
virtual processors.

The RUC register is not supported on all processor implementations. Software can
check CPUID register 4 to determine the availability of this feature. The RUC register is
reserved when this feature is not supported.

3.1.8.12 Previous Function State (PFS – AR 64)

The Previous Function State register (PFS) contains multiple fields: Previous Frame
Marker (pfm), Previous Epilog Count (pec), and Previous Privilege Level (ppl).
Figure 3-7 diagrams the PFS format and Table 3-5 describes the PFS fields. These
values are copied automatically on a call from the CFM register, Epilog Count Register
(EC) and PSR.cpl (Current Privilege Level in the Processor Status Register) to accelerate
procedure calling.

When a br.call or brl.call is executed, the CFM, EC, and PSR.cpl are copied to the
PFS and the old contents of the PFS are discarded. When a br.ret is executed, the PFS
is copied to the CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would
increase the privilege level. For more details on the PSR see Chapter 3, “System State
and Programming Model” in Volume 2.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7, “Current Frame
Marker”), and the PFS.pec has the same layout as the EC (see Section 3.1.8.14, “Epilog
Count Register (EC – AR 66)”).

Figure 3-7. PFS Format

63 62 61 58 57 52 51 38 37 0

ppl rv pec rv pfm

2 4 6 14 38

Table 3-5. PFS Field Description

Field Bits Description

pfm 37:0 Previous Frame Marker

pec 57:52 Previous Epilog Count

ppl 63:62 Previous Privilege Level

rv 51:38, 61:58 Reserved

Volume 1, Part 1: Execution Environment 1:33

3.1.8.13 Loop Count Register (LC – AR 65)

The Loop Count register (LC) is a 64-bit register used in counted loops. LC is
decremented by counted-loop-type branches.

3.1.8.14 Epilog Count Register (EC – AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog)
stages in modulo-scheduled loops. See “Modulo-scheduled Loop Support” on
page 1:75. A diagram of the EC register is shown in Figure 3-8.

3.1.9 Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to
be accessible at all privilege levels. Performance monitor data can be directly sampled
from within the application. The operating system is allowed to secure user-configured
performance monitors. Secured performance counters return zeros when read,
regardless of the current privilege level. The performance monitors can only be written
at the most privileged level. Refer to Chapter 7, “Debugging and Performance
Monitoring” in Volume 2 for details. Performance monitors can be used to gather
performance information for the execution of both IA-32 and Itanium instruction sets.

3.1.10 User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to
application programs. The user mask controls memory access alignment, byte-ordering
and user-configured performance monitors. It also records the modification state of
floating-point registers. Figure 3-9 show the user mask format and Table 3-6 describes
the user mask fields. For more details on the PSR refer to “Processor Status Register
(PSR)” on page 2:23.

Figure 3-8. Epilog Count Register Format

63 6 5 0

ig epilog count

58 6

Figure 3-9. User Mask Format

5 4 3 2 1 0

mfh mfl ac up be rv

1 1 1 1 1 1

Table 3-6. User Mask Field Descriptions

Field Bit Description

rv 0 Reserved

be 1 Big-endian memory access enable
(controls loads and stores but not RSE memory accesses)
0: accesses are done little-endian
1: accesses are done big-endian
This bit is ignored for IA-32 data memory accesses. IA-32 data references are always
performed little-endian.

1:34 Volume 1, Part 1: Execution Environment

3.1.11 Processor Identification Registers

Application level processor identification information is available in a register file
termed: CPUID. This register file is divided into a fixed region, registers 0 to 4, and a
variable region, register 5 and above. The CPUID[3].number field indicates the
maximum number of 8-byte registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from)
instruction. All registers beyond register CPUID[3].number are reserved and raise a
Reserved Register/Field fault if they are accessed. Writes are not permitted and no
instruction exists for such an operation.

Vendor information is located in CPUID registers 0 and 1 and specify a vendor name, in
ASCII, for the processor implementation (Figure 3-10). All bytes after the end of the
string up to the 16th byte are zero. Earlier ASCII characters are placed in lower number
register and lower numbered byte positions.

CPUID register 2 is an ignored register (reads from this register return zero).

CPUID register 3 contains several fields indicating version information related to the
processor implementation. Figure 3-11 and Table 3-7 specify the definitions of each
field.

up 2 User performance monitor enable (including IA-32)
0: user performance monitors are disabled
1: user performance monitors are enabled

ac 3 Alignment check for data memory references (including IA-32)
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: all unaligned data memory references cause an Unaligned Data Reference fault.

mfl 4 Lower (f2.. f31) floating-point registers written – This bit is set to one when an Intel®
Itanium® instruction that uses register f2..f31 as a target register, completes. This bit is
sticky and is only cleared by an explicit write of the user mask. See Section 3.3.2,
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

mfh 5 Upper (f32.. f127) floating-point registers written – This bit is set to one when an Intel®
Itanium® instruction that uses register f32..f127 as a target register, completes. This bit
is sticky and only cleared by an explicit write of the user mask. See Section 3.3.2,
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

Figure 3-10. CPUID Registers 0 and 1 – Vendor Information

63 0

CPUID[0] byte 0

CPUID[1] byte 15

64

Figure 3-11. CPUID Register 3 – Version Information

63 40 39 32 31 24 23 16 15 8 7 0

rv archrev family model revision number

24 8 8 8 8 8

Table 3-6. User Mask Field Descriptions (Continued)

Field Bit Description

Volume 1, Part 1: Execution Environment 1:35

CPUID register 4 provides general application-level information about processor
features. As shown in Figure 3-12, it is a set of flag bits used to indicate if a given
feature is supported in the processor model. When a bit is one the feature is supported;
when 0 the feature is not supported. The defined feature bits in the current architecture
are listed in Table 3-8. As new features are added (or removed) from future processor
models the presence (or removal) of new features will be indicated by new feature bits.

CPUID register 4 is logically split into two halves, both of which contain general feature
and capability information but which have different usage models and access
capabilities; this information reflects the status of any enabled or disabled features.
Both the upper and lower halves of CPUID register 4 are accessible through the move
indirect register instruction; depending on the implementation, the latency for this
access can be long and this access method is not appropriate for low-latency code
versioning using self-selection. In addition, the upper half of CPUID register 4 is also
accessible using the test feature instruction; the latency for this access is comparable
to that of the test bit instruction and this access method enables low-latency code
versioning using self selection.

This register does not contain IA-32 instruction set features. IA-32 instruction set
features can be acquired by the IA-32 cpuid instruction.

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7:0 The index of the largest implemented CPUID register (one less than the number of
implemented CPUID registers). This value will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping
of this processor implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model
within the processor family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision
number that the processor implements.

rv 63:40 Reserved.

Figure 3-12. CPUID Register 4 – General Features/Capability Bits

63 34 33 32 31 4 3 2 1 0

rv x2 cz rv ru ao sd lb

30 1 1 28 1 1 1 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description

lb 0 Processor implements the long branch (brl) instructions.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:105).

ao 2 Processor implements 16-byte atomic operations (see “ld — Load”, “st — Store” and
“cmpxchg — Compare and Exchange” instructions in Volume 3).

ru 3 Processor implements the Resource Utilization Counter (AR 45).

rv 31:4 Reserved.

cz 32 Processor implements the clz instruction (see “tf — Test Feature” instruction in
Volume 3).

1:36 Volume 1, Part 1: Execution Environment

3.2 Memory

This section describes an Itanium architecture-based application program’s view of
memory. This includes a description of how memory is accessed, for both 32-bit and
64-bit applications. The size and alignment of addressable units in memory is also
given, along with a description of how byte ordering is handled.

The system view of memory and of virtual memory management is given in Chapter 4,
“Addressing and Protection” in Volume 2 . The IA-32 instruction set view of memory
and virtual memory management is defined in Section 10.6, “System Memory Model”
on page 2:259.

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer
model without a hardware mode is supported architecturally. Pointers which are 32 bits
in memory are loaded and manipulated in 64-bit registers. Software must explicitly
convert 32-bit pointers into 64-bit pointers before use. For details on 32-bit addressing,
refer to “32-bit Virtual Addressing” on page 2:71.

3.2.2 Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned
boundaries. Hardware and/or operating system software may have support for
unaligned accesses, possibly with some performance cost. 10-byte floating-point values
should be stored on 16-byte aligned boundaries.

Bits within larger units are always numbered from 0 starting with the least-significant
bit. Quantities loaded from memory to general registers are always placed in the
least-significant portion of the register (loaded values are placed right justified in the
target general register).

Instruction bundles (three instructions per bundle) are 16-byte units that are always
aligned on 16-byte boundaries.

3.2.3 Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or
big-endian byte ordering for Itanium architecture-based code. When the UM.be bit is 0,
larger-than-byte loads and stores are little endian (lower-addressed bytes in memory
correspond to the lower-order bytes in the register). When the UM.be bit is 1,

x2 33 Processor implements mpy4 and mpyshl4 instructions (see “tf — Test Feature”
instruction in Volume 3).

rv 63:34 Reserved.

Table 3-8. CPUID Register 4 Fields (Continued)

Field Bits Description

Volume 1, Part 1: Execution Environment 1:37

larger-than-byte loads and stores are big endian (lower-addressed bytes in memory
correspond to the higher-order bytes in the register). Load byte and store byte are not
affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32
references, or the RSE. Instructions are always accessed by the processor as
little-endian units. When instructions are referenced as big-endian data, the instruction
will appear reversed in a register.

Figure 3-13 shows various loads in little-endian format. Figure 3-14 shows various
loads in big endian format. Stores are not shown but behave similarly.

Figure 3-13. Little-endian Loads

Figure 3-14. Big-endian Loads

a

b

c

d

e

f

g

h
d ac bh eg f

63 0

0

1

2

3

4

5

6

7
LD8 [0] =>

7 0

Memory Registers

0 b0 00 00 0

63 0

LD1 [1] =>

0 c0 d0 00 0

63 0

LD2 [2] =>

h eg f0 00 0

63 0

LD4 [4] =>

Address

a

b

c

d

e

f

g

h 63 0

0

1

2

3

4

5

6

7

LD8 [0] =>

7 0

Memory Registers

Address

e hf ga db c

63 0

LD4 [4] => e hf g0 00 0

63 0

LD2 [2] => 0 d0 c0 00 0

63 0

LD1 [1] => 0 b0 00 00 0

1:38 Volume 1, Part 1: Execution Environment

3.3 Instruction Encoding Overview

Each instruction is categorized into one of six types; each instruction type may be
executed on one or more execution unit types. Table 3-9 lists the instruction types and
the execution unit type on which they are executed.

Three instructions are grouped together into 128-bit sized and aligned containers called
bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template
field. The format of a bundle is depicted in Figure 3-15.

During execution, architectural stops in the program indicate to the hardware that one
or more instructions before the stop may have certain kinds of resource dependencies
with one or more instructions after the stop. A stop is present after each slot having a
double line to the right of it in Table 3-10. For example, template 00 has no stops, while
template 03 has a stop after slot 1 and another after slot 2.

In addition to the location of stops, the template field specifies the mapping of
instruction slots to execution unit types. Not all possible mappings of instructions to
units are available. Table 3-10 indicates the defined combinations. The three rightmost
columns correspond to the three instruction slots in a bundle. Listed within each column
is the execution unit type controlled by that instruction slot.

Table 3-9. Relationship between Instruction Type and Execution Unit Type

Instruction Type Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unit

Figure 3-15. Bundle Format

12
7 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template

41 41 41 5

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unita

05 M-unit L-unit X-unita

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

Volume 1, Part 1: Execution Environment 1:39

Extended instructions, used for long immediate integer and long branch instructions,
occupy two instruction slots. Depending on the major opcode, extended instructions
execute on a B-unit (long branch/call) or an I-unit (all other L+X instructions).

3.4 Instruction Sequencing Considerations

Itanium architecture-based code consists of a sequence of instructions and stops
packed in bundles. Instruction execution is ordered as follows:

• Bundles are ordered from lowest to highest memory address. Instructions in
bundles with lower memory addresses are considered to precede instructions in
bundles with higher memory addresses. The byte order of each bundle in memory
is little-endian (the template field is contained in byte 0 of a bundle).

• Within a bundle, instructions are ordered from instruction slot 0 to instruction slot 2
as specified in Figure 3-15 on page 1:38.

Instruction execution consists of four phases:

1. Read the instruction from memory (fetch)

2. Read architectural state, if necessary (read)

3. Perform the specified operation (execute)

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F

a. The MLX template was formerly called MLI, and for
compatibility, the X slot may encode break.i and nop.i
in addition to any X-unit instruction.

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

1:40 Volume 1, Part 1: Execution Environment

4. Update architectural state, if necessary (update).

An instruction group is a sequence of instructions starting at a given bundle address
and slot number and including all instructions at sequentially increasing slot numbers
and bundle addresses up to the first stop, taken branch, Break Instruction fault due to
a break.b, or Illegal Operation fault due to a Reserved or Reserved if PR[qp] is one
encoding in the B-type opcode space. For the instructions in an instruction group to
have well-defined behavior, they must meet the ordering and dependency requirements
described below.

For the purpose of clarification, the following do not end instruction groups:

• Break instructions other than break.b (break.f, break.i, break.m, break.x)

• Check instructions (chk.s, chk.a, fchkf)

• rfi instructions not followed by a stop

• brl instructions not followed by a stop

• Interruptions other than a Break Instruction fault due to a break.b or an Illegal
Operation fault due to a Reserved or Reserved if PR[qp] is 1 encoding in the B-type
opcode space

Thus, even if one of the above causes a change in control flow, the instructions at
sequentially increasing addresses beyond the location of the change in control flow up
to the next true end of the instruction group had the change of control flow not
occurred, can still cause undefined values to be seen at the target of the change of
control flow, if they cause a dependency violation. There are never, however, any
dependencies between the instructions at the target of the change in control flow and
those preceding the change in control flow, even for the above cases.

If the instructions in instruction groups meet the resource-dependency requirements,
then the behavior of a program will be as though each individual instruction is
sequenced through these phases in the order listed above. The order of a phase of a
given instruction relative to any phase of a previous instruction is prescribed by the
instruction sequencing rules below.

• There is no a priori relationship between the fetch of an instruction and the read,
execute, or update of any dynamically previous instruction. The sync.i and srlz.i
instructions can be used to enforce a sequential relationship between the fetch of
all dynamically succeeding instructions and the update of all dynamically previous
instructions.

• Between instruction groups, every instruction in a given instruction group will
behave as though its read occurred after the update of all the instructions from the
previous instruction group. All instructions are assumed to have unit latency.
Instructions on opposing sides of a stop are architecturally considered to be
separated by at least one unit of latency.

Some system state updates require more stringent requirements than those
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Within an instruction group, every instruction will behave as though its read of the
memory and ALAT state occurred after the update of the memory and ALAT state of
all prior instructions in that instruction group.

• Within an instruction group, every instruction will behave as though its read of the
register state occurred before the update of the register state by any instruction
(prior or later) in that instruction group, except as noted in the Register
dependencies and Memory dependencies described below.

Volume 1, Part 1: Execution Environment 1:41

The ordering rules above form the context for register dependency restrictions,
memory dependency restrictions and the order of exception reporting. These
dependency restrictions apply only between instructions whose resource reads and
writes are not dynamically disabled by predication.

• Register dependencies: Within an instruction group, read-after-write (RAW) and
write-after-write (WAW) register dependencies are not allowed (except as noted in
“RAW Dependency Special Cases” on page 1:42 and “WAW Dependency Special
Cases” on page 1:43). Write-after-read (WAR) register dependencies are allowed
(except as noted in “WAR Dependency Special Cases” on page 1:44).

These dependency restrictions apply to both explicit register accesses (from the
instruction’s operands) and implicit register accesses (such as application and
control registers implicitly accessed by certain instructions). Predicate register PR0
is excluded from these register dependency restrictions, since writes to PR0 are
ignored and reads always return 1 (one).

Some system state updates require more stringent requirements than those
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory
dependencies and ALAT dependencies are allowed. A load will observe the results of
the most recent store to the same memory address. In the event that multiple
stores to the same address are present in the same instruction group, memory will
contain the result of the latest store after execution of the instruction group. A
store following a load to the same address will not affect the data loaded by the
load. Advanced loads, check loads, advanced load checks, stores, and memory
semaphore instructions implicitly access the ALAT. RAW, WAW, and WAR ALAT
dependencies are allowed within an instruction group and behave as described for
memory dependencies.

The net effect of the dependency restrictions stated above is that a processor may
execute all (or any subset) of the instructions within a legal instruction group
concurrently or serially with the end result being identical. If these dependency
restrictions are not met, the behavior of the program is undefined (see “Undefined
Behavior” on page 1:44).

Exceptions are reported in instruction order. The dependency restrictions apply
independent of the presence or absence of exceptions — that is, restrictions must be
satisfied whether or not an exception occurs within an instruction group. At the point of
exception delivery for a correctly formed instruction group, all prior instructions will
have completed their update of architectural state. All subsequent instructions will not
have updated architectural state. If an instruction group violates a dependency
requirement, then the update of architectural state before and after an exception is not
guaranteed (the fault handler sees an undefined value on the registers involved in a
dependency violation even if the exception occurs between the first and second
instructions in the violation). In the event multiple exceptions occur while executing
instructions from the same instruction group, the exception occurring on the earliest
instruction will be reported.

The instruction sequencing resulting from the rules stated above is termed sequential
execution.

1:42 Volume 1, Part 1: Execution Environment

The ordering rules and the dependency restrictions allow the processor to dynamically
re-order instructions, execute instructions with non-unit latency, or even concurrently
execute instructions on opposing sides of a stop or taken branch, provided that correct
sequencing is enforced and the appearance of sequential execution is presented to the
programmer.

IP is a special resource in that reads and writes of IP behave as though the instruction
stream was being executed serially, rather than in parallel. RAW dependencies on IP are
allowed, and the reader gets the IP of the bundle in which it is contained. So, each
bundle being executed in parallel logically reads IP, increments it and writes it back.
WAW is also allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW
dependencies to ignored ARs are not allowed.

For more details on resource dependencies, see Chapter 5, “Resource and Dependency
Semantics” in Volume 3.

3.4.1 RAW Dependency Special Cases

There are four special cases in which RAW register dependencies within an instruction
group are permitted. These special cases are the alloc instruction, check load
instructions, instructions that affect branching, and the ld8.fill and st8.spill
instructions.

The alloc instruction implicitly writes the Current Frame Marker (CFM) which is
implicitly read by all instructions accessing the stacked subset of the general register
file. Instructions that access the stacked subset of the general register file may appear
in the same instruction group as alloc and will see the stack frame specified by the
alloc.

Note: Some instructions have RAW or WAW dependencies on resources other than
CFM affected by alloc and are thus not allowed in the same instruction group
after an alloc: flushrs, loadrs, move from AR[BSPSTORE], move from
AR[RNAT], br.cexit, br.ctop, br.wexit, br.wtop, br.call, brl.call,
br.ia, br.ret, clrrrb, cover, and rfi. See Chapter 5, “Resource and Depen-
dency Semantics” in Volume 3 for details. Also note that alloc is required to be
the first instruction in an instruction group.

A check load instruction may or may not perform a load since it is dependent upon its
corresponding advanced load. If the check load misses the ALAT it will execute a load
from memory. A check load and a subsequent instruction that reads the target of the
check load may exist in the same instruction group. The dependent instruction will get
the new value loaded by the check load.

A branch may read branch registers and may implicitly read predicate registers, the LC,
EC, and PFS application registers, as well as CFM. Except for LC, EC and predicate
registers, writes to any of these registers by a non-branch instruction will be visible to a
subsequent branch in the same instruction group. Writes to predicate registers by any
non-floating-point instruction will be visible to a subsequent branch in the same
instruction group. RAW register dependencies within the same instruction group are not
allowed for LC and EC. Dynamic RAW dependencies where the predicate writer is a
floating-point instruction and the reader is a branch are also not allowed within the
same instruction group. Branches br.cond, br.call, brl.cond, brl.call, br.ret and

Volume 1, Part 1: Execution Environment 1:43

br.ia work like other instructions for the purposes of register dependency; i.e., if their
qualifying predicate is 0, they are not considered readers or writers of other resources.
Branches br.cloop, br.cexit, br.ctop, br.wexit, and br.wtop are exceptional in
that they are always readers or writers of their resources, regardless of the value of
their qualifying predicate. An indirect brp is considered a reader of the specified BR.

The ld8.fill and st8.spill instructions implicitly access the User NaT Collection
application register (UNAT). For these instructions the restriction on dynamic RAW
register dependencies with respect to UNAT applies at the bit level. These instructions
may appear in the same instruction group provided they do not access the same bit of
UNAT. RAW UNAT dependencies between ld8.fill or st8.spill instructions and mov
ar= or mov =ar instructions accessing UNAT must not occur within the same instruction
group.

For the purposes of resource dependencies, CFM is treated as a single resource.

3.4.2 WAW Dependency Special Cases

There are three special cases in which WAW register dependencies within an instruction
group are permitted. The special cases are compare-type instructions, floating-point
instructions, and the st8.spill instruction.

The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, tf, fcmp,
frsqrta, frcpa, and fclass. Compare-type instructions in the same instruction group
may target the same predicate register provided:

• The compare-type instructions are either all AND-type compares or all OR-type
compares (AND-type compares correspond to “.and” and “.andcm” completers;
OR-type compares correspond to “.or” and “.orcm” completers), or

• The compare-type instructions all target PR0. All WAW dependencies for PR0 are
allowed; the compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including WAW
register dependencies with move to PR instructions that access the same predicate
registers as another writer.

Note: The move to PR instructions only writes those PRs indicated by its mask, but
the move from PR instructions always reads all the predicate registers.

Floating-point instructions implicitly write the Floating-point Status Register (FPSR) and
the Processor Status Register (PSR). Multiple floating-point instructions may appear in
the same instruction group since the restriction on WAW register dependencies with
respect to the FPSR and PSR do not apply. The state of FPSR and PSR after executing
the instruction group will be the logical OR of all writes.

The st8.spill instruction implicitly writes the UNAT register. For this instruction the
restriction on WAW register dependencies with respect to UNAT applies at the bit level.
Multiple st8.spill instructions may appear in the same instruction group provided
they do not write the same bit of UNAT. WAW register dependencies between
st8.spill instructions and mov ar= instructions targeting UNAT must not occur within
the same instruction group.

1:44 Volume 1, Part 1: Execution Environment

3.4.3 WAR Dependency Special Cases

The WAR dependency between the reading of predicate register 63 by any B-type
instruction and the subsequent writing of predicate register 63 by a modulo-scheduled
loop type branch (br.ctop, br.cexit, br.wtop, or br.wexit) without an intervening
stop is not allowed. Otherwise, WAR dependencies within an instruction group are
allowed.

3.4.4 Processor Behavior on Dependency Violations

If a program violates read-after-write, write-after-write or write-after-read resource
dependency rules within an instruction group, then processor behavior is undefined.
Constraints on undefined behavior are described in “Undefined Behavior” on page 1:44.

To help debug code that violates the architectural resource dependency rules, some
processor implementations may provide dependency violation detection hardware that
may cause an instruction group that contains an illegal dependency to take an Illegal
Dependency fault (defined in Chapter 5, “Interruptions” in Volume 2). However, even
in implementations that provide such checking, software can not assume the processor
will catch all dependency violations or even catch the same violation every time it
occurs.

However, all processor models that provide dependency violation detection hardware
are required to satisfy the following dependency violation reporting constraints:

• All detected dependency violations must be reported as Illegal Dependency Faults
(defined in Chapter 5, “Interruptions” in Volume 2). When an Illegal Dependency
fault is taken, the value of the resource subject to the dependency violation is
undefined. Undetected dependency violations cause undefined program behavior as
described in “Undefined Behavior” on page 1:44.

• All detected read-after-write and write-after-write dependency violations must be
delivered as Illegal Dependency Faults on the second operation, i.e. on the reader
in the RAW case, and on second resource writer in the WAW case.

• All detected write-after-read dependency violations (on predicate register 63) must
be delivered as Illegal Dependency faults on the second operation, the predicate
writer.

• Illegal Dependency faults are delivered strictly in program order. If an interruption,
branch or speculation check are taken between the first and the second operation
of a dependency violation, then the Illegal Dependency fault is not taken.

Note: Since an instruction group starts at a given entry point (stop or target of a con-
trol flow transfer), instructions that precede the entry point are not considered
part of the instruction group and must not take part in any dependency viola-
tion checking. For example, if an rfi is done to slot 1 of a bundle, the instruc-
tion in slot 0 and instructions in bundles with lower memory addresses are not
part of the new instruction group, and must not take part in any dependency
violation checking.

3.5 Undefined Behavior

Architecturally undefined behavior that applies to one or more instructions is listed
below:

Volume 1, Part 1: Execution Environment 1:45

• RAW and WAW register dependencies within the same instruction group are
disallowed except as noted in Section 3.4, “Instruction Sequencing Considerations”
on page 1:39. Their behavior within an instruction group is undefined. Undefined
behavior includes the possibility of an Illegal Operation fault.

• Reading a register outside of the defined general register stack frame boundaries
(as determined by the most recent alloc, return, or call) will return an undefined
result. All processors will not raise an interruption in this situation.

An undefined scenario is an event or sequence of events whose outcome is not defined
in the architecture. For the behavior of Itanium instructions, refer to Chapter 2,
“Instruction Reference” in Volume 3. For the behavior of IA32 instructions, refer to
Volume 4: IA-32 Instruction Set Reference. Therefore, the result of an undefined
scenario is strictly implementation dependent. User should not rely on these undefined
behaviors for correct program behavior and compatibility across future
implementations.

An undefined response (undefined behavior, undefined result) is subject to the following
restrictions:

• It must not impede forward progress of the processor (i.e., the processor may not
crash).

• It must not impede forward progress of other processors.

• It must not allow software to gain privileges not available at the current privilege
level.

• It must not allow software to circumvent memory access rights.

• It must not modify state that cannot be modified by a defined response (e.g., a
post-increment load instruction that generates an undefined response cannot
modify any registers other than its target and address registers).

• It is subject to the same NaT/NaTVal propagation rules as a defined response.

• The processor may raise an Illegal Operation fault

§

1:46 Volume 1, Part 1: Execution Environment

Volume 1, Part 1: Application Programming Model 1:47

Application Programming Model 4

This section describes the architectural functionality from the perspective of the
application programmer. Itanium instructions are grouped into related functions and an
overview of their behavior is given. Unless otherwise noted, all immediates are sign
extended to 64 bits before use. The floating-point programming model is described
separately in Chapter 5, “Floating-point Programming Model” in Volume 1. Refer to
Volume 3: Intel® Itanium® Instruction Set Reference for detailed information on
Itanium instructions.

The main features of the programming model covered here are:

• General Register Stack

• Integer Computation Instructions

• Compare Instructions and Predication

• Memory Access Instructions and Speculation

• Branch Instructions and Branch Prediction

• Multimedia Instructions

• Register File Transfer Instructions

• Character Strings and Population Count

• Privilege Level Transfer

4.1 Register Stack

As described in “General Registers” on page 1:25, the general register file is divided
into static and stacked subsets. The static subset is visible to all procedures and
consists of the 32 registers from GR 0 through GR 31. The stacked subset is local to
each procedure and may vary in size from zero to 96 registers beginning at GR 32. The
register stack mechanism is implemented by renaming register addresses as a
side-effect of procedure calls and returns. The implementation of this rename
mechanism is not otherwise visible to application programs. The register stack is
disabled during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to
software convention. The stacked subset is automatically saved and restored by the
Register Stack Engine (RSE) without explicit software intervention (for details on the
RSE see Chapter 6, “Register Stack Engine” in Volume 2). All other register files are
visible to all procedures and must be saved/restored by software according to software
convention.

4.1.1 Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register
stack frame. The frame is further partitioned into two variable-size areas: the local area
and the output area. Immediately after a call, the size of the local area of the newly
activated frame is zero and the size of the output area is equal to the size of the caller’s
output area and overlays the caller’s output area.

1:48 Volume 1, Part 1: Application Programming Model

The local and output areas of a frame can be re-sized using the alloc instruction which
specifies immediates that determine the size of frame (sof) and size of locals (sol).

Note: In the assembly language, alloc uses three immediate operands to determine
the values of sol and sof: the size of inputs; the size of locals; and the size of
outputs. The value of sol is determined by adding the size of inputs immediate
and the size of locals immediate; the value of sof is determined by adding all
three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current
procedure; the value of sol specifies the size of the local area. The size of the output
area is determined by the difference between sof and sol. The values of these
parameters for the currently active procedure are maintained in the Current Frame
Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result.
Writing a stacked register outside the current frame will cause an Illegal Operation
fault.

When a br.call or brl.call is executed, the CFM is copied to the Previous Frame
Marker (PFM) field in the Previous Function State application register (PFS), and the
callee’s frame is created as follows:

• The stacked registers are renamed such that the first register in the caller’s output
area becomes GR 32 for the callee

• The size of the local area is set to zero

• The size of the callee’s frame (sofb1) is set to the size of the caller’s output area
(sofa - sola)

Values in the output area of the caller’s register stack frame are visible to the callee.
This overlap permits parameter and return value passing between procedures to take
place entirely in registers.

Procedure frames may be dynamically re-sized by issuing an alloc instruction. An
alloc instruction causes no renaming, but only changes the size of the register stack
frame and the partitioning between local and output areas. Typically, when a procedure
is called, it will allocate some number of local registers for its use (which will include the
parameters passed to it in the caller’s output registers), plus an output area (for
passing parameters to procedures it will call). Newly allocated registers (including their
NaT bits) have undefined values.

When a br.ret is executed, CFM is restored from PFM and the register renaming is
restored to the caller’s configuration. The PFM is procedure local state and must be
saved and restored by non-leaf procedures. The CFM is not directly accessible in
application programs and is updated only through the execution of calls, returns,
alloc, cover, and clrrrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA
(caller) to procB (callee). The state of the register stack is shown at four points: prior to
the call, immediately following the call, after procB has executed an alloc, and after
procB returns to procA.

Volume 1, Part 1: Application Programming Model 1:49

The majority of application programs need only issue alloc instructions and
save/restore PFM in order to effectively utilize the register stack. A detailed knowledge
of the RSE (Register Stack Engine) is required only by certain specialized application
software such as user-level thread packages, debuggers, etc. See Chapter 6, “Register
Stack Engine” in Volume 2.

4.1.2 Register Stack Instructions

The alloc instruction is used to change the size of the current register stack frame. An
alloc instruction must be the first instruction in an instruction group otherwise the
results are undefined. An alloc instruction affects the register stack frame seen by all
instructions in an instruction group, including the alloc itself. If the qualifying
predicate for alloc is not PR0, an Illegal Operation fault is raised. An alloc does not
affect the values or NaT bits of the allocated registers. When a register stack frame is
expanded, newly allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of
the register stack. These instructions are used in thread and context switching which
necessitate a corresponding switch of the backing store for the register stack. See
Chapter 6, “Register Stack Engine” in Volume 2 for details on explicit management of
the RSE.

Figure 4-1. Register Stack Behavior on Procedure Call and Return

Caller’s Frame (procA)

Callee’s Frame (procB)

Local A

Output B2

32 46

32 48

52

Callee’s Frame (procB) Output B1

32 38

50

CFM PFM

14 21

14 2116 19

14 210 7

x x

Frame MarkersStacked GRs

Caller’s Frame (procA) 14 21 14 21Local A Output A

32 46 52

After return

sofa=21
sola=14

sofb1=7

sofb2=19
solb2=16

call

alloc

return

sol sof sofsol

After Call

After alloc

Output A

Local B

Instruction Execution

1:50 Volume 1, Part 1: Application Programming Model

The flushrs instruction is used to force all previous stack frames out to backing store
memory. It stalls instruction execution until all active frames in the physical register
stack up to, but not including the current frame are spilled to the backing store by the
RSE. A flushrs instruction must be the first instruction in an instruction group;
otherwise, the results are undefined. A flushrs cannot be predicated.

The cover instruction creates a new frame of zero size (sof = sol = 0). The new frame
is created above (not overlapping) the present frame. Both the local and output areas
of the previous stack frame are automatically saved. A cover instruction must be the
last instruction in an instruction group; otherwise, operation is undefined. A cover
cannot be predicated.

The loadrs instruction ensures that the specified portion of the register stack is present
in the physical registers. It stalls instruction execution until the number of bytes
specified in the loadrs field of the RSC application register have been filled from the
backing store by the RSE (starting from the current BSP). By specifying a zero value for
RSC.loadrs, loadrs can be used to indicate that all stacked registers outside the
current frame must be loaded from the backing store before being used. In addition,
stacked registers outside the current frame (that have not been spilled by the RSE) will
not be stored to the backing store. A loadrs instruction must be the first instruction in
an instruction group otherwise the results are undefined. A loadrs cannot be
predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2
summarizes the register stack management instructions. Call- and return-type
branches, which affect the stack, are described in “Branch Instructions” on page 1:74.

4.2 Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and
bit-field-manipulation instructions. Additionally, they provide a set of instructions to
accelerate operations on 32-bit data and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and
M-units

Table 4-1. Architectural Visible State Related to the Register Stack

Register Description

AR[PFS].pfm Previous Frame Marker field

AR[RSC] Register Stack Configuration application register

AR[BSP] Backing store pointer application register

AR[BSPSTORE] Backing store pointer application register for memory stores

AR[RNAT] RSE NaT collection application register

Table 4-2. Register Stack Management Instructions

Mnemonic Operation

alloc Allocate register stack frame

flushrs Flush register stack to backing store

loadrs Load register stack from backing store

cover Cover current stack frame

Volume 1, Part 1: Application Programming Model 1:51

4.2.1 Arithmetic Instructions

Addition and subtraction (add, sub) are supported with regular two input forms and
special three input forms. The three input addition form adds one to the sum of two
input registers. The three input subtraction form subtracts one from the difference of
two input registers. The three input forms share the same mnemonics as the two input
forms and are specified by appending a “1” as a third source operand.

The immediate form of addition uses a register and a 14-bit immediate; the immediate
form of subtraction uses a register and an 8-bit immediate. In both cases, the
immediate is sign-extended before being added or subtracted. The immediate form is
obtained simply by specifying an immediate rather than a register as the first operand.
Also, addition can be performed between a register and a 22-bit immediate; however,
the source register must be GR 0, 1, 2 or 3.

A shift left and add instruction (shladd) shifts one register operand to the left by 1 to 4
bits and adds the result to a second register operand.

32-bit multiplication is supported with the unsigned integer multiply (mpy4) instruction,
which takes two 32-bit (unsigned) register operands and produces a 64-bit result. The
unsigned integer shift left and multiply (mpyshl4) instruction provides a building block
for doing 64-bit multiplication. It takes a 32-bit operand in the upper half of a first
register, a 32-bit operand in the lower half of a second register, multiplies them, and
places the least significant 32-bits of the product in the upper half of the result register,
with zeros in the lower half.

Table 4-3 summarizes the integer arithmetic instructions.

Note that an integer multiply instruction is defined which uses the floating-point
registers. See “Integer Multiply and Add Instructions” on page 1:101 for details.
Integer divide is performed in software similarly to floating-point divide.

4.2.2 Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between
two registers or between a register and an immediate are defined. The andcm
instruction performs a logical AND of a register or an immediate with the complement
of another register. Table 4-4 summarizes the integer logical instructions.

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation

add Addition

add...,1 Three input addition

mpy4 Unsigned integer multiply

mpyshl4 Unsigned integer shift left and multiply

sub Subtraction

sub...,1 Three input subtraction

shladd Shift left and add

1:52 Volume 1, Part 1: Application Programming Model

4.2.3 32-bit Addresses and Integers

Support for 32-bit addresses is provided in the form of add instructions that perform
region bit copying. This supports the virtual address translation model (see “32-bit
Virtual Addressing” on page 2:71 for details). The add 32-bit pointer instruction (addp)
adds two registers or a register and an immediate, zeroes the most significant 32-bits
of the result, and copies bits 31:30 of the second source to bits 62:61 of the result. The
shladdp instruction operates similarly but shifts the first source to the left by 1 to 4 bits
before performing the add, and is provided only in the two-register form.

In addition, support for 32-bit integers is provided through 32-bit compare instructions
and instructions to perform sign and zero extension. Compare instructions are
described in “Compare Instructions and Predication” on page 1:54. The sign and zero
extend (sxt, zxt) instructions take an 8-bit, 16-bit, or 32-bit value in a register, and
produce a properly extended 64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

4.2.4 Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a
general register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input
funnel shift, and special compare operations to test an individual bit within a general
register. The compare instructions for testing a single bit (tbit), or for testing the NaT
bit (tnat) are described in “Compare Instructions and Predication” on page 1:54.

The variable shift instructions shift the contents of a general register by an amount
specified by another general register. The shift right signed (shr) and shift right
unsigned (shr.u) instructions shift the contents of a register to the right with the
vacated bit positions filled with the sign bit or zeroes respectively. The shift left (shl)
instruction shifts the contents of a register to the left.

The fixed shift-and-mask instructions (extr, dep) are generalized forms of fixed shifts.
The extract instruction (extr) copies an arbitrary bit field from a general register to the
least-significant bits of the target register. The remaining bits of the target are written
with either the sign of the bit field (extr) or with zero (extr.u). The length and starting

Table 4-4. Integer Logical Instructions

Mnemonic Operation

and Logical and

or Logical or

andcm Logical and complement

xor Logical exclusive or

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation

addp 32-bit pointer addition

shladdp Shift left and add 32-bit pointer

sxt Sign extend

zxt Zero extend

Volume 1, Part 1: Application Programming Model 1:53

position of the field are specified by two immediates. This is essentially a
shift-right-and-mask operation. A simple right shift by a fixed amount can be specified
by using shr with an immediate value for the shift amount. This is just an assembly
pseudo-op for an extract instruction where the field to be extracted extends all the way
to the left-most register bit.

The deposit instruction (dep) takes a field from either the least-significant bits of a
general register, or from an immediate value of all zeroes or all ones, places it at an
arbitrary position, and fills the result to the left and right of the field with either bits
from a second general register (dep) or with zeroes (dep.z). The length and starting
position of the field are specified by two immediates. This is essentially a
shift-left-mask-merge operation. A simple left shift by a fixed amount can be specified
by using shl with an immediate value for the shift amount. This is just an assembly
pseudo-op for dep.z where the deposited field extends all the way to the left-most
register bit.

The shift right pair (shrp) instruction performs a 128-bit-input funnel shift. It extracts
an arbitrary 64-bit field from a 128-bit field formed by concatenating two source
general registers. The starting position is specified by an immediate. This instruction
can be used to accelerate the adjustment of unaligned data. A bit rotate operation can
be performed by using shrp and specifying the same register for both operands.

Table 4-6 summarizes the bit field and shift instructions.

4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For
constants up to 22 bits in size, the add instruction can be used, or the mov pseudo-op
(pseudo-op of add with GR0, which always reads 0). For larger constants, the move
long immediate instruction (movl) is defined to write a 64-bit immediate into a general
register. This instruction occupies two instruction slots within the same bundle, and is
the only such instruction.

Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation

shr Shift right signed

shr.u Shift right unsigned

shl Shift left

extr Extract signed (shift right and mask)

extr.u Extract unsigned (shift right and mask)

dep Deposit (shift left, mask and merge)

dep.z Deposit in zeroes (shift left and mask)

shrp Shift right pair

Table 4-7. Instructions to Generate Large Constants

Mnemonic Operation

mov Move 22-bit immediate

movl Move 64-bit immediate

1:54 Volume 1, Part 1: Application Programming Model

4.3 Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and
affect the dynamic execution of instructions. A compare instruction tests for a single
specified condition and generates a boolean result. These results are written to
predicate registers. The predicate registers can then be used to affect dynamic
execution in two ways: as conditions for conditional branches, or as qualifying
predicates for predication.

4.3.1 Predication

Predication is the conditional execution of instructions. The execution of most
instructions is gated by a qualifying predicate. If the predicate is true, the instruction
executes normally; if the predicate is false, the instruction does not modify
architectural state (except for the unconditional type of compare instructions,
floating-point approximation instructions and while-loop branches). Predicates are
one-bit values and are stored in the predicate register file. A zero predicate is
interpreted as false and a one predicate is interpreted as true (predicate register PR0 is
hardwired to one).

A few instructions cannot be predicated. These instructions are: allocate stack frame
(alloc), branch predict (brp), bank switch (bsw), clear rrb (clrrrb), cover stack frame
(cover), enter privileged code (epc), flush register stack (flushrs), load register stack
(loadrs), counted branches (br.cloop, br.ctop, br.cexit), and return from
interruption (rfi).

4.3.2 Compare Instructions

Predicate registers are written by the following instructions: general register compare
(cmp, cmp4), floating-point register compare (fcmp), test bit and test NaT (tbit, tnat),
test feature (tf), floating-point class (fclass), and floating-point reciprocal
approximation and reciprocal square root approximation (frcpa, fprcpa, frsqrta,
fprsqrta). Most of these compare instructions (all but frcpa, fprcpa, frsqrta and
fprsqrta) set two predicate registers based on the outcome of the comparison. The
setting of the two target registers is described below in “Compare Types” on page 1:55.
Compare instructions are summarized in Table 4-8.

Table 4-8. Compare Instructions

Mnemonic Operation

cmp, cmp4 GR compare

tbit Test bit in a GR

tnat Test GR NaT bit

tf Test feature

fcmp FR compare

fclass FR class

frcpa, fprcpa Floating-point reciprocal approximation

frsqrta, fprsqrta Floating-point reciprocal square root approximation

Volume 1, Part 1: Application Programming Model 1:55

The 64-bit (cmp) and 32-bit (cmp4) compare instructions compare two registers, or a
register and an immediate, for one of ten relations (e.g., >, <=). The compare
instructions set two predicate targets according to the result. The cmp4 instruction
compares the least-significant 32-bits of both sources (the most significant 32-bits are
ignored).

The test bit (tbit) instruction sets two predicate registers according to the state of a
single bit in a general register (the position of the bit is specified by an immediate). The
test NaT (tnat) instruction sets two predicate registers according to the state of the
NaT bit corresponding to a general register.

The test feature (tf) instruction sets two predicate registers according to whether or
not the selected feature is implemented in the processor.

The fcmp instruction compares two floating-point registers and sets two predicate
targets according to one of eight relations. The fclass instruction sets two predicate
targets according to the classification of the number contained in the floating-point
register source.

The frcpa, fprcpa, frsqrta and fprsqrta instructions set a single predicate target if
their floating-point register sources are such that a valid approximation can be
produced, otherwise the predicate target is cleared.

4.3.3 Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional,
AND, OR, or DeMorgan. The type defines how the instruction writes its target predicate
registers based on the outcome of the comparison and on the qualifying predicate. The
description of these types is contained in Table 4-9. In the table, “qp” refers to the
value of the qualifying predicate of the compare and “result” refers to the outcome of
the compare relation (one if the compare relation is true and zero if the compare
relation is false).

The Normal compare type simply writes the compare result to the first predicate target
and the complement of the result to the second predicate target.

Table 4-9. Compare Type Function

Compare Type Completer
Operation

First Predicate Target Second Predicate Target

Normal none if (qp) {target = result} if (qp) {target =!result}

Unconditional unc
if (qp) {target = result}
else {target = 0}

if (qp) {target =!result}
else {target = 0}

AND
and if (qp &&!result) {target = 0} if (qp &&!result) {target = 0}

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

OR
or if (qp && result) {target = 1} if (qp && result) {target = 1}

orcm if (qp &&!result) {target = 1} if (qp &&!result) {target = 1}

DeMorgan
or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}

and.orcm if (qp &&!result) {target = 0} if (qp &&!result) {target = 1}

1:56 Volume 1, Part 1: Application Programming Model

The Unconditional compare type behaves the same as the Normal type, except that if
the qualifying predicate is 0, both predicate targets are written with 0. This can be
thought of as an initialization of the predicate targets, combined with a Normal
compare. Note that compare instructions with the Unconditional type modify
architectural state when their qualifying predicate is false.

The AND, OR and DeMorgan types are termed “parallel” compare types because they
allow multiple simultaneous compares (of the same type) to target a single predicate
register. This provides the ability to compute a logical equation such as
p5 = (r4 == 0) || (r5 == r6) in a single cycle (assuming p5 was initialized to 0 in
an earlier cycle). The DeMorgan compare type is just a combination of an OR type to
one predicate target and an AND type to the other predicate target. Multiple OR-type
compares (including the OR part of the DeMorgan type) may specify the same predicate
target in the same instruction group. Multiple AND-type compares (including the AND
part of the DeMorgan type) may also specify the same predicate target in the same
instruction group.

For all compare instructions (except for tnat and fclass), if one or both of the source
registers contains a deferred exception token (NaT or NaTVal – see “Control
Speculation” on page 1:60), the result of the compare is different. Both predicate
targets are treated the same, and are either written to 0 or left unchanged. In
combination with speculation, this allows predicated code to be turned off in the
presence of a deferred exception. fclass behaves this way as well if NaTVal is not one
of the classes being tested for. Table 4-10 describes the behavior.

Only a subset of the compare types are provided for some of the compare instructions.
Table 4-11 lists the compare types which are available for each of the instructions.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation

Normal if (qp) {target = 0}

Unconditional target = 0

AND if (qp) {target = 0}

OR (not written)

DeMorgan (not written)

Table 4-11. Instructions and Compare Types Provided

Instruction Relation Types Provided

cmp, cmp4 a == b, a!= b,
a > 0, a >= 0, a < 0, a <= 0,
0 > a, 0 >= a, 0 < a, 0 <= a

Normal, Unconditional,
AND, OR, DeMorgan

All other relations Normal, Unconditional

tbit, tnat, tf All Normal, Unconditional,
AND, OR, DeMorgan

fcmp, fclass All Normal, Unconditional

frcpa, frsqrta,
fprcpa, fprsqrta

Not Applicable Unconditional

Volume 1, Part 1: Application Programming Model 1:57

4.3.4 Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and a general
register. These instructions operate in a “broadside” manner whereby multiple predicate
registers are transferred in parallel, such that predicate register N is transferred
to/from bit N of a general register.

The move to predicates instruction (mov pr=) loads multiple predicate registers from a
general register according to a mask specified by an immediate. The mask contains one
bit for each of PR 1 through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16
through PR63 (the rotating predicates). A predicate register is written from the
corresponding bit in a general register if the corresponding mask bit is 1; if the mask bit
is 0 the predicate register is not modified.

The move to rotating predicates instruction (mov pr.rot=) copies 48 bits from an
immediate value into the 48 rotating predicates (PR 16 through PR 63). The immediate
value includes 28 bits, and is sign-extended. Thus PR 16 through PR 42 can be
independently set to new values, and PR 43 through PR 63 are all set to either 0 or 1.

The move from predicates instruction (mov =pr) transfers the entire predicate register
file into a general register target.

For all of these predicate register transfers, the predicate registers are accessed as
though the register rename base (CFM.rrb.pr) were 0. Typically, therefore, software
should clear CFM.rrb.pr before initializing rotating predicates.

4.4 Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer
data to and from general registers or floating-point registers. The memory address is
specified by the contents of a general register.

Most load and store instructions can also specify base-address-register update. Base
update adds either an immediate value or the contents of a general register to the
address register, and places the result back in the address register. The update is done
after the load or store operation, i.e., it is performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a
4K-byte boundary, accesses misaligned with respect to their natural boundaries will
always fault if UM.ac (alignment check bit in the User Mask register) is 1. If UM.ac is 0,
then an unaligned access will succeed if it is supported by the implementation;
otherwise it will cause an Unaligned Data Reference fault. Please see the
processor-specific documentation for further information. All memory accesses that
cross a 4K-byte boundary will cause an Unaligned Data Reference fault independent of
UM.ac. Additionally, all semaphore instructions will cause an Unaligned Data Reference
fault if the access is not aligned to its natural boundary, independent of UM.ac.

Accesses to memory quantities larger than a byte may be done in a big-endian or
little-endian fashion. The byte ordering for all memory access instructions is
determined by UM.be in the User Mask register. All IA-32 memory references are
performed little-endian.

1:58 Volume 1, Part 1: Application Programming Model

Load, store and semaphore instructions are summarized in Table 4-12 and the state
related to memory reference instructions is summarized in Table 4-13.

4.4.1 Load Instructions

Load instructions transfer data from memory to a general register, a general register
and the Compare and Store Data register (CSD), a floating-point register or a pair of
floating-point registers.

For general register loads, access sizes of 1, 2, 4, 8, and 16 bytes are defined. For sizes
less than eight bytes, the loaded value is zero extended to 64-bits. The 16-byte
general-register load instructions load two adjacent 8-byte quantities into a general
register and the CSD register. The 16-byte general-register load instructions cannot
specify base register update.

For floating-point loads, the following access sizes are defined: single precision (4
bytes), double precision (8 bytes), double-extended precision (10 bytes), and
integer/parallel FP (8 bytes). The value(s) loaded from memory are converted into
floating-point register format (see “Memory Access Instructions” on page 1:91 for
details).

Table 4-12. Memory Access Instructions

Mnemonic

Operation
General

Floating-point

Normal Load Pair

ld ldf ldfp Load

ld.s ldf.s ldfp.s Speculative load

ld.a ldf.a ldfp.a Advanced load

ld.sa ldf.sa ldfp.sa Speculative advanced load

ld.c.nc, ld.c.clr ldf.c.nc,
ldf.c.clr

ldfp.c.nc,
ldfp.c.clr

Check load

ld.c.clr.acq Ordered check load

ld.acq Ordered load

ld.bias Biased load

ld.fill ldf.fill Register Fill

st stf Store

st.rel Ordered store

st.spill stf.spill Register Spill

cmpxchg Compare and exchange

xchg Exchange memory and GR

fetchadd Fetch and add

Table 4-13. State Relating to Memory Access

Register Function

UM.be User mask byte ordering

UM.ac User mask Unaligned Data Reference fault enable

UNAT GR NaT collection

CCV Compare and Exchange Compare Value application register

CSD Compare and Store Data application register

Volume 1, Part 1: Application Programming Model 1:59

The floating-point load pair instructions load two adjacent single precision (4 bytes
each), double precision (8 bytes each), or integer/parallel FP (8 bytes each) numbers
into two independent floating-point registers (see the ldfp instruction description for
restrictions on target register specifiers). Floating-point load pair instructions can
specify base register update, but only by an immediate value equal to double the data
size.

Variants of both general and floating-point register loads are defined for supporting
compiler-directed control and data speculation. These use the general register NaT bits
and the ALAT. See “Control Speculation” on page 1:60 and “Data Speculation” on
page 1:63.

Variants are also provided for controlling the memory/cache subsystem. An ordered
load can be used to force ordering in memory accesses. See “Memory Access Ordering”
on page 1:73. A biased load provides a hint to acquire exclusive ownership of the
accessed line. See “Memory Hierarchy Control and Consistency” on page 1:69.

Special-purpose loads are defined for restoring register values that were spilled to
memory. The ld8.fill instruction loads a general register and the corresponding NaT
bit (defined for an 8-byte access only). The ldf.fill instruction loads a value in
floating-point register format from memory without conversion (defined for 16-byte
access only). See “Register Spill and Fill” on page 1:62.

4.4.2 Store Instructions

Store instructions transfer data from a general register, a general register and the CSD
register, or floating-point register to memory. Store instructions are always
non-speculative. Store instructions can specify base-address-register update, but only
by an immediate value. A variant is also provided for controlling the memory/cache
subsystem. An ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes
as their load counterparts. The only exception is that there are no floating-point store
pair instructions. The 16-byte general-register store instructions store two adjacent
8-byte quantities from a general register and the CSD register.

Special purpose stores are defined for spilling register values to memory. The
st8.spill instruction stores a general register and the corresponding NaT bit (defined
for 8-byte access only). This allows the result of a speculative calculation to be spilled
to memory and restored. The stf.spill instruction stores a floating-point register in
memory in the floating-point register format without conversion. This allows register
spill and restore code to be written to be compatible with possible future extensions to
the floating-point register format. The stf.spill instruction also does not fault if the
register contains a NaTVal, and is defined for 16-byte access only. See “Register Spill
and Fill” on page 1:62.

4.4.3 Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an
operation and then store a result to the same memory location. Semaphore instructions
are always non-speculative. No base register update is provided.

1:60 Volume 1, Part 1: Application Programming Model

Three types of atomic semaphore operations are defined: exchange (xchg); compare
and exchange (cmpxchg); and fetch and add (fetchadd).

The xchg target is loaded with the zero-extended contents of the memory location
addressed by the first source and then the second source is stored into the same
memory location.

The cmpxchg target is loaded with the zero-extended contents of the memory location
addressed by the first source; if the zero-extended value is equal to the contents of the
Compare and Exchange Compare Value application register (CCV), then the second
source is stored into the same memory location. The cmp8xchg16 instruction loads the
target with 8 bytes from the memory location addressed by the first source; if this
value is equal to the contents of the CCV register, then the second source and the CSD
register are both stored into memory at the 16-byte-aligned address which contains the
memory location loaded.

The fetchadd instruction specifies one general register source, one general register
target, and an immediate. The fetchadd target is loaded with the zero-extended
contents of the memory location addressed by the source and then the immediate is
added to the loaded value and the result is stored into the same memory location.

4.4.4 Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This
speculation takes two forms, control speculation and data speculation, with a separate
mechanism to support each. See also “Data Speculation” on page 1:63.

4.4.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a
sequence of instructions is executed before it is known that the dynamic control flow of
the program will actually reach the point in the program where the sequence of
instructions is needed. This is done with instruction sequences that have long execution
latencies. Starting the execution early allows the compiler to overlap the execution with
other work, increasing the parallelism and decreasing overall execution time. The
compiler performs this optimization when it determines that it is very likely that the
dynamic control flow of the program will eventually require this calculation. In cases
where the control flow is such that the calculation turns out not to be needed, its results
are simply discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no
exceptions encountered that would be visible to the program can be signalled until it is
determined that the program’s control flow does require the execution of this
instruction sequence. For this reason, a mechanism is provided for recording the
occurrence of an exception so that it can be signalled later if and when it is necessary.
In such a situation, the exception is said to be deferred. When an exception is deferred
by an instruction, a special token is written into the target register to indicate the
existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point
register files. In general registers, an additional bit is defined for each register called
the NaT bit (Not a Thing). Thus general registers are 65 bits wide. A NaT bit equal to 1

Volume 1, Part 1: Application Programming Model 1:61

indicates that the register contains a deferred exception token, and that its 64-bit data
portion contains an implementation-specific value that software cannot rely upon. In
floating-point registers, a deferred exception is indicated by a specific pseudo-zero
encoding called the NaTVal (see “Representation of Values in Floating-point Registers”
on page 1:86 for details).

4.4.4.2 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be
used speculatively) and non-speculative (instructions which cannot). Non-speculative
instructions will raise exceptions if they occur and are therefore unsafe to schedule
before they are known to be executed. Speculative instructions defer exceptions (they
do not raise them) and are therefore safe to schedule before they are know to be
executed.

Loads to general and floating-point registers have both non-speculative (ld, ldf, ldfp)
and speculative (ld.s, ldf.s, ldfp.s) variants. Generally, all computation instructions
which write their results to general or floating-point registers are speculative. Any
instruction that modifies state other than a general or floating-point register is
non-speculative, since there would be no way to represent the deferred exception
(there are a few exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A
speculative instruction that reads a register containing a deferred exception token will
propagate a deferred exception token into its target. Thus a chain of instructions can be
executed speculatively, and only the result register need be checked for a deferred
exception token to determine whether any exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation
is needed, a speculation check (chk.s) instruction is used. This instruction tests for a
deferred exception token. If none is found, then the speculative calculation was
successful, and execution continues normally. If a deferred exception token is found,
then the speculative calculation was unsuccessful and must be re-done. In this case,
the chk.s instruction branches to a new address (specified by an immediate offset in
the chk.s instruction). Software can use this mechanism to invoke code that contains a
copy of the speculative calculation (but with non-speculative loads). Since it is now
known that the calculation is required, any exceptions which now occur can be signalled
and handled normally.

Since computational instructions do not generally cause exceptions, the only
instructions which generate deferred exception tokens are speculative loads. (IEEE
floating-point exceptions are handled specially through a set of alternate status fields.
See “Floating-point Status Register” on page 1:88.) Other speculative instructions
propagate deferred exception tokens, but do not generate them.

4.4.4.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general
registers or the floating-point registers are non-speculative. The compare (cmp, cmp4,
fcmp), test bit (tbit), floating-point class (fclass), and floating-point approximation
(frcpa, frsqrta) instructions are special cases. These instructions read general or
floating-point registers and write one or two predicate registers.

1:62 Volume 1, Part 1: Application Programming Model

For these instructions, if any source contains a deferred exception token, all predicate
targets are either cleared or left unchanged, depending on the compare type (see
Table 4-10 on page 1:56). Software can use this behavior to ensure that any dependent
conditional branches are not taken and any dependent predicated instructions are
nullified. See “Predication” on page 1:54.

Deferred exception tokens can also be tested for with certain compare instructions. The
test NaT (tnat) instruction tests the NaT bit corresponding to the specified general
register and writes two predicate results. The floating-point class (fclass) instruction
can be used to test for a NaTVal in a floating-point register and write the result to two
predicate registers. fclass does not clear both predicate targets in the presence of a
NaTVal input if NaTVal is one of the classes being tested for.

4.4.4.4 Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception
token will raise a Register NaT Consumption fault. Such instructions can be thought of
as performing a non-recoverable speculation check operation. In some compilation
environments, it may be true that the only exceptions that are deferred are fatal errors.
In such a program, if the result of a speculative calculation is checked and a deferred
exception token is found, execution of the program is terminated. For such a program,
the results of speculative calculations can be checked simply by using non-speculative
instructions.

4.4.4.5 Operating System Control over Exception Deferral

An additional mechanism is defined that allows the operating system to control the
exception behavior of speculative loads. The operating system has the option to select
which exceptions are deferred automatically in hardware and which exceptions will be
handled (and possibly deferred) by software. See Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:105.

4.4.4.6 Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and
preserving any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st8.spill, ld8.fill) are defined to
save/restore a general register along with the corresponding NaT bit.

The st8.spill instruction writes a general register’s NaT bit into the User NaT
Collection application register (UNAT), and, if the NaT bit was 0, writes the register’s
64-bit data portion to memory. If the register’s NaT bit was 1, the UNAT is updated, but
the memory update is implementation specific. As stated in Section 4.4.4.1, “Control
Speculation Concepts”, software cannot rely on the 64-bit data portion spilled to
memory for a NaT'ed GR. Although guidance is given here for processor
implementations, other allowed implementation strategies may be added in the future,
and software should not rely on the implementation guidance.

Processor implementations (hardware and firmware) must consistently follow one of
two spill behaviors (but software should not count on implementations being limited to
these behaviors):

Volume 1, Part 1: Application Programming Model 1:63

• The st8.spill may write a zero to the specified memory location, or

• The st8.spill may write the register’s 64-bit data portion to memory, only if that
implementation returns a zero into the target register of all NaTed speculative
loads, and that implementation also guarantees that all NaT propagating
instructions perform all computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

The ld8.fill instruction loads a general register from memory taking the
corresponding NaT bit from the bit in the UNAT register addressed by bits 8:3 of the
memory address. The UNAT register must be saved and restored by software. It is the
responsibility of software to ensure that the contents of the UNAT register are correct
while executing st8.spill and ld8.fill instructions.

The floating-point spill and fill instructions (stf.spill, ldf.fill) are defined to
save/restore a floating-point register (saved as 16 bytes) without surfacing an
exception if the FR contains a NaTVal (these instructions do not affect the UNAT
register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that
are targets of a speculative instruction and may therefore contain a deferred exception
token. Note also that transfers between the general and floating-point register files
cause a conversion between the two deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the
instructions related to control speculation.

4.4.5 Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions
across control dependencies, data speculative loads and checks allow the compiler to
schedule instructions across some types of ambiguous data dependencies. This section
details the usage model and semantics of data speculation and related instructions.

Table 4-14. State Related to Control Speculation

Register Description

NaT bits 65th bit associated with each GR indicating a deferred exception

NaTVal Pseudo-Zero encoding for FR indicating a deferred exception

UNAT User NaT collection application register

Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation

ld.s, ldf.s, ldfp.s GR and FR speculative loads

ld8.fill, ldf.fill Fill GR with NaT collection, fill FR

st8.spill, stf.spill Spill GR with NaT collection, spill FR

chk.s Test GR or FR for deferred exception token

tnat Test GR NaT bit and set predicate

1:64 Volume 1, Part 1: Application Programming Model

4.4.5.1 Data Speculation Concepts

An ambiguous memory dependency is said to exist between a store (or any operation
that may update memory state) and a load when it cannot be statically determined
whether the load and store might access overlapping regions of memory. For
convenience, a store that cannot be statically disambiguated relative to a particular
load is said to be ambiguous relative to that load. In such cases, the compiler cannot
change the order in which the load and store instructions were originally specified in the
program. To overcome this scheduling limitation, a special kind of load instruction
called an advanced load can be scheduled to execute earlier than one or more stores
that are ambiguous relative to that load.

As with control speculation, the compiler can also speculate operations that are
dependent upon the advanced load and later insert a check instruction that will
determine whether the speculation was successful or not. For data speculation, the
check can be placed anywhere the original non-data speculative load could have been
scheduled.

Thus, a data-speculative sequence of instructions consists of an advanced load, zero or
more instructions dependent on the value of that load, and a check instruction. This
means that any sequence of stores followed by a load can be transformed into an
advanced load followed by a sequence of stores followed by a check. The decision to
perform such a transformation is highly dependent upon the likelihood and cost of
recovering from an unsuccessful data speculation.

4.4.5.2 Data Speculation and Instructions

Advanced loads are available in integer (ld.a), floating-point (ldf.a), and
floating-point pair (ldfp.a) forms. When an advanced load is executed, it allocates an
entry in a structure called the Advanced Load Address Table (ALAT). Later, when a
corresponding check instruction is executed, the presence of an entry indicates that the
data speculation succeeded; otherwise, the speculation failed and one of two kinds of
compiler-generated recovery is performed:

1. The check load instruction (ld.c, ldf.c, or ldfp.c) is used for recovery when
the only instruction scheduled before a store that is ambiguous relative to the
advanced load is the advanced load itself. The check load searches the ALAT for a
matching entry. If found, the speculation was successful; if a matching entry was
not found, the speculation was unsuccessful and the check load reloads the
correct value from memory. Figure 4-2 shows this transformation.

2. The advanced load check (chk.a) is used when an advanced load and several
instructions that depend on the loaded value are scheduled before a store that is
ambiguous relative to the advanced load. The advanced load check works like the

Figure 4-2. Data Speculation Recovery Using ld.c

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];; // Advanced load
// Other instructions
st8 [r4] = r12
ld8.c.clr r6 = [r8] // Check load
add r5 = r6, r7;;
st8 [r18] = r5

Volume 1, Part 1: Application Programming Model 1:65

speculation check (chk.s) in that, if the speculation was successful, execution
continues inline and no recovery is necessary; if speculation was unsuccessful,
the chk.a branches to compiler-generated recovery code. The recovery code
contains instructions that will re-execute all the work that was dependent on the
failed data speculative load up to the point of the check instruction. As with the
check load, the success of a data speculation using an advanced load check is
determined by searching the ALAT for a matching entry. This transformation is
shown in Figure 4-3.

Recovery code may use either a normal or advanced load to obtain the correct value for
the failed advanced load. An advanced load is used only when it is advantageous to
have an ALAT entry reallocated after a failed speculation. The last instruction in the
recovery code should branch to the instruction following the chk.a.

4.4.5.3 Detailed Functionality of the ALAT and Related Instructions

The ALAT is the structure that holds the state necessary for advanced loads and checks
to operate correctly. The ALAT is searched in two different ways: by physical addresses
and by ALAT register tags. An ALAT register tag is a unique number derived from the
physical target register number and type in conjunction with other
implementation-specific state. Implementation-specific state might include register
stack wraparound information to distinguish one instance of a physical register that
may have been spilled by the RSE from the current instance of that register, thus
avoiding the need to purge the ALAT on all register stack wraparounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can
not rely on ALAT values being preserved across an instruction set transition. On entry to
IA-32 instruction set, existing entries in the ALAT are ignored.

4.4.5.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For ldfp.a, a tag is
computed only for the first target register.)

2. If an entry with a matching ALAT register tag exists, it is removed.

Figure 4-3. Data Speculation Recovery Using chk.a

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];;
// Other instructions
add r5 = r6, r7;;
// Other instructions
st8 [r4] = r12
chk.a.clr r6, recover

back:
st8 [r18] = r5

// Somewhere else in program
recover:
ld8 r6 = [r8];;
add r5 = r6, r7
br back

1:66 Volume 1, Part 1: Application Programming Model

3. A new entry is allocated in the ALAT which contains the new ALAT register tag,
the load access size, and a tag derived from the physical memory address. The
insertion of the new ALAT entry must occur no later in visibility order than the
load of the data.

4. The value at the address specified in the advanced load is loaded into the target
register and, if specified, the base register is updated and an implicit prefetch is
performed.

Since the success of a check is determined by finding a matching register tag in the
ALAT, both the chk.a and the target register of a ld.c must specify the same register
as their corresponding advanced load. Additionally, the check load must use the same
address and operand size as the corresponding advanced load; otherwise, the value
written into the target register by the check load is undefined.

An advanced load check performs the following actions:

1. It looks for a matching ALAT entry and if found, falls through to the next
instruction.

2. If no matching entry is found, the chk.a branches to the specified address.

An implementation may choose to implement a failing advanced load check directly as a
branch or as a fault where the fault-handler emulates the branch. Although the
expected mode of operation is for an implementation to detect matching entries in the
ALAT during checks, an implementation may fail a check instruction even when an entry
with a matching ALAT register tag exists. This will be a rare occurrence but software
must not assume that the ALAT does not contain the entry.

A check load checks for a matching entry in the ALAT. If no matching entry is found, it
reloads the value from memory and any faults that occur during the memory reference
are raised. When a matching entry is found, there is flexibility in the actions that a
processor can perform:

1. The implementation may choose to either leave the target register unchanged or
to reload the value from memory.

2. If the implementation chooses to leave the target register unchanged and one or
more exception conditions related to the data access or translation of the check
load occurs, the implementation may choose to either raise the highest-priority of
these faults or ignore them all and continue execution. The faults that can be
ignored are those related to data access and translation (Data Nested TLB fault,
Alternate Data TLB fault, VHPT Data fault, Data TLB fault, Data Page Not Present
fault, Data NaT Page Consumption fault, Data Key Miss fault, Data Key Permission
fault, Data Access Rights fault, Data Dirty Bit fault, Data Access Bit fault, Data
Debug fault, Unaligned Data Reference fault, Unsupported Data Reference fault).
See Table 5-6, “Interruption Priorities” on page 2:109.

3. If the implementation chooses to perform a reload, then any faults that occur
because of the reload can not be ignored.

4. If the size, type, or address fields in the matching ALAT entry do not match that
provided by a check load, the value returned by the check load is undefined. In
such cases the implementation may choose to raise a fault or when the “no clear”
variant of the check load is issued, an implementation may choose to update the
address, size, or type fields of the matching ALAT entry or to leave the entry
unchanged. The update of the ALAT entry must occur no later in visibility order

Volume 1, Part 1: Application Programming Model 1:67

than the load of the data.

If the check load was an ordered check load (ld.c.clr.acq), then it is performed with
the semantics of an ordered load (ld.acq). ALAT register tag lookups by advanced load
checks and check loads are subject to memory ordering constraints as outlined in
“Memory Access Ordering” on page 1:73.

In addition to the flexibility described above, the size, organization, matching
algorithm, and replacement algorithm of the ALAT are implementation dependent.
Thus, the success or failure of specific advanced loads and checks in a program may
change: when the program is run on different processor implementations, within the
execution of a single program on the same implementation, or between different runs
on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur
implicitly by events that alter memory state or explicitly by any of the following
instructions: ld.c.clr, ld.c.clr.acq, chk.a.clr, invala, invala.e. Events that may
implicitly invalidate ALAT entries include those that change memory state or memory
translation state such as:

1. The execution of stores, semaphores, or ptc.ga on other processors in the
coherence domain.

2. The execution of store or semaphore instructions issued on the local processor.

3. Platform-visible removal of a cache line from the processor’s caches.

When one of these events occurs, hardware checks each memory region represented
by an entry in the ALAT to see if it overlaps with the locations affected by the
invalidation event. ALAT entries whose memory regions overlap with the invalidation
event locations are removed. The invalidation of ALAT entries due to the execution of
stores, semaphores or ptc.ga instructions must occur no later in visibility order than the
store of the data or the TLB purge. Note that some invalidation events may require that
multiple entries be removed from the ALAT. For example, the ptc.ga instruction is page
aligned, thus a ptc.ga from another processor would require that hardware invalidate
all ALAT entries related to that page. Stores due to RSE spills are not checked for ALAT
invalidation and do not cause ALAT entries to be removed. See Section 6.9, “RSE and
ALAT Interaction” on page 2:146. When an external agent can observe that the
processor has removed a physical address range from its caches, then that address
range is guaranteed to be invalidated from that processor’s ALAT as well.

An implementation may invalidate entries over areas larger than explicitly required by a
specific invalidation event, and more generally, to invalidate any ALAT entry at any
time. For example, a st1 only accesses one byte, but an implementation could choose
to invalidate all ALAT entries whose memory region is in the same cache line. An
implementation may also provide an ALAT with zero entries (i.e., all ld.c/chk.a
instructions would act as if an ALAT miss had occurred).

Software is responsible for explicitly invalidating all affected ALAT entries whenever:

1. Software explicitly changes the virtual to physical register mapping on rotating
registers that have been the target of advanced loads (clrrrb).

2. Software changes the virtual to physical memory mapping.

1:68 Volume 1, Part 1: Application Programming Model

3. Software accesses the RSE backing store with advanced loads. See Section 6.9,
“RSE and ALAT Interaction” on page 2:146 (since RSE stores do not invalidate
ALAT entries).

4. Software explicitly changes the virtual to physical register mapping on stacked
registers by switching the RSE backing stores. See Section 6.11.3, “Synchronous
Backing Store Switch” on page 2:148.

4.4.5.4 Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may
be both control and data speculative. Both control speculative (ld.sa, ldf.sa,
ldfp.sa) and non-control speculative (ld.a, ldf.a, ldfp.a) variants of advanced
loads are defined for general and floating-point registers. If a speculative advanced
load generates a deferred exception token then:

1. Any existing ALAT entry with the same ALAT register tag is invalidated.

2. No new ALAT entry is allocated.

3. If the target of the load was a general-purpose register, its NaT bit is set.

4. If the target of the load was a floating-point register, then NaTVal is written to the
target register.

If a speculative advanced load does not generate a deferred exception, then its
behavior is the same as the corresponding non-control speculative advanced load.

Since there can be no matching entry in the ALAT after a deferred fault, a single
advanced load check or check load is sufficient to check both for data speculation
failures and to detect deferred exceptions.

4.4.5.5 Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two
variants of advanced load checks and check loads are provided: variants with clear
(chk.a.clr, ld.c.clr, ld.c.clr.acq, ldf.c.clr, ldfp.c.clr) and variants with no
clear (chk.a.nc, ld.c.nc, ldf.c.nc, ldfp.c.nc).

The clear variants are used when the compiler knows that the ALAT entry will not be
used again and wants the entry explicitly removed. This allows software to indicate
when entries are unneeded, making it less likely that a useful entry will be
unnecessarily forced out because all entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is
invalidated independently of whether the address or size fields of the check load and
the corresponding advanced load match. For chk.a.clr, the entry is guaranteed to be
invalidated only when the instruction falls through (the recovery code is not executed).
Thus, a failing chk.a.clr may or may not clear any matching ALAT entries. In such
cases, the recovery code must explicitly invalidate the entry in question if program
correctness depends on the entry being absent after a failed chk.a.clr.

Non-clear variants of both kinds of data speculation checks act as a hint to the
processor that an existing entry should be maintained in the ALAT or that a new entry
should be allocated when a matching ALAT entry doesn’t exist. Such variants can be
used within loops to check advanced loads which were presumed loop-invariant and

Volume 1, Part 1: Application Programming Model 1:69

moved out of the loop by the compiler. This behavior ensures that if the check load fails
on one iteration, then the check load will not necessarily fail on all subsequent
iterations. Whenever a new entry is inserted into the ALAT or when the contents of an
entry are updated, the information written into the ALAT only uses information from the
check load and does not use any residual information from a prior entry. The non-clear
variant of chk.a, chk.a.nc, does not allocate entries and the ‘nc’ completer acts as a
hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data
speculation.

4.4.6 Memory Hierarchy Control and Consistency

4.4.6.1 Hierarchy Control and Hints

Memory access instructions are defined to specify whether the data being accessed
possesses temporal locality. In addition, memory access instructions can specify which
levels of the memory hierarchy are affected by the access. This leads to an architectural
view of the memory hierarchy depicted in Figure 4-1 composed of zero or more levels
of cache between the register files and memory where each level may consist of two
parallel structures: a temporal structure and a non-temporal structure. Note that this
view applies to data accesses and not instruction accesses.

Table 4-16. State Relating to Data Speculation

Structure Function

ALAT Advanced load address table

Table 4-17. Instructions Relating to Data Speculation

Mnemonic Operation

ld.a, ldf.a, ldfp.a GR and FR advanced load

st, st.rel, st.spill, stf, stf.spill GR and FR store

cmpxchg, fetchadd, xchg GR semaphore

ld.c.clr, ld.c.clr.acq, ldf.c.clr,
ldfp.c.clr

GR and FR check load, clear on ALAT hit

ld.c.nc, ldf.c.nc, ldfp.c.nc GR and FR check load, re-allocate on ALAT miss

ld.sa, ldf.sa, ldfp.sa GR and FR speculative advanced load

chk.a.clr, chk.a.nc GR and FR advanced load check

invala Invalidate all ALAT entries

invala.e Invalidate individual ALAT entry for GR or FR

1:70 Volume 1, Part 1: Application Programming Model

The temporal structures cache memory accessed with temporal locality; the
non-temporal structures cache memory accessed without temporal locality. Both
structures assume that memory accesses possess spatial locality. The existence of
separate temporal and non-temporal structures, as well as the number of levels of
cache, is implementation dependent. Please see the processor-specific documentation
for further information.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch;
and implicit prefetch. Locality hints are specified by load, store, and explicit prefetch
(lfetch) instructions. A locality hint specifies a hierarchy level (e.g., 1, 2, all). An
access that is temporal with respect to a given hierarchy level is treated as temporal
with respect to all lower (higher numbered) levels. An access that is non-temporal with
respect to a given hierarchy level is treated as temporal with respect to all lower levels.
Finding a cache line closer in the hierarchy than specified in the hint does not demote
the line. This enables the precise management of lines using lfetch and then
subsequent uses by.nta loads and stores to retain that level in the hierarchy. For
example, specifying the.nt2 hint by a prefetch indicates that the data should be cached
at level 3. Subsequent loads and stores can specify.nta and have the data remain at
level 3.

Locality hints do not affect the functional behavior of the program and may be ignored
by the implementation. The locality hints available to loads, stores, and explicit prefetch
instructions are given in Table 4-18. Instruction accesses are considered to possess
both temporal and spatial locality with respect to level 1.

Figure 4-1. Memory Hierarchy

Table 4-18. Locality Hints Specified by Each Instruction Class

Mnemonic Locality Hint

Instruction Type

Load Store
lfetch,

lfetch.fault

none Temporal, level 1 x x x

nt1 Non-temporal, level 1 x x

nt2 Non-temporal, level 2 x

nta Non-temporal, all levels x x x

Structure
Temporal

Non-
temporal
Structure

Memory
Register

Files

Structure
Temporal

Non-
temporal
Structure

Structure
Temporal

Non-
temporal
Structure

Level 1 Level 2 Level N

Cache

Volume 1, Part 1: Application Programming Model 1:71

Each locality hint implies a particular allocation path in the memory hierarchy. The
allocation paths corresponding to the locality hints are depicted in Figure 4-2. The
allocation path specifies the structures in which the line containing the data being
referenced would best be allocated. If the line is already at the same or higher level in
the hierarchy no movement occurs. Hinting that a datum should be cached in a
temporal structure indicates that it is likely to be read in the near future. Hinting that a
datum should not be cached in a temporal structure indicates that it is not likely to be
read in the near future. For stores, the .nta completer also hints that the store may be
part of a set of streaming stores that would likely overwrite the entire cache line
without any data in that line first being read, enabling the processor to avoid fetching
the data.

Explicit prefetch is defined in the form of the line prefetch instruction (lfetch,
lfetch.fault). The lfetch instructions moves the line containing the addressed byte to
a location in the memory hierarchy specified by the locality hint. If the line is already at
the same or higher level in the hierarchy, no movement occurs. Both immediate and
register post-increment are defined for lfetch and lfetch.fault. The lfetch
instruction does not cause any exceptions, does not affect program behavior, and may
be ignored by the implementation. The lfetch.fault instruction affects the memory
hierarchy in exactly the same way as lfetch but takes exceptions as if it were a 1-byte
load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, lfetch and
lfetch.fault. The line containing the post-incremented address is moved in the
memory hierarchy based on the locality hint of the originating load, store, lfetch or
lfetch.fault. If the line is already at the same or higher level in the hierarchy then no
movement occurs. Implicit prefetch does not cause any exceptions, does not affect
program behavior, and may be ignored by the implementation.

Another form of hint that can be provided on loads is the ld.bias load type. This is a
hint to the implementation to acquire exclusive ownership of the line containing the
addressed data. The bias hint does not affect program functionality and may be ignored
by the implementation.

Figure 4-2. Allocation Paths Supported in the Memory Hierarchy

Level 1 Level 2

Temporal

Non-temporal

Temporal

Structure Structure

Non-temporal

Memory

Temporal, level 1

Non-temporal, level 1

Non-temporal, all levels

Level 3

Non-temporal

Temporal

Structure

Non-temporal, level 2

Cache

Structure Structure Structure

1:72 Volume 1, Part 1: Application Programming Model

The following instructions are defined for flush control: flush cache (fc, fc.i) and flush
write buffers (fwb). The fc instruction invalidates the cache line in all levels of the
memory hierarchy above memory. If the cache line is not consistent with memory, then
it is copied into memory before invalidation. The fc.i instruction ensures the data
cache line associated with an address is coherent with the instruction caches. The fc.i
instruction is not required to invalidate the targeted cache line nor write the targeted
cache line back to memory if it is inconsistent with memory, but may do so if this is
required to make the targeted cache line coherent with the instruction caches. The fwb
instruction provides a hint to flush all pending buffered writes to memory (no indication
of completion occurs).

Table 4-19 summarizes the memory hierarchy control instructions and hint
mechanisms.

4.4.6.2 Memory Consistency

In the Itanium architecture, instruction accesses made by a processor are not coherent
with respect to instruction and/or data accesses made by any other processor, nor are
instruction accesses made by a processor coherent with respect to data accesses made
by that same processor. Therefore, hardware is not required to keep a processor’s
instruction caches consistent with respect to any processor’s data caches, including that
processor’s own data caches; nor is hardware required to keep a processor’s instruction
caches consistent with respect to any other processor’s instruction caches. Data
accesses from different processors in the same coherence domain are coherent with
respect to each other; this consistency is provided by the hardware. Data accesses
from the same processor are subject to data dependency rules; see “Memory Access
Ordering” below.

The mechanism(s) by which coherence is maintained is implementation dependent.
Separate or unified structures for caching data and instructions are not architecturally
visible. Within this context there are two categories of data memory hierarchy control:
allocation and flush. Allocation refers to movement towards the processor in the
hierarchy (lower numbered levels) and flush refers to movement away from the
processor in the hierarchy (higher numbered levels). Allocation and flush occur in
line-sized units; the minimum architecturally visible line size is 32 bytes (aligned on a
32-byte boundary). The line size in an implementation may be smaller in which case
the implementation will need to move multiple lines for each allocation and flush event.
An implementation may allocate and flush in units larger than 32 bytes.

In order to guarantee that a write from a given processor becomes visible to the
instruction stream of that same, and other, processors, the affected line(s) must be
made coherent with instruction caches. Software may use the fc.i instruction for this

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

Mnemonic Operation

.nt1 and.nta completer on loads Load usage hints

.nta completer on stores Store usage hints

Prefetch line at post-increment address on loads and stores Prefetch hint

lfetch, lfetch.fault with.nt1,.nt2, and.nta hints Prefetch line

fc, fc.i Flush cache

fwb Flush write buffers

Volume 1, Part 1: Application Programming Model 1:73

purpose. Memory updates by DMA devices are coherent with respect to instruction and
data accesses of processors. The consistency between instruction and data caches of
processors with respect to memory updates by DMA devices is provided by the
hardware. In case a program modifies its own instructions, the sync.i and srlz.i
instructions are used to ensure that prior coherency actions are observed by a given
point in the program. Refer to the description sync.i on page 3:259 in Volume 3:
Intel® Itanium® Instruction Set Reference for an example of self-modifying code.

4.4.7 Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write
(WAW), and write-after-read (WAR) data dependencies to the same memory location.
In addition, memory writes and flushes must observe control dependencies. Except for
these restrictions, reads, writes, and flushes may occur in an order different from the
specified program order. Note that no ordering exists between instruction accesses and
data accesses or between any two instruction accesses. The mechanisms described
below are defined to enforce a particular memory access order. In the following
discussion, the terms “previous” and “subsequent” are used to refer to the program
specified order. The term “visible” is used to refer to all architecturally visible effects of
performing a memory access (at a minimum this involves reading or writing memory).

Memory accesses follow one of four memory ordering semantics: unordered, release,
acquire or fence. Unordered data accesses may become visible in any order. Release
data accesses guarantee that all previous data accesses are made visible prior to being
made visible themselves. Acquire data accesses guarantee that they are made visible
prior to all subsequent data accesses. Fence operations combine the release and
acquire semantics into a bi-directional fence, i.e., they guarantee that all previous data
accesses are made visible prior to any subsequent data accesses being made visible.

Explicit memory ordering takes the form of a set of instructions: ordered load and
ordered check load (ld.acq, ld.c.clr.acq), ordered store (st.rel), semaphores
(cmpxchg, xchg, fetchadd), and memory fence (mf). The ld.acq and ld.c.clr.acq
instructions follow acquire semantics. The st.rel follows release semantics. The mf
instruction is a fence operation. The xchg, fetchadd.acq, and cmpxchg.acq
instructions have acquire semantics. The cmpxchg.rel, and fetchadd.rel instructions
have release semantics. The semaphore instructions also have implicit ordering. If
there is a write, it will always follow the read. In addition, the read and write will be
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different
ordering semantics. “O” indicates that the first and second reference are performed in
order with respect to each other. A “-” indicates that no ordering is implied other than
data dependencies (and control dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

First Reference
Second Reference

Fence Acquire Release Unordered

 fence O O O O

acquire O O O O

release O – O –

unordered O – O –

1:74 Volume 1, Part 1: Application Programming Model

Table 4-21 summarizes memory ordering instructions related to cacheable memory. For
definitions of the ordering rules related to non-cacheable memory, cache
synchronization, and privileged instructions, refer to Section 4.4.7, “Sequentiality
Attribute and Ordering” on page 2:82.

4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets
are bundle-aligned, which means control is always passed to the first instruction slot of
the target bundle (slot 0). Branch instructions are not required to be the last instruction
in an instruction group. In fact, an instruction group can contain arbitrarily many
branches (provided that the normal RAW and WAW dependency requirements are met).
If a branch is taken, only instructions up to the taken branch will be executed. After a
taken branch, the next instruction executed will be at the target of the branch.

There are three categories of branches: IP-relative branches, long branches, and
indirect branches. IP-relative branches specify their target with a signed 21-bit
displacement, which is added to the IP of the bundle containing the branch to give the
address of the target bundle. The displacement allows a branch reach of 16MBytes.
Long branches are IP-relative with a 60-bit displacement, allowing the target to be
anywhere in the 64-bit address space. Because of the long immediate, long branches
occupy two instruction slots. Indirect branches use the branch registers to specify the
target address.

There are several branch types, as shown in Table 4-22. The conditional branch
br.cond or br is a branch which is taken if the specified predicate is 1, and not-taken
otherwise. The conditional call branch br.call does the same thing, and in addition,
writes a link address to a specified branch register and adjusts the general register
stack (see “Register Stack” on page 1:47). The conditional return br.ret does the
same thing as an indirect conditional branch, plus it adjusts the general register stack.
Unconditional branches, calls and returns are executed by specifying PR 0 (which is
always 1) as the predicate for the branch instruction. The long branches, brl.cond or
brl, and brl.call are identical to br.cond or br, and br.call, respectively, except for
their longer displacement.

Table 4-21. Memory Ordering Instructions

Mnemonic Operation

ld.acq, ld.c.clr.acq Ordered load and ordered check load

st.rel Ordered store

xchg Exchange memory and general register

cmpxchg.acq, cmpxchg.rel Conditional exchange of memory and general register

fetchadd.acq,fetchadd.rel Add immediate to memory

mf Memory ordering fence

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address

br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect

br.call Conditional procedure call Qualifying predicate IP-rel or Indirect

br.ret Conditional procedure return Qualifying predicate Indirect

Volume 1, Part 1: Application Programming Model 1:75

The counted loop type (br.cloop) uses the Loop Count (LC) application register. If LC is
non-zero then it is decremented and the branch is taken. If LC is zero, the branch falls
through. The modulo-scheduled loop type branches (br.ctop, br.cexit, br.wtop,
br.wexit) are described in “Modulo-scheduled Loop Support” on page 1:75. The loop
type branches (br.cloop, br.ctop, br.cexit, br.wtop, br.wexit) are allowed only in
slot 2 of a bundle. A loop type branch executed in slot 0 or 1 will cause an Illegal
Operation fault.

Instructions are provided to move data between branch registers and general registers
(mov =br, mov br=). Table 4-23 and Table 4-24 summarize state and instructions
relating to branching.

4.5.1 Modulo-scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop
branch types. Software pipelining of a loop is analogous to hardware pipelining of a
functional unit. The loop body is partitioned into multiple “stages” with zero or more
instructions in each stage. Modulo-scheduled loops have three phases: prolog, kernel,
and epilog. During the prolog phase, new loop iterations are started each time around
(filling the software pipeline). During the kernel phase, the pipeline is full. A new loop

br.ia Invoke the IA-32 instruction set Unconditional Indirect

br.cloop Counted loop branch Loop count IP-rel

br.ctop, br.cexit Modulo-scheduled counted loop Loop count and Epilog
count

IP-rel

br.wtop, br.wexit Modulo-scheduled while loop Qualifying predicate
and Epilog count

IP-rel

brl.cond or brl Long conditional branch Qualifying predicate IP-rel

brl.call Long conditional procedure call Qualifying predicate IP-rel

Table 4-23. State Relating to Branching

Register Function

BRs Branch registers

PRs Predicate registers

CFM Current Frame Marker

PFS Previous Function State application register

LC Loop Count application register

EC Epilog Count application register

Table 4-24. Instructions Relating to Branching

Mnemonic Operation

br Branch

brl Long branch

brp Provide early hint information about a future branch

mov =br Move from BR to GR

mov br= Move from GR to BR

Table 4-22. Branch Types (Continued)

Mnemonic Function Branch Condition Target Address

1:76 Volume 1, Part 1: Application Programming Model

iteration is started, and another is finished each time around. During the epilog phase,
no new iterations are started, but previous iterations are completed (draining the
software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that
stage (this predicate is called the “stage predicate”). To support the pipelining effect of
stage predicates and registers in a software-pipelined loop, a fixed sized area of the
predicate and floating-point register files (PR16-PR63 and FR32-FR127), and a
programmable sized area of the general register file, are defined to “rotate.” The size of
the rotating area in the general register file is determined by an immediate in the alloc
instruction. This immediate must be either zero or a multiple of 8. The general register
rotating area is defined to start at GR32 and overlay the local and output areas,
depending on their relative sizes. The stage predicates are allocated in the rotating area
of the predicate register file. For counted loops, PR16 is architecturally defined to be the
first stage predicate with subsequent stage predicates extending to higher predicate
register numbers. For while loops, the first stage predicate may be any rotating
predicate with subsequent stage predicates extending to higher predicate register
numbers. Software is required to initialize the stage (rotating) predicates prior to
entering the loop. An alloc instruction may not change the size of the rotating portion of
the register stack frame unless all rotating register bases (rrb’s) in the CFM are zero. All
rrb’s can be set to zero with the clrrrb instruction. The clrrrb.pr form can be used to
clear just the rrb for the predicate registers. The clrrrb instruction must be the last
instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is
executed. Registers are rotated towards larger register numbers in a wraparound
fashion. For example, the value in register X will be located in register X+1 after one
rotation. If X is the highest addressed rotating register its value will wrap to the lowest
addressed rotating register. Rotation is implemented by renaming register numbers
based on the value of a rotating register base (rrb) contained in CFM. An independent
rrb is defined for each of the three rotating register files: CFM.rrb.gr for the general
registers, CFM.rrb.fr for the floating-point registers, and CFM.rrb.pr for the predicate
registers. General registers only rotate when the size of the rotating region is not equal
to zero. Floating-point and predicate registers always rotate. When rotation occurs, two
or all three rrb’s are decremented in unison. Each rrb is decremented modulo the size of
their respective rotating regions (e.g., 96 for rrb.fr). The operation of the rotating
register rename mechanism is not otherwise visible to software. The instructions that
modify the rrb’s are listed in Table 4-25.

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation

clrrrb Clears all rrb’s

clrrrb.pr Clears rrb.pr

br.call, brl.call Clears all rrb’s

cover Clears all rrb’s

br.ret Restores CFM.rrb’s from PFM.rrb’s

rfi Restores CFM.rrb’s from IFM.rrb’s if IFM.v==1

br.ctop, br.cexit,
br.wtop, and br.wexit

Decrements all rrb’s

Volume 1, Part 1: Application Programming Model 1:77

There are two categories of software-pipelined loop branch types: counted and while.
Both categories have two forms: top and exit. The “top” variant is used when the loop
decision is located at the bottom of the loop body. A taken branch will continue the loop
while a not-taken branch will exit the loop. The “exit” variant is used when the loop
decision is located somewhere other than the bottom of the loop. A not-taken branch
will continue the loop and a taken branch will exit the loop. The “exit” variant is also
used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted
loop type (ctop or cexit), the value of the loop count application register (LC), and the
value of the epilog count application register (EC). Note that the counted loop branches
do not use a qualifying predicate. LC is initialized to one less than the number of
iterations for the counted loop and EC is initialized to the number of stages into which
the loop body has been partitioned. While LC is greater than zero, the branch direction
will continue the loop, LC will be decremented, registers will be rotated (rrb’s are
decremented), and PR 16 will be set to 1 after rotation. (For each of the loop-type
branches, PR 63 is written by the branch, and after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog.
While in the epilog and while EC is greater than one, the branch direction will continue
the loop, EC will be decremented, registers will be rotated, and PR 16 will be set to 0
after rotation. Execution of a counted loop branch with LC equal to zero and EC equal to
one signals the end of the loop; the branch direction will exit the loop, EC will be
decremented, registers will be rotated, and PR 16 will be set to 0 after rotation. A
counted loop type branch executed with both LC and EC equal to zero will have a
branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no rotation)
and PR 63 will be set to 0. LC and EC equal to zero can occur in some types of
optimized, unrolled software-pipelined loops if the target of a cexit branch is set to the
next sequential bundle and the loop trip count is not evenly divisible by the unroll
amount.

The direction of a while loop branch is determined by the specific while loop type (wtop
or wexit), the value of the qualifying predicate, and the value of EC. The while loop
branches do not use LC. While the qualifying predicate is one, the branch direction will
continue the loop, registers will be rotated, and PR 16 will be set to 0 after rotation.
While the qualifying predicate is zero and EC is greater than one, the branch direction
will continue the loop, EC will be decremented, registers will be rotated, and PR 16 will
be set to 0 after rotation. The qualifying predicate is one during the kernel and zero
during the epilog. During the prolog, the qualifying predicate may be zero or one
depending upon the scheme used to program the pipelined while loop. Execution of a
while loop branch with qualifying predicate equal to zero and EC equal to one signals
the end of the loop; the branch direction will exit the loop, EC will be decremented,
registers will be rotated, and PR 16 will be set to 0 after rotation. A while loop branch
executed with a zero qualifying predicate and with EC equal to zero has a branch
direction to exit the loop. EC and the rrb’s will not be modified (no rotation) and PR 63
will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the
pipelined while loop. Often, the first valid condition for the while loop branch is not
computed until several stages into the prolog. Therefore, software pipelines for while
loops often have several speculative prolog stages. During these stages, the qualifying
predicate can be set to zero or one depending upon the scheme used to program the
loop. If the qualifying predicate is one throughout the prolog, EC will be decremented

1:78 Volume 1, Part 1: Application Programming Model

only during the epilog phase and is initialized to one more than the number of epilog
stages. If the qualifying predicate is zero during the speculative stages of the prolog,
EC will be decremented during this part of the prolog, and the initialization value for EC
is increased accordingly.

4.5.2 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch
prediction. This information can be encoded in two ways: with branch hints as part of a
branch instruction (referred to as hints), and with separate Branch Predict instructions
(brp) where the entire instruction is hint information. Hints and brp instructions do not
affect the functional behavior of the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

• Whether prediction strategy: This describes (for COND, CALL and RET type
branches) how the processor should predict the branch condition. (For the loop type
branches, prediction is based on LC and EC.) The suggested strategies that can be
hinted are shown in Table 4-26.

• Sequential prefetch: This indicates how much code the processor should prefetch
at the branch target (shown in Table 4-27). Please see the processor-specific
documentation for further information.

• Predictor deallocation: This provides re-use information to allow the hardware to
better manage branch prediction resources. Normally, prediction resources keep
track of the most-recently executed branches. However, sometimes the
most-recently executed branch is not useful to remember, either because it will not
be re-visited any time soon or because a hint instruction will re-supply the
information prior to re-visiting the branch. In such cases, this hint can be used to
free up the prediction resources.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this
branch.

sptk Static Taken Always predict taken, do not allocate prediction resources for
this branch.

dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict not-taken.

dptk Dynamic Taken Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict taken.

Table 4-27. Sequential Prefetch Hint on Branches

Completer
Sequential Prefetch

Hint
Operation

few Prefetch few lines When prefetching code at the branch target, stop prefetching
after a few (implementation-dependent number of) lines.

many Prefetch many lines When prefetching code at the branch target, prefetch more
lines (also an implementation-dependent number).

Volume 1, Part 1: Application Programming Model 1:79

4.5.3 Branch Predict Instructions

Branch predict instructions are entire instructions whose only purpose is to provide
early information about future branches. Branch predict instructions provide the
following pieces of information:

• Location of the branch: A displacement in the brp instruction added to the IP of
the bundle containing the brp instruction gives the IP of the bundle containing the
future branch.

• Target of the branch: IP-relative brp instructions specify the target of the future
branch with a 21-bit displacement (just like in branches). The displacement plus
the IP of the bundle containing the brp instruction gives the target address.
Indirect brp instructions specify the branch register which will be used by the future
branch.

• Branch importance: This hint indicates to hardware that it should employ a very
fast (but small) prediction structure for this branch (useful on tight loops).

• Whether prediction strategy: Same as the strategy hint on branches, except
that the available hints are slightly different. Static not-taken is not provided (it’s
not useful to provide early indication of such branches), and only one form of
Dynamic prediction is provided. Instead, two strategies are included to indicate that
the branch will be a “positive” (CLOOP, CTOP, WTOP) or “negative” (CEXIT, WEXIT)
loop-type.

The move to branch register instruction can also provide this same hint information,
simplifying the setup for a hinted indirect branch.

4.6 Multimedia Instructions

Multimedia instructions (see Table 4-29) treat the general registers as concatenations
of eight 8-bit, four 16-bit, or two 32-bit elements. They operate on each element
independently and in parallel. The elements are always aligned on their natural
boundaries within a general register. Most multimedia instructions are defined to
operate on multiple element sizes. Three classes of multimedia instructions are defined:
arithmetic, shift and data arrangement.

4.6.1 Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed
saturation (padd.sss, psub.sss), and unsigned saturation (padd.uuu, padd.uus,
psub.uuu, psub.uus). The modulo forms have the result wraparound the largest or
smallest representable value in the range of the result element. In the saturating
forms, results larger than the largest representable value of the range of the result
element, or smaller than the smallest representable value of the range, are clamped to
the largest or smallest value in the range of the result element respectively. The signed

Table 4-28. Predictor Deallocation Hint

Completer Operation

none Don’t deallocate

clr Deallocate branch information

1:80 Volume 1, Part 1: Application Programming Model

saturation form treats both sources as signed and clamps the result to the limits of a
signed range. The unsigned saturation form treats one source as unsigned and clamps
the result to the limits of an unsigned range. Two variants are defined that treat the
second source as either signed (.uus) or unsigned (.uuu).

The parallel average instruction (pavg, pavg.raz) adds corresponding elements from
each source and right shifts each result by one bit. In the simple form of the
instruction, the carry out of the most-significant bit of each sum is written into the most
significant bit of the result element. In the round-away-from-zero form, a 1 is added to
each sum before shifting. The parallel average subtract instruction (pavgsub) performs
a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshladd) performs a left shift on the
elements of the first source and then adds them to the corresponding elements from
the second source. Signed saturation is performed on both the shift and the add
operations. The parallel shift right and add instruction (pshradd) is similar to pshladd.
Both of these instructions are defined for 2-byte elements only.

The parallel compare instruction (pcmp) compares the corresponding elements of both
sources and writes all ones (if true) or all zeroes (if false) into the corresponding
elements of the target according to one of two relations (== or >).

The parallel multiply right instruction (pmpy.r) multiplies the corresponding two
even-numbered signed 2-byte elements of both sources and writes the results into two
4-byte elements in the target. The pmpy.l instruction performs a similar operation on
odd-numbered 2-byte elements. The parallel multiply and shift right instruction
(pmpyshr, pmpyshr.u) multiplies the corresponding 2-byte elements of both sources
producing four 4-byte results. The 4-byte results are shifted right by 0, 7, 15, or 16 bits
as specified by the instruction. The least-significant 2 bytes of the 4-byte shifted results
are then stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute
difference of corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmin.u, pmin) and the parallel maximum (pmax.u, pmax)
instructions deliver the minimum or maximum, respectively, of the corresponding
1-byte or 2-byte elements in the target. The 1-byte elements are treated as unsigned
values and the 2-byte elements are treated as signed values.

Table 4-29. Parallel Arithmetic Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

padd Parallel modulo addition x x x

padd.sss Parallel addition with signed saturation x x

padd.uuu,
padd.uus

Parallel addition with unsigned saturation x x

psub Parallel modulo subtraction x x x

psub.sss Parallel subtraction with signed saturation x x

psub.uuu,
psub.uus

Parallel subtraction with unsigned saturation x x

pavg Parallel arithmetic average x x

pavg.raz Parallel arithmetic average with round away from zero x x

pavgsub Parallel average of a difference x x

Volume 1, Part 1: Application Programming Model 1:81

4.6.2 Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first
source by a count contained in either a general register or an immediate. The parallel
shift right instruction (pshr) performs an individual arithmetic right shift of each
element of one source by a count contained in either a general register or an
immediate. The pshr.u instruction performs an unsigned right shift. Table 4-30
summarizes the types of parallel shift instructions.

4.6.3 Data Arrangement

The mix right instruction (mix.r) interleaves the even-numbered elements from both
sources into the target. The mix left instruction (mix.l) interleaves the odd-numbered
elements. The unpack low instruction (unpack.l) interleaves the elements in the
least-significant 4 bytes of each source into the target register. The unpack high
instruction (unpack.h) interleaves elements from the most significant 4 bytes. The pack
instructions (pack.sss, pack.uss) convert from 32-bit or 16-bit elements to 16-bit or
8-bit elements respectively. The least-significant half of larger elements in both sources
are extracted and written into smaller elements in the target register. The pack.sss
instruction treats the extracted elements as signed values and performs signed
saturation on them. The pack.uss instruction performs unsigned saturation. The mux
instruction (mux) copies individual 2-byte or 1-byte elements in the source to arbitrary
positions in the target according to a specified function. For 2-byte elements, an 8-bit
immediate allows all possible permutations to be specified. For 1-byte elements the
copy function is selected from one of five possibilities (reverse, mix, shuffle, alternate,
broadcast). Table 4-31 describes the various types of parallel data arrangement
instructions.

pshladd Parallel shift left and add with signed saturation x

pshradd Parallel shift right and add with signed saturation x

pcmp Parallel compare x x x

pmpy.l Parallel signed multiply of odd elements x

pmpy.r Parallel signed multiply of even elements x

pmpyshr Parallel signed multiply and shift right x

pmpyshr.u Parallel unsigned multiply and shift right x

psad Parallel sum of absolute difference x

pmin Parallel minimum x x

pmax Parallel maximum x x

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

pshl Parallel shift left x x

pshr Parallel signed shift right x x

pshr.u Parallel unsigned shift right x x

Table 4-29. Parallel Arithmetic Instructions (Continued)

Mnemonic Operation 1-byte 2-byte 4-byte

1:82 Volume 1, Part 1: Application Programming Model

4.7 Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register
file and the floating-point, branch, predicate, performance monitor, processor
identification, and application register files. Several of the transfer instructions share
the same mnemonic (mov). The value of the operand identifies which register file is
accessed.

Memory access instructions only target or source the general and floating-point register
files. It is necessary to use the general register file as an intermediary for transfers
between memory and all other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point
registers. The first type moves the significand or the sign/exponent (getf.sig,
setf.sig, getf.exp, setf.exp). The second type moves entire single or double
precision numbers (getf.s, setf.s, getf.d, setf.d). These instructions also perform
a conversion between the deferred exception token formats.

Table 4-31. Parallel Data Arrangement Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

mix.l Interleave odd elements from both sources x x x

mix.r Interleave even elements from both sources x x x

mux Arbitrary copy of individual source elements x x

pack.sss Convert from larger to smaller elements with signed saturation x x

pack.uss Convert from larger to smaller elements with unsigned
saturation

x

unpack.l Interleave least-significant elements from both sources x x x

unpack.h Interleave most significant elements from both sources x x x

Table 4-32. Register File Transfer Instructions

Mnemonic Operation

getf.exp, getf.sig Move FR exponent or significand to GR

getf.s, getf.d Move single/double precision memory format from FR to GR

setf.s, setf.d Move single/double precision memory format from GR to FR

setf.exp, setf.sig Move from GR to FR exponent or significand

mov =br Move from BR to GR

mov br= Move from GR to BR

mov =pr Move from predicates to GR

mov pr=, mov pr.rot= Move from GR to predicates

mov ar= Move from GR to AR

mov =ar Move from AR to GR

mov =psr.um Move from user mask to GR

mov psr.um= Move from GR to user mask

sum, rum Set and reset user mask

mov =pmd[...] Move from performance monitor data register to GR

mov =cpuid[...] Move from processor identification register to GR

mov =ip Move from Instruction Pointer

Volume 1, Part 1: Application Programming Model 1:83

Instructions are provided to transfer between the branch registers and the general
registers. The move to branch register instruction can also optionally include branch
hints. See “Branch Prediction Hints” on page 1:78.

Instructions are defined to transfer between the predicate register file and a general
register. These instructions operate in a “broadside” manner whereby multiple predicate
registers are transferred in parallel (predicate register N is transferred to and from bit N
of a general register). The move to predicate instruction (mov pr=) transfers a general
register to multiple predicate registers according to a mask specified by an immediate.
The mask contains one bit for each of the static predicate registers (PR 1 through PR 15
– PR 0 is hardwired to 1) and one bit for all of the rotating predicates (PR 16 through
PR63). A predicate register is written from the corresponding bit in a general register if
the corresponding mask bit is set. If the mask bit is clear then the predicate register is
not modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The
actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate
instruction (mov =pr) transfers the entire predicate register file into a general register
target.

In addition, instructions are defined to move values between the general register file
and the user mask (mov psr.um= and mov =psr.um). The sum and rum instructions set
and reset the user mask. The user mask is the non-privileged subset of the Process
Status Register (PSR).

The mov =pmd[] instruction is defined to move from a performance monitor data (PMD)
register to a general register. If the operating system has not enabled reading of
performance monitor data registers in user level then all zeroes are returned. The mov
=cpuid[] instruction is defined to move from a processor identification register to a
general register.

The mov =ip instruction is provided for copying the current value of the instruction
pointer (IP) into a general register.

4.8 Character and Bit Strings

A small set of special instructions accelerate operations on character and bit-field data.

4.8.1 Character Strings

The compute zero index instructions (czx.l, czx.r) treat the general register source as
either eight 1-byte or four 2-byte elements and write the general register target with
the index of the first zero element found. If there are no zero elements in the source,
the target is written with a constant one higher than the largest possible index (8 for
the 1-byte form, 4 for the 2-byte form). The czx.l instruction scans the source from
left to right with the left-most element having an index of zero. The czx.r instruction
scans from right to left with the right-most element having an index of zero. Table 4-33
summarizes the compute zero index instructions.

1:84 Volume 1, Part 1: Application Programming Model

4.8.2 Bit Strings

The population count instruction (popcnt) writes the number of bits that have a value
of 1 in the source register into the target register. The count leading zeros instruction
(clz) writes the number of leading zero bits in the source register into the target
register; coupled with complement, clz can also perform count leading ones
functionality as well.

4.9 Privilege Level Transfer

Three instructions may cause a privilege level change: break (break), enter privileged
code (epc) and branch return (br.ret). The break instruction is defined to cause a
Break Instruction fault which can be used to transfer privilege levels. The break
instruction contains an immediate which is made available to a dedicated fault handler.
The epc instruction increases the privilege level without causing an interruption or a
control flow transfer. The new privilege level is specified by the TLB entry for the page
containing the epc, if virtual address translation for instruction fetches is enabled. If the
privilege level specified by PFS.ppl (in the Previous Function State application register)
is lower than the current privilege level (as specified by PSR.cpl in the Processor Status
Register) epc raises an Illegal Operation fault. The br.ret instruction is defined to
demote the privilege level if PFS.ppl is lower than PSR.cpl. A br.ret will never increase
privilege level.

§

Table 4-33. String Support Instructions

Mnemonic Operation 1-byte 2-byte

czx.l Locate first zero element, left to right x x

czx.r Locate first zero element, right to left x x

Table 4-34. Bit Support Instructions

Mnemonic Operation

popcnt Count number of ones in source register

clz Count number of leading zeros in source register

Volume 1, Part 1: Floating-point Programming Model 1:85

Floating-point Programming Model 5

The floating-point architecture is fully compliant with the ANSI/IEEE Standard for
Binary Floating-Point Arithmetic (Std. 754-1985). There is full IEEE support for single,
double, and double-extended real formats. The two IEEE methods for controlling
rounding precision are supported. The first method converts results to the
double-extended exponent range. The second method converts results to the
destination precision. Some IEEE extensions such as fused multiply and add, minimum
and maximum operations, and a register format with a larger range than the minimum
double-extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real
types); 64-bit signed integer, 64-bit unsigned integer, and the 82-bit floating-point
register format. A “Parallel FP” format where a pair of IEEE single precision values
occupy a floating-point register’s significand is also supported. A seventh data type,
IEEE-style quad-precision, is supported by software routines. A future architecture
extension may include additional support for the quad-precision real type.

5.1.1 Real Types

The parameters for the supported IEEE real types are summarized in Table 5-1.

5.1.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The
format of data in the floating-point registers is designed to accommodate both of these
types with no loss of information.

Table 5-1. IEEE Real-type Properties

Single Double Double-Extended Quad-Precision

IEEE Real-Type Parameters

Sign + or + or + or + or

Emax +127 +1023 +16383 +16383

Emin 126 1022 16382 16382

Exponent bias +127 +1023 +16383 +16383

Precision (bits) 24 53 64 113

IEEE Memory Formats

Total memory format width (bits) 32 64 80 128

Sign field width (bits) 1 1 1 1

Exponent field width (bits) 8 11 15 15

Significand field width (bits) 23 52 64 112

1:86 Volume 1, Part 1: Floating-point Programming Model

Real numbers reside in 82-bit floating-point registers in a three-field binary format (see
Figure 5-1). The three fields are:

• The 64-bit significand field, b63. b62b61 .. b1b0, contains the number's significant
digits. This field is composed of an explicit integer bit (significand{63}), and 63 bits
of fraction (significand{62:0}).

• The 17-bit exponent field locates the binary point within or beyond the significant
digits (i.e., it determines the number's magnitude). The exponent field is biased by
65535 (0xFFFF). An exponent field of all ones is used to encode the special values
for IEEE signed infinity and NaNs. An exponent field of all zeros and a significand
field of all zeros is used to encode the special values for IEEE signed zeros. An
exponent field of all zeros and a non-zero significand field encodes the
double-extended real denormals and double-extended real pseudo-denormals.

• The 1-bit sign field indicates whether the number is positive (sign=0) or negative
(sign=1).

The value of a finite floating-point number, encoded with non-zero exponent field, can
be calculated using the expression:

The value of a finite floating-point number, encoded with zero exponent field, can be
calculated using the expression:

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit
significand field. In their canonical form, the exponent field is set to 0x1003E (biased
63) and the sign field is set to 0.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed
below in Table 5-2 (shaded encodings are unsupported). The last two table entries
contain the values of the constant floating-point registers, FR 0 and FR 1. The constant
value in FR 1 does not change for the parallel single precision instructions or for the
integer multiply accumulate instruction.

Figure 5-1. Floating-point Register Format

81 80 64 63 0

sign exponent significand (with explicit integer bit)

1 17 64

(-1)(sign) * 2(exponent - 65535) * (significand{63}.significand{62:0}2)

(-1)(sign) * 2(-16382) * (significand{63}.significand{62:0}2)

Table 5-2. Floating-point Register Encodings

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

 NaNs 0/1 0x1FFFF 1.000...01 through 1.111...11

Quiet NaNs 0/1 0x1FFFF 1.100...00 through 1.111...11

Quiet NaN Indefinitea 1 0x1FFFF 1.100...00

Signaling NaNs 0/1 0x1FFFF 1.000...01 through 1.011...11

Infinity 0/1 0x1FFFF 1.000...00

Volume 1, Part 1: Floating-point Programming Model 1:87

Pseudo-NaNs 0/1 0x1FFFF 0.000...01 through 0.111...11

Pseudo-Infinity 0/1 0x1FFFF 0.000...00

Normalized Numbers
(Floating-point Register Format Normals)

0/1 0x00001
through
0x1FFFE

1.000...00 through 1.111...11

Integers or Parallel FP
(large unsigned or negative signed integers)

0 0x1003E 1.000...00 through 1.111...11

Integer Indefiniteb 0 0x1003E 1.000...00

IEEE Single Real Normals 0/1 0x0FF81
through
0x1007E

1.000...00...(40)0s
through
1.111...11...(40)0s

IEEE Double Real Normals 0/1 0x0FC01
through
0x103FE

1.000...00...(11)0s
through
1.111...11...(11)0s

IEEE Double-Extended Real Normals 0/1 0x0C001
through
0x13FFE

1.000...00 through 1.111...11

Normal numbers with the same value as
Double-Extended Real
Pseudo-Denormals

0/1 0x0C001 1.000...00 through 1.111...11

IA-32 Stack Single Real Normals
(produced when the computation model
is IA-32 Stack Single)

0/1 0x0C001
through
0x13FFE

1.000...00...(40)0s
through
1.111...11...(40)0s

IA-32 Stack Double Real Normals
(produced when the computation model
is IA-32 Stack Double)

0/1 0x0C001
through
0x13FFE

1.000...00...(11)0s
through
1.111...11...(11)0s

Unnormalized Numbers
(Floating-point Register Format unnormalized
numbers)

0/1 0x00000 0.000...01 through 1.111...11

0x00001
through
0x1FFFE

0.000...01 through 0.111...11

0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

Integers or Parallel FP
(positive signed/unsigned integers)

0 0x1003E 0.000...00 through 0.111...11

IEEE Single Real Denormals 0/1 0x0FF81 0.000...01...(40)0s
through
0.111...11...(40)0s

IEEE Double Real Denormals 0/1 0x0FC01 0.000...01...(11)0s
through
0.111...11...(11)0s

Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11

Unnormal numbers with the same value as
IEEE Double-Extended Real Denormals

0/1 0x0C001 0.000...01 through 0.111...11

IEEE Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11

IA-32 Stack Single Real Denormals
(produced when computation model is
IA-32 Stack Single)

0/1 0x00000 0.000...01...(40)0s
through
0.111...11...(40)0s

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

1:88 Volume 1, Part 1: Floating-point Programming Model

All register encodings are allowed as inputs to arithmetic operations. The result of an
arithmetic operation is always the most normalized register format representation of
the computed value, with the exponent range limited from Emin to Emax of the
destination type, and the significand precision limited to the number of precision bits of
the destination type. Computed values, such as zeros, infinities, and NaNs that are
outside these bounds are represented by the corresponding unique register format
encoding. Double-extended real denormal results are mapped to the register format
exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs and
Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are
never produced as a result of an arithmetic operation.

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one
exception. Pseudo-zero multiplied by infinity returns the correctly signed infinity instead
of an Invalid Operation Floating-Point Exception fault (and QNaN). Also, pseudo-zeros
are classified as unnormalized numbers, not zeros.

5.2 Floating-point Status Register

The Floating-Point Status Register (FPSR) contains the dynamic control and status
information for floating-point operations. There is one main set of control and status
information (FPSR.sf0), and three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The
FPSR layout is shown in Figure 5-2 and its fields are defined in Table 5-3. Table 5-4
gives the FPSR’s status field description and Figure 5-3 shows their layout.

IA-32 Stack Double Real Denormals
(produced when computation model is
IA-32 Stack Double)

0/1 0x00000 0.000...01...(11)0s
through
0.111...11...(11)0s

Double-Extended Real Pseudo-Denormals
(IA-32 stack and memory format)

0/1 0x00000 1.000...00 through 1.111...11

Pseudo-Zeros 0/1 0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

NaTValc 0 0x1FFFE 0.000...00

Zero 0/1 0x00000 0.000...00

FR 0 (positive zero) 0 0x00000 0.000...00

FR 1 (positive one) 0 0x0FFFF 1.000...00

a. Created by a masked real invalid operation.
b. Created by a masked integer invalid operation.
c. Created by an unsuccessful speculative memory operation.

Figure 5-2. Floating-point Status Register Format

63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sf1 sf0 traps

6 13 13 13 13 6

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

Volume 1, Part 1: Floating-point Programming Model 1:89

The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if
the value is used in an arithmetic instruction and in an arithmetic calculation; e.g.
unorm*NaN doesn’t set this flag. As depicted in Table 5-2 on page 1:86, canonical
single/double/double-extended denormal, double-extended pseudo-denormal and
register format denormal encodings are a subset of the floating-point register format
unnormalized numbers.

Note: The Floating-Point Exception fault/trap occurs only if an enabled floating-point
exception occurs during the processing of the instruction. Hence, setting a flag
bit of a status field to 1 in software will not cause an interruption. The status

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this
bit is set

traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this
bit is set

traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is
set

traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sf1 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved

Figure 5-3. Floating-point Status Field Format

12 11 10 9 8 7 6 5 4 3 2 1 0

FPSR.sfx

flags controls

i u o z d v td rc pc wre ftz

6 7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description

ftz 0 Flush-to-Zero mode

wre 1 Widest range exponent (see Table 5-6)

pc 3:2 Precision control (see Table 5-6)

rc 5:4 Rounding control (see Table 5-5)

td 6 Traps disableda

a. td is a reserved bit in the main status field, FPSR.sf0

v 7 Invalid Operation (IEEE Flag)

d 8 Denormal/Unnormal Operand

z 9 Zero Divide (IEEE Flag)

o 10 Overflow (IEEE Flag)

u 11 Underflow (IEEE Flag)

i 12 Inexact (IEEE Flag)

1:90 Volume 1, Part 1: Floating-point Programming Model

fields flags are merely indications of the occurrence of floating-point excep-
tions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” (see “Definition of
Tininess, Inexact and Underflow” on page 1:106) to be truncated to the correctly
signed zero. Flush-to-Zero mode can be enabled only if Underflow is disabled. If
Underflow is enabled then it takes priority and Flush-to-Zero mode is ignored. Note that
the software exception handler could examine the Flush-to-Zero mode bit and choose
to emulate the Flush-to-Zero operation when an enabled Underflow exception arises.
The FPSR.sfx.u and FPSR.sfx.i bits will be set to 1 when a result is flushed to the
correctly signed zero because of Flush-to-Zero mode. If enabled, an inexact result
exception is signaled.

A floating-point result is rounded based on the instruction’s.pc completer and the status
field’s wre, pc, and rc control fields. The result’s significand precision and exponent
range are determined as described in Table 5-6, “Floating-point Computation Model
Control Definitions” on page 1:90. If the result isn’t exact, FPSR.sfx.rc specifies the
rounding direction (see Table 5-5).

Table 5-5. Floating-point Rounding Control Definitions

Nearest
(or even)

- Infinity
(down)

+ Infinity
(up)

Zero
(truncate/chop)

FPSR.sfx.rc 00 01 10 11

Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected

Instruction’s.pc
Completer

FPSR.sfx’s
Dynamic pc

Field

FPSR.sfx’s
Dynamic wre

Field

Significand
Precision

Exponent
Range Computational Style

.s ignored 0 24 bits 8 bits IEEE real single

.d ignored 0 53 bits 11 bits IEEE real double

.s ignored 1 24 bits 17 bits Register format range,
single precision

.d ignored 1 53 bits 17 bits Register format range,
double precision

none 00 0 24 bits 15 bits IA-32 stack single

none 01 0 N.A. N.A. Reserved

none 10 0 53 bits 15 bits IA-32 stack double

none 11 0 64 bits 15 bits IA-32 double-extended

none 00 1 24 bits 17 bits Register format range,
single precision

none 01 1 N.A. N.A. Reserved

none 10 1 53 bits 17 bits Register format range,
double precision

none 11 1 64 bits 17 bits Register format range,
double-extended precision

not applicablea

a. For parallel FP instructions which have no.pc completer (e.g., fpma).

ignored ignored 24 bits 8 bits A pair of IEEE real singles

not applicableb

b. For non-parallel FP instructions which have no.pc completer (e.g., frcpa).

ignored ignored 64 bits 17 bits Register format range,
double-extended precision

Volume 1, Part 1: Floating-point Programming Model 1:91

The trap disable (sfx.td) control bit allows one to easily set up a local IEEE exception
trap default environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are
used. If FPSR.sfx.td is set, the FPSR.traps bits are treated as if they are all set
(disabled). Note that FPSR.sf0.td is a reserved field which returns 0 when read.

5.3 Floating-point Instructions

This section describes the floating-point instructions. Refer to Volume 3: Intel®
Itanium® Instruction Set Reference for a detailed description.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double,
double-extended floating-point real data types, and the Parallel FP or signed/unsigned
integer data type. The addressing modes for floating-point load and store instructions
are the same as for integer load and store instructions, except for floating-point load
pair instructions which can have an implicit base-register post increment. The memory
hint options for floating-point load and store instructions are the same as those for
integer load and store instructions. (See Section 4.4.6, “Memory Hierarchy Control and
Consistency” on page 1:69.) Table 5-7 lists the types of floating-point load and store
instructions. The floating-point load pair instructions require the two target registers to
be odd/even or even/odd. See “ldfp — Floating-point Load Pair” on page 3:161. The
floating-point store instructions (stfs, stfd, stfe) require the value in the
floating-point register to have the same type as the store for the format conversion to
be correct.

Unsuccessful speculative loads write a NaTVal into the destination register or registers
(see Section 4.4.4, “Control Speculation”). Storing a NaTVal to memory will cause a
Register NaT Consumption fault, except for the spill instruction (stf.spill).

Saving and restoring floating-point registers is accomplished by the spill and fill
instructions (stf.spill, ldf.fill) using a 16-byte memory container. These are the
only instructions that can be used for saving and restoring the actual register contents
since they do not fault on NaTVal. They save and restore all types (single, double,
double-extended, register format and integer or Parallel FP) and will ensure
compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6, Figure 5-7, Figure 5-8 and Figure 5-9 describe how
single precision, double precision, double-extended precision, integer/parallel FP, and
spill/fill data is translated during transfers between floating-point registers and
memory.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR

Single ldfs ldfps stfs

Integer/Parallel FP ldf8 ldfp8 stf8

Double ldfd ldfpd stfd

Double-extended ldfe stfe

Spill/fill ldf.fill stf.spill

1:92 Volume 1, Part 1: Floating-point Programming Model

Figure 5-4. Memory to Floating-point Register Data Translation – Single Precision

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – normal numbers

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – infinities and NaNs

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – zeros

bit

00

0x1FFFF

1111111 1

0

0000000 0 0

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – denormal numbers

bit

00x0FF81

0000000 0

0

00

Volume 1, Part 1: Floating-point Programming Model 1:93

Figure 5-5. Memory to Floating-point Register Data Translation – Double Precision

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – normal numbers

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – infinities and NaNs

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – zeros

bit

00

0x1FFFF

1111111 1

0

0000000 0 0

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – denormal numbers

bit

00x0FC01

0000000 0

0

111

000

000

0 0 0 0 00

1:94 Volume 1, Part 1: Floating-point Programming Model

Figure 5-6. Memory to Floating-point Register Data Translation – Double Extended,
Integer, Parallel FP and Fill

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – normal/unnormal numbers

bit

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – infinities and NaNs

bit

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – denormal/pseudo-denormals and zeros

bit

0x1FFFF

0

1111111 11111111

0000000 00000000

sign exponent
integer

significand

FR:

Memory/GR:

Integer/Parallel FP Load/setf.sig

bit

0 0x1003E

sign exponent significand

FR:

Memory:

Register Fill

integer
bit

Volume 1, Part 1: Floating-point Programming Model 1:95

Figure 5-7. Floating-point Register to Memory Data Translation – Single Precision

Figure 5-8. Floating-point Register to Memory Data Translation – Double Precision

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Store/getf.s

bit

= AND

sign exponent significand

FR:

Memory/GR:

Double-precision Store/getf.d

integer
bit

= AND

1:96 Volume 1, Part 1: Floating-point Programming Model

Both little-endian and big-endian byte ordering is supported on floating-point loads and
stores. For both single and double memory formats, the byte ordering is identical to the
32-bit and 64-bit integer data types (see Section 3.2.3, “Byte Ordering”). The
byte-ordering for the spill/fill memory and double-extended formats is shown in
Figure 5-10.

Figure 5-9. Floating-point Register to Memory Data Translation – Double Extended,
Integer, Parallel FP and Spill

sign exponent significand

FR:

Memory:

integer
bit

sign exponent significand

FR:

Memory:

Register Spill

integer
bit

0 00 0 0 0

sign exponent
integer

significand

FR:

Memory/GR:

Integer/Parallel FP Store/getf.sig

bit

Double Extended-precision Store

Volume 1, Part 1: Floating-point Programming Model 1:97

5.3.2 Floating-point Register to/from General Register Transfer
Instructions

The setf and getf instructions (see Table 5-8) transfer data between floating-point
registers (FR) and general registers (GR). These instructions will translate a general
register NaT to/from a floating-point register NaTVal. For all other operands, the .s and
.d variants of the setf and getf instructions translate to/from FR as per Figure 5-4,
Figure 5-5, Figure 5-7 and Figure 5-8. The memory representation is read from or
written to the GR. The .exp and .sig variants of the setf and getf instructions
operate on the sign/exponent and significand portions of a floating-point register,
respectively, and their translation formats are described in Table 5-9 and Table 5-10.

Figure 5-10.Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats

Table 5-8. Floating-point Register Transfer Instructions

Operations GR to FR FR to GR

Single setf.s getf.s

Double setf.d getf.d

Sign and Exponent setf.exp getf.exp

Significand/Integer setf.sig getf.sig

s0

s1

s2

s3

s4

s5

s6

s7

0

1

2

3

4

5

6

7

7 0

Memory Formats Floating-point Register Format (82-bit)

e0

e1

se2

0

0

0

0

0

8

9

10

11

12

13

14

15

0

0

0

0

0

se2

e1

e0

0

1

2

3

4

5

6

7

7 0

s7

s6

s5

s4

s3

s2

s1

s0

8

9

10

11

12

13

14

15

s0

s1

s2

s3

s4

s5

s6

s7

0

1

2

3

4

5

6

7

7 0

e0’

se1’

8

9

s3 s0s2 s1s7 s4s6 s5

63 0

se2 e1 e0

s3 s0s2 s1s7 s4s6 s5se1’ e0’

81
significandexp.s

Double-Extended (80-bit) Interpretation

se1’

e0’

s7

s6

s5

s4

s3

s2

0

1

2

3

4

5

6

7

7 0

s1

s0

8

9

Spill/Fill (128-bit) Double-Extended (80-bit)

LE BE LE BE

1:98 Volume 1, Part 1: Floating-point Programming Model

5.3.3 Arithmetic Instructions

All arithmetic floating-point instructions, except fcvt.xf (which is always exact), have
a.sf specifier. This indicates which of the four FPSR’s status fields will both control and
record the status of the execution of the instruction (see Table 5-11). The status field
specifies: enabled exceptions, rounding mode, exponent width, precision control, and
which status field’s flags to update. See “Floating-point Status Register” on page 1:88.

Most arithmetic floating-point instructions can specify the precision and range of the
result. The precision is determined either statically using a.pc completer or dynamically
using the.pc field of the FPSR status field. The range is determined similarly except
the.wre field of the FPSR status field is also used. Normal (non Parallel FP) arithmetic
instructions that do not have a.pc completer use the floating-point register format
precision and range. See Table 5-6 for details.

Table 5-12 lists the arithmetic floating-point instructions and Table 5-13 lists the
arithmetic pseudo-operation definitions.

Table 5-9. General Register (Integer) to Floating-point Register Data Translation (setf)

General
Register

Floating-Point Register (.sig) Floating-Point Register (.exp)

Class NaT Integer Sign Exponent Significand Sign Exponent Significand

NaT 1 ignore NaTVal NaTVal

integers 0 000...00
through
111...11

0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation (getf)

Floating-Point Register General Register (.sig) General Register (.exp)

Class Sign Exponent Significand NaT Integer NaT Integer

NaTVal 0 0x1FFFE 0.000...00 1 0x0000000000000000 1 0x1FFFE

integers or
parallel FP

0 0x1003E 0.000...00
through

1.111...11

0 significand 0 0x1003E

other any any any 0 significand 0 ((sign<<17) | exponent)

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier .s0 .s1 .s2 .s3

Status field FPSR.sf0 FPSR.sf1 FPSR.sf2 FPSR.sf3

Table 5-12. Arithmetic Floating-point Instructions

Operation Normal FP Mnemonic(s)
Parallel FP

Mnemonic(s)

Floating-point multiply and add fma.pc.sf fpma.sf

Floating-point multiply and subtract fms.pc.sf fpms.sf

Floating-point negate multiply and add fnma.pc.sf fpnma.sf

Floating-point reciprocal approximation frcpa.sf fprcpa.sf

Floating-point reciprocal square root approximation frsqrta.sf fprsqrta.sf

Floating-point compare fcmp.frel.fctype.sf fpcmp.frel.sf

Volume 1, Part 1: Floating-point Programming Model 1:99

There are no pseudo-operations for Parallel FP addition, subtraction, negation or
normalization since FR 1 does not contain a packed pair of single precision 1.0 values. A
parallel FP addition can be performed by first forming a pair of 1.0 values in a register
(using the fpack instruction) and then using the fpma instruction. Similarly, an integer
add operation can be generated by first forming an integer 1 in a floating-point register
(using the fcvt.fx instruction) and then using the xma instruction.

The fmpy pseudo-operation delivers the IEEE compliant result by rounding the product
and without performing the addition inherent in the fma. An fma with the addend
specified as a register other than FR 0, and containing the value +0.0, will not deliver
the IEEE compliant multiply result in some cases.

5.3.4 Non-arithmetic Instructions

The non-arithmetic floating-point instructions always use the floating-point register
(82-bit) precision since they do not have a.pc completer nor a.sf specifier.

The fclass instruction is used to classify the contents of a floating-point register. The
fmerge instruction is used to merge data from two floating-point registers into one
floating-point register. The fmix, fsxt, fpack, and fswap instructions are used to
manipulate the Parallel FP data in the floating-point significand. The fand, fandcm, for,
and fxor instructions are used to perform logical operations on the floating-point
significand. The fselect instruction is used for conditional selects.

Floating-point minimum fmin.sf fpmin.sf

Floating-point maximum fmax.sf fpmax.sf

Floating-point absolute minimum famin.sf fpamin.sf

Floating-point absolute maximum famax.sf fpamax.sf

Convert floating-point to signed integer fcvt.fx.sf
fcvt.fx.trunc.sf

fpcvt.fx.sf
fpcvt.fx.trunc.sf

Convert floating-point to unsigned integer fcvt.fxu.sf
fcvt.fxu.trunc.sf

fpcvt.fxu.sf
fpcvt.fxu.trunc.sf

Convert signed integer to floating-point fcvt.xf N.A.

Table 5-13. Arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE)
Parallel FP multiplication

fmpy.pc.sf
fpmpy.sf

fma, using FR 0 for addend
fpma, using FR 0 for addend

Floating-point negate multiplication (IEEE)
Parallel FP negate multiplication

fnmpy.pc.sf
fpnmpy.sf

fnma, using FR 0 for addend
fpnma, using FR 0 for addend

Floating-point addition (IEEE) fadd.pc.sf fma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) fsub.pc.sf fms, using FR 1 for multiplicand

Floating-point normalization fnorm.pc.sf fma, using FR 1 for multiplicand and FR 0 for
addend

Convert unsigned integer to floating-point fcvt.xuf.pc.sf fma, using FR 1 for multiplicand and FR 0 for
addend

Table 5-12. Arithmetic Floating-point Instructions (Continued)

1:100 Volume 1, Part 1: Floating-point Programming Model

The fneg pseudo-operation (see Table 5-15) simply reverses the sign bit of the operand
and is therefore not equivalent to the IEEE negation operation. For the IEEE negation
operation, an fnma using FR 1 as the multiplicand and FR 0 as the addend must be
used.

Table 5-14 lists the non-arithmetic floating-point instructions and Table 5-15 lists the
non-arithmetic pseudo-operation definitions.

5.3.5 Floating-point Status Register (FPSR) Status Field
Instructions

Speculation of floating-point operations requires that the status flags be stored
temporarily in one of the alternate status fields (not FPSR.sf0). After a speculative
execution chain has been committed, a fchkf instruction can be used to update the
main status field flags (FPSR.sf0.flags). This operation will preserve the correctness of
the IEEE flags. The fchkf instruction does this by comparing the flags of the status field

Table 5-14. Non-arithmetic Floating-point Instructions

Operation Mnemonic(s)

Floating-point classify fclass.fcrel.fctype

Floating-point merge sign
Parallel FP merge sign

fmerge.s
fpmerge.s

Floating-point merge negative sign
Parallel FP merge negative sign

fmerge.ns
fpmerge.ns

Floating-point merge sign and exponent
Parallel FP merge sign and exponent

fmerge.se
fpmerge.se

Floating-point mix left fmix.l

Floating-point mix right fmix.r

Floating-point mix left-right fmix.lr

Floating-point sign-extend left fsxt.l

Floating-point sign-extend right fsxt.r

Floating-point pack fpack

Floating-point swap fswap

Floating-point swap and negate left fswap.nl

Floating-point swap and negate right fswap.nr

Floating-point And fand

Floating-point And Complement fandcm

Floating-point Or for

Floating-point Xor fxor

Floating-point Select fselect

Table 5-15. Non-arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point absolute value
Parallel FP absolute value

fabs
fpabs

fmerge.s, with sign from FR 0
fpmerge.s, with sign from FR 0

Floating-point negate
Parallel FP negate

fneg
fpneg

fmerge.ns
fpmerge.ns

Floating-point negate absolute value
Parallel FP negate absolute value

fnegabs
fpnegabs

fmerge.ns, with sign from FR 0
fpmerge.ns, with sign from FR 0

Volume 1, Part 1: Floating-point Programming Model 1:101

with the FPSR.sf0.flags and FPSR.traps. If the flags of the alternate status field indicate
the occurrence of an event that corresponds to an enabled floating-point exception in
FPSR.traps, or an event that is not already registered in the FPSR.sf0.flags (i.e., the
flag for that event in FPSR.sf0.flags is clear), then the fchkf instruction branches to
recovery code. If neither of these cases arise then the fchkf instruction does nothing.

The fsetc instruction allows bit-wise modification of a status field’s control bits. The
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit
immediate or-mask to produce the control bits for the status field. The fclrf
instruction clears all of the status field’s flags to zero.

5.3.6 Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the
three-operand xma instructions. The operands and result of these instructions are
floating-point registers. The xma instructions ignore the sign and exponent fields of the
floating-point register, except for a NaTVal check. The product of two 64-bit source
significands is added to the third 64-bit significand (zero extended) to produce a
128-bit result. The low and high versions of the instruction select the appropriate
low/high 64-bits of the 128-bit result, respectively, and write it into the destination
register as a canonical integer. The signed and unsigned versions of the instructions
treat the input multiplicands as signed and unsigned 64-bit integers respectively.

5.4 Additional IEEE Considerations

This section describes the support of the IEEE standard in the areas where specific
details are left open to implementation.

5.4.1 Floating-point Interruptions

Floating-point interruptions are precise. The exception reporting and handling occurs on
the instruction which causes the interruption. There are three floating-point
interruptions: Disabled Floating-Point Register fault, Floating-Point Exception fault, and
Floating-Point Exception trap (see Chapter 5, “Interruptions” in Volume 2 for more
details).

Table 5-16. FPSR Status Field Instructions

Operation Mnemonic(s)

Floating-point check flags fchkf.sf

Floating-point clear flags fclrf.sf

Floating-point set controls fsetc.sf

Table 5-17. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma.l xma.h

Unsigned xma.lu (pseudo-op) xma.hu

1:102 Volume 1, Part 1: Floating-point Programming Model

Exceptions are processed according to a predetermined precedence. Precedence in
exception handling means that higher-priority exceptions are flagged first and results
are delivered according to the requirements of that exception. Lower-priority
exceptions are not flagged even if they occur. For example, dividing an SNaN by zero
causes an invalid operation exception (due to the SNaN) and not a zero-divide
exception; the exception disabled result is the quieted version of the SNaN, not infinity.
However, an IEEE Inexact Floating-Point Exception trap can accompany an IEEE
Underflow or Overflow Floating-Point Exception trap.

For instructions that access the floating-point register file, the Disabled Floating-point
Register fault has the highest priority.

5.4.1.1 Disabled Floating-point Register Fault

Two bits in the PSR, PSR.dfl and PSR.dfh, (see Section 3.3.2, “Processor Status Register
(PSR)” on page 2:23) can be used by an operating system to enable or disable access
to two subsets of floating-point registers: FR 2 to FR 31, and FR 32 to FR 127,
respectively. The Disabled Floating-Point Register fault occurs when an access (read or
write) is made to a FR which has been disabled. Operating systems can use this fault to
identify a task as integer or floating-point and optimize the default set of registers
which get saved on a task switch. If a mainly integer task is able to use only FR 2 to FR
32 for executing integer multiply and divide operations, then context switch time may
be reduced by disabling access to the high floating-point registers.

5.4.1.2 Floating-point Exception Fault

A Floating-Point Exception fault occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via
the Software Assist fault

2. The IEEE Invalid Operation trap is enabled and this condition occurs

3. The IEEE Zero Divide trap is enabled and this condition occurs

4. The Denormal/Unnormal Operand trap is enabled and an unnormalized operand
(denormals are represented as unnormalized numbers in the register file) is
encountered by a floating-point arithmetic instruction

If a Floating-Point Exception fault occurs, the only indication of which fault occurred is
in the ISR.code. The appropriate status flags are not updated in the FPSR.

There is no requirement that the Software Assist Floating-Point Exception fault ever be
signaled (except for certain operands in the frcpa and the frsqrta instructions), nor is
there a mode to force its use. If there is no input NaTVal operand, a processor
implementation may signal a Software Assist Floating-Point Exception fault at any time
during the operation. In order to ensure maximum floating-point performance, most
implementations will not use this exception except in difficult situations such as
operations consuming denormal numbers.

The precedence among Floating-point Exception faults for arithmetic operations is
depicted in Figure 5-11.

Volume 1, Part 1: Floating-point Programming Model 1:103

Figure 5-11.Floating-point Exception Fault Prioritization

Invalid
Enabled?

SNaN
Operand?

N

FP Fault
ISR.v=1

QNaN Ind
FLAGS.v=1

Zero
Divide?(1)

Y

N

ZeroDiv
Enabled?

FP Fault
ISR.z=1

IEEE Resp
FLAGS.z=1

NaTVal
Operand?

Y

N

NaTVal
Response

Denormal
Enabled?

FP Fault
ISR.d=1

FLAGS.d=1

Limits
Check?(2)

Terminal
State

Decision
Point

START

SWA Fault
ISR.swa=1

N

N

Y Y

Y

N

Y

N

Y

NN

Unsupported
Operand?

UnNormal
Operand?

Y

COMPUTE
OPERATION

(1)=For frcpa/fprcpa
(2)=For frcpa/frsqrta

QNaN
Operand?

N

Invalid
Enabled?

FP Fault
ISR.v=1

Reg prioritized
NaN resp (f4,f2,f3)

Y

N

Y

FLAGS.v=1

Y

Invalid
Enabled?

FP Fault
ISR.v=1

QNaN Ind
FLAGS.v=1

N

Y Y

N

Other Invalid
Operation?

1:104 Volume 1, Part 1: Floating-point Programming Model

5.4.1.3 Floating-point Exception Trap

A Floating-point Exception trap occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via
the Software Assist trap

2. The IEEE Overflow trap is enabled and an overflow occurs

3. The IEEE Underflow trap is enabled and an underflow occurs

4. The IEEE Inexact trap is enabled and an inexact result occurs

When an overflow, underflow, or inexact result occurs, the appropriate status flags are
updated in the FPSR. If enabled, a Floating-Point Exception trap occurs, and an
indication of which enabled trap occurred is stored in ISR.code and the fpa bit in
ISR.code (ISR{14}) is set as described in the next paragraph.

ISR.fpa is set to 1 when the magnitude of the delivered result is greater than the
magnitude of the infinitely precise result. It is set to 0 otherwise. The magnitude of the
delivered result may be greater if:

• The significand is incremented during rounding, or

• A larger pre-determined value (e.g., infinity) is substituted for the computed result
(e.g., when overflow is disabled).

There is no requirement that the Software Assist Floating-Point Exception trap ever be
signaled, nor is there a mode to force its use. In order to ensure maximum
floating-point performance, most implementations will not use this exception except in
difficult situations, such as operations creating denormal numbers. The occurrence of a
Software Assist trap is indicated when a trap bit is set in ISR.code, but that trap is
disabled. The destination register contains the trap enabled response for that trap.

The precedence among Floating-point Exception traps for arithmetic operations is
depicted in Figure 5-12.

Volume 1, Part 1: Floating-point Programming Model 1:105

5.4.2 Definition of Overflow

The overflow exception can occur whenever the rounded true result would exceed, in
magnitude, the largest finite number in the destination format.

The IEEE Overflow Floating-Point Exception trap disabled response for all normal and
Parallel-FP arithmetic instructions is to either return an infinity or the correctly signed
maximum finite value for the destination precision. This depends on the rounding
mode, the sign of the result, and the operation. An inexact result exception is signaled.

The IEEE Overflow Floating-Point Exception trap enabled response for all normal
arithmetic instructions is to return the true biased exponent value MOD 217 and for all
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28.
The value’s significand is rounded to the specified precision and written to the
destination register. If the rounded value is different from the infinitely-precise value,

Figure 5-12.Floating-point Exception Trap Prioritization

>Emax <EminOverflow
Enabled?

Underflow
Enabled?

FLAGS.o=1
FLAGS.i|=tmp_i
Exp=tmp_exp%217

Sig=tmp_sig
ISR.o=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

FP TRAP

Infinity
Result

Inexact
Enabled?

FP TRAP
ISR.i=1
ISR.fpa=tmp_fpa

DONE

>=Emin
<=Emax

FLAGS.i=1 tmp_i?

tmp_i

Inf.Precision Operation
Unbounded Range Rounding
tmp_exp, tmp_sig
tmp_i, tmp_fpa FLAGS.u=1

FLAGS.i|=tmp_i
Exp=tmp_exp%217

Sig=tmp_sig
ISR.u=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

FP TRAP

N N

Zero Res.
tmp_i=1
tmp_fpa=0

MaxReal/
Inf. Res
tmp_fpa
FLAGS.o=1

FTZ?

Y

NY

Y

N

Y

Y

N

FLAGS.u=1

N

Y
tmp_exp?

START

Zero
Result

ZeroInf

Inf.Precision Operation
Bound Range Rounding
tmp_i, tmp_fpa
Zero/Den/MinReal Res

Pre-
Computed

Res?

Terminal
State

Decision
Point

tmp_exp=result exponent
tmp_sig=result significand
tmp_i=inexactness indicator
tmp_fpa=significand roundup

?

1:106 Volume 1, Part 1: Floating-point Programming Model

then inexactness is signaled. If the significand was rounded by adding a one to its least
significant bit, then bit fpa in ISR.code is set to 1. Finally, an interruption due to a
Floating-Point Exception trap will occur.

Note that when rounding to single, double, or double-extended real, the overflow trap
enabled response for normal (non Parallel FP) arithmetic instructions is not guaranteed
to be in the range of a valid single, double, or double-extended real quantity, because it
is in 17-bit exponent format.

5.4.3 Definition of Tininess, Inexact and Underflow

Tininess is detected after rounding, and is said to occur when a non-zero result
(computed as though the exponent range were unbounded) would lie strictly between
+2Emin and -2Emin. See Table 5-1 for the values of Emin for each real type. Creation of
a tiny result may cause an exception later (such as overflow upon division because it is
so small).

Inexactness is said to occur when the result differs from what would have been
computed if both the exponent range and precision were unbounded.

How tininess and inexactness trigger the underflow exception depends on whether the
Underflow Floating-Point Exception trap is disabled or enabled. If the trap is disabled
then the underflow exception is signaled when the result is both tiny and inexact. If the
trap is enabled then the underflow exception is signaled when the result is tiny,
regardless of inexactness. Note that in the event that the Underflow Floating-Point
Exception trap is disabled and tininess but not inexactness occurs, then neither
underflow nor inexactness is signaled, and the result is a denormal.

The IEEE Underflow Floating-Point Exception trap disabled response for all normal and
Parallel-FP arithmetic instructions is to denormalize the infinitely precise result and then
round it to the destination precision. The result may be a denormal, zero, or a normal.
The inexact exception is signaled when appropriate.

The IEEE Underflow Floating-Point Exception trap enabled response for all normal
arithmetic instructions is to return the true biased exponent value MOD 217and for all
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28.
The significand is rounded to the specified precision and written to the destination
register independent of the possibility of the exponent calculation requiring a borrow. If
the rounded value is different from the infinitely-precise value, then inexactness is
signaled. If the significand was rounded by adding a one to its least significant bit, then
bit fpa in ISR.code is set to 1. Finally, an interruption due to a Floating-Point Exception
trap will occur.

Note: When rounding to single, double, or double-extended real, the underflow trap
enabled response for normal (non Parallel FP) arithmetic instructions is not
guaranteed to be in the range of a valid single, double, or double-extended real
quantity, because it is in 17-bit exponent format.

When Flush-to-Zero mode is enabled, the behavior for tiny results is different. If an
instruction would deliver a tiny result, a correctly signed zero is delivered instead and
the appropriate FPSR.sfx.u and FPSR.sfx.i bits are set. This mode may improve the

Volume 1, Part 1: Floating-point Programming Model 1:107

performance on implementations that do not implement denormal handling in
hardware. When the Flush-to-Zero mode is enabled, floating-point exception software
assist traps will not occur when producing tiny results.

5.4.4 Integer Invalid Operations

Floating-point to integer conversions which are invalid (in the IEEE sense) signal an
Invalid Operation Floating-Point Exception fault. If the IEEE Invalid Operation trap is
disabled, then the largest magnitude negative integer is the result, even for unsigned
integer operations.

5.4.5 Definition of Arithmetic Operations

Arithmetic operations are those that compute on the operands by treating each
operand’s encoding as a value, whereas non-arithmetic operations perform bit
manipulations on the input operands without regard to the value represented by the
encoding (except for NaTVal detection). Non-arithmetic instructions do not cause
Floating-point Exception faults or traps, but can cause the Disabled Floating-point
Register fault.

5.4.6 Definition and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet
NaNs have a one in the most significant fractional bit of the significand. This definition
of signaling and quiet NaNs easily preserves “NaNness” when converting between
different precisions. When propagating NaNs in operations that have more than one
NaN operand, the result NaN is chosen from one of the operand NaNs in the following
priority based on register encoding fields: first f4, then f2, and lastly f3.

5.4.7 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:

• String to floating-point conversion

• Floating-point to string conversion

• Divide (with help from frcpa or fprcpa instruction)

• Square root (with help from frsqrta or fprsqrta instruction)

• Remainder (with help from frcpa or fprcpa instruction)

• Floating-point to integer valued floating-point conversion

• Correctly wrapping the exponent for single, double, and double-extended overflow
and underflow values, as recommended by the IEEE standard

5.4.8 Additions beyond the IEEE Standard

• The fused multiply and add (fma, fms, fnma, fpma, fpms, fpnma) operations enable
efficient software divide, square root, and remainder algorithms.

• The extended range of the 17-bit exponent in the register format allows simplified
implementation of many basic numeric algorithms by the careful numeric
programmer.

1:108 Volume 1, Part 1: Floating-point Programming Model

• The NaTVal is a natural extension of the IEEE concept of NaNs. It is used to support
speculative execution.

• Flush-to-Zero mode is an industry standard addition.

• The minimum and maximum instructions allow the efficient execution of the
common Fortran Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C
language idioms such as a<b?a:b.

• All mixed precision operations are allowed. The IEEE standard suggests that
implementations allow lower precision operands to produce higher precision
results; this is supported. The IEEE standard also suggests that implementations
not allow higher precision operands to produce lower precision results; this
suggestion is not followed. When computations with higher precision operands
produce values beyond the destination precision range, the information provided in
the ISR.code allows the true result to be unambiguously determined by software.
The correct wrapping count and the appropriate bias amount can also be computed.

• An IEEE style quad-precision real type that is supported in software.

§

Volume 1, Part 1:IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:109

IA-32 Application Execution Model in an
Intel® Itanium® System Environment 6

IA-32 application execution on Itanium-based systems may be supported with IA-32
Execution Layer, an OS-based optimizing binary translator, or processor
hardware-based execution. The implementation of IA-32 application execution on a
platform is transparent to IA-32 applications and does not require any application
modification.

6.1 IA-32 Execution Layer

IA-32 Execution Layer provides operating systems with optimizing dynamic binary
translation to accelerate legacy IA-32 application performance relative to
hardware-based execution. When installed, IA-32 Execution Layer supersedes
hardware-based execution of IA-32 applications.

The operating system loads IA-32 Execution Layer into user space, where it executes
using application virtual space and privilege level. IA-32 Execution Layer uses the
native OS for acquiring system resources (memory, synchronization objects, etc.),
executing 32-bit system calls issued by the IA-32 application, signal handling,
exceptions, and other system notifications.

IA-32 Execution Layer supports user-mode, 32-bit-flat-protected applications.
Consistent with Itanium-based operating systems that support legacy IA-32
applications, 16-bit applications and applications containing 32-bit device drivers are
not supported.

6.2 Hardware-based IA-32 Application Execution

This section describes the IA-32 execution model from the perspective of an application
programmer using the Itanium architecture, interfacing with IA-32 code, while
operating in the Itanium System Environment. The main features covered are:

• IA-32 integer, segment, floating-point, MMX technology, and SSE register state
mappings

• Instruction set transitions

• IA-32 memory and addressing model overview

This section does not cover the details of IA-32 application programming model, IA-32
instructions and registers. Refer to the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for details regarding IA-32 application programming model.

1:110 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

The Itanium architecture can support 16-bit Real Mode, 16-bit VM86, and 16-bit/32-bit
Protected Mode IA-32 applications in the context of an Itanium architecture-based
operating system. Whether an IA-32 application is actually supported on specific
operating systems is determined by the infrastructure provided by that specific
operating system.

6.2.1 Instruction Set Modes

The processor can be executing either IA-32 or Itanium instructions at any point in
time. PSR.is (defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:23)
specifies the currently executing instruction set, where 1 indicates IA-32 instructions
are executing, and 0 indicates Itanium instructions are executing. Three special
instructions and interruptions are defined to transition the processor between the IA-32
and the Itanium instruction sets as shown in Figure 6-1.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to either an
IA-32 or Itanium instruction when resuming from an interruption.

• Interruptions transition the processor to the Itanium instruction set for all
interruption conditions.

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control
between the instruction sets. These primitives typically are incorporated into “thunks”
or “stubs” that implement the required call linkage and calling conventions to call
dynamic or statically linked libraries.

6.2.1.1 Instruction Set Execution in the Intel® Itanium® Architecture

While the processor executes from the Itanium instruction set (PSR.is is 0):

• Itanium instructions are fetched, decoded and executed by the processor.

• Itanium instructions can access the entire Itanium and IA-32 application register
state. This includes IA-32 segment descriptors, selectors, general registers,
physical floating-point registers, MMX technology registers, and SSE registers. See

Figure 6-1. Instruction Set Transition Model

IA-32 Instruction

jmpe

br.ia

 Intercepts,
Exceptions,
Software Interrupts

rfi

Interruptions

Set

Intel® Itanium®

 Instruction Set

Intel® Itanium® System Environment

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:111

Section 6.2.2, “IA-32 Application Register State Model” for a description of the
register state mapping.

• Segmentation is disabled. No segmentation protection checks are applied nor are
segment bases added to compute virtual addresses. All computed addresses are
virtual addresses.

• 264 virtual addresses can be generated and memory management is used for all
memory and I/O references.

6.2.1.2 IA-32 Instruction Set Execution

While the processor is executing the IA-32 instruction set (PSR.is is 1) within the
Itanium System Environment, the IA-32 application architecture as defined by the
Pentium III processor is used, namely:

• IA-32 16/32-bit application level, MMX technology, and SSE instructions are
fetched, decoded, and executed by the processor. Instructions are confined to
32/16-bit operations.

• Only IA-32 application level register state is visible (i.e. IA-32 general registers,
MMX technology, and SSE registers, selectors, EFLAGS, FP registers and FP control
registers). Itanium application and control register state is not visible, e.g. branch,
predicate, application, control, debug, test, and performance monitor registers.

• IA-32, Real Mode, VM86 and Protected Mode segmentation is in effect. Segment
protection checks are applied and virtual addresses generated according to IA-32
segmentation rules. GDT and LDT segments are defined to support IA-32
segmented applications. Segmented 16- and 32-bit code is fully supported.

• Virtual addresses are confined to the lower 4G bytes of virtual region 0. Itanium
architecture memory management is used to translate virtual to physical addresses
for all IA-32 instruction set memory and I/O Port references.

• Instruction and Data memory references are forced to be little-endian. Memory
ordering uses the Pentium III processor memory ordering model.

• IA-32 operating system resources; IA-32 paging, MTRRs, IDT, control registers,
debug registers and privileged instructions are superseded by resources defined in
the Itanium architecture. All accesses to these resources result in an interception
fault.

6.2.1.3 Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed
instruction description on jmpe (IA-32 instruction) and br.ia (Itanium instruction)
should be consulted for details.

Operating systems can disable instruction set transitions (jmpe and br.ia) by setting
PSR.di to one. If PSR.di is one, execution of jmpe or br.ia results in a Disabled
Instruction Set Transition Fault. System level instruction set transitions due to either
rfi or an interruption ignore the state of PSR.di (defined in Section 3.3.2, “Processor
Status Register (PSR)” on page 2:23).

6.2.1.3.1 JMPE Instruction

jmpe reg16/32; jmpe disp16/32 is used to jump and transfer control to the Itanium
instruction set. There are two forms; register indirect and absolute. The absolute form
computes the Itanium target virtual address as follows:

1:112 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

IP{31:0} =disp16/32 + CSD.base
IP{63:32} = 0

The indirect form reads a 16/32-bit register location and then computes the Itanium
target address as follows:

IP{31:0} = [reg16/32] + CSD.base
IP{63:32} = 0

jmpe targets are forced to be 16-byte aligned, and are constrained to the lower
4G-bytes of the 64-bit virtual address space due to limited IA-32 addressability. If there
are any pending IA-32 numeric exceptions, jmpe is nullified, and an IA-32 floating-point
exception fault is generated.

Transitions into the Itanium instruction set do not change the privilege level of the
processor.

6.2.1.3.2 Branch to IA Instruction

The br.ia instruction is used to unconditionally branch to the IA-32 instruction set.
IA-32 targets are specified by a 32-bit virtual address target (not an effective address).
The IA-32 virtual address is truncated to 32-bits. The br.ia branch hints should always
be set to predicted static taken. The processor transitions to the IA-32 instruction set as
follows:

IP{31:0} = BR[b]{31:0}
IP{63:32} = 0
EIP{31:0} = IP{31:0} - CSD.base

Transitions into the IA-32 instruction set do not change the privilege level of the
processor.

Software should ensure the code segment descriptor and selector are properly loaded
before issuing the branch. If the target EIP value exceeds the code segment limit or has
a code segment privilege violation, an IA-32 GPFault(0) exception is reported on the
target IA-32 instruction.

The processor does not ensure Itanium instruction set generated writes into the IA-32
instruction stream are observed by the processor. For details, see “Self Modifying Code”
on page 1:132. Before entering the IA-32 instruction set, Itanium architecture-based
software must ensure all prior register stack frames have been flushed to memory. All
registers left in the current and prior register stack frames are left in an undefined state
after IA-32 instruction set execution. Software can not rely on the value of these
registers across an instruction set transition. For details, see “Register Stack Engine” on
page 1:133.

6.2.1.4 IA-32 Operating Mode Transitions

As described in “IA-32 Instruction Set Execution” on page 1:111, jmpe, br.ia, and rfi
instructions and interruptions can transition the processor between the two instruction
set modes. Transitions are allowed between the Itanium architecture and all major
IA-32 modes. As shown in Figure 6-1, br.ia and rfi will transition the processor from
the Itanium instruction set into IA-32 VM86, Real Mode or Protected Mode. While jmpe
and interruptions will transition the processor from either IA-32 VM86, Real Mode or

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:113

Protected Mode into the Itanium instruction set. Mode transitions between IA-32 Real
Mode, Protected Mode and VM86 definitions are the same as those defined in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium architecture-based interface code is responsible for setting up and loading a
consistent Protected Mode, Real Mode, or VM86 environment (e.g. loading segment
selectors and descriptors, etc.) as defined in “Segment Descriptor and Environment
Integrity” on page 1:119. The processor applies additional segment descriptor checks
to ensure operations are performed in a consistent manner.

6.2.2 IA-32 Application Register State Model

As shown in Figure 6-2 and Table 6-1, IA-32 general purpose registers, segment
selectors, and segment descriptors, are mapped into the lower 32-bits of Itanium
general purpose registers GR8 to GR31. The floating-point register stack, MMX
technology, and SSE registers are mapped on Itanium floating-point registers FR8 to
FR31.

To promote straight-forward parameter passing, integer and IEEE floating-point register
and memory data types are binary compatible between both IA-32 and Itanium
instruction sets.

Figure 6-1. Instruction Set Mode Transitions

Itanium
Instruction Set

IA-32
Real Mode

IA-32
VM86

IA-32
Protected Mode

!PSR.is

!PSR.is

!PSR.is
PSR.is & PSR.is &

PSR.is &
CR0.pe &
!EFLAG.vm

CR0.pe & EFLAG.vm!CR0.pe

PSR.is &
CR0.pe & EFLAG.vm

PSR.is &
CR0.pe &
!EFLAG.vm

PSR.is &
!CR0.pe

1:114 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

Some Itanium registers are modified to an undefined state by hardware as a side-effect
during IA-32 instruction set execution as noted in Table 6-1 and Figure 6-2. Generally,
Itanium system state is not affected by IA-32 instruction set execution. Itanium
architecture-based code can reference all registers (including IA-32), while IA-32
instruction set references are confined to the IA-32 visible application register state.

Registers are assigned the following conventions during transitions between IA-32 and
Itanium instruction sets.

• IA-32 state: The register contains an IA-32 register during IA-32 instruction set
execution. Expected IA-32 values should be loaded before switching to the IA-32
instruction set. After completion of IA-32 instructions, these registers contain the
results of the execution of IA-32 instructions. These registers may contain any
value during Itanium instruction execution according to Itanium software
conventions. Software should follow IA-32 and Itanium calling conventions for
these registers.

• Undefined: Registers marked as undefined may be used as scratch areas for
execution of IA-32 instructions by the processor and are not ensured to be
preserved across instruction set transitions.

Figure 6-2. IA-32 Application Register Model

APPLICATION REGISTER SET

pr0

 IP

PredicatesFloating-point Registers

Instruction Pointer

fr0 pr1
pr2

fr1
fr2-5

1
81 0

63 0

Branch Registers

 br0
 br1
 br2

63 0

 br7

gr0

gr4

63 0

gr127 fr127

gr8

gr31
gr32 fr32

fr31

0 0.0
1.0

General Registers

0

 nats

CFM

Current Frame Marker

Performance Monitor

63 0

pr63

pr15
pr16

37 0

pmd0
pmd1

pmdm

Processor Identifiers
63 0

cpuid0
cpuid1

cpuidn

Data Registers

User Mask
5 0

63 0

ar64

Application Registers

KR0

KR7

RSC
BSPar17

ar16

BSPSTORE
RNAT

ar18
ar19

CCV

UNATar36

ar32

FPSR

ITC

ar40

ar44

EC
LCar65

ar66

PFS

ar127

ar0

ar7

EFLAG
CSDar25

ar24

SSD
CFLG

ar26
ar27

FSR
FIRar29

ar28

FDR

FCR

ar30

ar21

gr7
fr8

fr6-7

Used by IA-32 execution

Not used by IA-32 execution

gr1-3

RUCar45

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:115

• Shared: Shared registers contain values that have similar functionality in either
instruction set. For example, the stack pointer (ESP) and instruction pointer (IP)
are shared.

• Unmodified: These registers are not altered by IA-32 execution. Itanium
architecture-based code can rely on these values not being modified during IA-32
instruction set execution. The register will have the same contents when entering
the IA-32 instruction set and when exiting the IA-32 instruction set.

Table 6-1. IA-32 Application Register Mapping

Intel® Itanium® Reg IA-32 Reg Convention Size Description

General Purpose Integer Registers

GR0 constant 0

GR1-3 undefinedf scratch for IA-32 execution

GR4-7 unmodified Intel® Itanium® preserved registers

GR8 EAX

IA-32 state

32a IA-32 general purpose registers

GR9 ECX

GR10 EDX

GR11 EBX

GR12 ESP

GR13 EBP

GR14 ESI

GR15 EDI

GR16{15:0} DS

64 IA-32 selectors

GR16{31:16} ES

GR16{47:32} FS

GR16{63:48} GS

GR17{15:0} CS

GR17{31:16} SS

GR17{47:32} LDT

GR17{63:48} TSS

GR18-23 undefinedf scratch for IA-32 execution

GR24 ESD IA-32 state 64 IA-32 segment descriptors (register
format)b

GR25-26 undefinedf scratch for IA-32 execution

GR27 DSD

IA-32 state 64
IA-32 segment descriptors (register
format)b

GR28 FSD

GR29 GSD

GR30 LDTDc

GR31 GDTD

GR32-127 undefinedd IA-32 code execution space

Process Environment

IP IP shared 64 shared IA-32 and Intel® Itanium® virtual
Instruction Pointer

Floating-point Registers

FR0 constant +0.0

FR1 constant +1.0

FR2-5 unmodified Intel® Itanium® preserved registers

FR6-7 undefined IA-32 code execution space

1:116 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

FR8 MM0/FP0

IA-32 state 64/80

IA-32 Intel MMX technology registers
(aliased on 64-bit FP mantissa)
IA-32 FP registers (physical registers
mapping)e

FR9 MM1/ FP1

FR10 MM2/FP2

FR11 MM3/FP3

FR12 MM4/FP4

FR13 MM5/FP5

FR14 MM6/FP6

FR15 MM7/FP7

FR16-17 XMM0

IA-32 state 64

IA-32 SSE registers
low order 64-bits of XMM0 are mapped to
FR16{63:0}
high order 64-bits of XMM0 are mapped to
FR17{63:0}

FR18-19 XMM1

FR20-21 XMM2

FR22-23 XMM3

FR24-25 XMM4

FR26-27 XMM5

FR28-29 XMM6

FR30-31 XMM7

FR32-127 undefinedf IA-32 code execution space

Predicate Registers

PR0 constant 1

PR1-63 undefinedf IA-32 code execution space

Branch Registers

BR0-5 unmodified Intel® Itanium® preserved registers

BR6-7 undefined IA-32 code execution space

Application Registers

RSC

unmodified
not used for IA-32 execution
Intel® Itanium® preserved registers

BSP

BSPSTORE

RNAT

CCV undefinedf 64 IA-32 code execution space

UNAT unmodified not used for IA-32 execution, Intel®
Itanium® preserved register

FPSR.sf0 unmodified Intel® Itanium® numeric status and
controls register

FPSR.sf1,2,3 undefinedf IA-32 code execution space.

FSR FSW,FTW,
MXCSR

IA-32 state

64 IA-32 numeric status and tag word and
SSE status

FCR FCW, MXCSR 64 IA-32 numeric and SSE control

FIR FOP, FIP, FCS 64 IA-32 x87 numeric environment opcode,
code selector and IP

FDR FEA, FDS 64 IA-32 x87 numeric environment data
selector and offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC)
and Intel® Itanium® Interval Timer

RUC unmodified 64 RUC continues to count while in IA-32
execution mode

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:117

6.2.2.1 IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of Itanium general registers GR8 to
GR15. Values in the upper 32-bits of GR8 to GR15 are ignored on entry to IA-32
execution. After the IA-32 instruction set completes execution, the upper 32-bits of
GR8 - GR15 are sign-extended from bit 31.

Based on IA-32 and Itanium calling conventions, the required IA-32 state must be
loaded in memory or registers by Itanium architecture-based code before entering the
IA-32 instruction set.

6.2.2.2 IA-32 Instruction Pointer

The processor maintains two instruction pointers for IA-32 instruction set references,
EIP (32-bit effective address) and IP (a 64-bit virtual address equivalent to the Itanium
instruction set IP). IP is generated by adding the code segment base to EIP and zero
extending to 64-bits. IP should not be confused with the 16-bit effective address
instruction pointer of the 8086. EIP is an offset within the current code segment, while
IP is a 64-bit virtual pointer shared with the Itanium instruction set. The following
relationship is defined between EIP and IP while executing IA-32 instructions.

IP{63:32} = 0;
IP{31:0} = EIP{31:0} + CSD.Base;

PFS

unmodified

not used for IA-32 code execution, Prior
EC is preserved in PFM
Intel® Itanium® preserved registers

LC

EC

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags,
writes of some bits condition by CPL and
EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)b

SSD SSD IA-32 stack segment (register format)b

CFLG CR0/CR4 64 IA-32 control flags
CR0=CFLG{31:0}, CR4=CFLG{63:32},
writable at CPL=0 only.

a. On transitions into the IA-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign
extended from bit 31.

b. Segment descriptor formats differ from the iA-32 memory format, see “IA-32 Segment Registers” on
page 1:118 for details. Modification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by Itanium architecture-based user level code
d. All registers in the current and prior registers frames are left in an undefined state after IA-32 execution.

Software must preserve these values before entering the IA-32 instruction set.
e. IA-32 floating-point register mappings are physical and do not reflect the IA-32 top of stack value.
f. These registers are used by the processor and may be left an undefined state following IA-32 instruction set

execution. Software should preserve required values before entering IA-32 code.

Figure 6-3. IA-32 General Registers (GR8 to GR15)

63 32 31 0

sign extended EAX.. EDI{31:0}

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description

1:118 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

EIP is added to the code segment base and zero extended into a 64-bit virtual address
on every IA-32 instruction fetch. If during an IA-32 instruction fetch, EIP exceeds the
code segment limit, a GPFault is generated on the referencing instruction. Effective
instruction addresses (sequential values or jump targets) above 4G-bytes are truncated
to 32 bits, resulting in a 4-G byte wraparound condition.

6.2.2.3 IA-32 Segment Registers

IA-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26.
Descriptors are maintained in an unscrambled format shown in Figure 6-5. This format
differs from the IA-32 scrambled memory descriptor format. The unscrambled register
format is designed to support fast conversion of IA-32 segmented 16/32-bit pointers
into virtual addresses by Itanium architecture-based code. IA-32 segment register load
instructions unscramble the GDT/LDT memory format into the descriptor register
format on a segment register load. Itanium architecture-based software can also
directly load descriptor registers provided they are properly unscrambled by software.
When Itanium architecture-based software loads these registers, no data integrity
checks are performed at that time if illegal values are loaded in any fields. For a
complete definition of all bit fields and field semantics refer to the Intel® 64 and
IA-32 Architectures Software Developer’s Manual.

Figure 6-4. IA-32 Segment Register Selector Format

63 48 47 32 31 16 15 0

GS FS ES DS GR16

TSS LDT SS CS GR17

Figure 6-5. IA-32 Code/Data Segment Register Descriptor Format

63 62 61 60 59 58 57 56 55 52 51 32 31 0

g d/b ig av p dpl s type lim{19:0} base{31:0}

Table 6-2. IA-32 Segment Register Fields

Field Bits Description

selector 15:0 Segment Selector value, see the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for bit definition.

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for IA-32 instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within the segment for
expand up segments for IA-32 instruction set memory references. For expand down
segments, limit defines the minimum effective address within the segment. See the
Intel® 64 and IA-32 Architectures Software Developer’s Manual for details and
segment limit fault conditions. The segment limit is scaled by (lim << 12) | 0xFFF if the
segment’s g-bit is 1.

type 55:52 Type identifier for data/code segments, including the Access bit (bit 52). See the Intel®
64 and IA-32 Architectures Software Developer’s Manual for encodings and
definition.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32
instruction set memory references.

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an
IA_32_Exception(GPFault) is generated for data segments (CS, DS, ES, FS, GS) and
an IA_32_Exception(StackFault) for SS.

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:119

6.2.2.3.1 Data and Code Segments

On the transition into IA-32 code, the IA-32 segment descriptor and selector registers
(GDT, LDT, DS, ES, CS, SS, FS and GS) must be initialized by Itanium
architecture-based code to the required values based on IA-32 and Itanium calling
conventions and the segmentation model used.

Itanium architecture-based code may manually load a descriptor with an 8-byte fetch
from the LDT/GDT, unscramble the descriptor and write the segment base, limit and
attribute. Alternately, Itanium architecture-based software can switch to the IA-32
instruction set and perform the required segment load with an IA-32 Mov Sreg
instruction. If Itanium architecture-based code explicitly loads the segment descriptors,
it is responsible for the integrity of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the
descriptor registers, nor does the processor set segment access bits in the LDT/GDT if
segment registers are loaded by Itanium instructions.

6.2.2.3.2 Segment Descriptor and Environment Integrity

For IA-32 instruction set execution, most segment protection checks are applied by the
processor when the segment descriptor is loaded by IA-32 instructions into a segment
register. However, segment descriptor loads from the Itanium instruction set into the
general purpose register file perform no such protection checks, nor are segment
Access-bits updated by the processor.

If Itanium architecture-based software directly loads a descriptor, it is responsible for
the validity of the descriptor, and ensuring integrity of the IA-32 Protected Mode, Real
Mode or VM86 environments. Table 6-3 defines software guidelines for establishing the
initial IA-32 environment. The processor checks the integrity of the IA-32 environment
as defined in “IA-32 Environment Runtime Integrity Checks” on page 1:122. On the

av 60 Ignored – This field is ignored by the processor during IA-32 instruction set execution.
This field is available for IA-32 software use and there will be no future use for this field.
For Itanium instructions, implementations which do not support the ld16, st16 and
cmp8xchg16 instructions can either ignore writes and return zero on reads, or write the
value and return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.

ig 61 Ignored – This field is ignored by the processor during IA-32 instruction set execution.
This field may have a future use and should be set to zero by IA-32 software. For Itanium
instructions, implementations which do not support the ld16, st16 and cmp8xchg16
instructions can either ignore writes and return zero on reads, or write the value and
return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s
d/b-bit also controls the default operand size for IA-32 instructions. If 1, the default
operand size is 32-bits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | 0xFFF for
IA-32 instruction set memory references. This field is ignored for Intel® Itanium®
instruction set memory references.

Table 6-2. IA-32 Segment Register Fields (Continued)

Field Bits Description

1:120 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

transitions between IA-32 and Itanium architecture-based code, the processor does
NOT alter the base, limit or attribute values of any segment descriptor, nor is there a
change in privilege level.

 Table 6-3. IA-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86 Mode

PSR cpl 0 Privilege Level 3

EFLAG vm 0 0 1

CR0 pe 0 1 1

CS

selector base >> 4a

a. Selectors should be set to 16*base for normal RM 64KB operation.

selector base >> 4

base selector << 4b

b. Segment base should be set to selector/16 for normal RM 64KB operation.

base selector << 4

dpl PSR.cpl (0) PSR.cplc

c. Unless a conforming code segment is specified

PSR.cpl (3)

d-bit 16-bitd

d. Segment size should be set to 16-bits for normal RM 64KB operation.

16/32-bit 16-bit

type data rd/wr, expand up execute data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe

e. Segment limit should be set to 0xFFFF for normal RM 64KB operation.

limit 0xFFFF

SS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)

d-bit 16-bitd 16/32-bit size 16-bit

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe limit 0xFFFF

DS, ES,
FS, GS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)

d-bit 16-bitd 16/32-bit 0

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

a-bit 1 1 1

p-bit 1 1/0f

f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

1

g-bit/limit 0xFFFFe limit 0xFFFF

LDT,GDT,
TSS

selector

N/A

selector

base base

dpl dpl >= PSR.cpl

d-bit 0

type ldt/gdt/tss types

s-bit 0

p-bit 1

a-bit 1

g-bit/limit limit

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:121

6.2.2.3.2.1 Protected Mode

Itanium architecture-based software should follow these rules for setting up the
segment descriptors for Protected Mode environment before entering the IA-32
instruction set:

• Itanium architecture-based software should ensure the stack segment descriptor
register’s DPL==PSR.cpl.

• For DSD, ESD, FSD and GSD segment descriptor registers, Itanium
architecture-based software should ensure DPL>=PSR.cpl.

• For CSD segment descriptor register, Itanium architecture-based software should
ensure DPL==PSR.cpl (except for conforming code segments).

• Software should ensure that all code, stack and data segment descriptor registers
do not contain encodings for any system segments.

• Software should ensure the a-bit of all segment descriptor registers are set to 1.

• Software should ensure the p-bit is set to 1 for all valid data segments and to 0 for
all NULL data segments.

6.2.2.3.2.2 VM86

Itanium architecture-based software should follow these rules when setting up segment
descriptors for the VM86 environment before entering the IA-32 instruction set:

• PSR.cpl must be 3 (or IPSR.cpl must be 3 for rfi).

• Itanium architecture-based software should ensure the stack segment descriptor
register’s DPL==PSR.cpl==3 and set to 16-bit, data read/write, expand up.

• For CSD, DSD, ESD, FSD and GSD segment descriptor registers, Itanium
architecture-based software should ensure DPL==3, the segment is set to 16-bit,
data read/write, expand up.

• Software should ensure that all code, stack and data segment descriptor registers
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is
one.

• Software should ensure that the relationship Base = Selector*16, is maintained for
all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise
processor operation is unpredictable.

• Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment
descriptor register’s limit value is set to 0xFFFF, otherwise spurious segment limit
faults (GPFault or Stack Faults) may be generated.

• Itanium architecture-based software should ensure all segment descriptor registers
are data read/write, including the code segment. The processor will ignore execute
permission faults.

6.2.2.3.2.3 Real Mode

Itanium architecture-based software should follow these rules when setting up segment
descriptors for the Real Mode environments before entering the IA-32 instruction set,
otherwise software operation is unpredictable.

• Itanium architecture-based software should ensure PSR.cpl is 0

• Itanium architecture-based software should ensure the stack segment descriptor
register’s DPL is 0.

1:122 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

• Software should ensure that all code, stack and data segment descriptor registers
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is
one.

• For normal real mode 64K operations, software should ensure that the relationship
Base = Selector*16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD
segment descriptor registers.

• For normal real mode 64K operations, software should ensure that the DSD, CSD,
ESD, SSD, FSD, and GSD segment descriptor register’s limit value is set to 0xFFFF
and the segment size is set to 16-bit (64K)

• Itanium architecture-based software should ensure all segment descriptor registers
indicate readable, writable, including the code segment for normal Real Mode
operation.

6.2.2.3.3 IA-32 Environment Runtime Integrity Checks

Processors in the Itanium processor family perform additional runtime checks to verify
the integrity of the IA-32 environments. These checks are in addition to the runtime
checks defined on IA-32 processors and are high-lighted in Table 6-4. Existing IA-32
runtime checks are listed but not highlighted. Descriptor fields not listed in the table are
not checked. As defined in the table, runtime checks are performed either on IA-32
instruction code fetches or on an IA-32 data memory reference to one of the specified
segment registers. These runtime checks are not performed during transitions from the
Itanium instruction set to the IA-32 instruction set.

 Table 6-4. IA-32 Environment Runtime Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault

all code fetches

PSR.cpl is not 0 ignored is not 3

Code Fetch Fault
(GPFault(0))a

EFLAG.vmC
FLG.pe

EFLAG.vm is 1 and CFLG.pe is 0

EFLAG.vif
EFLAG.vip

EFLAG.vip & EFLAG.vif & CFLG.pe &
PSR.cpl==3 &

(CFLG.pvi | (EFLAG.vm & CFLG.vme))

all code fetches
CS

dpl ignored dpl is not 3

Code Fetch Fault
(GPFault(0))

d-bit is not 16-bit

type ignored (can be exec or data)

 GPFault if data expand down

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory
references to SS

dpl dpl!=PSR.cpl

Stack Fault

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:123

6.2.2.4 IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags
(CF, PF, AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC,
VIF, VIP). None of the arithmetic or system flags affect Itanium instruction execution.
See Table 6-5, “IA-32 EFLAGS Register Fields” on page 1:124 for the behavior on IA-32
and Itanium instruction reads/writes to this application register. For details on system
flags in the IA-32 EFLAGS register, see Section 10.3.2, “IA-32 System EFLAG Register”
on page 2:243.

The arithmetic flags are used by the IA-32 instruction set to reflect the status of IA-32
operations, control IA-32 string operations, and control branch conditions for IA-32
instructions. These flags are ignored by Itanium instructions. Flags ID, OF, DF, SF, ZF,
AF, PF and CF are defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

data memory
references to
DS, ES, FS and GS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory
references to
 CS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

rd/wr checks are
ignored

rd and not readable,
wr and not writeable

rd/wr checks are
ignored

s, p, a-bits are not 1

g-bit/limit segment limit violation

memory
references to
LDT,GDT,
TSS

dpl ignored

GPFault
(Selector/0)b

type ignored

s-bit is not 0

a, d-bits ignored

p-bit is not 1

g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.

Figure 6-1. IA-32 EFLAG Register (AR24)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vip vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)

Table 6-4. IA-32 Environment Runtime Integrity Checks (Continued)

Reference Resource Real Mode Protected Mode VM86Mode Fault

1:124 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

.

6.2.2.5 IA-32 Floating-point Registers

IA-32 floating-point register stack, numeric controls and environment are mapped into
the Itanium floating-point registers FR8 - FR15 and the application register name space
as shown in Table 6-6.

Table 6-5. IA-32 EFLAGS Register Fields

EFLAGa

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter
the behavior of Itanium instruction set execution.

Bits Description

cf 0 IA-32 Carry Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

1 Ignored – For IA-32 instructions, writes are ignored, reads return one. For Itanium
instructions, the implementation can either ignore writes and return one on reads; or
write the value, and return the last value written on reads.

3,5,
15

Ignored – For IA-32 instructions, writes are ignored, reads return zero. For Itanium
instructions, the implementation can either ignore writes and return zero on reads, or
write the value and return the last value written on reads.

pf 2 IA-32 Parity Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

af 4 IA-32 Aux Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

zf 6 IA-32 Zero Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

sf 7 IA-32 Sign Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

tf 8
See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

if 9

df 10 IA-32 Direction Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

of 11 IA-32 Overflow Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

iopl 13:12

See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

nt 14

rf 16

vm 17

ac 18

vif 19

vip 20

id 21

63:22 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the
implementation can either raise Reserved Register/Field fault on non-zero writes and
return zero on reads, or write the value (no Reserved Register/Field fault), and return the
last value written on reads.

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:125

6.2.2.5.1 IA-32 Floating-point Stack

IA-32 floating-point registers are defined as follows:

• IA-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit
IEEE floating-point format.

• For IA-32 instruction set references, floating-point registers are logically mapped
into FR8 - FR15 based on the IA-32 top-of-stack (TOS) pointer held in FCR.top. FR8
represents a physical register after the TOS adjustment and is not necessarily the
top of the logical floating-point register stack.

• For Itanium instruction set references, the floating-point register numbers are
physical and not a function of the numeric TOS pointer, e.g. references to FR8
always return the value in physical register FR8 regardless of the TOS value.
Itanium architecture-based software cannot necessarily assume that FR8 contains
the IA-32 logical register ST(0). It is highly recommended that typically IA-32
calling conventions be used which pass floating-point values through memory.

6.2.2.5.2 Special Cases

For IA-32 floating-point instructions, loading a single or double denormal results in a
normalized double-extended value placed in the target floating-point register. For
Itanium instructions, loading a single or double denormal results in an un-normalized
denormal value placed in the target floating-point register. There are two canonical
exponent values in the Itanium architecture which indicate single precision and double
precision denormals.

When transferring floating-point values from Itanium to IA-32 instructions, it is highly
recommended that typical IA-32 calling conventions be followed which pass
floating-point values through the memory stack. If software does pass floating-point
values from IA-32 to Itanium architecture-based code via the floating-point registers,
software must ensure the following:

• Single or double precision Itanium denormals must be converted into a normalized
double extended precision value expected by IA-32 instructions. Software can
convert Itanium denormals by multiplying by 1.0 in double extended precision
(fma.sfx fr = fr, f1, f0). If an illegal single or double precision denormal is

Table 6-6. IA-32 Floating-point Register Mappings

Intel® Itanium®
Reg

IA-32 Reg Size (bits) Description

FR8 ST[(TOS + N)==0]

80

IA-32 numeric register stack

Accesses to FR8 - FR15 by Intel® Itanium®
instructions ignore the IA-32 TOS adjustment

IA-32 accesses use the TOS adjustment for a
given register N

FR9 ST[(TOS + N)==1]

FR10 ST[(TOS + N)==2]

FR11 ST[(TOS + N)==3]

FR12 ST[(TOS + N)==4]

FR13 ST[(TOS + N)==5]

FR14 ST[(TOS + N)==6]

FR15 ST[(TOS + N)==7]

FCR (AR21) FCW, MXCSR 64 IA-32 numeric and SSE control register

FSR (AR28) FSW,FTW, MXCSR 64 IA-32 numeric and SSE status and tag word

FIR (AR29) FOP, FCS, FIP 64 IA-32 numeric instruction pointer

FDR (AR30) FDS, FEA 48 IA-32 numeric data pointer

1:126 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

encountered in IA-32 floating-point operations, an IA-32 Exception (FPError Invalid
Operand) fault is generated.

• Floating-point values must be within the range of the IA-32 80-bit (15-bit
exponent) double extended precision format. The Itanium architecture uses 82 bits
(17-bit widest range exponent) for intermediate calculations. Software must ensure
all floating-point register values passed to IA-32 instructions are representable in
double extended precision 80-bit format, otherwise processor operation is model
specific and undefined. Undefined behavior can include but is not limited to: the
generation of an IA_32_Exception (FPError Invalid Operation) fault when used by
an IA-32 floating-point instruction, rounding of out-of-range values to
zero/denormal/infinity and possible IA_32_Exception (FPError Overflow/Underflow)
faults, or float-point register(s) containing out of range values silently converted to
QNAN or SNAN (conversion could occur during entry to the IA-32 instruction set or
on use by an IA-32 floating-point instruction). Software can ensure all passed
floating-point register values are within range by multiplying by 1.0 in double
extended precision format (with widest range exponent disabled) by using fma.sfx
fr = fr, f1, f0.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point
instructions, otherwise processor operation is model specific and undefined.
Processors may silently convert floating-point register(s) containing NaTVal to a
SNAN (during entry to the IA-32 instruction set or on a consuming IA-32
floating-point instruction). Dependent IA-32 floating-point instructions that directly
or indirectly consume a propagated NaTVal register will either propagate the NaTVal
indication or generate an IA_32_Exception (FPError Invalid Operand) fault.
Whether a processor generates the fault or propagates the NaTVal is model specific.
In no case will the processor allow a NaTVal register to be used without either
propagating the NaTVal or generating an IA_32_Exception (FPError Invalid
Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with
an IA-32 floating-point load instruction, since a NatVal cannot be expressed by
a 80-bit double extended precision number.

It is highly recommended that floating-point values be passed on the memory stack per
typical IA-32 calling conventions to avoid numeric problems with NatVal and Itanium
denormals.

6.2.2.5.3 IA-32 Floating-point Control Registers

FPSR controls Itanium floating-point instructions control and status bits. FPSR does not
control IA-32 floating-point instructions or reflect the status of IA-32 floating-point
instructions. IA-32 floating-point and SSE instructions have separate control and status
registers, namely FCR (floating-point control register) and FSR (floating-point status
register).

FCR contains the IA-32 FCW bits and all SSE control bits as shown in Figure 6-1.

FSR contains the IA-32 floating-point status flags FSW, FTW, and SSE status fields as
shown in Figure 6-2. The Tag fields indicate whether the corresponding IA-32 logical
floating-point register is empty. Tag encodings for zero and special conditions such as
Nan, Infinity or Denormal of each IA-32 logical floating-point register are not
supported. However, IA-32 instruction set reads of FTW compute the additional special

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:127

conditions of each IA-32 floating-point register. Itanium architecture-based code can
issue a floating-point classify operation to determine the disposition of each IA-32
floating-point register.

FCR and FSR collectively hold all IA-32 floating-point control, status and tag
information. IA-32 instructions that are updated and controlled by MXSCR, FCW, FSW
and FTAG effectively update FSR and are controlled by FSR. IA-32 reads/writes of
MXCSR, FSW, FCW and FTW return the same information as reads/writes of FSR and
FCR by Itanium instructions.

Software must ensure that FCR and FSR are properly loaded for IA-32 numeric
execution before entering the IA-32 instruction set. For Itanium instructions accessing
ignored fields, the implementation can either ignore writes and return the specified
constant on reads, or write the value and return the last value written on reads. For
Itanium instructions accessing reserved fields, the implementation can either raise
Reserved Register/Field fault on non-zero writes and return zero on reads, or write the
value (no Reserved Register/Field fault), and return the last value written on reads.

Figure 6-1. IA-32 Floating-point Control Register (FCR)

IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) IC RC PC 0 1 PM UM OM ZM DM IM

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) FZ RC PM UM OM ZM DM IM rv ignored

IA-32 MXCSR (control)

Figure 6-2. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0} IA-32 FSW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TG7 0 TG6 0 TG5 0 TG4 0 TG3 0 TG2 0 TG1 0 TG0 B C3 TOP C2 C1 C0 ES SF PE UE OE ZE DE IE

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 454443 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) ignored rv PE UE OE ZE DE IE

IA-32 MXCSR (status)

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)

IA-32 State Intel® Itanium®
State Bits IA-32 Usage Usage in the Intel®

Itanium® Architecture

FSW, FTW, MXCSR state in the FSR Register

1:128 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.2.5.4 IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain
pending information related to the numeric exception. FDR contains the operand’s
effective address and segment selector. FIR contains the numeric instruction’s effective
address, code segment selector, and opcode bits. FSR summaries the type of numeric
exception in the IE, DE, ZE, OE, UE, PE, SF and ES-bits. The ES-bit summarizes the
IA-32 floating-point exception status as follows:

• When FSR.es is read by Itanium architecture-based code, the value returned is
either a summary of any unmasked pending exceptions contained in the FSR, IE,
DE, ZE, OE, UE, and PE bits or it may be the value that was last written into the
register depending on the implementation.

FSW.ie FSR.ie 0 Invalid operation Exception

None of these bits reflect
the status of Intel®
Itanium® floating-point
execution.

See the Intel® 64 and
IA-32 Architectures
Software Developer’s
Manual for IA-32 numeric
flag details

FSW.de FSR.de 1 Denormalized operand
Exception

FSW.ze FSR.ze 2 Zero divide Exception

FSW.oe FSR.oe 3 Overflow Exception

FSW.ue FSR.ue 4 Underflow Exception

FSW.pe FSR.pe 5 Precision Exception

FSW.sf FSR.sf 6 Stack Fault

FSW.es FSR.esa 7 Error Summary

FSW.c3:0 FSR.c3:0 8:10,14 Numeric Condition codes

FSW.top FSR.top 11:13 Top of IA-32 numeric stack

FSW.b FSR.b 15 IA-32 FPU Busy always
equals state of FSW.ES

FTW FSR.tg
{7:0}b

16,18,20,22
,24,26,28,30

Numeric Tags 0-NotEmpty,
1-Emptyc

zeros 17,19,21,23,25,
27,29,31, 39:47

Ignored – Writes are
ignored, reads return zero

MXCSR.ie FSR.ie 32 SSE Invalid operation
Exception

Does not reflect the status
of Intel® Itanium®
floating-point execution.

See Intel® 64 and IA-32
Architectures Software
Developer’s Manual for
details.

MXCSR.de FSR.de 33 SSE Denormalized operand
Exception

MXCSR.ze FSR.ze 34 SSE Zero divide Exception

MXCSR.oe FSR.oe 35 SSE Overflow Exception

MXCSR.ue FSR.ue 36 SSE Underflow Exception

MXCSR.pe FSR.pe 37 SSE Precision Exception

reserved 38, 48:63 Reserved

ignored 39:47 Ignored – Writes are
ignored, reads return zero

a. Exception Summary bit, see Section 6.2.2.5.4, “IA-32 Floating-point Environment” for details
b. Tag encodings indicate whether each IA-32 numeric register contains an zero, NaN, Infinity or Denormal are

not supported by reads of FSR by Itanium instructions. IA-32 instruction set reads of the FTW field do return
zero, Nan, Infinity and Denormal classifications.

c. All MMX technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology instruction
EMMS sets all Numeric Tags to 1 = Empty.

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)

IA-32 State Intel® Itanium®
State Bits IA-32 Usage Usage in the Intel®

Itanium® Architecture

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:129

• When FSR.es is set to 1 by Itanium architecture-based code, delayed IA-32
numeric exceptions are generated on the next IA-32 floating-point instruction,
regardless of numeric exception information written into FSR bits; IE, DE, ZE, OE,
UE, and PE.

• When FSR.es is written with inconsistent state with respect to the FSR bits (IE, DE,
ZE, OE, and PE), subsequent numeric exceptions may report inconsistent
floating-point status bits.

For Itanium instructions, the implementation can either raise Reserved Register/Field
faults on non-zero writes to the reserved fields, or write the value and return the last
value written on reads. FSR, FDR, and FIR must be preserved across a context switch to
generate and accurately report numeric exceptions.

6.2.2.6 IA-32 Intel® MMX™ Technology Registers

The eight IA-32 Intel MMX technology registers are mapped on the eight Itanium
floating-point registers FR8 - FR15 where MM0 is mapped to FR8 and MM7 is mapped to
FR15. The MMX technology register mapping for the IA-32 floating-point stack view is
dependent on the floating-point IA-32 Top-of-Stack value.

• When a value is written to an MMX technology register using an IA-32 MMX
technology instruction:

• The exponent field of the corresponding floating-point register (bits 80-64) and
the sign bit (bit 81) are set to all ones.

• The mantissa (bits 63-0) is set to the MMX technology data value.

• When a value is read from an MMX technology register by an IA-32 MMX technology
instruction:

• The exponent field of the corresponding floating-point register (bits 80-64) and
its sign bit (bit 81) are ignored, including any NaTVal encodings.

As a result of this mapping, the mantissa of a floating-point value written by either
IA-32 or Itanium floating-point instructions will also appear in an IA-32 MMX technology
register. An IA-32 MMX technology register will also appear in one of the eight mapped
floating-point register’s mantissa field.

Figure 6-1. Floating-point Data Register (FDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

operand offset (fea)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) operand selector (fds)

Figure 6-2. Floating-point Instruction Register (FIR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

code offset (fip)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved opcode {10:0} (fop) code selector (fcs)

Figure 6-3. IA-32 Intel® MMX™ Technology Registers (MM0 to MM7)

81 80 64 63 0

1 ones MM0..MM7{31:0} FR8-15

1:130 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

To avoid performance degradation, software programmers are strongly recommended
not to intermix IA-32 floating and IA-32 MMX technology instructions. See the Intel®
64 and IA-32 Architectures Software Developer’s Manual for MMX technology
coding guidelines for details.

6.2.2.7 IA-32 SSE Registers

The eight 128-bit IA-32 SSE registers (XMM0-7) are mapped on sixteen physical
Itanium floating-point register pairs FR16 - FR31. The low order 64-bits of XMM0 are
mapped to FR16{63:0}, and the high order 64-bits of XMM0 are mapped to
FR17{63:0}.

• When a value is written to an SSE register using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits
80-64) is set to 0x1003E and the sign bit (bit 81) is set to 0.

• The mantissa (bits 63-0) is set to the XMM data value bits{63:0} for even
registers and bits{127:64} for odd registers.

• When a SSE register is read using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits
80-64) and the sign bit (bit 81) are ignored, including any NaTVal encodings.

6.2.3 Memory Model Overview

Virtual addresses within either the Itanium or IA-32 instruction set are defined to
address the same physical memory location. Itanium instructions directly generate
64-bit virtual addresses. IA-32 instructions generate 16- or 32-bit effective addresses
that are then converted into 32-bit virtual addresses by IA-32 segmentation. 32-bit
virtual addresses are then converted into 64-bit virtual addresses by zero extending to
64-bits. Zero extension places all IA-32 memory references in the lower 4G-bytes of
the 64-bit virtual address space within virtual region 0. Virtual addresses generated by
either instruction set are then translated into physical addresses using memory
management mechanisms defined in Chapter 4, “Addressing and Protection” in Volume
2.

Figure 6-4. SSE Registers (XMM0-XMM7)

81 80 64 63 0

0 0x1003E XMM0-7{127:64} FR17-31, odd

81 80 64 63 0

0 0x1003E XMM0-7{63:0} FR16-30, even

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:131

6.2.3.1 Memory Endianess

Memory integer and floating-point (IEEE) data types are binary compatible between the
IA-32 and Itanium instruction sets. Itanium architecture-based applications and
operating systems that interact with IA-32 code should use “little-endian” accesses to
ensure that memory formats are the same. All IA-32 instruction data and instruction
memory references are forced to “little-endian.”

6.2.3.2 IA-32 Segmentation

Segmentation is not used for Itanium instruction set memory references. Segmentation
is performed on IA-32 instruction set memory references based on the state of
EFLAG.vm and CFLG.pe. Either Real Mode, VM86, or Protected Mode segmentation
rules are followed as defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, specifically:

• IA-32 Data 16/32-bit Effective Addresses: 16 or 32-bit effective addresses are
generated, based on CSD.d, SSD.b and prefix overrides, by the addition of a base
register, scaled index register and 16/32-bit displacement value. Starting effective
addresses (first byte of multi-byte operands) larger than 16 or 32 bits are truncated
to 16 or 32-bits. Ending (last byte of multi-byte operands) 16-bit effective
addresses can extend above the 64K byte boundary, however, ending 32-bit
effective addresses are truncated to 32-bits and do not extend above the 4G-byte
effective address boundary. Refer to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual for complete details on wrap conditions.

• IA-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is
used as the effective address. Starting EIP values (first byte of multi-byte
instruction) larger than 16 or 32 bits are truncated to 16 or 32-bits. Ending (last
byte of multi-byte instruction) 16-bit effective addresses can extend above the 64K
byte boundary, however, ending 32-bit EIP values are truncated to 32-bits and do
not extend above the 4G-byte effective address boundary.

• IA-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective
address is mapped into the 32-bit virtual address space by the addition of a
segment base. Full segment protection and limit checks are verified as specified by
the Intel® 64 and IA-32 Architectures Software Developer’s Manual and
additional checks as specified in this section. Starting 32-bit virtual addresses are
truncated to 32-bits after the addition of the segment base. Ending virtual address

Figure 6-5. Memory Addressing Model

Base

Index

Displacement

Base

Segmentation+

16-/32-bit 32-bit Virtual

IA-32

Intel® Itanium®

Address

Zero

64-bit Virtual
AddressEffective Address

Extend

Architecture

1:132 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

(last byte of a multiple byte operand or instruction) is truncated (wrapped) at the
4G-byte virtual boundary

• IA-32 64-bit Address Generation: The resultant 32-bit virtual address is
converted into a 64-bit virtual address by zero extending to 64-bits, this places all
IA-32 instruction set memory references within the first 4G-bytes of the 64-bit
virtual address space within virtual region 0.

If IA-32 code is utilizing a flat segmented model (segment bases are set to zero) then
IA-32 and Itanium architecture-based code can freely exchange pointers after a pointer
has been zero extended to 64-bits. For segmented IA-32 code, effective address
pointers must be first transformed into a virtual address before they are shared with
Itanium architecture-based code.

6.2.3.3 Self Modifying Code

While operating in the IA-32 instruction set, self modifying code and instruction cache
coherency (coherency with respect to the local processor’s data cache) is supported for
all IA-32 programs. Self modifying code detection is directly supported at the same
level of compatibility as the Pentium processor. Software must insert an IA-32 branch
instruction between the store operation and the instruction modified for the updated
instruction bytes to be recognized.

It is undefined whether the processor will detect a IA-32 self modifying code event for
the following conditions; 1) PSR.dt or PSR.it is 0, or 2) there are virtual aliases to
different physical addresses between the instruction and data TLBs. To ensure self
modifying code works correctly for IA-32 applications, the operating system must
ensure that there are no virtual aliases to different physical addresses between the
instruction and data TLBs.

When switching from the Itanium instruction set to the IA-32 instruction set, and while
executing Itanium instructions, self modifying code and instruction cache coherency are
not directly supported by the processor hardware. Specifically, if a modification is made
to IA-32 instructions by Itanium instructions, Itanium architecture-based code must
explicitly synchronize the instruction caches with the code sequence defined in
“Memory Consistency” on page 1:72. Otherwise the modification may or may not be
observed by subsequent IA-32 instructions.

When switching from the IA-32 to the Itanium instruction sets, modification of the local
instruction cache contents by IA-32 instructions is detected by the processor hardware.
The processor ensures that the instruction cache is made coherent with respect to the
modification and all subsequent Itanium instruction fetches see the modification.

6.2.3.4 Memory Ordering Interactions

IA-32 instructions are mapped into the Itanium memory ordering model as follows:

• All IA-32 stores have release semantics

• All IA-32 loads have acquire semantics

• All IA-32 read-modify-write or lock instructions have release and acquire
semantics (fully fenced).

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:133

Instruction set transitions do not automatically fence memory data references. To
ensure proper ordering software needs to take into account the following ordering
rules.

Transitions from Itanium instruction set to IA-32 instruction set

• All data dependencies are honored, IA-32 loads see the results of all prior Itanium
stores

• IA-32 stores (release) can not pass any prior Itanium load or store

• IA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium
store to a different address. Itanium architecture-based software can prevent IA-32
loads from passing prior Itanium loads and stores by issuing an acquire operation
(or mf) before the instruction set transition.

Transitions from IA-32 instruction set to Itanium instruction set

• All data dependencies are honored, Itanium loads see the results of all prior IA-32
stores

• Itanium stores or loads can not pass prior IA-32 loads (acquire)

• Itanium unordered stores or any Itanium load can pass prior IA-32 stores (release)
to a different address. Itanium architecture-based software can prevent Itanium
loads and stores from passing prior IA-32 stores by issuing a release operation (or
mf) after the instruction set transition.

6.2.4 IA-32 Usage of Intel® Itanium® Registers

This section lists software considerations for the Itanium general and floating-point
registers, and the ALAT when interacting with IA-32 code.

6.2.4.1 Register Stack Engine

Software must ensure that all dirty registers in the register stack have been flushed to
the backing store using a flushrs instruction before starting IA-32 execution via either
the br.ia or rfi. Any dirty registers left in the current and prior register stack frames
are left in an undefined state. Software can not rely on the value of these registers
across an instruction set transition.

Once IA-32 instruction set execution is entered, the RSE is effectively disabled,
regardless of any RSE control register enabling conditions.

After exiting the IA-32 instruction set due to a jmpe instruction or interruption, all
stacked registers are marked as invalid and the number of clean registers is set to zero.

6.2.4.2 ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software
cannot rely on ALAT state being preserved across an instruction set transition. On entry
to IA-32 code, existing entries in the ALAT are ignored. For details on the ALAT, refer to
Section 4.4.5.2, “Data Speculation and Instructions” on page 1:64.

1:134 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.4.3 NaT/NaTVal Response for IA-32 Instructions

If Itanium architecture-based code sets a NaT condition in the integer registers or a
NaTVal condition in a floating-point register, MMX technology, or SSE register before
switching to the IA-32 instruction set the following conditions can arise:

• When the IA-32 instruction set is entered, NaT values must not be contained in any
register defined to contain IA-32 state, otherwise processor operation is model
specific and undefined. Processors may generate a NaT Register Consumption Abort
on any IA-32 instruction at any time (including the first IA-32 instruction) for all
IA-32 integer, MMX technology, SSE, or FP instructions regardless of whether not
that instruction directly (or indirectly) references a register containing a NaT. NaT
Register Consumption aborts encountered during IA-32 execution may terminate
IA-32 instructions in the middle of execution with architectural state already
modified.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point
instructions, otherwise processor operation is model specific and undefined.
Processors may convert floating-point register(s) containing NaTVal to a SNAN
(during entry to the IA-32 instruction set or on a consuming IA-32 floating-point
instruction). Dependent IA-32 floating-point instructions that directly or indirectly
consume a propagated NaTVal register will either propagate the NaTVal indication
or generate an IA_32_Exception (FPError Invalid Operand) fault. Whether a
processor generates the fault or propagates the NaTVal is model specific. In no case
will the processor allow a NaTVal register to be used without either propagating the
NaTVal or generating an IA_32_Exception (FPError Invalid Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with
an IA-32 floating-point load instruction since a NaTVal cannot be expressed by
a 80-bit double extended precision number. It is highly recommended that
floating-point values be passed on the memory stack per typical IA-32 calling
conventions to avoid problems with NatVal and Itanium denormals.

• IA-32 SSE instructions that directly or indirectly consume a register containing a
NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s
mantissa field as a legal data value.

• IA-32 MMX technology instructions that directly or indirectly consume a register
containing a NaTVal encoding, will ignore the NaTVal encoding and interpret the
register’s mantissa field as a legal data value.

Software should not rely on the behavior of NaT or NaTVal during IA-32 instruction
execution, or propagate NaT or NaTVal into IA-32 instructions.

§

1:135 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Part II: Optimization Guide for the
Intel® Itanium® Architecture

1:136 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Volume 1, Part 2: About the Optimization Guide 1:137

About the Optimization Guide 1

The second portion of this document explains in detail optimization techniques
associated with the Itanium instruction set. It is intended for those interested in
furthering their understanding of application architecture features and optimization
techniques that benefit application performance. Intel and the industry are developing
compilers to take advantage of these techniques. Application developers are not
advised to use this as a guide to assembly language programming for the Itanium
architecture.

Note: To demonstrate techniques, this guide contains code examples that are not tar-
geted towards a specific processor based on the Itanium architecture, but
rather a hypothetical implementation. For these code examples, ALU operations
are assumed to take one cycle and loads take two cycles to return from first
level cache and that there are two load/store execution units and four ALUs.
Other latencies and execution unit details are described as needed

1.1 Overview of the Optimization Guide

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating- point applications and features that address these limitations.

§

1:138 Volume 1, Part 2: About the Optimization Guide

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:139

Introduction to Programming for the Intel®
Itanium® Architecture 2

2.1 Overview

The Itanium instruction set is designed to allow the compiler to communicate
information to the processor to manage resource characteristics such as instruction
latency, issue width, and functional unit assignment. Although such resources can be
statically scheduled, the Itanium architecture does not require that code be written for
a specific microarchitecture implementation in order to be functional.

The Itanium architecture includes a complete instruction set with new features
designed to:

• Increase instruction-level parallelism (ILP).

• Better manage memory latencies.

• Improve branch handling and management of branch resources.

• Reduce procedure call overhead.

The architecture also enables high floating-point performance and provides direct
support for multimedia applications.

Complete descriptions of the syntax and semantics of Itanium instructions can be found
in Volume 3: Intel® Itanium® Instruction Set Reference. Though this chapter provides
a high level introduction to application level programming, it assumes prior experience
with assembly language programming as well as some familiarity with the Itanium
application architecture. Optimization is explored in other chapters of this guide.

2.2 Registers

The architecture defines 128 general purpose registers, 128 floating-point registers, 64
predicate registers, and up to 128 special purpose registers. The large number of
architectural registers enable multiple computations to be performed without having to
frequently spill and fill intermediate data to memory.

There are 128, 64-bit general purpose registers (r0-r127) that are used to hold
values for integer and multimedia computations. Each of the 128 registers has one
additional NaT (Not a Thing) bit which is used to indicate whether the value stored in
the register is valid. Execution of Itanium speculative instructions can result in a
register’s NaT bit being set. Register r0 is read-only and contains a value of zero (0).
Attempting to write to r0 will cause a fault.

There are 128, 82-bit floating-point registers (f0-f127) that are used for
floating-point computations. The first two registers, f0 and f1, are read-only and read
as +0.0 and +1.0, respectively. Instructions that write to f0 or f1 will fault.

1:140 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

There are 64, one-bit predicate registers (p0-p63) that control conditional execution
of instructions and conditional branches. The first register, p0, is read-only and always
reads true (1). The results of instructions that write to p0 are discarded.

There are 8, 64-bit branch registers (b0-b7) that are used to specify the target
addresses of indirect branches.

There is space for up to 128 application registers (ar0-ar127) that support various
functions. Many of these register slots are reserved for future use. Some application
registers have assembler aliases. For example, ar66 is the Epilogue Counter and is
called ar.ec.

The instruction pointer is a 64-bit register that points to the currently executing
instruction bundle.

2.3 Using Intel® Itanium® Instructions

Itanium instructions are grouped into 128-bit bundles of three instructions. Each
instruction occupies the first, second, or third slot of a bundle. Instruction format,
expression of parallelism, and bundle specification are described below.

2.3.1 Format

A basic Itanium instruction has the following syntax:

[qp] mnemonic[.comp] dest=srcs

Where:

qp Specifies a qualifying predicate register. The value of the qualifying
predicate determines whether the results of the instruction are committed
in hardware or discarded. When the value of the predicate register is true
(1), the instruction executes, its results are committed, and any
exceptions that occur are handled as usual. When the value is false (0),
the results are not committed and no exceptions are raised. Most Itanium
instructions can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an Itanium instruction.

comp Specifies one or more instruction completers. Completers indicate optional
variations on a base instruction mnemonic. Completers follow the
mnemonic and are separated by periods.

dest Represents the destination operand(s), which is typically the result
value(s) produced by an instruction.

srcs Represents the source operands. Most Itanium instructions have at least
two input source operands.

2.3.2 Expressing Parallelism

The Itanium architecture requires the compiler or assembly writer to explicitly indicate
groups of instructions, called instruction groups, that have no register read after write
(RAW) or write after write (WAW) register dependencies. Instruction groups are
delimited by stops in the assembly source code. Since instruction groups have no RAW

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:141

or WAW register dependencies, they can be issued without hardware checks for register
dependencies between instructions. Both of the examples below show two instruction
groups separated by stops (indicated by double semicolons):
ld8 r1=[r5] ;; // First group
add r3=r1,r4 // Second group

A more complex example with multiple register flow dependencies is shown below:
ld8 r1=[r5] // First group
sub r6=r8,r9 ;;// First group
add r3=r1,r4 // Second group
st8 [r6]=r12 // Second group

All instructions in a single instruction group may not necessarily issue in parallel
because specific implementations may not have sufficient resources to issue all
instructions in an instruction group.

2.3.3 Bundles and Templates

In assembly code, each 128-bit bundle is enclosed in curly braces and contains a
template specification and three instructions. Thus, a stop may be specified at the end
of any bundle or in the middle of a bundle by using one of two special template types
that implicitly include mid-bundle stops.

Each instruction in a bundle is 41-bits long. Five other bits are used by a template-type
specification. Bundle templates enable processors based on the Itanium architecture to
dispatch instructions with simple instruction decoding, and stops enable explicit
specification of parallelism.

There are five slot types (M, I, F, B, and L), six instruction types (M, I, A, F, B, L), and
12 basic template types (MII, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB, MMB,
MFB). Each basic template type has two versions: one with a stop after the third slot
and one without. Instructions must be placed in slots corresponding to their instruction
types based on the template specification, except for A-type instructions that can go in
either I or M slots. For example, a template specification of.MII means that of the
three instructions in a bundle, the first is a memory (M) or A-type instruction, and the
next two are ALU integer (I) or A-type instructions:
{ .mii
ld4 r28=[r8] // Load a 4-byte value
add r9=2,r1 // 2+r1 and put in r9
add r30=1,r1 // 1+r1 and put in r30
}

For readability, most code examples in this book do not specify templates or braces.

Note: Bundle boundaries have no direct correlation with instruction group boundaries
as instruction groups can extend over an arbitrary number of bundles. Instruc-
tion groups begin and end where stops are set in assembly code, and dynami-
cally whenever a branch is taken or a stop is encountered.

1:142 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

2.4 Memory Access and Speculation

The Itanium architecture provides memory access only through register load and store
instructions and special semaphore instructions. The architecture also provides
extensive support for hiding memory latency via programmer-controlled speculation.

2.4.1 Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in
memory in little endian byte order, in which the least significant byte appears in the
lowest addressed byte of a memory location. For data, modes for both big and little
endian byte order are supported and can be controlled by a bit in the User Mask
Register.

Integer loads of one, two, and four bytes are zero-extended, since all 64 bits of each
register are always written. Integer stores write one, two, four, or eight bytes of
registers to memory as specified.

2.4.2 Speculation

Speculation allows a programmer to break data or control dependencies that would
normally limit code motion. The two kinds of speculation are called control speculation
and data speculation. This section summarizes speculation in the Itanium architecture.
See Chapter 3, “Memory Reference” for more detailed descriptions of speculative
instruction behavior and application.

2.4.3 Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above
branches. Support for this is enabled by special NaT bits that are attached to integer
registers and by special NatVal values for floating-point registers. When a speculative
load causes an exception, it is not immediately raised. Instead, the NaT bit is set on the
destination register (or NatVal is written into the floating-point register). Subsequent
speculative instructions that use a register with a set NaT bit propagate the setting until
a non-speculative instruction checks for or raises the deferred exception.

For example, in the absence of other information, the compiler for a typical RISC
architecture cannot safely move the load above the branch in the sequence below:
(p1) br.cond.dptk L1 // Cycle 0
 ld8 r3=[r5];; // Cycle 1
 shr r7=r3,r87 // Cycle 3

Supposing that the latency of a load is 2 cycles, the shift right (shr) instruction will
stall for 1. However, by using the speculative loads and checks provided in the Itanium
architecture, two cycles can be saved by rewriting the above code as shown below:
 ld8.s r3=[r5] // Earlier cycle
 // Other instructions

(p1) br.cond.dptk L1;; // Cycle 0
 chk.s r3,recovery // Cycle 1
 shr r7=r3,r87 // Cycle 1

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:143

This code assumes r5 is ready when accessed and that there are sufficient instructions
to fill the latency between the ld8.s and the chk.s.

2.4.4 Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory
references. Advanced loads exclusively refer to data speculative loads. Review the
order of loads and stores in this assembly sequence:
st8 [r55]=r45 // Cycle 0
ld8 r3=[r5] ;; // Cycle 0
shr r7=r3,r87 // Cycle 2

The Itanium architecture allows the programmer to move the load above the store even
if it is not known whether the load and the store reference overlapping memory
locations. This is accomplished using special advanced load and check instructions:
ld8.a r3=[r5] // Advanced load
// Other instructions

st8 [r55]=r45 // Cycle 0
ld8.c r3=[r5] // Cycle 0 - check
shr r7=r3,r87 // Cycle 0

Note: The shr instruction in this schedule could issue in cycle 0 if there were no con-
flicts between the advanced load and intervening stores. If there were a con-
flict, the check load instruction (ld8.c) would detect the conflict and reissue
the load.

2.5 Predication

Predication is the conditional execution of an instruction based on a qualifying
predicate. A qualifying predicate is a predicate register whose value determines
whether the processor commits the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare
(cmp) and test bit (tbit). When the value of a qualifying predicate associated with an
instruction is true (1), the processor executes the instruction, and instruction results
are committed. When the value is false (0), the processor discards any results and
raises no exceptions. Consider the following C code:
if (a) {
 b = c + d;
}
if (e) {
 h = i + j;
}

1:144 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

This code can be implemented in the Itanium architecture using qualifying predicates so
that branches are removed. The pseudo-code shown below implements the C
expressions without branches:
cmp.ne p1,p2=a,r0 // p1 <- a!= 0
cmp.ne p3,p4=e,r0 ;; // p3 <- e != 0
(p1)add b=c,d // If a!= 0 then add
(p3)sub h=i,j // If e!= 0 then sub

See Chapter 4, “Predication, Control Flow, and Instruction Stream” for detailed
discussion of predication. There are a few special cases where predicated instructions
read or write architectural resources regardless of their qualifying predicate.

2.6 Architectural Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur
significant overhead during procedure calls and returns. To address this problem, a
subset of the Itanium general registers are organized as a logically infinite set of stack
frames that are allocated from a finite pool of physical registers.

2.6.1 Stacked Registers

Registers r0 through r31 are called global or static registers and are not part of the
stacked registers. The stacked registers are numbered r32 up to a user-configurable
maximum of r127.

A called procedure specifies the size of its new stack frame using the alloc instruction.
The procedure can use this instruction to allocate up to 96 registers per frame shared
amongst input, output, and local values. When a call is made, the output registers of
the calling procedure are overlapped with the input registers of the called procedure,
thus allowing parameters to be passed with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always
referenced in a procedure starting at r32.

2.6.2 Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the
Register Stack Engine (RSE). The RSE moves the contents of physical registers between
the general register file and memory without explicit program intervention. This
provides a programming model that looks like an unlimited physical register stack to
compilers; however, saving and restoring of registers by the RSE may be costly, so
compilers should still attempt to minimize register usage.

2.7 Branches and Hints

Since branches have a major impact on program performance, the Itanium architecture
includes features to improve their performance by:

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:145

• Using predication to reduce the number of branches in the code. This improves
instruction fetching because there are fewer control flow changes, decreases the
number of branch mispredicts since there are fewer branches, and it increases the
branch prediction hit rates since there is less competition for prediction resources.

• Providing software hints for branches to improve hardware use of prediction and
prefetching resources.

• Supplying explicit support for software pipelining of loops and exit prediction of
counted loops.

2.7.1 Branch Instructions

Branching in the Itanium architecture is largely expressed the same way as on other
microprocessors. The major difference is that branch triggers are controlled by
predicates rather than conditions encoded in branch instructions. The architecture also
provides a rich set of hints to control branch prediction strategy, prefetching, and
specific branch types like loops, exits, and branches associated with software pipelining.
Targets for indirect branches are placed in branch registers prior to branch instructions.

2.7.2 Loops and Software Pipelining

Compilers sometimes try to improve the performance of loops by using unrolling.
However, unrolling is not effective on all loops for the following reasons:

• Unrolling may not fully exploit the parallelism available.

• Unrolling is tailored for a statically defined number of loop iterations.

• Unrolling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, the
Itanium architecture provides architectural support for software pipelining. Software
pipelining enables the compiler to interleave the execution of several loop iterations
without having to unroll a loop. Software pipelining is performed using:

• Loop-branch instructions.

• LC and EC application registers.

• Rotating registers and loop stage predicates.

• Branch hints that can assign a special prediction mechanism to important branches.

In addition to software pipelined while and counted loops, the architecture provides
particular support for simple counted loops using the br.cloop instruction. The cloop
branch instruction uses the 64-bit Loop Count (LC) application register rather than a
qualifying predicate to determine the branch exit condition.

For a complete discussion of software pipelining support, see Chapter 5, “Software
Pipelining and Loop Support.”

2.7.3 Rotating Registers

Rotating registers enable succinct implementation of software pipelining with
predication. Rotating registers are rotated by one register position each time one of
the special loop branches is executed. Thus, after one rotation, the content of register X
will be found in register X+1 and the value of the highest numbered rotating register

1:146 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

will be found in r32. The size of the rotating region of general registers can be any
multiple of 8 and is selected by a field in the alloc instruction. The predicate and
floating-point registers can also be rotated but the number of rotating registers is not
programmable: predicate registers p16 through p63 are rotated, and floating-point
registers f32 through f127 are rotated.

2.8 Summary

The Itanium architecture provides features that reduce the effects of traditional
microarchitectural performance barriers by enabling:

• Improved ILP with a large number of registers and software scheduling of
instruction groups and bundles.

• Better branch handling through predication.

• Reduced overhead for procedure calls through the register stack mechanism.

• Streamlined loop handling through hardware support of software pipelined loops.

• Support for hiding memory latency using speculation.

§

Volume 1, Part 2: Memory Reference 1:147

Memory Reference 3

3.1 Overview

Memory latency is a major factor in determining the performance of integer
applications. In order to help reduce the effects of memory latency, the Itanium
architecture explicitly supports software pipelining, large register files, and
compiler-controlled speculation. This chapter discusses features and optimizations
related to compiler-controlled speculation. See Chapter 5, “Software Pipelining and
Loop Support” for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in the Itanium
architecture, and general concepts and terminology related to data dependencies. The
concept of speculation is then introduced, followed by discussions and examples of how
speculation is used. The remainder of this chapter describes several important
optimizations related to memory access and instruction scheduling.

3.2 Non-speculative Memory References

The Itanium architecture supports non-speculative loads and stores, as well as explicit
memory hint instructions.

3.2.1 Stores to Memory

Itanium integer store instructions can write either 1, 2, 4, or 8 bytes and 4, 8, or 10
bytes for floating-point stores. For example, a st4 instruction will write the first four
bytes of a register to memory.

Although the Itanium architecture uses a little endian memory byte order by default,
software can change the byte order by setting the big endian (be) bit of the user mask
(UM).

3.2.2 Loads from Memory

Itanium integer load instructions can read either 1, 2, 4, or 8 bytes from memory
depending on the type of load issued. Loads of 1, 2, or 4 bytes of data are
zero-extended to 64-bits prior to being written into their target registers.

Although loads are provided for various data types, the basic data type is the quadword
(8 bytes). Apart from a few exceptions, all integer operations are on quadword data.
This can be particularly important when dealing with signed integers and 32-bit
addresses, or any addresses that are shorter than 64 bits.

1:148 Volume 1, Part 2: Memory Reference

3.2.3 Data Prefetch Hint

The lfetch instruction requests that lines be moved between different levels of the
memory hierarchy. Like all hint instructions defined in the Itanium architecture, lfetch
has no effect on program correctness, and any microarchitecture implementation may
choose to ignore it.

3.3 Instruction Dependencies

Data and control dependencies are fundamental factors in optimization and instruction
scheduling. Such dependencies can prevent a compiler from scheduling instructions in
an order that would yield shorter critical paths and better resource usage since they
restrict the placement of instructions relative to other instructions on which they are
dependent.

In general, memory references are the major source of control and data dependencies
that cannot be broken due to getting a wrong answer (if a data dependency is broken)
or raising a fault that should not be raised (if a control dependency is broken). This
section describes:

• Background material on memory reference dependencies.

• Descriptions of how dependencies constrain code scheduling on traditional
architectures.

Section 3.4 describes memory reference features defined in the Itanium architecture
that increase the number of dependencies that can be removed by a compiler.

3.3.1 Control Dependencies

An instruction is control dependent on a branch if the direction taken by the branch
affects whether the instruction is executed. In the code below, the load instruction is
control dependent on the branch:
(p1)br.cond some_label
ld8 r4=[r5]

The following sections provide overviews of control dependencies and their effects on
optimization.

3.3.1.1 Instruction Scheduling and Control Dependencies

The code below contains a control dependency at the branch instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23

(p1) br.cond some_label ;;

ld4 r2=[r3];; // Cycle 1
sub r4=r2,r11 // Cycle 3

Volume 1, Part 2: Memory Reference 1:149

A compiler cannot safely move the load instruction before the branch unless it can
guarantee that the moved load will not cause a fatal program fault or otherwise corrupt
program state. Since the load cannot be moved upward, the schedule cannot be
improved using normal code motion.

Thus, the branch creates a barrier to instructions whose execution depends upon it. In
Figure 3-1, the load in block B cannot be moved up because of a conditional branch at
the end of block A.

3.3.2 Data Dependencies

A data dependency exists between an instruction that accesses a register or memory
location and another instruction that alters the same register or location.

3.3.2.1 Basics of Data Dependency

The following basic terms describe data dependencies between instructions:

• Write-after-write (WAW)

A dependency between two instructions that write to the same register or memory
location.

• Write-after-read (WAR)

A dependency between two instructions in which an instruction reads a register or
memory location that a subsequent instruction writes.

• Read-after-write (RAW)

A dependency between two instructions in which an instruction writes to a register
or memory location that is read by a subsequent instruction.

• Ambiguous memory dependencies

Dependencies between a load and a store, or between two stores where it cannot
be determined if the involved instructions access overlapping memory locations.
Ambiguous memory references include possible WAW, WAR, or RAW dependencies.

• Independent memory references

References by two or more memory instructions that are known not to have
conflicting memory accesses.

Figure 3-1. Control Dependency Preventing Code Motion

Block A

Block B

br

ld

1:150 Volume 1, Part 2: Memory Reference

3.3.2.2 Data Dependency in the Intel® Itanium® Architecture

The Itanium architecture requires the programmer to insert stops between RAW and
WAW register dependencies to ensure correct code results. For example, in the code
below, the add instruction computes a value in r4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1
sub r7=r4,r9 // Instruction group 2

The stop after the add instruction terminates one instruction group so that the sub
instruction can legally read r4.

On the other hand, implementations based on the Itanium architecture are required to
observe memory-based dependencies within an instruction group. In a single
instruction group, a program can contain memory-based data dependent instructions
and hardware will produce the same results as if the instructions were executed
sequentially and in program order. The pseudo-code below demonstrates a memory
dependency that will be observed by hardware:

mov r16=1
mov r17=2 ;;
st8 [r15]=r16
st8 [r14]=r17;;

If the address in r14 is equal to the address in r15, uni-processor hardware guarantees
that the memory location will contain the value in r17 (2). The following RAW
dependency is also legal in the same instruction group even if software is unable to
determine if r1 and r2 overlap:

st8 [r1]=x
ld4 y=[r2]

3.3.2.3 Instruction Scheduling and Data Dependencies

The dependency rules are sufficient to generate correct code, but to generate efficient
code, the compiler must take into account the latencies of instructions. For example,
the generic implementation has a two cycle latency to the first level data cache. In the
code below, the stop maintains correct ordering, but a use of r2 is scheduled only one
cycle after its load:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3

Volume 1, Part 2: Memory Reference 1:151

Since the latency of a load is two cycles, the sub instruction will stall until cycle three.
To avoid a stall, the compiler can move the load earlier in the schedule so that the
machine can perform useful work each cycle:

ld4 r2=[r3] // Cycle 0
add r7=r6,1
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29;; // Cycle 1

sub r4=r2,r11 // Cycle 2

In this code, there are enough independent instructions to move the load earlier in the
schedule to make better use of the functional units and reduce execution time by one
cycle.

Now suppose that the original code sequence contained an ambiguous memory
dependency between a store instruction and the load instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.ne p1,p2=r12,r23;;

st4 [r29]=r13 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3

In this case, the load cannot be moved past the store due to the memory dependency.
Stores will cause data dependencies if they cannot be disambiguated from loads or
other stores.

In the absence of other architectural support, stores can prevent moving loads and
their dependent instructions: The following C language statements could not be
reordered unless ptr1 and ptr2 were statically known to point to independent memory
locations:

*ptr1 = 6;
x = *ptr2;

3.4 Using Speculation in the Intel® Itanium®
Architecture to Overcome Dependencies

Both data and control dependencies constrain optimization of program code. The
Itanium architecture provides support for two basic techniques used to overcome
dependencies:

• Data speculation: Allow a load and possibly its uses to be moved across
ambiguous memory writes.

• Control speculation: Allows a load and possibly its uses to be moved across a
branch on which the load is control dependent.

These techniques are used to hide load latencies and reduce execution time.

1:152 Volume 1, Part 2: Memory Reference

3.4.1 Speculation Model in the Intel® Itanium® Architecture

The limitations imposed by dependencies on instruction scheduling can be solved by
separating the loading of data from the exception handling or the acknowledgment of
data conflicts. The Itanium architecture supports special speculative versions of
instructions to accomplish this:

• Control speculative load instructions defer exceptions.

• Data speculative load instructions save address information.

• Special check instructions check for exceptions or data conflicts.

An Itanium speculative load can be moved above a dependency barrier (shown as a
dashed line) as shown in Figure 3-2.

The check detects a deferred exception or a conflict with an intervening store and
provides a mechanism to recover from failed speculation. With this support, speculative
loads and their uses can be scheduled earlier than non-speculative instructions. As a
result, the memory latencies of these loads can be hidden more easily than for
non-speculative loads.

3.4.2 Using Data Speculation in the Intel® Itanium®
Architecture

Data speculation in the Itanium architecture uses a special load instruction (ld.a)
called an advanced load instruction and an associated check instruction (chk.a or ld.c)
to validate data-speculated results.

When the ld.a instruction is executed, an entry is allocated in a hardware structure
called the Advanced Load Address Table (ALAT). The ALAT is indexed by physical
register number and records the load address, the type of the load, and the size of the
load.

A check instruction must be executed before the result of an advanced load can be used
by any non-speculative instruction. The check instruction must specify the same
register number as the corresponding advanced load.

When a check instruction is executed, the ALAT is searched for an entry with the same
target physical register number and type. If an entry is found, execution continues
normally with the next instruction.

Figure 3-2. Speculation Model in the Intel® Itanium® Architecture

Control or
Data Dependency

Original Load

Uses of Load

Speculative Load
Control or
Data Dependency

Check for Exception or

Uses of Load

Memory Conflict

Before Speculation After Speculation

Volume 1, Part 2: Memory Reference 1:153

If no matching entry is found, the speculative results need to be recomputed:

• Use a chk.a if a load and some of its uses are speculated. The chk.a jumps to
compiler-generated recovery code to re-execute the load and dependent
instructions.

• Use a ld.c if no uses of the load are speculated. The ld.c reissues the load.

Entries are removed from the ALAT due to:

• Stores that write to addresses overlapping with ALAT entries.

• Other advanced loads that target the same physical registers as ALAT entries.

• Implementation-defined hardware or operating system conditions needed to
maintain correctness.

• Limitations of the capacity, associativity, and matching algorithm used for a given
implementation of the ALAT.

3.4.2.1 Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions. In the code
below, a load and store may access conflicting memory addresses:

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can
be rewritten using an advanced load and check:

ld8.a r6=[r8] // Cycle -2 or earlier

// Other instructions

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8.c r6=[r8] // Cycle 0: check load
add r5=r6,r7;; // Cycle 0
st8 [r18]=r5 // Cycle 1

The original load has been turned into a check load, and an advanced load has been
scheduled above the ambiguous store. If the speculation succeeds, the execution time
of the remaining non-speculative code is reduced because the latency of the advanced
load is hidden.

3.4.2.2 Recovery Code Example

Consider again the non-speculative code from the last section:
st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

1:154 Volume 1, Part 2: Memory Reference

The compiler could move up not only the load, but also one or more of its uses. This
transformation uses a chk.a rather than a ld.c instruction to validate the advanced
load. Using the same example code sequence but now advancing the add as well as the
ld8 results in:

ld8.a r6=[r8];; // Cycle -3

// other instructions

add r5=r6,r7 // Cycle -1: add that uses r6

// Other instructions

st8 [r4]=r12 // Cycle 0
chk.a r6,recover // Cycle 0: check

back: // Return point from jump to recover
st8 [r18]=r5 // Cycle 0

Recovery code must also be generated:
recover:

ld8 r6=[r8] ;; // Reload r6 from [r8]
add r5=r6,r7 // Re-execute the add
br back // Jump back to main code

If the speculation fails, the check instruction branches to the label recover where the
speculated code is re-executed. If the speculation succeeds, execution time of the
transformed code is three cycles less than the original code.

3.4.2.3 Terminology Review

Terms related to speculation, such as advanced loads and check loads, have
well-defined meanings in the Itanium architecture. The terms below were introduced in
the preceding sections:

• Data speculative load

A speculative load that is statically scheduled prior to one or more stores upon
which it may be dependent. The data speculative load instruction is ld.a.

• Advanced load

A data speculative load.

• Check load

An instruction that checks whether a corresponding advanced load needs to be
re-executed and does so if required. The check load instruction is ld.c.

• Advanced load check

An instruction that takes a register number and an offset to a set of
compiler-generated instructions to re-execute speculated instructions when
necessary. The advanced load check instruction is chk.a.

• Recovery code

Program code that is branched to by a speculation check. Recovery code repeats a
load and chain of dependent instructions to recover from a speculation failure.

Volume 1, Part 2: Memory Reference 1:155

3.4.3 Using Control Speculation in the Intel® Itanium®
Architecture

The check to determine if control speculation was successful is similar to that for data
speculation.

3.4.3.1 The NaT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers. A register
NaT bit indicates whether the content of a register is valid. If the NaT bit is set to one,
the register contains a deferred exception token due to an earlier speculation fault. In
a floating-point register, the presence of a special value called the NaTVal signals a
deferred exception.

During a control speculative load, the NaT bit on the destination register of the load
may be set if an exception occurs and it is deferred. The exact set of events and
exceptions that cause an exception to be deferred (thus causing the NaT bit to be set),
depends in part upon operating system policy. When a speculative instruction reads a
source register that has its NaT bit set, NaT bits of the target registers of that
instruction are also set. That is, NaT bits are propagated through dependent
computations.

3.4.3.2 Control Speculation Example

When a control speculative load is scheduled, the compiler must insert a speculative
check, chk.s, along all paths on which results of the speculative load are consumed. If
a non-speculative instruction (other than a chk.s) reads a register with its NaT bit set,
a NaT consumption fault occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of control speculation:
(p1) br.cond some_label // Cycle 0

ld8 r1=[r5];; // Cycle 1
add r2=r1,r3 // Cycle 3

This code can be rewritten using a control speculative load and check. The check can be
placed in the same basic block as the original load:

ld8.s r1=[r5];; // Cycle -2

// Other instructions

(p1) br.cond some_label // Cycle 0
chk.s r1,recovery // Cycle 0
add r2=r1,r3 // Cycle 0

Until a speculation check is reached dynamically, the results of the control speculative
chain of instructions cannot be stored to memory or otherwise accessed
non-speculatively without the possibility of a fault. If a speculation check is executed
and the NaT bit on the checked register is set, the processor will branch to recovery
code pointed to by the check instruction.

It is also possible to test for the presence of set NaT bits and NaTVals using the test NaT
(tnat) and floating-point class (fclass) instructions.

1:156 Volume 1, Part 2: Memory Reference

Although every speculative computation needs to be checked, this does not mean that
every speculative load requires its own chk.s. Speculative checks can be optimized by
taking advantage of the propagation of NaT bits through registers as described in
Section 3.5.6.

3.4.3.3 Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bits is enabled by st8.spill
and ld8.fill instructions and the User NaT Collection application register (UNAT).

The “spill general register and NaT” instruction, st8.spill, saves eight bytes of a
general register to memory and writes its NaT bit into the UNAT. Bits 8:3 of the memory
address of the store determine which UNAT bit is written with the register NaT value.
The “fill general register” instruction, ld8.fill, reads eight bytes from memory into a
general register and sets the register NaT bit according to the value in the UNAT.
Software is responsible for saving and restoring the UNAT contents to ensure correct
spilling and filling of NaT bits.

The corresponding floating-point instructions, stf.spill and ldf.fill, save and
restore floating-point registers in floating-point register format without surfacing
exceptions due to NaTVals.

3.4.3.4 Terminology Review

The terms below are related to control speculation:

• Control speculative load

A speculative load that is scheduled prior to an earlier controlling branch.
References to “speculative loads” without qualifiers generally refer to control
speculative loads and not data speculative loads. Loads using the ld.s instruction
are control speculative loads.

• Speculation check

An instruction that checks whether a speculative instruction has deferred an
exception. Speculation check instructions include labels that point to
compiler-generated recovery code. The speculation check instruction is chk.s.

• Recovery code

Code executed to recover from a speculation failure. Control speculative recovery
code is analogous to data speculative recovery code.

3.4.4 Combining Data and Control Speculation

A load that is both data and control speculative is called a speculative advanced load.
The ld.sa instruction performs all the operations of both a speculative load and an
advanced load. An ALAT entry will not be allocated if this type of load generates a
deferred exception token, so an advanced load check instruction (chk.a) is sufficient to
check for both interference from subsequent stores and for deferred exceptions.

Volume 1, Part 2: Memory Reference 1:157

3.5 Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code
motion than can be performed on traditional architectures. Speculation can increase the
application of traditional loop optimizations such as invariant code motion and common
subexpression elimination. The Itanium architecture also offers post-increment loads
and stores that improve instruction throughput without increasing code size.

Memory reference optimization should take several factors into account including:

• Difference between the execution costs of speculative and non-speculative code.

• Code size.

• Interference probabilities and properties of the ALAT (for data speculation).

The remainder of this chapter discusses these factors and optimizations relating to
memory accesses.

3.5.1 Speculation Considerations

The use of data speculation requires more attention than the use of control speculation.
In part this is due to the fact that one control speculative load cannot inadvertently
cause another control speculative load to fail. Such an effect is possible with data
speculative loads since the ALAT has limited capacity and the replacement policy of
ALAT entries is implementation dependent. For example, if an advanced load is issued
and there are no unused ALAT entries, the hardware may choose to invalidate an
existing entry to make room for a new one.

Moreover, exceptions associated with control speculative calculations are uncommon in
correct code since they are related to events such as page faults and TLB misses.
However, excessive control speculation can be expensive as associated instructions fill
issue slots.

Although the static critical path of a program may be reduced by the use of data
speculation, the following factors contribute to the benefit/dynamic cost of data
speculation:

• The probability that an intervening store will interfere with an advanced load.

• The cost of recovering from a failed advanced load.

• The specific microarchitectural implementation of the ALAT: its size, associativity,
and matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling
can help to predict how often ambiguous loads and stores will conflict.

When using advanced loads, there should be case-by-case consideration as to whether
advancing only a load and using a ld.c might be preferable to advancing both a load
and its uses, which would require the use of the potentially more expensive chk.a.

Even when recovery code is not executed, its presence extends the lifetimes of
registers used in data and control speculation, thus increasing register pressure and
possibly the cost of register movement by the Register Stack Engine (RSE). See
Section 3.5.3 for information on considerations for recovery code placement.

1:158 Volume 1, Part 2: Memory Reference

3.5.2 Data Interference

Data references with low interference probabilities and high path probabilities can make
the best use of data speculation. In the pseudo-code below, assume the probabilities
that the stores to *p1 and *p2 conflict with var are independent.

p1 = / Prob interference = 0.30 */
. . .
p2 = / Prob interference = 0.40 */
. . .

 = var /* Load to be advanced */

If the compiler advances the load from var above the stores to pointers p1 and p2,
then:

Prob that stores to p1 or p2 interfere with var
= 1.0 - (Prob p1 will not interfere with var *

Prob p2 will not interfere with var)
= 1.0 - (0.70 * 0.60)
= 0.58

Given the interference probabilities above, there is a 58% probability at least one of p1
and p2 will interfere with a load from var if it is advanced above both of them. A
compiler can use traditional heuristics concerning data interference and interprocedural
memory access information to estimate these probabilities.

When advancing loads past function calls, the following should be considered:

• If a called function has many stores in it, it is more likely that actual or aliased ALAT
conflicts will occur.

• If other advanced loads are executed during the function call, it is possible that
their physical register numbers will either be identical or conflict with ALAT entries
allocated from calls in parent functions.

• If it is unknown whether a large number of advanced loads will be executed by the
called routines, then the possibility that the capacity of that ALAT may be exceeded
must be considered.

3.5.3 Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible
increases in code size. Such consideration is not particular to speculation, but to any
transformations that cause code to be duplicated, such as loop unrolling, procedure
inlining, or tail duplication. Techniques to minimize code growth are discussed later in
this section.

In general, control speculation increases the dynamic code size of a program since
some of the speculated instructions are executed and their results are never used.
Recovery code associated with control speculation primarily contributes to the static
size of the binary since it is likely to be placed out-of-line and not brought into cache
until a speculative computation fails (uncommon for control speculation).

Data speculation has a similar effect on code size except that it is less likely to compute
values that are never used since most non-control speculative data speculative loads
will have their results checked. Also, since control speculative loads only fail in
uncommon situations such as deferred data related faults (depending on operating
system configuration), while data speculative loads can fail due to ALAT conflicts, actual

Volume 1, Part 2: Memory Reference 1:159

memory conflicts, or aliasing in the ALAT, the decision as to where to place recovery
code for advanced loads is more difficult than for control speculation and should be
based on the expected conflict rate for each load.

As a general rule, efficient compilers will attempt to minimize code growth related to
speculation. As an example, moving a load above the join of two paths may require
duplication of speculative code on every path. The flow graph depicted in Figure 3-3
and the explanation shows how this could arise.

If the compiler or programmer advanced the load up to block B from its original
non-speculative position, all speculative code would need to be duplicated in both
blocks B and C. This duplicated code might be able to occupy NOP slots that already
exist. But if space for the code is not already available, it might be preferable to
advance the load to block A since only one copy would be required in this case.

3.5.4 Using Post-increment Loads and Stores

Post-increment loads and stores can improve performance by combining two operations
in a single instruction. Although the text in this section mentions only post-increment
loads, most of the information applies to stores as well.

Post-increment loads are issued on M-units and can increment their address register by
either an immediate value or by the contents of a general register. The following
pseudo-code that performs two loads:

ld8 r2=[r1]
add r1=1,r1 ;;
ld8 r3=[r1]

can be rewritten using a post-increment load:
ld8 r2=[r1],1 ;;
ld8 r3=[r1]

Post-increment loads may not offer direct savings in dependency path height, but they
are important when calculating addresses that feed subsequent loads:

• A post-increment load avoids code size expansion by combining two instructions
into one.

• Adds can be issued on either I-units or M-units. When a program combines an add
with a load, an I-unit or M-unit resource remains available that otherwise would
have been consumed. Thus, throughput of dependent adds and loads can be
doubled by using post-increment loads.

Figure 3-3. Minimizing Code Size During Speculation

Block A

Block B Block C

st
ld

1:160 Volume 1, Part 2: Memory Reference

A disadvantage of post-increment loads is that they create new dependencies between
post-increment loads and the operations that use the post-increment values. In some
cases, the compiler may wish to separate post-increment loads into their component
instructions to improve the overall schedule. Alternatively, the compiler could wait until
after instruction scheduling and then opportunistically find places where post-increment
loads could be substituted for separate load and add instructions.

3.5.5 Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like
invariant code motion. Examine this pseudo-code:

while (cond) {
 c = a + b; // Probably loop invariant
 *ptr++ = c;// May point to a or b
}

The variables a and b are probably loop invariant; however, the compiler must assume
the stores to *ptr will overwrite the values of a and b unless analysis can guarantee
that this can never happen. The use of advanced loads and checks allows code that is
likely to be invariant to be removed from a loop, even when a pointer cannot be
disambiguated:

ld4.a r1 = [&a]
ld4.a r2 = [&b]
add r3 = r1,r2 // Move computation out of loop
while (cond) {
 chk.a.nc r1, recover1

L1: chk.a.nc r2, recover2
L2: *p++ = r3

}

At the end of the module:
recover1: // Recover from failed load of a

ld4.a r1 = [&a]
add r3 = r1, r2
br.sptk L1 // Unconditional branch

recover2: // Recover from failed load of b
ld4.a r2 = [&b]
add r3 = r1, r2
br.sptk L2 // Unconditional branch

Using speculation in this loop hides the latency of the calculation of c whenever the
speculated code is successful.

Since checks have both a clear (clr) and no clear (nc) form, the programmer must
decide which to use. This example shows that when checks are moved out of loops, the
no clear version should be used. This is because the clear (clr) version will cause the
corresponding ALAT entry to be removed (which would cause the next check to that
register to fail).

Volume 1, Part 2: Memory Reference 1:161

3.5.6 Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size. The
propagation of NaT bits and NaTVals via speculative instructions can permit a single
check of a speculative result to replace multiple intermediate checks. The code below
demonstrates this optimization potential:

ld4.s r1=[r10] // Speculatively load to r1
ld4.s r2=[r20] // Speculatively load to r2
add r3=r1,r2;; // Add two speculative values

// Other instructions

chk.s r3,imm21 // Check for NaT bit in r3
st4 [r30]=r1 // Store r1
st4 [r40]=r2 // Store r2
st4 [r50]=r3 // Store r3

Only the result register, r3, needs to be checked before stores of any of r1, r2, or r3.
If a NaT bit were set at the time of the control speculative loads of r1 or r2, the NaT bit
would have been propagated to r3 from r1 or r2 via the add instruction.

Another way to reduce the amount of check code is to use control flow analysis to avoid
issuing extra ld.c or ld.a instructions. For example, the compiler can schedule a
single check where it is known to be reached by all copies of the advanced load. The
portion of a flow graph shown in Figure 3-4 demonstrates where this technique might
be applied.

A single check in the lowermost block shown for all of the advanced loads is correct if
both of these conditions are met:

• The lowermost block post-dominates all of the blocks with advanced loads from
location addr.

• The lowermost block precedes any uses of the advanced loads from addr.

Figure 3-4. Using a Single Check for Three Advanced Loads

ld.a ld.a

ld.a

*p1 = *p2 = *p3 =

ld.c

Advanced loads from addr
to the same register, R

Stores

Single load check of
register R

1:162 Volume 1, Part 2: Memory Reference

3.6 Summary

The examples in this chapter show where the Itanium architecture can take advantage
of existing techniques like dynamic profiling and disambiguation. Special architectural
support allows implementation of speculation in common scenarios in which it would
normally not be allowed. Speculation, in turn, increases ILP by making greater code
motion possible, thus enhancing traditional optimizations such as those involving loops.

Even though the speculation model can be applied in many different situations, careful
cost and benefit analysis is needed to insure best performance.

§

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:163

Predication, Control Flow, and Instruction
Stream 4

4.1 Overview

This chapter is divided into three sections that describe optimizations related to
predication, control flow, and branch hints as follows:

• The predication section describes if-conversion, predicate usage, and code
scheduling to reduce the affects of branching.

• The control flow optimization section describes optimizations that collapse and
converge control flow by using parallel compares, multiway branches, and multiple
register writers under predicate.

• The branch and prefetch hints section describes how hints are used to improve
branch and prefetch performance.

4.2 Predication

Predication allows the compiler to convert control dependencies into data
dependencies. This section describes several sources of branch-related performance
considerations, followed by a summary of predication mechanism, followed by a series
of descriptions of optimizations and techniques based on predication.

4.2.1 Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for
prediction at execution time and by restricting instruction scheduling freedom during
compilation.

4.2.1.1 Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and
the logic used to control these resources. The number of branches that can accurately
be predicted is limited by the size of the buffers on the processor, and such buffers tend
to be small relative to the total number of branches executed in a program.

This limitation means that branch intensive code may have a large portion of its
execution time spent due to contention for prediction resources. Furthermore, even
though the size of the predictors is a primary factor in determining branch prediction
performance, some branches are best predicted with different types of predictors. For
example, some branches are best predicted statically while others are more suitably
predicted dynamically. Of those predicted dynamically, some are of greater importance
than others, such as loop branches.

1:164 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

Since the cost of a misprediction is generally proportional to pipeline length, good
branch prediction is essential for processors with long instruction pipelines. Thus,
optimizing the use of prediction resources can significantly improve the overall
performance of an application.

Suppose, for instance, that the conditional in the code below is mispredicted 30% of the
time and branch mispredictions incur a ten cycle penalty. On average, the mispredicted
branch will add three cycles to each execution of the code sequence (30% * 10 cycles):

if (r1)
r2 = r3 + r4;

else
r7 = r6 - r5;

Equivalent Itanium architecture-based code that has not been optimized is shown
below. It requires five instructions including two branches and executes in two cycles,
not including potential misprediction or taken-branch penalty cycles:

cmp.eq p1,p2=r1,r0 // Cycle 0
(p1) br.cond else_clause // Cycle 0

add r2=r3,r4 // Cycle 1
br end_if // Cycle 1

else_clause:
sub r7=r6,r5 // Cycle 1

end_if:

Using the information above, this code will take five cycles to execute on average even
thought the critical path is only two cycles long (2 cycles + (30% * 10 cycles) = 5). If
the branch misprediction penalty could be eliminated (either by reducing contention for
resources or by removing the branch itself), performance of the code sequence would
improve by a factor of two.

4.2.1.2 Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state
or that can raise exceptions, because instructions in a program are control dependent
on all lexically enclosing branches. In addition to the control dependencies, compound
conditionals can take several cycles to compute and may themselves require
intermediate branches in languages like C that require short-circuit evaluation.

Control speculation is the primary mechanism used to perform global code motion for
Itanium architecture-based compilers. However, when an instruction does not have a
speculative form or the instruction could potentially corrupt memory state, control
speculation may be insufficient to allow code motion. Thus, techniques that allow
greater freedom in code motion or eliminate branches can improve the compiler’s
ability to schedule instructions.

4.2.2 Predication in the Intel® Itanium® Architecture

Now that the performance implications of branching have been described, this section
overviews predication in the Itanium architecture – the primary mechanism used by
optimizations described in this section.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:165

Almost all Itanium instructions can be tagged with a guarding predicate. If the value
of the guarding predicate is false at execution time, then the predicated instruction’s
architectural updates are suppressed, and the instruction behaves like a nop. If the
predicate is true, then the instruction behaves as if it were unpredicated. There are a
small number of instructions such as unconditional compares and floating-point
square-root and reciprocal approximate instructions whose qualifying predicate do not
operate as described above. See Part I:, “Application Architecture Guide” for additional
information.

The following sequence shows a set of predicated instructions:
(p1) add r1=r2,r3
(p2) ld8 r5=[r7]
(p3) chk.s r4,recovery

To set the value of a predict register, the architecture provides compare and test
instructions such as those as shown below.

cmp.eq p1,p2=r5,r6
tbit p3,p4=r6,5

Additionally, a predicate almost always requires a stop to separate its producing
instruction and its use:

cmp.eq p1,p2=r1,r2;;
(p1) add r1=r2,r3

The only exception to this rule involves an integer compare or test instruction that sets
a predicate that is used as the condition for a subsequent branch instruction:

cmp.eq p1,p2=r1,r2 // No stop required
(p1) br.cond some_target

4.2.3 Optimizing Program Performance Using Predication

This section describes predication-related optimizations, their use, and basic
performance analysis techniques. Following are descriptions of optimizations including
if-conversion, misprediction elimination, off-path predication, upward code motion, and
downward code motion.

4.2.3.1 Applying if-Conversion

One of the most important optimizations enabled by predication is the complete
removal of branches from some program sequences. Without predication, the
pseudo-code below would require a branch instruction to conditionally jump around the
if-block code:
if (r4) {

add r1=r2,r3
ld8 r6=[r5]

}

Using predication, the sequence can be written without a branch:
cmp.ne p1,p0=r4,0 ;;// Set predicate reg

(p1) add r1=r2,r3
(p1) ld8 r6=[r5]

1:166 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

The process of predicating instructions in conditional blocks and removing branches is
referred to as if-conversion. Once if-conversion has been performed, instructions can
be scheduled more freely because there are fewer branches to limit code motion, and
there are fewer branches competing for issue slots.

In addition to removing branches, this transformation will make dynamic instruction
fetching more efficient since there are fewer possibilities for control flow changes.
Under more complex circumstances, several branches can be removed. The following C
code sequence:

if (r1)
r2 = r3 + r4;

else
r7 = r6 - r5;

can be rewritten in Itanium architecture-based assembly code without branches as:
cmp.ne p1,p2 = r1,0;;

(p1) add r2 = r3,r4
(p2) sub r7 = r6,r5

Since instructions from opposite sides of the conditional are predicated with
complementary predicates they are guaranteed not to conflict, hence the compiler has
more freedom when scheduling to make the best use of hardware resources. The
compiler could also try to schedule these statements with earlier or later code since
several branches and labels have been removed as part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there
will be no pipeline bubbles due to taken branches. Such effects are significant in many
large applications, and these transformations can greatly reduce branch-induced stalls
or flushes in the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above
shows that:

• Non-predicated code consumes: 2 cycles + (30% * 10 cycles) = 5 cycles.

• Predicated code consumes: 2 cycles.

In this case, predication saves an average of three cycles.

4.2.3.2 Off-path Predication

If a compiler has dynamic profile information, it is possible to form an instruction
schedule based on the control flow path that is most likely to execute – this path is
called the main trace. In some cases, execution paths not on the main trace are still
executed frequently, and thus it may be beneficial to use predication to minimize their
critical paths as well.

The main trace of a flow graph is highlighted in Figure 4-1. Although blocks A and B are
not on the main trace, suppose they are executed a significant number of times.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:167

If some of the instructions in block A or block B can be included in the main trace
without increasing its critical path, then techniques of upward code motion can be
applied to reduce the critical path through blocks A and B when they are taken. An
example of how to use predication to implement upward code motion is given in the
next section.

4.2.3.3 Upward Code Motion

When traditional control speculation is inadequate, it may still be possible to predicate
an instruction and move it up or down in the schedule to reduce dependency height.
This is possible because predicating an instruction replaces a control dependency with a
data dependency. If the data dependency is less constraining than the control
dependency, such a transformation may improve the instruction schedule.

Given the Itanium architecture-based assembly sequence below, the store instruction
cannot be moved above the enclosing conditional instruction because it could cause an
address fault or other exception, depending upon the branch direction:
(p1) br.cond some_label // Cycle 0

st4 [r34] = r23 // Cycle 1
ld4 r5 = [r56] // Cycle 1
ld4 r6 = [r57] // Cycle 2:no cycle 1 M’s

One reason why it might be desirable to move the store instruction up is to allow loads
below it to move up.

Note: Ambiguous stores are barriers beyond which normal loads cannot move. In this
case, moving the store also frees up an M-unit slot. To rewrite the code so that
the store comes before the branch, p2 has been assigned the complement of
p1:

(p2) st4 [r34] = r23 // Cycle 0
(p2) ld4 r5 = [r56] // Cycle 0
(p1) br.cond some_label // Cycle 0

ld4 r6 = [r57] // Cycle 1

Since the store is now predicated, no faults or exceptions are possible when the branch
is taken, and memory state is only updated if and when the original home block of the
store is entered. Once the store is moved, it is also possible to move the load
instruction without having to use advanced or speculative loads (as long as r5 is not
live on the taken branch path).

Figure 4-1. Flow Graph Illustrating Opportunities for Off-path Predication

Block A

Block B

1:168 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

4.2.3.4 Downward Code Motion

As with upward code motion, downward code motion is normally difficult in the
presence of stores. The next example shows how code can be moved downward past a
label, a transformation that is often unsafe without predication:

ld8 r56 = [r45];; // Cycle 0: load
st4 [r23] = r56;; // Cycle 2: store

label_A:
add ... // Cycle 3
add ...
add ...
add ...;;

In the code above, suppose the latency between the load and the store is two clocks.
Assuming the load instruction cannot be moved upward due to other dependencies, the
only way to schedule the instructions so that the load latency is covered is to move the
store downward past the label.

The following code demonstrates the overall idea of using predicates to enable
downward code motion. In actual compiler-generated code, the predicates that are
explicitly computed in this example might already be available in predicate registers
and not require extra instructions.

// Point which “dominates” label_A
cmp.ne p1,p0 = r0,r0 // Initialize p1 to false

// Other instructions

cmp.eq p1,p0 = r0,r0 // Initialize p1 to true
ld8 r56=[r45];; // Cycle 0

label_A:
add ... // Cycle 1
add ...
add ...
add ...;;

(p1) st4 [r23]=r56 // Cycle 2

Here, downward code motion saves one cycle. There are examples of more
sophisticated situations involving cyclic scheduling, other store-constrained code
motion, or pulling code from outside loops into them, but they are not described here.

4.2.3.5 Cache Pollution Reduction

Loads and stores with predicates that are false at runtime are generally likely not to
cause any cache lines to be removed, replaced, or brought in. Also, no extra
instructions or recovery code are required as would be necessary for control or data
speculation. Therefore, when the use of predication yields the same critical path length
as data or control speculation, it is almost always preferable to use predication.

4.2.4 Predication Considerations

Even though predication can have a variety of beneficial effects, there are several cases
where the use of predication should be carefully considered. Such cases are usually
associated with execution paths that have unbalanced total latencies or over-usage of a
particular resource such as those associated with memory operations.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:169

4.2.4.1 Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependency height. Suppose that
non-predicated assembly for this sequence takes two clocks for the if-block and
approximately 18 clocks if we assume a setf takes 8 clocks, a getf takes 2 clocks, and
an xma takes 6 clocks:

if (r4) // 2 clocks
r3 = r2 + r1;

else // 18 clocks
r3 = r2 * r1;

f (r3); // An integer use of r3

If-converted Itanium architecture-based code is shown below. The cycle numbers
shown depend upon the values of p1 and p2 and assume the latencies shown:

// Issue cycle if p2 is:TrueFalse
cmp.ne p1,p2=r4,r0;; // 0 0

(p1) add r3=r2,r1 // 1 1
(p2) setf f1=r1 // 1 1
(p2) setf f2=r2;; // 1 1
(p2) xma.l f3=f1,f2,f0;; // 9 2
(p2) getf r3=f3;; // 15 3
(p2) use of r3 // 17 4

This code takes 18 cycles to complete if p2 is true and five cycles if p2 is false. When
analyzing such cases, consider execution weights, branch misprediction probabilities,
and prediction costs along each path.

In the three scenarios presented below, assume a branch misprediction costs ten
cycles. No instruction cache or taken-branch penalties are considered.

4.2.4.2 Case 1

Suppose the if-clause is executed 50% of the time and the branch is never
mispredicted. The average number of clocks for:

• Unpredicated code is: (2 cycles * 50%) + (18 cycles * 50%) = 10 clocks

• Predicated code is: (5 cycles * 50%) + (18 cycles * 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code.

4.2.4.3 Case 2

Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if
the time with mispredicts costing 10 clocks. The average number of clocks for:

• Unpredicated code is:

(2 cycles * 70%) + (18 cycles * 30%) + (10 cycles * 10%) = 7.8 clocks

• Predicated code is:

 (5 cycles * 70%) + (18 cycles * 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.

1:170 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

4.2.4.4 Case 3

Suppose the if-clause is executed 30% of the time and the branch mispredicts 30% of
the time. The average number of clocks for:

• Unpredicated code is:

 (2 cycles * 30%) + (18 cycles * 70%) + (10 cycles * 30%) = 16.2 clocks

• Predicated code is:

(5 cycles * 30%) + (18 cycles * 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks,
on average.

4.2.4.5 Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution
resources consumed by predicated blocks in addition to considering flow-dependency
height. The resource availability height of a set of instructions is the minimum number
of cycles taken considering only the execution resources required to execute them.

The code below is derived from an if-then-else statement. Given the generic machine
model that has only two load/store (M) units. If a compiler predicates and combines
these two blocks, then the resource availability height through the block will be four
clocks since that is the minimum amount of time necessary to issue eight memory
operations:
then_clause:

ld r1=[r21] // Cycle 0
ld r2=[r22] // Cycle 0
st [r32]=r3 // Cycle 1
st [r33]=r4 ;;// Cycle 1
br end_if

else_clause:
ld r3=[r23] // Cycle 0
ld r4=[r24] // Cycle 0
st [r34]=r5 // Cycle 1
st [r35]=r6 ;;// Cycle 1

end_if:

As with the example in the previous section, assuming various misprediction rates and
taken branch penalties changes the decision as to when to predicate and when not to
predicate. One case is illustrated below.

4.2.4.6 Case 1

Suppose the branch condition mispredicts 10% of the time and that the predicated code
takes four clocks to execute. The average number of clocks for:

• Non-predicated code is: (10 cycles * 10%) + 2 cycles = 3 cycles

• Predicated code is: 4 cycles

Predicating this code would increase execution time even though the flow dependency
heights of the branch paths are equal.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:171

4.2.5 Guidelines for Removing Branches

The following if-conversion guidelines apply to cases where only local behavior of the
code and its execution profile are known:

1. The flow dependency and resource availability heights of both paths must be
considered when deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code
sequence, careful analysis using profile or misprediction data must be performed
to ensure that execution time of the converted code is equivalent to or better
than unpredicated code.

3. If if-conversion removes a branch that is mispredicted a significant percentage of
the time, the transformation frequently pays off even if the blocks are
significantly unbalanced since mispredictions are very expensive.

4. If the flow-dependeny heights of the paths being if-converted are nearly equal
and there are sufficient resources to execute both streams simultaneously,
if-conversion is often advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of
some programs is limited by non-local effects such as overall branch behavior,
sensitivity to code size, percentage of time spent servicing branch mispredictions, etc.
In these situations, the decision to use if-convert or perform other speculative
transformation becomes more involved.

4.3 Control Flow Optimizations

A common occurrence in programs is for several control flows to converge at one point
or for multiple control flows to start from one point. In the first case, multiple flows of
control are often computing the value of the same variable or register and the join point
represents the point at which the program needs to select the correct value before
proceeding. In the second case, multiple flows may begin at a point where several
independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex
compound conditions normally requires a tree-like computation to reduce several
conditions into one. The Itanium architecture provides special instructions that allow
such conditions to be computed in fewer tree levels.

A third control-flow related optimization uses predication to improve instruction
fetching by if-conversion to generate straight-line sequences that can be efficiently
fetched. The use and optimization of these cases is described in the remainder of this
section.

1:172 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

4.3.1 Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several
instructions on processors without special instructions:

if (rA || rB || rC || rD) {
/* If-block instructions */

}
/* after if-block */

The pseudo-code below, shows one possible solution uses a sequence of branches:
cmp.ne p1,p0 = rA,0
cmp.ne p2,p0 = rB,0

(p1) br.cond if_block
(p2) br.cond if_block

cmp.ne p3,p0 = rC,0
cmp.ne p4,p0 = rD,0

(p3) br.cond if_block
(p4) br.cond if_block

// after if-block

On many implementations based on the Itanium architecture, this sequence is likely to
require at least two cycles to execute if all the conditions are false, plus the possibility
of more cycles due to one or more branch mispredictions. Another possible sequence
computes an or-tree reduction:

or r1 = rA,rB
or r2 = rC,rD;;
or r3 = r1,r2;;
cmp.ne p1,p2 = r3,0

(p1) br if_block

This solution requires three cycles to compute the branch condition which can then be
used to branch to the if-block.

Note: It is also possible to predicate the if-block using p1 to avoid branch mispredic-
tions.

To reduce the cost of compound conditionals, the Itanium architecture has special
parallel compare instructions to optimize expressions that have and and or operations.
These compare instructions are special in that multiple and/or compare instructions are
allowed to target the same predicate within a single instruction group. This feature
allows the possibility that a compound conditional can be resolved in a single cycle.

For this usage model to work properly, the architecture requires that the programmer
ensure that during any given execution of the code, that all instructions that target a
given predicate register must either:

• Write the same value (0 or 1) or

• Do not write the target register at all.

This usage model means that sometimes a parallel compare may not update the value
of its target registers and thus, unlike normal compares, the predicates used in parallel
compares must be initialized prior to the parallel compare. Please see Part
I:, “Application Architecture Guide” for full information on the operation of parallel
compares.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:173

Initialization code must be placed in an instruction group prior to the parallel compare.
However, since the initialization code has no dependencies on prior values, it can
generally be scheduled without contributing to the critical path of the code.

The instructions below shows how to generate code for the example above using
parallel compares:

cmp.ne p1,p0 = r0,r0;; // initialize p1 to 0
cmp.ne.or p1,p0 = rA,r0
cmp.ne.or p1,p0 = rB,r0
cmp.ne.or p1,p0 = rC,r0
cmp.ne.or p1,p0 = rD,r0

(p1) br.cond if_block

It is also possible to use p1 to predicate the if-block in-line to avoid a possible
misprediction. More complex conditional expressions can also be generated with
parallel compares:

if ((rA < 0) && (rB == -15) && (rC > 0))
/* If-block instructions */

The assembly pseudo-code below shows a possible sequence for the C code above:
cmp.eq p1,p0=r0,r0;; // initialize p1 to 1
cmp.ne.and p1,p0=rB,-15
cmp.ge.and p1,p0=rA,r0
cmp.le.and p1,p0=rC,r0

When used correctly, and or compares write both target predicates with the same value
or do not write the target predicate at all. Another variation on parallel compare usage
is where both the if and else part of a complex conditional are needed:

if (rA == 0 || rB == 10)
r1 = r2 + r3;

else
r4 = r5 - r6;

Parallel compares have an andcm variant that computes both the predicate and its
complement simultaneously.

cmp.ne p1,p2 = r0,r0;; // initialize p1,p2
cmp.eq.or.andcmp1,p2 = rA,r0
cmp.eq.or.andcmp1,p2 = rB,10;;

(p1) add r1=r2,r3
(p2) sub r4=r5,r6

Clearly, these instructions can be used in other combinations to create more complex
conditions.

4.3.2 Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and
multiple targets, the Itanium architecture has implicit support by allowing multiple
consecutive B-slot instructions within an instruction group.

1:174 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

An example uses a basic block with four possible successors. The following Itanium
architecture-based multi-target branch code uses a BBB bundle template and can
branch to either block B, block C, block D, or fall through to block A:
label_AA:

... // Instructions in block AA
{ .bbb
(p1) br.cond label_B
(p2) br.cond label_C
(p3) br.cond label_D
}

// Fall through to A
label_A:

... // Instructions in block A

The ordering of branches is important for program correctness unless all branches are
mutually exclusive, in which case the compiler can choose any ordering desired.

4.3.3 Selecting Multiple Values for One Variable or Register with
Predication

A common occurrence in programs is for a set of paths that compute different values
for the same variable to join and then continue. A variant of this is when separate paths
need to compute separate results but could otherwise use the same registers since the
paths are known to be complementary. The use of predication can optimize these
cases.

4.3.3.1 Selecting One of Several Values

When several control paths that each compute a different value of a single variable
meet, a sequence of conditionals is usually required to select which value will be used
to update the variable. The use of predication can efficiently implement this code
without branches:

switch (rW)
case 1:

rA = rB + rC;
break;

case 2:
rA = rE + rF;
break;

case 3:
rA = rH - rI;
break;

The entire switch-block above can be executed in a single cycle using predication if all
of the predicates have been computed earlier. Assume that if rW equals 1, 2, or 3, then
one of p1, p2, or p3 is true, respectively:
(p1) add rA=rB,rC
(p2) add rA=rE,rF
(p3) sub rA=rH,rI;;

Without this predication capability, numerous branches or conditional move operations
would be needed to collapse these values.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:175

The Itanium architecture allows multiple instructions to target the same register in the
same clock provided that only one of the instructions writing the target register is
predicated true in that clock. Similar capabilities exist for writing predicate registers, as
discussed in Section 4.3.1.

4.3.3.2 Reducing Register Usage

In some instances it is possible to use the same register for two separate computations
in the presence of predication. This technique is similar to the technique for allowing
multiple writers to store a value into the same register, although it is a register
allocation optimization rather than a critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be
predicated with complementary predicates. The contrived sequence below shows
instructions predicated by p1 and p2, which are known by the compiler to be
complementary:
(p1) add r1=r2,r3
(p2) sub r5=r4,r56
(p1) ld8 r7=[r2]
(p2) ld8 r9=[r6];;
(p1) a use of r1
(p2) a use of r5
(p1) a use of r7
(p2) a use of r9

Assuming registers r1, r5, r7, and r9 are used for compiler temporaries, each of which
is live only until its next use, the preceding code segment can be rewritten as:
(p1) add r1=r2,r3
(p2) sub r1=r4,r56 // Reuse r1
(p1) ld8 r7=[r2]
(p2) ld8 r7=[r6];; // Reuse r7
(p1) a use of r1
(p2) a use of r1
(p1) a use of r7
(p2) a use of r7

The new sequence uses two fewer registers. With the 128 registers defined in the
architecture, this may not seem essential, but reducing register use can still reduce
program and register stack engine spills and fills that can be common in codes with
high instruction-level parallelism.

4.3.4 Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large
blocks with no taken branches. Whenever the instruction pointer needs to be changed,
the hardware may have to insert bubbles into the pipeline either while the target
prediction is taking place or because the target address is not computed until later in
the pipeline.

1:176 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

By using predication to reduce the number of control flow changes, the fetching
efficiency will generally improve. The only case where predication is likely to reduce
instruction cache efficiency is when there is a large increase in the number of
instructions fetched which are subsequently predicated off. Such a situation uses
instruction cache space for instructions that compute no useful results.

4.3.4.1 Instruction Stream Alignment

For many processors, when a program branches to a new location, instruction fetching
is performed on instruction cache lines. If the target of the branch does not start on a
cache line boundary, then fetching from that target will likely not retrieve an entire
cache line. This problem can be avoided if a programmer aligns instruction groups that
cross more than one bundle so that the instruction groups do not span cache line
boundaries. However, padding all labels would cause an unacceptable increase in code
size. A more practical approach aligns only tops of loops and commonly entered basic
blocks when the first instruction group extends across more than one bundle. That is, if
both of the following conditions are true at some label L, then padding previous
instruction groups so that L is aligned on a cache line boundary is recommended:

• The label is commonly branched to from out-of-line. Examples include tops of loops
and commonly executed else clauses.

• The instruction group starting at label L extends across more than one bundle.

To illustrate, assume code at label L in the segment below is not cache-aligned and that
a cache boundary occurs between the two bundles. If a program were to branch to L,
then execution may split issue after the third add instruction even though there are no
resource oversubscriptions or stops:
L:
{ .mii

add r1=r2,r3
add r4=r5,r6
add r7=r8,r9

}
{ .mfb

ld8 r14=[r56] ;;
nop.f
nop.b

}

On the other hand, if L were aligned on an even-numbered bundle, then all four
instructions at L could issue in one cycle.

4.4 Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to allow the compiler or hand
coder to provide extra information to the hardware. Compared to hardware, the
compiler has more time, looks at a wider instruction window (including the source), and
performs more analysis. Transfer of this knowledge to the processor can help to reduce
penalties associated with I-cache accesses and branch prediction.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:177

Two types of branch-related hints are defined by the Itanium architecture: branch
prediction hints and instruction prefetch hints. Branch prediction hints let the compiler
recommend the resources (if any) that should be used to dynamically predict specific
branches. With prefetch hints, the compiler can indicate the areas of the code that
should be prefetched to reduce demand I-cache misses.

Hints can be specified as completers on branch (br) and move to branch register
(abbreviated mov2br in this text since the actual mnemonic is mov br=xx). The hints
on branch instructions are the easiest to use since the instruction already exists and the
hint completer just has to be specified. mov2br instructions are used for indirect
branches. The exact interpretation of these hints is implementation specific although
the general behavior of hints is expected to be similar between processor generations.

It is also possible to re-write the hint fields on branches later using a binary rewriting
tools. This can occur statically or at execution time based on profile data without
changing the correctness of the program. This technique allows static hints to be
tailored for usage patterns that may not be fully known at compilation time or when the
binaries are first distributed.

4.5 Hints for Controlling Multi-threading

Some processors support multi-threading; that is, they support the simultaneous
execution of multiple threads (multiple logical processors) through a common set of
execution resources (data paths, functional units, TLBs, etc.). Functionally, each of
these hardware threads fully implements the Itanium architecture; therefore, software
need not be aware of multi-threading nor do anything special to support it. From
performance standpoint, there are a few circumstances where it may be beneficial for
software to provide information about its future resource requirements, which can be
done with the hint instruction. Such a hint could allow the processor to optimize
resource allocation among the hardware threads.

Note that, although not all implementations support all types of hint instruction, those
that do not support them execute the hint instruction as a nop, and hence there is little
penalty for software to provide these hints.

4.5.1 Wait Loops

Say a thread is waiting for another software thread to complete a task and, during that
time, doesn't expect to need significant processor resources but would like to receive its
fair share of resources once the task is complete. In such a situation, the waiting thread
can communicate this information to the processor as a hint. This encourages the
processor to allocate more processor resources to other threads of execution while this
thread is waiting.

Typically, the completion signal in question is a store, by some other software thread, to
a particular memory location. For example, a software thread may be waiting to acquire
a spinlock and may have little work to do until such time as it is able to acquire the lock.
A store to the spinlock in question may be an indication that the lock is now available
for this software thread to acquire.

1:178 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

This scenario can be hinted to the processor by executing an advanced load (ld.a or
ld.sa) to the address that this software thread is waiting on, and then by executing a
hint @pause instruction (in a subsequent instruction group). This encourages the
processor to devote more resources to other threads, yet if an entry is invalidated from
this thread's ALAT, normal processor resource allocation is resumed for this thread.

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in a wait loop. Conversely, while
software is in such a wait loop, it would be best to re-execute the hint @pause as part
of that loop, to continue to assert the hint for as long as that thread is waiting.

Note that if there is some high likelihood that the ALAT may contain a large number of
valid entries upon entering into a wait loop, there may be some advantage to removing
these (e.g., with an invala instruction) prior to executing the advanced load to the
address to be waited on. This may reduce the restoration of resource allocation to this
thread in cases where ALAT entries get invalidated other than the one for the address
being waited on, hence providing more processor resources to other threads.

4.5.2 Idle Loops

Another situation where a software thread expects not to need significant processor
resources for the next little while is when the software thread is executing an OS-kernel
idle loop. It can provide this information to the processor also by executing a hint
@pause instruction. This encourages the processor to allocate more processor resources
to other threads of execution for the next while.

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in an idle loop. Conversely, while
software is in such an idle loop, it would be best to re-execute the hint @pause as part
of that loop, to continue to assert the hint for as long as that thread is idle.

Note that if there is some high likelihood that the ALAT may contain a large number of
valid entries upon entering into an idle loop, there may be some advantage to removing
these (e.g., with an invala instruction) prior to entering the idle loop. This may reduce
the restoration of resource allocation to this thread in cases where these ALAT entries
get invalidated, hence providing more processor resources to other threads.

4.5.3 Critical Sections

The opposite case exists if software expects that, given extra resources for the next
period of time, overall system performance and throughput would be optimized. For
example, this software thread may be about to acquire a highly contested spinlock and
enter a critical section of code, and expeditious progress through that critical section
and the resultant speedy release of the spinlock may disproportionately benefit overall
system performance and throughput.

This scenario can be hinted to the processor by executing a hint @priority instruction.
This encourages the processor to devote more processor resources to this thread (at
the expense of other threads) for some period of time.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:179

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in a critical section. Processors
that support this hint also ensure that it cannot be abused to affect overall longer-term
fairness of processor resource allocation.

4.6 Summary

This chapter has presented a wide variety of topics related to optimizing control flow
including predication, branch architecture, multiway branches, parallel compares,
instruction stream alignment, and branch hints. Although such topics could have been
presented in separate chapters, the interplay between the features is best understood
by their effects on each other.

Predication and its interplay on scheduling region formation is central to the
performance of the Itanium architecture. Unfortunately, discussion of compiler
algorithms of this nature are far beyond the scope of this document.

§

1:180 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

Volume 1, Part 2: Software Pipelining and Loop Support 1:181

Software Pipelining and Loop Support 5

5.1 Overview

The Itanium architecture provides extensive support for software-pipelined loops,
including register rotation, special loop branches, and application registers. When
combined with predication and support for speculation, these features help to reduce
code expansion, path length, and branch mispredictions for loops that can be software
pipelined.

The beginning of this chapter reviews basic loop terminology and instructions, and
describes the problems that arise when optimizing loops in the absence of architectural
support. Specific loop support features of the Itanium architecture are then introduced.
The remainder of this chapter describes the programming and optimization of various
type of loops.

5.2 Loop Terminology and Basic Loop Support

Loops can be categorized into two types: counted and while. In counted loops, the loop
condition is based on the value of a loop counter and the trip count can be computed
prior to starting the loop. In while loops, the loop condition is a more general
calculation (not a simple count) and the trip count is unknown. Both types are directly
supported in the architecture.

The Itanium architecture improves the performance of conventional counted loops by
providing a special counted loop branch (the br.cloop instruction) and the Loop Count
application register (LC). The br.cloop instruction does not have a branch predicate.
Instead, the branching decision is based on the value of the LC register. If the LC
register is greater than zero, it is decremented and the br.cloop branch is taken.

5.3 Optimization of Loops

In many loops, there are not enough independent instructions within a single iteration
to hide execution latency and make full use of the functional units. For example, in the
loop body below, there is very little ILP:
L1:

ld4 r4 = [r5],4;; // Cycle 0 load postinc 4
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3 store postinc 4
br.cloopL1;; // Cycle 3

In this code, all the instructions from iteration X are executed before iteration X+1 is
started. Assuming that the store from iteration X and the load from iteration X+1 are
independent memory references, utilization of the functional units could be improved
by moving independent instructions from iteration X+1 to iteration X, effectively
overlapping iteration X with iteration X+1.

1:182 Volume 1, Part 2: Software Pipelining and Loop Support

This section describes two general methods for overlapping loop iterations, both of
which result in code expansion on traditional architectures. The code expansion
problem is addressed by loop support features in the Itanium architecture that are
explored later in this chapter. The loop above will be used as a running example in the
next few sections.

5.3.1 Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level
parallelism by making and scheduling multiple copies of the loop body together. The
registers in each copy of the loop body are given different names to avoid unnecessary
WAW and WAR data dependencies. The code below shows the loop from our example
on page 1:181 after unrolling twice (total of two copies of the original loop body) and
instruction scheduling, assuming two memory ports and a two cycle latency for loads.
For simplicity, assume that the loop trip count is a constant N that is a multiple of two,
so that no exit branch is required after the first copy of the loop body:
L1:

ld4 r4 = [r5],4;; // Cycle 0
ld4 r14 = [r5],4;; // Cycle 1
add r7 = r4,r9;; // Cycle 2
add r17 = r14,r9 // Cycle 3
st4 [r6] = r7,4;; // Cycle 3
st4 [r6] = r17,4 // Cycle 4
br.cloopL1;; // Cycle 4

The above code does not expose as much ILP as possible. The two loads are serialized
because they both use and update r5. Similarly the two stores both use and update r6.
A variable which is incremented (or decremented) once each iteration by the same
amount is called an induction variable. The single induction variable r5 (and similarly
r6) can be expanded into two registers as shown in the code below:

add r15 = 4,r5
add r16 = 4,r6;;

L1: ld4 r4 = [r5],8 // Cycle 0
ld4 r14 = [r15],8;; // Cycle 0
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] r7,8 // Cycle 3
st4 [r16] = r17,8 // Cycle 3
br.cloopL1;; // Cycle 3

Compared to the original loop on page 1:181, twice as many functional units are
utilized and the code size is twice as large. However, no instructions are issued in cycle
1 and the functional units are still under utilized in the remaining cycles. The

Volume 1, Part 2: Software Pipelining and Loop Support 1:183

utilization can be increased by unrolling the loop more times, but at the cost of further
code expansion. The loop below is unrolled four times (assuming the trip count is
multiple of four):

add r15 = 4,r5
add r25 = 8,r5
add r35 = 12,r5
add r16 = 4,r6
add r26 = 8,r6
add r36 = 12,r6;;

L1: ld4 r4 = [r5],16 // Cycle 0
ld4 r14 = [r15],16;; // Cycle 0
ld4 r24 = [r25],16 // Cycle 1
ld4 r34 = [r35],16;; // Cycle 1
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] = r7,16 // Cycle 3
st4 [r16] = r17,16 // Cycle 3
add r27 = r24,r9 // Cycle 3
add r37 = r34,r9;; // Cycle 3
st4 [r26] = r27,16 // Cycle 4
st4 [r36] = r37,16 // Cycle 4
br.cloop L1;; // Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are
now executed in five cycles verses the two iterations in four cycles for the previous
version of the loop.

5.3.2 Software Pipelining

Software pipelining is a technique that seeks to overlap loop iterations in a manner that
is analogous to hardware pipelining of a functional unit. Each iteration is partitioned into
stages with zero or more instructions in each stage. A conceptual view of a single
pipelined iteration of the loop from page 1:181 in which each stage is one cycle long is
shown below:

stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:add r7 = r4,r9
stage 4:st4 [r6] = r7,4

The following is a conceptual view of five pipelined iterations:
 1 2 3 4 5 Cycle
--
ld4 X
 ld4 X+1
add ld4 X+2
st4 add ld4 X+3

st4 add ld4 X+4
st4 add X+5

st4 add X+6
 st4 X+7

The number of cycles between the start of successive iterations is called the initiation
interval (II). In the above example, the II is one. Each stage of a pipelined iteration is II
cycles long. Most of the examples in this chapter utilize modulo scheduling, which is a
particular form of software pipelining in which the II is a constant and every iteration of

1:184 Volume 1, Part 2: Software Pipelining and Loop Support

the loop has the same schedule. It is likely that software pipelining algorithms other
than modulo scheduling could benefit from the loop support features. Therefore the
examples in this chapter are discussed in terms of software pipelining rather than
modulo scheduling.

Software pipelined loops have three phases: prolog, kernel, and epilog, as shown
below:

 1 2 3 4 5 Phase
--
ld4
 ld4 Prolog
add ld4
--
st4 add ld4 Kernel

st4 add ld4
--

st4 add
st4 add Epilog

 st4

During the prolog phase, a new loop iteration is started every II cycles (every cycle for
the above example) to fill the pipeline. During the first cycle of the prolog, stage 1 of
the first iteration executes. During the second cycle, stage 1 of the second iteration and
stage 2 of the first iteration execute, etc. By the start of the kernel phase, the pipeline
is full. Stage 1 of the fourth iteration, stage 2 of the third iteration, stage 3 of the
second iteration, and stage 4 of the first iteration execute. During the kernel phase, a
new loop iteration is started, and another is completed every II cycles. During the
epilog phase, no new iterations are started, but the iterations already in progress are
completed, draining the pipeline. In the above example, iterations 3-5 are completed
during the epilog phase.

The software pipeline is coded as a loop that is very different from the original source
code loop. To avoid confusion when discussing loops and loop iterations, we use the
term source loop and source iteration to refer back to the original source code loop, and
the term kernel loop and kernel iteration to refer to the loop that implements the
software pipeline.

In the above example, the load from the second source iteration is issued before result
of the first load is consumed. Thus, in many cases, loads from successive iterations of
the loop must target different registers to avoid overwriting existing live values. In
traditional architectures, this requires unrolling of the kernel loop and software
renaming of the registers, resulting in code expansion. Furthermore, in traditional
architectures, separate blocks of code are generated for the prolog, kernel, and epilog
phases, resulting in additional code expansion.

5.4 Loop Support Features in the Intel® Itanium®
Architecture

The code expansion that results from loop optimizations (such as software pipelining
and loop unrolling) on traditional architectures can increase the number of instruction
cache misses, thus reducing overall performance. The loop support features in the

Volume 1, Part 2: Software Pipelining and Loop Support 1:185

Itanium architecture allow some loops to be software pipelined without code expansion.
Register rotation provides a renaming mechanism that reduces the need for loop
unrolling and software renaming of registers. Special software pipelined loop branches
support register rotation and, combined with predication, reduce the need to generate
separate blocks of code for the prolog and epilog phases.

5.4.1 Register Rotation

Register rotation renames registers by adding the register number to the value of a
register rename base (rrb) register contained in the CFM. The rrb register is
decremented when certain special software pipelined loop branches are executed at the
end of each kernel iteration. Decrementing the rrb register makes the value in register
X appear to move to register X+1. If X is the highest numbered rotating register, its
value wraps to the lowest numbered rotating register.

A fixed-sized area of the predicate and floating-point register files (p16-p63 and
f32-f127), and a programmable-sized area of the general register file are defined to
rotate. The size of the rotating area in the general register file is determined by an
immediate in the alloc instruction and must be either zero or a multiple of 8, up to a
maximum of 96 registers. The lowest numbered rotating register in the general register
file is r32. An rrb register is provided for each of the three rotating register files:
CFM.rrb.gr for the general registers; CFM.rrb.fr for the floating-point registers;
CFM.rrb.pr for the predicate registers. The software pipelined loop branches
decrement all the rrb registers simultaneously.

Below is an example of register rotation. The swp_branch pseudo-instruction
represents a software pipelined loop branch:
L1: ld4 r35 = [r4],4 // post increment by 4

st4 [r5] = r37,4 // post increment by 4
swp_branchL1 ;;

The value that the load writes to r35 is read by the store two kernel iterations (and two
rotations) later as r37. In the meantime, two more instances of the load are executed.
Because of register rotation, those instances write their result to different registers and
do not modify the value needed by the store.

The rotation of predicate registers serves two purposes. The first is to avoid
overwriting a predicate value that is still needed. The second purpose is to control the
filling and draining of the pipeline. To do this, a programmer assigns a predicate to each
stage of the software pipeline to control the execution of the instructions in that stage.
This predicate is called the stage predicate. For counted loops, p16 is architecturally
defined to be the predicate for the first stage, p17 is defined to be the predicate for the
second stage, etc. A conceptual view of a pipelined source iteration of the example
counted loop on page 1:181 is shown below. Each stage is one cycle long and the
stage predicates are shown:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

A register rotation takes place at the end of each stage (when the software-pipelined
loop branch is executed in the kernel loop). Thus a 1 written to p16 enables the first
stage and then is rotated to p17 at the end of the first stage to enable the second stage

1:186 Volume 1, Part 2: Software Pipelining and Loop Support

for the same source iteration. Each one written to p16 sequentially enables all the
stages for a new source iteration. This behavior is used to enable or disable the
execution of the stages of the pipelined loop during the prolog, kernel, and epilog
phases as described in the next section.

5.4.2 Note on Initializing Rotating Predicates

In this chapter, the instruction mov pr.rot = immed is used to initialize rotating
predicates. This instruction ignores the value of CFM.rrb.pr. Thus, the examples in this
chapter are written assuming that CFM.rrb.pr is always zero prior to the initialization of
predicate registers using mov pr.rot = immed.

5.4.3 Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very
compact code for software-pipelined loops by supporting register rotation and by
controlling the filling and draining of the software pipeline during the prolog and epilog
phases. Generally speaking, each time a software-pipelined loop branch is executed,
the following actions take place:

1. A decision is made on whether or not to continue kernel loop execution.

2. p16 is set to a value to control execution of the stages of the software pipeline
(p63 is written by the branch, and after rotation this value will be in p16).

3. The registers are rotated (rrb registers are decremented).

4. The Loop Count (LC) and/or the Epilog Count (EC) application registers are
selectively decremented.

There are two types of software-pipelined loop branches: counted and while.

5.4.3.1 Counted Loop Branches

Figure 5-1 shows a flowchart for modulo-scheduled counted loop branches.

During the prolog and kernel phase, a decision to continue kernel loop execution means
that a new source iteration is started. Register rotation must occur so that the new
source iteration does not overwrite registers that are in use by prior source iterations
that are still in the pipeline. p16 is set to 1 to enable the stages of the new source
iteration. LC is decremented to update the count of remaining source iterations. EC is
not modified.

During the epilog phase, the decision to continue loop execution means that the
software pipeline has not yet been fully drained and execution of the source iterations
in progress must continue. Register rotation must continue because the remaining
source iterations are still writing results and the consumers of the results expect
rotation to occur. p16 is now set to 0 because there are no more new source iterations
and the instructions that correspond to non-existent source iterations must be disabled.
EC contains the count of the remaining execution stages for the last source iteration
and is decremented during the epilog. For most loops, when a software pipelined loop
branch is executed with EC equal to 1, it indicates that the pipeline has been drained

Volume 1, Part 2: Software Pipelining and Loop Support 1:187

and a decision is made to exit the loop. The special case in which a software-pipelined
loop branch is executed with EC equal to 0 can occur in unrolled software-pipelined
loops if the target of the cexit branch is set to the next sequential bundle.

There are two types of software-pipelined loop branches for counted loops. br.ctop is
taken when a decision to continue kernel loop execution is made, and is not taken
otherwise. It is used when the loop execution decision is located at the bottom of the
loop. br.cexit is not taken when a decision to continue kernel loop execution is made,
and is taken otherwise. It is used when the loop execution decision is located
somewhere other than the bottom of the loop.

5.4.3.2 Counted Loop Example

A conceptual view of a pipelined iteration of the example counted loop on page 1:181
with II equal to one is shown below:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

To generate an efficient pipeline, the compiler must take into account the latencies of
instructions and the available functional units. For this example, the load latency is two
and the load and add are scheduled two cycles apart. The pipeline below is coded
assuming there are two memory ports and the loop count is 200.

Figure 5-1. ctop and cexit Execution Flow

000915

EC?

LC?

LC - - LC = LCLC = LC LC = LC

EC = EC EC - - EC - - EC = EC

PR[63] = 0PR[63] = 0PR[63] = 0PR[63] = 1

RRB - - RRB - - RRB - - RRB = RRB

ctop, cexit

 == 0 (epilog)

! = 0

> 1 == 0

==1

(prolog / kernel)
(special unrolled loops)

ctop: branch
cexit: fall-thru

ctop: fall-thru
cexit: branch

1:188 Volume 1, Part 2: Software Pipelining and Loop Support

Note: Rotating GRs have now been included in the code (the code directly preceding
did not). Also, induction variables that are post incremented must be allocated
to the static portion of the register file:

mov lc = 199 // LC =loop count - 1
mov ec = 4 // EC =epilog stages + 1
mov pr.rot = 1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r32 = [r5],4 // Cycle 0
(p18) add r35 = r34,r9 // Cycle 0
(p19) st4 [r6] = r36,4 // Cycle 0

br.ctop L1;; // Cycle 0

The memory ports are fully utilized. Table 5-1 shows a trace of the execution of this
loop.

In cycle 3, the kernel phase is entered and the fourth iteration of the kernel loop
executes the ld4, add, and st4 from the fourth, second, and first source iterations
respectively. By cycle 200, all 200 loads have been executed, and the epilog phase is
entered. When the br.ctop is executed in cycle 202, EC is equal to 1. EC is
decremented, the registers are rotated one last time, and execution falls out of the
kernel loop.

Note: After this final rotation, EC and the stage predicates (p16 - p19) are 0.

It is desirable to allocate variables that are loop variant to the rotating portion of the
register file whenever possible to preserve space in the static portion for loop invariant
variables. Induction variables that are post incremented must be allocated to the static
portion of the register file.

5.4.3.3 While Loop Branches

Figure 5-2 shows the flowchart for while loop branches.

Table 5-1. ctop Loop Trace

Cycle
Port/Instructions State before br.ctop

M I M B p16 p17 p18 p19 LC EC

0 ld4 br.ctop 1 0 0 0 199 4

1 ld4 br.ctop 1 1 0 0 198 4

2 ld4 add br.ctop 1 1 1 0 197 4

3 ld4 add st4 br.ctop 1 1 1 1 196 4

… … … … … … … … … … …

100 ld4 add st4 br.ctop 1 1 1 1 99 4

… … … … … … … … … … …

199 ld4 add st4 br.ctop 1 1 1 1 0 4

200 add st4 br.ctop 0 1 1 1 0 3

201 add st4 br.ctop 0 0 1 1 0 2

202 st4 br.ctop 0 0 0 1 0 1

... 0 0 0 0 0 0

Volume 1, Part 2: Software Pipelining and Loop Support 1:189

There are a few differences in the operation of the while loop branch compared to the
counted loop branch. The while loop branch does not access LC — a branch predicate
determines the behavior of this branch instead. During the kernel and epilog phases,
the branch predicate is one and zero respectively. During the prolog phase, the branch
predicate may be either zero or one depending on the scheme used to program the
while loop. Also, p16 is always set to zero after rotation. The reasons for these
differences are related to the nature of while loops and will be explained in more depth
with an example in a later section.

5.4.4 Terminology Review

The terms below were introduced in the preceding sections:

Initiation Interval (II)
The number of cycles between the start of successive source iterations in
a software pipelined loop. Each stage of the pipeline is II cycles long.

Prolog The first phase of a software-pipelined loop, in which the pipeline is filled.

Kernel The second phase of a software-pipelined loop, in which the pipeline is full.

Epilog The third phase of a software-pipelined loop, in which the pipeline is
drained.

Source Iteration
An iteration of the original source code loop.

Kernel Iteration
An iteration of the loop that implements the software pipeline.

Register Rotation
A form of register renaming that is visible to software. Registers are
renamed with respect to a register rename base that is decremented.

Figure 5-2. wtop and wexit Execution Flow

000916

EC?

PR[qp]?

EC = EC EC - -EC - - EC = EC

PR[63] = 0 PR[63] = 0 PR[63] = 0 PR[63] = 0

RRB - - RRB - - RRB - - RRB = RRB

wtop, wexit

 == 0 (prolog / epilog)

== 1

> 1 == 0

==1

(prolog /
kernel) (special unrolled loops)

wtop: branch
wexit: fall-thru

wtop: fall-thru
wexit: branch

(prolog /
epilog) (epilog)

1:190 Volume 1, Part 2: Software Pipelining and Loop Support

Induction Variable
Value that is incremented (or decremented) once per source iteration by
the same amount.

5.5 Optimization of Loops in the Intel® Itanium®
Architecture

Register rotation, predication, and the software pipelined loop branches allow the
generation of compact, yet highly parallel code. Speculation can further increase loop
performance by removing dependency barriers that limit the throughput of software
pipelined loops. Register rotation removes the requirement that kernel loops be
unrolled to allow software renaming of the registers. However in some cases
performance can be increased by unrolling the source loop prior to software pipelining,
or by generating explicit prolog and/or epilog blocks. The remainder of this chapter
discusses loop optimizations.

5.5.1 While Loops

The programming scheme for while loops depends upon the structure of the loop. This
section discusses do-while loops, in which the loop condition is computed at the bottom
of the loop. Optimizing compilers often transform while loops (where the condition is
computed at the top of the loop) into do-while loops by moving the condition
computation to the bottom of the loop and placing a copy of the condition computation
prior to the loop to reduce the number of branches in the loop. The remainder of this
section refers to such loops simply as while loops. Below is a simple while loop:
L1: ld4 r4 = [r5],4;; // Cycle 0

st4 [r6] = r4,4 // Cycle 2
cmp.ne p1,p0 = r4,r0 // Cycle 2

(p1) br L1;; // Cycle 2

A conceptual view of a pipelined iteration of this loop with II equal to one is shown
below:
stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:st4 [r6]= r4,4

cmp.ne.unc p1,p0 = r4,r0
(p1) br L1

The following is a conceptual view of four overlapped source iterations assuming the
load and store are independent memory references. The store, compare, and branch
instructions in stage two are represented by the pseudo-instruction scb:
 1 2 3 4 Cycle
--
ld4 X
 ld4.s X+1
scb ld4.s X+2

scb ld4.s X+3
scb X+4

scb X+5

Volume 1, Part 2: Software Pipelining and Loop Support 1:191

Notice that the load for the second source iteration is executed before the compare and
branch of the first source iteration. That is, the load (and the update of r5) is
speculative. The loop condition is not computed until cycle X+2, but in order to
maximize the use of resources, it is desirable to start the second source iteration at
cycle X+1. Without the support for control speculation in the Itanium architecture, the
second source iteration could not be started until cycle X+3.

The computation of the loop condition for while loops is very different from that of
counted loops. In counted loops, it is possible to compute the loop condition in one
cycle using a counted loop branch. This is what a br.ctop instruction does when it sets
p16. In while loops, a compare must compute the loop condition and set the stage
predicates. The stages prior to the one containing the compare are called the
speculative stages of the pipeline, because it is not possible for the compare to
completely control the execution of these stages. Therefore, the stage predicate set by
the compare is used (after rotation) to control the first non-speculative stage of the
pipeline.

The pipelined version of the while loop on page 1:190 is shown below. A check for the
speculative load is included:

mov ec = 2
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p18) chk.s r34, recovery // Cycle 0
(p18) cmp.ne p17,p0 = r34,r0 // Cycle 0
(p18) st4 [r6] = r34,4 // Cycle 0
(p17) br.wtop.sptkL1;; // Cycle 0
L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine a
trace of the execution of the loop (assume there are 200 source iterations) shown in
Table 5-2.

There is no stage predicate assigned to the load because it is speculative. The compare
sets p17. This is the branch predicate for the current iteration and, after rotation, the
stage predicate for the first non-speculative stage (stage three) of the next source
iteration. During the prolog, the compare cannot produce its first valid result until cycle
two. The initialization of the predicates provides a pipeline that disables the compare
until the first source iteration reaches stage two in cycle two. At that point the
compare starts generating stage predicates to control the non-speculative stages of the
pipeline. Notice that the compare is conditional. If it were unconditional, it would
always write a zero to p17 and the pipeline would not get started correctly.

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC

0 ld4.s br.wtop 1 0 0 2

1 ld4.s br.wtop 0 1 0 1

2 ld4.s cmp chk st4 br.wtop 0 1 1 1

1:192 Volume 1, Part 2: Software Pipelining and Loop Support

The executions of br.wtop in the first two cycles of the prolog do not correspond to any
of the source iterations. Their purpose is simply to continue the kernel loop until the
first valid loop condition can be produced. In cycle one, the branch predicate p17 is
one. For this programming scheme, the branch predicate of the br.wtop is always a
one during the last speculative stage of the first source iteration. During all the prior
stages, the branch predicate is zero. If the branch predicate is zero, the br.wtop
continues the kernel loop only if EC is greater than one. It also decrements EC. Thus EC
must be initialized to (# epilog stages + # speculative pipeline stages). In the above
example, this is 0 + 2 = 2.

In cycle 201, the compare for the 200th source iteration is executed. Since this is the
final source iteration, the result of the compare is a zero and p17 is unmodified. The
zero that was rotated into p17 from p16 causes the br.wtop to fall through to the loop
exit. EC is decremented and the registers are rotated one last time.

In the above example, there are no epilog stages. As soon as the branch predicate
becomes zero, the kernel loop is exited.

5.5.2 Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage
predicates. They continue to be controlled by compare instructions in the loop body. For
example, the following loop contains predicated instructions:
L1: ldfs f4 = [r5],4

ldfs f9 = [r8],4;;
fcmp.ge.unc p1,p2 = f4,f9;;

(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

br.cloopL1 ;;

3 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

100 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

199 ld4.s cmp chk st4 br.wtop 0 1 1 1

200 ld4.s cmp chk st4 br.wtop 0 1 1 1

201 ld4.s cmp chk st4 br.wtop 0 0 1 1

0 0 0 0

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC

Volume 1, Part 2: Software Pipelining and Loop Support 1:193

Below is a possible pipeline with an II of 2, assuming a floating-point load latency of 9
cycles:
stage 1:
(p16) ldfs f4 = [r5],4
(p16) ldfs f9 = [r8],4;;

--- // empty cycle
stage 2-4: --- // empty stages
stage 5: --- // empty cycle
(p20) fcmp.ge.unc p1,p2 = f4,f9;;
stage 6: --- // empty cycle
(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

The following is the code to implement the pipeline:
mov lc = 199 // LC = loop count - 1
mov ec = 6 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ldfs f32 = [r5],4
(p16) ldfs f38 = [r8],4;;
(p32) stfs [r9] = f37, 4
(p20) fcmp.ge.uncp31,p32 = f36,f42
(p33) stfs [r9] = f43, 4
L2: br.ctop.sptkL1;;

5.5.3 Multiple-exit Loops

All of the example loops discussed so far have a single exit at the bottom of the loop.
The loop below contains multiple exits — an exit at the bottom associated with the loop
closing branch, and an early exit in the middle:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.unc p1,p0 = r9,r7

(p1) br.cond exit // early exit
add r8 = -1,r8;;
cmp.ge.unc p3,p0 = r8,r0

(p3) br.cond L1;;

Loops with multiple exits require special care to ensure that the pipeline is correctly
drained when the early exit is taken.There are two ways to generate a pipelined version
of the above loop: (1) convert it to a single exit loop, or (2) pipeline it with the multiple
exits explicitly present.

1:194 Volume 1, Part 2: Software Pipelining and Loop Support

5.5.3.1 Converting Multiple Exit Loops to Single Exit Loops

The first is to transform the multiple exit loop into a single exit loop. In the source loop,
execution of the add, the second compare and the second branch is guarded by the first
branch. The loop can be transformed into a single exit loop by using predicates to guard
the execution of these instructions and moving the early exit branch out of the loop as
shown below:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.uncp1,p2 = r9,r7
add r8 = -1,r8;;

(p2) cmp.ge.unc p3,p0 = r8,r0
(p3) br.cond L1;;
(p1) br.cond exit // early exit if p1 is 1

The computation of p3 determines if either exit of the source loop would have been
taken. If p3 is zero, the loop is exited and p1 is used to determine which exit was
actually taken. The add is executed speculatively (it is not guarded by p2) to keep the
dependency from the cmp.eq to the add from limiting the II. It is assumed that either
r8 is not live out at the early exit or that compensation code is added at the target of
the early exit. The pipeline for this loop is shown below with the stage predicate
assignments but no other rotating register allocation. The compare and the branch at
the end of stage 4 are not assigned stage predicates because they already have
qualifying predicates in the source loop:
stage 1:ld4.s r4 = [r5],4;; // II = 2

--- // empty cycle
stage 2:--- // empty cycle

ld4.s r9 = [r4];;
stage 3:--- // empty stage
stage 4:
(p19) add r8 = -1,r8
(p19) cmp.eq.uncp1,p2 = r9,r7;;
(p2) cmp.ge.uncp3,p0 = r8,r0
(p3) br.cond L1;;

The code to implement this pipeline is shown below complete with the chk instruction:
mov ec = 3
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r5],4 // Cycle 0
(p19) chk.s r36, recovery // Cycle 0
(p19) add r8 = -1,r8 // Cycle 0
(p19) cmp.eq.unc p31,p32 = r36,r7;; // Cycle 0

ld4.s r34 = [r33] // Cycle 1
(p32) cmp.ge p18,p0 = r8,r0 // Cycle 1
L2:
(p18) br.wtop.sptk L1;; // Cycle 1
(p32) br.cond exit // early exit if p32 is 1

Note: When the loop is exited, one final rotation occurs, rotating the value in p31 to
p32. Thus, p32 is used as the branch predicate for the early exit branch.

Volume 1, Part 2: Software Pipelining and Loop Support 1:195

5.5.3.2 Pipelining with Explicit Multiple Exits

The second approach is to combine the last three instructions in the loop into a
br.cloop instruction and then pipeline the loop. The pipeline using this approach is
shown below:
stage 1: ld4.s r4 = [r5],4;; // II = 1
stage 4: ld4.s r9 = [r4];;
stage 6: cmp.eq.unc p1,p0 = r9,r7
(p1) br.cond exit

br.cloop L1;;

There are five speculative stages in this pipeline because a non-speculative decision to
initiate another loop iteration cannot be made until the br.cond and br.cloop are
executed in stage 6. The code to implement this pipeline is shown below assuming a
trip count of 200:

mov lc = 204
mov ec = 1
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p21) chk.s r38, recovery // Cycle 0
(p21) cmp.eq.uncp1,p0 = r38,r7 // Cycle 0

ld4.s r36 = [r35] // Cycle 0
(p1) br.cond exit // Cycle 0
L2: br.ctop.sptkL1; // Cycle 0

When the kernel loop is exited at either the br.cond or the br.ctop, the last source
iteration is complete. Thus, EC is initialized to 1 and there is no explicit epilog block
generated for the early exit. The LC register is initialized to five more than 199
because there are five speculative stages. The purpose of the first five executions of
br.ctop is simply to keep the loop going until the first valid branch predicate is
generated for the br.cond. During each of these executions, LC is decremented, so five
must be added to the LC initialization amount to compensate.

A smaller II is achieved with the second approach. This pipelined code will also work if
LC is initialized to 199 and EC is initialized to 6. However, if the early exit is taken, LC
will have been decremented too many times and will need to be adjusted if it is used at
the target of the early exit. If there is any epilog when the early exit is taken, that
epilog must be explicit.

5.5.4 Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline a loop. Software
pipelining increases the throughput of iterations, but may increase the time required to
complete a single iteration. As a result, loops with very small trip counts may
experience decreased performance when pipelined. For example, consider the following
loop:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4 r7 = [r8],4;; // Cycle 0
st4 [r6] = r4,4 // Cycle 2
st4 [r9] = r7,4 // Cycle 2
br.cloop L1;; // Cycle 2

1:196 Volume 1, Part 2: Software Pipelining and Loop Support

The following is a possible pipeline with an II of 2:
stage 1: ld4 r4 = [r5],4 // Cycle 0

ld4 r7 = [r8],4;; // Cycle 0
--- // empty cycle

stage 2: --- // empty cycle
st4 [r6] = r4,4 // Cycle 3
st4 [r9] = r7,4;; // Cycle 3

In the source loop, one iteration is completed every three cycles. In the software
pipelined loop, it takes four cycles to complete the first iteration. Thereafter, iterations
are completed every two cycles. If the trip count is two, the execution time of both
versions of the loop is the same, six cycles. If the average trip count of the loop is less
than two, the software pipelined version of the loop is slower than the source loop.

In addition, it may not be desirable to pipeline a floating-point loop that contains a
function call. The number of floating-point registers used by the loop is not known until
after the loop is pipelined. After pipelining, it may be difficult to find empty slots for the
instructions needed to save and restore the caller-saved floating-point registers across
the function call.

5.5.5 Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops,
thus reducing the resource requirements of the loop. Use of advanced loads also can
reduce the critical path through the iterations, allowing a smaller II to be achieved. See
Chapter 3, “Memory Reference” for more information on advanced loads. However,
caution must be exercised when using advanced loads with register rotation. For this
discussion, we assume an ALAT with 32 entries.

5.5.5.1 Capacity Limitations

An advanced load with a destination that is a rotating register targets a different
physical register and allocates a new ALAT entry for each kernel iteration. For
example, the simple loop below replaces 32 ALAT entries in 32 iterations:
L1:
(p16) ld4.a r32 = [r8]
(p47) ld4.c r63 = [r8]

br.ctop L1;;

To avoid unnecessary ALAT misses, the check load or advanced load check must be
executed before a later advanced load causes a replacement of the entry being
checked. In the simple loop above, the unnecessary ALAT misses do not occur because
the check load is done within 31 iterations of the advanced load. In the example below,
an ALAT miss is encountered for every check load because the advanced load replaces
an entry just before the corresponding check load is executed:
L1:
(p16) ld4.a r32 = [r8]
(p48) ld4.c r64 = [r8]

br.ctop L1;;

Volume 1, Part 2: Software Pipelining and Loop Support 1:197

5.5.5.2 Conflicts in the ALAT

Using an advanced load to remove a likely invariant load from a loop while advancing
another load inside the loop results in poor performance if the latter load targets a
rotating register. The advanced load that targets the rotating register will eventually
invalidate the ALAT entry for the loop invariant load. Thereafter, every execution of the
check load for the loop invariant load will cause an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers
must be assigned and the register lifetimes controlled so that the check load for a
particular advanced load X is executed before any of the other advanced loads can
invalidate the entry allocated by load X. For example, the following loop successfully
targets rotating registers with two advanced loads without any ALAT misses because
the two advanced load – check load pairs never create more than 32 simultaneously
live ALAT entries:
L1:
(p16) ld4.a r32 = [r8]
(p31) ld4.c r47 = [r8]
(p16) ld4.a r48 = [r9]
(p31) ld4.c r63 = [r9]

 br.ctop L1;;

When the code cannot be arranged to avoid ALAT misses, it may be best to assign static
registers to the destinations of the advanced loads and unroll the loop to explicitly
rename the destinations of the advanced loads where necessary. The following
example shows how to unroll the loop to avoid the use of rotating registers. The loop
has an II equal to 1 and the check load is executed one cycle (and one rotation) after
the advanced load:
L1:
(p16) ld4.a r33 = [r8]
(p17) ld4.c r34 = [r8]

br.ctop L1;;

Static registers can be assigned to the destinations of the loads if the loop is unrolled
twice:
L1:
(p16) ld4.a r3 = [r8]
(p17) ld4.c r4 = [r8]

br.cexit L2;;
(p16) ld4.a r4 = [r8]
(p17) ld4.c r3 = [r8]

br.ctop L1;;
L2: //

Rotating registers could still be used for the values that are not generated by advanced
loads. The effect of this unrolling on instruction cache performance must be considered
as part of the cost of advancing a load.

1:198 Volume 1, Part 2: Software Pipelining and Loop Support

5.5.6 Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to
software pipelining. Loops that are resource constrained can be improved by unrolling
such that the limiting resource is more fully utilized. In the following example if we
assume the target processor has only two memory units, the loop performance is
bound by the number of memory units:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4 r9 = [r8],4;; // Cycle 0
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3
br.cloop L1;; // Cycle 3

A pipelined version of this loop must have an II of at least two because there are three
memory instructions, but only two memory units. If the loop is unrolled twice prior to
software pipelining and assuming the store is independent of the loads, an II of 3 can
be achieved for the new loop. This is an effective II of 1.5 for the original source loop.
Below is a possible pipeline for the unrolled loop:
stage 1:
(p16) ld4 r4 = [r5],8 // odd iteration
(p16) ld4 r9 = [r8],8;; // odd iteration
stage 2:
(p16) ld4 r14 = [r15],8 // even iteration
(p16) ld4 r19 = [r18],8;; // even iteration

// --- empty cycle
stage 3:(p18) add r7 = r4,r9 // odd iteration
(p17) add r17 = r14,r19;; // even iteration
stage 4: // --- empty cycle
(p19) st4 [r6] = r7,8 // odd iteration
(p18) st4 [r16] = r17,8;; // even iteration

The unrolled loop contains two copies of the source loop body, one that corresponds to
the odd source iterations and one that corresponds to the even source iterations. The
assignment of stage predicates must take this into account. Recall that each one
written to p16 sequentially enables all the stages for a new source iteration. During
stage one of the above pipeline, the stage predicate for the odd iteration is in p16. The
stage predicate for the even iteration does not exist yet. During stage two of the above
pipeline, the stage predicate for the odd iteration is in p17 and the new stage predicate
for the even iteration is in p16. Thus within the same pipeline stage, if the stage

Volume 1, Part 2: Software Pipelining and Loop Support 1:199

predicate for the odd iteration is in predicate register X, the stage predicate for the
even iteration is in predicate register X-1. The pseudo-code to implement this pipeline
assuming an unknown trip count is shown below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 4 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L3;; // Cycle 0
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and
stages 2 and 4 are two cycles each. Also, the length of the epilog phase varies with the
trip count. If the trip count is odd, the number of epilog stages is three, starting after
the br.cexit and ending at the br.ctop. If the trip count is even, the number of epilog
stages is two, starting after the br.ctop and ending at the br.ctop. The EC must be set
to account for the maximum number of epilog stages. Thus for this example, EC is
initialized to four. When the trip count is even, one extra epilog stage is executed and
br.exit L3 is taken. All of the stage predicates used during the extra epilog stages are
equal to 0, so nothing is executed.

The extra epilog stage for even trip counts can be eliminated by setting the target of
the br.cexit branch to the next sequential bundle and initializing EC to three as shown
below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 3 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L4;; // Cycle 0
L4:
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:

1:200 Volume 1, Part 2: Software Pipelining and Loop Support

If the loop trip count is even, two epilog stages are executed and the kernel loop is
exited at the br.ctop. If the trip count is odd, the first two epilog stages are executed
and then the br.cexit branch is taken. Because the target of the br.cexit branch is
the next sequential bundle (L4), a third epilog stage is executed before the kernel loop
is exited at the br.ctop. This optimization saves one stage at the end of the loop when
the trip count is even, and is beneficial for short trip count loops.

Although unrolling can be beneficial, there are a few considerations before trying to
unroll and software pipeline. Unrolling reduces the trip count of the loop that is given to
the pipeliner, and thus may make pipelining of the loop undesirable since low trip count
loops sometimes run faster unpipelined. Unrolling also increases the code size, which
may adversely affect instruction cache performance. Unrolling is most beneficial for
small loops because the potential performance degradation due to under utilized
resources is greater and the effect of unrolling on the instruction cache performance is
smaller compared to large loops.

5.5.7 Implementing Reductions

In the following example, a sum of products is accumulated in register f7:
mov f7 = 0;; // initialize sum

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f7 = f4,f9,f7;; // accumulate
br.cloop L1 ;;

The performance is bound by the latency of the fma instruction which we assume is 5
cycles for these examples. A pipelined version of this loop must have an II of at least
five because the fma latency is five. By making use of register rotation, the loop can
be transformed into the one below.

Note that the loop has not yet been pipelined. The register rotation and special loop
branches are being used to enable an optimization prior to software pipelining.

mov lc = 199 // LC = loop count - 1
mov ec = 1 // Not pipelined, so no epilog
mov f33 = 0 // initialize 5 sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0;;

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f32 = f4,f9,f37;; // accumulate
br.ctop L1 ;;

fadd f10 = f33,f34 // add sums
fadd f11 = f35,f36;;
fadd f12 = f10,f11;;
fadd f7 = f12,f37

Volume 1, Part 2: Software Pipelining and Loop Support 1:201

This loop maintains five independent sums in registers f33-f37. The fma instruction in
iteration X produces a result that is used by the fma instruction in iteration X+5.
Iterations X through X+4 are independent, allowing an II of one to be achieved. The
code for a pipelined version of the loop assuming two memory ports and a nine cycle
latency for a floating-point load is shown below:

mov lc = 199 // LC = loop count - 1
mov ec = 10 // EC = epilog stages + 1
mov pr.rot=1<<16 // PR16 = 1, rest = 0
mov f33 = 0 // initialize sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0

L1:
(p16) ldfs f50 = [r5],4 // Cycle 0
(p16) ldfs f60 = [r8],4 // Cycle 0
(p25) fma f41 = f59,f69,f46 // Cycle 0

br.ctop.sptk L1;; // Cycle 0
fadd f10 = f42,f43 // add sums
fadd f11 = f44,f45 ;;
fadd f12 = f10,f11 ;;
fadd f7 = f12,f46

5.5.8 Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in
cases where a speculative instruction generates a value that is live across source
iterations. Consider the following loop:

ld4 r3 = [r5] ;;
L1:

ld4 r6 = [r8],4 // Cycle 0
ld4 r5 = [r9],4 ;; // Cycle 0
add r7 = r3,r6 ;; // Cycle 2
ld4 r3 = [r5] // Cycle 3
and r10 = 3,r7;; // Cycle 3
cmp.ne p1,p0=r10,r11 // Cycle 4

(p1) br.cond L1 ;; // Cycle 4

The following is a possible pipeline for the loop:
stage 1: ld4.s r6 = [r8],4 // II = 2

ld4.s r5 = [r9],4 ;;
--- // empty cycle

stage 2: --- // empty cycle
ld4.s r36 = [r5]
add r7 = r37,r6 ;;

stage 3: (p18) and r10 = 3,r7 ;;
(p18) cmp.ne p1,p0 = r10,r11
(p1) br.wtop L1 ;;

1:202 Volume 1, Part 2: Software Pipelining and Loop Support

Note that, in the code above, the ld4 and the add instructions in stage 2 have been
reordered. Register rotation has been used to eliminate the WAR register dependency
from the add to the ld4. The first two stages are speculative. The code to implement
the pipeline is shown below:

ld4 r36 = [r5]
mov ec = 2
mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39 ;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

The problem with this pipelined loop is that the value written to r36 prior to the loop is
overwritten before it is used by the add. The value is overwritten by the load into r36
in the first kernel iteration. This load is in the second stage of the pipeline, but cannot
be controlled during the first kernel iteration because it is speculative and does not
have a stage predicate. This problem can be solved by peeling off one iteration of the
kernel and excluding from that copy any instructions that are not in the first stage of
the pipeline as shown below.

Note that the destination register numbers for the instructions in the explicit prolog
have been increased by one. This is to account for the fact that there is no rotation at
the end of the peeled kernel iteration.

ld4 r37 = [r5]
mov ec = 1
mov pr.rot = 1<<17;; // PR17 = 1, rest = 0
ld4 r33 = [r8],4
ld4 r35 = [r9],4

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of
code for all or part of the prolog and/or epilog phase. It is clear from the execution
trace of the pipelined counted loop from page 1:188 that the functional units are

Volume 1, Part 2: Software Pipelining and Loop Support 1:203

under-utilized during the prolog and epilog phases. Part of the prolog and epilog could
be peeled off and merged with the code preceding and following the loop. The
following is a pipelined version of that counted loop with an explicit prolog and epilog:

mov lc = 196
mov ec = 1

prolog:
ld4 r35 = [r5],4;; // Cycle 0
ld4 r34 = [r5],4 ;; // Cycle 1
ld4 r33 = [r5],4 // Cycle 2
add r36 = r35,r9 ;; // Cycle 2

L1:
ld4 r32 = [r5],4
add r35 = r34,r9
st4 [r6] = r36,4

L2: br.ctop L1 ;;
epilog:

add r35 = r34,r9 // Cycle 0
st4 [r6] = r36,4 ;; // Cycle 0
add r34 = r33,r9 // Cycle 1
st4 [r6] = r35,4 ;; // Cycle 1
st4 [r6] = r34,4 // Cycle 2

The entire prolog (first three iterations of the kernel loop) and epilog (last three
iterations) have been peeled off. No attempt has been made to reschedule the peeled
instructions. The stage predicates have been removed from the instructions since they
are not required for controlling the prolog and epilog phases. Removing them from the
prolog makes the prolog instructions independent of the rotating predicates and
eliminates the need for software-pipelined loop branches between prolog stages. Thus
the entire prolog is independent of the initialization of LC and EC that precede it. The
register numbers in the prolog and epilog have been adjusted to account for the lack of
rotation between stages during those phases.

Note: This code assumes that the trip count of the source loop is at least four. If the
minimum trip count is unknown at compile time, then a runtime check of the
trip count must be added before the prolog. If the trip count is less than four,
then control branches to a copy of the original loop.

If this pipelined loop is nested inside an outer loop, there exists a further optimization
opportunity. The outer loop could be rotated such that the kernel loop is at the top
followed by the epilog for the current outer loop iteration and the prolog for the next
outer loop iteration. A copy of the prolog would also be added prior to the outer loop.

Note: From the earlier trace of the counted loop execution, the functional unit usage
of the prolog and epilog are complimentary such that they could be very nicely
overlapped.

The drawback of creating an explicit prolog or epilog is code expansion.

1:204 Volume 1, Part 2: Software Pipelining and Loop Support

5.5.9 Redundant Load Elimination in Loops

Unrolling of a loop is sometimes necessary to remove copy operations created by loop
optimizations. The following is an example of redundant load elimination. In the code
below, each iteration loads two values, one of which has already been loaded by the
previous source iteration:

add r8 = r5,4;;
L1: ld4 r4 = [r5],4 // a[i]

ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

The redundant load can be eliminated by adding a copy of the first load prior to the loop
and changing the load to a copy (mov):

add r8 = r5,4
ld4 r9 = [r5],4;; // a[i]

L1: mov r4 = r9 // a[i] = previous a[i+1]
ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

In traditional architectures, the mov instruction can only be removed by unrolling the
loop twice. One instruction is removed from the loop at the cost of two times code
expansion. The register rotation feature in the Itanium architecture can be used to
eliminate the mov instruction without unrolling the loop:

add r8 = r5,4
ld4 r33 = [r5],4;; // a[i]

L1: ld4 r32 = [r8],4 ;; // a[i+1]
add r7 = r33,r32 ;;
st4 [r6] = r7,4
br.ctop L1 ;;

5.6 Summary

The examples in this chapter show how features in the Itanium architecture can be
used to optimize loops without the code expansion required with traditional
architectures. Register rotation, predication, and the software-pipelined loop branches
all contribute to this capability. Control speculation increases the overlap of the
iterations of while loops. Data speculation increases the overlap of iterations of loops
that have loads and stores that cannot be disambiguated.

§

Volume 1, Part 2: Floating-point Applications 1:205

Floating-point Applications 6

6.1 Overview

The Itanium floating-point architecture is fully ANSI/IEEE-754 standard compliant and
provides performance enhancing features such as the fused multiply accumulate
instruction, the large floating-point register file (with static and rotating sections), the
extended range register file data representation, the multiple independent
floating-point status fields, and the high bandwidth memory access instructions that
enable the creation of compact, high performance, floating-point application code.

The beginning of this chapter reviews some specific performance limitations that are
common in floating-point intensive application codes. Later, architectural features that
address these limitations are presented with illustrative code examples. The remainder
of this chapter highlights the optimization of some commonly used kernels using these
features.

6.2 FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops
compute complex calculations on regularly structured data, others simply copy data
from one place to another, while others perform gather/scatter-type operations that
simultaneously compute and rearrange data. The following sections describe code
characteristics that limit performance and how they affect these different kinds of
loops.

6.2.1 Execution Latency

Loops often contain recurrence relationships. Consider the tri-diagonal elimination
kernel from the Livermore Fortran Kernel suite.
DO 5 i = 2, N
 5X[i] = Z[i] * (Y[i] - X[i-1])

The dependency between X[i] and X[i-1] limits the iteration time of the loop to be
the sum of the latency of the subtract and the multiply. The available parallelism can be
increased by unrolling the loop and can be exploited by replicating computation,
however the fundamental limitation of the data dependency remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration
time of the loop is limited by the execution latency of the hardware that executes the
code. A simple vector divide (shown below) is a typical example:
DO 1 I = 1, N
 1X[i] = Y[i] / Z[i]

Since typical modern microprocessors contain a non-pipelined floating-point unit, the
iteration time of the loop is the latency of the divide which can be tens of clocks.

1:206 Volume 1, Part 2: Floating-point Applications

6.2.2 Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the
availability of the execution resources – or the execution bandwidth of the machine.
Consider the dense matrix multiply kernel from the BLAS3 library.

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be
used to increase the available ILP in the inner loop. When this is done, the inner loop
contains an abundance of independent floating-point computations with a relatively
small number of memory operations. The performance constraint is then largely the
floating-point execution bandwidth of the machine (assuming sufficient registers are
available to hold the accumulators – C[i,j] and the intermediate computations).

6.2.3 Memory Latency

While cycle time disparity between the processor and memory creates a general
memory latency problem for most codes, there are a few special conditions in
floating-point codes that exacerbate its impact.

One such condition is the use of indirect addressing. Gather/scatter codes in general
and sparse matrix vector multiply code (below) in particular are good examples.
DO 1 ROW = 1, N

R[ROW] = 0.0d0
DO 1 I = ROWEND(ROW-1)+1, ROWEND(ROW)

1 R[ROW] = R[ROW] + A[I] * X[COL[I]]

The memory latency of the access of COL[I] is exposed, since it is used to index into
the vector X. The access of the element of X, the computation of the product, and the
summation of the product on R[ROW] are all dependent on the memory latency of the
access of COL[I].

Another common condition in floating-point codes where memory latency impact is
exacerbated is the presence of ambiguous memory dependencies. Consider the
incomplete Cholesky conjugate gradient excerpt kernel, again from the Livermore
Fortran Kernel suite.

II = n
IPNTP = 0

222 IPNT = IPNTP
IPNTP = IPNTP + II
II = II/2
I = IPNTP + 1

cdir$ ivdep
DO 2 K = IPNT+2, IPNTP, 2

I = I+1
2 X[I] = X[K] - V[K] * X[K-1] - V[K-1] * X[K+1]

IF (II .GT. 1) GO TO 222

Volume 1, Part 2: Floating-point Applications 1:207

The DO-loop involves an update of X at the index I using X at the indices K, K+1, K-1.
Since it is difficult for the compiler to establish whether these indices overlap, the loads
of X[K], X[K+1] or X[K-1] for the next iteration cannot be scheduled until the store of
X[I] of the current iteration. This exposes the memory latency of access of these
operands.

6.2.4 Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the
operands of the computation. The DAXPY kernel from the BLAS1 library is a typical
example:

DO 1 I = 1, N
1 Y[I] = Y[I] + A * X[I]

The computation requires loading two operands (X[I] and Y[I]) and storing one result
(Y[I]) for each floating-point multiply and add operation. If the data arrays (X and Y)
are not in cache, then the performance of this loop on most modern microprocessors
would be limited by the available memory bandwidth on the machine.

6.3 Floating-point Features in the Intel® Itanium®
Architecture

This section highlights architectural features that reduce the impact of the performance
limiters described in Section 6.2 using illustrative examples.

6.3.1 Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units
generally increases. As latency increases, register pressure due to multiple operations
in-flight also increases. Furthermore as multiple execution units are added, the register
pressure increases similarly since even more instructions can be in-flight at any one
time.

The Itanium architecture provides 128 directly addressable floating-point registers to
enable data reuse and to reduce the number of load/store operations required due to
an insufficient number of registers. This reduction in the number of loads and stores
can increase performance by changing a computation from being memory operation
(MOP) limited to being floating-point operation (FLOP) limited. Consider the dense
matrix multiply code below:

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

In the inner loop (k), two loads are required for every multiply and add operation. The
MOP:FLOP ratio is therefore 1:1.
L1: ldfd f5 = [r5], 8 // Load A[i,k]

ldfd f6 = [r6], 8 // Load B[k,j]
fma.d.s0 f7 = f5, f6, f7 // *,+ to C[i,j]
br.cloop L1

1:208 Volume 1, Part 2: Floating-point Applications

Here, three registers are required to hold the operands (f5, f6) and the accumulator
(f7). By recognizing the reuse of A[i,k] for different B[k,j] as j is varied, and the
reuse of B[k,j] for different A[i,k] as i is varied, the computation can be restructured
as:

DO 1 i = 1, N, 2
DO 1 j = 1, P, 2

DO 1 k = 1, M
C[i ,j] = C[i ,j]

+ A[i ,k]*B[k,j]
C[i+1,j] = C[i+1,j]

+ A[i+1,k]*B[k,j]
C[i ,j+1] = C[i ,j+1]

+ A[i ,k]*B[k,j+1]
1 C[i+1,j+1] = C[i+1,j+1]

+ A[i+1,k]*B[k,j+1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the
MOP:FLOP ratio to 1:2. However, 8 registers are now required: 4 for the accumulators
and 4 for the operands.

add r6 = r5, 8
add r8 = r7, 8

L1: ldfd f5 = [r5], 16 // Load A[i,k]
ldfd f6 = [r6], 16 // Load A[i+1,k]
ldfd f7 = [r7], 16 // Load B[k,j]
ldfd f8 = [r8], 16 // Load B[k,j+1]
fma.s0 f9 = f5, f7, f9 // *,+ on C[i,j]
fma.s0 f10 = f6, f7, f10 // *,+ on C[i+1,j]
fma.s0 f11 = f5, f8, f11 // *,+ on C[i,j+1]
fma.s0 f12 = f6, f8, f12 // *,+ on C[i+1,j+1]
br.cloop L1

With 128 available registers, the outer loops of i and j could be unrolled by 8 each so
that 64 multiplies and adds can be performed by loading just 16 operands.

The floating-point register file is divided into two regions: a static region (f0-f31) and a
rotating region (f32-f127). The register rotation provides the automatic register
renaming required to create compact kernel-only software-pipelined code. Register
rotation also enables scheduling software pipelined code with an initiation interval that
is less than the longest latency operation. For e.g. consider the simple vector add loop
shown below:

DO 1 i = 1, N
1 A[i] = B[i] + C[i]

The basic inner loop is:
L1: ldf f5 = [r5], 8 // Load B[i]

ldf f6 = [r6], 8 // Load C[i]
fadd f7 = f5, f6 // Add operands
stf [r7] = f7, 8 // Store A[i]
br.cloop L1

Volume 1, Part 2: Floating-point Applications 1:209

If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory
operations can be issued per clock, the above loop has to be unrolled by at least six if
there is no register rotation.

add r8 = r7, 8
L1:
(p18) stf [r7] = f25, 16 // Cycle 17,26...
(p18) stf [r8] = f26, 16 // Cycle 17,26...
(p17) fadd f25 = f5, f15 // Cycle 8,17,26...
(p16) ldf f5 = [r5], 8 // Cycle 0,9,18...
(p16) ldf f15 = [r6], 8 // Cycle 0,9,18...
(p17) fadd f26 = f6, f16;; // Cycle 9,18,27 ...
(p16) ldf f6 = [r5], 8 // Cycle 1,10,19 ...
(p16) ldf f16 = [r6], 8 // Cycle 1,10,19 ...
(p18) stf [r7] = f27, 16 // Cycle 20,29 ...
(p18) stf [r8] = f28, 16 // Cycle 20,29 ...
(p17) fadd f27 = f7, f17 ;; // Cycle 11,20 ...
(p16) ldf f7 = [r5], 8 // Cycle 3,12,21 ...
(p16) ldf f17 = [r6], 8 // Cycle 3,12,21 ...
(p17) fadd f28 = f8, f18 ;; // Cycle 12,21 ...
(p16) ldf f8 = [r5], 8 // Cycle 4,13,22 ...
(p16) ldf f18 = [r6], 8 // Cycle 4,13,22 ...
(p18) stf [r7] = f29, 16 // Cycle 23,32 ...
(p18) stf [r8] = f30, 16 // Cycle 23,32 ...
(p16) fadd f29 = f9, f19 ;; // Cycle 14,23 ...
(p16) ldf f9 = [r5], 8 // Cycle 6,15,24 ...
(p16) ldf f19 = [r6], 8 // Cycle 6,15,24 ...
(p16) fadd f30 = f10, f20 ;; // Cycle 15,24 ...
(p16) ldf f10 = [r5], 8 // Cycle 7,16,25 ...
(p16) ldf f20 = [r6], 8 // Cycle 7,16,25 ...

br.ctop L1 ;;

However, with register rotation, the same loop can be scheduled with an initiation
interval of just 2 clocks without unrolling (and 1.5 clocks if unrolled by 2):
L1:
(p24) stf [r7] = f57, 8 // Cycle 15,17...
(p21) fadd f57 = f37, f47 // Cycle 9,11,13...
(p16) ldf f32 = [r5], 8 // Cycle 0,2,4,6...
(p16) ldf f42 = [r6], 8 // Cycle 0,2,4,6...

 br.ctop L1;;

It is thus often advantageous to modulo schedule and then unroll (if required). Please
see Chapter 5, “Software Pipelining and Loop Support” for details on how to rewrite
loops using this transformation.

6.3.1.1 Notes on FP Precision

The floating-point registers are 82 bits wide with 17 bits for exponent range, 64 bits for
significand precision and 1 sign bit. During computation, the result range and precision
is determined by the computational model chosen by the user. The computational
model is indicated either statically in the instruction encoding, or dynamically via the
precision control (PC) and widest-range-exponent (WRE) bits in the floating-point
status register. Using an appropriate computational model, the user can minimize the
error accumulation in the computation. In the above matrix multiply example, if the
multiply and add computations are performed in full register file range and precision,
the results (in accumulators) can hold 64 bits of precision and up to 17 bits of range for

1:210 Volume 1, Part 2: Floating-point Applications

inputs that might be single precision numbers. With the rounding performed at the 64th
precision bit (instead of the 24th for single precision) a smaller error is accumulated
with each multiply and add. Furthermore, with 17 bits of range (instead of 8 bits for
single precision) large positive and negative products can be added to the accumulator
without overflow or underflow. In addition to providing more accurate results the extra
range and precision can often enhance the performance of iterative computations that
are required to be performed until convergence (as indicated by an error bound) is
reached.

6.3.2 Multiply-Add Instruction

The Itanium architecture defines the fused multiply-add (fma) as the basic
floating-point computation, since it forms the core of many computations (linear
algebra, series expansion, etc.) and its latency in hardware is typically less than the
sum of the latencies of an individual multiply operation (with rounding) implementation
and an individual add operation (with rounding) implementation.

In computational loops that have a loop carried dependency and whose speed is often
determined by the latency of the floating-point computation rather than the peak
computational rate, the multiply-add operation can often be used advantageously.
Consider the Livermore FORTRAN Kernel 9 – General Linear Recurrence Equations:
DO 191 k= 1,n

B5(k+KB5I)= SA(k) + STB5 * SB(k)
STB5= B5(k+KB5I) - STB5

191CONTINUE

Since there is a true data dependency between the two statements on variable
B5(k+KB5I)) and a loop-carried dependency on variable STB5, the loop number of
clocks per iteration is entirely determined by the latency of the floating-point
operations. In the absence of an fma type operation, and assuming that the individual
multiply and add latencies are 5 clocks each and the loads are 8 cycles, the loop would
be:
L1:
(p16) ldf f32 = [r5], 8 // Load SA(k)
(p16) ldf f42 = [r6], 8 // Load SB(k)
(p17) fmul f5 = f7, f43;; // tmp,Clk 0,15 ...
(p17) fadd f6 = f33, f5 ;; // B5,Clk 5,20 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 10,25 ..

br.ctop L1 ;;

With an fma, the overall latency of the chain of operations decreases and assuming a 5
cycle fma, the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).
L1:
(p16) ldf f32 = [r5], 8 // Load SA(k)
(p16) ldf f42 = [r6], 8 // Load SB(k)
(p17) fma f6 = f7, f43, f33;; // B5,Clk 0,10 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 5,15 ..

br.ctop L1 ;;

The fused multiply-add operation also offers the advantage of a single rounding error
for the pair of computations which is valuable when trying to compute small differences
of large numbers.

Volume 1, Part 2: Floating-point Applications 1:211

6.3.3 Software Divide/Square Root Sequence

To perform division or square root operations on the Itanium architecture, a
software-based sequence of operations is used. The sequence consists of obtaining an
initial guess (using frcpa/frsqrta instruction) and then refining the guess by
performing Newton-Raphson iterations until the error is sufficiently small so that it may
not affect the rounding of the result. Examples of double precision divide and square
root sequences, optimized for latency and throughput, are provided below.

Note: For reduced precision, square and divide sequences can be completed with
even fewer instructions.

6.3.3.1 Double Precision – Divide

6.3.3.2 Double Precision – Square Root

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fnma.s1 f9 = f7,f8,f1 ;;
(p6) fma.s1 f8 = f9,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1 f8 = f9 ,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1 f8 = f9,f8,f8 ;;
(p6) fma.d.s1 f9 = f6,f8,f0 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fma.s1 f9 = f6,f8,f0
(p6) fnma.s1 f10 = f7,f8,f1 ;;
(p6) fma.s1 f9 = f10,f9,f9
(p6) fma.s1 f11 = f10,f10,f0
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fma.s1 f9 = f11,f9,f9
(p6) fma.s1 f10 = f11,f11,f0
(p6) fma.s1 f8 = f11,f8,f8 ;;
(p6) fma.d.s1 f9 = f10,f9,f9
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

Square Root (Max Throughput)a

(14 Instructions, 10 Groups)

a. The following value is assumed preset: f10=1/2.

Square Root (Min Latency)b

(17 Instructions, 9 Groups)

b. The following values are assumed preset: f9=1/2, f10=3/2, f11=5/2, f12=63/8, f13=231/16, f14=35/8.

frsqrta.s0 f7,p6=f6 ;;
 (p6) fma.s1 f8=f10,f7,f0
 (p6) fma.s1 f7=f6,f7,f0 ;;
 (p6) fnma.s1 f9=f7,f8,f10 ;;
 (p6) fma.s1 f8=f9,f8,f8
 (p6) fma.s1 f7=f9,f7,f7 ;;
 (p6) fnma.s1 f9=f7,f8,f10 ;;
 (p6) fma.s1 f8=f9,f8,f8
 (p6) fma.s1 f7=f9,f7,f7 ;;
 (p6) fnma.s1 f9=f7,f8,f10 ;;
 (p6) fma.s1 f8=f9,f8,f8
 (p6) fma.d.s1 f7=f9,f7,f7 ;;
 (p6) fnma.s1 f9=f7,f7,f6 ;;
 (p6) fma.d.s0 f7=f9,f8,f7 ;;

frsqrta.s0 f7,p6=f6 ;;
 (p6) fma.s1 f8=f9,f7,f0
 (p6) fma.s1 f7=f6,f7,f0 ;;
 (p6) fnma.s1 f9=f7,f8,f9 ;;
 (p6) fma.s1 f10=f11,f9,f10
 (p6) fma.s1 f11=f9,f9,f0
 (p6) fma.s1 f12=f13,f9,f12 ;;
 (p6) fma.s1 f10=f11,f10,f9
 (p6) fma.s1 f11=f11,f11,f0
 (p6) fma.s1 f9=f9,f12,f14 ;;
 (p6) fma.s1 f12=f10,f7,f7
 (p6) fma.s1 f7=f7,f11,f0
 (p6) fma.s1 f10=f11,f9,f10 ;;
 (p6) fma.d.s1 f7=f9,f7,f12
 (p6) fma.s1 f8=f10,f8,f8 ;;
 (p6) fnma.s1 f9=f7,f7,f6 ;;
 (p6) fma.d.s0 f7=f9,f8,f7 ;;

1:212 Volume 1, Part 2: Floating-point Applications

For divide, the first instruction (frcpa) provides an approximation (good to 8 bits) of
the reciprocal of f7 and sets the predicate (p6) to 1, if the ratio f6/f7 can be obtained
using the prescribed Newton-Raphson iterations. If, however, the ratio f6/f7 is special
(finite/0, finite/infinite, etc) the final result of f6/f7 is provided in f8 and the predicate
(p6) is cleared. For certain boundary conditions (when the operand values (f6 and f7)
are well outside the single precision, double precision and even double-extended
precision ranges) frcpa will cause a software assist fault and the software handler will
produce the ratio f6/f7 and return it in f8 and clear the predicate (p6).

The multiple status fields provided in the FPSR are used in these sequences. S0 is the
main (architectural) status field and it is written to by the first operation (frcpa) to
signal any faults (V, Z, D), and by the last operation to signal any traps. The conditions
of all intermediate operations are ignored by writing them to S1. Thus these sequences
not only obtain the correct IEEE 754 specified result (in f8) but the flags are also set (in
S0) as per the standard’s requirements. If the divide is part of a speculative chain of
operations that is using S2 as its status field, then S0 should be replaced with S2 in
these sequences. S1 can still be used by the intermediate operations of all the divide
sequences (i.e. those that target S0, S2, or S3) since its flags are all discarded.

When divide and square-root operations appear in vectorizable loops, it is often very
advantageous to have these operations be performed in software rather than hardware.
In software, these operations can be pipelined and the overall throughput be improved,
whereas in hardware these operations are typically not pipelineable.

Another significant advantage of the software-based divide/square-root computations is
that the accuracy of the result can be controlled by the user and can be traded off for
speed. This trade-off is often used in graphics codes where the divide accuracy of about
14-bits suffices and the sequence can be shorter than that used for single or double
precision.

6.3.4 Computational Models

The Itanium architecture offers complete user control of the computational model. The
user can select the result’s precision and range, the rounding mode, and the IEEE trap
response. Appropriately selecting the computational model can result in code that has
greater accuracy, higher performance, or both.

The register file format is uniform for the three memory data types – single, double and
double-extended. Since all the computations are performed on registers (regardless of
the data type of its content) operands of different types can be easily combined. Also
since the conversion from the memory type to the register file format is done on loads
automatically no extra operations are required to perform the format conversion.

The C syntax semantics is also easily emulated. Loads convert all input operands into
the register file format automatically. Data operands of different types, now residing in
register file format can be operated upon and all intermediate results coerced to double
precision by statically indicating the result precision in the instruction encoding. The
computation leading to the final result can specify the result precision and range
(statically in the instruction encoding for single and double precision, and dynamically
in the status field bits for double-extended precision). Compliance to the IA-32 FP
computational style (range=extended, precision=single/double/extended) can also
achieved using the status field bits.

Volume 1, Part 2: Floating-point Applications 1:213

6.3.5 Multiple Status Fields

The FPSR is divided into one main (architectural) status field and three additional
identical status fields. These additional status fields could be used to performance
advantage.

First, divide and square-root sequences (described in Section 6.3.3) contain operations
that might cause intermediate results to overflow/underflow or be inexact even if the
final result may not. In order to maintain correct IEEE flag status the status flags of
these computations need to be discarded. One of these additional status fields
(typically status field 1) can be used to discard these flags.

Second, speculating floating-point operations requires maintaining the status flags of
the speculated operations distinct from the architectural status flags until the
speculated operations are committed to architectural state (if they ever are). One of
these additional status fields (typically status fields 2 or 3) can be used for this
purpose.

Consider the Livermore FORTRAN kernel 16 – Monte Carlo Search
DO 470 k= 1,n

k2= k2+1
j4= j2+k+k
j5= ZONE(j4)
IF(j5-n) 420,475,450

415 IF(j5-n+II) 430,425,425
420 IF(j5-n+LB) 435,415,415
425 IF(PLAN(j5)-R) 445,480,440
430 IF(PLAN(j5)-S) 445,480,440
435 IF(PLAN(j5)-T) 445,480,440
440 IF(ZONE(j4-1)) 455,485,470
445 IF(ZONE(j4-1)) 470,485,455
450 k3= k3+1

IF(D(j5)-(D(j5-1)*(T-D(j5-2))**2
 , +(S-D(j5-3))**2

, +(R-D(j5-4))**2)) 445,480,440
455 m= m+1

IF(m-ZONE(1)) 465,465,460
460 m= 1
465 IF(i1-m) 410,480,410
470 CONTINUE
475 CONTINUE
480 CONTINUE
485 CONTINUE

Profiling indicates that the conditional after statement 450 is most frequently executed.
It is therefore advantageous to speculatively execute the computation in the conditional
while the conditionals in 415...445 are being evaluated. In the event that any of the
conditionals in 415...445 cause the control to be moved on beyond 450 the results (and
flags) of the speculatively computed operations (of the conditional after statement 450)
can be discarded.

1:214 Volume 1, Part 2: Floating-point Applications

The availability of multiple additional status fields can allow a user to maintain multiple
computational environments and to dynamically select among them on an operation by
operation basis. One such use is in the implementation of interval arithmetic code
where each primitive operation is required to be computed in two different rounding
modes to determine the interval of the result.

6.3.6 Other Features

The Itanium architecture offers a number of other architectural constructs to enhance
the performance of different computational situations.

6.3.6.1 Operand Screening Support

Operand screening is often a required or useful step prior to a computation. The
operand may be screened to ensure that it is in a valid range (e.g. finite positive or zero
input to square-root; non-zero divisor for divide) or it may be screened to take an early
out – the result of the computation is predetermined or could be computed more
efficiently in another way. The fclass instruction can be used to classify the input
operand to either be or not be a part of a set of classes. Consider the following code
used for screening invalid operands for square-root computation:
IF (A.EQ. NATVAL OR

A.EQ. SNAN OR A.EQ. QNAN OR
A.EQ. NEG_INF OR A.EQ. POS_INF OR
A.LT. 0.0D0) THEN
WRITE (*, “INVALID INPUT OPERAND”)

ELSE
WRITE (*, “SQUARE-ROOT = “, SQRT(A))

ENDIF

The above conditional can be determined by two fclass instructions as indicated below:
fclass.m p1, p2 = f2, 0x1E3;; // Detect NaTVal, NaN, +Inf or -Inf

(p2) fclass.m p1, p2 = f2, 0x01A // Detect -Norm or -Unorm

The resultant complimentary predicates (p1 and p2) can be used to control the ELSE
and THEN statements respectively.

6.3.6.2 Min/Max/AMin/AMax

The Itanium architecture provides direct instruction level support for the FORTRAN
intrinsic MIN(a,b) or the equivalent C idiom: a<b? a: b and the FORTRAN intrinsic
MAX(b, a) or the equivalent C idiom: a<b? b: a. These instructions can enhance
performance by avoiding the function call overhead in FORTRAN, and by reducing the
critical path in C. The instructions are designed to mimic the C statement behavior so
that they can be generated by the compiler. They are also not commutative. By
appropriately selecting the input operand order, the user can either ignore or catch
NaNs.

Consider the problem of finding the minimum value in an array (similar to the
Livermore FORTRAN kernel 24):

XMIN = X(1)
DO 24 k= 2,n
24 IF(X(k) .LT. XMIN) XMIN = X(k)

Volume 1, Part 2: Floating-point Applications 1:215

Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence
if the above code is implemented as:

ldf f5 = [r5], 8;;
L1: ldf f6 = [r5], 8

fmin f5 = f6, f5
br.cloop L1 ;;

NaNs in the array (X) will be ignored.

If the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) will
remain unchanged, since the NaN will fail the.LT. comparison and fmin will return the
second argument – in this case the old minimum value in f5.

However, if the code is implemented as:
ldf f5 = [r5], 8;;

L1: ldf f6 = [r5], 8
fmin f5 = f5, f6
br.cloop L1 ;;

NaNs in the array (X) will reset the minimum value.

Now, if the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5)
will be set to the NaN, since the NaN will fail the.LT. comparison and fmin will return
the second argument – in this case the NaN in f6. In the next iteration, the new array
value (loaded in f6) will become the new minimum.

famin/famax perform the comparison on the absolute value of the input operands (i.e.
they ignore the sign bit) but otherwise operate in the same (non-commutative) way as
the fmin/fmax instructions.

6.3.6.3 Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point
representations by simply moving the integer to the significand field of the
floating-point register using the setf.sig instruction. The resulting floating-point value
would be in its unnormal representation (unless the unsigned integer was greater than
263).

Conversions from signed integers to floating-point and from floating-point to signed or
unsigned integers are accomplished by fcvt.xf and fcvt.fx/fcvt.fxu instructions
respectively. However, since signed integers are converted directly to their canonical
floating-point representations, they do not need to be normalized after conversion.

6.3.6.4 FP Subfield Handling

It is sometimes useful to assemble a floating-point value from its constituent fields.
Multiplication and division of floating-point values by powers of two, for example, can
be easily accomplished by appropriately adjusting the exponent. The Itanium

1:216 Volume 1, Part 2: Floating-point Applications

architecture provides instructions that allow moving floating-point fields between the
integer and floating-point register files. Division of a floating-point number by 2.0 is
accomplished as follows:
getf.exp r5 = f5 // Move S+Exp to int
add r5 = r5, -1 // Sub 1 from Exp
setf.exp f6 = r5 // Move S+Exp to FP
fmerge.se f5 = f6, f5 // Merge S+E w/ Mant

Floating-point values can also be constructed from fields from different floating-point
registers.

6.3.7 Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs
of high bandwidth, the Itanium architecture incorporates many architectural features to
help manage the memory hierarchy and increase performance. As described in
Section 6.2, memory latency and bandwidth are significant performance limiters in
floating-point applications. The architecture offers features to address both these
limitations.

In order to enhance the core bandwidth to the floating-point register file, the
architecture defines load-pair instructions. In order to mitigate the memory latency,
explicit and implicit data prefetch instructions are defined. In order to maximize the
utilization of caches, the architecture defines locality attributes as part of memory
access instructions to help control the allocation (and de-allocation) of data in the
caches. For instances where the instruction bandwidth may become a performance
limiter, the architecture defines machine hints to trigger relevant instruction prefetches.

6.3.7.1 Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in
memory to two independent floating-point registers. The target registers are required
to be odd and even physical registers so that the machine can utilize just one access
port to accomplish the register update.

Note: The odd/even pair restriction is on physical register numbers, not logical regis-
ter numbers. A programming violation of this rule will cause an illegal operation
fault.

For example, suppose a machine that can issue 2 FP instructions per cycle, provides
sufficient bandwidth from the second level cache (L2) to sustain 2 load-pairs every
cycle. Then loops that require up to 2 data elements (of 8 bytes each) per floating-point
instruction can run at peak speeds when the data is resident in L2. A common example
of such a case is a simple double precision dot product – DDOT:

DO 1 I = 1, N
1 C = C + A(I) * B(I)

Volume 1, Part 2: Floating-point Applications 1:217

The inner loop consists of two loads (for A and B) and a multiply-add (to accumulate the
product on C). The loop would run at the latency of the fma due to the recurrence on C.
In order to break the recurrence on C, the loop is typically unrolled and multiple partial
accumulators are used.

DO 1 I = 1, N, 8
C1 = C1 + A[I] * B[I]
C2 = C2 + A[I+1] * B[I+1]
C3 = C3 + A[I+2] * B[I+2]
C4 = C4 + A[I+3] * B[I+3]
C5 = C5 + A[I+4] * B[I+4]
C6 = C6 + A[I+5] * B[I+5]
C7 = C7 + A[I+6] * B[I+6]

1 C8 = C8 + A[I+7] * B[I+7]
C = C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and
8 fmas. If we assume the machine has two memory ports, this loop would be limited by
the availability of M slots and run at a peak rate of 1 clock per iteration. However, if this
loop is rewritten using 8 load-pairs (for A[I], A[I+1] and B[I], B[I+1] and A[I+2],
A[I+3] and B[I+2], B[I+3] and so on) and 8 fmas this loop could run at a peak rate of
2 iterations per clock (or just 0.5 clocks per iteration) with just two M-units.

6.3.7.2 Data Prefetch

lfetch allows the advance prefetching of a line (defined as 32 bytes or more) of data
into the cache from memory. Allocation hints can be used to indicate the nature of the
locality of the subsequent accesses on that data and to indicate which level of cache
that data needs to be promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the
load target is never used) lfetches can more effectively reduce the memory latency
without using floating-point registers as targets of the data being prefetched.
Furthermore lfetch allows prefetching the data to different levels of caches.

6.3.7.3 Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal,
spatial/non-spatial), The Itanium architecture allows annotating the data accesses
(loads/stores) to reflect these attributes. Based on these annotations, the
implementation can better manage the storage of the data in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the
various cache levels. (Only two cache levels are architecturally identified). The
non-temporal hint is best used for data that typically has no reuse with respect to that
level of cache. The temporal hint is used for all other data (that has reuse).

6.4 Summary

This chapter describes the limiting factors for many scientific and floating-point
applications: memory latency and bandwidth, functional unit latency, and number of
available functional units. It also describes the important features of floating-point

1:218 Volume 1, Part 2: Floating-point Applications

support in the Itanium architecture beyond the software-pipelining support described in
Chapter 5, “Software Pipelining and Loop Support” that help to overcome some of these
performance limiters. Architectural support for speculation, rounding, and precision
control are also described.

Examples in the chapter include how to implement floating-point division and square
root, common scientific computations such as reductions, use of features such as the
fma instruction, and various Livermore kernels.

§

Intel® Itanium® Architecture
Software Developer’s Manual
Volume 2: System Architecture

Revision 2.3

May 2010

Document Number: 245318

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 220

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation

*Other names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 221

Contents

Part I: System Architecture Guide

1 About this Manual . 2:3

1.1 Overview of Volume 1: Application Architecture . 2:3
1.1.1 Part 1: Application Architecture Guide . 2:3
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 2:3

1.2 Overview of Volume 2: System Architecture. 2:4
1.2.1 Part 1: System Architecture Guide . 2:4
1.2.2 Part 2: System Programmer’s Guide . 2:5
1.2.3 Appendices. 2:6

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 2:6
1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 2:6
1.5 Terminology . 2:7
1.6 Related Documents . 2:7
1.7 Revision History . 2:8

2 Intel® Itanium® System Environment. 2:13

2.1 Processor Boot Sequence . 2:13
2.2 Intel® Itanium® System Environment Overview . 2:14

3 System State and Programming Model . 2:17

3.1 Privilege Levels. 2:17
3.2 Serialization . 2:17

3.2.1 Instruction Serialization . 2:18
3.2.2 Data Serialization . 2:18
3.2.3 Definition of In-flight Resources . 2:19

3.3 System State . 2:20
3.3.1 System State Overview . 2:20
3.3.2 Processor Status Register (PSR) . 2:23
3.3.3 Control Registers . 2:29
3.3.4 Global Control Registers . 2:31
3.3.5 Interruption Control Registers. 2:36
3.3.6 External Interrupt Control Registers . 2:42
3.3.7 Banked General Registers . 2:42

3.4 Processor Virtualization . 2:44

4 Addressing and Protection. 2:45

4.1 Virtual Addressing. 2:45
4.1.1 Translation Lookaside Buffer (TLB) . 2:47
4.1.2 Region Registers (RR) . 2:58
4.1.3 Protection Keys . 2:59
4.1.4 Translation Instructions . 2:60
4.1.5 Virtual Hash Page Table (VHPT) . 2:61
4.1.6 VHPT Hashing . 2:65
4.1.7 VHPT Environment. 2:67
4.1.8 Translation Searching. 2:69
4.1.9 32-bit Virtual Addressing . 2:71
4.1.10 Virtual Aliasing . 2:72

4.2 Physical Addressing . 2:73
4.3 Unimplemented Address Bits . 2:73

4.3.1 Unimplemented Physical Address Bits. 2:73
4.3.2 Unimplemented Virtual Address Bits . 2:74
4.3.3 Instruction Behavior with Unimplemented Addresses 2:75

222 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

4.4 Memory Attributes . 2:75
4.4.1 Virtual Addressing Memory Attributes . 2:75
4.4.2 Physical Addressing Memory Attributes . 2:76
4.4.3 Cacheability and Coherency Attribute . 2:77
4.4.4 Cache Write Policy Attribute . 2:78
4.4.5 Coalescing Attribute . 2:78
4.4.6 Speculation Attributes . 2:79
4.4.7 Sequentiality Attribute and Ordering . 2:82
4.4.8 Not a Thing Attribute (NaTPage) . 2:86
4.4.9 Effects of Memory Attributes on Memory Reference Instructions 2:86
4.4.10 Effects of Memory Attributes on Advanced/Check Loads 2:87
4.4.11 Memory Attribute Transition . 2:88

4.5 Memory Datum Alignment and Atomicity. 2:93

5 Interruptions . 2:95

5.1 Interruption Definitions. 2:95
5.2 Interruption Programming Model . 2:97
5.3 Interruption Handling during Instruction Execution . 2:98
5.4 PAL-based Interruption Handling . 2:101
5.5 IVA-based Interruption Handling . 2:101

5.5.1 Efficient Interruption Handling . 2:102
5.5.2 Non-access Instructions and Interruptions . 2:103
5.5.3 Single Stepping . 2:104
5.5.4 Single Instruction Fault Suppression. 2:104
5.5.5 Deferral of Speculative Load Faults . 2:105

5.6 Interruption Priorities . 2:108
5.6.1 IA-32 Interruption Priorities and Classes. 2:111

5.7 IVA-based Interruption Vectors . 2:113
5.8 Interrupts . 2:114

5.8.1 Interrupt Vectors and Priorities . 2:118
5.8.2 Interrupt Enabling and Masking. 2:119
5.8.3 External Interrupt Control Registers . 2:121
5.8.4 Processor Interrupt Block . 2:127
5.8.5 Edge- and Level-sensitive Interrupts . 2:131

6 Register Stack Engine . 2:133

6.1 RSE and Backing Store Overview. 2:133
6.2 RSE Internal State. 2:135
6.3 Register Stack Partitions . 2:136
6.4 RSE Operation . 2:137
6.5 RSE Control. 2:139

6.5.1 Register Stack Configuration Register . 2:139
6.5.2 Register Stack NaT Collection Register . 2:140
6.5.3 Backing Store Pointer Application Registers . 2:141
6.5.4 RSE Control Instructions . 2:142
6.5.5 Bad PFS used by Branch Return . 2:143

6.6 RSE Interruptions . 2:144
6.7 RSE Behavior on Interruptions . 2:146
6.8 RSE Behavior with an Incomplete Register Frame . 2:146
6.9 RSE and ALAT Interaction . 2:146
6.10 Backing Store Coherence and Memory Ordering . 2:147
6.11 RSE Backing Store Switches . 2:147

6.11.1 Switch from Interrupted Context . 2:148
6.11.2 Return to Interrupted Context . 2:148
6.11.3 Synchronous Backing Store Switch . 2:148

6.12 RSE Initialization . 2:149

7 Debugging and Performance Monitoring. 2:151

7.1 Debugging . 2:151
7.1.1 Data and Instruction Breakpoint Registers . 2:152

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 223

7.1.2 Debug Address Breakpoint Match Conditions . 2:154
7.2 Performance Monitoring . 2:155

7.2.1 Generic Performance Counter Registers . 2:156
7.2.2 Performance Monitor Overflow Status Registers (PMC[0]..PMC[3]) . . . 2:160
7.2.3 Performance Monitor Events . 2:162
7.2.4 Implementation-independent Performance Monitor Code Sequences. . 2:162

8 Interruption Vector Descriptions . 2:165

8.1 Interruption Vector Descriptions . 2:165
8.2 ISR Settings . 2:165
8.3 Interruption Vector Definition . 2:166

9 IA-32 Interruption Vector Descriptions . 2:213

9.1 IA-32 Trap Code . 2:213
9.2 IA-32 Interruption Vector Definitions. 2:213

10 Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications
2:239

10.1 Instruction Set Transitions . 2:239
10.2 System Register Model. 2:239
10.3 IA-32 System Segment Registers. 2:241

10.3.1 IA-32 Current Privilege Level . 2:243
10.3.2 IA-32 System EFLAG Register. 2:243
10.3.3 IA-32 System Registers . 2:246

10.4 Register Context Switch Guidelines for IA-32 Code . 2:252
10.4.1 Entering IA-32 Processes. 2:253
10.4.2 Exiting IA-32 Processes . 2:253

10.5 IA-32 Instruction Set Behavior Summary . 2:253
10.6 System Memory Model . 2:259

10.6.1 Virtual Memory References . 2:260
10.6.2 IA-32 Virtual Memory References . 2:261
10.6.3 IA-32 TLB Forward Progress Requirements . 2:261
10.6.4 Multiprocessor TLB Coherency . 2:262
10.6.5 IA-32 Physical Memory References . 2:262
10.6.6 Supervisor Accesses . 2:263
10.6.7 Memory Alignment . 2:263
10.6.8 Atomic Operations . 2:264
10.6.9 Multiprocessor Instruction Cache Coherency. 2:264
10.6.10 IA-32 Memory Ordering . 2:265

10.7 I/O Port Space Model . 2:267
10.7.1 Virtual I/O Port Addressing . 2:268
10.7.2 Physical I/O Port Addressing . 2:270
10.7.3 IA-32 IN/OUT instructions. 2:271
10.7.4 I/O Port Accesses by Loads and Stores. 2:272

10.8 Debug Model . 2:273
10.8.1 Data Breakpoint Register Matching . 2:274
10.8.2 Instruction Breakpoint Register Matching. 2:274

10.9 Interruption Model. 2:275
10.9.1 Interruption Summary . 2:275
10.9.2 IA-32 Numeric Exception Model . 2:277

10.10 Processor Bus Considerations for IA-32 Application Support 2:277
10.10.1 IA-32 Compatible Bus Transactions . 2:278

11 Processor Abstraction Layer . 2:279

11.1 Firmware Model . 2:279
11.1.1 Processor Abstraction Layer (PAL) Overview . 2:280
11.1.2 Firmware Entrypoints . 2:281
11.1.3 PAL Entrypoints . 2:282
11.1.4 SAL Entrypoints . 2:282

224 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

11.1.5 OS Entrypoints . 2:283
11.1.6 Firmware Address Space . 2:283

11.2 PAL Power On/Reset . 2:289
11.2.1 PALE_RESET . 2:289
11.2.2 PALE_RESET Exit State . 2:289
11.2.3 PAL Self-test Control Word . 2:295

11.3 Machine Checks . 2:296
11.3.1 PALE_CHECK. 2:296
11.3.2 PALE_CHECK Exit State . 2:297
11.3.3 Returning to the Interrupted Process . 2:305

11.4 PAL Initialization Events . 2:306
11.4.1 PALE_INIT . 2:306
11.4.2 PALE_INIT Exit State . 2:306

11.5 Platform Management Interrupt (PMI) . 2:310
11.5.1 PMI Overview . 2:310
11.5.2 PALE_PMI Exit State . 2:312
11.5.3 Resume from the PMI Handler . 2:313

11.6 Power Management . 2:313
11.6.1 Power/Performance States (P-states) . 2:315

11.7 PAL Virtualization Support. 2:324
11.7.1 Virtual Processor Descriptor (VPD). 2:325
11.7.2 Interruption Handling in a Virtual Environment . 2:331
11.7.3 PAL Intercepts in Virtual Environment. 2:332
11.7.4 Virtualization Optimizations . 2:335

11.8 PAL Glossary. 2:350
11.9 PAL Code Memory Accesses and Restrictions . 2:352
11.10 PAL Procedures . 2:353

11.10.1 PAL Procedure Summary . 2:354
11.10.2 PAL Calling Conventions. 2:358
11.10.3 PAL Procedure Specifications . 2:365

11.11 PAL Virtualization Services . 2:486
11.11.1 PAL Virtualization Service Invocation Convention. 2:486
11.11.2 PAL Virtualization Service Specifications . 2:488

Part II: System Programmer’s Guide

1 About the System Programmer’s Guide . 2:503

1.1 Overview of the System Programmer’s Guide. 2:503
1.2 Related Documents . 2:505

2 MP Coherence and Synchronization . 2:507

2.1 An Overview of Intel® Itanium® Memory Access Instructions 2:507
2.1.1 Memory Ordering of Cacheable Memory References 2:507
2.1.2 Loads and Stores . 2:508
2.1.3 Semaphores . 2:508
2.1.4 Memory Fences. 2:510

2.2 Memory Ordering in the Intel® Itanium® Architecture . 2:510
2.2.1 Memory Ordering Executions . 2:511
2.2.2 Memory Attributes . 2:524
2.2.3 Understanding Other Ordering Models: Sequential Consistency and IA-32 . . .

2:525
2.3 Where the Intel® Itanium® Architecture Requires Explicit Synchronization. 2:526
2.4 Synchronization Code Examples. 2:526

2.4.1 Spin Lock. 2:527
2.4.2 Simple Barrier Synchronization . 2:528
2.4.3 Dekker’s Algorithm . 2:529
2.4.4 Lamport’s Algorithm . 2:530

2.5 Updating Code Images . 2:531
2.5.1 Self-modifying Code . 2:532
2.5.2 Cross-modifying Code. 2:533

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 225

2.5.3 Programmed I/O . 2:534
2.5.4 DMA . 2:536

2.6 References . 2:536

3 Interruptions and Serialization . 2:537

3.1 Terminology . 2:537
3.2 Interruption Vector Table . 2:538
3.3 Interruption Handlers . 2:539

3.3.1 Execution Environment. 2:539
3.3.2 Interruption Register State . 2:540
3.3.3 Resource Serialization of Interrupted State . 2:542
3.3.4 Resource Serialization upon rfi. 2:543

3.4 Interruption Handling . 2:543
3.4.1 Lightweight Interruptions . 2:543
3.4.2 Heavyweight Interruptions . 2:544
3.4.3 Nested Interruptions . 2:546

4 Context Management . 2:549

4.1 Preserving Register State across Procedure Calls. 2:549
4.1.1 Preserving General Registers . 2:550
4.1.2 Preserving Floating-point Registers . 2:551

4.2 Preserving Register State in the OS. 2:551
4.2.1 Preservation of Stacked Registers in the OS . 2:552
4.2.2 Preservation of Floating-point State in the OS . 2:553

4.3 Preserving ALAT Coherency . 2:554
4.4 System Calls. 2:555

4.4.1 epc/Demoting Branch Return . 2:555
4.4.2 break/rfi. 2:556
4.4.3 NaT Checking for NaTs in System Calls . 2:556

4.5 Context Switching . 2:557
4.5.1 User-level Context Switching . 2:557
4.5.2 Context Switching in an Operating System Kernel. 2:558

5 Memory Management . 2:561

5.1 Address Space Model. 2:561
5.1.1 Regions . 2:561
5.1.2 Protection Keys . 2:564

5.2 Translation Lookaside Buffers (TLBs) . 2:565
5.2.1 Translation Registers (TRs) . 2:566
5.2.2 Translation Caches (TCs). 2:567

5.3 Virtual Hash Page Table. 2:571
5.3.1 Short Format. 2:572
5.3.2 Long Format . 2:573
5.3.3 VHPT Updates . 2:573

5.4 TLB Miss Handlers . 2:573
5.4.1 Data/Instruction TLB Miss Vectors . 2:573
5.4.2 VHPT Translation Vector . 2:575
5.4.3 Alternate Data/Instruction TLB Miss Vectors . 2:576
5.4.4 Data Nested TLB Vector. 2:576
5.4.5 Dirty Bit Vector . 2:577
5.4.6 Data/Instruction Access Bit Vector . 2:577
5.4.7 Page Not Present Vector . 2:577
5.4.8 Data/Instruction Access Rights Vector . 2:577

5.5 Subpaging. 2:577

6 Runtime Support for Control and Data Speculation . 2:579

6.1 Exception Deferral of Control Speculative Loads . 2:579
6.1.1 Hardware-only Deferral . 2:580
6.1.2 Combined Hardware/Software Deferral . 2:580
6.1.3 Software-only Deferral . 2:580

226 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

6.2 Speculation Recovery Code Requirements. 2:580
6.3 Speculation Related Exception Handlers . 2:581

6.3.1 Unaligned Handler. 2:581

7 Instruction Emulation and Other Fault Handlers. 2:583

7.1 Unaligned Reference Handler . 2:583
7.2 Unsupported Data Reference Handler . 2:584
7.3 Illegal Dependency Fault . 2:584
7.4 Long Branch . 2:585

8 Floating-point System Software . 2:587

8.1 Floating-point Exceptions in the Intel® Itanium® Architecture 2:587
8.1.1 Software Assistance Exceptions (Faults and Traps) 2:587
8.1.2 The IEEE Floating-point Exception Filter. 2:590

8.2 IA-32 Floating-point Exceptions. 2:593

9 IA-32 Application Support . 2:595

9.1 Transitioning between Intel® Itanium® and IA-32 Instruction Sets 2:596
9.1.1 IA-32 Code Execution Environments . 2:596
9.1.2 br.ia . 2:596
9.1.3 JMPE. 2:597
9.1.4 Procedure Calls between Intel® Itanium® and IA-32 Instruction Sets . . . 2:597

9.2 IA-32 Architecture Handlers . 2:599
9.3 Debugging IA-32 and Itanium®Architecture-based Code . 2:600

9.3.1 Instruction Breakpoints . 2:600
9.3.2 Data Breakpoints . 2:600
9.3.3 Single Step Traps . 2:601
9.3.4 Taken Branch Traps . 2:601

10 External Interrupt Architecture . 2:603

10.1 External Interrupt Basics . 2:603
10.2 Configuration of External Interrupt Vectors . 2:604
10.3 External Interrupt Masking. 2:604

10.3.1 PSR.i . 2:604
10.3.2 IVR Reads and EOI Writes . 2:605
10.3.3 Task Priority Register (TPR) . 2:605
10.3.4 External Task Priority Register (XTPR) . 2:605

10.4 External Interrupt Delivery . 2:606
10.5 Interrupt Control Register Usage Examples . 2:607

10.5.1 Notation . 2:608
10.5.2 TPR and XPTR Usage Example . 2:608
10.5.3 EOI Usage Example . 2:609
10.5.4 IRR Usage Example . 2:609
10.5.5 Interval Timer Usage Example . 2:609
10.5.6 Resource Utilization Counter Usage Example . 2:611
10.5.7 Local Redirection Example . 2:611
10.5.8 Inter-processor Interrupts Layout and Example 2:612
10.5.9 INTA Example . 2:612

11 I/O Architecture. 2:615

11.1 Memory Acceptance Fence (mf.a). 2:615
11.2 I/O Port Space . 2:616

12 Performance Monitoring Support . 2:619

12.1 Architected Performance Monitoring Mechanisms . 2:619
12.2 Operating System Support . 2:620

13 Firmware Overview. 2:623

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 227

13.1 Processor Boot Flow Overview. 2:623
13.1.1 Firmware Boot Flow . 2:623
13.1.2 Operating System Boot Steps . 2:625

13.2 Runtime Procedure Calls . 2:628
13.2.1 PAL Procedure Calls . 2:628
13.2.2 SAL Procedure Calls . 2:630
13.2.3 UEFI Procedure Calls. 2:630
13.2.4 ACPI Control Methods . 2:631
13.2.5 Physical and Virtual Addressing Mode Considerations 2:631

13.3 Event Handling in Firmware . 2:632
13.3.1 Machine Check Abort (MCA) Flows . 2:632
13.3.2 INIT Flows . 2:635
13.3.3 PMI Flows. 2:637
13.3.4 P-state Feedback Mechanism Flow Diagram. 2:637

A Code Examples . 2:639
A.1 OS Boot Flow Sample Code . 2:639

Index. 2:643

Figures

Part I: System Architecture Guide
2-1 System Environment Boot Flow. 2:13
2-2 Intel® Itanium® System Environment. 2:14
3-1 System Register Model . 2:22
3-2 Processor Status Register (PSR) . 2:23
3-3 Default Control Register (DCR – CR0) . 2:31
3-4 Interval Time Counter (ITC – AR44) . 2:32
3-5 Interval Timer Match Register (ITM – CR1). 2:32
3-6 Interval Timer Offset Register (ITO – CR4) . 2:34
3-7 Interruption Vector Address (IVA – CR2). 2:35
3-8 Page Table Address (PTA – CR8). 2:35
3-9 Interruption Status Register (ISR – CR17) . 2:36
3-10 Interruption Instruction Bundle Pointer (IIP – CR19) . 2:38
3-11 Interruption Faulting Address (IFA – CR20) . 2:39
3-12 Interruption TLB Insertion Register (ITIR) . 2:39
3-13 Interruption Instruction Previous Address (IIPA – CR22) . 2:40
3-14 Interruption Function State (IFS – CR23) . 2:41
3-15 Interruption Immediate (IIM – CR24) . 2:41
3-16 Interruption Hash Address (IHA – CR25) . 2:41
3-17 Interruption Instruction Bundle Registers (IIB0-1, – CR26, 27) . 2:42
3-18 Banked General Registers. 2:43
4-1 Virtual Address Spaces . 2:46
4-2 Conceptual Virtual Address Translation for References . 2:47
4-3 TLB Organization. 2:47
4-4 Conceptual Virtual Address Searching for Inserts and Purges . 2:51
4-5 Translation Insertion Format . 2:54
4-6 Translation Insertion Format – Not Present. 2:56
4-7 Region Register Format. 2:58
4-8 Protection Key Register Format. 2:59
4-9 Virtual Hash Page Table (VHPT). 2:62
4-10 VHPT Short Format . 2:63

228 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

4-11 VHPT Not-present Short Format . 2:64
4-12 VHPT Long Format. 2:64
4-13 VHPT Not-present Long Format. 2:65
4-14 Region-based VHPT Short-format Index Function . 2:66
4-15 VHPT Long-format Hash Function . 2:66
4-16 TLB/VHPT Search . 2:70
4-17 32-bit Address Generation using addp4 . 2:72
4-18 Physical Address Bit Fields . 2:73
4-19 Virtual Address Bit Fields . 2:74
4-20 Physical Addressing Memory . 2:76
4-21 Addressing Memory Attributes . 2:77
5-1 Interruption Classification . 2:97
5-2 Interruption Processing. 2:99
5-3 Interrupt Architecture Overview . 2:115
5-4 PAL-based Interrupt States . 2:117
5-5 External Interrupt States. 2:118
5-6 Local ID (LID – CR64) . 2:122
5-7 External Interrupt Vector Register (IVR – CR65) . 2:123
5-8 Task Priority Register (TPR – CR66) . 2:124
5-9 End of External Interrupt Register (EOI – CR67) . 2:124
5-10 External Interrupt Request Register (IRR0-3 – CR68, 69, 70, 71) . 2:125
5-11 Interval Timer Vector (ITV – CR72) . 2:125
5-12 Performance Monitor Vector (PMV – CR73) . 2:126
5-13 Corrected Machine Check Vector (CMCV – CR74) . 2:126
5-14 Local Redirection Register (LRR – CR80,81). 2:127
5-15 Processor Interrupt Block Memory Layout . 2:128
5-16 Address Format for Inter-processor Interrupt Messages . 2:129
5-17 Data Format for Inter-processor Interrupt Messages . 2:129
6-1 Relationship Between Physical Registers and Backing Store . 2:134
6-2 Backing Store Memory Format. 2:134
6-3 Four Partitions of the Register Stack . 2:137
7-1 Data Breakpoint Registers (DBR). 2:152
7-2 Instruction Breakpoint Registers (IBR) . 2:152
7-3 Performance Monitor Register Set . 2:156
7-4 Generic Performance Counter Data Registers (PMD[4]..PMD[p]) . 2:157
7-5 Generic Performance Counter Configuration Register (PMC[4]..PMC[p]) 2:157
7-6 Performance Monitor Overflow Status Registers (PMC[0]..PMC[3]) 2:161
7-7 Performance Monitor Interrupt Service Routine (Implementation Independent) 2:163
7-8 Performance Monitor Overflow Context Switch Routine . 2:164
9-1 IA-32 Trap Code . 2:213
9-2 IA-32 Trap Code . 2:213
9-3 IA-32 Intercept Code . 2:234
10-1 IA-32 System Segment Register Descriptor Format (LDT, GDT, TSS) 2:241
10-2 IA-32 EFLAG Register . 2:243
10-3 Control Flag Register (CFLG, AR27) . 2:246
10-4 Virtual Memory Addressing . 2:260
10-5 Physical Memory Addressing . 2:262
10-1 I/O Port Space Model . 2:268
10-2 I/O Port Space Addressing . 2:269
11-1 Firmware Model . 2:280
11-2 Firmware Entrypoints Logical Model . 2:281

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 229

11-3 Firmware Address Space . 2:284
11-4 Firmware Address Space with Processor-specific PAL_A Components 2:285
11-5 Firmware Interface Table. 2:287
11-6 Firmware Interface Table Entry . 2:288
11-7 SALE_ENTRY State Parameter . 2:291
11-8 Geographically Significant Processor Identifier . 2:293
11-9 Self Test State Parameter . 2:293
11-10 Self-test Control Word . 2:295
11-11 Processor State Parameter . 2:299
11-1 Processor Min-state Save Area Layout . 2:303
11-2 Processor State Saved in Min-state Save Area. 2:304
11-3 NaT Bits for Saved GRs . 2:305
11-4 SALE_ENTRY State Parameter . 2:305
11-5 Processor State Parameter . 2:308
11-6 SALE_ENTRY State Parameter . 2:310
11-7 PMI Entrypoints . 2:311
11-8 Power States . 2:314
11-9 Power and Performance Characteristics for P-states . 2:316
11-10 Example of a P-state Transition Policy . 2:317
11-11 Computation of performance_index. 2:321
11-12 Interaction of P-states with HALT State. 2:324
11-13 Virtualization Acceleration Control (vac) . 2:329
11-14 Virtualization Disable Control (vdc) . 2:330
11-15 PAL Virtualization Intercept Handoff Opcode (GR25) . 2:335
11-1 operation Parameter Layout . 2:371
11-2 config_info_1 Return Value . 2:374
11-3 config_info_2 Return Value . 2:375
11-4 config_info_1 Return Value . 2:378
11-5 config_info_2 Return Value . 2:378
11-6 config_info_3 Return Value . 2:379
11-7 cache_protection Fields. 2:379
11-8 Layout of line_id Return Value. 2:380
11-9 Layout of proc_n_cache_info1 Return Value. 2:383
11-10 Layout of proc_n_cache_info2 Return Value. 2:383
11-11 Layout of line_id Return Value. 2:385
11-12 Return values. 2:393
11-13 I/O Size and Type Information Layout . 2:399
11-14 Layout of power_buffer Return Value . 2:401
11-15 Layout of log_overview Return Value . 2:405
11-16 Layout of proc_n_log_info1 Return Value . 2:405
11-17 Layout of proc_n_log_info2 Return Value . 2:406
11-18 Pending Return Parameter . 2:407
11-19 level_index Layout . 2:411
11-20 cache_check Layout . 2:414
11-21 tlb_check Layout . 2:415
11-22 bus_check Layout . 2:417
11-23 reg_file_check Layout . 2:418
11-24 uarch_check Layout. 2:420
11-25 err_type_info . 2:421
11-26 resources Return Value . 2:423
11-27 err_struct_info – Cache . 2:424

230 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

11-28 capabilities vector for cache . 2:425
11-29 Buffer pointed to by err_data_buffer – Cache . 2:426
11-30 err_struct_info – TLB . 2:427
11-31 capabilities vector for TLB . 2:428
11-32 Buffer pointed to by err_data_buffer – TLB . 2:428
11-33 err_struct_info – Register File . 2:428
11-34 capabilities Vector for Register File . 2:430
11-35 Buffer pointed to by err_data_buffer – Register File. 2:430
11-36 err_struct_info – Bus/Processor Interconnect . 2:431
11-37 capabilities vector for Bus/Processor Interconnect. 2:431
11-38 Layout of hw_track Return Value . 2:432
11-39 Layout of attrib Return Value . 2:437
11-40 Layout of pm_info Return Value . 2:440
11-41 Layout of pstate_buffer Entry . 2:451
11-42 Layout of dd_info Parameter . 2:452
11-43 Layout of hints Return Value . 2:455
11-44 Layout of test_info Argument . 2:462
11-45 Layout of test_param Argument . 2:463
11-46 Layout of min_pal_ver and current_pal_ver Return Values . 2:465
11-47 Layout of tc_info Return Value . 2:466
11-48 Layout of vm_info_1 Return Value . 2:468
11-49 Layout of vm_info_2 Return Value . 2:469
11-50 Layout of TR_valid Return Value . 2:470

Part II: System Programmer’s Guide
2-1 Intel® Itanium® Ordering Semantics . 2:512
2-2 Interaction of Ordering and Accesses to Sequential Locations . 2:524
2-3 Why a Fence During Context Switches is Required in the Intel® Itanium® Architecture . . . 2:526
2-4 Spin Lock Code . 2:527
2-5 Sense-reversing Barrier Synchronization Code . 2:528
2-6 Dekker’s Algorithm in a 2-way System . 2:530
2-7 Lamport’s Algorithm . 2:531
2-8 Updating a Code Image on the Local Processor . 2:532
2-9 Supporting Cross-modifying Code without Explicit Serialization . 2:533
2-10 Updating a Code Image on a Remote Processor. 2:535
5-1 Self-mapped Page Table . 2:572
5-2 Subpaging . 2:578
8-1 Overview of Floating-point Exception Handling in the Intel® Itanium® Architecture 2:589
13-1 Firmware Model . 2:624
13-2 Control Flow of Boot Process in a Multiprocessor Configuration . 2:626
13-3 Correctable Machine Check Code Flow . 2:633
13-4 Uncorrectable Machine Check Code Flow . 2:633
13-5 INIT Flow . 2:636
13-6 Flowchart Showing P-state Feedback Policy . 2:638

Tables

Part I: System Architecture Guide
3-1 Processor Status Register Instructions .2:23

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 231

3-2 Processor Status Register Fields . 2:24
3-3 Control Registers . 2:29
3-4 Control Register Instructions . 2:30
3-5 Default Control Register Fields . 2:31
3-6 Page Table Address Fields . 2:35
3-7 Interruption Status Register Fields . 2:37
3-8 ITIR Fields . 2:39
3-9 Interruption Function State Fields . 2:41
3-10 Virtualized Instructions. 2:44
4-1 Purge Behavior of TLB Inserts and Purges . 2:52
4-2 Purge behavior of VHPT Inserts . 2:53
4-3 Translation Interface Fields . 2:54
4-4 Page Access Rights . 2:56
4-5 Architected Page Sizes . 2:58
4-6 Region Register Fields . 2:58
4-7 Protection Register Fields . 2:59
4-8 Translation Instructions . 2:60
4-9 VHPT Long-format Fields . 2:64
4-10 TLB and VHPT Search Faults . 2:70
4-11 Virtual Addressing Memory Attribute Encodings . 2:76
4-12 Physical Addressing Memory Attribute Encodings . 2:77
4-13 Permitted Speculation . 2:80
4-14 Register Return Values on Non-faulting Advanced/Speculative Loads 2:80
4-15 Ordering Semantics and Instructions . 2:83
4-16 Ordering Semantics . 2:84
4-17 ALAT Behavior on Non-faulting Advanced/Check Loads 2:88
5-1 ISR Settings for Non-access Instructions . 2:104
5-2 Programming Models . 2:105
5-3 Exception Qualification . 2:106
5-4 Qualified Exception Deferral . 2:107
5-5 Spontaneous Deferral . 2:107
5-6 Interruption Priorities. . 2:109
5-7 Interruption Vector Table (IVT) . 2:113
5-8 Interrupt Priorities, Enabling, and Masking . 2:119
5-9 External Interrupt Control Registers . 2:122
5-10 Local ID Fields . 2:122
5-11 Task Priority Register Fields. . 2:124
5-12 Interval Timer Vector Fields . 2:125
5-13 Performance Monitor Vector Fields . 2:126
5-14 Corrected Machine Check Vector Fields . 2:126
5-15 Local Redirection Register Fields . 2:127
5-16 Address Fields for Inter-processor Interrupt Messages 2:129
5-17 Data Fields for Inter-processor Interrupt Messages . 2:129
6-1 RSE Internal State . 2:135
6-2 RSE Operation Instructions and State Modification . 2:138
6-3 RSE Modes (RSC.mode) . 2:139
6-4 Backing Store Pointer Application Registers . 2:142
6-5 RSE Control Instructions . 2:143
6-6 RSE Interruption Summary . 2:145
7-1 Debug Breakpoint Register Fields (DBR/IBR) . 2:153
7-2 Debug Instructions. . 2:153

232 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

7-3 Generic Performance Counter Data Register Fields . 2:157
7-4 Generic Performance Counter Configuration Register Fields (PMC[4]..PMC[p]) 2:157
7-5 Reading Performance Monitor Data Registers . 2:158
7-6 Performance Monitor Instructions . 2:159
7-7 Performance Monitor Overflow Register Fields (PMC[0]...PMC[3]) 2:161
8-1 Writing of Interruption Resources by Vector. . 2:166
8-2 ISR Values on Interruption . 2:168
8-3 ISR.code Fields on Intel® Itanium® Traps . 2:170
8-4 Interruption Vectors Sorted Alphabetically . 2:171
9-1 Intercept Code Definition . 2:234
9-2 Segment Prefix Override Encodings . 2:234
9-3 Gate Intercept Trap Code Identifier . 2:235
9-4 System Flag Intercept Instruction Trap Code Instruction Identifier 2:236
10-1 IA-32 System Register Mapping. . 2:240
10-2 IA-32 System Segment Register Fields (LDT, GDT, TSS) 2:242
10-3 IA-32 EFLAG Field Definition . 2:244
10-4 IA-32 Control Register Field Definition . 2:247
10-5 IA-32 Instruction Summary . 2:254
10-6 Instruction Cache Coherency Rules . 2:265
10-7 IA-32 Load/Store Sequentiality and Ordering . 2:265
10-8 IA-32 Interruption Vector Summary . 2:275
10-9 IA-32 Interruption Summary . 2:275
11-1 FIT Entry Types . 2:288
11-2 GR38 Reset Layout . 2:290
11-3 function Field Values . 2:291
11-4 status Field Values . 2:292
11-5 Geographically Significant Processor Identifier Fields 2:293
11-6 state Field Values . 2:294
11-7 Processor State Parameter Fields. . 2:299
11-8 Software Recovery Bits in Processor State Parameter 2:301
11-9 PSP Bit Settings for Unconsumed Data-poisoning Events on MCA. 2:302
11-10 NaT Bits for Saved GRs . 2:305
11-11 function Field Values . 2:305
11-12 Processor State Parameter Fields. . 2:308
11-13 function Field Values . 2:310
11-14 PMI Events and Priorities . 2:311
11-15 PMI Message Vector Assignments . 2:311
11-16 Virtual Processor Descriptor (VPD) . 2:326
11-17 Virtual Processor Descriptor (VPD) – VPSR . 2:328
11-18 Virtual Processor Descriptor (VPD) – VCR[0-127] . 2:329
11-19 Virtualization Acceleration Control (vac) Fields . 2:329
11-20 Virtualization Disable Control (vdc) Fields. . 2:330
11-21 IVA Settings after PAL Virtualization-related Procedures and Services. 2:332
11-22 PAL Virtualization Intercept Handoff Cause (GR24) . 2:334
11-23 Global Virtualization Optimizations Summary . 2:336
11-24 Synchronization Requirements for Virtualization Opcode Optimization 2:336
11-25 Behavior of Guest MOV-from-AR.ITC Instruction in Virtual Environment 2:337
11-26 Virtualization Accelerations Summary . 2:338
11-27 Detection of Virtual External Interrupts . 2:339
11-28 Synchronization Requirements for Virtual External Interrupt Optimization 2:339
11-29 Interruptions when Virtual External Interrupt Optimization is Enabled 2:340

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 233

11-30 Synchronization Requirements for Interruption Control Register Read Optimization 2:340
11-31 Interruptions when Interruption Control Register Read Optimization is Enabled 2:341
11-32 Synchronization Requirements for Interruption Control Register Write Optimization 2:341
11-33 Interruptions when Interruption Control Register Write Optimization is Enabled 2:341
11-34 Synchronization Requirements for MOV-from-PSR Optimization 2:342
11-35 Interruptions when MOV-from-PSR Optimization is Enabled 2:342
11-36 Synchronization Requirements for MOV-from-CPUID Optimization. 2:343
11-37 Interruptions when MOV-from-CPUID Optimization is Enabled 2:343
11-38 Synchronization Requirements for Cover Optimization 2:343
11-39 Interruptions when Cover Optimization is Enabled . 2:343
11-40 Synchronization Requirements for Bank Switch Optimization. 2:344
11-41 Interruptions when Bank Switch Optimization is Enabled 2:344
11-42 Impact of clearing VCPUID bits with the a_tf optimization. 2:345
11-43 Synchronization Requirements for Test Feature Optimization 2:345
11-44 Synchronization Requirements for Interrupt Collection and User Mask Optimization 2:346
11-45 Interruptions when Interrupt Collection and User Mask Optimization is Enabled 2:346
11-46 Virtualization Disables Summary . 2:346
11-47 Supported Virtualization Optimization Combinations . 2:349
11-48 PAL Procedure Index Assignment. . 2:354
11-49 PAL Cache and Memory Procedures . 2:354
11-50 PAL Processor Identification, Features, and Configuration Procedures. 2:355
11-51 PAL Machine Check Handling Procedures . 2:356
11-52 PAL Power Information and Management Procedures 2:356
11-53 PAL Processor Self Test Procedures . 2:357
11-54 PAL Support Procedures . 2:357
11-55 PAL Virtualization Support Procedures . 2:357
11-56 State Requirements for PSR . 2:359
11-57 Definition of Terms. . 2:360
11-58 System Register Conventions . 2:361
11-59 General Registers – Static Calling Convention . 2:362
11-60 General Registers – Stacked Calling Conventions . 2:362
11-61 Application Register Conventions . 2:363
11-62 Processor Brand Information Requested . 2:366
11-63 Processor Bus Features . 2:368
11-64 cache_type Encoding . 2:370
11-65 Cache Line State when inv = 0 . 2:371
11-66 Cache Line State when inv = 1 . 2:372
11-67 Cache Memory Attributes . 2:374
11-68 Cache Store Hints . 2:375
11-69 Cache Load Hints . 2:375
11-70 PAL_CACHE_INIT level Argument Values . 2:376
11-71 PAL_CACHE_INIT restrict Argument Values . 2:376
11-72 method Values. . 2:379
11-73 t_d Values . 2:379
11-75 part Input Values and corresponding data Return Values 2:381
11-76 mesi Return Values . 2:381
11-74 part Input Values. . 2:381
11-77 part Input Values. . 2:386
11-78 mesi Return Values . 2:386
11-79 Interpretation of data Input Field. . 2:386
11-80 Hardware policies returned in cur_policy . 2:395

234 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

11-81 PAL_GET_PSTATE type Argument . 2:397
11-82 I/O Detail Pointer Description . 2:399
11-83 I/O Type Definition. . 2:400
11-84 I/O Size Definition . 2:400
11-85 Pending Return Parameter Fields . 2:407
11-86 info_index Values . 2:411
11-87 level_index Fields . 2:412
11-88 err_type_index Values. . 2:412
11-89 error_info Return Format when info_index = 2 and err_type_index = 0 2:413
11-90 cache_check Fields . 2:414
11-91 tlb_check Fields . 2:415
11-92 bus_check Fields . 2:417
11-93 reg_file_check Fields . 2:418
11-94 uarch_check Fields . 2:420
11-95 err_type_info. . 2:422
11-96 resources Return Value . 2:424
11-97 err_struct_info – Cache . 2:424
11-98 capabilities vector for cache . 2:425
11-99 Buffer pointed to by err_data_buffer – Cache . 2:426
11-100 err_struct_info – TLB . 2:427
11-101 capabilities vector for TLB . 2:428
11-102 Buffer pointed to by err_data_buffer – TLB . 2:428
11-103 err_struct_info – Register File . 2:429
11-104 capabilities Vector for Register File . 2:430
11-105 Buffer pointed to by err_data_buffer – Register File. . 2:430
11-106 err_struct_info – Bus/Processor Interconnect . 2:431
11-107 capabilities vector for Bus/Processor Interconnect . 2:431
11-108 hw_check Fields . 2:432
11-109 control_word Layout . 2:438
11-110 pm_info Fields . 2:440
11-111 pm_buffer Layout . 2:440
11-112 Processor Features . 2:447
11-113 Values for ddt Field . 2:452
11-114 info_request Return Value. . 2:454
11-115 RSE Hints Implemented . 2:455
11-116 Processor Hardware Sharing Policies . 2:456
11-117 notify_platform Layout . 2:460
11-118 vp_env_info – Virtual Environment Information Parameter 2:473
11-119 config_options – Global Configuration Options . 2:479
11-120 PAL Virtualization Services . 2:486
11-121 State Requirements for PSR for PAL Virtualization Services 2:487
11-122 Virtual Processor Settings in Architectural Resources for PAL_VPS_RESUME_NORMAL and

PAL_VPS_RESUME_HANDLER2:489
11-123 Processor Status Register Settings for Virtual Processor Execution 2:490
11-124 vhpi – Virtual Highest Priority Pending Interrupt . 2:495

Part II: System Programmer’s Guide
2-1 Intel® Itanium® Architecture Provides a Relaxed Ordering Model 2:512
2-2 Acquire and Release Semantics Order Intel® Itanium® Memory Operations 2:513
2-3 Loads May Pass Stores to Different Locations . 2:514
2-4 Loads May Not Pass Stores in the Presence of a Memory Fence 2:514

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 235

2-5 Dependencies Do Not Establish MP Ordering (1) . 2:515
2-6 Memory Ordering and Data Dependency . 2:516
2-7 Memory Ordering and Data Dependency Through a Predicate Register 2:516
2-8 Memory Ordering and Data and Control Dependencies. 2:517
2-9 Memory Ordering and Control Dependency . 2:517
2-10 Store Buffers May Satisfy Loads if the Stored Data is Not Yet Globally Visible 2:518
2-11 Preventing Store Buffers from Satisfying Local Loads 2:519
2-12 Bypassing to a Semaphore Operation. . 2:521
2-13 Bypassing from a Semaphore Operation . 2:521
2-14 Enforcing the Same Visibility Order to All Observers in a Coherence Domain 2:522
2-15 Intel® Itanium® Architecture Obeys Causality. . 2:523
2-16 Potential Pipeline Behaviors of the Branch at x from Figure 2-9 2:534
3-1 Interruption Handler Execution Environment (PSR and RSE.CFLE Settings). 2:540
4-1 Preserving Intel® Itanium® General and Floating-point Registers 2:549
4-2 Register State Preservation at Different Points in the OS 2:552
5-1 Comparison of VHPT Formats. . 2:572
6-1 Speculation Recovery Code Requirements . 2:581
9-1 IA-32 Vectors that need Itanium® Architecture-based OS Support 2:599

§

236 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

2:1 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Part I: System Architecture Guide

2:2 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Volume 2, Part 1: About this Manual 2:3

About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

2:4 Volume 2, Part 1: About this Manual

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 – GR 127) of the general
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 2, Part 1: About this Manual 2:5

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

2:6 Volume 2, Part 1: About this Manual

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 2, Part 1: About this Manual 2:7

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

Itanium Architecture-based Firmware – The Processor Abstraction Layer (PAL) and
System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization– Document number 308065
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization – This document (Document number 251110) describes
model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development –
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

2:8 Volume 2, Part 1: About this Manual

• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide –
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification –
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of
Revision

Revision
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

Volume 2, Part 1: About this Manual 2:9

August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part I, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of
Revision

Revision
Number Description

2:10 Volume 2, Part 1: About this Manual

August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1;
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2;
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3,
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s)
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I,
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2,
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of
Revision

Revision
Number Description

Volume 2, Part 1: About this Manual 2:11

Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of
Revision

Revision
Number Description

2:12 Volume 2, Part 1: About this Manual

§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description

Volume 2, Part 1: Intel® Itanium® System Environment 2:13

Intel® Itanium® System Environment 2

As described in Section 2.1, “Operating Environments” on page 1:13, the Itanium
System Environment supports Itanium architecture-based operating systems. The
architectural model also supports a mixture of IA-32 and Itanium architecture-based
application code within an Itanium architecture-based operating system.

The system environment determines the set of processor system resources seen by the
operating system. These resources include: virtual memory management, physical
memory attributes, external interrupt mechanisms, exception and interrupt delivery,
machine check architectures, debug, performance monitoring, control registers, and
the set of privileged instructions.

2.1 Processor Boot Sequence

Figure 2-1 shows the defined boot sequence. Unlike IA-32 processors, which power up
in 32-bit Real Mode, processors in the Itanium processor family power up in the
Itanium System Environment running Itanium architecture-based code. Processor
initialization, testing, memory, and platform initialization/testing are performed by
processor firmware. Mechanisms are provided to execute Real Mode IA-32 boot BIOSs
and device drivers during the boot sequence.

Figure 2-1. System Environment Boot Flow

Processor
Test & Initialization

Platform Test &
Initialization

Itanium® architecture-based

(Intel® Itanium®

(Intel® Itanium® or

Intel® Itanium®

Reset

System Environment

Instructions)

IA-32 Instructions)

OS Boot
(Intel® Itanium®

Instructions & IA-32
Instructions)

2:14 Volume 2, Part 1: Intel® Itanium® System Environment

2.2 Intel® Itanium® System Environment Overview

The Itanium System Environment is designed to support execution of Itanium
architecture-based operating systems running IA-32 or Itanium architecture-based
applications. IA-32 applications can interact with Itanium architecture-based operating
systems, applications and libraries within this environment. Both IA-32 application level
code and Itanium instructions can be executed by the operating system and user level
software. The entire machine state, including the IA-32 general registers and
floating-point registers, segment selectors and descriptors is accessible to Itanium
architecture-based code. As shown in Figure 2-2, all major IA-32 operating modes are
fully supported.

In the Itanium system environment, Itanium architecture operating system resources
supersede all IA-32 system resources. Specifically, the IA-32 defined set of control,
test, debug, machine check registers, privilege instructions, and virtual paging
algorithms are replaced by the Itanium architecture system resources. When IA-32
code is running on an Itanium architecture-based operating system, the processor
directly executes all performance critical but non-sensitive IA-32 application level
instructions. Accesses to sensitive system resources (interrupt flags, control registers,
TLBs, etc.) are intercepted into the Itanium architecture-based operating system. Using
this set of intervention hooks, an Itanium architecture-based operating system can
emulate or virtualize an IA-32 system resource for an IA-32 application, OS, or device
driver.

The Itanium system architecture features are presented in the following chapters:

• Chapter 3, “System State and Programming Model” describes system resources.

• Chapter 4, “Addressing and Protection” describes the virtual memory architecture.

• Chapter 5, “Interruptions” defines the interrupt and exception architecture.

• Chapter 6, “Register Stack Engine” describes the register stack engine.

• Chapter 7, “Debugging and Performance Monitoring” describes debug and
performance monitoring hooks.

• Chapter 8, “Interruption Vector Descriptions” describes interruption handler entry
points.

Figure 2-2. Intel® Itanium® System Environment

 Intel® Itanium®IA-32 PM

 Segmentation

Paging & Interruption

Instructions

IA-32 Real Mode

Segmentation

IA-32 VM86

Segmentation

Real Mode VM86 Protected Mode
Intel® Itanium®

Instructions and Instructions and Instructions and

Handling in the

Interruption &
Intercepts

Intel® Itanium® Architecture

Architecture

Volume 2, Part 1: Intel® Itanium® System Environment 2:15

Additional support for IA-32 applications in the Itanium system environment is defined
by chapters:

• Chapter 9 describes IA-32 interruption handler entry points.

• Chapter 10, “Itanium® Architecture-based Operating System Interaction Model
with IA-32 Applications”describes how IA-32 applications interact with Itanium
architecture-based operating systems.

§

2:16 Volume 2, Part 1: Intel® Itanium® System Environment

Volume 2, Part 1: System State and Programming Model 2:17

System State and Programming Model 3

This chapter describes the architectural state visible only to an operating system and
defines system state programming models. It covers the functional descriptions of all
the system state registers, descriptions of individual fields in each register, and their
serialization requirements. The virtual and physical memory management details are
described in Chapter 4, “Addressing and Protection.” Interruptions are described in
Chapter 5, “Interruptions.”

Note: Unless otherwise noted, references to “interruption” in this chapter refer to
IVA-based interruptions. See “Interruption Definitions” on page 2:95.

3.1 Privilege Levels

Four privilege levels, numbered from 0 to 3, are provided to control access to system
instructions, system registers and system memory areas. Level 0 is the most privileged
and level 3 the least privileged. Application instructions and registers can be accessed
at any privilege level. System instructions and registers defined in this chapter can only
be accessed at privilege level 0; otherwise, a Privilege Operation fault is raised. The
processor maintains a Current Privilege Level (CPL) in the cpl field of the Processor
Status Register (PSR). CPL can only be modified by controlled entry and exit points
managed by the operating system. Virtual memory protection mechanisms control
memory accesses based on the Privilege Level (PL) of the virtual page and the CPL.

3.2 Serialization

For all application and system level resources, apart from the control register file, the
processor ensures values written to a register are observed by instructions in
subsequent instruction groups. This is termed data dependency. For example, writes
to general registers, floating-point and application registers are observed by
subsequent reads of the same register. (See “Control Registers” on page 2:29 for
control register serialization requirements.) For modifications of application level
resources with side effects, the side effects are ensured by the processor to be
observed by subsequent instruction groups. This is termed implicit serialization.
Application registers (ARs), with the exception of the Interval Time Counter, the User
Mask, when modified by sum, rum, and mov to psr.um, and the Current Frame Marker
(CFM), are implicitly serialized. PMD registers have special serialization requirements as
described in “Generic Performance Counter Registers” on page 2:156. All other
application-level resources (GRs, FRs, PRs, BRs, IP, CPUID) have no side effects and so
need not be serialized.

To avoid serialization overhead in privileged operating system code, system register
resources are not implicitly serialized. The processor does not ensure modification of
registers with side effects are observed by subsequent instruction groups. For system
register resources other than control registers, the processor ensures data
dependencies are honored (reads see the results of prior writes to the same register).
See Section 3.3.3, “Control Registers” and Table 3-3 on page 2:29 for control register

2:18 Volume 2, Part 1: System State and Programming Model

serialization requirements. This approach simplifies hardware and allows for more
efficient software operations. For example, during a low level context switch where
there is no immediate use of loaded system registers, these registers can be loaded
without any serialization overhead. To ensure side effects are observed before a
dependent instruction is fetched or executed, two serialization operations are provided:
instruction serialization and data serialization.

3.2.1 Instruction Serialization

Instruction serialization ensures that modifications to processor resources are
observed before subsequent instruction group fetches are re-initiated. Software must
use an instruction serialization operation before any instruction group that is dependent
upon the modified system resource. Resource side effects may be observed at any point
before the explicit serialization operation.

Modification of the following system resources (if the modification affects instruction
fetching) require instruction serialization: RR, PKR, ITR, ITC, IBR, PMC, PMD, PSR bits
as defined in “Processor Status Register (PSR)” on page 2:23 and Control Registers as
defined in “Control Registers” on page 2:29.

The instructions Return from Interruption (rfi) and Instruction Serialize (srlz.i)
perform explicit instruction serialization.

An interruption performs an implicit instruction serialization operation, so the first
instruction group in the interruption handler will observe the serialized state.

Instruction Serialization Example:

mov ibr[reg]= reg // move to instruction debug register
;; // end of instruction group
srlz.i // ensure subsequent instruction fetches observe

// modification
;; // end of instruction group
inst // dependent instruction

Note: The serializing instruction, the instruction to be serialized, and any operations
dependent on the serialization must be in three separate instruction groups.

3.2.2 Data Serialization

Data serialization ensures that modifications to processor resources affecting both
execution and data memory accesses are observed. Software must issue a data
serialize operation prior to the instruction dependent upon the modified resource. Data
serialization can be issued within the same instruction group as the dependent
instruction. Resource side effects may be observed at any point before the explicit
serialization operation.

Modification of the following system resources require data serialization: RR, PKR, RUC,
DTR, DTC, DBR, PMC, PMD, PSR bits as defined in “Processor Status Register (PSR)” on
page 2:23 and Control Registers as defined in “Control Registers” on page 2:29.

Volume 2, Part 1: System State and Programming Model 2:19

The control registers are different from the general registers and other registers. Most
control registers require an explicit data serialization between the writing of a control
register and the reading of that same control register. (See Table 3-3 on page 2:29 for
serialization requirements for specific control registers.)

The Data Serialize (srlz.d) instruction performs explicit data serialization. Instruction
serialization operations (rfi, srlz.i, and interruptions) also perform a data
serialization operation.

Data Serialization Example:

mov rr[reg] = reg //move into region register
;; //end of instruction group
srlz.d //serialize region register modification
ld //perform a dependent load

The serializing instruction and the instruction to be serialized (the one writing the
resource) must be in two different instruction groups. Operations dependent on the
serialization and the serialization can be in the same instruction group, but the srlz
instruction must be before the dependent instruction slot.

3.2.3 Definition of In-flight Resources

When the value of a resource that requires an explicit instruction or data serialization is
changed by one or more writers, that resource is said to be in-flight until the required
serialization is performed. There can be multiple in-flight values if multiple writers have
occurred since the last serialization.

An instruction that reads an in-flight resource will see one of the in-flight values or the
state prior to any of the unserialized writers. However, whether such a reader sees the
original or one of the in-flight values is not predictable.

For a reader of an in-flight resource, this definition includes (but is not limited to) the
following possible outcomes:

• The reader of an in-flight resource may see the most-recently-serialized value or
any of the in-flight values each time it is executed – seeing the value from a
particular writer one time does not guarantee that the same writer’s value will be
seen by that reader the next time.

• Multiple readers of an in-flight resource may see different values – each may see
the most-recently-serialized value or any of the in-flight values, independent of
what other readers may see.

• If a single execution of an instruction reads an in-flight resource more than once
during its execution, each read may see a different value.

Thus, the only way to guarantee that the latest value is seen by a reader is to perform
the required serialization.

2:20 Volume 2, Part 1: System State and Programming Model

3.3 System State

The architecture provides a rich set of system register resources for process control,
interruptions handling, protection, debugging, and performance monitoring. This
section gives an overview of these resources.

3.3.1 System State Overview

Figure 3-1 shows the set of all defined privileged system register resources. Application
state as defined in “Application Register State” on page 1:23 is also accessible.

• Processor Status Register (PSR) – 64-bit register that maintains control
information for the currently running process. See “Processor Status Register
(PSR)” on page 2:23 for complete details.

• Control Registers (CR) – This register name space contains several 64-bit
registers that capture the state of the processor on an interruption, enable
system-wide features, and specify global processor parameters for interruptions
and memory management. See “Control Registers” on page 2:29 for complete
information.

• Interrupt Registers – These registers provide the capability of masking external
interrupts, reading external interrupt vector numbers, programming vector
numbers for internal processor asynchronous events and external interrupt
sources. For complete information, see “Interrupts” on page 2:114.

• Interval Timer Facilities – A 64-bit interval timer is provided for privileged and
non-privileged use and as a time base for performance measurements. Timing
facilities are defined in detail in “Interval Time Counter and Match Register (ITC –
AR44 and ITM – CR1)” on page 2:32.

• Resource Utilization Facility – A 64-bit resource utilization counter is provided
for privileged and non-privileged use. This counts the number of Interval Timer
cycles consumed by this logical processor. See Section 3.1.8.11, “Resource
Utilization Counter (RUC – AR 45)” on page 1:31.

• Debug Breakpoint Registers (DBR/IBR) – 64-bit Data and 64-bit Instruction
Breakpoint Register pairs (DBR, IBR) can be programmed to fault on reference to a
range of virtual and physical addresses generated by either Itanium or IA-32
instructions. See “Debugging” on page 2:151 for details. The minimum number of
DBR register pairs and IBR register pairs is 4 in any implementation. On some
implementations, a hardware debugger may use two or more of these register pairs
for its own use; see “Data and Instruction Breakpoint Registers” on page 2:152 for
details.

• Performance Monitor Configuration/Data Registers (PMC/PMD) – Multiple
performance monitors can be programmed to measure a wide range of user,
operating system, or processor performance values. Performance monitors can be
programmed to measure performance values from either IA-32 or Itanium
instructions. Performance monitors are defined in “Performance Monitoring” on
page 2:155. The minimum number of generic PMC/PMD register pairs in any
implementation is 4.

• Banked General Registers – A set of 16 banked 64-bit general purpose registers,
GR 16-GR 31, are available as temporary storage and register context when
operating in low level interruption code. See “Banked General Registers” on
page 2:42 for complete details.

Volume 2, Part 1: System State and Programming Model 2:21

• Region Registers (RR) – Eight 64-bit region registers specify the identifiers and
preferred page sizes for multiple virtual address spaces. Refer to “Region Registers
(RR)” on page 2:58 for complete information.

• Protection Key Registers (PKR) – At least sixteen 64-bit protection key registers
contain protection keys and read, write, execute permissions for virtual memory
protection domains. Please see the processor-specific documentation for further
information on the number of Protection Key Registers implemented on the Itanium
processor. Refer to “Protection Keys” on page 2:59 for details.

• Translation Lookaside Buffer (TLB) – Holds recently used virtual to physical
address mappings. The TLB is divided into Instruction (ITLB), Data (DTLB),
Translation Registers (TR) and Translation Cache (TC) sections. See “Translation
Lookaside Buffer (TLB)” on page 2:47 for complete details. Translation Registers
are software managed portions of the TLB and the Translation Cache section of the
TLB is directly managed by the processor.

2:22 Volume 2, Part 1: System State and Programming Model

Figure 3-1. System Register Model

I/DBR1

SYSTEM REGISTER SET

APPLICATION REGISTER SET

pr0

 IP

Predicates
Floating-point Registers

Instruction Pointer

fr0
pr1
pr2

fr1
fr2

1
81 0

63 0

rr0
rr1

rr7

Region Registers
63 0

pkr0
pkr1

Protection Key Regs
63 0

Branch Registers

 br0
 br1
 br2

63 0

 br7

gr0
gr1
gr2

63 0

Debug Breakpoint Registers
63 0

gr127
fr127

itr0

Translation Lookaside Buffer

gr16

gr31

gr32
fr32

fr31

 PSR

Processor Status Register
63 0

Control Registers
63 0

cr2
cr1
cr0

cr21 ITIR
cr22
cr23

Performance Monitor

63 0

Banked
Reg

0 +0.0
+1.0

General Registers

0

 NaTs

CFM

Current Frame Marker

Performance Monitor

63 0

pr63

pr15
pr16

cr17

cr16 IPSR

cr20 IFA
cr19

cr24 IIM
cr25 IHA

cr64 External

...

37 0

pmd0
pmd1

pmdn

pmc0
pmc1

pmcn

ibr0
ibr1

ibrn

dbr0
dbr1

dbrn

pkrn

itr1

itrn

itc

dtr0
dtr1

dtrn

dtc

cr8

Interrupt

Registerscr81

Processor Identifiers
63 0

cpuid0
cpuid1

cpuidn

Configuration Registers

Data Registers

User Mask
5 0

 DCR
 ITM
 IVA

 PTA

 IFS
 IIPA

 IIP
 ISR

63 0

ar64

Application Registers

KR0

KR7

RSC
BSPar17

ar16

BSPSTORE
RNAT

ar18
ar19

CCV

UNATar36

ar32

FPSR

ITC

ar40

ar44

EC
LCar65

ar66

PFS

ar127

ar0

ar7

EFLAG
CSDar25

ar24

SSD
CFLG

ar26
ar27

FSR
FIRar29

ar28

FDRar30

FCRar21

Control

Advanced Load
Address Table

RUCar45

cr26 IIB0
cr27 IIB1

cr4 ITO

Volume 2, Part 1: System State and Programming Model 2:23

3.3.2 Processor Status Register (PSR)

The PSR maintains the current execution environment. The PSR is divided into four
overlapping sections (See Figure 3-2): user mask bits (PSR{5:0}), system mask bits
(PSR{23:0}), the lower half (PSR{31:0}), and the entire PSR (PSR{63:0}). PSR fields
are defined in Table 3-2 along with serialization requirements for modification of each
field and the state of the field after an interruption.

The PSR instructions and their serialization requirements are defined in Table 3-1.
These instructions explicitly read or write portions of the PSR. Other instructions also
read and write portions of the PSR as described in Table 3-2 and Table 5-2.

The user mask, PSR{5:0}, can be set and cleared by the Set User Mask (sum), Reset
User Mask (rum) and Move to User Mask (mov psr.um=) instructions at any privilege
level. For user mask modifications by sum, rum and mov, the processor ensures all side
effects are observed before subsequent instruction groups.

Figure 3-2. Processor Status Register (PSR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv rt tb lp db si di pp sp dfh dfl dt rv pk i ic rv mfh mfl ac up be rv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv vm ia bn ed ri ss dd da id it mc is cpl

Table 3-1. Processor Status Register Instructions

Mnemonic Description Operation
Instr.
Type

Serialization
Required

sum imm Set user mask
from immediate

PSR{5:0} PSR{5:0} | imm M implicit

rum imm Reset user
mask from
immediate

PSR{5:0} PSR{5:0} & ~imm M implicit

mov psr.um = r2 Move to user
mask

PSR{5:0} GR[r2] M implicit

mov r1 = psr.um Move from user
mask

GR[r1] PSR{5:0} M none

ssm imm Set system
mask from
immediate

PSR{23:0} PSR{23:0} | imm M data/insta

a. Based upon the resource being serialized, use data or instruction serialization.

rsm imm Reset system
mask from
immediate

PSR{23:0} PSR{23:0} &~imm M data/insta

mov psr.l = r2 Move to lower
PSR

PSR{31:0} GR[r2] M data/insta

mov r1 = psr Move from PSR GR[r1] PSR{36:35,31:0}b

b. All other bits of the PSR read as zero.

M none

bsw.0, bsw.1 Bank switch PSR{44} 0or 1 B implicit

vmsw.0, vmsw.1 Virtual machine
switch

PSR{46} 0or 1 B implicit

rfi Return From
Interruption

PSR{63:0} IPSR B implicit

system mask

user mask

2:24 Volume 2, Part 1: System State and Programming Model

The system mask, PSR{23:0}, can be set and cleared by the Set System Mask (ssm)
and Reset System Mask (rsm) instructions. Software must issue the appropriate
serialization operation before dependent instructions. The system mask instructions are
privileged.

The lower half of the PSR, PSR{31:0}, can be written with the Move to Lower PSR (mov
psr.l=) instruction. Software must issue the appropriate serialization operation before
dependent instructions. The Move to Lower PSR instruction is privileged.

The PSR can be read with the Move from PSR (mov =psr) instruction. Only PSR{36:35}
and PSR{31:0} are written to the target register by Move from PSR. PSR{63:37} and
PSR{34:32} can only be read after an interruption by reading the state in IPSR. The
entire PSR is updated from IPSR by the Return from Interruption (rfi) instruction. An
rfi also implicitly serializes the PSR. Both Move from PSR and Return from Interruption
are privileged.

Table 3-2. Processor Status Register Fields

Field Bits Description
Interruption

State
Serialization

Required

User Mask = PSR{5:0}

rv 0 reserved

be 1 Big-Endian – When 1, data memory references are
big-endian. When 0, data memory references are little
endian. This bit is ignored for IA-32 data references,
which are always performed little-endian. Instruction
fetches are always performed little endian.

DCR.be dataa

up 2 User Performance monitor enable – When 1,
performance monitors configured as user monitors are
enabled to count events (including IA-32). When 0, user
configured monitors are disabled. See “Performance
Monitoring” on page 2:155 for details.

unchanged dataa

instb

ac 3 Alignment Check – When 1, all unaligned data memory
references result in an Unaligned Data Reference fault.
When 0, unaligned data memory references may or
may not result in a Unaligned Data Reference fault. See
“Memory Datum Alignment and Atomicity” on page 2:93
for details. Unaligned semaphore references also result
in a Unaligned Data Reference fault, regardless of the
state of PSR.ac. For IA-32 instructions, if PSR.ac is 1
an unaligned IA-32 data memory reference raises an
IA_32_Exception(AlignmentCheck) fault. When 0,
additional IA-32 control bits as defined in Section
10.6.7, “Memory Alignment” also generate alignment
checks.

0 dataa

mfl 4 Lower (f2 .. f31) floating-point registers written – This bit
is set to one when an Intel Itanium instruction
completes that uses register f2..f31 as a target register.
This bit is sticky and only cleared by an explicit write of
the user mask. When leaving the IA-32 instruction set,
PSR.mfl is set to 1 if PSR.dfl is 0, otherwise PSR.mfl is
unmodified.

unchanged dataa

Volume 2, Part 1: System State and Programming Model 2:25

mfh 5 Upper (f32 .. f127) floating-point registers written – This
bit is set to one when an Intel Itanium instruction
completes that uses register f32..f127 as a target
register. This bit is sticky and only cleared by an explicit
write of the user mask. PSR.mfh is unmodified by IA-32
instruction set execution.

unchanged dataa

System Mask = PSR{23:0}

ic 13 Interruption Collection – When 1 and an interruption
occurs, the current state of the processor is loaded in
IIP, IPSR, IIM and IFS; and additional registers defined
in “Interruption Vector Descriptions” on page 2:165.
When 0, IIP, IPSR, IIM and IFS are not modified on an
interruption (see Table 8-1, “Writing of Interruption
Resources by Vector” on page 2:166 for details). When
0, speculative load exceptions result in deferred
exception behavior, regardless of the state of the DCR
and ITLB deferral bits. Processor operation is
undefined if PSR.ic is 0 and a transition is made to
execute IA-32 code.

0 inst/datac

i 14 Interrupt Bit – When 1 and executing Intel Itanium
instructions, unmasked pending external interrupts will
interrupt the processor by transferring control to the
external interrupt handler. When 0, pending external
interrupts do not interrupt the processor. The effect of
clearing PSR.i via Reset System Mask (rsm)
instructions is observed by the next instruction.
Toggling PSR.i from one to zero via Move to PSR.l
requires data serialization. When executing IA-32
instructions, external interrupts are enabled if PSR.i
and (CFLG.if is 0 or EFLAG.if is 1). NMI interrupts are
enabled if PSR.i is 1 regardless of EFLAG.if.

0 clear: implicit
serialization
set: datad

pk 15 Protection Key enable – When 1 and PSR.it is 1,
instruction references (including IA-32) check for valid
protection keys. When 1 and PSR.dt is 1, data
references (including IA-32) check for valid protection
keys. When 1 and PSR.rt is 1, protection key checks
are enabled for register stack references. When 0,
neither instruction, data, nor register stack references
are checked for valid protection keys. When PSR.dt,
PSR.rt or PSR.it are 0, PSR.pk is ignored for the
corresponding reference.

unchanged inst/datae

rv 12:6,
16

reserved

dt 17 Data address Translation – When 1, virtual data
addresses are translated and access rights checked.
When 0, data accesses use physical addressing.
PSR.dt must be 1 when entering IA-32 code, otherwise
processor operation is undefined.

unchanged/0j inst/datac

dfl 18 Disabled Floating-point Low register set – When 1, a
read or write access to f2 through f31 results in a
Disabled Floating-Point Register fault. When 1, all
IA-32 FP, Intel SSE and Intel MMX technology
instructions raise a Disabled FP Register fault
(regardless whether the instruction actually references
f2-31).

0 data

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required

2:26 Volume 2, Part 1: System State and Programming Model

dfh 19 Disabled Floating-point High register set – When 1, a
read or write access to f32 through f127 results in a
Disabled Floating-Point Register fault. When 1, a
Disabled FP Register fault is raised on the first IA-32
target instruction following a br.ia or rfi, regardless
whether f32-127 are referenced.

0 data

sp 20 Secure Performance monitors – Controls the ability of
non-privileged code (including IA-32 code) to read
non-privileged performance monitors. See Table 7-5 on
page 2:158 for values returned by PMD read
instructions. Also, when 0, PSR.up can be modified by
user mask instructions; otherwise, PSR.up is
unchanged by user mask instructions. When 1 or
CFLG.pce is 0, non-privileged IA-32 performance
monitor reads (via rdpmc) raise an
IA_32_Exception(GPFault).

0 data

pp 21 Privileged Performance monitor enable – When 1,
monitors configured as privileged monitors are enabled
to count events (including IA-32 events). When 0,
privileged monitors are disabled. See “Performance
Monitoring” on page 2:155 for details.

DCR.pp inst/datae

di 22 Disable Instruction set transition – When 1, attempts to
switch instruction sets via the IA-32 jmpe or br.ia
instructions results in a Disabled Instruction Set
Transition fault. This bit doesn’t restrict instruction set
transitions due to interruptions or rfi.

0 data

si 23 Secure Interval timer – When 1, the Interval Time
Counter (ITC) register and the Resource Utilization
Counter (RUC) are readable only by privileged code;
non-privileged reads result in a Privileged Register
fault. When 0, ITC and RUC are readable at any
privilege level. System software can secure the ITC
from non-privileged IA-32 access by setting either
PSR.si or CFLG.tsd to 1. When secured, an IA-32 rdtsc
(read time stamp counter) instruction at any privilege
level other than the most privileged raises an
IA_32_Exception(GPfault)

0 data

PSR.l = PSR{31:0}

db 24 Debug Breakpoint fault – When 1, data and instruction
address breakpoints are enabled and can cause an
Data/Instruction Debug fault. When 1, IA-32 instruction
address breakpoints are enabled and can cause an
IA_32_Exception(Debug) fault.When 1, IA-32 data
address breakpoints are enabled and can cause an
IA_32_Exception(Debug) Trap.When 0, address
breakpoint faults and traps are disabled.

0 inst/datae

lp 25 Lower Privilege transfer trap – When 1, a Lower
Privilege Transfer trap occurs whenever a taken branch
lowers the current privilege level (numerically
increases). This bit is ignored during IA-32 instruction
set execution.

0 data

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required

Volume 2, Part 1: System State and Programming Model 2:27

tb 26 Taken Branch trap – When 1, the successful completion
of a taken branch results in a Taken Branch trap. rfi
and interruptions can not raise a Taken Branch trap.
When 1, successful completion of a taken IA-32 branch
results in an IA_32_Exception(Debug) trap.

0 data

rt 27 Register stack Translation – When 1, register stack
accesses are translated and access rights are checked.
When 0, register stack accesses use physical
addressing. PSR.dt is ignored for register stack
accesses. The register stack engine must be in
enforced lazy mode (RSC.mode = 00) when modifying
this bit; otherwise, processor behavior is undefined.
During IA-32 instruction execution this bit is ignored and
the register stack is disabled.

unchanged data

rv 31:28 reserved

PSR{63:0}

cplf 33:32 Current Privilege Level –The current privilege level of
the processor (including IA-32). Controls accessibility to
system registers, instructions and virtual memory
pages. A value of 0 is most privileged, a value of 3 is
least privileged. Written by the rfi, epc, and br.ret
instructions. PSR.cpl is unchanged by the jmpe and
br.ia instructions. PSR.cpl cannot be updated by any
IA-32 instructions.

0 rfig

is 34 Instruction Set – When 0, Intel Itanium instructions are
executing. When 1, IA-32 instructions are executing.
Written by the rfi and br.ia instructions and the
IA-32 jmpe instruction.

0 rfig, br.iah

mc 35 Machine Check abort mask – When 1, machine check
aborts are masked. When 0, machine check aborts can
be delivered (including IA-32 instruction set execution).
Processor operation is undefined if PSR.mc is 1 and a
transition is made to execute IA-32 code.

unchanged/1i rfig

it 36 Instruction address Translation – When 1, virtual
instruction addresses are translated and access rights
checked. When 0, instruction accesses use physical
addressing. PSR.it must be 1 when entering IA-32
code, otherwise processor operation is undefined.

unchanged/0j rfig

id 37 Instruction Debug fault disable – When 1, Instruction
Debug faults are disabled on the first restart instruction
in the current bundle.k When PSR.id is 1 or EFLAG.rf is
1, IA-32 instruction debug faults are disabled for one
IA-32 instruction. PSR.id and EFLAG.rf are set to 0 after
the successful execution of each IA-32 instruction.

0 rfig

da 38 Disable Data Access and Dirty-bit faults – When 1, Data
Access and Dirty-Bit faults are disabled on the first
restart instruction in the current bundle or for the first
mandatory RSE reference following the rfi.k IA-32
Access/Dirty-bit faults are not affected by PSR.da.l

0 rfig

dd 39 Data Debug fault disable – When 1, Data Debug faults
are disabled on the first restart instruction in the current
bundle or for the first mandatory RSE reference.k IA-32
Data Debug traps are not affected by PSR.dd.l

0 rfig

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required

2:28 Volume 2, Part 1: System State and Programming Model

ss 40 Single Step enable – When 1, a Single Step trap occurs
following the successful execution of the first restart
instruction in the current bundle. Instruction slots 0, 1,
and 2 can be single stepped. When 1 or EFLAG.tf is 1,
an IA_32_Exception(Debug) trap is taken after each
IA-32 instruction.

0 rfig

ri 42:41 Restart Instruction – Set on an interruption, indicating
the next instruction in the bundle to be executed. When
the next instruction is the L+X instruction of an MLX,
this field is set to the value 1.
When restarting instructions with rfi, this field in IPSR
specifies which instruction(s) in the bundle are
restarted. The specified and subsequent instructions
are restarted, all instructions prior to the restart point
are ignored.
0 – restart execution at instruction slot 0
1 – restart execution at instruction slot 1
2 – restart execution at instruction slot 2
3 – reserved
Except at an interruption and for the first restart
instruction following an rfi, the value of this field is
undefined.
This field is set to 0 after any interruption from the IA-32
instruction set and is ignored when IA-32 instructions
are restarted.

instruction
pointer

rfig

ed 43 Exception Deferral – When 1, if the first restart
instruction in the current bundle is a speculative load,
the operation is forced to indicate a deferred exception
by setting the load target register to NaT or NaTVal. No
memory references are performed, however any
address post increments are performed. If the operation
is a speculative advanced load, the ALAT entry
corresponding to the load address and target register is
purged. If the operation is an lfetch instruction,
memory promotion is not performed, however any
address post increments are performed. When 0,
exception deferral is not forced on restarted speculative
loads. If the first restart instruction is not a speculative
load or lfetch instruction, this bit is ignored.kl

0 rfig

bn 44 register Bank – When 1, registers GR16 to GR31 for
bank 1 are accessible. When 0, registers GR16 to
GR31 for bank 0 are accessible. Written by rfi and
bsw instructions.

0 implicitm

ia 45 Disable Instruction Access-bit faults – When 1,
Instruction Access-Bit faults are disabled on the first
restart instruction in the current bundle.k IA-32
Access-bit faults are not affected by PSR.ia.l

0 rfig

vm 46 Virtual Machine – When 1, an attempt to execute
certain instructions results in a Virtualization fault.
Implementation of this bit is optional. If the bit is not
implemented, it is treated as a reserved bit. Written by
the rfi and vmsw instructions.

0 rfi,
vmsw: implicitn

rv 63:47 reserved

Table 3-2. Processor Status Register Fields (Continued)

Field Bits Description
Interruption

State
Serialization

Required

Volume 2, Part 1: System State and Programming Model 2:29

3.3.3 Control Registers

Table 3-3 defines all registers in the control register name space along with serialization
requirements to ensure side effects are observed by subsequent instructions. However,
reads of a control register must be data serialized with prior writes to the same register.
The serialization required column only refers to the side effects of the data value.

Writes to read-only registers (IVR, IRR0-3) result in an Illegal Operation fault, accesses
to reserved registers result in a Illegal Operation fault. Accesses can only be performed
by mov to/from instructions defined in Table 3-4 at privilege level 0; otherwise, a
Privileged Operation fault is raised.

a. User mask bits are implicitly serialized if accessed via user mask instructions; sum, rum, and move to User
Mask. If modified with system mask instructions; rsm, ssm and move to PSR.l, software must explicitly
serialize to ensure side effects are observed before dependent instructions.

b. User mask modification serialization is implicit only for monitoring data execution events. Software should
issue instruction serialization operations before monitoring instruction events to achieve better accuracy.

c. Requires instruction serialization to guarantee that VHPT walks initiated on behalf of an instruction reference
observe the new value of this bit. Otherwise, data serialization is sufficient to guarantee that the new value is
observed.

d. The effect of masking external interrupts with rsm is observed by the next instruction. However, the processor
does not ensure unmasking interruptions with ssm is immediately observed. Software can issue a data
serialization operation to ensure the effects of setting PSR.i are observed before a given point in program
execution.

e. Requires instruction or data serialization, based on whether the dependent “use” is an instruction fetch access
or data access.

f. CPL can be modified due to interruptions, Return From Interruption (rfi), Enter Privilege Code (epc), and
Branch Return (br.ret) instructions.

g. Can only be modified by the Return From Interruption (rfi) instruction. rfi performs an explicit instruction
and data serialization operation.

h. Modification of the PSR.is bit by a br.ia instruction set is implicitly instruction serialized.
i. PSR.mc is set to 1 after a machine check abort or INIT; otherwise, unmodified on interruptions.
j. After an interruption this bit is normally unchanged, however after a PAL-based interruption this bit is set to 0.
k. This bit is set to 0 after the successful execution of each instruction in a bundle except for rfi which may set

it to 1.
l. This bit is ignored when restarting IA-32 instructions and set to zero when br.ia or rfi successfully

complete and before the first IA-32 instruction starts execution.
m. After an interruption, rfi, or bsw the processor ensures register accesses are made to the new register bank.

For interruptions, rfi and bsw, the processor ensures all register accesses and outstanding loads prior to the
bank switch operate on the prior register bank.

n. Can be modified by the Return From Interruption (rfi) and Virtual Machine Switch (vmsw) instructions. rfi
performs an explicit instruction and data serialization operation. Modification of PSR.vm bit by the vmsw
instruction is implicitly serialized.

Table 3-3. Control Registers

Register Name Description
Serialization

Required

Global
Control
Registers

CR0 DCR Default Control Register inst/data

CR1 ITM Interval Timer Match register dataa

CR2 IVA Interruption Vector Address insta

CR3 reserved

CR4 ITO Interval Timer Offset Register dataa

CR5-7 reserved

CR8 PTA Page Table Address inst/datab

CR9-15 reserved

2:30 Volume 2, Part 1: System State and Programming Model

Interruption
Control
Registers

CR16 IPSR Interruption Processor Status Register impliedd

CR17 ISR Interruption Status Register impliedc

CR18 reserved

CR19 IIP Interruption Instruction Pointer impliedd

CR20 IFA Interruption Faulting Address impliedd

CR21 ITIR Interruption TLB Insertion Register impliedd

CR22 IIPA Interruption Instruction Previous Address impliedc

CR23 IFS Interruption Function State impliedd,e

CR24 IIM Interruption Immediate register impliedc

CR25 IHA Interruption Hash Address impliedc

CR26 IIB0 Interruption Instruction Bundle 0 impliedc

CR27 IIB1 Interruption Instruction Bundle 1 impliedc

Reserved CR28-63 reserved

Interrupt
Control
Registers

CR64 LID Local Interrupt ID dataa

CR65 IVR External Interrupt Vector Register (read only) dataa

CR66 TPR Task Priority Register dataa

CR67 EOI End Of External Interrupt dataa

CR68 IRR0 External Interrupt Request Register 0 (read only) dataa

CR69 IRR1 External Interrupt Request Register 1 (read only) dataa

CR70 IRR2 External Interrupt Request Register 2 (read only) dataa

CR71 IRR3 External Interrupt Request Register 3 (read only) dataa

CR72 ITV Interval Timer Vector dataa

CR73 PMV Performance Monitoring Vector dataa

CR74 CMCV Corrected Machine Check Vector dataa

CR75-79 reserved reserved

CR80 LRR0 Local Redirection Register 0 dataa

CR81 LRR1 Local Redirection Register 1 dataa

Reserved CR82-127 reserved reserved

a. Serialization is needed to ensure external interrupt masking, new interval timer match values or new
interruption table addresses are observed before a given point in program execution.

b. Serialization is needed to ensure new values in PTA are visible to the hardware Virtual Hash Page Table
(VHPT) walker before a dependent instruction fetch or data access.

c. These registers are modified by the processor on an interruption or by an explicit move to these registers.
There are no side effects when written.

d. These registers are implied operands to the rfi and/or TLB insert instructions. The processor ensures writes in
previous instruction groups are observed by rfi and/or TLB insert instructions in subsequent instruction
groups. These registers are also modified by the processor on an interruption, subsequent reads return the
results of the interruption. There are no other side effects.

e. IFS written by a cover instruction followed by a move-from IFS is implicitly serialized.

Table 3-4. Control Register Instructions

Mnemonic Description Operation Format

mov cr3 = r2 Move to control register CR[r3] GR[r2] M

mov r1 = cr3 Move from control register GR[r1] CR[r3] M

Table 3-3. Control Registers (Continued)

Register Name Description
Serialization

Required

Volume 2, Part 1: System State and Programming Model 2:31

3.3.4 Global Control Registers

3.3.4.1 Default Control Register (DCR – CR0)

The DCR specifies default parameters for PSR values on interruption, some additional
global controls, and whether speculative load faults can be deferred. Figure 3-3 and
Table 3-5 define and describe the DCR fields.

srlz.i, rfi Serialize instruction references Ensure side effects are observed by
the instruction fetch stream

M

srlz.d Serialize data references Ensure side effects are observed by
the execute and data streams

M

Figure 3-3. Default Control Register (DCR – CR0)

63 15 14 13 12 11 10 9 8 7 3 2 1 0

rv dd da dr dx dk dp dm rv lc be pp

49 1 1 1 1 1 1 1 5 1 1 1

Table 3-5. Default Control Register Fields

Field Bit Description
Serialization

Required

pp 0 Privileged Performance monitor default – On interruption, DCR.pp is
loaded into PSR.pp.

data

be 1 Big-Endian default – When 1, Virtual Hash Page Table (VHPT) walker
accesses are performed big-endian; otherwise, little-endian. On
interruption, DCR.be is loaded into PSR.be.

inst

lc 2 IA-32 Lock Check enable – When 1, and an IA-32 atomic memory
reference is defined as requiring a read-modify-write operation external to
the processor under an external bus lock, an IA_32_Intercept(Lock) is
raised. (IA-32 atomic memory references are defined to require an
external bus lock for atomicity when the memory transaction is made to
non-write-back memory or are unaligned across an
implementation-specific non-supported alignment boundary.) When 0,
and an IA-32 atomic memory reference is defined as requiring a
read-modify-write operation external to the processor under external bus
lock, the processor may either execute the transaction as a series of
non-atomic transactions or perform the transaction with an external bus
lock, depending on the processor implementation. Intel Itanium
semaphore accesses ignore this bit. All unaligned Intel Itanium
semaphore references generate an Unaligned Data Reference fault. All
aligned Intel Itanium semaphore references made to memory that is
neither write-back cacheable nor a NaTPage result in an Unsupported
Data Reference fault.

data

dm 8 Defer TLB Miss faults only (VHPT data, Data TLB, and Alternate Data
TLB faults) – When 1, and a TLB miss is deferred, lower priority Debug
faults may still be delivered. A TLB miss fault, deferred or not, precludes
concurrent Page not Present, Key Miss, Key Permission, Access Rights,
or Access Bit faults. This bit is ignored by IA-32 instructions.

data

dp 9 Defer Page not Present faults only – When 1, and a Page not Present
fault is deferred, lower priority Debug faults may still be delivered. A Page
not Present fault, deferred or not, precludes concurrent Key Miss, Key
Permission, Access Rights, or Access Bit faults. This bit is ignored by
IA-32 instructions.

data

Table 3-4. Control Register Instructions (Continued)

Mnemonic Description Operation Format

2:32 Volume 2, Part 1: System State and Programming Model

For the DCR exception deferral bits, when the bit is 1, and a speculative load results in
the specified fault condition, and the speculative load’s code page exception deferral bit
(ITLB.ed) is 1, the exception is deferred by setting the speculative load target register
to NaT or NaTVal. Otherwise, the specified fault is taken on the speculative load. For a
description of faults on speculative loads see “Deferral of Speculative Load Faults” on
page 2:105.

Since DCR.be also controls byte ordering of VHPT references that are the result of
instruction misses, DCR.be requires instruction serialization. Other DCR bits require
data serialization only.

3.3.4.2 Interval Time Counter and Match Register (ITC – AR44 and ITM – CR1)

The Interval Time Counter (ITC) and Interval Timer Match (ITM) register support
elapsed time notification, see Figure 3-4 and Figure 3-5.

The ITC is a free-running 64-bit counter that counts up at a fixed relationship to the
input clock to the processor. The ITC may be clocked at a somewhat lower frequency
than the instruction execution frequency. This clocking relationship is described in the
PAL procedure PAL_FREQ_RATIOS on page 2:393. The ITC is guaranteed to be clocked
at a constant rate, even if the instruction execution frequency may vary. The ITC
counting rate is not affected by power management mechanisms.

dk 10 Defer Key Miss faults only – When 1, and a Key Miss fault is deferred,
lower priority Access Bit, Access Rights or Debug faults may still be
delivered. A Key Miss fault, deferred or not, precludes concurrent Key
Permission faults. This bit is ignored by IA-32 instructions.

data

dx 11 Defer Key Permission faults only – When 1, and a Key Permission fault is
deferred, lower priority Access Bit, Access Rights or Debug faults may
still be delivered. This bit is ignored by IA-32 instructions.

data

dr 12 Defer Access Rights faults only – When 1, and an Access Rights fault is
deferred, lower priority Access Bit or Debug faults may still be delivered.
This bit is ignored by IA-32 instructions.

data

da 13 Defer Access Bit faults only – When 1, and an Access Bit fault is
deferred, lower priority Debug faults may still be delivered. This bit is
ignored by IA-32 instructions.

data

dd 14 Defer Debug faults – When 1, Data Debug faults on speculative loads are
deferred. This bit is ignored by IA-32 instructions.

data

rv 7:3,
63:15

reserved reserved

Figure 3-4. Interval Time Counter (ITC – AR44)

63 0

ITC

64

Figure 3-5. Interval Timer Match Register (ITM – CR1)

63 0

ITM

64

Table 3-5. Default Control Register Fields (Continued)

Field Bit Description
Serialization

Required

Volume 2, Part 1: System State and Programming Model 2:33

A sequence of reads of the ITC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads. Applications can directly sample the ITC for time-based calculations.

A 64-bit overflow condition can occur without notification. The ITC can be read at any
privilege level if PSR.si is zero. The timer can be secured from non-privileged access by
setting PSR.si to one. When secured, a read of the ITC by non-privileged code results in
a Privileged Register fault. Writes to the ITC can only be performed at privilege level 0;
otherwise, a Privileged Register fault is raised.

The IA-32 Time Stamp Counter (TSC) is similar to ITC. The ITC can be read by the
IA-32 rdtsc (read time stamp counter) instruction. System software can secure the ITC
from non-privileged IA-32 access by setting either PSR.si or CFLG.tsd to 1. When
secured, an IA-32 read of the ITC at any privilege level other than the most privileged
raises an IA_32_Exception(GPfault).

When the value in the ITC is equal to the value in the ITM an Interval Timer Interrupt is
raised. Once the interruption is taken by the processor and serviced by software, the
ITC may not necessarily be equal to the ITM. The ITM is accessible only at privilege
level 0; otherwise, a Privileged Operation fault is raised.

The interval counter can be written, for initialization purposes, by privileged code. The
ITC is not architecturally guaranteed to be synchronized with any other processor’s
interval time counter in an multiprocessor system, nor is it synchronized with the wall
clock. Software must calibrate interval timer ticks to wall clock time and periodically
adjust for drift. In a multiprocessor system, a processor's ITC is not architecturally
guaranteed to be clocked synchronously with the ITC's on other processors, and may
not be clocked at the same nominal clock rate as ITC's on other processors. The
platform firmware provides information on the clocking of processors in a
multiprocessor system.

Modification of the ITC or ITM is not necessarily serialized with respect to instruction
execution. Software can issue a data serialization operation to ensure the ITC or ITM
updates and possible side effects are observed by a given point in program execution.
Software must accept a level of sampling error when reading the interval timer due to
various machine stall conditions, interruptions, bus contention effects, etc. Please see
the processor-specific documentation for further information on the level of sampling
error of the Itanium processor.

3.3.4.3 Resource Utilization Counter (RUC – AR45)

The Resource Utilization Counter (RUC) is a 64-bit counter that counts up at a fixed
relationship to the input clock to the processor, when the processor is active. Processors
may be inactive due to hardware multi-threading. Virtual processors may be inactive
when not scheduled to run by the VMM. (See Section 11.7, “PAL Virtualization Support”
on page 2:324 for details on virtual processors.)

The RUC is clocked such that, in a given time interval, the difference in the RUC values
for all of the logical or virtual processors on a given physical processor add up to
approximately the difference seen in the ITC on that physical processor for that same
interval.

2:34 Volume 2, Part 1: System State and Programming Model

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads. Applications can directly sample the RUC for active-running-time
calculations.

A 64-bit overflow condition can occur without notification. The RUC can be read at any
privilege level if PSR.si is zero. The timer can be secured from non-privileged access by
setting PSR.si to one. When secured, a read of the RUC by non-privileged code results
in a Privileged Register fault. Writes to the RUC can only be performed at privilege level
0; otherwise, a Privileged Register fault is raised.

Modification of the RUC is not necessarily serialized with respect to instruction
execution. Software can issue a data serialization operation to ensure the RUC updates
are observed by a given point in program execution. Software must accept a level of
sampling error when reading the resource utilization counter due to various machine
stall conditions, interruptions, bus contention effects, etc. Please see the
processor-specific documentation for further information on the level of sampling error
of the Itanium processor.

RUC should only be written by Virtual Machine Monitors; other Operating Systems
should not write to RUC, but should only read it.

The RUC register is not supported on all processor implementations. Software can
check CPUID register 4 to determine the availability of this feature. The RUC register is
reserved when this feature is not supported.

3.3.4.4 Interval Timer Offset (ITO – CR4)

The Interval Timer Offset (ITO) register allows virtual machine monitors to specify an
offset to the Interval Timer Counter (ITC) for the virtual processor. The layout of the
register is shown in Figure 3-6. For details of the usage of this register in virtual
environment, please refer to Section 11.7.4.1.3, “Guest MOV-from-AR.ITC
Optimization” on page 2:337.

The ITO register has no effects on instruction execution when PSR.vm is 0.

The ITO register does not affect the generation of interval timer interrupts, discussed in
Section 3.3.4.2, “Interval Time Counter and Match Register (ITC – AR44 and ITM –
CR1)”.

The ITO register is not supported on all processor implementations. Software can call
either PAL_PROC_GET_FEATURES or PAL_VP_ENV_INFO to determine the availability of
this feature. The ITO register is reserved when this feature is not supported.

Figure 3-6. Interval Timer Offset Register (ITO – CR4)

63 0

ITO

64

Volume 2, Part 1: System State and Programming Model 2:35

3.3.4.5 Interruption Vector Address (IVA – CR2)

The IVA specifies the location of the interruption vector table in the virtual address
space, or the physical address space if PSR.it is 0, see Figure 3-7. The size of the vector
table is 32K bytes and is 32K byte aligned. The lower 15 bits of the IVA are ignored
when written, reads return zeros. All upper 49 address bits of IVA must be
implemented regardless of the size of the physical and virtual address space. If an
unimplemented virtual or physical address (see “Unimplemented Address Bits” on
page 2:73) is loaded into IVA, and an interruption occurs, processor behavior is
unpredictable. See “IVA-based Interruption Vectors” on page 2:113 for a description of
an interruption table layout.

3.3.4.6 Page Table Address (PTA – CR8)

The PTA anchors the Virtual Hash Page Table (VHPT) in the virtual address space. See
“Virtual Hash Page Table (VHPT)” on page 2:61 for a complete definition of the VHPT.
Operating systems must ensure that the table is aligned on a natural boundary;
otherwise, processor operation is undefined. See Figure 3-8 and Table 3-6 for the PTA
field definitions.

Figure 3-7. Interruption Vector Address (IVA – CR2)

63 15 14 0

IVA ig

49 15

Figure 3-8. Page Table Address (PTA – CR8)

63 15 14 9 8 7 2 1 0

base rv vf size rv ve

49 6 1 6 1 1

Table 3-6. Page Table Address Fields

Field Bits Description

ve 0 VHPT Enable – When 1, the processor is enabled to walk the VHPT.

size 7:2 VHPT Size – VHPT table size in power of 2 increments, table size is 2size bytes. Size
generates a mask that is logically AND’ed with the result of the VHPT hash function.
Minimum VHPT table size is 32K bytes; otherwise, a Reserved Register/Field fault is
raised (see “Virtual Hash Page Table (VHPT)” on page 2:61). The maximum size is 261
bytes for long format VHPTs, and 252 bytes for short format VHPTs.

vf 8 VHPT Format – When 0, 8-byte short format entries are used, when 1, 32-byte long
format entries are used.

base 63:15 VHPT Base virtual address – Defines the starting virtual address of the VHPT table. Base
is logically OR’ed with the hash index produced by the VHPT hash function when
referencing the VHPT. Base must be on 2size boundary otherwise processor operation is
undefined. All base address bits of PTA must be implemented regardless of the size of
the physical and virtual address space. If an unimplemented virtual address (see
“Unimplemented Address Bits” on page 2:73) is used by the processor as a page table
base, all VHPT walks generate an Instruction/Data TLB miss (see “Translation Searching”
on page 2:69).

rv 1, 14:9 reserved

2:36 Volume 2, Part 1: System State and Programming Model

3.3.5 Interruption Control Registers

Registers CR16 - CR27 record information at the time of an interruption (including from
the IA-32 instruction set) and are used by handlers to process the interruption.

The interruption control registers can only be read or written while PSR.ic is 0;
otherwise, an Illegal Operation fault is raised. These registers are only guaranteed to
retain their values when PSR.ic is 0. When PSR.ic is 1, the processor does not preserve
their contents.

The contents of the interruption control registers are defined only when the PSR.ic bit is
cleared by an interruption. If the PSR.ic bit is explicitly cleared (e.g., by using rsm, or
mov to PSR), then the contents of these registers are undefined. If the PSR.ic bit is
explicitly set (e.g., by using ssm, or mov to PSR), then the contents of these registers
are undefined until the PSR.ic bit has been serialized and an interruption occurs.

IIPA has special behavior in case of an rfi to a fault. Refer to “Interruption Instruction
Previous Address (IIPA – CR22)” on page 2:40.

3.3.5.1 Interruption Processor Status Register (IPSR – CR16)

On an interruption and if PSR.ic is 1, the IPSR receives the value of the PSR. The IPSR,
IIP and IFS are used to restore processor state on a Return From Interruption (rfi).
The IPSR has the same format as PSR, see “Processor Status Register (PSR)” on
page 2:23 for details.

3.3.5.2 Interruption Status Register (ISR – CR17)

The ISR receives information related to the nature of the interruption, and is written by
the processor on all interruption events regardless of the state of PSR.ic, except for
Data Nested TLB faults. The ISR contains information about the excepting instruction
and its properties such as whether it was doing a read, write, execute, speculative, or
non-access operation, see Figure 3-9 and Table 3-7. Multiple bits may be concurrently
set in the ISR, for example, a faulting semaphore operation will set both ISR.r and
ISR.w, and faults on speculative loads will set ISR.sp and ISR.r. Additional fault- or
trap-specific information is available in ISR.code and ISR.vector. Refer to Section 8.2,
“ISR Settings” for complete definition of the ISR field settings.

Figure 3-9. Interruption Status Register (ISR – CR17)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv vector code

8 8 16

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv ed ei so ni ir rs sp na r w x

20 1 2 1 1 1 1 1 1 1 1 1

Volume 2, Part 1: System State and Programming Model 2:37

3.3.5.3 Interruption Instruction Bundle Pointer (IIP – CR19)

On an interruption and if PSR.ic is 1, the IIP receives the value of IP. IIP contains the
virtual address (or physical if instruction translations are disabled) of the next
instruction bundle or the IA-32 instruction to be executed upon return from the
interruption. For IA-32 instruction addresses, IIP is zero extended to 64-bits and
specifies a byte granular address. For traps and interrupts, IIP points to the next
instruction to execute. For faults, IIP points to the faulting instruction. As shown in

Table 3-7. Interruption Status Register Fields

Field Bits Description

code 15:0 Interruption Code – 16 bit code providing additional information specific to the current
interruption. For IA-32 specific exceptions and software interrupts, contains the IA-32
interruption error code or zero.

vector 23:16 IA-32 exception/interception vector number. For IA-32 exceptions and software
interrupts, contains the IA-32 vector number (e.g., GPFault has a vector number of
13). See Chapter 9, “IA-32 Interruption Vector Descriptions” for details.

x 32 Execute exception – Interruption is associated with an instruction fetch (including
IA-32).

w 33 Write exception – Interruption is associated with a write operation. Both ISR.r and
ISR.w are set for IA-32 read-modify-write instructions.

r 34 Read exception – Interruption is associated with a read operation. Both ISR.r and
ISR.w are set for IA-32 read-modify-write instructions.

na 35 Non-access exception – See Section 5.5.2, “Non-access Instructions and
Interruptions” on page 2:103. This bit is always 0 for interruptions taken in the IA-32
instruction set.

sp 36 Speculative load exception – Interruption is associated with a speculative load
instruction. This bit is always 0 for interruptions taken in the IA-32 instruction set.

rs 37 Register Stack – Interruption is associated with a mandatory RSE fill or spill. This bit is
always 0 for interruptions taken in the IA-32 instruction set.

ir 38 Incomplete Register frame – The current register frame is incomplete when the
interruption occurred. This bit is always 0 for interruptions taken in the IA-32 instruction
set.

ni 39 Nested Interruption – Indicates that PSR.ic was 0 or in-flight when the interruption
occurred. This bit is always 0 for interruptions taken in the IA-32 instruction set.

so 40 IA-32 Supervisor Override – Indicates the fault occurred during an IA-32 instruction set
supervisor override condition (the processor was performing a data memory accesses
to the IDT, GDT, LDT or TSS segments) or an IA-32 data memory access at a privilege
level of zero. This bit is always 0 for interruptions taken while executing Intel Itanium
instructions.

ei 42:41 Excepting Instruction –
0 – exception due to instruction in slot 0
1 – exception due to instruction in slot 1
2 – exception due to instruction in slot 2
For faults and external interrupts, ISR.ei is equal to IPSR.ri. For traps, ISR.ei defines
the slot of the excepting instruction. Traps on the L+X instruction of an MLX set ISR.ei
to 2. This field is always 0 for interruptions taken in the IA-32 instruction set.

ed 43 Exception Deferral – this bit is set to the value of the TLB exception deferral bit
(TLB.ed) for the instruction page containing the faulting instruction. If a translation
does not exist or instruction translation is disabled, or if the interruption is caused by a
mandatory RSE spill or fill, ISR.ed is set to 0. This bit is always 0 for interruptions taken
in the IA-32 instruction set.

rv 31:24,
63:44

reserved

2:38 Volume 2, Part 1: System State and Programming Model

Figure 3-10, all 64-bits of the IIP must be implemented regardless of the size of the
physical and virtual address space supported by the processor model (see
“Unimplemented Address Bits” on page 2:73). IIP also receives byte-aligned IA-32
instruction pointers. The IIP, IPSR and IFS are used to restore processor state on a
Return From Interruption instruction (rfi). See “Interruption Vector Descriptions” on
page 2:165 for usages of the IIP.

An rfi to Itanium architecture-based code (IPSR.is is 0) ignores IIP{3:0}, an rfi to
IA-32 code (IPSR.is is 1) ignores IIP{63:32}. Ignored bits are assumed to be zero.

Control transfers to unimplemented addresses (see “Unimplemented Address Bits” on
page 2:73) result in an Unimplemented Instruction Address trap or fault. When the trap
or fault is delivered, IIP is written as follows:

• If the trap is taken for an unimplemented virtual address, IIP is written in one of
two ways, depending on the implementation: 1) IIP may be written with the
implemented virtual address bits IP{63:61} and IP{IMPL_VA_MSB:0} only. Bits
IIP{60:IMPL_VA_MSB+1} are set to IP{IMPL_VA_MSB}, i.e., sign-extended. 2) IIP
may be written with the full, unimplemented virtual address from IP.

• If the trap is taken for an unimplemented physical address, IIP is written in one of
two ways, depending on the implementation: 1) IIP may be written with the
physical addressing memory attribute bit IP{63} and the implemented physical
address bits IP{IMPL_PA_MSB:0} only. Bits IIP{62:IMPL_PA_MSB+1} are set to 0.
2) IIP may be written with the full, unimplemented physical address from IP.

When an rfi is executed with an unimplemented address in IIP (an unimplemented
virtual address if IPSR.it is 1, or an unimplemented physical address if IPSR.it is 0), and
an Unimplemented Instruction Address trap is taken, an implementation may optionally
leave IIP unchanged (preserving the unimplemented address in IIP).

Note: Since IP{3:0} are always 0 when executing Itanium architecture-based code,
IIP{3:0} will always be 0 when any interruption is taken from Itanium architec-
ture-based code, with the exception of an Unimplemented Instruction Address
trap on an rfi, where IIP may optionally be preserved as whatever value it
held before executing the rfi.

3.3.5.4 Interruption Faulting Address (IFA – CR20)

On an interruption and if PSR.ic is 1, the IFA receives the virtual address (or physical
address if translations are disabled) that raised a fault. IFA reports the faulting address
for both instruction and data memory accesses (including IA-32). For faulting data
references (including IA-32), IFA points to the first byte of the faulting data memory
operand. IFA reports a byte granular address. For faulting instruction references
(including IA-32), IFA contains the 16-byte aligned bundle address (IFA{3:0} are zero)
of the faulting instruction. For faulting IA-32 instructions, IIP points to the first byte of
the IA-32 instruction, and is byte granular. In the event of an IA-32 instruction
spanning a virtual page boundary, IA-32 instruction fetch faults are reported as either
(1) for faults on the first page, IFA is set to the bundle address (IFA{3:0}=0) of the

Figure 3-10. Interruption Instruction Bundle Pointer (IIP – CR19)

63 0

IIP

64

Volume 2, Part 1: System State and Programming Model 2:39

faulting instruction and IIP points to the first byte of the faulting instruction, or (2) for
faults on the second page, IFA contains the bundle address of the second virtual page
and IIP points to the first byte of the faulting IA-32 instruction.

The IFA also specifies a translation’s virtual address when a translation entry is inserted
into the instruction or data TLB. See “Interruption Vector Descriptions” on page 2:165
and “Translation Insertion Format” on page 2:53 for usages of the IFA. As shown in
Figure 3-11, all 64-bits of the IFA must be implemented regardless of the size of the
virtual and physical space supported by the processor model (see “Unimplemented
Address Bits” on page 2:73). In some implementations, a mov to IFA instruction may
raise an Unimplemented Data Address fault if an unimplemented virtual address is
used.

3.3.5.5 Interruption TLB Insertion Register (ITIR – CR21)

The ITIR receives default translation information from the referenced virtual region
register on a virtual address translation fault. See “Interruption Vector Descriptions” on
page 2:165 for the fault conditions that set the ITIR. The ITIR provides additional
virtual address translation parameters on an insertion into the instruction or data TLB.
See “Translation Instructions” on page 2:60 for ITIR usage information. Figure 3-12
and Table 3-8 define the ITIR fields.

Figure 3-11. Interruption Faulting Address (IFA – CR20)

63 0

IFA

64

Figure 3-12. Interruption TLB Insertion Register (ITIR)

63 32 31 8 7 2 1 0

rv/ci key ps rv/ci

32 24 6 2

Table 3-8. ITIR Fields

Field Bits Description

rv/ci 63:32,
1:0

Reserved / Check on Insert – On a read these fields may return zeros or the value last
written to them. If a non-zero value is written, a Reserved Register/Field fault may be
raised on the mov to ITIR instruction. If not, a subsequent TLB insert will raise a
Reserved Register Field fault depending on other parameters to the insert. See
“Translation Insertion Format” on page 2:53. On an instruction or data translation fault,
these fields are set to zero.

ps 7:2 Page Size – On a TLB insert, specifies the size of the virtual to physical address
mapping. If an unsupported page size is written, a Reserved Register/Field fault may be
raised on the mov to ITIR instruction. If not, a subsequent TLB insert will raise a
Reserved Register/Field fault. See “Translation Insertion Format” on page 2:53. On an
instruction or data translation fault, this field is set to the accessed region’s page size
(RR.ps).

key 31:8 Protection Key – On a TLB insert specifies a protection key that uniquely tags
translations to a protection domain. If non-zero values are written to unimplemented
protection key bits, a Reserved Register/Field fault may be raised on the mov to ITIR
instruction. If not, a subsequent TLB insert will raise a Reserved Register/Field fault
depending on other parameters to the insert. See “Translation Insertion Format” on
page 2:53. On an instruction or data translation fault, this field is set to the accessed
Region Identifier (RR.rid).

2:40 Volume 2, Part 1: System State and Programming Model

3.3.5.6 Interruption Instruction Previous Address (IIPA – CR22)

For Itanium instructions, IIPA records the last successfully executed instruction bundle
address. For IA-32 instructions, IIPA records the byte granular virtual instruction
address zero extended to 64-bits of the faulting or trapping IA-32 instruction. In the
case of a fault, IIPA does not report the address of the last successfully executed IA-32
instruction, but rather the address of the faulting IA-32 instruction. IIPA preserves bits
3:0 for byte aligned IA-32 instruction addresses.

The IIPA can be used by software to locate the address of the instruction bundle or
IA-32 instruction that raised a trap or the instruction executed prior to a fault or
interruption. In the case of a branch related trap, IIPA points to the instruction bundle
which contained the branch instruction that raised the trap, while IIP points to the
target of the branch.

When an instruction successfully executes without a fault, and the PSR.ic bit was 1 prior
to instruction execution, it becomes the “last successfully executed instruction.” On
interruptions, IIPA contains the address of the last successfully executed instruction
bundle or IA-32 instruction, if PSR.ic was 1 prior to the interruption. Note that
execution of an rfi instruction with PSR.ic equal to 0, but which sets PSR.ic to 1 does
not update IIPA, since PSR.ic was zero prior to instruction execution.

When PSR.ic is one, accesses to IIPA cause an Illegal Operation fault. When PSR.ic is
zero, IIPA is not updated by hardware and can be read and written by software. This
permits low-level code to preserve IIPA across interruptions.

If the PSR.ic bit is explicitly cleared, e.g., by using rsm, then the contents of IIPA are
undefined. Only when the PSR.ic bit is cleared by an interruption is the value of IIPA
defined. It may point at the instruction which caused a trap, or at the instruction just
prior to a faulting instruction, at an earlier instruction that became defined by some
prior interruption, or by a move to IIPA instruction when PSR.ic was zero.

If the PSR.ic bit is explicitly set, e.g., by using ssm, then the contents of IIPA are
undefined until the PSR.ic bit has been serialized and an interruption occurs.

During instruction set transitions the following boundary cases exist:

• On faults taken on the first IA-32 instruction after a br.ia or rfi, IIPA records the
faulting IA-32 instruction address.

• On br.ia traps, IIPA records the address of the trapping instruction bundle.

• On faults taken on the first Itanium instruction after leaving the IA-32 instruction
set, due to a jmpe or interruption, IIPA contains the address of the jmpe instruction
or the interrupted IA-32 instruction.

• On jmpe Data Debug, Single Step and Taken Branch traps, IIPA contains the
address of the jmpe instruction.

As shown in Figure 3-13, all 64-bits of the IIPA must be implemented regardless of the
size of the physical and virtual address space supported by the processor model (see
“Unimplemented Address Bits” on page 2:73).

Figure 3-13. Interruption Instruction Previous Address (IIPA – CR22)

63 0

IIPA

64

Volume 2, Part 1: System State and Programming Model 2:41

3.3.5.7 Interruption Function State (IFS – CR23)

The IFS register is used to reload the current register stack frame (CFM) on a Return
From Interruption (rfi). If the IFS is accessed while PSR.ic is 1, an Illegal Operation
fault is raised. The IFS can only be accessed at privilege level 0; otherwise, a Privileged
Operation fault is raised. The IFS.v bit is cleared on interruption if PSR.ic is 1. All other
fields are undefined after an interruption. If PSR.ic is 0, the cover instruction copies
CFM to IFS.ifm and sets IFS.v to 1. See Figure 3-14 and Table 3-9 for the IFS field
definitions.

3.3.5.8 Interruption Immediate (IIM – CR24)

If PSR.ic is 1, the IIM (Figure 3-15) records the zero-extended immediate field encoded
in chk.a, chk.s, fchkf or break instruction faults. The break.b instruction always
writes a zero value and ignores its immediate field. The IA_32_Intercept vector writes
all 64-bits of IIM to indicate the cause of the intercept. See Table 8-1 on page 2:166 for
the value of IIM in other situations. For the purpose of resource dependency, IIM is
written as a result of the fault, not by the instruction itself.

3.3.5.9 Interruption Hash Address (IHA – CR25)

The IHA (Figure 3-16) is loaded with the address of the Virtual Hash Page Table (VHPT)
entry the processor referenced or would have referenced to resolve a translation fault.
The IHA is written on interruptions by the processor when PSR.ic is 1. Refer to “VHPT
Hashing” on page 2:65 for complete details. See Table 8-1 on page 2:166 for the value
of IHA in other situations. All upper 62 address bits of IHA must be implemented
regardless of the size of the virtual address space supported by the processor model
(see “Unimplemented Address Bits” on page 2:73). The virtual address written to IHA
by the processor is guaranteed to be an implemented virtual addresses on all processor
models; however, if the address referenced by the VHPT is an unimplemented virtual
address, the value of IHA is undefined.

Figure 3-14. Interruption Function State (IFS – CR23)

63 62 38 37 0

v rv ifm

1 25 38

Table 3-9. Interruption Function State Fields

Field Bits Description

ifm 37:0 Interruption Frame Marker

v 63 Valid bit, cleared to 0 on interruption if PSR.ic is 1.

rv 62:38 reserved

Figure 3-15. Interruption Immediate (IIM – CR24)

63 0

Interruption Immediate

64

Figure 3-16. Interruption Hash Address (IHA – CR25)

63 2 1 0

Interruption Hash Address ig

62 2

2:42 Volume 2, Part 1: System State and Programming Model

3.3.5.10 Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)

On an interruption and if PSR.ic is 1, the IIB registers receive the 16-byte instruction
bundle corresponding to the interruption. The bundle reported in the IIB registers is the
bundle exactly as it was fetched for execution of the instruction which raised the
interruption. Figure 3-17 shows the format of the IIB0 and IIB1 registers. For details on
instruction bundle format, see Section 3.3, “Instruction Encoding Overview” on
page 1:38.

If the interruption is a fault, the IIB registers record the instruction bundle pointed to
by IIP. If the interruption is a trap, the IIB registers record the instruction bundle
pointed to by IIPA.

The IIB registers only provide valid interruption bundle information on certain
IVA-based faults and traps. Please refer to Table 8-1, “Writing of Interruption Resources
by Vector” on page 2:166 and corresponding interruption vector pages in Section 8.3,
“Interruption Vector Definition” on page 2:166 for information on which faults and traps
these registers are valid. For faults and traps that indicate IIB is not valid, updates to
the register may occur, but the information is undefined.

For IA-32 interruptions, instruction bundle information is not provided and the values in
IIB registers are undefined.

The IIB registers are not supported on all processor implementations. Software can call
PAL_PROC_GET_FEATURES to determine the availability of this feature, see
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details. The IIB registers are reserved when this feature is not supported.

3.3.6 External Interrupt Control Registers

The external interrupt control registers (CR64-81) are defined in “External Interrupt
Control Registers” on page 2:121. They are used to prioritize and deliver external
interrupts, send inter-processor interrupts to other processors and assign interrupt
vectors for locally generated processor interrupts.

3.3.7 Banked General Registers

Banked general registers (see Figure 3-18) provide immediate register context for
low-level interruption handlers (e.g., speculation and TLB miss handlers). Upon
interruption, the processor switches 16 general purpose registers (GR16 to GR31) to
register bank 0, register bank 1 contents are preserved.

When PSR.bn is 1, bank 1 for registers GR16 to GR31 is selected; when 0, bank 0 for
registers GR16 to GR31 is selected. Banks are switched in the following cases:

Figure 3-17.Interruption Instruction Bundle Registers (IIB0-1, – CR26, 27)

63 46 45 5 4 0

IIB0 Instruction slot 1 {17:0} Instruction slot 0 Template

18 41 5
63 23 22 0

IIB1 Instruction slot 2 Instruction slot 1 {40:18}

41 23

Volume 2, Part 1: System State and Programming Model 2:43

• An interruption selects bank 0,

• rfi switches to the bank specified by IPSR.bn, or

• bsw switches to the specified bank.

On an interruption or bank switch, the processor ensures all prior register accesses
(reads and writes) are performed to the prior register bank. Data values in banked
registers are preserved across bank switches and both banks maintain NaT values when
loaded from general registers. Registers from both banks cannot be addressed at the
same time. However, non-banked general registers (GR0-15, and GR32-127) are
accessible regardless of the state of PSR.bn.

Whether the ALAT register target tracking mechanism (see “Data Speculation” on
page 1:63) distinguishes between the two register banks is implementation dependent;
from the ALAT's perspective, GR16 in bank 0 may be the same register as GR16 in bank
1 in some implementations.

Operating systems should ensure that IA-32 and Itanium architecture-based
application code is executed within register bank 1. If IA-32 or Itanium
architecture-based application code executes out of register bank 0, the application
register state (including IA-32) will be lost on any interruption. During interruption
processing the operating system uses register bank 0 as the initial working register
context.

Usage of these additional registers is determined by software conventions. However,
registers GR24 to GR31, of bank 0, are not preserved when PSR.ic is 1; operating
system code can not rely on register values being preserved unless PSR.ic is 0. While
PSR.ic is 1, processor-specific firmware may use these registers for machine check or
firmware interruption handling at any point regardless of the state of PSR.i. If PSR.ic is
0, GR24 to GR31 can be used as scratch registers for low-level interruption handlers.
Registers GR16 to GR23 are always preserved; operating system code can rely on the
values being preserved.

Figure 3-18. Banked General Registers

gr0
gr1

63 0

gr16

gr31
gr32

0

General Registers NaTs
0

63 0

Banked General
 NaTs

0

 Registers

gr16

gr23

gr127

gr24

gr31

Volatile Registers

2:44 Volume 2, Part 1: System State and Programming Model

3.4 Processor Virtualization

Processors in the Itanium Processor Family may optionally implement a mechanism to
support processor virtualization. This includes an additional PSR.vm bit (see Section
3.3.2, “Processor Status Register (PSR)”), which, when 1, causes certain instructions to
take a Virtualization fault (see Section 5.6, “Interruption Priorities” and “Virtualization
vector (0x6100)” on page 2:209).

The set of instructions which are virtualized by PSR.vm are listed in Table 3-10 below.

Processors which support processor virtualization must provide an
implementation-dependent mechanism for disabling the vmsw instruction. When
enabled, the vmsw instruction functions as described on the vmsw instruction page.
When disabled, the vmsw instruction always raises a Virtualization fault when executed
at the most privileged level.

Processors which support processor virtualization may provide an
implementation-dependent mechanism to disable virtual machine features, see
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Processor virtualization is largely invisible to system software, and therefore its effects
on virtualized instructions are not discussed in this document, except on the instruction
description pages themselves.

§

Table 3-10. Virtualized Instructions

Class Virtualized Instructions

All privileged instructions itc.i, itc.d, itr.i, itr.d, ptc.l, ptc.g, ptc.ga, ptc.e, ptr,
tak, tpa, mov rr, mov pkr, mov cr, mov ibr, mov dbr, mov pmc,
mov to pmd, ssm, rsm, mov psr, rfi, bsw

Some non-privileged
instructions (virtualized at
all privilege levels)

thash, ttag, mov from cpuid, probea

a. Virtualization of the probe instruction is configurable, see Section 11.7.4.2.8, “Probe Instruction
Virtualization” on page 2:344 for details.

Some non-privileged
instructions (virtualized at
privilege level 0)

cover, probea

Reading AR[ITC] or
AR[RUC] with PSR.si==1
(virtualized at all privilege
levels)

mov from ar.itc, mov from ar.ruc

Instructions which write
privileged registers

mov to ar.itc, mov to ar.ruc

Volume 2, Part 1: Addressing and Protection 2:45

Addressing and Protection 4

This chapter defines operating system resources to translate 64-bit virtual addresses
into physical addresses, 32-bit virtual addressing, virtual aliasing, physical addressing,
memory ordering and properties of physical memory. Register state defined to support
virtual memory management is defined in Chapter 3, while Chapter 5 provides
complete information on virtual memory faults.

Note: Unless otherwise noted, references to “interruption” in this chapter refer to
IVA-based interruptions. See “Interruption Definitions” on page 2:95.

The following key features are supported by the virtual memory model.

• Virtual Regions are defined to support contemporary operating system Multiple
Address Space (MAS) models of placing each process within a unique address
space. Region identifiers uniquely tag virtual address mappings to a given process.

• Protection Domain mechanisms support the Single Address Space (SAS) model,
where processes co-exist within the same virtual address space.

• Translation Lookaside Buffer (TLB) structures are defined to support
high-performance paged virtual memory systems. Software TLB fill and protection
handlers are utilized to defer translation policies and protection algorithms to the
operating system.

• A Virtual Hash Page Table (VHPT) is designed to augment the performance of the
TLB. The VHPT is an extension of the processor’s TLB that resides in memory and
can be automatically searched by the processor. A particular operating system page
table format is not dictated. However, the VHPT is designed to mesh with two
common translation structures: the virtual linear page table and hashed page table.
Enabling of the VHPT and the size of the VHPT are completely under software
control.

• Sparse 64-bit virtual addressing is supported by providing for large translation
arrays (including multiple levels of hierarchy similar to a cache hierarchy), efficient
translation miss handling support, multiple page sizes, pinned translations, and
mechanisms to promote sharing of TLB and page table resources.

4.1 Virtual Addressing

As seen by Itanium architecture-based application programs, the virtual addressing
model is fundamentally a 64-bit flat linear virtual address space. 64-bit general
registers are used as pointers into this address space. IA-32 32-bit virtual linear
addresses are zero extended into the 64-bit virtual address space.

As shown in Figure 4-1, the 64-bit virtual address space is divided into eight 261 byte
virtual regions. The region is selected by the upper 3-bits of the virtual address.
Associated with each virtual region is a region register that specifies a 24-bit region
identifier (unique address space number) for the region. Eight out of the possible 224
virtual address spaces are concurrently accessible via the 8 region registers. The region
identifier can be considered the high order address bits of a large 85-bit global address
space for a single address space model, or as a unique ID for a multiple address space
model.

2:46 Volume 2, Part 1: Addressing and Protection

By assigning sequential region identifiers, regions can be coalesced to produce larger
62-, 63- or 64-bit spaces. For example, an operating system could implement a 62-bit
region for process private data, 62-bit region for I/O, and a 63-bit region for globally
shared data. Default page sizes and translation policies can be assigned to each virtual
region.

Figure 4-2 shows the process of mapping a virtual address into a physical address.
Each virtual address is composed of three fields: the Virtual Region Number, the Virtual
Page Number, and the page offset. The upper 3-bits select the Virtual Region Number
(VRN). The least-significant bits form the page offset. The Virtual Page Number (VPN)
consists of the remaining bits. The VRN bits are not included in the VPN. The page
offset bits are passed through the translation process unmodified. Exact bit positions
for the page offset and VPN bits vary depending on the page size used in the virtual
mapping.

On a memory reference (any reference other than an insert or purge), the VRN bits
select a Region Identifier (RID) from 1 of the 8 region registers, the TLB is then
searched for a translation entry with a matching VPN and RID value. The VRN may
optionally be used when searching for a matching translation on memory references
(references other than inserts and purges – see Section 4.1.1.4, “Purge Behavior of TLB
Inserts and Purges”). If a matching translation entry is found, the entry’s physical page
number (PPN) is concatenated with the page offset bits to form the physical address.
Matching translations are qualified by page-granular privilege level access right checks
and optional protection domain checks by verifying the translation’s key is contained
within a set of protection key registers and read, write, execute permissions are
granted.

If the required translation is not resident in the TLB, the processor may optionally
search the VHPT structure in memory for the required translation and install the entry
into the TLB. If the required entry cannot be found in the TLB and/or VHPT, the
processor raises a TLB Miss fault to request that the operating system supply the
translation. After the operating system installs the translation in the TLB and/or VHPT,
the faulting instruction can be restarted and execution resumed.

Figure 4-1. Virtual Address Spaces

224 Virtual

Virtual Address
63 0

261 Bytes
Per Region

4K to 256M
Pages

0
1

3

Address Spaces

8 Virtual
Regions

Volume 2, Part 1: Addressing and Protection 2:47

Virtual addressing for instruction references are enabled when PSR.it is 1, data
references when PSR.dt is 1, and register stack accesses when PSR.rt is 1.

4.1.1 Translation Lookaside Buffer (TLB)

The processor maintains two architectural TLBs as shown in Figure 4-3, the Instruction
TLB (ITLB) and Data TLB (DTLB). Each TLB services translation requests for instruction
and data memory references (including IA-32), respectively. The Data TLB also services
translation requests for references by the RSE and the VHPT walker. The TLBs are
further divided into two sub-sections; Translation Registers (TR) and Translation Cache
(TC).

In the remainder of this document, the term TLB refers to the combined instruction,
data, translation register, and translation cache structures.

Figure 4-2. Conceptual Virtual Address Translation for References

Figure 4-3. TLB Organization

Virtual Region Number (VRN)

Virtual Address
rr0
rr1
rr2

rr7

Region

Search

Protection

63 61 60 0

Hash

Region ID

 Translation Lookaside Buffer (TLB)

pkr0
pkr1
pkr2

 Search

Key

062

Physical Address

Physical Page Number (PPN) Offset

3

Search

24

24

Registers

Key Registers

 Virtual Page Number (VPN) Offset

Physical Page Num (PPN)RightsVirtual Page Num (VPN)Key VRNRegion ID

Search

Rights

ITR

itr0
itr1
itr2

itrn

ITLB

ITC

DTR

dtr0
dtr1
dtr2

dtrn

DTLB

DTCitc dtc

2:48 Volume 2, Part 1: Addressing and Protection

The TLB is a local processor resource; installation of a translation or local processor
purges do not affect other processor’s TLBs. Global TLB purges are provided to purge
translations from all processors within a TLB coherence domain in a multiprocessor
system.

4.1.1.1 Translation Registers (TR)

The Translation Register (TR) section of the TLB is a fully-associative array defined to
hold translations that software directly manages. Software can explicitly insert a
translation into a TR by specifying a register slot number. Translations are removed
from the TRs by specifying a virtual address, page size and a region identifier.
Translation registers allow the operating system to “pin” critical virtual memory
translations in the TLB. Examples include I/O spaces, kernel memory areas, frame
buffers, page tables, sensitive interruption code, etc. Instruction fetches for
interruption handlers are performed using virtual addresses; therefore, virtual address
ranges containing software translation miss routines and critical interruption sequences
should be pinned or else additional TLB faults may occur. Other virtual mappings may
be pinned for performance reasons.

Entries are placed into a specific TR slot with the Insert Translation Register (itr)
instruction. Once a translation is inserted, the processor will not replace the translation
to make room for other translations. Local translations can only be removed by
software issuing the Purge Translation Register (ptr) instruction.

TR inserts and purges may cause other TR and/or TC entries to be removed (refer to
Section 4.1.1.4, “Purge Behavior of TLB Inserts and Purges” for details). Prior to
inserting a TR entry, software must ensure that no overlapping translation exists in any
TR (including the one being written); otherwise, a Machine Check abort may be raised,
or the processor may exhibit other undefined behavior. Translation register entries may
be removed by the processor due to hardware or software errors. In the presence of an
error, the processor can remove TR entries; notification is raised via a Machine Check
abort.

There are at least 8 instruction and 8 data TR slots implemented on all processor
models. Please see the processor-specific documentation for further information on the
number of translation registers implemented on the Itanium processor. Translation
registers support all implemented page sizes and must be implemented in a single-level
fully-associative array. Any register slot can be used to specify any virtual address
mapping. Translation registers are not directly readable.

In some processor models, translation registers are physically implemented as a
subsection of the translation cache array. Valid TR slots are ignored for purposes of
processor replacement on an insertion into the TC. However, invalid TR slots (unused
slots) may be used as TC entries by the processor. As a result, software inserts into
previously invalid TR entries may invalidate a TC entry in that slot.

Implementations may also place a floating boundary between TR and TC entries within
the same structure where any entry above the boundary is considered a TC and any
entry below the boundary a TR. To maximize TC resources, software should allocate
contiguous translation registers starting at slot 0 and continuing upwards.

Volume 2, Part 1: Addressing and Protection 2:49

4.1.1.2 Translation Cache (TC)

The Translation Cache (TC) is an implementation-specific structure defined to hold the
large working set of dynamic translations for memory references (including IA-32).
Please see the processor-specific documentation for further information on Itanium
processor TC implementation details. The processor directly controls the replacement
policy of all TC entries.

Entries are installed by software into the translation cache with the Insert Data
Translation Cache (itc.d) and Insert Instruction Translation Cache (itc.i)
instructions. The Purge Translation Cache Local (ptc.l) instruction purges all ITC/DTC
entries in the local processor that match the specified virtual address range and region
identifier. Purges of all ITC/DTC entries matching a specified virtual address range and
region identifier among all processors in a TLB coherence domain can be globally
performed with the Purge Translation Cache Global (ptc.g, ptc.ga) instruction. The
TLB coherence domain covers at least the processors on the same local bus on which
the purge was broadcast. Propagation between multiple TLB coherence domains is
platform dependent. Software must handle the case where a purge does not propagate
to all processors in a multiprocessor system. Translation cache purges do not invalidate
TR entries.

All the entries in a local processor’s ITC and DTC can be purged of all entries with a
sequence of Purge Translation Cache Entry (ptc.e) instructions. A ptc.e does not
propagate to other processors.

In all processor models, the translation cache has at least 1 instruction and 1 data entry
in addition to the specified 8 instruction and 8 data translation registers.
Implementations are free to implement translation cache arrays of larger sizes.
Implementations may also choose to implement additional hierarchies for increased
performance. At least one translation cache level is required to support all implemented
page sizes. Additional hierarchy levels may or may not be performance optimized for
the preferred page size specified by the virtual region, may be set-associative or fully
associative, and may support a limited set of page sizes. Please see the
processor-specific documentation for further information on the Itanium processor
implementation details of the translation cache.

The translation cache is managed by both software and hardware. In general, software
cannot assume any entry installed will remain, nor assume the lifetime of any entry
since replacement algorithms are implementation specific. The processor may discard
or replace a translation at any point in time for any reason (subject to the forward
progress rules below). TC purges may remove more entries than explicitly requested.
In the presence of a processor hardware error, the processor may remove TC entries
and optionally raise a Corrected Machine Check Interrupt.

In order to ensure forward progress for Itanium architecture-based code, the following
rules must be observed by the processor and software.

• Software may insert multiple translation cache entries per TLB fault, provided that
only the last installed translation is required for forward progress.

• The processor may occasionally invalidate the last TC entry inserted. The processor
must eventually guarantee visibility of the last inserted TC entry to all references
while PSR.ic is zero. The processor must eventually guarantee visibility of the last
inserted TC entry until an rfi sets PSR.ic to 1 and at least one instruction is
executed with PSR.ic equal to 1, and completes without a fault or interrupt. The last

2:50 Volume 2, Part 1: Addressing and Protection

inserted TC entry may be occasionally removed before this point, and software
must be prepared to re-insert the TC entry on a subsequent fault. For example,
eager or mandatory RSE activity, speculative VHPT walks, or other interruptions of
the restart instruction may displace the software-inserted TC entry, but when
software later re-inserts the same TC entry, the processor must eventually
complete the restart instruction to ensure forward progress, even if that restart
instruction takes other faults which must be handled before it can complete. If
PSR.ic is set to 1 by instructions other than rfi, the processor does not guarantee
forward progress.

• If software inserts an entry into the TLB with an overlapping entry (same or larger
size) in the VHPT, and if the VHPT walker is enabled, forward progress is not
guaranteed. See “VHPT Searching” on page 2:62.

• Software may only make references to memory with physical addresses or with
virtual addresses which are mapped with TRs, or to addresses mapped by the
just-inserted translation, between the insertion of a TC entry, and the execution of
the instruction with PSR.ic equal to 1 which is dependent on that entry for forward
progress. Software may also make repeated attempts to execute the same
instruction with PSR.ic equal to 1. If software makes any other memory references
than these, the processor does not guarantee forward progress.

• Software must not defeat forward progress by consistently displacing a required TC
entry through a global or local translation cache purge.

IA-32 code has more stringent forward progress rules that must be observed by the
processor and software. IA-32 forward progress rules are defined in Section 10.6.3,
“IA-32 TLB Forward Progress Requirements” on page 2:261.

The translation cache can be used to cache TR entries if the TC maintains the
instruction vs. data distinction that is required of the TRs. A data reference cannot be
satisfied by a TC entry that is a cache of an instruction TR entry, nor can an instruction
reference be satisfied by a TC entry that is a cache of a data TR entry. This approach
can be useful in a multi-level TLB implementation.

4.1.1.3 Unified Translation Lookaside Buffers

Some processor models may merge the ITC and DTC into a unified translation cache.
The minimum number of unified entries is 2 (1 for instruction, and 1 for data).
Processors may service instruction fetch memory references with TC entries originally
installed into the DTC and service data memory references with translations originally
installed in the ITC. To ensure consistent operation across processor implementations,
software is recommended to not install different translations into the ITC or DTC for the
same virtual region and virtual address. ITC inserts may remove DTC entries. DTC
inserts may remove ITC entries. TC purges remove ITC and DTC entries.

Instruction and data translation registers cannot be unified. DTR entries cannot be used
by instruction references and ITR entries cannot be used by data references. ITR
inserts and purges do not remove DTR entries. DTR inserts and purges do not remove
ITR entries.

Volume 2, Part 1: Addressing and Protection 2:51

4.1.1.4 Purge Behavior of TLB Inserts and Purges

Translations contained in the translation caches (TC) and translation registers (TR) are
maintained in a consistent state by ensuring that TLB insertions remove existing
overlapping entries before new TR or TC entries are installed. Similarly, TLB purges that
partially or fully overlap with existing translations may remove all overlapping entries.
In this context, “overlap” refers to two translations with the same region identifier (but
not necessarily identical virtual region numbers), and with partially or fully overlapping
virtual address ranges (determined by the virtual address and the page size). Examples
are: two 4K-byte pages at the same virtual address, or an 8K-byte page at virtual
address 0x2000 and a 4K-byte page at 0x3000.

As described in Section 4.1, “Virtual Addressing” on page 2:45, each TLB may contain a
VRN field, and virtual address bits {63:61} may be used as part of the match for
memory references (references other than inserts and purges). This binding of a
translation to the VRN implies that a lookup of a given virtual address (region
identifier/VPN pair) in either the translation cache or translation registers may result in
a TLB miss if a memory reference is made through a different VRN (even if the region
identifiers in the two region registers are identical). Some processor models may also
omit the VRN field of the TLB, causing the TLB search on memory references to find an
entry independent of VRN bits. However, all processor models are required, during
translation cache purge and insert operations, to purge all possible translations
matching the region identifier and virtual address regardless of the specified VRN.

A processor may overpurge translation cache entries; i.e., it may purge a larger virtual
address range than required by the overlap. Since page sizes are powers of 2 in size
and aligned on that same power of 2 boundary, purged entries can either be a superset
of, identical to, or a subset of the specified purge range.

Table 4-1 define the purge behavior of different TLB insert and purge instructions.
Table 4-2 describes the purge behavior for VHPT inserts.

Figure 4-4. Conceptual Virtual Address Searching for Inserts and Purges

Virtual Region Number (VRN)

Virtual Address
rr0
rr1
rr2

rr7

Region

search

63 61 60 0

Hash

Region ID 3

search

24

Registers

Virtual Page Number (VPN)

 Translation Lookaside Buffer (TLB)

Physical Page Num (PPN)RightsVirtual Page Num (VPN)Key VRNRegion ID

2:52 Volume 2, Part 1: Addressing and Protection

Note: Please refer to Table 4-1 for footnotes in Table 4-2.

Table 4-1. Purge Behavior of TLB Inserts and Purges

Case Insert? Purge? Machine Check?

it[cr].[id] overlaps [ID]TCa

a. Bracketed notation is intended to specify TC and TR overlaps in the same stream, e.g. itc.i and
ITC.

Mustb

b. Must Insert: requires that the translation specified by the operation is inserted into a TC or TR as
appropriate. For itc and VHPT walker inserts, there is no guarantee to software that the entry will
exist in the future, with the exception of the relevant forward-progress requirements specified in
Section 4.1.1.2, “Translation Cache (TC)”.

Mustc

c. Must Purge: requires that all partially or fully overlapped translations are removed prior to the insert or
purge operation.

Must notd

d. Must not Machine Check: indicates that a processor does not cause a Machine Check abort as a
result of the operation.

it[cr].[id] overlaps [DI]TCe

e. Bracketed notation is intended to specify TC and TR overlaps in the opposite stream, e.g. itc.i and
DTC.

Must Mayf

f. May Purge: indicates that a processor may remove partially or fully overlapped translations prior to
the insert or purge operation. However, software must not rely on the purge.

Must not

it[cr].[id] overlaps [ID]TR Mayg

g. May Insert: indicates that the translation specified by the operation may be inserted into a TC.
However, software must not rely on the insert.

May Musth

h. Must Machine Check: indicates that a processor will cause a Machine Check abort if an attempt is
made to insert or purge a partially or fully overlapped translation. The Machine Check abort may not
be delivered synchronously with the TLB insert or purge operation itself, but is guaranteed to be
delivered, at the latest, on a subsequent instruction serialization operation.

it[cr].[id] overlaps [DI]TR Must Must noti

i. Must not Purge: the processor does not remove (or check for) partially or fully overlapped translations
prior to the insert or purge operation. Software can rely on this behavior.

Must not

ptc.l overlaps [ID]TC

N/A

Must Must not

ptc.l overlaps [ID]TR May Must

ptc.g (local) overlaps [ID]TCj

j. ptc.g (and ptc.ga): two forms of global TLB purges are distinguished: local and remote. The local
form indicates that the ptc.g or ptc.ga was initiated on the local processor. The remote form
indicates that this is an incoming TLB shoot-down from a remote processor.

Must Must not

ptc.g (local) overlaps [ID]TR May Must

ptc.g (remote) overlaps [ID]TC Must Must not

ptc.g (remote) overlaps [ID]TR Must not Must not

ptc.e overlaps [ID]TC Must Must not

ptc.e overlaps [ID]TR Must not Must not

ptr.[id] overlaps [ID]TC Must Must not

ptr.[id] overlaps [DI]TC May Must not

ptr.[id] overlaps [ID]TR Must Must not

ptr.[id] overlaps [DI]TR Must not Must not

Volume 2, Part 1: Addressing and Protection 2:53

The VHPT walker's inserts into the TC follow purge-before-insert rules similar to those
for software inserts. VHPT walker inserts into the DTC behave similar to itc.d; VHPT
walker inserts into the ITC behave similar to itc.i. If an instruction reference results in
a VHPT walk that misses in the data TLB, the DTC insert for the translation for the VHPT
acts similar to an itc.d.

As described in Section 4.1, “Virtual Addressing” on page 2:45, processors may
optionally use VRN bits when searching for a matching translation for a memory
reference (references other than inserts and purges). In processors which do use VRN
bits for such searches, VHPT inserts optionally may also use VRN bits in searching for
overlapping entries. Thus, if a VHPT insertion overlaps a translation in the TC, but the
VRN of the address being inserted does not match the VRN of the existing TC
translation, the purge of the existing TC entry is optional. If a VHPT insertion overlaps a
translation in a TR, but the VRN of the address being inserted does not match the VRN
of the TR translation, the VHPT insertion is allowed, and a machine check is optional. In
processors which do not use VRN bits when searching for a matching translation for a
memory reference, the behavior of VHPT inserts is identical to that of software inserts
(see Table 4-1, “Purge Behavior of TLB Inserts and Purges” on page 2:52).

If a VHPT insert overlaps with an existing TR entry and the VRN of the insertion
matches the VRN of the existing TR entry (for example, if the translation being inserted
is for a large page which overlaps with a small page translation in the TR), the VHPT
insertion can be done, but a machine check must be raised. Software must not create
overlapping translations in the VHPT that are larger than a currently existing TR
translation. The behavior of VHPT inserts is summarized in Table 4-2.

4.1.1.5 Translation Insertion Format

Figure 4-5 shows the register interface to insert entries into the TLB. TLB insertions are
performed by issuing the Insert Translation Cache (itc.d, itc.i) and Insert
Translation Registers (itr.d, itr.i) instructions. The first 64-bit field containing the
physical address, attributes and permissions is supplied by a general purpose register
operand. Additional protection key and page size information is supplied by the
Interruption TLB Insertion Register (ITIR). The Interruption Faulting Address register
(IFA) specifies the virtual address for instruction and data TLB inserts. ITIR and IFA are
defined in “Control Registers” on page 2:29. The upper 3 bits of IFA (VRN bits{63:61})
select a virtual region register that supplies the RID field for the TLB entry. The RID of
the selected region is tagged to the translation as it is inserted into the TLB.

Reserved fields or encodings are checked as follows:

Table 4-2. Purge behavior of VHPT Inserts

Case

VRN bits used for TLB searching on VHPT insert VRN bits not used for TLB
searching on VHPT insertVRN Match No VRN Match

Insert? Purge?
Machine
Check?

Insert? Purge?
Machine
Check?

Insert? Purge?
Machine
Check?

[ID]VHPT overlaps [ID]TCa Mustb Mustc Must notd Must May Must not Must Must Must not

[ID]VHPT overlaps [DI]TCe Must Mayf Must not Must May Must not Must May Must not

[ID]VHPT overlaps [ID]TR
Mayg May Musth May Must noti May May

Must
not

Must

[ID]VHPT overlaps [DI]TR
Must

Must
not

Must not Must Must not Must not Must
Must
not

Must not

2:54 Volume 2, Part 1: Addressing and Protection

• The GR[r] value is checked when a TLB insert instruction is executed, and if
reserved fields or reserved encodings are used, a Reserved Register/Field fault is
raised on the TLB insert instruction. If GR[r]{0} is zero (not-present Translation
Insertion Format), the rest of GR[r] is ignored.

• The RR[vrn] value is checked when a mov to RR instruction is executed, and if
reserved fields or reserved encodings are used, a Reserved Register/Field fault is
raised on the mov to RR instruction.

• The ITIR value is checked either when a mov to ITIR instruction is executed, or
when a TLB insert instruction is executed, depending on the processor
implementation. If reserved fields or reserved encodings are used, a Reserved
Register/Field fault is raised on the mov to ITIR or TLB insert instruction. In
implementations where ITIR is checked on a TLB insert instruction, ITIR{63:32}
and ITIR{31:8} may be ignored if GR[r]{0} is zero (not-present Translation
Insertion Format).

• The IFA value is checked either when a mov to IFA instruction is executed, or when
a TLB insert instruction is executed, depending on the processor implementation. If
an unimplemented virtual address is used, an Unimplemented Data Address fault is
raised on the mov to IFA or TLB insert instruction.

Software must issue an instruction serialization operation to ensure installs into the
ITLB are observed by dependent instruction fetches and a data serialization operation
to ensure installs into the DTLB are observed by dependent memory data references.

Table 4-3 describes all the translation interface fields.

Figure 4-5. Translation Insertion Format

63 53 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

GR[r] ig ed ci ppn ar pl d a ma ci p

ITIR rv/ci key ps rv/ci

IFA vpn ig

RR[vrn] rv rid ig rv ig

Table 4-3. Translation Interface Fields

TLB
Field

Source
Field

Description

ci GR[r]{1,51:50} Checked on Insert – Checked on a TLB insert instruction. If reserved fields or
encodings are used, a Reserved Register/Field fault is raised on the TLB
insert instruction.

rv/ci ITIR{1:0,63:32} Reserved/Checked on Insert – Depending on implementation, may be
reserved (checked on a mov to ITIR instruction) or checked on a TLB insert
instruction. If reserved fields or encodings are used, a Reserved
Register/Field fault is raised on the mov to ITIR or TLB insert instruction. In
implementations where ITIR is checked on a TLB insert instruction,
ITIR{63:32} may be ignored if GR[r]{0} is zero (not-present Translation
Insertion Format).

rv RR[vrn]{1,63:32} Reserved – Checked on a mov to RR instruction. If reserved fields or
encodings are used, a Reserved Register/Field fault is raised on the mov to
RR instruction.

Volume 2, Part 1: Addressing and Protection 2:55

The format in Figure 4-6 is defined for not-present translations (P-bit is zero).

p GR[r]{0} Present bit – When 0, references using this translation cause an Instruction or
Data Page Not Present fault. Most other fields are ignored by the processor,
see Figure 4-6 for details. This bit is typically used to indicate that the
mapped physical page is not resident in physical memory. The present bit
is not a valid bit. For each TLB entry, the processor maintains an
additional hidden valid bit indicating if the entry is enabled for matching.

ma GR[r]{4:2} Memory Attribute – describes the cacheability, coherency, write-policy and
speculative attributes of the mapped physical page. See “Memory Attributes”
on page 2:75 for details.

a GR[r]{5} Accessed Bit – When 0 and PSR.da is 0, data references to the page cause a
Data Access Bit fault. When 0 and PSR.ia is 0, instruction references to the
page cause an Instruction Access Bit fault. When 0, IA-32 references to the
page cause an Instruction or Data Access Bit fault. This bit can trigger a fault
on reference for tracing or debugging purposes. The processor does not
update the Accessed bit on a reference.

d GR[r]{6} Dirty Bit – When 0 and PSR.da is 0, Intel Itanium store or semaphore
references to the page cause a Data Dirty Bit fault. When 0, IA-32 store or
semaphore references to the page cause a Data Dirty Bit fault. The processor
does not update the Dirty bit on a store or semaphore reference.

pl GR[r]{8:7} Privilege Level – Specifies the privilege level or promotion level of the page.
See “Page Access Rights” on page 2:56 for complete details.

ar GR[r]{11:9} Access Rights – page granular read, write and execute permissions and
privilege controls. See “Page Access Rights” on page 2:56 for details.

ppn GR[r]{49:12} Physical Page Number – Most significant bits of the mapped physical address.
Depending on the page size used in the mapping, some of the least significant
PPN bits are ignored.

ig GR[r]{63:53}
IFA{11:0},
RR[vrn]{0,7:2}

available – Software can use these fields for operating system defined
parameters. These bits are ignored when inserted into the TLB by the
processor.

ed GR[r]{52} Exception Deferral – For a speculative load that results in an exception, the
speculative load’s instruction page TLB.ed bit is one of the conditions which
determines whether the exception must be deferred. See “Deferral of
Speculative Load Faults” on page 2:105 for complete details. This bit is
ignored in the data TLB for data memory references and for IA-32 memory
references.

ps ITIR{7:2} Page Size – Page size of the mapping. For page sizes larger than 4K bytes
the low-order bits of PPN and VPN are ignored. Page sizes are defined as 2ps

bytes. See “Page Sizes” on page 2:57 for a list of supported page sizes.

key ITIR{31:8} Protection Key – Uniquely tags the translation to a protection domain. If a
translation’s Key is not found in the Protection Key Registers (PKRs), access
is denied and a Data or Instruction Key Miss fault is raised. See “Protection
Keys” on page 2:59 for complete details. In implementations where ITIR is
checked on a TLB insert instruction, ITIR{31:8} may be ignored if GR[r]{0} is
zero (not-present Translation Insertion Format).

vpn IFA{63:12} Virtual Page Number – Depending on a translation’s page size, some of the
least-significant VPN bits specified are ignored in the translation process.
VPN{63:61} (VRN) selects the region register.

rid RR[VRN].rid Virtual Region Identifier – On TLB inserts the Region Identifier selected by
VPN{63:61} (VRN) is used as additional match bits for subsequent accesses
and purges (much like vpn bits).

Table 4-3. Translation Interface Fields (Continued)

TLB
Field

Source
Field

Description

2:56 Volume 2, Part 1: Addressing and Protection

4.1.1.6 Page Access Rights

Page granular access controls use 4 levels of privilege. Privilege level 0 is the most
privileged and has access to all privileged instructions; privilege level 3 is least
privileged. Access (including IA-32) to a page is determined by the TLB.ar and TLB.pl
fields, and by the privilege level of the access, as defined in Table 4-4. RSE fills and
spills obtain their privilege level from RSC.pl; all other accesses (including IA-32) obtain
their privilege level from PSR.cpl. Within each cell, “–” means no access, “R” means
read access, “W” means write access, “X” means execute access, and “Pn” means
promote PSR.cpl to privilege level “n” when an Enter Privileged Code (epc) instruction
is executed.

Figure 4-6. Translation Insertion Format – Not Present

63 32 31 12 11 8 7 2 1 0

GR[r] ig 0

ITIR rv/ci key ps rv/ci

IFA vpn ig

RR[vrn] rv rid ig rv ig

Table 4-4. Page Access Rights

TLB.ar TLB.pl
Privilege Levela

Description
3 2 1 0

0 3 R R R R read only

2 – R R R

1 – – R R

0 – – – R

1 3 RX RX RX RX read, execute

2 – RX RX RX

1 – – RX RX

0 – – – RX

2 3 RW RW RW RW read, write

2 – RW RW RW

1 – – RW RW

0 – – – RW

3 3 RWX RWX RWX RWX read, write, execute

2 – RWX RWX RWX

1 – – RWX RWX

0 – – – RWX

4 3 R RW RW RW read only / read, write

2 – R RW RW

1 – – R RW

0 – – – RW

5 3 RX RX RX RWX read, execute / read, write, exec

2 – RX RX RWX

1 – – RX RWX

0 – – – RWX

Volume 2, Part 1: Addressing and Protection 2:57

Software can verify page level permissions by the probe (regular_form probe or
probe.fault) instruction, which checks accessibility to a given virtual page by verifying
privilege levels, page level read and write permission, and protection key read and
write permission.

Execute-only pages (TLB.ar 7) can be used to promote the privilege level on entry into
the operating system. User level code would typically branch into a promotion page
(controlled by the operating system) and execute the Enter Privileged Code (epc)
instruction. When epc successfully promotes, the next instruction group is executed at
the target privilege level specified by the promotion page. A procedure return branch
type (br.ret) can demote the current privilege level.

4.1.1.7 Page Sizes

A range of page sizes are supported to assist software in mapping system resources
and improve TLB/VHPT utilization. Typically, operating systems will select a small range
of fixed page sizes to implement virtual memory algorithms. Larger pages may be
statically allocated. For example, large areas of the virtual address space may be
reserved for operating system kernels, frame buffers, or memory-mapped I/O regions.
Software may also elect to pin these translations, by placing them in the translation
registers.

Table 4-5 lists insertable and purgeable page sizes that are supported by all processor
models. Insertable page sizes can be specified in the translation cache, the translation
registers, the region registers and the VHPT. Insertable page sizes can also be used as
parameters to TLB purge instructions (ptc.l, ptc.g, ptc.ga or ptr). Page sizes that
are purgeable only may only be used as parameters to TLB purge instructions.

Processors may also support additional insertable and purgeable page sizes. Please see
the processor-specific documentation for further information on the page sizes
supported by the Itanium processor.

6 3 RWX RW RW RW read, write, execute / read, write

2 – RWX RW RW

1 – – RWX RW

0 – – – RW

7 3 X X X RX exec, promoteb / read, execute

2 XP2 X X RX

1 XP1 XP1 X RX

0 XP0 XP0 XP0 RX

a. RSC.pl, for RSE fills and spills; PSR.cpl for all other accesses.
b. User execute only pages can be enforced by setting PL to 3.

Table 4-4. Page Access Rights (Continued)

TLB.ar TLB.pl
Privilege Levela

Description
3 2 1 0

2:58 Volume 2, Part 1: Addressing and Protection

Page sizes are encoded in translation entries and region registers as a 6-bit encoded
page size field. Each field specifies a mapping size of 2N bytes, thus a value of 12
represents a 4K-byte page. If unimplemented page sizes are specified to an itc, itr or
mov to region register instruction, a Reserved Register/Field fault is raised. If
unimplemented page sizes are specified for a TLB purge instruction an implementation
may raise a Machine Check abort, may under-purge translations up to ignoring the
request, or may over-purge translations up to removal of all entries from the translation
cache. If unimplemented page sizes are specified by a ptc.g or ptc.ga broadcast from
another processor, an implementation may under-purge translations up to ignoring the
request, or may over-purge translations up to removal of all entries from the translation
cache. However, it must not raise a Machine Check abort.

Virtual and physical pages are aligned on the natural boundary of the page. For
example, 4K-byte pages are aligned on 4K-byte boundaries, and 4 M-byte pages on 4
M-byte boundaries.

4.1.2 Region Registers (RR)

Associated with each of the 8 virtual regions is a privileged Region Register (RR). Each
register contains a Region Identifier (RID) along with several other region attributes,
see Figure 4-7. The values placed in the region register by the operating system can be
viewed as a collection of process address space identifiers.

Regions support multiple address space operating systems by avoiding the need to
flush the TLB on a context switch. Sharing between processes is promoted by mapping
common global or shared region identifiers into the region register working set of
multiple processes. All IA-32 memory references are through region register 0.

Table 4-6 describes the region register fields. Region Identifier (rid) bits 0 through 17
must be implemented on all processor models. Some processor models may implement
additional bits. Additional implemented bits must be contiguous and start at bit 18.
Unimplemented bits are reserved. Please see the processor-specific documentation for
further information on the size of the Region Identifier implemented on the Itanium
processor.

Table 4-5. Architected Page Sizes

Page Sizes

4k 8k 16k 64k 256k 1M 4M 16M 64M 256M 4G

Insertable yes yes yes yes yes yes yes yes yes yes -

Purgeable yes yes yes yes yes yes yes yes yes yes yes

Figure 4-7. Region Register Format

63 32 31 8 7 2 1 0

rv rid ps rv ve

32 24 6 1 1

Table 4-6. Region Register Fields

Field Bits Description

rv 1,63:32 reserved

ve 0 VHPT Walker Enable – When 1, the VHPT walker is enabled for the region. When 0,
disabled.

Volume 2, Part 1: Addressing and Protection 2:59

Software must issue an instruction serialization operation to ensure writes into the
region registers are observed by dependent instruction fetches and issue a data
serialization operation for dependent memory data references.

4.1.3 Protection Keys

Protection Keys provide a method to restrict permission by tagging each virtual page
with a unique protection domain identifier. The Protection Key Registers (PKR)
represent a register cache of all protection keys required by a process. The operating
system is responsible for management and replacement polices of the protection key
cache. Before a memory access (including IA-32) is permitted, the processor compares
a translation’s key value against all keys contained in the PKRs. If a matching key is not
found, the processor raises a Key Miss fault. If a matching Key is found, access to the
page is qualified by additional read, write and execute protection checks specified by
the matching protection key register. If these checks fail, a Key Permission fault is
raised. Upon receipt of a Key Miss or Key Permission fault, software can implement the
desired security policy for the protection domain. Figure 4-8 and Table 4-7 describe the
protection key register format and protection key register fields.

ps 7:2 Preferred page Size – Selects the virtual address bits used in hash functions for
set-associative TLBs or the VHPT. Encoded as 2ps bytes. The processor may make
significant performance optimizations for the specified preferred page size for the
region.a

rid 31:8 Region Identifier – During TLB inserts, the region identifier from the select region
register is used to tag translations to a specific address space. During TLB/VHPT
lookups, the region identifier is used to match translations and to distribute hash
indexes among VHPT and TLB sets.

a. For more details on the usage of this field, See “VHPT Hashing” on page 2:65.

Figure 4-8. Protection Key Register Format

63 32 31 8 7 4 3 2 1 0

rv key rv xd rd wd v

32 24 4 1 1 1 1

Table 4-7. Protection Register Fields

Field Bits Description

v 0 Valid – When 1, the Protection Register entry is valid and is checked by the
processor when performing protection checks. When 0, the entry is ignored.

wd 1 Write Disable – When 1, write permission is denied to translations in the protection
domain.

rd 2 Read Disable – When 1, read permission is denied to translations in the protection
domain.

xd 3 Execute Disable – When 1, execute permission is denied to translations in the
protection domain.

key 31:8 Protection Key – uniquely tags translation to a given protection domain.

rv 7:4,63:32 reserved

Table 4-6. Region Register Fields (Continued)

Field Bits Description

2:60 Volume 2, Part 1: Addressing and Protection

Processor models have at least 16 protection key registers, and at least 18-bits of
protection key. Some processor models may implement additional protection key
registers and protection key bits. Unimplemented bits and registers are reserved. Key
registers have at least as many implemented key bits as region registers have rid bits.
Additional implemented bits must be contiguous and start at bit 18. Please see the
processor-specific documentation for further information on the number of protection
key registers and protection key bits implemented on the Itanium processor.

Software must issue an instruction serialization operation to ensure writes into the
protection key registers are observed by dependent instruction fetches and a data
serialization operation for dependent memory data references.

The processor ensures uniqueness of protection keys by checking new valid protection
keys against all protection key registers during the move to PKR instruction. If a valid
matching key is found in any PKR register, the processor invalidates the matching PKR
register by setting PKR.v to zero, before performing the write of the new PKR register.
The other fields in any matching PKR remain unchanged when it is invalidated.

Key Miss and Permission faults are only raised when memory translations are enabled
(PSR.dt is 1 for data references, PSR.it is 1 for instruction references, PSR.rt is 1 for
register stack references), and protection key checking is enabled (PSR.pk is one).

Data TLB protection keys can be acquired with the Translation Access Key (tak)
instruction. Instruction TLB key values are not directly readable. To acquire instruction
key values software should make provisions to read memory structures.

4.1.4 Translation Instructions

Table 4-8 lists translation instructions used to manage translations. Region registers,
protection key registers and the TLBs are accessed indirectly; the register number is
determined by the contents of a general register.

The processor does not ensure that modification of the translation resources is
observed by subsequent instruction fetches or data memory references. Software must
issue an instruction serialization operation before any dependent instruction fetch and a
data serialization operation before any dependent data memory reference.

Table 4-8. Translation Instructions

Mnemonic Description Operation
Instr.
Type

Serialization
Requirement

mov rr[r3] = r2 Move to region
register

RR[GR[r3]] = GR[r2] M data/inst

mov r1 = rr[r3] Move from region
register

GR[r1] = RR[GR[r3]] M none

mov pkr[r3] = r2 Move to
protection key
register

PKR[GR[r3]] = GR[r2] M data/inst

mov r1 = pkr[r3] Move from
protection key
register

GR[r1] = PKR[GR[r3]] M none

itc.i r3 Insert instruction
translation cache

ITC = GR[r3], IFA, ITIR M inst

Volume 2, Part 1: Addressing and Protection 2:61

4.1.5 Virtual Hash Page Table (VHPT)

The VHPT is an extension of the TLB hierarchy designed to enhance virtual address
translation performance. The processor’s VHPT walker can optionally be configured to
search the VHPT for a translation after a failed instruction or data TLB search. The VHPT
walker provides significant performance enhancements by reducing the rate of flushing
the processor’s pipelines due to a TLB Miss fault, and by providing speculative
translation fills concurrent to other processor operations.

The VHPT, resides in the virtual memory space and is configurable as either the primary
page table of the operating system or as a single large translation cache in memory
(see Figure 4-9). Since the VHPT resides in the virtual address space, an additional TLB
miss can be raised when the VHPT is referenced. This property allows the VHPT to also
be used as a linear page table.

itc.d r3 Insert data
translation cache

DTC = GR[r3], IFA, ITIR M data

itr.i itr[r2] = r3 Insert instruction
translation
register

ITR[GR[r2]] = GR[r3], IFA, ITIR M inst

itr.d dtr[r2] = r3 Insert data
translation
register

DTR[GR[r2]] = GR[r3], IFA, ITIR M data

probe r1 = r3, r2 Probe data TLB for translation M none

probe.fault r3, imm2 Probe data TLB for translation M none

ptc.l r3, r2 Purge a translation from local processor instruction
and data translation cache

M data/inst

ptc.g r3, r2 Globally purge a translation from multiple
processor’s instruction and data translation caches

M data/inst

ptc.ga r3, r2 Globally purge a translation from multiple
processor’s instruction and data translation caches
and remove matching entries from multiple
processor’s ALATs

M data/inst

ptc.e r3 Purge local instruction and data translation cache of
all entries

M data/inst

ptr.i r3, r2 Purge instruction translation registers M inst

ptr.d r3, r2 Purge data translation registers M data

tak r1 = r3 Obtain data TLB entry protection key M none

thash r1 = r3 Generate translation’s VHPT hash address M none

ttag r1 = r3 Generate translation tag for VHPT M none

tpa r1 = r3 Translate a virtual address to a physical address M none

Table 4-8. Translation Instructions (Continued)

Mnemonic Description Operation
Instr.
Type

Serialization
Requirement

2:62 Volume 2, Part 1: Addressing and Protection

The processor does not manage the VHPT or perform any writes into the table.
Software is responsible for insertion of entries into the VHPT (including replacement
algorithms), dirty/access bit updates, invalidation due to purges and coherency in a
multiprocessor system. The processor does not ensure the TLBs are coherent with the
VHPT memory image.

If software needs to control the entries inserted into the TLB more explicitly, or
programs the VHPT with differing mappings for the same virtual address range, it may
need to take additional action to ensure forward progress. See “VHPT Searching” on
page 2:62.

4.1.5.1 VHPT Configuration

The Page Table Address (PTA) register determines whether the processor is enabled to
walk the VHPT, anchors the VHPT in the virtual address space, and controls VHPT size
and configuration information. The VHPT can be configured as either a per-region
virtual linear page table structure (8-byte short format) or as a single large hash page
table (32-byte long format). No mixing of formats is allowed within the VHPT.

To implement a per-region linear page table structure an operating system would
typically map the leaf page table nodes with small backing virtual translations. The size
of the table is expanded to include all possible virtual mappings, effectively creating a
large per-region flat page table within the virtual address space.

To implement a single large hash page table, the entire VHPT is typically mapped with a
single large pinned virtual translation placed in the translation registers and the size of
the table is reduced such that only a subset of all virtual mappings can be resident
within the table. Operating systems can tune the size of the hash page table based on
the size of physical memory and operating system performance requirements.

4.1.5.2 VHPT Searching

When enabled, the processor’s VHPT walker searches the VHPT for a translation after a
failed instruction or data TLB search. The VHPT walker checks only the specific VHPT
entry addressed by the short- or the long-format hash function, as selected by PTA.vf.
If additional TLB misses are encountered during the VHPT access, a VHPT Translation

Figure 4-9. Virtual Hash Page Table (VHPT)

TLB

Virtual Address

Hashing
Function

VHPT

Optional Collision Search Chain

Optional Operating System Page Tables

Region
Registers

rid vpn

PTA

2PTA.size

PTA.base

ps

TC
Install

Volume 2, Part 1: Addressing and Protection 2:63

fault is raised. If the region-based short-format VHPT entry contains no reserved bits or
encodings, it is installed into the TLB, and the processor again attempts to translate the
failed instruction or data reference. If the long-format VHPT entry’s tag specifies the
correct region identifier and virtual address, and the entry contains no reserved bits or
encodings, it is installed into the TLB, and the processor again attempts to translate the
failed instruction or data reference. Otherwise the processor raises a TLB Miss fault. The
translation is installed into the TLB even if its VHPT entry is marked as not present
(p=0). Software may optionally search additional VHPT collision chains (associativities)
or search for translations within the operating system’s primary page tables.
Performance is optimized by placing frequently referenced translations within the VHPT
structure directly searched by the processor.

The VHPT walker is optional on a given processor model. Software can neither assume
the presence of a VHPT walker, nor that the VHPT walker will find a translation in the
VHPT. The VHPT walker can abort a search at any time for implementation-specific
reasons, even if the required translation entry is in the VHPT. Operating systems must
regard the VHPT walker strictly as a performance optimization and must be prepared to
handle TLB misses if the walker fails.

VHPT walks may be done speculatively by the processor's VHPT walker. Additionally,
VHPT walks triggered by non-speculatively-executed instructions are not required to be
done in program order. Therefore, if the walker is enabled and if the VHPT contains
multiple entries that map the same virtual address range, software must set up these
entries such that any of them can be used in the translation of any part of this virtual
address range. Additionally, if software inserts a translation into the TLB which is
needed for forward progress, and this translation has a smaller page size than the
translation which would have been inserted on a VHPT walk for the same address, then
software may need to disable the VHPT walker in order to ensure forward progress,
since this inserted translation may be displaced by a VHPT walk before it can be used.

4.1.5.3 Region-based VHPT Short Format

The region-based VHPT short format shown in Figure 4-10 uses 8-byte VHPT entries to
support a per-region linear page table configuration. To use the short-format VHPT,
PTA.vf must be set to 0.

See “Translation Insertion Format” on page 2:53 for a description of all fields. The VHPT
walker provides the following default values when entries are installed into the TLB.

• Virtual Page Number – implied by the position of the entry in the VHPT. The hashed
short-format entry is considered to be the matching translation.

• Region Identifiers are not specified in the short format. To ensure uniqueness,
software must provide unique VHPT mappings per region. Region identifiers
obtained from the referenced region register are tagged with the translation when
inserted into the TLB.

• Page Size – specified by the accessed region’s preferred page size
(RR[VA{63:61}].ps)

Figure 4-10. VHPT Short Format

63 53 52 51 50 49 12 11 9 8 7 6 5 4 2 1 0

ig ed rv ppn ar pl d a ma rv p

11 1 2 38 3 2 1 1 3 1 1

2:64 Volume 2, Part 1: Addressing and Protection

• Protection Key – specified by the accessed region identifier value
(RR[VA{63:61}].rid). As a result, all implementations must ensure that the number
of implemented key bits is greater than or equal to the number of implemented
region identifier bits.

If a translation is marked as not present, ignored fields are usable by software as noted
in Figure 4-11.

4.1.5.4 VHPT Long Format

The long-format VHPT uses 32-byte VHPT entries to support a single large virtual hash
page table. To use the long-format VHPT, PTA.vf must be set to 1. The long format is a
superset of the TLB insertion format, as noted in Figure 4-12, and specifies full
translation information (including protection keys and page sizes). Additional fields are
defined in Table 4-9. The long format is typically used to build the hash page table
configuration.

If a translation is marked as not present, ignored fields are usable by software as noted
in Figure 4-13. Also, in some implementations, +8{63:32} and +8{31:8} may be
ignored as well.

Figure 4-11. VHPT Not-present Short Format

63 1 0

ig 0

64

Figure 4-12. VHPT Long Format

offset 63 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

+0 ig ed rv ppn ar pl d a ma rv p

+8 rv key ps rv

+16 ti tag

+24 ig

64

Table 4-9. VHPT Long-format Fields

Field Offset Description

tag +16 Translation Tag – The tag, in conjunction with the VHPT hash index, is used to
uniquely identify the translation. Tags are computed by hashing the virtual page
number and the region identifier. See “VHPT Hashing” on page 2:65 for details on tag
and hash index generation.

ti +16 Tag Invalid Bit – If one, this bit of the tag indicates an invalid tag. On all processor
implementations, the VHPT walker and the ttag instruction generate tags with the ti
bit equal to 0. A VHPT entry with the ti bit equal to one will never be inserted into the
processor’s TLBs. Software can use the ti bit to invalidate long-format VHPT entries in
memory.

ig +24 available – field for software use, ignored by the processor. Operating systems may
store any value, such as a link address to extend collision chains on a hash collision.

Volume 2, Part 1: Addressing and Protection 2:65

For multiprocessor systems, atomic updates of long-format VHPT entries may be
ensured by software as follows:

• Before making multiple non-atomic updates to a VHPT entry in memory, software is
required to set its ti bit to one.

• After making multiple non-atomic updates to a VHPT entry in memory, software
may clear its ti bit to zero to re-enable tag matches.

The updates to the VHPT entry in memory must be constrained to be observable only
after the store that sets the ti bit to one is observable. This can be accomplished with a
mf instruction, or by performing the updates to the VHPT entry with release stores.
Similarly, the clearing of the ti bit must be constrained to be observable only after all of
the updates to the VHPT entry are observable. This can be accomplished with a mf
instruction, or by performing the clear of the ti bit with a release store.

4.1.6 VHPT Hashing

The processor provides two methods for software to determine a VHPT entry’s address:
the Translation Hash (thash) instruction, and the Interruption Hash Address (IHA)
register defined on page 2:41. The virtual address of the VHPT entry is placed in the
IHA register when a VHPT Translation or TLB fault is delivered. In the long format, IHA
can be used as a starting address to scan additional collision chains (associativities)
defined by the operating system or to perform a search in software. The thash
instruction is used to generate a VHPT entry’s address outside of interruption handlers
and provides the same hash function that is used to calculate IHA.

thash produces a VHPT entry’s address for a given virtual address and region identifier,
depending on the setting of the PTA.vf bit. When PTA.vf=0, thash returns the
region-based short-format index as defined in “Region-based VHPT Short-format Index”
on page 2:65. When PTA.vf=1, thash returns the long-format hash as defined in
“Long-format VHPT Hash” on page 2:66. The ttag instruction is only useful for
long-format hashing, and generates a 64-bit ti/tag identifier that the processor’s VHPT
walker will check when it looks up a given virtual address and region identifier. Software
should use the ttag instruction, and either the thash instruction or the IHA register
when forming translation tags and hash addresses for the long-format VHPT. These
resources encapsulate the implementation-specific long-format hashing functionality
and improve performance.

4.1.6.1 Region-based VHPT Short-format Index

In the region-based short format, the linear page table for each region resides in the
referenced region itself. As a result, the short-format VHPT consists of separate
per-region page tables, which are anchored in each region by PTA{60:15}. For regions

Figure 4-13. VHPT Not-present Long Format

offset 63 32 31 8 7 2 1 0

+0 ig 0

+8 rv key ps rv

+16 ti tag

+24 ig

2:66 Volume 2, Part 1: Addressing and Protection

in which the VHPT is enabled, the operating system is required to maintain a per-region
linear page table. As defined in Figure 4-14, the VHPT walker uses the virtual address,
the region’s preferred page size, and the PTA.size field to compute a linear index into
the short-format VHPT.

The size of the short-format VHPT (PTA.size) defines the size of the mapped virtual
address space. The maximum architectural table size in the short format is 252 bytes
per region. To map an entire region (261 bytes) using 4Kbyte pages, 2(61-12) = 249
pages must be mappable. A short-format VHPT entry is 8 bytes = 23 bytes large. As a
result, the maximum table size is 2(61-12+3) = 252 bytes per region. If the short format
is used to map an address space smaller than 261, a smaller short-format table
(PTA.size<52) can be used. Mapping of an address space of 2n with 4KByte pages
requires a minimum PTA.size of (n-9).

In the short format, the thash instruction returns the region-based short-format index
defined in Figure 4-14. The ttag instruction is not used with the short format. VHPT
translation and TLB miss faults write the IHA register with the region-based
short-format index defined in Figure 4-14.

4.1.6.2 Long-format VHPT Hash

The long-format VHPT is a single large contiguous hash table that resides in the region
defined by PTA.base. As defined in Figure 4-15, the VHPT walker uses the virtual
address, the region identifier, the region’s preferred page size, and the PTA.size field to
compute a hash index into the long-format VHPT. PTA{63:15} defines the base address
and the region of the long-format VHPT. PTA.size reflects the size of the hash table, and
is typically set to a number significantly smaller than 264; the exact number is based on
operating system performance requirements.

The long-format hash function (tlb_vhpt_hash_long) and long-format tag generation
function are implementation specific. However, on all processor models the hash and
tag functions must exclude the virtual region number (virtual address bits VA{63:61})
from the hash and tag computations. This ensures that a unique 85-bit global virtual
address hashes to the same VHPT hash address, regardless of which region the address
is mapped to. All processor implementations guarantee that the most significant bit of

Figure 4-14. Region-based VHPT Short-format Index Function

Mask = (1 << PTA.size) - 1;
VHPT_Offset = (VA{IMPL_VA_MSB:0} u>> RR[VA{63:61}].ps) << 3;
VHPT_Addr = (VA{63:61} << 61) |

(((PTA{60:15} & ~Mask{60:15}) | (VHPT_Offset{60:15} &
Mask{60:15})) << 15) |

VHPT_Offset{14:0};

Figure 4-15. VHPT Long-format Hash Function

Mask = (1 << PTA.size) - 1;
HPN = VA{IMPL_VA_MSB:0} u>> RR[VA{63:61}].ps;
Hash_Index = tlb_vhpt_hash_long(HPN,RR[VA{63:61}].rid);
// model-specific hash function
VHPT_Offset = Hash_Index << 5;
VHPT_Addr = (PTA{63:61} << 61) |

(((PTA{60:15} & ~Mask{60:15}) | (VHPT_Offset{60:15}
& Mask{60:15})) << 15) | VHPT_Offset{14:0};

Volume 2, Part 1: Addressing and Protection 2:67

the tag (ti bit) is zero for all valid tags. The hash index and tag together must uniquely
identify a translation. The processor must ensure that the indices into the hashed table,
the region’s preferred page size, and the tag specified in an indexed entry can be used
in a reverse hash function to uniquely regenerate the region identifier and virtual
address used to generate the index and tag. This must be possible for all supported
page sizes, implemented virtual addresses and legal values of region identifiers. A hash
function is reversible if using the hash result and all but one input produces the missing
input as the result of the reverse hash function. The easiest hash function and reverse
hash function is a simple XOR of bits. To ensure uniqueness, software must follow these
rules:

1. Software must use only one preferred page size for each unique region identifier
at any given time; otherwise, processor operation is undefined.

2. All tags for translations within a given region must be created with the preferred
page size assigned to the region; otherwise, processor operation is undefined.

3. Software is not allowed to have pages in the VHPT that are smaller than the
preferred page size for the region; otherwise, processor operation is undefined.
Software can specify a page with a page size larger than the preferred page size
in the VHPT, but tag values for the entries representing that page size must be
generated using the preferred page size assigned to that region.

4. To reuse a region identifier with a different preferred page size, software must
first ensure that the VHPT contains no insertable translations for that rid, purge
all translations for that rid from all processors that may have used it, and then
update the region register with the new preferred page size.

4.1.7 VHPT Environment

The processor’s VHPT walker can optionally be configured to search the VHPT for a
translation after a failed instruction or data TLB search. The VHPT walker is enabled for
different types of references under the following conditions:

• Data and non-access references (including IA-32): PTA.ve=1, and
RR[VA{63:61}].ve=1, and PSR.dt=1.

• Instruction fetches (including IA-32): PTA.ve=1, and RR[VA{63:61}].ve=1, and
PSR.dt=1, and PSR.it=1, and PSR.ic=1.

• RSE references: PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1, and
PSR.rt=1.

If the walker is not enabled, and an attempt is made to reference the VHPT, an
Alternate Instruction/Data TLB Miss fault is raised. The remainder of this section
assumes that the VHPT is enabled.

Region registers must support all implemented page sizes so software can use IHA,
thash and ttag to manage the VHPT. thash and ttag are defined to operate on all
page sizes supported by the translation cache, regardless of the VHPT walker’s
supported page sizes. The PTA register must be implemented on processor models that
do not implement a VHPT walker. Software must ensure PTA is initialized and serialized
before issuing ttag, thash, before enabling the VHPT walker or issuing a reference that
may cause a VHPT walk. The minimum VHPT size is 32KBytes (PTA.size=15), and

2:68 Volume 2, Part 1: Addressing and Protection

operating systems must ensure that the VHPT is aligned on the natural boundary of the
structure; otherwise, processor operation is undefined. For example, a 64K-byte table
must be aligned on a 64K-byte boundary.

VHPT walker references to the VHPT are performed at privilege level 0, regardless of
the state of PSR.cpl. VHPT byte ordering is determined by the state of DCR.be. When
DCR.be=1, VHPT walker references are performed using big-endian memory formats;
otherwise, VHPT walker references are little-endian. A long-format VHPT reference is
matched against the data break-point registers as a 32-byte reference.

The VHPT is accessed by the processor only if the VHPT is virtually mapped into
cacheable memory areas. The walker may access the VHPT speculatively, i.e.,
references may be performed that are not required by an in-order execution of the
program. Any VHPT or TLB faults encountered during a VHPT walker’s search are not
reported until the faulting translation is required by an in-order execution of the
program. If the VHPT is mapped into non-cacheable memory areas the VHPT is not
referenced, and all TLB misses result in an Instruction/Data TLB Miss fault.

The VHPT walker will abort the search and deliver an Instruction/Data TLB Miss fault if
an attempt is made to install translations that have reserved bits or encodings, or if the
translation mapping the VHPT would have taken one of the following faults: Data Page
Not Present, Data NaT Page Consumption, Data Key Miss, Data Key Permission, Data
Access Bit, or Data Debug. The VHPT walker may abort a search and deliver an
Instruction/Data TLB Miss fault at any time for implementation-specific reasons.

The processor’s VHPT walker is required to read and insert VHPT entries from memory
atomically (an 8-byte atomic read-and-insert for short format, and a 32-byte atomic
read-and-insert for long format). Some implementation strategies for achieving this
atomicity are as follows:

• If the walker performs its VHPT read with multiple cache accesses which are not
done as an atomic unit, and if an update to part of the entry that is being installed
is made in-between these multiple reads, the walker must abort the insert and
deliver an Instruction/Data TLB Miss.

• If the walker performs its VHPT read and the insertion of the entry into the TLB as
separate actions, and not as an atomic unit, and if an update to part of the entry
that is being installed is made in-between the read and the insert, the walker must
either abort the insert and deliver an Instruction/Data TLB Miss, or ignore the
update and install the complete old entry.

• If the purge address range of a TLB purge operation (ptc.l, ptc.e, local or remote
ptc.g or ptc.ga, ptr.i, or ptr.d) overlaps the virtual address the walker is
attempting to insert, then the walker must either abort the insert and deliver an
Instruction/Data TLB Miss, or delay the purge operation until after the walker either
completes the insertion or aborts the walk.

The RSE can only raise a VHPT fault on a mandatory RSE spill/fill operation as defined
for successful execution of an alloc, loadrs, flushrs, br.ret or rfi instruction.
Eager RSE operations may generate speculative VHPT walks provided encountered
faults are not reported.

Data TLB Miss faults encountered during a VHPT walk are permitted and, when
PSR.ic=1, are converted into a VHPT Translation fault as defined in the next section.

Volume 2, Part 1: Addressing and Protection 2:69

4.1.8 Translation Searching

The general sequence of searching the TLB and VHPT is shown in Figure 4-16. On a
failed TLB search, if the VHPT walker is disabled for the referenced region an Alternate
Instruction/Data TLB Miss fault is raised. If the VHPT walker is enabled for the
referenced region, the VHPT is accessed to locate the missing translation. See “VHPT
Environment” on page 2:67. If additional TLB misses are encountered during the VHPT
walker’s references, a VHPT Translation fault is raised. If the VHPT walker does not find
the required translation in the VHPT or the search is aborted, an Instruction/Data TLB
Miss fault is raised. Otherwise the entry is loaded into the ITC or DTC. Provided the
above fault conditions are not detected, the processor may load the entry into the ITC
or DTC even if an in-order execution of the program did not require the translation.

See Table 4-1, “Purge Behavior of TLB Inserts and Purges,” on page 2:52 for the purge
behavior of VHPT walker inserts.

After the translation entry is loaded, additional TLB faults are checked; these include in
priority order: Page Not Present, NaT page Consumption, Key Miss, Key Permission,
Access Rights, Access Bit, and Dirty Bit faults. Table 4-10 describes the TLB and VHPT
walker related faults.

On a failed TLB/VHPT search, the processor loads interruption registers and translation
defaults as defined in “Interruption Vector Descriptions” on page 2:165 defining the
parameters of the translation fault. Provided the operating system accepts the defaults
provided, only the physical address portion of a TLB entry need be provided on a TLB
insert.

2:70 Volume 2, Part 1: Addressing and Protection

Figure 4-16.TLB/VHPT Search

Table 4-10. TLB and VHPT Search Faults

Fault Description

VHPT Instruction/Data Raised if there is an additional TLB miss when the VHPT walker
attempts to access the VHPT. Typically used to construct leaf table
mappings for linear page table configurations.

Alternate Instruction/Data
TLB Miss

Raised when the VHPT walker is not enabled and an instruction or
data reference causes a TLB miss. For example, the VHPT walker
can be disabled within a given virtual region so region-specific
translation algorithms can be utilized.

Virtual Address

Search TLB

Not Found

Inst VHPT Walker Enabled

Yes

No

Search VHPT

VHPT WalkerVHPT Instruction fault

Found

Found

Fault Checks
Page Not Present
NaT Page Consumption
Key Miss
Key Permission
Access Rights

Access Memory

No Fault

Failed Search:

Alternate Instruction

Instruction TLB Miss fault
Tag Mismatch or
Walker Abort

TLB Miss

TLB Miss fault

Faults:

TC Insert

Instruction TLB VHPT Search

Access Bit
Debug

Virtual Address

Search TLB

Not Found

 Data

Yes

No

Search VHPT

VHPT Walker

VHPT Data fault

Found

Found

Fault Checks

Page Not Present
NaT Page Consumption
Key Miss
Key Permission
Access Rights

Access Memory

No Fault

Failed Search:

Dirty Bit

Tag Mismatch or
Walker Abort

Access Bit

Data Nested TLB

Implemented VA?

Yes

No
Unimplemented Data Address fault

TLB Miss
fault

Faults:

Alternate Data

0

 PSR.ic

Data Nested TLB
fault

TLB Miss fault

Data TLB Miss

Data Nested TLB
fault

fault TC Insert

1/In-flight VHPT Walker Enabled

Data TLB VHPT Search

Unaligned Data Reference
Debug

Unsupported Data Reference

0

 PSR.ic

1/In-flight

0

 PSR.ic

1/In-flight

Volume 2, Part 1: Addressing and Protection 2:71

4.1.9 32-bit Virtual Addressing

32-bit virtual data addressing is supported in the Itanium instruction set architecture by
three models: zero-extension, sign-extension, and pointer “swizzling.” IA-32 memory
references use the zero-extension model, all IA-32 32-bit virtual linear addresses are
zero extended into the 64-bit virtual address space.

The zero-extension model performs address computations with the add and shladd
instructions while software ensures that the upper 32-bits are always zeros. This model
constrains 32-bit virtual addressing to virtual region zero. In this model, regions 1 to 7
are accessible only by 64-bit addressing.

Instruction/Data TLB Miss Raised when the VHPT walker is enabled, but the processor:

• Cannot locate the required VHPT entry, or

• The processor aborts the VHPT search for
implementation-specific reasons, or

• The VHPT walker is not implemented, or

• The referenced region specifies a non-supported
VHPT preferred page size, or

• Reserved fields or unimplemented PPN bits are
used in the translation, or

• The hash address falls into unimplemented
virtual address space, or

• The hash address matches a data debug
register.

Instruction/Data TLB Miss handlers are essentially software walkers
of the VHPT.

Data Nested TLB Raised when a Data TLB Miss, Alternate Data TLB Miss, or VHPT
Data Translation fault occurs and PSR.ic is 0 and not in-flight (e.g.,
fault within a TLB miss handler). Data Nested TLB faults enable
software to avoid overheads for potential data TLB Miss faults.

Instruction/Data Page Not Present The referenced translation’s P-bit is 0.

Instruction/Data NaT Page
Consumption

A non-speculative load, store, mandatory RSE load/store, execution
on, or semaphore operation accesses a page marked with the
physical memory attribute NaTPage. See “Not a Thing Attribute
(NaTPage)” on page 2:86 for details.

Instruction/Data Key Miss The referenced translation’s permission key is not present in the set
of valid protection key registers.

Instruction/Data Key Permission The referenced translation is denied read, write, execute permissions
by the matching protection key registers.

Instruction/Data Access Rights Page granular read, write, execute and privilege level accesses are
denied.

Data Dirty Bit The referenced translation’s Dirty bit is 0 on a store or semaphore
operation.

Instruction/Data Access Bit The referenced translation’s Access bit is 0.

Table 4-10. TLB and VHPT Search Faults (Continued)

Fault Description

2:72 Volume 2, Part 1: Addressing and Protection

In the sign-extension model, software ensures that the upper 32-bits of a virtual
address are always equal to bit 31. Address computations use the add, shladd, and sxt
instructions. This model splits the 32 bit address space into two halves that are spread
into 231 bytes of virtual regions 0 and 7 within the 64-bit virtual address space. In this
model, regions 2 to 6 are accessible only by 64-bit addressing.

The pointer “swizzling” model performs address computations with the addp4, and
shladdp4 instructions. These instructions generate a 32-bit address within the 64-bit
virtual address space as shown in Figure 4-17. The 32-bit virtual address space is
divided into 4 sections that are spread into 230 bytes of virtual regions 0 to 3 within the
64-bit virtual address space. In this model, regions 4 to 7 are accessible only by 64-bit
addressing.

In the pointer “swizzling” model, mappings within each region do not necessarily start
at offset zero, since the upper 2-bits of a 32-bit address serve both as the virtual region
number and an offset within each region. Virtual address bits{62:61} do not participate
in the address addition, therefore some regions may be effectively larger than 230 bytes
due to the addition of a 32-bit offset and lack of a carry into bits{62:61}. Note that the
conversion is non-destructive: a converted 64-bit pointer can be used as a 32-bit
pointer. Flat 31 or 32 bit address spaces can be constructed by assigning the same
region identifier to contiguous region registers. Branches into another 230-byte region
are performed by first calculating the target address in the 32-bit virtual space and
then converting to a 64-bit pointer by addp4. Otherwise, branch targets will extend
above the 230 byte boundary within the originating region.

4.1.10 Virtual Aliasing

Virtual aliasing (two or more virtual pages mapped to the same physical page) is
functionally supported for memory references (including IA-32), however performance
may be degraded on some processor models where the distance between virtual aliases
is less than 1 MB. To avoid any possible performance degradation, software is advised
to use aliases whose virtual addresses differ by an integer multiple of 1 MB. The
processor ensures cache coherency and data dependencies in the presence of an alias.
Stores using a virtual alias followed by a load with another alias to the same physical
location see the effects of prior stores to the same physical memory location.

To support advanced loads in the presence of a virtual alias, the processor ensures that
the Advanced Load Address Table (ALAT) is resolved using physical addresses and is
coherent with physical memory. For details, please refer to “Detailed Functionality of
the ALAT and Related Instructions” on page 1:65.

Figure 4-17. 32-bit Address Generation using addp4

0
63 62 61 60 32 31 0

63 32 31 0

000000

63 32 31 30 29 0

+

Base Offset

Volume 2, Part 1: Addressing and Protection 2:73

4.2 Physical Addressing

Objects in memory and I/O occupy a common 63-bit physical address space that is
accessed using byte addresses. Accesses to physical memory and I/O may be
performed via virtual addresses mapped to the 63-bit physical address space or by
direct physical addressing. Current page table formats allow for mapping virtual
addresses into 50 bits of physical address space (on processor implementations that
support this many physical address bits). Future extensions to the page table formats
will allow larger mappings, up to the full 63 bits of physical address space.

Physical addressing for instruction references (including IA-32) is enabled when PSR.it
is 0, data references (including IA-32) when PSR.dt is 0, and register stack references
when PSR.rt is 0.

While software views the physical addressing as being 63-bits, implementations may
implement between 32 and 63 physical address bits. All processor models must
implement a contiguous set of physical address bits starting at bit 32 and continuing
upwards. Please see the processor-specific documentation for further information on
the number of physical address bits implemented on the Itanium processor.
Implementations must validate that memory references are performed to implemented
physical address bits. Instruction references to unimplemented physical addresses
result either in an Unimplemented Instruction Address trap on the last valid instruction,
or in an Unimplemented Instruction Address fault on the instruction fetch of the
unimplemented address. Data references to unimplemented physical addresses result
in an Unimplemented Data Address fault. Memory references to unpopulated address
ranges result in an asynchronous Machine Check abort, when the platform signals a
transaction time-out. Exact machine check behavior is model specific.

4.3 Unimplemented Address Bits

Based on the processor model, some physical and/or virtual address bits may not be
implemented. Regardless of the number of implemented address bits, all general
purpose, branch, control and application registers implement all 64 register bits on all
processors. Similarly, regardless of the number of implemented address bits, data and
instruction breakpoint registers must implement all 64 address bits and all 56 mask bits
on all processors.

4.3.1 Unimplemented Physical Address Bits

As shown in Figure 4-18, a 64-bit physical address consists of three fields: physical
memory attribute (PMA), unimplemented and implemented bits.

All processor models implement at least 32 physical address bits, bits 0 to 31, plus the
physical memory attribute bit. Additional implemented physical bits must be contiguous
starting at bit 32. IMPL_PA_MSB is the implementation-specific position of the most

Figure 4-18. Physical Address Bit Fields

63 62 IMPL_PA_MSB 0

PMA unimplemented implemented

1 62 - IMPL_PA_MSB IMPL_PA_MSB + 1

2:74 Volume 2, Part 1: Addressing and Protection

significant implemented physical address bit. In a processor that implements all
physical address bits, IMPL_PA_MSB is 62. Please see the processor-specific
documentation for further information on the number of physical address bits
implemented on the Itanium processor.

If unimplemented physical address bits are set by software, an Unimplemented Data
Address fault is raised during the TLB insert instructions (itc, itr). Inserts performed
by the VHPT walker, as noted in “VHPT Hashing” on page 2:65, abort the VHPT search if
unimplemented or reserved fields are used. For translations marked as Not-Present
(TLB.p is 0), the processor does not check the validity of PPN and some reserved bits as
noted in Figure 4-6.

When a processor model does not implement all physical address bits, the missing bits
are defined to be zero. Physical addresses in which bits
PA{62:min(IMPL_PA_MSB+1,62)} are not zero are considered “unimplemented”
physical addresses on that processor model. Physical addresses are checked for
correctness on use by ensuring that PA{62:min(IMPL_PA_MSB+1,62)} bits are zero.

4.3.2 Unimplemented Virtual Address Bits

As shown in Figure 4-19, a 64-bit virtual address consists of three fields: virtual region
number (VRN), unimplemented and implemented bits.

All processor models provide three VRN bits in VA{63:61}. IMPL_VA_MSB is the
implementation-specific bit position of the most significant implemented virtual address
bit. In addition to the three VRN bits, all processor models implement at least 54 virtual
address bits; i.e., the smallest IMPL_VA_MSB is 53. In a processor that implements all
64 virtual address bits IMPL_VA_MSB is 60. Please see the processor-specific
documentation for further information on the number of virtual address bits
implemented on the Itanium processor.

If the PSR.vm bit is implemented, and if PSR.vm is 1, then virtual addresses are treated
as though one additional virtual address bit were unimplemented. If the PSR.vm bit is
implemented, at least 55 virtual address bits must be implemented.

When a processor model does not implement all virtual address bits, the missing bits
are defined to be a sign-extension of VA{IMPL_VA_MSB}. Virtual addresses in which
bits VA{60:min(IMPL_VA_MSB+1,60)} do not match VA{IMPL_VA_MSB} are
considered “unimplemented” virtual addresses on that processor model. Virtual
addresses are checked for correctness on use by ensuring that
VA{60:min(IMPL_VA_MSB+1,60)} bits are identical to VA{IMPL_VA_MSB}.

Figure 4-19. Virtual Address Bit Fields

63 6160 IMPL_VA_MSB 0

VRN unimplemented implemented

3 60 - IMPL_VA_MSB IMPL_VA_MSB + 1

Volume 2, Part 1: Addressing and Protection 2:75

4.3.3 Instruction Behavior with Unimplemented Addresses

The use of an unimplemented address affects instruction execution as described in the
bullet list below. If instruction address translation is enabled, an “unimplemented
address” refers to an unimplemented virtual address. If instruction address translation
is disabled, an “unimplemented address” refers to an unimplemented physical address.

• Non-speculative memory references (non-speculative loads, stores, and
semaphores), the following non-access references: fc, fc.i, tpa, lfetch.fault,
and probe.fault, and mandatory RSE operations to unimplemented addresses
result in an Unimplemented Data Address fault.

• Virtual addresses used by instruction and data TLB purge/insert operations are
checked, and if the base address (register r3 of the purge, IFA for inserts) targets
an unimplemented virtual address, a Unimplemented Data Address fault is raised.
The page size of the insert or purge is ignored.

• Speculative loads from unimplemented addresses always return a NaT bit in the
target register.

• A regular_form probe instruction to an unimplemented address returns zero in the
target register.

• A tak instruction to an unimplemented address returns one in the target register.

• A non-faulting lfetch to an unimplemented address is silently ignored.

• Eager RSE operations to unimplemented addresses do not fault.

• Execution of a taken branch, taken chk, or an rfi to an unimplemented address, or
execution of a non-branching slot 2 instruction in a bundle at the upper edge of the
implemented address space (where the next sequential bundle address would be an
unimplemented address) results either in an Unimplemented Instruction Address
trap on the branch, chk, rfi or non-branching slot 2 instruction, or in an
Unimplemented Instruction Address fault on the fetch of the unimplemented
address.

• When ptc.g or ptc.ga operations place a virtual address on the bus, the virtual
address is sign-extended to a full 64-bit format. If an incoming ptc.g or ptc.ga
presents a virtual address base that targets an unimplemented virtual address, the
upper (unimplemented) virtual address bits are dropped, and the purge is
performed with the truncated address.

• The behavior of executing vmsw.1 in a bundle whose address will become
unimplemented after PSR.vm is set to 1 is undefined.

4.4 Memory Attributes

When virtual addressing is enabled, memory attributes defining the speculative,
cacheability and write-policies of the virtually mapped physical page are defined by the
TLB. When physical addressing is enabled, memory attributes are supplied as described
in “Physical Addressing Memory Attributes” on page 2:76.

4.4.1 Virtual Addressing Memory Attributes

For virtual memory references, the memory attribute field of each virtual translation
describes physical memory properties as shown in Table 4-11.

2:76 Volume 2, Part 1: Addressing and Protection

The attribute UCE is identical to UC except when executing an fetchadd instruction.
UCE enables the exporting of the fetchadd instruction outside the processor. Support
for UCE is model-specific; see “Effects of Memory Attributes on Memory Reference
Instructions” on page 2:86 for details.

Insert TLB instructions (itc, itr) that attempt to insert reserved memory attributes
(Table 4-11) into the TLB raise Reserved Register/Field faults. External system
operation is undefined if software inserts a memory attribute supported by the
processor but not supported by the external system.

If software modifies the memory attributes for a page, it must follow the attribute
transition requirements in Section 4.4.11, “Memory Attribute Transition” on page 2:88.

It is recommended that processor models report a Machine Check abort if the following
memory attribute aliasing is detected:

• Cache hit on an uncacheable page, other than as the target of a local or remote
flush cache (fc, fc.i) instruction (see “Effects of Memory Attributes on Memory
Reference Instructions” on page 2:86).

4.4.2 Physical Addressing Memory Attributes

The selection of memory attributes for physical addressing is selected by bit 63 of the
address contained in the address base register as shown in Figure 4-20 and Table 4-12.

Table 4-11. Virtual Addressing Memory Attribute Encodings

Attribute Mnemonic ma Cacheability Write Policy Speculation
Coherenta with

Respect to

a. The Coherency column in this table refers to multiprocessor coherence on normal, side-effect free memory.
The data dependency rules defined in “Memory Access Ordering” on page 1:73 ensure uni-processor
coherence for the memory attributes listed in each row.

Write Back WB 000 Cacheable Write back
Non-sequential &

speculative

WB, WBL

Write
Coalescing

WC 110

Uncacheable

Coalescing Not MP coherentb

b. WC is not MP coherent w.r.t. any memory attribute, but is uni-processor coherent w.r.t. itself.

Uncacheable UC 100

Non-coalescing
Sequential &

non-speculative
UC, UCEUncacheable

Exported
UCE 101

Reservedc

c. This memory attribute is reserved for Software use.

001

Reserved
010
011

NaTPage NaTPage 111 Cacheable N/A Speculative N/A

Figure 4-20. Physical Addressing Memory

Base Register

Physical Address

62 0

63 62 0

Attribute

Volume 2, Part 1: Addressing and Protection 2:77

See “Speculation Attributes” on page 2:79 for a description of physical addressing
limited speculation. Bit{63} is discarded when forming the physical address, effectively
creating a write-back name space and an uncached name space as shown in
Figure 4-21.

Software must use the correct name space when using physical addressing; otherwise,
I/O devices with side-effects may be accessed speculatively. Physical addressing
accesses are ordered only if ordered loads or ordered stores are used. Otherwise,
physical addressing memory references are unordered.

4.4.3 Cacheability and Coherency Attribute

A page can be either cacheable or uncacheable. If a page is marked cacheable, the
processor is permitted to allocate a local copy of the corresponding physical memory in
all levels of the processor memory/cache hierarchy. Allocation may be modified by the
cache control hints of memory reference instructions.

A page which is cached is coherent with memory; i.e., the processor and memory
system ensure that there is a consistent view of memory from each processor.
Processors support multiprocessor cache coherence based on physical addresses
between all processors in the coherence domain (tightly coupled multiprocessors).
Coherency is supported in the presence of virtual aliases, although software is
recommended to use aliases which are an integer multiple of 1 MB apart to avoid any
possible performance degradation.

Processors are not required to maintain coherency between processor local instruction
and data caches for Itanium architecture-based code; i.e., locally initiated Itanium
stores may not be observed by the local instruction cache. Processors are required to

Table 4-12. Physical Addressing Memory Attribute Encodings

Bit{63} Mnemonic Cacheability Write Policy Speculation
Coherenta with

respect to

a. Coherency here refers to multiprocessor coherence on normal, side-effect free memory.

0 WBL Cacheable Write Back Non-sequential &
limited speculation

WBL, WB

1 UC Uncached Non-coalescing Sequential &
non-speculative

UC, UCE

Figure 4-21. Addressing Memory Attributes

263 Physical
Address Space

264 Base Register

263

263

264

0

Uncached
Non-speculative

Cached Write-back
Limited Speculation
Name Space

UC

WBL

Name Space

2:78 Volume 2, Part 1: Addressing and Protection

maintain coherency between processor local instruction and data caches for IA-32 code.
Instruction caches are also not required to be coherent with multiprocessor Itanium
instruction set originated memory references. Instruction caches are required to be
coherent with multiprocessor IA-32 instruction set originated memory references. The
processor must ensure that transactions from other I/O agents (such as DMA) are
physically coherent with the instruction and data cache.

For non-cacheable references the processor provides no coherency mechanisms; the
memory system must ensure that a consistent view of memory is seen by each
processor. See “Coalescing Attribute” on page 2:78 for a description of coherency for
the coalescing memory attribute.

4.4.4 Cache Write Policy Attribute

Write-back cacheable pages need only modify the processor’s copy of the physical
memory location; written data need only be passed to the memory system when the
processor’s copy is displaced, or a Flush Cache (fc) instruction is issued to flush a
virtual address. A cache line can only be written back to memory if a store, semaphore
(successful or not), the ld.bias, a mandatory RSE store, or a .excl hinted lfetch
instruction targeting that line has executed without a fault. These events enable
write-backs. A synchronized fc instruction disables subsequent write-backs (after the
line has been flushed).

As described in “Invalidating ALAT Entries” on page 1:67, platform visible removal of
cache lines from a processor’s caches (e.g., cache line write-backs or platform visible
replacements) cause the corresponding ALAT entries to be invalidated.

4.4.5 Coalescing Attribute

For uncacheable pages, the coalescing attribute informs the processor that multiple
stores to this page may be collected in a coalescing buffer and issued later as a single
larger merged transaction. The processor may accumulate stores for an indefinite
period of time. Multiple pending loads may also be coalesced into a single larger
transaction which is placed in a coalescing buffer. Coalescing is a performance hint for
the processor; a processor may or may not implement coalescing.

A processor with multiple coalescing buffers must provide a flush policy that flushes
buffers at roughly equal rate even if some buffers are only partially full. The processor
may make coalesced buffer flushes visible in any order. Furthermore, individual bytes
within a single coalesced buffer may be flushed and made visible in any order.

Stores (including IA-32), which are coalesced, are performed out of order; coalescing
may occur in both the space and time domains. For example, a write to bytes 4 and 5
and a write to bytes 6 and 7 may be coalesced into a single write of bytes 4, 5, 6, and
7. In addition, a write of bytes 5 and 6 may be combined with a write of bytes 6 and 7
into a single write of bytes 5, 6, and 7.

Any release operation (regardless of whether it references a page with a coalescing
memory attribute), or any fence type instruction, forces write-coalesced data to be
flushed and made visible prior to the instruction itself becoming visible. (See Table 4-15
on page 2:83 for a list of release and fence instructions.) Any IA-32 serializing
instruction, or access to an uncached memory type, forces write-coalesced data to

Volume 2, Part 1: Addressing and Protection 2:79

become flushed and made visible prior to itself becoming visible. Even though IA-32
stores and loads are ordered, the write-coalesced data is not flushed unless the IA-32
stores or loads are to uncached memory types.

The Flush Cache (fc, fc.i) instruction flushes all write-coalesced data whose address
is within at least 32 bytes of the 32-byte aligned address specified by the Flush Cache
(fc, fc.i) instruction, forcing the data to become visible. The Flush Cache (fc, fc.i)
instruction may also flush additional write-coalesced data. The Flush Write buffers (fwb)
instruction is a “hint” to the processor to expedite flushing (visibility) of any pending
stores held in the coalescing buffer(s), without regard to address.

No indication is given when the flushing of the stores is completed. An fwb instruction
does not ensure ordering of coalesced stores, since later stores may be flushed before
prior stores. To ensure prior coalesced stores are made visible before later stores,
software must issue a release operation between stores.

The processor may at any time flush coalesced stores in any order before explicitly
requested to do so by software.

Coalesced pages are not ensured to be coherent with other processors’ coalescing
buffers or caches, or with the local processor’s caches. Loads to coalesced memory
pages by a processor see the results of all prior stores by the same processor to the
same coalesced memory page. Memory references made by the coalescing buffer (e.g.,
buffer flushes) have an unordered non-sequential memory ordering attribute. See
“Sequentiality Attribute and Ordering” on page 2:82.

Data that has been read or prefetched into a coalescing buffer prior to execution of an
Itanium acquire or fence type instruction is invalidated by the acquire or fence
instruction. (See Table 4-15 for a list of acquire and fence instructions.)

4.4.6 Speculation Attributes

For present pages (TLB.p=1) which are marked with a speculative or a NaTPage
memory attribute, the processor may prefetch instructions (including IA-32), perform
address generation and perform load accesses (including IA-32) without resolving prior
control dependencies, including predicates, branches and interruptions. A page should
only be marked speculative if accesses to that page have no side-effects. For example,
many memory-mapped I/O devices have side-effects associated with reads and should
be marked non-speculative. If a page is marked speculative, a processor can read any
location in the page at any time independent of a programmer’s intentions or control
flow changes. As a result, software is required, at all times, to maintain valid page table
attributes for the ppn, ps and ma fields of all present translations whose memory
attribute is speculative or NaTPage. (For example, software should not insert into the
TLB, nor create in the VHPT, mappings whose memory attribute is WB, WC or NaTPage
unless the entire corresponding physical address range is populated. Placing such
mappings in the VHPT or inserting such mappings in the TLB could result in machine
check aborts.) High-performance operation is only attainable on speculative pages. The
speculative attribute is a hint; a processor may behave non-speculatively.

2:80 Volume 2, Part 1: Addressing and Protection

Prefetches are enabled if a speculative translation exists. Prefetches are asynchronous
data and instruction memory accesses that appear logically to initiate and finish
between some pair of instructions. This access may not be visible to subsequent flush
cache (fc, fc.i) and/or TLB purge instructions. This behavior is
implementation-dependent.

The processor will not initiate memory references (16-byte instruction bundle fetches,
IA-32 instruction fetches, RSE fills and spills, VHPT references, and data memory
accesses) to non-speculative pages until all previous control dependencies (predicates,
branches, and exceptions) are resolved; i.e., the memory reference is required by an
in-order execution of the program. Additionally, for references to non-speculative
pages, the processor:

• May not generate any memory access for a control or data speculative data
reference.

• Will generate exactly one memory access for each aligned, non-speculative data
reference. (Misaligned data references may cause multiple memory accesses,
although these accesses are guaranteed to be non-overlapping – each byte will be
accessed exactly once.)

• May generate multiple 16-byte memory accesses (to the same address) for each
16-byte instruction bundle fetch reference.

To ensure virtual and physical accesses to non-speculative pages are performed in
program order and only once per program order occurrence, the rules in Table 4-13 and
Table 4-14 are defined. Software should also ensure that RSE spill/fill transactions are
not performed to non-speculative memory that may contain I/O devices; otherwise,
system behavior is undefined.

Table 4-13. Permitted Speculation

Memory
Attribute

Load
(ld)a

a. Includes the faulting form of line prefetch (lfetch.fault).

Speculative
Load
(ld.s)b

b. Includes the non-faulting form of line prefetch (lfetch), which does not cause a cache fill if the memory
attribute is non-speculative or limited speculation.

Advanced
Load
(ld.a)

Speculative
Advanced

Load (ld.sa)

Hardware-generated
Speculative
Referencesc

c. Hardware-generated speculative references include non-demand instruction prefetches (including IA-32),
hardware-generated data prefetch references, and eager RSE memory references.

Speculative Yes Yes Yes Yes Yes

Non-speculative Yes Always Fail Always Fail Always Fail Prohibited

Limited Speculation Yes Always Fail Yes Always Fail Limitedd

d. The processor may only issue hardware-generated speculative references to a 4K-byte physical page if it is a
verified page.

Table 4-14. Register Return Values on Non-faulting Advanced/Speculative
Loads

Memory
Attribute

Speculative Load
(ld.s)

Advanced Load
(ld.a)

Speculative Advanced Load
(ld.sa)

Success Failure Success Failure Success Failure

Speculative Value Nata Value N/a Value NaTa

Non-speculative N/A Natb N/A Zeroc N/A NaTb

Limited Speculation N/A Natb Value N/a N/a NaTb

Volume 2, Part 1: Addressing and Protection 2:81

4.4.6.1 Limited Speculation and the WBL Physical Addressing Attribute

Processors are allowed to reference limited speculation pages (WBL pages)
speculatively, in order to increase performance, but this speculation is limited to
prevent speculative references to 4Kbyte physical pages for which there is no actual
memory (which would cause spurious machine checks).

Processors must not make hardware-generated speculative references to a given WBL
4Kbyte page until a verified reference has been made. Processors may optionally
implement storage to hold the addresses of WBL 4Kbyte pages for which verified
references have been made, and may make subsequent hardware-generated
speculative references to these pages. Such pages are termed verified pages.

A verified reference is an instruction or data reference made to the page by an in-order
execution of the program; that is, a reference which would have been made had the
instructions from the program been fetched and executed one at a time. A
hardware-generated speculative reference does not constitute a verified reference.
Hardware-generated speculative references include:

• Instruction fetches when the processor has not yet determined whether prior
branches were predicted correctly

• Instruction fetches when the processor has not yet determined whether prior
instructions will raise faults or traps

• Data references by instructions when the processor has not yet determined
whether prior branches were predicted correctly

• Data references by instructions when the processor has not yet determined
whether prior instructions will raise faults or traps

• Hardware-generated instruction prefetch references

• Hardware-generated data prefetch references

• Eager RSE data references

For an instruction fetch to constitute a verified reference, it must only be determined
that an in-order execution of the program requires that the IP point to this address,
independent of whether the instruction at this address will subsequently take a fault or
interrupt.

For a data reference to constitute a verified reference, the instruction must meet one of
the following requirements:

• It executes without any fault or interrupt

• It takes an Unaligned Data Reference fault

• It takes a Data Debug fault

a. Speculative or speculative advanced loads that cause deferred exceptions result in failed speculation. The
processor aborts the reference. If the target of the load is a GR, the processor sets the register’s NaT bit to
one. If the target of the load is an FR, the processor sets the target FR to NaTVal. The processor performs all
other side-effects (such as post-increment).

b. Speculative or speculative advanced loads to limited or non-speculative memory pages result in failed
speculation. The processor aborts the reference. If the target of the load is a GR, the processor sets the
register’s NaT bit to 1. If the target of the load is an FR, the processor sets the target FR to NaTVal. The
processor performs all other side-effects (such as post-increment).

c. Advanced loads to non-speculative memory pages always fail. The processor aborts the reference, sets the
target register to zero, and performs all other side-effects (such as post-increment).

2:82 Volume 2, Part 1: Addressing and Protection

• It takes an External interrupt, but if it had not taken an External interrupt, it would
have met one of the above qualifications (execute without fault, take an Unaligned
Data Reference fault, or take a Data Debug fault)

Data-speculative loads are treated the same as normal loads, and if an in-order
execution of the program requires the execution of a data speculative load, it
constitutes a verified reference. Control-speculative loads to limited-speculation pages
always defer and thus never constitute verified references.

It is not necessary for a processor to determine whether a reference will complete
without generating a machine check for it to be a verified reference. If software actually
references a physical address which will cause a machine check, hardware may
generate multiple speculative references to the same page, potentially causing multiple
machine checks.

Processors may access verified pages normally, as they would WB pages, including the
use of caching, pipelining and hardware-generate speculative references to improve
performance.

Calling the PAL_PREFETCH_VISIBILITY procedure forces the processor to clear the
storage holding the addresses of verified pages.

4.4.7 Sequentiality Attribute and Ordering

Memory ordering is defined in Section 4.4.7, “Memory Access Ordering” on page 1:73.
This section defines additional ordering rules for non-cacheable memory, cache
synchronization (sync.i) and global TLB purge operations (ptc.g, ptc.ga).

As described in Section 4.4.7, “Memory Access Ordering” on page 1:73,
read-after-write, write-after-write, and write-after-read dependencies to the same
memory location (memory dependency) are performed in program order by the
processor. Otherwise, all other memory references may be performed in any order
unless the reference is specifically marked as ordered. No ordering exists between
instruction accesses and data accesses or between any two instruction accesses. IA-32
memory references follow a stronger processor consistency memory model. See “IA-32
Memory Ordering” on page 2:265. for IA-32 memory ordering details. Explicit ordering
takes the form of a set of Itanium instructions: ordered load and check load (ld.acq,
ld.c.clr.acq), ordered store (st.rel), semaphores (cmpxchg, xchg, fetchadd),
memory fence (mf), synchronization (sync.i) and global TLB purge (ptc.g, ptc.ga).
The sync.i instruction is used to maintain an ordering relationship between instruction
and data caches on local and remote processors. The global TLB purge instructions
maintain multiprocessor TLB coherence.

For VHPT walks, visibility is defined by the memory read(s) which retrieves translation
information, and the associated insertion of the translation into the TLB. VHPT walks
are performed asynchronously with respect to program execution, and each walker
VHPT read (which appears as though it were performed atomically) is made visible at
some single point in the program order. Ordering constraints from Table 4-15 do not
prevent VHPT walks from becoming visible.

Volume 2, Part 1: Addressing and Protection 2:83

Table 4-15 defines a set of “Orderable Instructions” that follow one of four ordering
semantics: unordered, release, acquire or fence. The table defines the ordering
semantics and the instructions of each category. Only these Itanium instructions can be
used to establish multiprocessor ordering relations.

In the following discussion, the terms previous and subsequent are used to refer to
the program specified order. The term visible is used to refer to all architecturally
visible effects of performing an instruction. For memory accesses and semaphores this
involves at least reading or writing memory. For mf.a, visibility is defined by platform
acceptance of previous memory accesses. Visibility of sync.i is defined by visibility of
previous flush cache (fc, fc.i) operations. For ALAT lookups (ld.c, chk.a), visibility is
determination of ALAT hit or miss. For global TLB purge operations, visibility is defined
by removal of an address translation from the TLBs on all processors in the TLB
coherence domain. Global TLB purge instructions (ptc.g and ptc.ga) follow release
semantics on the local processor. They are also broadcast to all other processors in the
TLB coherence domain. On each such remote processor, a point is chosen in its
program-order execution and a local TLB purge operation is inserted at that point; this
local TLB purge operation follows release semantics, except with respect to global purge
instructions being executed by that remote processor. For local TLB purge operations,
visibility is defined by removal of an address translation on the local processor. Local
TLB purge instructions (ptc.l, ptc.e) ensure that all prior stores are made locally
visible before the actual purge operation is performed.

Itanium memory accesses to sequential pages occur in program order with respect to
all other sequential pages in the same peripheral domain, but are not necessarily
ordered with respect to non-sequential page accesses. A peripheral domain is a
platform-specific collection of uncacheable addresses. An I/O device is normally
contained in a peripheral domain and all sequential accesses from one processor to that
device will be ordered with respect to each other. Sequentiality ensures that
uncacheable, non-coalescing memory references from one processor to a peripheral
domain reach that domain in program order. Sequentiality does not imply visibility.

Table 4-15. Ordering Semantics and Instructions

Ordering
Semantics

Description Orderable Intel® Itanium® Instructions

Unordered

Unordered instructions may become visible in
any order.

ld, ld.s, ld.a, ld.sa, ld.fill,
ldf, ldf.s, ldf.sa, ldf.fill,
ldfp, ldfp.s, ldfp.sa,
st, st.spill,
stf, stf.spill,
mf.a, sync.i,
ld.c, chk.a

Release
Release instructions guarantee that all
previous orderable instructions are made
visible prior to being made visible themselves.

cmp8xchg16.rel, cmpxchg.rel,
fetchadd.rel, st.rel, ptc.g,
ptc.ga

Acquire
Acquire instructions guarantee that they are
made visible prior to all subsequent orderable
instructions.

cmp8xchg16.acq, cmpxchg.acq,
fetchadd.acq, xchg, ld.acq,
ld.c.clr.acq

Fence

Fence instructions combine the release and
acquire semantics into a bi-directional fence;
i.e., they guarantee that all previous orderable
instructions are made visible prior to any
subsequent orderable instruction being made
visible.

mf

2:84 Volume 2, Part 1: Addressing and Protection

Inter-Processor Interrupt Messages (8-byte stores to a Processor Interrupt Block
address, through a UC memory attribute) are exceptions to the sequential semantics.
IPI's are not ordered with respect to other IPI's directed at the same processor. Further,
fence operations do not enforce ordering between two IPI's. See Section 5.8.4.2,
“Interrupt and IPI Ordering” on page 2:130.

Table 4-16 defines the ordering between unordered, release, acquire and fence type
operations to sequential and non-sequential pages. Table 4-16 defines the minimal
ordering requirements; an implementation may enforce more restrictive ordering than
required by the architecture. The actual mechanism for enforcing memory access
ordering is implementation dependent.

Table 4-16 establishes an order between operations on a particular processor. For
operations to cacheable write-back memory the order established by these rules is
observed by all observers in the coherence domain.

For example, when this sequence is executed on a processor:

st [a]
st.rel [b]

and a second processor executes this sequence:

ld.acq [b]
ld [a]

if the second processor observes the store to [b], it will also observe the store to [a].

Unless an ordering constraint from Table 4-16 prevents a memory read1 from becoming
visible, the read may be satisfied with values found in a store buffer (or any logically
equivalent structure). These values need not be globally visible even when the
operation that created the value was a st.rel. This local bypassing behavior may make

Table 4-16. Ordering Semantics

Second Operation

First Operation Fence
Non-sequential Sequentiala

a. Except for IPI.

Acquire Release Unordered Acquire Release Unordered

Fence O O O O O O O

Non-sequential Acquire O O O O O O O

Release O – O – – O –

Unordered O – O – – O –

Sequentiala Acquire O O O O OS OS OS

Release O – O – S OS S

Unordered O – Ob

b. “O” indicates that the first and second operation become visible in program order.

–c

c. A dash indicates no ordering is implied.

Sd

d. “S” indicates that the first and the second operation reach a peripheral domain in program order.

OSe

e. “OS” implies that both “O” and “S” ordering relations apply.

S

1. This includes all types of loads (ld and ld.acq), and RSE memory reads. Note, however, that the
read operation of semaphores cannot be satisfied with values found in a store buffer.

Volume 2, Part 1: Addressing and Protection 2:85

accesses of different sizes but with overlapping memory references appear to complete
non-atomically. To ensure that a memory write is globally observed prior to a memory
read, software must place an explicit fence operation between the two operations.

Aligned st.rel and semaphore operations1 from multiple processors to cacheable
write-back memory become visible to all observers in a single total order (i.e., in a
particular interleaving; if it becomes visible to any observer, then it is visible to all
observers), except that for st.rel each processor may observe (via ld or ld.acq) its
own update prior to it being observed globally.

The Itanium architecture ensures this single total order only for aligned st.rel and
semaphore operations to cacheable write-back memory. Other memory operations2
from multiple processors are not required to become visible in any particular order,
unless they are constrained w.r.t. each other by the ordering rules defined in
Table 4-16.

Ordering of loads is further constrained by data dependency. That is, if one load reads a
value written by an earlier load by the same processor (either directly or transitively,
through either registers or memory), then the two loads become visible in program
order.

For example, when this sequence is executed on a processor:

st [a] = data
st.rel [b] = a

and a second processor executes this sequence:

ld x = [b]
ld y = [x]

if the second processor observes the store to [b], it will also observe the store to [a].

Also for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new’

and a second processor executes this sequence:

ld x = [b]
cmp.eq p1 = x, ‘new’

(p1) ld y = [a]

if the second processor observes the store to [b], it will also observe the store to [a].

And for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new’

and a second processor executes this sequence:

1. Both acquire and release semaphore forms
2. e.g. unordered stores, loads, ld.acq, or memory operations to pages with attributes other than

write-back cacheable.

2:86 Volume 2, Part 1: Addressing and Protection

ld x = [b]
cmp.eq p1 = x, ‘new’

(p1) br target
...

target:
ld y = [a]

if the second processor observes the store to [b], it will also observe the store to [a].

The flush cache (fc, fc.i) instruction follows data dependency ordering. fc and fc.i
are ordered only with respect to previous and subsequent load, store, or semaphore
instructions to the same line, regardless of the specified memory attribute. Subsequent
memory operations to the same line need not wait for prior fc or fc.i completion
before being globally visible. fc and fc.i are not ordered with respect to memory
operations to different lines. mf does not ensure visibility of fc and fc.i operations.
Instead, the sync.i instruction synchronizes fc and fc.i instructions, and the sync.i
is made visible using an mf instruction.

4.4.8 Not a Thing Attribute (NaTPage)

A NaTPage attribute prevents non-speculative references to a page, and ensures that
speculative references to the page always defer the Data NaT Page Consumption fault.
However, as described in “Speculation Attributes” on page 2:79, the processor may
issue memory references to a NaTPage. As a result, all NaTPages must be backed by a
valid physical page.

Speculative or speculative advanced loads to pages marked as a NaTPage cause the
deferred exception indicator (NaT or NaTVal) to be written to the load target register,
and the memory reference is aborted. However, all other effects of the load instruction
such as post-increment are performed. Instruction fetches, loads, stores and
semaphores (including IA-32), but except for Itanium speculative loads, pages marked
as NaTPage raise a NaT Page Consumption fault.

A speculative reference to a page marked as NaTPage may still take lower priority
faults, if not explicitly deferred in the DCR. See “Deferral of Speculative Load Faults” on
page 2:105.

4.4.9 Effects of Memory Attributes on Memory Reference
Instructions

Memory attributes affect the following Itanium instructions.

• ldfe, stfe: Hardware support for 10-byte memory accesses to a page that is
neither a cacheable page with write-back write policy nor a NaTPage is optional. On
processor implementations that do not support such accesses, an Unsupported
Data Reference Fault is raised when an unsupported reference is attempted.

For extended floating-point loads the fault is delivered only on the normal,
advanced, and check load flavors (ldfe, ldfe.a, ldfe.c.nc, ldfe.c.clr). Control
speculative flavors of the ldfe instruction that target pages that are not cacheable
with write-back policy always defer the fault. Refer to “Deferral of Speculative Load
Faults” on page 2:105 for details.

• cmpxchg and xchg: These instructions are only supported to cacheable pages with
write-back write policy. cmpxchg and xchg accesses to NaTPages causes a Data NaT

Volume 2, Part 1: Addressing and Protection 2:87

Page Consumption fault. cmpxchg and xchg accesses to pages with other memory
attributes cause an Unsupported Data Reference fault.

• fetchadd: The fetchadd instruction can be executed successfully only if the access
is to a cacheable page with write-back write policy or to a UCE page. fetchadd
accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages
with other memory attributes cause an Unsupported Data Reference fault. When
accessing a cacheable page with write-back write policy, atomic fetch and add
operation is ensured by the processor cache-coherence protocol. For highly
contended semaphores, the cache line transactions required to guarantee atomicity
can limit performance. In such cases, a centralized “fetch and add” semaphore
mechanism may improve performance. If supported by the processor and the
platform, the UCE attribute allows the processor to “export” the fetchadd operation
to the platform as an atomic “fetch and add.” Effects of the exported fetchadd are
platform dependent. If exporting of fetchadd instructions is not supported by the
processor, a fetchadd instruction to a UCE page takes an Unsupported Data
Reference fault.

• Flush Cache Instructions – fc instructions must always be “broadcast” to other
processors, independent of the memory attribute in the local processor. It is legal to
use an uncacheable memory attribute for any valid address when used as a flush
cache (fc) instruction target. This behavior is required to enable transitions from
one memory attribute to another and in case different memory attributes are
associated with the address in another processor.

• Prefetch instructions – lfetch and any implicit prefetches to pages that are not
cacheable are suppressed. No transaction is initiated. This allows programs to issue
prefetch instructions even if the program is not sure the memory is cacheable.

4.4.10 Effects of Memory Attributes on Advanced/Check Loads

The ALAT behavior of advanced and check loads is dependent on the memory attribute
of the page referenced by the load. These behaviors are required; advanced and check
load completers are not hints.

All speculative pages have identical behavior with respect to the ALAT. Advanced loads
to speculative pages always allocate an ALAT entry for the register, size, and address
tuple specified by the advanced load. Speculative advanced loads allocate an ALAT
entry if the speculative load is successful (i.e., no deferred exception); if the speculative
advanced load results in a deferred exception, any matching ALAT entry is removed and
no new ALAT entry is allocated. Check loads with clear completers (ld.c.clr,
ld.c.clr.acq, ldf.c.clr) remove a matching ALAT entry on ALAT hit and do not
change the state of the ALAT on ALAT miss. Check loads with no-clear completers
(ld.c.nc, ldf.c.nc) allocate an ALAT entry on ALAT miss. On ALAT hit, the ALAT is
unchanged if an exact ALAT match is found (register, address, and size); a new ALAT
entry with the register, address, and size specified by the no-clear check load may be
allocated if a partial ALAT match is found (match on register).

Advanced loads (speculative or non-speculative variants) to non-speculative pages
always remove any matching ALAT entry. Check loads to non-speculative pages that
miss the ALAT never allocate an ALAT entry, even in the case of a no-clear check load.
ALAT hits on check loads to non-speculative pages (which can occur if a previous
advanced load referenced that page via a speculative memory attribute) result in

2:88 Volume 2, Part 1: Addressing and Protection

undefined behavior; when changing an existing page from speculative to
non-speculative (or vice-versa), software should ensure that any ALAT entries
corresponding to that page are invalidated.

Limited speculation pages behave like non-speculative pages with respect to
speculative advanced loads, and behave like speculative pages with respect to all other
advanced and/or check loads.

Table 4-17 describes the ALAT behavior of advanced and check loads for the different
speculation memory attributes.

4.4.11 Memory Attribute Transition

If software modifies the memory attributes for a page, it must perform explicit actions
to ensure that subsequent reads and writes using the new attribute will be coherent
with prior reads and writes that were performed with the old attribute. Processors may
have separate buffers for coalescing, uncacheable and cacheable references, and these
buffers need not be coherent with each other.

4.4.11.1 Virtual Addressing Memory Attribute Transition

To change a virtually-addressed page from one attribute to another, software must
perform the following sequence. (The address of the page whose attribute is being
modified is referred to as “X”).

Note: This sequence is ONLY required if the new mapping and the old mapping do not
have the same memory attribute.

On the processor initiating the transition, perform the following steps 1-3:

1. PTE[X].p = 0 // Mark page as not present

This prevents any processors from reading the old mapping (with the old
attribute) from the VHPT after this point.

2. ptc.ga [X] ;; // Global shootdown and ALAT invalidate
 // for the entire page

This removes the mapping from all processor TC's in the coherence domain, and
it forces all processors to flush any pending WC or UC stores from write buffers.

Table 4-17. ALAT Behavior on Non-faulting Advanced/Check Loads

Memory
Attribute

ld.sa
Response ld.a

Response

ld.c.clr,
ld.c.clr.acq,

ldf.c.clr
Response

ld.c.nc,
ldf.c.nc

Response

No NaT NaT
ALAT

Hit
ALAT
Miss

ALAT
Hit

ALAT
Miss

speculative alloc remove alloc remove nop unchangeda

a. May allocate a new ALAT entry if size and/or address are different than the corresponding ld.a or ld.sa whose
ALAT entry was matched.

alloc

non-speculative N/A remove remove undefined nop undefined must not
alloc

limited speculation N/A remove alloc remove nop unchangeda alloc

Volume 2, Part 1: Addressing and Protection 2:89

3. mf ;; // Ensure visibility of ptc.ga to local data stream
srlz.i ;; // Ensure visibility of ptc.ga to local instruction stream

After step 3, no processor in the coherence domain will initiate new memory
references or prefetches to the old translation. Note, however, that memory
references or prefetches initiated to the old translation prior to step 2 may still be
in progress after step 3. These outstanding memory references and prefetches
may return instructions or data which may be placed in the processor cache
hierarchy; this behavior is implementation-specific.

If the new memory attribute is an uncacheable attribute, and if the old attribute
was cacheable (or if it is not known at this point in the code sequence what the
old attribute was), then software must drain any current prefetches and ensure
that any cached data from the page is removed from caches. To do this, software
must perform steps 4-10. If the new memory attribute is cacheable, then
software may skip steps 4-10, and go straight to step 11.

4. Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to zero
to indicate that the transition is for virtual memory attributes. The return
argument from this procedure informs the caller if this procedure call is needed
on remote processors or not. If this procedure call is not needed on remote
processors, then software may skip the IPI in step 5 and go straight to step 6
below.

5. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on
page 2:128 to reach all processors in the coherence domain, perform step 4
above on all processors in the coherence domain, and wait for all
PAL_PREFETCH_VISIBILITY calls to complete on all processors in the coherence
domain before continuing.

After steps 4 and 5, no more new instruction or data prefetches will be made to
page “X” by any processor in the coherence domain. However, processor caches
in the coherence domain may still contain “stale” data or instructions from prior
prefetch or memory references to page “X.”

6. Insert a temporary UC translation for page “X.”

7. fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for all of page “X” (page size = ps)
fc [X+ps-32] ;;

// Ensure cache flushes are also seen by processors' instruction
fetch
sync.i ;;

After step 7, all flush cache instructions initiated in step 7 are visible to all
processors in the coherence domain, i.e., no processor in the coherence domain
will respond with a cache hit on a memory reference to an address belonging to
page “X.”

8. Purge the temporary UC translation from the TLB

2:90 Volume 2, Part 1: Addressing and Protection

9. Call PAL_MC_DRAIN

10. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on
page 2:128 to reach all processors in the coherence domain, perform step 9
above on all processors in the coherence domain, and wait for all PAL_MC_DRAIN
calls to complete on all processors in the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to
page [X] have been evicted from all caches in the coherence domain and forced
onto the bus. Note that this operation does not ensure that the cache lines have
been written back to memory.

11. Insert the new mapping with the new memory attribute

4.4.11.2 Physical Addressing Attribute Transition – Disabling
Prefetch/Speculation and Removing Cacheability

When a verified reference is made to a physical address with the WBL attribute, the 4K
page containing that address becomes speculatively accessible. This allows the
processor that made the verified reference to subsequently make speculative
references to this page. (See the description of limited speculation in Section 4.4.6.1,
“Limited Speculation and the WBL Physical Addressing Attribute” on page 2:81.)

If the same physical memory is then to be accessed with the UC attribute, software
must first cause all such 4K pages to no longer be verified pages and flush any cached
copies from the cache. Otherwise, an uncacheable reference may hit in cache, causing
a Machine Check abort.

On the processor initiating the transition, perform the following steps:

1. Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one
to indicate that the transition is for physical memory attributes. This PAL call
terminates the processor's rights to make speculative references to any limited
speculation pages (i.e., it causes all WBL pages to no longer be verified pages –
see the discussion on limited speculation in Section 4.4.6.1.)

The return argument from this procedure informs the caller if this procedure call
is needed on remote processors or not. If this procedure call is not needed on
remote processors, then software may skip the IPI in step 2 and go straight to
step 3 below.

2. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on
page 2:128 to reach all processors in the coherence domain, perform step 1
above on all processors in the coherence domain, and wait for all
PAL_PREFETCH_VISIBILITY calls to complete on all processors in the coherence
domain before continuing.

On the processor initiating the disabling process, continue the sequence:

3. fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for all of page “X” (page size = ps)
fc [X+ps-32] ;;

Volume 2, Part 1: Addressing and Protection 2:91

// Ensure cache flushes are also seen by processors' instruction
fetch
sync.i ;;

After step 3, all flush cache instructions initiated in step 3 are visible to all
processors in the coherence domain, i.e., no processor in the coherence domain
will respond with a cache line hit on a memory reference to an address belonging
to page “X.”

4. Call PAL_MC_DRAIN.

5. Using the IPI mechanism defined in “Inter-processor Interrupt Messages” on
page 2:128 to reach all processors in the coherence domain, perform step 4
above on all processors in the coherence domain, and wait for all PAL_MC_DRAIN
calls to complete on all processors in the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to
page [X] have been evicted from all caches in the coherence domain and forced
onto the bus. Note that this operation does not ensure that the cache lines have
been written back to memory.

This sequence ensures that speculation and prefetch are disabled for all WBL pages,
that all outstanding prefetches have completed, and that the caches have been flushed.
It may also be necessary to take additional platform-dependent steps to ensure that all
cache write-back transactions have completed to memory before re-configuring
physical memory.

4.4.11.3 Memory OLD Attribute Transition Sequence

In order to safely delete a memory range online (memory OLD), all speculative
reference and prefetches to that range must be halted and all cache lines returned to
the memory being deleted. If this is not done, an MCA could occur if data were to be
delivered back to the memory controller after the memory had been removed. Software
must perform the sequence shown below to ensure that no MCAs occur.

Before performing the memory OLD sequence shown below, all memory in the range
being deleted belonging to firmware (PAL and SAL) must be evacuated, and control of
the range given to the OS. If firmware cannot be evacuated from the range, then OLD
cannot be done.

On the processor performing the memory OLD operation, perform the following:

1. Remove all mappings to all memory pages in this memory range from the page
table. (PTE[X].p=0)

2. For each page which has a mapping in TLB, perform one of the following steps:

a. If there are any translations in TRs, perform ptr.d or ptr.i, depending on
whether the translation is for code or data. If it is not known, do both. (This
invalidates all TRs, and as a side effect, the mapping from all TCs on the
processor.)

b. If there are no translations in TRs, perform a ptc.ga. (This removes mapping
from all TC's and forces processors to flush any pending WC or UC stores
from write buffers.)

2:92 Volume 2, Part 1: Addressing and Protection

3. Execute:
mf ;;
srlz.i ;;

(The ensures visibility of ptr.d, ptr.i, or ptc.ga to both data and instruction
stream, so that no new prefetches will be done to the old translations.)

4. Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one
to indicate that the transition is for all memory attributes. This PAL call
terminates the processor's rights to make speculative references to any limited
speculation pages (i.e., it causes all WBL pages to no longer be verified pages –
see the discussion on limited speculation in Section 4.4.6.1, “Limited Speculation
and the WBL Physical Addressing Attribute” on page 2:81.). It also ensure all
prefetches in flight have been completed. The return argument from this
procedure informs the caller if this procedure call is needed on remote processors
or not. If this procedure call is not needed on remote processors, and step 2.b
was used above, then software may skip the IPI in step 5 and go straight to step
6 below.

5. If step 2.a was performed, or if the PAL_PREFETCH_VISIBILITY return argument
indicated the call must be made on other processors in the coherency domain,
then use the IPI mechanism defined in Section 5.8.4.1, “Inter-processor
Interrupt Messages” on page 2:128 to reach all processors in the coherency
domain. If step 2a was performed, then steps 2 through 4 must be performed on
all processors in the coherency domain. Otherwise, only step 4 must be
performed. Wait for all PAL_PREFETCH_VISIBILITY calls to complete on all
processors in the coherency domain before continuing. After step 5, no more new
instruction or data prefetches will be made to page ''X'' by any processor in the
coherency domain. However, processor caches in the coherency domain may still
contain ''stale'' data or instructions from prior prefetch or memory references to
page ''X.''

6. Perform one of the following steps:

a. Call PAL_CACHE_FLUSH with input parameters cache_type=3 and
operation.inv=1, or

b. On the processor where the OLD was initiated, perform the sequence:

i. If the sequence is to be executed with PSR.dt=1, then insert a temporary
translation for the memory range with the ''UC'' memory attribute.

ii. Execute the following instruction sequence:
fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for the memory range being OLDed
fc [X+ps-32] ;;
// Ensure cache flushes are also seen
// by processors' instruction fetch
sync.i ;;

iii. If the sequence had been run with PSR.dt=1, then remove the temporary
translation inserted in step 6.b.i.

Note: If the memory range being OLDed is much larger than the caches being
flushed, option 6.a. may be significantly faster.

7. Call PAL_MC_DRAIN.

Volume 2, Part 1: Addressing and Protection 2:93

8. If PAL_CACHE_FLUSH is used to flush caches, it must also be called on all
processors in the coherency domain. In any case, PAL_MC_DRAIN must be called
on all processors. Using the IPI mechanism defined in Section 5.8.4.1,
“Inter-processor Interrupt Messages” on page 2:128 to reach all processors in
the coherence domain, perform step 6.a, if necessary, and step 7 above in that
order on all processors in the coherence domain, and wait for all PAL_MC_DRAIN
calls to complete on all processors in the coherence domain before continuing.
This further guarantees that any cache lines containing addresses belonging to
page [X] have been evicted from all caches in the coherence domain and forced
onto the platform fabric. Note that this operation does not ensure that the cache
lines have been written back to memory.

9. Perform whatever platform dependent actions are necessary to flush any platform
caches of any copies of the memory being OLDed and to force all cache lines back
to the memory being OLDed. (Note: Refer to platform specific documentation.)

This sequence ensures that speculation and prefetching is disabled for the memory
range, regardless of WB or WBL attribute, that all in-flight prefetches are completed,
and that all caches lines are returned to memory.

4.5 Memory Datum Alignment and Atomicity

All Itanium instruction fetches, aligned load, store and semaphore operations (including
IA-32) are atomic, except for floating-point extended memory references (ldfe, stfe,
and IA-32 10-byte memory references) to non-write-back cacheable memory. In some
processor models, aligned 10-byte Itanium floating-point extended memory references
to non-write-back cacheable memory may raise an Unsupported Data Reference fault.
See “Effects of Memory Attributes on Memory Reference Instructions” on page 2:86 for
details. Loads are allowed to be satisfied with values obtained from a store buffer (or
any logically equivalent structure) where architectural ordering permits, and values
loaded may appear to be non-atomic. For details, refer to “Sequentiality Attribute and
Ordering” on page 2:82.

Load pair instructions are performed atomically under the following conditions: a
16-byte aligned load integer/double pair is performed as an atomic 16-byte memory
reference. An 8-byte aligned load single pair is performed as an atomic 8-byte memory
reference.

An aligned ld16 or st16 instruction is performed as an atomic 16-byte memory
reference. For these instructions, the address specified must be 16-byte aligned.
Unaligned ld16 and st16 instructions result in an Unaligned Data Reference fault
regardless of the state of PSR.ac.

Aligned Itanium data memory references never raise an Unaligned Data Reference
fault. Minimally, each Itanium instruction and its corresponding template are fetched
together atomically. Itanium unordered loads can use the store buffer for data values.
See “Sequentiality Attribute and Ordering” on page 2:82 for details.

When PSR.ac is 1, any Itanium data memory reference that is not aligned on a
boundary the size of the operand results in an Unaligned Data Reference fault; e.g., 1,
2, 4, 8, 10, and 16-byte datums should be aligned on 1, 2, 4, 8, 16, and 16-byte

2:94 Volume 2, Part 1: Addressing and Protection

boundaries respectively to avoid generation of an Unaligned Data Reference fault.
When PSR.ac is 1, any IA-32 data memory reference that is not aligned on a boundary
the size of the operand results in an IA_32_Exception(AlignmentCheck) fault.

Note: 10-byte and floating-point load double pair datum alignment is 16-bytes. The
alignment of long format 32-byte VHPT references is always 32-bytes.

Unaligned Itanium semaphore references (cmpxchg, xchg, fetchadd) result in an
Unaligned Data Reference fault regardless of the state of PSR.ac. For the cmp8xchg16
instruction, the address specified must be 8-byte aligned.

When PSR.ac is 0, Itanium data memory references that are not aligned may or may
not result in an Unaligned Data Reference fault based on the implementation. The level
of unaligned memory support is implementation specific. However, all implementations
will raise an Unaligned Data Reference fault if the datum referenced by an Itanium
instruction spans a 4K aligned boundary, and many implementations will raise an
Unaligned Data Reference fault if the datum spans a cache line. Implementations may
also raise an Unaligned Data Reference fault for any other unaligned Itanium memory
reference. Software is strongly encouraged to align data values to avoid possible
performance degradation for both IA-32 and Itanium architecture-based code. When
PSR.ac is 0 and IA-32 alignment checks are also disabled, no fault is raised regardless
of alignment for IA-32 data memory references.

Unaligned advanced loads are supported, though a particular implementation may
choose not to allocate an ALAT entry for an unaligned advanced load. Additionally, the
ALAT may “pessimistically” allocate an entry for an unaligned load by allocating a larger
entry than the natural size of the datum being loaded, as long as the larger entry
completely covers the unaligned address range (e.g. a ld4.a to address 0x3 may
allocate an 8-byte entry starting at address 0x0). Stores (unaligned or otherwise) may
also pessimistically invalidate unaligned ALAT entries.

§

Volume 2, Part 1: Interruptions 2:95

Interruptions 5

Interruptions are events that occur during instruction processing, causing the flow
control to be passed to an interruption handling routine. In the process, certain
processor state is saved automatically by the processor. Upon completion of
interruption processing, a return from interruption (rfi) is executed which restores the
saved processor state. Execution then proceeds with the interrupted instruction.

From the viewpoint of response to interruptions, the processor behaves as if it were not
pipelined. That is, it behaves as if a single Itanium instruction (along with its template)
is fetched and then executed; or as if a single IA-32 instruction is fetched and then
executed. Any interruption conditions raised by the execution of an instruction are
handled at execution time, in sequential instruction order. If there are no interruptions,
the next Itanium instruction and its template, or the next IA-32 instruction, are
fetched.

This chapter describes both the IA-32 and Itanium interruption mechanisms as well as
the interactions between them. The descriptions of the Itanium interruption vectors and
IA-32 exceptions, interruptions, and intercepts are in Chapter 8.

5.1 Interruption Definitions

Depending on how an interruption is serviced, interruptions are divided into: IVA-based
interruptions and PAL-based interruptions.

• IVA-based interruptions are serviced by the operating system. IVA-based
interruptions are vectored to the Interruption Vector Table (IVT) pointed to by CR2,
the IVA control register (see “IVA-based Interruption Vectors” on page 2:113).

• PAL-based interruptions are serviced by PAL firmware, system firmware, and
possibly the operating system. PAL-based interruptions are vectored through a set
of hardware entry points directly into PAL firmware (see Chapter 11, “Processor
Abstraction Layer”).

Interruptions are divided into four types: Aborts, Interrupts, Faults, and Traps.

• Aborts
A processor has detected a Machine Check (internal malfunction), or a processor
reset. Aborts can be either synchronous or asynchronous with respect to the
instruction stream. The abort may cause the processor to suspend the
instruction stream at an unpredictable location with partially updated register
or memory state. Aborts are PAL-based interruptions.

• Machine Checks (MCA)
A processor has detected a hardware error which requires immediate action.
Based on the type and severity of the error the processor may be able to
recover from the error and continue execution. The PALE_CHECK entry point is
entered to attempt to correct the error.

• Processor Reset (RESET)
A processor has been powered-on or a reset request has been sent to it. The

2:96 Volume 2, Part 1: Interruptions

PALE_RESET entry point is entered to perform processor and system self-test
and initialization.

• Interrupts
An external or independent entity (e.g., an I/O device, a timer event, or another
processor) requires attention. Interrupts are asynchronous with respect to the
instruction stream. All previous instructions (including IA-32) appear to have
completed. The current and subsequent instructions have no effect on
machine state. Interrupts are divided into Initialization interrupts, Platform
Management interrupts, and External interrupts. Initialization and Platform
Management interrupts are PAL-based interruptions; external interrupts are
IVA-based interruptions.

• Initialization Interrupts (INIT)
A processor has received an initialization request. The PALE_INIT entry point is
entered and the processor is placed in a known state.

• Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform error
handling, memory scrubbing, or power management has been received by a
processor. The PALE_PMI entry point is entered to service the request. Program
execution may be resumed at the point of interruption. PMIs are distinguished
by unique vector numbers. Vectors 0 through 3 are available for platform
firmware use and are present on every processor model. Vectors 4 through 15
are reserved for processor firmware use. See Section 11.5, “Platform
Management Interrupt (PMI)” on page 2:310 for details.

• External Interrupts (INT)
A processor has received a request to perform a service on behalf of the
operating system. Typically these requests come from I/O devices, although the
requests could come from any processor in the system including itself. The
External Interrupt vector is entered to handle the request. External Interrupts
are distinguished by unique vector numbers in the range 0, 2, and 16 through
255. These vector numbers are used to prioritize external interrupts. Two
special cases of External Interrupts are Non-Maskable Interrupts and External
Controller Interrupts.

• Non-Maskable Interrupts (NMI)
Non-Maskable Interrupts are used to request critical operating system
services. NMIs are assigned external interrupt vector number 2.

• External Controller Interrupts (ExtINT)
External Controller Interrupts are used to service Intel 8259A-compatible
external interrupt controllers. ExtINTs are assigned locally within the
processor to external interrupt vector number 0.

• Faults
The current Itanium or IA-32 instruction which requests an action which cannot or
should not be carried out, or system intervention is required before the instruction
is executed. Faults are synchronous with respect to the instruction stream. The
processor completes state changes that have occurred in instructions prior to
the faulting instruction. The faulting and subsequent instructions have no
effect on machine state. Faults are IVA-based interruptions.

• Traps
The IA-32 or Itanium instruction just executed requires system intervention. Traps
are synchronous with respect to the instruction stream. The trapping instruction

Volume 2, Part 1: Interruptions 2:97

and all previous instructions are completed. Subsequent instructions have no
effect on machine state. Traps are IVA-based interruptions.

Figure 5-1 summarizes the above classification.

Unless otherwise indicated, the term “interruptions” in the rest of this chapter refers to
IVA-based interruptions. PAL-based interruptions are described in detail in Chapter 11.

5.2 Interruption Programming Model

When an interruption event occurs, hardware saves the minimum processor state
required to enable software to resolve the event and continue. The state saved by
hardware is held in a set of interruption resources, and together with the interruption
vector gives software enough information to either resolve the cause of the
interruption, or surface the event to a higher level of the operating system. Software
has complete control over the structure of the information communicated, and the
conventions between the low-level handlers and the high-level code. Such a scheme
allows software rather than hardware to dictate how to best optimize performance for
each of the interruptions in its environment. The same basic mechanisms are used in all
interruptions to support efficient low-level fault handlers for events such as a TLB fault,
speculation fault, or a key miss fault.

On an interruption, the state of the processor is saved to allow a software handler to
resolve the interruption with minimal bookkeeping or overhead. The banked general
registers (see “Efficient Interruption Handling” on page 2:102) provide an immediate
set of scratch registers to begin work. For low-level handlers (e.g., TLB miss) software
need not open up register space by spilling registers to either memory or control
registers.

Figure 5-1. Interruption Classification

Aborts Interrupts Faults Traps

PAL-based Interruptions

IVA-based Interruptions

RESET

MCA

INIT

PMI

INT
(NMI, ExtINT, ...)

2:98 Volume 2, Part 1: Interruptions

Upon an interruption, asynchronous events such as external interrupt delivery are
disabled automatically by hardware to allow software to either handle the interruption
immediately or to safely unload the interruption resources and save them to memory.
Software will either deal with the cause of the interruption and rfi back to the point of
the interruption, or it will establish a new environment and spill processor state to
memory to prepare for a call to higher-level code. Once enough state has been saved
(such as the IIP, IPSR, and the interruption resources needed to resolve the fault) the
low-level code can re-enable interruptions by restoring the PSR.ic bit and then the PSR.i
bit. (See “Re-enabling External Interrupt Delivery” on page 2:120.) Since there is only
one set of interruption resources, software must save any interruption resource state
the operating system may require prior to unmasking interrupts or performing an
operation that may raise a synchronous interruption (such as a memory reference that
may cause a TLB miss).

The PSR.ic (interruption state collection) bit supports an efficient nested interruption
model. Under normal circumstances the PSR.ic bit is enabled. When an interruption
event occurs, the various interruption resources are overwritten with information
pertaining to the current event. Prior to saving the current set of interruption resources,
it is often advantageous in a miss handler to perform a virtual reference to an area
which may not have a translation. To prevent the current set of resources from being
overwritten on a nested fault, the PSR.ic bit is cleared on any interruption. This will
suppress the writing of critical interruption resources if another interruption occurs
while the PSR.ic bit is cleared. If a data TLB miss occurs while the PSR.ic bit is zero,
then hardware will vector to the Data Nested TLB fault handler.

For a complete description of interruption resources (IFA, IIP, IPSR, ISR, IIM, IIPA,
ITIR, IHA, IFS, IIB0-1) see “Control Registers” on page 2:29.

5.3 Interruption Handling during Instruction
Execution

Execution of Itanium instructions involves calculating the address of the current bundle
from the region registers and the IP and then fetching, decoding, and executing
instructions in that bundle. Execution of IA-32 instructions involves calculating the
64-bit linear address of the current instruction from the EIP, code segment descriptors,
and region registers and then fetching, decoding, and executing the IA-32 instruction.
(See Section 3.4).

The execution process involves performing the events listed below. The values of the
PSR bits are the values that exist before the instruction is executed (except for the case
of instructions that are immediately preceded by a mandatory RSE load which clears
the PSR.da and PSR.dd bits). Changes to the PSR bits only affect subsequent
instructions, and are only guaranteed to be visible by the insertion of the appropriate
serializing operation. See “Serialization” on page 2:17. Execution flow is shown in
Figure 5-2.

1. Resets are always enabled, and may occur anytime during instruction execution.

2. If the PSR.mc bit is 0 then machine check aborts may occur.

3. The processor checks for enabled pending INITs and PMIs, and for enabled
unmasked pending external interrupts.

Volume 2, Part 1: Interruptions 2:99

4. For Itanium architecture-based code, the processor checks for a valid register
stack frame.

• If incomplete and RSE Current Frame Load Enable (RSE.CFLE) is set, then
perform a mandatory RSE load and start again at step one. The mandatory load
operation may fault. A non-faulting mandatory RSE load will clear PSR.da and
PSR.dd.

• If valid, then clear RSE.CFLE.

5. If the processor implements the Unimplemented Instruction Address (UIA) fault,
instead of a UIA trap, it will check the instruction address and take the UIA fault if
the instruction pointer (IP) falls outside of the implemented range.

6. For IA-32 code, IA-32 instruction addresses are checked for possible instruction

Figure 5-2. Interruption Processing

Note: The solid line represents the normal
execution path. Dashed line boxes describe
software activities.

Fetch current
instruction,

execute current
instruction.

Vector to
highest-priority

trap

Vector to highest-
priority interrupt

Vector to
highest-priority

fault

Process fault Commit state for
instruction

Process all traps

Incomplete
frame and
RSE.CFLE

 0?

Trap
pending?

Process interrupt

Fault
pending?

Perform
mandatory RSE

load

Enabled
unmasked interrupt

pending?

Fault
pending?

Yes

Yes

Yes

Yes

No

Yes

No

No

No

No

RFI

RFI

RFI

RFI

2:100 Volume 2, Part 1: Interruptions

breakpoint faults. The IA-32 effective instruction address (EIP) is converted into a
64-bit virtual linear address IP and IA-32 defined code segmentation and code
fetch faults are checked and may result in a fault.

7. When PSR.is is 0, the bundle is fetched using the IP. When PSR.is is 1, an IA-32
instruction is fetched using IP.

• If the PSR.it bit is 1, virtual address translation of the instruction address is
performed. Address translation may result in a fault.

• If the PSR.pk bit is 1, access key checking is enabled and may result in a fault.

• For Itanium instructions the IBR registers are checked for possible instruction
breakpoint faults.

• The fetched instruction is decoded and executed.

• For IA-32 code, the fetched IA-32 instruction is checked to see if the opcode is
an illegal opcode, results in an instruction intercept or the opcode bytes are
longer than 15 bytes resulting in an fault.

• If a fault occurs during execution, the processor completes all effects of the
instructions prior to the faulting instruction, and does not commit the effect of
the faulting instruction and all subsequent instructions. It then takes the
interruption for the fault. IIP is loaded with the IP of the bundle or IA-32
instruction which contains the instruction that caused the fault.

• The PSR.dd, PSR.id, PSR.ia, PSR.da, and PSR.ed bits are set to 0 after an
Itanium instruction is successfully executed without raising a fault. The PSR.da
and PSR.dd bits are also set to 0 after the execution of each mandatory RSE
memory reference that does not raise a fault. PSR.da, PSR.ia, PSR.dd, and
PSR.ed bits are cleared before the first IA-32 instruction starts execution after a
br.ia or rfi instruction. EFLAG.rf and PSR.id bits are set to 0 after an IA-32
instruction is successfully executed.

• If an rfi instruction is in the current bundle, then on the execution of rfi, the
value from the IIP is copied into the IP, the value from IPSR is copied into the
PSR, and the RSE.CFLE is set. On an rfi if IFS.v is set, then IFS.pfm is copied
into CFM and the register stack BOF is decremented by CFM.sof. The following
Itanium or IA-32 instruction is executed based on the new IP and PSR values.

8. Traps are handled after execution is complete.

• If the processor reports unimplemented instruction addresses with an
Unimplemented Instruction Address trap (rather than with an Unimplemented
Instruction Address fault) and the instruction just completed set the instruction
pointer (IP) to an unimplemented address, an Unimplemented Instruction
Address trap is taken.

• If the instruction just completed was an Itanium floating-point instruction which
raised a trap, a Floating-point trap is taken.

• For IA-32 instructions, if Data Breakpoint traps are enabled and one or more
data breakpoint registers matched during execution of the instruction, a Data
Breakpoint trap is taken.

• If the PSR.lp bit is 1, and an Itanium branch lowers the privilege level, then a
Lower-Privilege Transfer trap is taken.

• If the PSR.tb bit is 1 and a branch (including IA-32) occurred during execution,
then a Taken Branch trap occurs.

• If no other trap was taken and the PSR.ss bit is 1, then a Single Step trap
occurs.

Volume 2, Part 1: Interruptions 2:101

• If more than one trap is triggered (such as Unimplemented Instruction Address
trap, Lower-Privilege Transfer trap, and Single Step trap) the highest priority
trap is taken. The ISR.code contains a bit vector with one bit set for each trap
triggered.

A sequential execution model is presented in the preceding description.
Implementations are free to use a variety of performance techniques such as pipelined,
speculative, or out-of-order execution provided that, to the programmer, the illusion
that instructions are executed sequentially is preserved.

5.4 PAL-based Interruption Handling

PAL-based interruption handling requires the processor to transfer control to the PAL
firmware. The PAL firmware will execute handling code and set up the architected exit
state before transferring control to the SAL firmware. See Chapter 11, “Processor
Abstraction Layer” for more details on the architected exit state between the PAL and
SAL firmware layers for PAL-based interruption handling.

It is strongly recommended that software ensure that, if machine check aborts are
masked (PSR.mc), external interrupts are also masked (PSR.i). This will avoid cases
where a corrected machine check interrupt (a lower priority interrupt) is handled before
a machine check abort, which would cause an escalation in machine check abort
severity when machine check aborts are unmasked.

5.5 IVA-based Interruption Handling

IVA-based interruption handling is implemented as a fast context switch. On IVA-based
interruptions, instruction and data translation is left unchanged, the endian mode is set
to the system default, and delivery of most PSR-controlled interruptions is disabled
(including delivery of asynchronous events such as external interrupts). The processor
is responsible for saving only a minimal amount of state in the interruption resource
registers prior to vectoring to the Itanium architecture-based software handler.

When an interruption occurs, the processor takes the following actions:

1. If PSR.ic is 0:

• IPSR, IIP, IIPA, IIB0-1, and IFS.v are unchanged.

• Interruption-specific resources IFA, IIM, and IHA are unchanged.

If PSR.ic is 1:

• PSR is saved in IPSR. If PSR is in-flight, IPSR will get the most recent in-flight
value of PSR (i.e., PSR is serialized by the processor before it is written into
IPSR). For Itanium traps, the value written to IPSR.ri is the next instruction slot
that would have been executed if there had been no trap. For all other
interruptions, the value written to IPSR.ri is the instruction slot on which the
interruption occurred (1 for interruptions on the L+X instruction of an MLX). For
interruptions in the IA-32 instruction set, IPSR.ri is set to 0.

• IP is written into IIP. For faults and external interrupts, the saved IP is the IP at
which the interruption occurred. For traps, the saved IP is the value after the
execution of the IA-32 or Itanium instruction which caused the trap. For

2:102 Volume 2, Part 1: Interruptions

branch-related traps, IIP is written with the target of the branch; for all other
traps, IIP is written with the address of the bundle or IA-32 instruction
containing the next sequential instruction.

• IIPA receives the IP of the last successfully executed Itanium instruction. For
IA-32 instructions, IIPA receives the IP of the faulting or trapping IA-32
instruction.

• The interruption resources IFA, IIB0-1, IIM, IHA, and ITIR are written with
information specific to the particular fault, trap, or interruption taken. These
registers serve as parameters to each of the interruption vectors. The IFS valid
bit (IFS.v) is cleared. All other bits in the IFS are undefined.

If PSR.ic is in-flight:

• Interruption state may or may not be collected in IIP, IPSR, IIPA, ITIR, IFA, IIM,
IIB0-1 and IHA.

• The value of IFS (including IFS.v) is undefined.

2. ISR bits are overwritten on all interruptions except for a Data Nested TLB fault.
The instruction slot which caused the interruption is saved in ISR.ei (2 for traps, 1
for other interruptions, on the L+X instruction of an MLX). For IA-32 code, ISR.ei
is set to 0. If PSR.ic is 0 or in-flight when the interruption occurs, ISR.ni is set to
1. Otherwise, ISR.ni is set to 0. ISR.ni is always 0 for interruptions taken in IA-32
code.

3. The defined bits in the PSR are set to zero except as follows:

• PSR.up, PSR.mfl, PSR.mfh, PSR.pk, PSR.dt, PSR.rt, PSR.mc, and PSR.it are
unchanged for all interruptions.

• PSR.be is set to the value of the default endian bit (DCR.be). If DCR.be is
in-flight at the time of interruption, PSR.be may receive either the old value of
DCR.be or the in-flight value.

• PSR.pp is set to the value of the default privileged performance monitor bit
(DCR.pp). If DCR.pp is in-flight at the time of interruption, PSR.pp may receive
either the old value of DCR.pp or the in-flight value.

Since PSR.cpl is set to zero, the processor will execute at the most privileged level.

4. RSE.CFLE is set to zero.

5. IP gets the appropriate IVA vector for the interruption. If IVA is in-flight at the
time of interruption, IP receives either the vector specified by the old IVA value or
the vector specified by the in-flight value.

6. The processor performs an instruction serialization and execution of Itanium
instructions begins at the IP obtained in step 5 above. The instruction
serialization event ensures that all previous control register changes and side
effects due to such changes are visible to the first instruction of the interruption
handler.

5.5.1 Efficient Interruption Handling

A set of 16 banked registers are provided by the processor to assist in the efficient
processing of low-level Itanium interruptions and instruction emulation. These registers
allow a low-level routine to have immediate access to a small set of static registers
without having to save and restore their contents to memory at the start and end of
each handler. The extra bank of registers exists in the same name space as the normal

Volume 2, Part 1: Interruptions 2:103

registers, overlapping GR16 to GR31. Which set of physical registers are accessed
through GR16 to GR31 is determined by the PSR.bn bit. On an interruption this bit is
forced to zero allowing access to the alternate set of 16 registers which can be used as
scratch space or to hold predetermined values. Software can return to the original set
of 16 GRs by setting the PSR.bn bit to one with bsw instruction. The rfi instruction may
also restore the PSR.bn bit to the value at the time of the interruption which is held in
the IPSR. Eight additional registers (KR0-KR7) can be used to hold latency critical
information for a handler. These application registers (KR0-KR7) can be read but not
written by non-privileged code.

When the processor handles an interruption event the current stack frame remains
unchanged and the IFS valid bit is cleared. The remaining contents of IFS are
undefined. While the interruption handler is running, the register stack engine (RSE)
may spill/fill registers to/from the backing store if eager RSE stores/loads are enabled.
The RSE will not load or store registers in the current frame (except as required on a
br.ret or rfi in order to load the contents of the frame before continuing execution).
For most low-level interruptions the current frame will not be modified.
High-performance interruption handlers will not need to perform any register stack
manipulation. For example, a TLB miss handler does not need access to any registers in
the interrupted frame. An rfi instruction after an interruption and before a cover
operation will also leave the frame marker unchanged (desired behavior for a low-level
interruption handler). When an interruption handler falls off the fast path it is required
to issue a cover instruction so that the interrupted frame can become part of backing
store. See “Switch from Interrupted Context” on page 2:148..

It may be desirable to emulate a faulting instruction in the interruption handler and rfi
back to the next sequential instruction rather than resuming at the faulting instruction.
Some Itanium instructions can be emulated without having to read the bundle from
memory, through knowledge of the vector, software convention, and information from
the ISR (e.g., emulation of tpa). However, most Itanium instructions will require
reading the bundle from memory and decoding the operation (e.g., an unaligned load).
To correctly emulate an unaligned load, the bundle is read from memory using the
value in the IIP which contains the bundle address. The instruction within the bundle
that caused the interruption is determined by the ISR.ei field. Once the operation is
decoded and emulation completes, the effect of the faulting instruction must be
nullified when control is returned to the point of the fault.

An Itanium instruction is skipped by adjusting PSR.ri and possibly IIP prior to
performing the rfi to the interrupted bundle. This is done by incrementing IPSR.ri by
the number of slots this instruction occupies (usually 1). If the resulting IPSR.ri is 3,
then reset IPSR.ri to 0 and advance IIP by 1 bundle (16 bytes). Emulating X-unit
instructions requires setting IPSR.ri to 0 and setting IIP to the next bundle (X-unit
instructions take up two instruction slots). IPSR, IIP, and IFS.pfm (if valid) will be
restored on an rfi to the PSR, IP, and CFM registers.

5.5.2 Non-access Instructions and Interruptions

The non-access Itanium instructions are: fc, fc.i, lfetch, probe, probe.fault, tpa,
and tak. These instructions reference the TLB but do not directly read or write memory.
They are distinguished from normal load/store instructions since an operating system
may wish to handle an interruption raised by a non-access instruction differently.

2:104 Volume 2, Part 1: Interruptions

These non-access Itanium instructions can cause interruptions: fc, fc.i,
lfetch.fault, probe, probe.fault, tpa, and tak. (tak can cause interruptions only
for non-TLB reasons.) ISR.code will be set to indicate which non-access instruction
caused the interruption. See Table 5-1 for ISR field settings for non-access instructions.

5.5.3 Single Stepping

The processor can single step through a series of instructions by enabling the single
step PSR.ss bit. This is accomplished by setting the IPSR.ss bit and performing an rfi
back to the instruction to be single stepped over. When single stepping, the processor
will execute one IA-32 instruction or one Itanium instruction pointed to by the IPSR.ri
field.

After single stepping Itanium instruction slot 2 (IPSR.ri = 2) or when the template is
MLX and single stepping instruction slot 1 (IPSR.ri = 1), the IIP will point to the next
bundle, and IPSR.ri will point to slot 0.

5.5.4 Single Instruction Fault Suppression

Four bits, PSR.id, PSR.da, PSR.ia, and PSR.dd are defined to suppress faults for one
Itanium instruction or one mandatory RSE memory operation. The PSR.id bit is used to
suppress the instruction debug fault for one IA-32 or Itanium instruction. This bit will be
cleared in the PSR after the first successfully executed instruction. The PSR.ia bit is
used to suppress the Instruction Access Bit fault for one Itanium instruction. This bit
will be cleared in the PSR after the first successfully executed instruction. The PSR.da
and PSR.dd bits are used to suppress Dirty-Bit, Data Access-Bit and Data Debug faults
for one Itanium instruction, or for one mandatory RSE memory reference. The PSR.da
and PSR.dd bits will be cleared in the PSR after the first instruction is executed without
raising a fault, or after the first mandatory RSE memory reference that does not raise a
fault completes. PSR.da, PSR.ia and PSR.dd are cleared before the first IA-32
instruction starts execution after a br.ia or rfi instruction. Software may set the
PSR.id, PSR.da, PSR.ia and PSR.dd bits in the IPSR prior to an rfi. The rfi will restore
the PSR from the IPSR. By using these disable bits, software may step over a debug or
dirty/access event and continue execution.

Table 5-1. ISR Settings for Non-access Instructions

Instruction
ISR Fields

code{3:0} na r w

tpa 0 1 0 0

fc, fc.i 1 1 1 0

probe 2 1 0 or 1a

a. Sets r or w or both to 1 depending on the probe form.

0 or 1a

tak 3 1 0 0

lfetch, lfetch.fault 4 1 1 0

probe.fault 5 1 0 or 1a 0 or 1a

Volume 2, Part 1: Interruptions 2:105

5.5.5 Deferral of Speculative Load Faults

Speculative and speculative advanced loads can defer fault handling by suppressing the
speculative memory reference, and by setting the deferred exception indicator (NaT bit
or NaTVal) of the load target register. Other effects of the instruction (such as post
increment) are performed. Additionally, software can suppress the memory reference of
speculative and speculative advanced loads independent of any exception.

Deferral is the process of generating a deferred exception indicator and not performing
the exception processing at the time of its detection (and potentially never at all). Once
a deferred exception indicator is generated, it will propagate through all uses until the
speculation is checked by using either a chk.s instruction, a chk.a instruction (for
speculative advanced loads), or a non-speculative use. This causes the appropriate
action to be invoked to deal with the exception.

Three different programming models are supported: no-recovery, recovery and
always-defer. In the no-recovery model, only fatal exceptional conditions are deferred
– these are conditions which cannot be resolved without either involving the program’s
exception-handling code or terminating the program. In the recovery model,
performance may be increased by deferring additional exceptional conditions. The
recovery model is used only if the program provides additional “recovery” code to
re-execute failed speculative computations. When a speculative load is executed with
PSR.ic equal to 1, and ITLB.ed equal to 0, the no-recovery model is in effect. When
PSR.ic is 1 and ITLB.ed is 1, the recovery model is in effect. The always-defer model
is supported for use in system code which has PSR.ic equal to 0. In this model, all
exceptional conditions which can be deferred are deferred. This permits speculation in
environments where faulting would be unrecoverable.

In addition to the deferral of exceptional conditions, speculative loads may be deferred
automatically by hardware based on implementation-dependent criteria, such as the
detection of a cache miss. Such deferral is referred to as spontaneous deferral, and
is done in order to increase performance. Spontaneous deferral is allowed only in the
recovery model.

Speculative load exceptions are categorized into three groups:

• Ones which always raise a fault

• Ones which always defer

• Ones which always raise a fault in the no-recovery model, but can defer based on
the speculative deferral control bits in the DCR control register, in the recovery
model.

Table 5-2. Programming Models

PSR.ic PSR.it ITLB.ed Model DCR-based Deferral Spontaneous Deferral

0 x x Always defer No No

1 0 x No recovery No No

1 1 0 No recovery No No

1 1 1 Recovery Yes Yes

2:106 Volume 2, Part 1: Interruptions

Aborts, external interrupts, RSE or instruction-fetch-related faults that happen to occur
on a speculative load are always raised (since they are not related to the speculative
load instruction). Illegal Operation faults and Disabled Floating-point Register faults
that occur on a speculative load are always raised.

Processing of exception conditions for speculative and speculative advanced loads is
done in three stages: qualification, deferral and prioritization.

During the execution of a load instruction, multiple exception conditions may be
detected simultaneously. For non-speculative loads these exception conditions are
prioritized and only the highest priority one raises a fault. For speculative loads,
however, some exception conditions may be deferred. As a result, it is possible for
lower priority exceptions, which are not also deferred, to raise a fault. For some
exception conditions, though, other lower priority conditions are meaningless, and are
said to be qualified, or precluded. Exception qualification is described in Table 5-3.

After exception conditions are detected and qualified, the remaining exception
conditions are checked for deferral. Deferral occurs after fault qualification and
determines which memory access exceptions raised by speculative loads are
automatically deferred by hardware.

Table 5-3. Exception Qualification

Exception Condition Precluded by Concurrent Exception Condition

Register NaT Consumption
(NaT’ed address)

none

Unimplemented Data Address Register NaT Consumption

Alternate Data TLB Register NaT Consumption Unimplemented Data Address

VHPT data Register NaT Consumption Unimplemented Data Address

Data TLB Register NaT Consumption Unimplemented Data Address

Data Page Not Present Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB

Data NaT Page Consumption Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Miss Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Permission Register NaT Consumption
Unimplemented Data Address
VHPT data
Data TLB

Alternate Data TLB
Data Page Not Present
Data Key Miss

Data Access Rights Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Access Bit Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Debug Register NaT Consumption Unimplemented Data Address

Unaligned Data Reference Register NaT Consumption Unimplemented Data Address

Unsupported Data Reference Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Volume 2, Part 1: Interruptions 2:107

Deferral is controlled by PSR.ed, PSR.it, PSR.ic, the speculative deferral control bits in
the DCR, the exception deferral bit of the code page’s instruction TLB entry (ITLB.ed),
and the memory attribute of the referenced data page. The speculative load and
speculative advanced load exception deferral conditions are as follows:

• When PSR.ic is 0 and regardless of the state of DCR, and ITLB.ed bits (see
Table 5-2), all exception conditions related to the data reference are deferred.

• Regardless of the state of DCR, PSR.it, PSR.ic, and ITLB.ed bits, Unimplemented
Data Address exception conditions and Data NaT Page Consumption exception
conditions (caused by references to NaTPages) are always deferred.

• When PSR.it and ITLB.ed are both 1, and the appropriate DCR bit is 1 for the
exception, the speculative load exception is deferred.

• When PSR.it and ITLB.ed are both 1, Unaligned Data Reference exception
conditions are deferred.

The conditions for deferral are given in Table 5-4. See also “Default Control Register
(DCR – CR0)” on page 2:31.

The conditions for spontaneous deferral are given in Table 5-5. See the
PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17) procedure for
details on enabling/disabling spontaneous deferral.

After checking for deferral, execution of a speculative load instruction proceeds as
follows:

• When PSR.ed is 1, then a deferred exception indicator (NaT bit or NaTVal) is written
to the load target register, regardless of whether it has an exception or not and
regardless of the state of DCR, PSR.it, PSR.ic and the ITLB.ed bits.

• If PSR.ed is 0 and there is at least one exception condition which is neither
precluded nor deferred, then a fault is taken corresponding to the highest-priority

Table 5-4. Qualified Exception Deferral

Qualified Exception Deferred If

Register NaT Consumption (NaT’ed address) always

Unimplemented Data Address always

Alternate Data TLB !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

VHPT data !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data TLB !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data Page Not Present !PSR.ic || (PSR.it && ITLB.ed && DCR.dp)

Data NaT Page Consumption always

Data Key Miss !PSR.ic || (PSR.it && ITLB.ed && DCR.dk)

Data Key Permission !PSR.ic || (PSR.it && ITLB.ed && DCR.dx)

Data Access Rights !PSR.ic || (PSR.it && ITLB.ed && DCR.dr)

Data Access Bit !PSR.ic || (PSR.it && ITLB.ed && DCR.da)

Data Debug !PSR.ic || (PSR.it && ITLB.ed && DCR.dd)

Unaligned Data Reference !PSR.ic || (PSR.it && ITLB.ed)

Unsupported Data Reference always

Table 5-5. Spontaneous Deferral

Implementation-dependent condition may optionally be deferred if

(PSR.ic && PSR.it && ITLB.ed && spontaneous_deferral_enabled())

2:108 Volume 2, Part 1: Interruptions

exception condition which is neither precluded nor deferred. Prioritization of
non-deferred speculative load faults follows the same interruption priorities as
non-speculative instruction faults (Table 5-6 on page 2:109). However, deferred
speculative load faults do not take part in the prioritization. As a result, depending
on DCR settings, a lower priority fault may be taken, even if a higher priority
exception condition exists, but is deferred.

• If PSR.ed is 0 and there are exception conditions, but all are either precluded or
deferred, then a deferred exception indicator (NaT bit or NaTVal) is written to the
load target register.

• If PSR.ed is 0, and there are no exception conditions, and if the memory attribute
of the referenced page is uncacheable or limited speculation, then a deferred
exception indicator (NaT bit or NaTVal) is written to the load target register. See
“Speculation Attributes” on page 2:79..

• If PSR.ed is 0, and there are no exception conditions, and if spontaneous deferral is
enabled and permitted by the programming model, then a deferred exception
indicator (NaT bit or NaTVal) may optionally be written to the load target register.

• Otherwise, the load executes normally.

If automatic hardware deferral is not enabled, software may still choose to defer
exception processing (for speculative loads) at the time of the fault. If the code page
has its ITLB.ed bit equal to 1, then the operating system may choose to defer a
non-fatal exception. It is expected that the operating system will always defer fatal
exceptions. To assist software in the deferral of non-fatal or fatal exceptions, the
system architecture provides three additional resources: ISR.sp, ISR.ed, and PSR.ed.

ISR.sp indicates whether the exception was the result of a speculative or speculative
advanced load. The ISR.ed bit captures the code page ITLB.ed bit, and allows deferral
of a non-fatal exception due to a speculative load. If both the ISR.sp and ISR.ed bit are
1 on an interruption, then the operating system may defer a non-fatal exception by
using the PSR.ed bit to perform the action of hardware deferral for one executed
instruction. Software may use the same PSR.ed mechanism to defer fatal speculative
load exceptions.

5.6 Interruption Priorities

Table 5-6 contains a complete list of the architecture defined interruptions (including
IA-32), grouped according to type (aborts, interrupts, faults and traps), instruction set,
and listed in priority order. Interruptions are delivered in priority order. If more than
one instruction detects an interruption within a bundle, the interruption occurring in the
lowest numbered instruction slot is raised. Lower priority faults and traps are discarded.
Lower priority interrupts are held pending.

The shaded interruptions are disabled if the instruction generating the interruption is
predicated off. All other interruptions are either “bundle related” (so the predicate bits
do not affect them) or are caused by instructions that cannot be predicated off.
Incomplete Register frame (IR) faults 7 through 18 are identical in behavior to faults
45, 51 through 62 (exclusive of 60) except they are of a higher priority. IR faults 7
through 18 can only be caused by mandatory RSE load operations that result from
br.ret, or rfi instructions, but not from loadrs instructions (for details see
Section 6.6, “RSE Interruptions” on page 2:144).

Volume 2, Part 1: Interruptions 2:109

Table 5-6. Interruption Priorities

Type Instr. Set Interruption Name Vector Name
IA-32

Classa

Aborts
IA-32,
Intel

Itanium

1 Machine Reset (RESET) PALE_RESET vector
N/A

2 Machine Check (MCA) PALE_CHECK vector

Interrupts 3 Initialization Interrupt (INIT) PALE_INIT vector
N/A

4 Platform Management Interrupt (PMI) PALE_PMI vector

5 External Interrupt (INT) External Interrupt vector

6 Virtual External Interrupt (VINT) Virtual External Interrupt vector N/A

Faults

Intel
Itanium

7 IR Unimplemented Data Address fault General Exception vector

N/A

8 IR Data Nested TLB fault Data Nested TLB vector

9 IR Alternate Data TLB fault Alternate Data TLB vector

10 IR VHPT Data fault VHPT Translation vector

11 IR Data TLB fault Data TLB vector

12 IR Data Page Not Present fault Page Not Present vector

13 IR Data NaT Page Consumption fault NaT Consumption vector

14 IR Data Key Miss fault Data Key Miss vector

15 IR Data Key Permission fault Key Permission vector

16 IR Data Access Rights fault Data Access Rights vector

17 IR Data Access Bit fault Data Access-Bit vector

18 IR Data Debug fault Debug vector

19 Unimplemented Instruction Address faultb Lower-Privilege Transfer Trap vector

Faults IA-32 20 IA-32 Instruction Breakpoint fault IA-32 Exception vector (Debug)

A

21 IA-32 Code Fetch faultc IA-32 Exception vector (GPFault)

IA-32,
Intel

Itanium

22 Alternate Instruction TLB fault Alternate Instruction TLB vector

23 VHPT Instruction fault VHPT Translation vector

24 Instruction TLB fault Instruction TLB vector

25 Instruction Page Not Present fault Page Not Present vector

26 Instruction NaT Page Consumption fault NaT Consumption vector

27 Instruction Key Miss fault Instruction Key Miss vector

28 Instruction Key Permission fault Key Permission vector

29 Instruction Access Rights fault Instruction Access Rights vector

30 Instruction Access Bit fault Instruction Access-Bit vector

Intel
Itanium

31 Instruction Debug fault Debug vector

IA-32
32 IA-32 Instruction Length > 15 bytes IA-32 Exception vector (GPFault)

B
33 IA-32 Invalid Opcode fault IA-32 Intercept vector (Instruction)

34 IA-32 Instruction Intercept fault IA-32 Intercept vector (Instruction)

Intel
Itanium

35 Illegal Operation faultd General Exception vector

36 Illegal Dependency fault General Exception vector

37 Break Instruction fault Break Instruction vector

38 Privileged Operation fault General Exception vector

2:110 Volume 2, Part 1: Interruptions

IA-32,
Intel

Itanium

39 Disabled Floating-point Register fault Disabled FP-Register vector

B40 Disabled Instruction Set Transition fault General Exception vector

IA-32
41 IA-32 Device Not Available fault IA-32 Exception vector (DNA)

42 IA-32 FP Error faulte IA-32 Exception vector (FPError)
CIA-32,

Intel
Itanium

43 Register NaT Consumption fault NaT Consumption vector

Intel
Itanium

44 Reserved Register/Field fault General Exception vector

45 Unimplemented Data Address fault General Exception vector

46 Privileged Register fault General Exception vector

47 Speculative Operation fault Speculation vector

48 Virtualization fault Virtualization vector

IA-32
49 IA-32 Stack Exception IA-32 Exception vector (StackFault)

C

50 IA-32 General Protection Fault IA-32 Exception vector (GPFault)

Faults

IA-32,
Intel

Itanium

51 Data Nested TLB fault Data Nested TLB vector

52 Alternate Data TLB faultf Alternate Data TLB vector

53 VHPT Data faultf VHPT Translation vector

54 Data TLB faultf Data TLB vector

55 Data Page Not Present faultf Page Not Present vector

56 Data NaT Page Consumption faultf NaT Consumption vector

57 Data Key Miss faultf Data Key Miss vector

58 Data Key Permission faultf Key Permission vector

59 Data Access Rights faultf Data Access Rights vector

60 Data Dirty Bit fault Dirty-Bit vector

61 Data Access Bit faultf Data Access-Bit vector

Intel
Itanium

62 Data Debug faultf Debug vector

63 Unaligned Data Reference faultf Unaligned Reference vector

IA-32

64 IA-32 Alignment Check fault IA-32 Exception vector (AlignmentCheck)

C

65 IA-32 Locked Data Reference fault IA-32 Intercept vector (Lock)

66 IA-32 Segment Not Present fault IA-32 Exception vector (NotPresent)

67 IA-32 Divide by Zero fault IA-32 Exception vector (Divide)

68 IA-32 Bound fault IA-32 Exception vector (Bound)

69 IA-32 SSE Numeric Error fault IA-32 Exception vector (StreamSIMD)

Intel
Itanium

70 Unsupported Data Reference fault Unsupported Data Reference vector

71 Floating-point fault Floating-point Fault vector

Traps

Intel
Itanium

72 Unimplemented Instruction Address trapb,g Lower-Privilege Transfer Trap vector

73 Floating-point trap Floating-point Trap vector

74 Lower-Privilege Transfer trap Lower-Privilege Transfer Trap vector

75 Taken Branch trap Taken Branch Trap vector

76 Single Step trap Single Step Trap vector

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name
IA-32

Classa

Volume 2, Part 1: Interruptions 2:111

5.6.1 IA-32 Interruption Priorities and Classes

Table 5-6 establishes a well defined priority between faults, traps and interrupts
(including IA-32). However, IA-32 instruction set generated interruptions are divided
into interruption classes. While priority among these IA-32 interruption classes is well
defined by the table (except as noted below), interruption priority within each IA-32
interruption class is implementation dependent and may vary from processor to
processor as defined below:

Class A – Faults from fetching an instruction. Priority of IA-32 Instruction Breakpoint,
IA-32 Code Fetch (GPFault(0)), and Instruction TLB faults (Alternate Instruction TLB
fault to Instruction Access Bit fault) may vary based on instruction alignment and page
boundaries in a model-specific way. Faults are prioritized as defined in the table if the
instruction does not span a virtual page. If an IA-32 instruction spans a virtual page,
IA-32 Code Fetch faults (IA_32_Exception(GPFault)) due to code segment (CS) Limit
violations can be raised above or below Instruction TLB faults as defined below:

• If the starting effective address of the IA-32 instruction exceeds the code segment
limit, then the IA-32 Code Fetch fault has higher priority than any Instruction TLB
faults. If the starting effective address of the IA-32 instruction is within the code
segment limit, then Instruction TLB faults have higher priority for the starting
effective address.

• If the IA-32 instruction spans a virtual page and the code segment limit is equal to
the page boundary, the IA-32 Code Fetch fault has higher priority than any
Instruction TLB faults on the second page. Otherwise if the code segment limit is

IA-32

77 IA-32 System Flag Intercept trap IA-32 Intercept vector (SystemFlag)

D

78 IA-32 Gate Intercept trap IA-32 Intercept vector (Gate)

79 IA-32 INTO trap IA-32 Exception vector (Overflow)

80 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Break)

81 IA-32 Software Interrupt (INT) trap IA-32 Interrupt vector (Vector#)

82 IA-32 Data Breakpoint trap IA-32 Exception vector (Debug)

83 IA-32 Taken Branch trap IA-32 Exception vector (Debug)

84 IA-32 Single Step trap IA-32 Exception vector (Debug)

a. IA-32 Interruption Class, see Section 5.6.1, “IA-32 Interruption Priorities and Classes” on page 2:111 for details
b. Processor implementations may report unimplemented instruction addresses either with an Unimplemented Instruction Address

trap on the taken branch, taken chk, or an rfi to an unimplemented address, or on a non-branching slot 2 instruction in a
bundle at the upper edge of the implemented address space (where the next sequential bundle address would be an
unimplemented address), or with an Unimplemented Instruction Address fault on the fetch of the unimplemented address.

c. IA-32 Code Fetch faults include Code Segment Limit Violation and other Code Fetch checks defined in Section 6.2.2.3.3, “IA-32
Environment Runtime Integrity Checks” on page 1:122.

d. Illegal Operation faults can be taken for certain predicated off reserved opcodes. For details, refer to Section 4.1, “Format
Summary” on page 3:294.

e. IA-32 FP Error fault conditions detected on an IA-32 FP instruction are reported as a fault on the next IA-32 FP instruction that
performs an FWAIT operation.

f. If not deferred.
g. Unimplemented Instruction Address traps on emulated check instructions have a lower priority than Taken Branch trap and

Single Step trap. See “Speculation vector (0x5700)” on page 2:198.

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name
IA-32

Classa

2:112 Volume 2, Part 1: Interruptions

greater than the page boundary, any Instruction TLB faults on the second page
have higher priority than the IA-32 Code Fetch fault.

Class B – Faults from decoding an instruction. Priority of IA-32 Instruction Length,
IA-32 Invalid Opcode, and IA-32 Instruction Intercept, Disabled Floating Point Register,
Disabled Instruction Set Transition, and Device Not Available faults are model specific.
If the IA-32 instruction spans a virtual page, IA-32 Instruction Length >15 byte Faults
(IA_32_Exception(GPFault)) can have higher priority than Instruction TLB faults as
defined below:

• If the IA-32 prefix bytes on the first page are >= 15 bytes, an IA-32 Instruction
>15 byte fault (GPFault) is taken first regardless of any Instruction TLB faults on
the second page.

• If the IA-32 prefix bytes on the first page are < 15 bytes, Instruction TLB faults on
the second page may or may not have priority over any possible IA-32 Instruction
Length fault.

Class C – Faults resulting from executing an instruction. Priority of faults is model
specific and can vary across processor implementations. Most faults are related to data
memory references, other fault priorities can vary due to model-specific differences
across processor implementations. The memory fault priorities (IA-32 Stack Exception
through Data Access Bit fault) defined in the table only apply to a single IA-32 data
memory reference that does not cross a virtual page. If an IA-32 instruction requires
multiple data memory references or a single data memory reference crosses a virtual
page:

• If any given IA-32 instruction requires multiple data memory references, all
possible faults are raised on the first data memory reference before any faults are
checked on subsequent data memory references. This implies lower priority faults
on an earlier memory reference will be raised before higher priority faults on a later
data memory reference within a single IA-32 instruction. The order of data memory
references initiated by an IA-32 instruction is implementation dependent and may
vary from processor to processor. Software can not assume all higher priority data
memory faults are raised before all lower priority data memory faults within a
single IA-32 instruction.

• If a single IA-32 data memory reference crosses a virtual page, the processor
checks for faults in a model-specific order: Any faults present on one page are
checked and reported before any faults are checked and reported on the other
page. This implies that a single data reference that crosses a virtual page can raise
lower priority data memory faults on one page before higher priority data memory
faults are raised on the other page. For example, Data Key Miss faults (lower
priority) on the first page could be raised before a Data TLB Miss Fault (higher
priority) on the second page. Software can not assume all higher priority data
memory faults are raised before all lower priority data memory faults within a
single IA-32 instruction.

Class D – Traps on the current IA-32 instruction. Trap conditions are reported
concurrently on the same exception vector or via a trap code specifying all concurrent
traps.

Volume 2, Part 1: Interruptions 2:113

5.7 IVA-based Interruption Vectors

Table 5-7 contains the processor’s interruption vector table (IVT). The base of the IVT is
held in the IVA control register. The size of the IVT is 32KB. The first 20 vectors are
designed to provide more code space by allowing 64 bundles per vector (16 bytes per
bundle) for performance-critical interruption handlers. The second 48 vectors provide
16 bundles per vector. Several vectors have more than one interruption associated with
them. Information provided in the ISR allows the handler to distinguish which fault or
trap caused the event.

Some vectors require additional software decoding to determine the cause of the
interruption. Additional information for this decoding is provided in the ISR.code field.
See Chapter 8, “Interruption Vector Descriptions” for a complete specification of the
information supplied in the ISR for each of the vectors.

Note: PAL-based interruptions (RESET, MCA, INIT, and PMI) do not reference the IVT.

Table 5-7. Interruption Vector Table (IVT)

Offset Vector Name Interruption(s) Page

0x0000 VHPT Translation vector 10, 23, 53 2:173

0x0400 Instruction TLB vector 24 2:175

0x0800 Data TLB vector 11, 54 2:176

0x0c00 Alternate Instruction TLB vector 22 2:177

0x1000 Alternate Data TLB vector 9, 52 2:178

0x1400 Data Nested TLB vector 8, 51 2:179

0x1800 Instruction Key Miss vector 27 2:180

0x1c00 Data Key Miss vector 14, 57 2:181

0x2000 Dirty-Bit vector 60 2:182

0x2400 Instruction Access-Bit vector 30 2:183

0x2800 Data Access-Bit vector 17, 61 2:184

0x2c00 Break Instruction vector 37 2:185

0x3000 External Interrupt vector 5 2:186

0x3400 Virtual External Interrupt vector 6 2:187

0x3800 Reserved

0x3c00 Reserved

0x4000 Reserved

0x4400 Reserved

0x4800 Reserved

0x4c00 Reserved

0x5000 Page Not Present vector 12, 25, 55 2:188

0x5100 Key Permission vector 15, 28, 58 2:189

0x5200 Instruction Access Rights vector 29 2:190

0x5300 Data Access Rights vector 16, 59 2:191

0x5400 General Exception vector 7, 35, 36, 38, 40,
44, 45, 46

2:192

0x5500 Disabled FP-Register vector 39 2:195

0x5600 NaT Consumption vector 13, 26, 43, 56 2:196

0x5700 Speculation vector 47 2:198

0x5800 Reserved for software usea

2:114 Volume 2, Part 1: Interruptions

5.8 Interrupts

This section describes the programming model of the high performance interrupt
architecture. Interrupts are managed by the processor and by one or more intelligent
external interrupt controllers or devices in the I/O subsystem. Figure 5-3 shows just
one example of a high performance interrupt architecture subsystem; other topologies
are possible. The processor is responsible for queuing and masking interrupts, sending
and receiving inter-processor interrupt (IPI) messages, receiving interrupt messages
from external interrupt controller(s), and managing local interrupt sources. This
document describes the processor’s interrupt control mechanism only; for details on
external interrupt controllers or I/O devices refer to platform documentation.

0x5900 Debug vector 18, 31, 62 2:200

0x5a00 Unaligned Reference vector 63 2:201

0x5b00 Unsupported Data Reference vector 70 2:202

0x5c00 Floating-point Fault vector 71 2:203

0x5d00 Floating-point Trap vector 73 2:204

0x5e00 Lower-Privilege Transfer Trap vector 72, 74 2:205

0x5f00 Taken Branch Trap vector 75 2:207

0x6000 Single Step Trap vector 76 2:208

0x6100 Virtualization vector 48 2:209

0x6200 Reserved

0x6300 Reserved

0x6400 Reserved

0x6500 Reserved

0x6600 Reserved

0x6700 Reserved

0x6800 Reserved

0x6900 IA-32 Exception vector 20, 21, 32, 41, 42,
49, 50, 64, 66, 67,
68, 79, 80, 82, 83,
84

2:210

0x6a00 IA-32 Intercept vector 33, 34, 65, 77, 78 2:211

0x6b00 IA-32 Interrupt vector 81 2:212

0x6c00 Reserved

 … Reserved

0x7f00 Reserved

a. Unlike the other Reserved IVT vectors, which may defined in future revisions of the architecture, vector
0x5800 is permanently reserved. Software may use this vector for any purpose, such as placing in this area
portions of other handlers that don't fit into their assigned vector.

Table 5-7. Interruption Vector Table (IVT) (Continued)

Offset Vector Name Interruption(s) Page

Volume 2, Part 1: Interruptions 2:115

As defined in “Interruption Definitions” on page 2:95 there are three kinds of
interrupts: initialization interrupts (INITs), platform management interrupts (PMIs),
and external interrupts (INTs).

The processors and external interrupt controllers communicate over the processor’s
system bus with an implementation-specific interrupt messaging protocol. Interrupts
are generated by a number of different interrupt sources in the system:

• External (I/O) devices – Interrupt messages from any external source can be
directed to any one processor by an external interrupt controller or by I/O devices
capable of directly sending interrupt messages. An interrupt message informs the
processor that an interrupt request is being made, and, in the case of PMIs and
external interrupts, specifies a unique vector number for the interrupt. Interrupt
messages are only issued on the “assertion edge” of an interrupt; “deassertion” of
an interrupt does not result in an interrupt message.

• Locally connected devices – These interrupts originate on the processor’s
interrupt pins (LINT, INIT, PMI)1, and are always directed to the local processor. The
LINT pins can be connected directly to an Intel 8259A-compatible external interrupt
controller. The LINT pins are programmable to be either edge-sensitive or
level-sensitive, and for the kind of interrupt that gets generated. If programmed
to generate external interrupts, the vector number is a programmed constant per
LINT pin. Only the LINT pins connected to the processor can directly generate
level-sensitive interrupts (See “Edge- and Level-sensitive Interrupts” on
page 2:131). LINT pins cannot be programmed to generate level-sensitive PMIs or
INITs. The INIT and PMI pins generate their corresponding interrupts. For PMI pins
a PMI vector 0 interrupt is generated.

Figure 5-3. Interrupt Architecture Overview

1. Processors are not required to support externally connected interrupt pins. Software can query the
presence of the INIT, PMI, and LINT pins via the PAL_PROC_GET_FEATURES procedure call.

System Bus

Processor Processor Processor

I/O Bus

External Interrupt

LINT0

LINT1

IPI messages

Interrupt

Devices

Messages

Controller
Devices

Bridge

PMI
INIT

2:116 Volume 2, Part 1: Interruptions

• Internal processor interrupts – such as interval timer, performance monitoring,
and corrected machine checks. These are always directed to the local processor. A
unique vector number can be programmed for each source.

• Other processors – A processor can interrupt any individual processor, including
itself, by sending an Inter-Processor Interrupt (IPI) message to a specific target
processor. See “Inter-processor Interrupt Messages” on page 2:128.

The destination of an interrupt message is any one processor in the system, and is
specified by a unique processor identifier. A different destination can be specified for
each interrupt. There is no mechanism to “broadcast” a single interrupt to all
processors in the system.

The following terms are used in the interrupt definition:

• The processor is said to receive an interrupt, if one of the processor’s interrupt
pins is asserted, the processor detected an interrupt message bus transaction
containing the processor’s unique identifier, or the processor detected an internal
interrupt event.

• After receiving an interrupt, the processor internally holds the interrupt pending.
The interrupt is said to be pended when it is received and held by the processor.

• For edge-sensitive interrupts, an external interrupt is held pending until the
interrupt is acquired by software at which point it is said to be in-service. INITs and
PMIs are held pending until the corresponding PAL vector is entered and PAL
firmware clears the pending indication at which point they are said to be completed.
For level-sensitive interrupts programmed through the LINT pins, the interrupt is
held pending as long as the pin is asserted. Deassertion of a level-sensitive
interrupt removes the pending indication (see “Edge- and Level-sensitive
Interrupts” on page 2:131).

• The processor maintains an individual interrupt pending indication for INITs. Since
external interrupts and PMIs are also signified by a unique interrupt vector
number, the processor maintains individual pending indications per vector. An
occurrence of an interrupt on a vector that is already marked as pending cannot be
distinguished from previous interrupts on the same vector because the interrupts
are pended in the same internal pending bit, and are therefore treated as “the
same” interrupt occurrence.

• When interrupt delivery is enabled and the highest priority pending interrupt is
unmasked (as defined below), the processor accepts the pending interrupt,
interrupts the control flow of the processor and transfers control to the software
interrupt handler.

• An external interrupt is said to be in-service when software acquires the interrupt
vector from the processor by reading the IVR register (see “External Interrupt
Vector Register (IVR – CR65)” on page 2:123). The processor then removes the
pending indication for the interrupt vector. The processor maintains one in-service
indicator for each unique vector number. Note that there are no in-service
indicators for INITs and PMIs.

• Once an external interrupt is in-service it remains so until software indicates
service for that external interrupt is complete. By writing to the EOI register (see
“End of External Interrupt Register (EOI – CR67)” on page 2:124) software
indicates that service for the highest-priority in-service external interrupt is
complete. The processor then removes the in-service indication for the
highest-priority external interrupt vector. INITs and PMIs are completed when PAL
firmware clears the corresponding pending indication.

Volume 2, Part 1: Interruptions 2:117

• The priority of interrupts is defined in Table 5-8. Entry A is higher priority than
interrupt B, if entry A appears at a higher location in the table than entry B.
Interrupt priority is used to select interrupts that require urgent service over less
urgent interrupt requests.

• Interrupt delivery is enabled when software programs the processor to accept
any unmasked interrupt. INITs delivery is enabled when PSR.mc is 0. PMIs delivery
is enabled when PSR.ic is 1. For Itanium architecture-based code execution,
external interrupts delivery is enabled when PSR.i is 1.

• Masking applies only to external interrupts. Unmasked interrupts are those
external interrupts of higher priority than the highest priority external interrupt
vector currently in-service (if any) and whose priority level is higher than the
current priority masking level specified by the TPR register (see “Task Priority
Register (TPR – CR66)” on page 2:123). Masking conditions are defined in
Table 5-8. PSR.i does not affect masking of external interrupts.

Figure 5-4 shows how this terminology is applied to the handling of a PAL-based
interrupt. Similarly, Figure 5-5 shows the handing of a vectored external interrupt n.
Both figures show the different states and transitions interrupts go through.

Figure 5-4. PAL-based Interrupt States

INACTIVE

PENDING

CPU Receives
Interrupt

PAL Firmware
Completes

Pending = 0

Pending = 1

Interrupt

2:118 Volume 2, Part 1: Interruptions

5.8.1 Interrupt Vectors and Priorities

As indicated in Table 5-6 on page 2:109, INITs have higher priority than PMIs, which in
turn have higher priority than external interrupts. PMIs and external interrupts are
further prioritized by vector number.

PMIs have a separate vector space from external interrupts. PMI vectors 0-3 can be
used by platform firmware. PMI vectors 4 through 15 are reserved for use by processor
firmware. Assertion of the processor’s PMI pin, when present, results in PMI vector
number 0. PMI vector priorities are described in Section 11.5, “Platform Management
Interrupt (PMI)” on page 2:310.

Each external interrupt (INT) in the system is distinguished from other external
interrupts by a unique vector number. There are 256 distinct vector numbers in the
range 0 - 255. Vector numbers 1 and 3 through 14 are reserved for future use. Vector
number 0 (ExtINT) is used to service Intel 8259A-compatible external interrupt
controllers. Vector number 2 is used for the Non-Maskable Interrupt (NMI). The
remaining 240 external interrupt vector numbers (16 through 255) are available for
general operating system use. Table 5-8 summarizes the interrupt priority model.

Figure 5-5. External Interrupt States

INACTIVE

PENDING IN-SERVICE

pending[n] = 0
in-service[n] = 0

pending[n] = 0
in-service[n] = 1

pending[n] = 1
in-service[n] = 0

CPU Receives
Interrupt n

OS Acquires Interrupt n

Level-sensitive Interrupt
Signal n is Deasserted

(Reads IVR)

OS Completes Interrupt
n (writes to EOI)

None Pending

IN-SERVICE
One Pending

CPU Receives
Interrupt n

Level-sensitive Interrupt
Signal n is Deasserted

pending[n] = 1
in-service[n] = 1

OS Completes Interrupt
n (Writes to EOI)

Volume 2, Part 1: Interruptions 2:119

NMI (vector 2) has higher interrupt priority than ExtINT (vector 0), which has higher
priority than external interrupt vectors 16 through 255.

External interrupts vectors 16 through 255 are divided into 15 interrupt priority classes.
Sixteen different interrupt vectors share a single interrupt priority class, with class 1
being the lowest priority and class 15 being the highest. For these external interrupts,
higher number external interrupts have priority over lower number external interrupts,
including those within the same priority class.

Vector number 15 is used to indicate that the highest priority pending interrupt in the
processor is at a priority level that is currently masked or there are no pending external
interrupts. This encoding is referred to as a “spurious” interrupt.

5.8.2 Interrupt Enabling and Masking

Upon receiving an interrupt, the processor holds the interrupt pending internally until
interrupt delivery is enabled and, in the case of external interrupts, the interrupt is
unmasked. When all of the interrupt enabling and unmasking conditions are satisfied
(see Table 5-8), the processor accepts the pending interrupt, interrupts the control flow
of the processor, and transfers control to the External Interrupt handler for external
interrupts, or to PAL firmware for INITs and PMIs.

Note: The TPR controls the masking of external interrupts. TPR is described in “Task
Priority Register (TPR – CR66)” on page 2:123.

Table 5-8. Interrupt Priorities, Enabling, and Masking

Priority
Priority
Class

Interrupt
Vector

Number

Interrupt
Delivery
Enabled

Interrupt Unmasked
Condition

Highest N/A INIT N/A if PSR.mc is 0 Always

PMI 0..3 if PSR.ic is 1 Always

INT 2 (NMI) if PSR.i is 1a

a. For Itanium architecture-based code execution external interrupt delivery is enabled if PSR.i is 1. For IA-32
code execution external interrupt delivery is enabled if (PSR.i AND (!CFLAG.if OR EFLAG.if)) is true.

Interrupt is higher priority than
all in-service external interrupts

0 (ExtINT) TPR.mmi is 0, and interrupt is
higher priority than all in-service
external interrupts

15 240..255

TPR.mmi is 0, and interrupt is
higher priority than all in-service
external interrupts, and Vector
Number{7:4} > TPR.mic

14 224..239

13 208..223

12 192..207

11 176..191

10 160..175

9 144..159

8 128..143

7 112..127

6 96..111

5 80..95

4 64..79

3 48..63

2 32..47

Lowest 1 16..31

2:120 Volume 2, Part 1: Interruptions

The processor provides nested interrupt priority support for external interrupt vectors
0, 2, and 16 through 255 by:

• Automatically masking external interrupts of equal or lower priority than the
highest priority external interrupt currently in-service. This raises the in-service
external interrupt masking level when each external interrupt begins service by an
IVR read.

• Associating EOI writes with the highest priority in-service external interrupt, and
removing the in-service indication for this external interrupt. This lowers the
in-service masking level to that of the next highest priority currently in-service
external interrupt (if any).

This mechanism allows software external interrupt handlers to be interrupted by higher
priority external interrupts.

For example, assume software acquires an external interrupt vector 45 by reading IVR.
During the service of this interrupt other external interrupts can still be received and
are pended. If software sets PSR.i to a 1, pending external interrupts of equal or lower
priority than 45 are masked. However, a higher priority pending external interrupt can
be accepted by the processor (provided it is not masked by TPR.mmi or TPR.mic).
Assuming external interrupt vector 80 is received by the processor, the processor will
accept the interrupt by interrupting the control flow of the processor. During the service
of this interrupt, external interrupts of equal or lower priority than vector 80 are
masked. When EOI is issued by software, the processor will remove the in-service
indication for external interrupt vector 80. External interrupt masking will then revert
back to the next highest priority in-service external interrupt, vector 45. External
interrupt vectors of equal or lower priority than vector 45 would remain masked until
EOI is issued by software. The in-service indication for vector 45 is then removed by
the write to EOI.

5.8.2.1 Re-enabling External Interrupt Delivery

When emerging from code in which external interrupt delivery is disabled and
interruption state collection is turned off, the following minimal code sequence
describes the architectural method with which to re-enable interruption collection and
enable external interrupts:

ssm PSR.ic // enable interruption collection
;;
srlz.d // guarantee that interruption collection is enabled
ssm PSR.i // enable external interrupts

The processor does not ensure that enabling external interrupts is immediately
observed after the ssm PSR.i instruction. Software must perform a data serialization
operation after ssm PSR.i to ensure that external interrupt delivery is enabled prior to a
given point in program execution.

5.8.2.2 External Interrupt Sampling

Assuming that external interrupt delivery is currently disabled (PSR.i is 0), the following
minimal code sequence describes the architectural method with which to briefly open
the external interrupt window for external interrupt sampling (typically PSR.ic is 1 to
enable interruption collection):

Volume 2, Part 1: Interruptions 2:121

ssm PSR.i
;;
srlz.d // external interrupts may be sampled anywhere here
;;
rsm PSR.i

The stop following the srlz.d instruction in the above code sequence is required to
force the Reset System Mask (rsm) instruction into a subsequent instruction group. The
stop guarantees that the srlz.d will open the external interrupt window for at least one
cycle before the rsm instruction closes it again.

Note: In the above code sequence, the effect of disabling interrupts due to the rsm
instruction is observed on the next instruction following the rsm.

5.8.2.3 Disabling of External Interrupt Delivery and rsm

When the current privilege level is zero, an rsm instruction whose mask includes PSR.i
may cause external interrupt delivery to be disabled for an implementation-dependent
number of instructions, even if the qualifying predicate for the rsm instruction is false.
Architecturally, the extents of this delivery disable “window” are defined as follows:

1. External interrupt delivery may be disabled for any instructions in the same
instruction group as the rsm, including those that precede the rsm in sequential
program order, regardless of the value of the qualifying predicate of the rsm
instruction.

2. If the qualifying predicate of the rsm is true, then external interrupt delivery is
disabled immediately following the rsm instruction.

3. If the qualifying predicate of the rsm is false, then external interrupt delivery may
be disabled until the next data serialization operation that follows the rsm
instruction.

The delivery disable window is guaranteed to be no larger than defined by the above
criteria, but it may be smaller, depending on the implementation.

When the current privilege level is non-zero, an rsm instruction whose mask includes
PSR.i may briefly disable external interrupt delivery, regardless of the value of the
qualifying predicate of the rsm instruction. However, the implementation guarantees
that non-privileged code cannot lock out external interrupts indefinitely (e.g., via an
arbitrarily long sequence of rsm PSR.i instructions with zero-valued qualifying
predicates).

5.8.3 External Interrupt Control Registers

Software interacts with external interrupts by reading and writing the external interrupt
control registers (CR64-81). These registers are summarized in Table 5-9, and are used
to prioritize and deliver external interrupts, and to assign external interrupt vectors for
processor-internal interrupt sources such as interval timer, performance monitoring,
and corrected machine check.

The external interrupt control registers can only be accessed at privilege level 0,
otherwise a Privileged Operation fault is raised.

2:122 Volume 2, Part 1: Interruptions

5.8.3.1 Local ID (LID – CR64)

The LID register contains the processor’s local interrupt identifier. Two fields (id and
eid) serve as the processor’s physical name for all interrupt messages (external
interrupts, INITs, and PMIs). LID is loaded by firmware during platform initialization
based on the processor’s physical location within the system. Processors receiving an
interrupt message on the system interconnect may or may not compare their id/eid
fields with the target address for the interrupt message, depending on the type of
system interconnect. If this comparison is performed, then a match would indicate that
the interrupt received was intended for this processor. In case of no comparison,
processors use other system topology mechanisms to determine the correct target of
the interrupt message.

The LID register fields are either read-only or read-write. Details of the
programmability of these fields is communicated by PAL at PALE_RESET handoff (see
Section 11.2.2, “PALE_RESET Exit State” on page 2:289 for details). Read-only LID bits
always return a value of 0. Writes to read-only bits are ignored. To ensure that future
arriving interrupts see the updated LID value by a given point in program execution,
software must perform a data serialization operation after a LID write and prior to that
point. The Local ID fields are defined in Figure 5-6 and Table 5-10.

Table 5-9. External Interrupt Control Registers

Register Name Description

CR64 LID Local ID

CR65 IVR External Interrupt Vector Register (read only)

CR66 TPR Task Priority Register

CR67 EOI End Of External Interrupt

CR68 IRR0 External Interrupt Request Register 0 (read only)

CR69 IRR1 External Interrupt Request Register 1 (read only)

CR70 IRR2 External Interrupt Request Register 2 (read only)

CR71 IRR3 External Interrupt Request Register 3 (read only)

CR72 ITV Interval Timer Vector

CR73 PMV Performance Monitoring Vector

CR74 CMCV Corrected Machine Check Vector

CR80 LRR0 Local Redirection Register 0

CR81 LRR1 Local Redirection Register 1

Figure 5-6. Local ID (LID – CR64)

63 32 31 24 23 16 15 0

ignored id eid reserved

32 8 8 16

Table 5-10. Local ID Fields

Field Bits Description

id/eid 31:16 The low order bits of id correspond to a unique, geographically significant address of
the processor on the local system bus. The eid field and the higher order bits of the id
field correspond to a unique address of the local system bus within the entire system.
These fields are initialized by platform firmware to an implementation-dependent value
and should not be modified by software. The two fields corresponds to physical
address bits{19:4} of the inter-processor interrupt message.

Volume 2, Part 1: Interruptions 2:123

5.8.3.2 External Interrupt Vector Register (IVR – CR65)

A read of IVR returns the highest priority, pending, unmasked external interrupt vector,
independent of the value of PSR.i. The external interrupt vector is an 8-bit encoded
number. If there are no pending external interrupts or all external interrupts are
currently masked, IVR returns the “spurious” interrupt indication (vector 15). IVR fields
are shown in Figure 5-7. See “Interrupt Unmasked Condition” column in Table 5-8 on
page 2:119 for masking conditions.

IVR reads also have two atomic side effects:

• The interrupt pending bit in IRR is cleared for the reported external interrupt vector.
Subsequent IVR reads will not report the interrupt as pending unless a new
interrupt was pended for the specified interrupt vector.

• The processor marks the interrupt vector as being in-service and masks all pending
external interrupts with equal or lower priority until software writes the
end-of-interrupt (EOI) register for the in-service interrupt.

To ensure IVR side effects are observed by a given point in program execution (e.g.,
before the next IVR read, EOI write, or PSR.i write to enable external interrupt
delivery), software must perform a data serialization operation after an IVR read and
prior to that point. To ensure that the reported external interrupt vector is correctly
masked before the next IVR read, software must perform a data serialization operation
after a TPR or EOI write and prior to that IVR read.

Software must be prepared to service any possible external interrupt if it reads IVR,
since IVR reads are destructive and removes the highest priority pending external
interrupt (if any).

IVR is a read-only register; writes to IVR result in a Illegal Operation fault.

IVR reads do not issue an external INTA cycle. If the interrupt vector must be acquired
from an Intel 8259A-compatible external interrupt controller, software should perform a
load from the INTA byte. See “Interrupt Acknowledge (INTA) Cycle” on page 2:130 for
details.

5.8.3.3 Task Priority Register (TPR – CR66)

The processor’s Task Priority Register (TPR) provides the ability to create additional
masking of external interrupts based on a “priority class.” The 240 external interrupt
vectors (16 - 255) are divided into 15 priority classes of 16 numerically contiguous
interrupt vectors each. The value written in TPR.mic masks all external interrupts of
equal or lower priority classes.

To ensure that new priority levels are established by a given point in program
execution, software must perform a data serialization operation after a TPR write and
prior to that point. For example, if PSR.i is subsequently set to 1, thus enabling
interrupts, and the new priority levels need to be in place before this enabling, a data
serialization must be performed prior to the setting of PSR.i. Similarly, if PSR.pp or

Figure 5-7. External Interrupt Vector Register (IVR – CR65)

63 8 7 0

reserved vector

56 8

2:124 Volume 2, Part 1: Interruptions

PSR.up is set to 1, potentially enabling performance monitor interrupts, and the new
priority levels need to be in place before this enabling, a data serialization must be
performed. (Note that there's no dependence between writing TPR and then changing
the PSR for any other bits in the PSR than these.) A data serialization operation must
be performed after TPR is written and before IVR is read to ensure that the reported
IVR vector is correctly masked. The TPR fields are described in Figure 5-8 and
Table 5-11.

5.8.3.4 End of External Interrupt Register (EOI – CR67)

A write to the EOI (end-of-external interrupt) register, shown in Figure 5-9, indicates
that software has finished servicing the highest priority in-service external interrupt.
The processor removes its internal in-service indication for the highest priority currently
in-service external interrupt vector. Pending external interrupts are then masked by the
next highest priority in-service external interrupt (if any).

Writes to EOI affect the local processor only, and do not propagate to other processors
or external interrupt controllers.

EOI is a read-write register. Reads return 0. Data associated with the EOI writes is
ignored.

To ensure that the previous in-service interrupt indication has been cleared by a given
point in program execution, software must perform a data serialization operation after
an EOI write and prior to that point. To ensure that the reported IVR vector is correctly
masked before the next IVR read, software must perform a data serialization operation
after an EOI write and prior to that IVR read.

Figure 5-8. Task Priority Register (TPR – CR66)

63 17 16 15 8 7 4 3 0

ignored mmi reserved mic ignored

47 1 8 4 4

Table 5-11. Task Priority Register Fields

Field Bits Description

mic 7:4 Mask Interrupt Class: all external interrupt vectors of equal or lower priority classes
then the TPR.mic field are masked. For example, if mic field is 4, interrupt priority
classes 1, 2, 3, and 4 are masked. A TPR.mic value of 0 has no masking effect; a
value of 15 will mask all external interrupt vectors in the range 16 - 255. TPR.mic has
no effect on external interrupt vectors 0 and 2, INITs and PMIs. See “Processor
Interrupt Block” on page 2:127..

mmi 16 Mask Maskable Interrupts: When 1, masks all external interrupts other than NMI
(vector 2). When 0, external interrupt vectors 16 - 255, are masked by the TPR.mic
field.

Figure 5-9. End of External Interrupt Register (EOI – CR67)

63 0

ignored

64

Volume 2, Part 1: Interruptions 2:125

5.8.3.5 External Interrupt Request Registers (IRR0-3 – CR68,69,70,71)

Four 64-bit read-only External Interrupt Request Registers (IRR0-3, see Figure 5-10)
provide the capability for software to determine the set of pending asynchronous
external interrupts. IRR0 contains vectors <63:0> where vector 0 is in bit position 0,
IRR1 contains vectors <127:64>, IRR2 contains vectors <191:128>, and IRR3
contains vectors <255:192>. A bit in the IRR, corresponding to the pending interrupt
vector number, is set when the processor receives an external interrupt. The IRR bit is
cleared when software reads the IVR and the vector number corresponding to the IRR
bit value is returned in the IVR. The IRR bit is also cleared when a level-sensitive
external interrupt signal is deasserted, effectively removing the pending interrupt.

Since IRR0-3 are read-only registers, writes to these registers result in Illegal
Operation faults.

5.8.3.6 Interval Timer Vector (ITV – CR72)

ITV specifies the external interrupt vector number for Interval Timer Interrupts. To
ensure that subsequent interval timer interrupts reflect the new state of the ITV by a
given point in program execution, software must perform a data serialization operation
after an ITV write and prior to that point. See Figure 5-11 and Table 5-12 for the
definitions of the ITV fields.

Figure 5-10. External Interrupt Request Register (IRR0-3 – CR68, 69, 70, 71)

63 16 15 3 2 1 0

IRR0 vectors < 63:16> 00000000 0

IRR1 vectors <127:64>

IRR2 vectors <191:128>

IRR3 vectors <255:192>

64

Figure 5-11. Interval Timer Vector (ITV – CR72)

63 17 16 15 13 12 11 8 7 0

ignored m rv ig rv vector

47 1 3 1 4 8

Table 5-12. Interval Timer Vector Fields

Field Bits Description

vector 7:0 External interrupt vector number to use when generating an Interval Timer interrupt.
Vector values can be 0, 2 or 16-255. All other vectors are ignored and reserved for future
use.

m 16 Mask: When 1, occurrences of Interval Timer interrupts are discarded and not pended.
When 0, occurrences of Interval Timer interrupts are pended.

2:126 Volume 2, Part 1: Interruptions

5.8.3.7 Performance Monitoring Vector (PMV – CR73)

PMV specifies the external interrupt vector number for Performance Monitoring overflow
interrupts. To ensure that subsequent performance monitor interrupts reflect the new
state of PMV by a given point in program execution, software must perform a data
serialization operation after a PMV write and prior to that point. See Figure 5-12 and
Table 5-13 for the definitions of the PMV fields.

5.8.3.8 Corrected Machine Check Vector (CMCV – CR74)

CMCV specifies the external interrupt vector number for Corrected Machine Checks. To
ensure that subsequent corrected machine check interrupts reflect the new state of
CMCV by a given point in program execution, software must perform a data
serialization operation after a CMCV write and prior to that point. See Figure 5-13 and
Table 5-14 for the CMCV field definitions.

5.8.3.9 Local Redirection Registers (LRR0-1 – CR80,81)

Local Redirection Registers (LRR0-1) steer external signal-based interrupts that are
directly connected to the local processor to a specific external interrupt vector.
Processors may optionally support two direct external interrupt pins. When supported
these external interrupt signals (pins) are referred to as Local Interrupt 0 (LINT0) and
Local Interrupt 1 (LINT1). Software can query the presence of these pins via the
PAL_PROC_GET_FEATURES procedure call.

To ensure that subsequent interrupts from LINT0 and LINT1 reflect the new state of
LRR prior to a given point in program execution, software must perform a data
serialization operation after an LRR write and prior to that point. In the case when

Figure 5-12. Performance Monitor Vector (PMV – CR73)

63 17 16 15 13 12 11 8 7 0

ignored m rv ig rv vector

47 1 3 1 4 8

Table 5-13. Performance Monitor Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Performance Monitor interrupt. Vector values
can be 0, 2, or 16-255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Performance Monitor interrupts are discarded and not
pended. When 0, occurrences of Performance Monitor interrupts are pended.

Figure 5-13. Corrected Machine Check Vector (CMCV – CR74)

63 17 16 15 13 12 11 8 7 0

ignored m rv ig rv vector

47 1 3 1 4 8

Table 5-14. Corrected Machine Check Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Corrected Machine Check. Vector values can
be 0, 2, or 16 - 255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Corrected Machine Check interrupts are discarded and
not pended. When 0, occurrences of Corrected Machine Check interrupts are pended.

Volume 2, Part 1: Interruptions 2:127

LINT0 and LINT1 pins are absent, writes to LRR would have no effect, and reads from
LRR would return 0. Software can query the presence of the LINT pins via the
PAL_PROC_GET_FEATURES procedure call. The LRR fields are defined in Figure 5-14
and Table 5-15.

5.8.4 Processor Interrupt Block

Inter-Processor Interrupt (IPI) messages, Interrupt Acknowledge (INTA) cycles, and
External Task Priority (XTP) cycles on the processor system bus are initiated by
software by accessing a special physical memory range known as the “Processor
Interrupt Block.” Figure 5-15 defines its memory layout. The entire 2 MByte Processor
Interrupt Block is relocatable by a PAL firmware call and must be aligned on a 2 MByte
boundary; by default, the block is located at physical address 0x0000 0000 FEE0 0000.

Figure 5-14. Local Redirection Register (LRR – CR80,81)

63 17 16 15 14 13 12 11 10 8 7 0

ignored m tm rv ipp ig rv dm vector

47 1 1 1 1 1 1 3 8

Table 5-15. Local Redirection Register Fields

Field Bits Description

vector 7:0 External interrupt vector number to use when generating an interrupt for this entry. For
INT delivery mode, allowed vector values are 0, 2, or 16-255. All other vectors are
ignored and reserved for future use. For all other delivery modes this field is ignored.

dm 10:8 000 INT – pend an external interrupt for the vector number specified by the vector
field in LRR. Allowed vector values are 0, 2, or 16-255. All other vector numbers
are ignored and reserved for future use.

001 reserved

010 PMI – pend a Platform Management Interrupt Vector number 0 for system
firmware. The vector field is ignored.

011 reserved

100 NMI – pend a Non-Maskable Interrupt. This interrupt is pended at external
interrupt vector number 2. The vector field is ignored.

101 INIT – pend an Initialization Interrupt for system firmware. The vector field is
ignored.

110 reserved

111 ExtINT – pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:130. The vector
field is ignored.

ipp 13 Interrupt Pin Polarity – specifies the polarity of the interrupt signal. When 0, the signal is
active high. When 1, the signal is active low.

tm 15 Trigger Mode – When 0, specifies edge sensitive interrupts. If the m field is 0, assertion
of the corresponding LINT pin pends an interrupt for the specified vector corresponding
to the dm field. The pending interrupt indication is cleared by software servicing the
interrupt. When 1, specifies level sensitive interrupts. If the m field is 0, assertion of the
corresponding LINT pin pends an external interrupt for the specified vector. Deassertion
of the corresponding LINT pin clears the pending interrupt indication. The processor has
undefined behavior if the dm and tm fields specify level sensitive PMIs or INITs.

m 16 Mask – When 1, edge or level occurrences of the local interrupt pins are discarded and
not pended. When 0, edge or level occurrences of local interrupt pins are pended.

2:128 Volume 2, Part 1: Interruptions

The Inter-Processor Interrupt region occupies the lower half of the Processor Interrupt
Block; by default its physical address range is 0x0000 0000 FEE0 0000 through 0x0000
0000 FEEF FFFF. A processor generates Inter-Processor Interrupts by performing an
aligned 8-byte store to this memory region.

The Processor Interrupt Block does not support all forms of memory operations.
Unsupported memory accesses result in undefined processor operation.

• When targeted at the inter-processor interrupt delivery region (lower half of the
Processor Interrupt Block), the following memory operations are undefined:
instruction fetch, RSE accesses, or memory read references (only writes are
permitted), references other than aligned 8-byte accesses, and references through
any memory attribute other than UC.

• When targeted at the upper half of the Processor Interrupt Block, the following
memory operations are undefined: instruction fetches, references other than
1-byte accesses to the XTP byte and 1-byte read access to the INTA byte, and
references through any memory attribute other than UC.

Any memory operation targeted at the lower half of the Processor Interrupt Block which
does not correspond to any actual processor is undefined.

5.8.4.1 Inter-processor Interrupt Messages

A processor can interrupt any individual processor, including itself, by issuing an
inter-processor interrupt message (IPI). A processor generates an IPI by storing an
8-byte interrupt command to an 8-byte aligned address in the interrupt delivery region
of the Processor Interrupt Block defined in “Processor Interrupt Block” on page 2:127.
(If the address is not 8-byte aligned, the processor must either generate an Unaligned
Data Reference Fault, see Section “Memory Datum Alignment and Atomicity” on
page 2:93, or have undefined behavior). The address being stored to designates the
target processor to receive the interrupt. The store address and data format of the

Figure 5-15. Processor Interrupt Block Memory Layout

+0x1FFFFF

Undefined
......

Undefined
XTP +0x1E0008

INTA +0x1E0000

Undefined +0x100000

.................

IPI +0x000020

IPI +0x000018

IPI +0x000010

IPI +0x000008

IPI +0x000000

1
M

 B
y
te

2
 M

 B
y
te

ib_base

Volume 2, Part 1: Interruptions 2:129

inter-processor interrupt message are defined in Figure 5-16 and Figure 5-17. The data
fields are defined in Table 5-17. The address processor identifier fields specify the
target processor and are defined in Table 5-16.

Figure 5-16. Address Format for Inter-processor Interrupt Messages

63 20 19 12 11 4 3 2 0

ib_base id eid un 0

8 8 1 3

Figure 5-17. Data Format for Inter-processor Interrupt Messages

63 11 10 8 7 0

ignored, reserved for future use dm vector

53 3 8

Table 5-16. Address Fields for Inter-processor Interrupt Messages

Field Bits Description

un 3 Unused. This field must be set to 0. Behavior of the inter-processor interrupt (IPI)
message is undefined if this field is set to 1.

id/eid 19:4 Specify the target processor. See Table 5-10 on page 2:122 for a definition of these
fields.

ib_base 63:20 Physical Base address of Processor Interrupt Block. This is a PAL relocatable
physical address. The default is 0x0000 0000 FEE. See “Processor Interrupt Block”
on page 2:127. Based on the processor model some of the high order physical
address bits may be reserved.

Table 5-17. Data Fields for Inter-processor Interrupt Messages

Field Bits Description

vector 7:0 Vector number for the interrupt. For INT delivery, allowed vector values are 0, 2, or
16-255. All other vectors are ignored and reserved for future use. For PMI delivery,
allowed PMI vector values are 0-3. All other PMI vector values are reserved for use by
processor firmware.

dm 10:8 000 INT – pend an external interrupt for the specified vector to the processor listed
in the destination. Allowed vector values are 0, 2, or 16-255. All other vector
numbers are ignored and reserved for future use.

001 Reserved

010 PMI – pend a PMI interrupt for the specified vector to the processor listed in the
destination. Allowed PMI vector values are 0-3. All other PMI vector values are
reserved for use by processor firmware. See Section 11.5, “Platform
Management Interrupt (PMI)” on page 2:310 for details.

011 Reserved

100 NMI – pend an external interrupt as an NMI (vector 2) to the processor listed in
the destination. The vector field is ignored.

101 INIT – pend an Initialization Interrupt for platform firmware on the processor
listed in the destination. The vector field is ignored.

110 Reserved

111 ExtINT – pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:130. The vector
number field is ignored.

ignored 63:11 Ignored, reserved for future use

2:130 Volume 2, Part 1: Interruptions

5.8.4.2 Interrupt and IPI Ordering

Interrupt messages from external device(s), or external interrupts routed to the
processor’s LINT pins, when present, may arrive at one or more processors and become
pending in any order. No ordering is enforced by the processor or the platform.

As observed by a receiving processor, IPIs emitted from the same issuing processor
may be pended in any order, even when the receiving processor and the issuing
processor are the same.

As observed by a receiving processor, IPIs are pended after all prior loads and stores
emitted by the same issuing processor are visible if and only if the IPI is issued with a
st.rel (or proceeded by an mf), even when the receiving processor and the issuing
processor are the same. For all other cases, no ordering is implied between IPI
transactions and prior cacheable or uncached memory references.

As observed by a receiving processor, no ordering is implied between IPIs and
subsequent loads/stores from the same issuing processor, even when the receiving
processor and the issuing processor are the same. Subsequent loads or stores may
become visible before an IPI is seen as pending. Data or instruction serialization
operations, memory fences (mf or mf.a), or st.rel do not ensure an IPI is pending at
the target processor (including self) by a given point in program execution on the local
processor.

5.8.4.3 Interrupt Acknowledge (INTA) Cycle

Intel 8259A-compatible external interrupt controllers can not issue interrupt messages
and therefore do not specify an external interrupt vector number when the interrupt
request is generated. When accepting an external interrupt, software must inspect the
vector number supplied by the IVR register. If the vector matches the vector number
assigned to the external controller (can be ExtINT, or any other vector number based
on software convention), software must acquire the actual external interrupt vector
number from the external interrupt controller by issuing a 1-byte load from the INTA
Byte.

The INTA Byte is located within the upper half of the Processor Interrupt Block, at offset
0x1E0000 from the base. A single byte load from the INTA address causes the
processor to emit the INTA cycle on the processor system bus. An Intel
8259A-compatible external interrupt controller must respond with the actual interrupt
vector number as the data to be loaded. If two INTA cycles are required by the external
interrupt controller, the platform must provide this functionality. Any memory operation
to the INTA address other than a single byte load is undefined.

Software must issue an EOI to the local processor, to clear the interrupt in-service
indication for the vector associated with the external interrupt controller.

5.8.4.4 External Task Priority (XTP) Cycle

Some model-specific system configurations support an External Task Priority Register
(XTPR) per processor in external bus logic. A processor’s XTPR can be modified by
storing one byte of data to the processor’s XTP Byte address. This generates a special
bus transaction required to change the processor’s XTPR within the system. Please refer
to system-specific documentation for XTPR bit format and field definitions. The

Volume 2, Part 1: Interruptions 2:131

processor does not interpret any data stored to the XTP Byte address and all data bits
are passed to the external system unmodified. Any memory operation to the XTP
address other than a single byte store is undefined.

XTPR is written by operating system code to notify the system that the processor’s
current task priority has been changed. Based on this task priority information, system
implementations can steer interrupt messages from the I/O subsystems to the
processors that have registered the lowest task priority levels. The XTPR register is a
system performance hint and need not be updated by operating system code nor be
implemented in all system configurations. If the system does not implement the XTPR,
it must still accept a processor’s XTP cycle and discard it. Operating system code can
issue XTPR updates regardless of external system support.

5.8.5 Edge- and Level-sensitive Interrupts

The processor’s LINT pins, when present, directly support edge and level sensitive
interrupts, however all other interrupt sources are edge sensitive. A single external
interrupt messages is issued only on the assertion of an interrupt by external interrupt
controllers or devices, deassertion of an external interrupt sends no interrupt message
to the processor. Since the processor removes the pending interrupt when the interrupt
is serviced, the processor guarantees exactly-one interrupt acceptance for each
external interrupt message. By definition external interrupt messages are edge
sensitive.

Level sensitive external interrupts can be supported using edge sensitive interrupt
messages as follows:

• Software services the external interrupt generated by an edge interrupt message.

• Software removes the external interrupt request from the requesting device, the
device should then deassert its interrupt request line.

• To avoid spurious external interrupts, it is highly recommended that software issue
a dummy read from the device to ensure that the interrupt request has been
actually been removed before the interrupt is resampled in the next step.

• Software issues a command to the external interrupt controller to resample the
interrupt (typically an external interrupt controller end-of-interrupt command). The
external interrupt controller must issue another interrupt message back to the
processor if service is still required by the processor for a given vector number. For
example, if there are other devices still requiring service that are attached to the
same level sensitive interrupt request line.

§

2:132 Volume 2, Part 1: Interruptions

Volume 2, Part 1: Register Stack Engine 2:133

Register Stack Engine 6

The register stack engine (RSE) moves registers between the register stack and the
backing store in memory without explicit program intervention. The RSE operates
concurrently with the processor and can take advantage of unused memory bandwidth
to dynamically issue register spill and fill operations. In this manner, the latency of
register spill/fill operations can be overlapped with useful program work. The basic
principles of the register stack are discussed in Section 4.1, “Register Stack” on
page 1:47. This chapter presents the internal state, the programming model and the
interruption behavior of the register stack engine.

6.1 RSE and Backing Store Overview

The register stack frames are mapped onto a set of physical registers which operate as
a circular buffer containing the most recently created frames. The RSE spills and fills
these physical registers to/from a backing store in memory. The RSE moves registers
between the physical register stack and the backing store without explicit program
intervention. As indicated in Figure 6-1, the RSE operates on the physical stacked
registers outside of the currently active frame (as defined by CFM). These registers
contain the frames of the parent procedures of the current procedure.

As shown in Figure 6-1, the backing store is organized as a stack in memory that grows
from lower to higher addresses. The Backing Store Pointer (BSP) application register
contains the address of the first (lowest) memory location reserved for the current
frame (i.e., the location at which GR32 of the current frame will be spilled). RSE spill/fill
activity occurs at addresses below what is contained in the BSP since the RSE spills/fills
the frames of the current procedure’s parents. The BSPSTORE application register
contains the address at which the next RSE spill will occur. The address register which
corresponds to the next RSE fill operation, the BSP load pointer, is not architecturally
visible. The addresses contained in BSP and BSPSTORE are always aligned to an 8-byte
boundary. The backing store contains the local area of each frame. The output area is
not spilled to the backing store (unless it later becomes part of a callee’s local area).
Within each stack frame, lower-addressed registers are stored at lower memory
addresses. RSE spills of NaTed stacked general registers are subject to the same
memory update constraints as software spills (st8.spill) of NaTed static general
registers (see “Register Spill and Fill” on page 1:62).

The RSE also spills/fills the NaT bits corresponding to the stacked registers. The NaT
bits corresponding to the static subset must be spilled/filled as necessary by software.
The NaT bits are the 65th bit of each general register. The NaT bits for the stacked
subset are spilled/filled in groups of 63 corresponding to 63 consecutive physical
stacked registers. When the RSE spills a register to the backing store the corresponding
NaT bit is copied to the RSE NaT collection (RNAT) application register. Whenever bits
8:3 of BSPSTORE are all ones, the RSE stores RNAT to the backing store. As shown in
Figure 6-2, this results in a backing store memory image in which every 63 register
values are followed by a collection of NaT bits. Bit 0 of the NaT collection corresponds to
the first (lowest addressed) of the 63 register values; bit 62 corresponds to the 63rd
register value. Bit 63 of the NaT collection is always written as zero. When the RSE fills

2:134 Volume 2, Part 1: Register Stack Engine

a stacked register from the backing store it also fills the register’s NaT bit. Whenever
bits 8:3 of the RSE backing store load pointer are all ones, the RSE reloads a NaT
collection from the backing store. Bit 63 of the NaT collection is ignored when read from
the backing store.

Figure 6-1. Relationship Between Physical Registers and Backing Store

Figure 6-2. Backing Store Memory Format

procA

procB

procC

sola

sofc

solb

Unallocated

Unallocated

Higher
Memory

Addresses

Higher
Register

Addresses

call

return

AR[BSP]

RSE
Loads/Stores

procA

procB

Currently
Active Frame

procA’s
Ancestors

Backing StorePhysical Stacked Registers

procA calls procB calls procC

AR[BSPSTORE]

00 111111

01 000000

01 111110

01 111111

10 000000

10 111110

10 111111

11 000000

NaT Collection

63 Stacked
General Registers

63 Stacked
General Registers

NaT Collection

8 Bytes

BSPSTORE{10:3}

Volume 2, Part 1: Register Stack Engine 2:135

The RSE operates concurrently and asynchronously with respect to instruction
execution by taking advantage of unused memory bandwidth to dynamically perform
register spill and fill operations. The algorithm employed by the RSE to determine
whether and when to spill/fill is implementation dependent. Software can not depend
on the spill/fill algorithm. To ensure that the processor and RSE activities do not
interfere with each other, software should not access stacked registers outside of the
current stack frame. The architecture guarantees register stack integrity by faulting on
writes to out-of-frame registers. Reads from out-of-frame registers may interact with
RSE operations and return undefined data values. However, out-of-frame reads are
required to propagate NaT bits.

The operation of the RSE is controlled by the Register Stack Configuration (RSC)
application register. Activity between the processor and the RSE is synchronized only
when alloc, flushrs, loadrs, br.ret, or rfi instructions actually require registers to
be spilled or filled, or when software explicitly requests RSE synchronization by
executing a mov to/from RSC, BSPSTORE or RNAT application register instruction.

6.2 RSE Internal State

Table 6-1 describes architectural state that is maintained by the register stack engine.
The RSE internal state elements described here are not directly exposed to the
programmer as architecturally visible registers. As a consequence, RSE internal state
does not need to be preserved across context switches or interruptions. Instead, it is
modified as the side-effect of register stack-related instructions. To describe the effects
of these instructions a complete definition of the RSE internal state is essential. To
distinguish them from architecturally visible resources, all RSE internal state elements
are prefixed with “RSE.” Other RSE related resources are architecturally visible and are
exposed to software as application registers: RSC, BSP, BSPSTORE, and RNAT.

Table 6-1. RSE Internal State

Name Description Corresponds To

RSE.N_STACKED_PHYS Number of Stacked Physical registers:
Implementation dependent size of the stacked
physical register file.

RSE.BOF Bottom-of-frame register number: Physical
register number of GR32.

AR[BSP]

RSE.StoreReg RSE Store Register number: Physical register
number of next register to be stored by RSE.

AR[BSPSTORE]

RSE.LoadReg RSE Load Register number: Physical register
number one greater than the next register to
load (modulo the number of stacked physical
registers).

RSE.BspLoad

RSE.BspLoad Backing Store Pointer for memory loads: 64-bit
Backing Store Address 8 bytes greater than the
next address to be loaded by the RSE.

RSE.BspLoad

RSE.RNATBitIndex RSE NaT Collection Bit Index: 6-bit wide RNAT
Collection Bit Index (defines which RNAT
collection bit gets updated)

AR[BSPSTORE]{8:3}

RSE.CFLE RSE Current FrameLoad Enable: Control bit
that permits the RSE to load registers in the
current frame after a br.ret or rfi.

2:136 Volume 2, Part 1: Register Stack Engine

6.3 Register Stack Partitions

The processor’s physical register file provides at least 96 stacked registers. The actual
number of stacked registers (RSE.N_STACKED_PHYS) is implementation dependent
and must be an even multiple of 16. Figure 6-3 illustrates the circular nature of the
physical register file, and shows the correspondence of the registers to the backing
store. Figure 6-3 also shows the four partitions of the stacked register file:

Clean partition (lightly-shaded): registers that contain values from parent
procedure frames. The registers in this partition have been successfully spilled to
the backing store by the RSE and their contents have not been modified since they
were written to the backing store.

Dirty partition (medium-shaded): registers that contain values from parent
procedure frames. The registers in this partition have not yet been spilled to the
backing store by the RSE. The number of registers contained in the dirty partition
(distance between RSE.StoreReg and RSE.BOF) is referred to as RSE.ndirty.

Current frame (shaded dark): stacked registers allocated for computation. The
position of the current frame in the physical stacked register file is defined by the
Bottom-of-frame register (RSE.BOF). The number of registers in the current frame
is defined by the size of frame field in the current frame marker (CFM.sof).

Invalid partition (diagonally striped): registers outside the current frame that do
not contain values from parent procedure frames. They are immediately available
for allocation into the current frame or for RSE load operations.

RSE.ndirty Number of dirty registers on the register stack

RSE.ndirty_words Number of dirty words on the register stack plus
corresponding number of NaT collection
registers

AR[BSP] -
AR[BSPSTORE]

Table 6-1. RSE Internal State (Continued)

Name Description Corresponds To

Volume 2, Part 1: Register Stack Engine 2:137

The boundaries between the four register stack partitions are defined by the current
frame marker (CFM) and three physical register numbers: a load, store and
bottom-of-frame register number. As described in Table 6-1 each of these physical
register numbers has a corresponding 64-bit backing store memory address pointer.
(For example, AR[BSP] always contains the address where GR[32] of the current frame
will be stored.)

Figure 6-3 also shows the effects of various instructions on the partition boundaries.
RSE loads use invalid registers. RSE stores use dirty registers. Eager RSE loads and
stores grow the clean partition. A br.call, brl.call, or cover instruction can increase
the bottom-of-frame pointer (RSE.BOF) which moves registers from the current frame
to the dirty partition. An alloc may shrink or grow the current frame by updating
CFM.sof. A br.ret or rfi instruction may shrink or grow the current frame by updating
both the bottom-of-frame pointer (RSE.BOF) and CFM.sof.

6.4 RSE Operation

The register stack backing store is organized as a stack in memory that grows from
lower addresses towards higher addresses. The top of the backing store stack is defined
by the Backing Store Pointer (BSP) application register, which points to the first
memory location reserved for the current frame. The RSE load and store activities take

Figure 6-3. Four Partitions of the Register Stack

Physical Stacked Registers

Backing Store

RSE.BOF

CurrentDirtyClean

Invalid

AR[BSP]RSE.BspLoad AR[BSPSTORE]

RSE Store

RSE.LoadReg RSE.StoreReg

call, cover

Higher Addresses

return, rfiRSE Load return, rfi, alloc

CFM.sof

2:138 Volume 2, Part 1: Register Stack Engine

place at lower addresses, defined relative to BSP by the sizes of the clean and dirty
partitions. Although the stack is conceptually infinite in both directions, the effective
base of the stack is expected to be the first memory location of the first page allocated
to the backing store.

To allow the highest possible degree of concurrent execution, the processor and the
RSE operate independently of each other during normal program execution. The RSE
distinguishes between mandatory and eager load/store operations. Mandatory
load/store operations occur as the result of alloc, flushrs, loadrs, br.ret or rfi
instructions. Eager operations occur when the RSE is speculatively working ahead of
program execution, and it is not known whether this register spill/fill is actually
required by the program.

When the RSE works in the background, it issues eager RSE spill and fill operations to
extend the size of the clean partition in both directions—by decreasing the RSE load
pointer and loading values from the backing store into invalid registers (eager RSE
load), and by saving dirty registers to the backing store and increasing the RSE store
pointer (eager RSE store). Allocation of a sufficiently large frame (using alloc) or
execution of a flushrs instruction may cause the RSE to suspend program execution
and issue mandatory RSE stores until the required number of registers have been
spilled to the backing store. Similarly a br.ret or rfi back to a sufficiently large frame
or execution of a loadrs instruction may cause the RSE to suspend program execution
and issue mandatory RSE loads until the required number of registers have been
restored from the backing store. The RSE only operates in the foreground and suspends
program execution whenever forward progress of the program actually requires
registers to be spilled or filled.

Table 6-2 describes the RSE operation instructions and state modifications.

Table 6-2. RSE Operation Instructions and State Modification

Affected State

Instruction

alloc
r1=ar.pfs,i,l,
o,ra

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete Register Frame”
on page 2:146.

br.calla, brl.calla br.reta rfi
when CR[IFS].v = 1

AR[BSP]{63:3} unchanged AR[BSP]{63:3} + CFM.sol +
(AR[BSP]{8:3} + CFM.sol)/63

AR[BSP]{63:3} -
AR[PFS].pfm.sol -
(62-AR[BSP]{8:3}+
AR[PFS].pfm.sol)/63

AR[BSP]{63:3} -
CR[IFS].ifm.sof -
(62-AR[BSP]{8:3}+
CR[IFS].ifm.sof)/63

AR[PFS] unchanged AR[PFS].pfm = CFM
AR[PFS].pec = AR[EC]
AR[PFS].ppl = PSR.cpl

unchanged unchanged

GR[r1] AR[PFS] N/A N/A N/A

CFM CFM.sof = i+l+o
CFM.sol = i+l
CFM.sor = r >> 3

CFM.sof -= CFM.sol
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

AR[PFS].pfm
or b

CFM.sof = 0
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

b. Normal br.ret instructions restore CFM with AR[PFS].pfm. However, if a bad PFS value is read by the br.ret instruction, all
CFM fields are set to zero. See “Bad PFS used by Branch Return” on page 2:143.

CR[IFS].ifm

Volume 2, Part 1: Register Stack Engine 2:139

6.5 RSE Control

The RSE can be controlled at all privilege levels by means of three instructions (cover,
flushrs, and loadrs) and by accessing four application registers (mov to/from RSC,
BSP, BSPSTORE and RNAT). This section first presents each of the RSE application
registers, and then discusses the three RSE control instructions.

6.5.1 Register Stack Configuration Register

The layout of the Register Stack Configuration application register (RSC) is defined in
Section 3.1.8.2, “Register Stack Configuration Register (RSC – AR 16)” on page 1:29.
This section describes the semantics of the mode, the privilege level and the byte order
fields of the RSC. The loadrs field is described as part of the loadrs instruction in
Section 6.5.4, “RSE Control Instructions” on page 2:142.

RSE Mode: Two mode bits in the RSC register determine when the RSE generates
register spill or fill operations. When both mode bits are zero (enforced lazy mode) the
RSE issues only mandatory loads and stores (when an alloc, br.ret, flushrs or rfi
instruction requires registers to be spilled or filled). Bit 0 of the RSC.mode field enables
eager RSE stores and bit 1 enables eager RSE loads. Table 6-3 defines all four possible
RSE modes. Please see the processor-specific documentation for further information on
the RSE modes implemented by the Itanium processor.

The algorithm that decides whether and when to speculatively perform eager register
spill or fill operations is implementation dependent. Software may not make any
assumptions about the RSE load/store behavior when the RSC.mode is non-zero.
Furthermore, access to the BSPSTORE and RNAT application registers and the
execution of the loadrs instructions require RSC.mode to be zero (enforced lazy
mode). If loadrs, move to/from BSPSTORE or move to/from RNAT are executed when
RSC.mode is non-zero an Illegal operation fault is raised. Eager spill/fill of the RNAT
register to/from the backing store is only permitted if the RSE is in store/load intensive
or eager mode. In enforced lazy mode, the RSE may spill/fill the RNAT register only if a
subsequent mandatory register spill/fill is required.

RSE Privilege Level: When address translation is enabled (PSR.rt is one), the RSE
operates at a privilege level defined by two privilege level bits in the Register Stack
Configuration register (RSC.pl). All privilege level checks for RSE virtual accesses are
performed using the privilege level in RSC.pl. When the RSC is written, the privilege
level bits are clipped to the current privilege level of the process, i.e., the numerical
maximum of the current privilege level and the privilege level in the source register is
written to RSC.pl.

Table 6-3. RSE Modes (RSC.mode)

Mode RSE Loads RSE Stores RSC.mode

Enforced Lazy Mandatory only Mandatory only 00

Store Intensive Mandatory only Eager and Mandatory 01

Load Intensive Eager and Mandatory Mandatory only 10

Eager Eager and Mandatory Eager and Mandatory 11

2:140 Volume 2, Part 1: Register Stack Engine

Protection is also checked based on the current entries in the data TLB. The RSE always
remains coherent with respect to the data TLB. If a translation that is being used by the
RSE is changed or purged, the RSE will immediately begin using the new translation or
suffer a TLB miss. Only mandatory loads and stores can cause RSE memory related
faults. Details on RSE fault delivery are described in “RSE Interruptions” Although eager
RSE loads and stores do not cause interruptions they can, under certain conditions,
cause a VHPT walk and TLB insert. Details on when RSE loads and stores can cause a
VHPT walk are described in “VHPT Environment” on page 2:67.

The RSE expects its backing store to be mapped to cacheable speculative memory. If
RSE spill/fill transactions are performed to non-speculative memory that may contain
I/O devices, system behavior is unpredictable.

RSE Byte Order: Because the RSE runs asynchronously with the processor, it may be
running on behalf of a context with a different byte order from the current one.
Consequently, the RSE defines its own byte ordering bit: RSC.be. When RSC.be is zero,
registers are stored in little-endian byte order (least significant bytes to lower
addresses). When RSC.be is one, registers are stored in big-endian byte order (most
significant bytes to lower addresses). RSC.be also determines the byte order of NaT
collections spilled/filled by the RSE. RSC.be may be written by code at any privilege
level. Changes to RSC.be should only be made by software when RSC.mode is zero.
Failure to do so results in undefined backing store contents.

6.5.2 Register Stack NaT Collection Register

As described in Section 6.1, “RSE and Backing Store Overview” on page 2:133, the RSE
is responsible for saving and restoring NaT bits associated with the stacked registers to
and from the backing store. The RSE writes its NaT collection register (the RNAT
application register) to the backing store whenever BSPSTORE{8:3} = 0x3F (1 NaT
collection for every 63 registers). The RNAT acts as a temporary holding area for up to
63 unsaved NaT bits. The RSE NaT collection bit index (RSE.RNATBitIndex) determines
which bit of the RNAT register receives the NaT bit of a spilled register as the result of
an RSE store. The six-bit wide RSE.RNATBitIndex is always equal to BSPSTORE{8:3}.
As a result, RNAT{x} corresponds to the register saved at

concatenate(BSPSTORE{63:9},x{5:0},0{2:0}).

The RSE never saves partial NaT collections to the backing store, so software must save
and restore the RNAT application register when switching the backing store pointer.
RSE.RNATBitIndex determines which RNAT bits are valid. Bits
RNAT{RSE.RNATBitIndex:0} contain defined values, and bits
RNAT{62:RSE.RNATBitIndex+1} contain undefined values. Bit 63 of the RNAT
application register always reads as zero. Writes to bit 63 of the RNAT application
register are ignored. The execution of RSE control instructions mov to BSPSTORE and
loadrs as well as an RSE spill of the RNAT register cause the contents of the RNAT
register to become undefined. The RNAT application register can only be accessed when
RSC.mode is zero. If RSC.mode is non-zero, accessing the RNAT application register
results in an Illegal Operation fault.

Volume 2, Part 1: Register Stack Engine 2:141

6.5.3 Backing Store Pointer Application Registers

The RSE defines two Backing Store Pointer application registers: BSPSTORE and BSP.
Since the RSE backing store pointers are always 8-byte aligned, bits {2:0} of the
backing store pointers always read as zero. When writing the BSPSTORE application
register, bits {2:0} in the presented address are ignored.

The RSE Backing Store Pointer for memory stores (BSPSTORE) is a 64-bit application
register that provides the main interface to the three RSE backing store memory
pointers: BSP, BSPSTORE and RSE.BspLoad. The BSPSTORE application register can
only be accessed when RSC.mode is zero. If RSC.mode is non-zero, accessing
BSPSTORE results in an Illegal Operation fault.

Reading BSPSTORE (mov from BSPSTORE application register) returns the address of
the next RSE store.

Writing BSPSTORE (mov to BSPSTORE application register) has side-effects on all three
RSE pointers and the NaT collection process. The operation is defined as follows: the
BSPSTORE and RSE.BspLoad pointers are both set to the address presented, which
forces the size of the clean partition to zero. Writes to the BSPSTORE application
register do not change the size of the dirty partition: the BSP pointer is set to the
address presented plus the size of the dirty partition plus the size of any intervening
NaT collections. The dirty partition is preserved to allow software to change the backing
store pointer without having to flush the register stack. Writing BSPSTORE causes the
contents of the RNAT register to become undefined. Therefore software must preserve
the contents of RNAT prior to writing BSPSTORE. After writing to BSPSTORE, the NaT
collection bit index (RSE.RNATBitIndex) is set to bits {8:3} of the presented address. If
an unimplemented address in BSPSTORE is used by a mandatory RSE spill or fill, an
Unimplemented Data Address fault is raised.

The RSE Backing Store Pointer (BSP) is a 64-bit read-only application register. Writing
BSP (mov to BSP application register) results in an Illegal Operation fault. Reads from
BSP (mov from BSP application register) return the address of the top of the register
stack in memory. This location is the backing store address to which the current GR32
would be written. Reading BSP does not have any side-effect on any of the internal RSE
pointers or the NaT collection process. Therefore, BSP can be read regardless of the
RSE mode, i.e., even when RSC.mode is non-zero. Since BSP is determined by
BSPSTORE and the size of the dirty partition, it is possible for BSPSTORE to contain an
implemented address and for BSP to contain an unimplemented address. BSP reads
always return a full 64-bit (possibly unimplemented) address; only a subsequent data
memory reference with an unimplemented address will cause an Unimplemented Data
Address fault.

Table 6-4 summarizes the effects of the three instructions that access the backing store
pointer application registers.

2:142 Volume 2, Part 1: Register Stack Engine

6.5.4 RSE Control Instructions

This section describes the RSE control instructions: cover, flushrs and loadrs. The
effects of the three RSE control instructions on the RSE state are summarized in
Table 6-5.

The cover instruction adds all registers in the current frame to the dirty partition, and
allocates a zero-size current frame. As a result AR[BSP] is updated. cover clears the
register rename base fields in the current frame marker CFM. If PSR.ic is zero, the
original value of CFM is copied into CR[IFS].ifm and CR[IFS].v is set to one. The cover
instruction must the last instruction in an instruction group; otherwise, operation is
undefined.

The flushrs instruction spills all dirty registers to the backing store. When it
completes, RSE.ndirty is defined to be zero, and BSPSTORE equals BSP. Since flushrs
may cause RSE stores, the RNAT application register is updated. A flushrs instruction
must be the first instruction in an instruction group otherwise the results are undefined.

The loadrs instruction ensures that a specified portion of the backing store below the
current BSP is present in the physical stacked registers. The size of the backing store
section is specified in the loadrs field of the RSC application register (AR[RSC].loadrs).
After loadrs completes, all registers and NaT collections between the current BSP and
the tear-point (BSP-(RSC.loadrs{13:3} << 3)), and no more than that, are guaranteed
to be present and marked as dirty in the stacked physical registers. When loadrs
completes BSPSTORE and RSE.BspLoad are defined to be equal to the backing store
tear-point address. All other physical stacked registers are marked invalid.

• If the tear-point specifies an address below RSE.BspLoad, the RSE issues
mandatory loads to restore registers and NaT collections. All registers between the
current BSP and the tear-point are marked dirty.

• If the RSE has already loaded registers beyond the tear-point when the loadrs
instruction executes, the RSE marks clean registers below the tear-point as invalid
and marks clean registers above the tear-point as dirty.

• If the tear-point specifies an address greater than BSPSTORE, the RSE marks clean
and dirty registers below the tear-point as invalid (in this case dirty registers are
lost).

Table 6-4. Backing Store Pointer Application Registers

Affected State

Instruction

Read BSP
mov r1=AR[BSP]

Read BSPSTORE
mov r1=AR[BSPSTORE]

Write BSPSTOREa

mov AR[BSPSTORE]=r2

a. Writing to AR[BSPSTORE] has undefined behavior with an incomplete frame. See “RSE Behavior with an
Incomplete Register Frame” on page 2:146.

GR[r1] AR[BSP] AR[BSPSTORE] N/A

AR[BSP]{63:3} Unchanged Unchanged (GR[r2]{63:3} + RSE.ndirty) +
((GR[r2]{8:3} + RSE.ndirty)/63)

AR[BSPSTORE]{63:3} Unchanged Unchanged GR[r2]{63:3}

RSE.BspLoad {63:3} Unchanged Unchanged GR[r2]{63:3}

AR[RNAT] Unchanged Unchanged UNDEFINED

RSE.RNATBitIndex Unchanged Unchanged GR[r2]{8:3}

Volume 2, Part 1: Register Stack Engine 2:143

By specifying a zero RSC.loadrs value loadrs can be used to invalidate all stacked
registers outside the current frame. loadrs causes the contents of the RNAT register to
become undefined. The NaT collection index is set to bits {8:3} of the new BSPSTORE.
A loadrs instruction must be the first instruction in an instruction group otherwise the
results are undefined. The following conditions cause loadrs to raise an Illegal
Operation fault:

• If RSC.mode is non-zero.

• If both CFM.sof and RSC.loadrs are non-zero.

• If RSC.loadrs specifies more words to be loaded than will fit in the stacked physical
register file (RSE.N_STACKED_PHYS).

6.5.5 Bad PFS used by Branch Return

On a br.ret, if the PFS application register defines an output area which is larger than
the number of implemented stacked registers minus the size of dirty partition
((AR[PFS].sof - AR[PFS].sol) > (RSE.N_STACKED_PHYS - RSE.ndirty)), the return will
not restore CFM with AR[PFS].pfm (normal behavior); instead, the return sets all fields
in the CFM (of the procedure being returned to) to zero.

Typical procedure call and return sequences that preserve PFS values and that do not
use cover or loadrs instructions will not encounter this situation.

The RSE will detect the above condition on a br.ret, and update its state as follows:

• The register rename base (RSE.BOF), AR[BSP], and AR[BSPSTORE] are updated as
required by the return.

Table 6-5. RSE Control Instructions

Affected State
Instruction

cover flushrsa

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete
Register Frame” on page 2:146.

loadrsa

AR[BSP]{63:3} AR[BSP]{63:3}+ CFM.sof +
(AR[BSP]{8:3} + CFM.sof)/63

Unchanged Unchanged

AR[BSPSTORE]{63:3} Unchanged AR[BSP]{63:3} AR[BSP]{63:3} -
AR[RSC].loadrs{13:3}

RSE.BspLoad{63:3} Unchanged Model specificb

b. In general, eager RSE implementations will preserve RSE.BspLoad during a flushrs. Lazy RSE
implementations may set RSE.BspLoad to AR[BSPSTORE] after flushrs completes or faults.

AR[BSP]{63:3} -
AR[RSC].loadrs{13:3}

AR[RNAT] Unchanged Updated UNDEFINED

RSE.RNATBitIndex Unchanged AR[BSPSTORE]{8:3} AR[BSPSTORE]{8:3}

CR[IFS] if (PSR.ic == 0) {
CR[IFS].ifm = CFM
CR[IFS].v = 1}

Unchanged Unchanged

CFM CFM.sof = 0
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

Unchanged Unchanged

2:144 Volume 2, Part 1: Register Stack Engine

• The CFM (after the return) is forced to zero; i.e., all CFM fields (including CFM.sof
and CFM.sol) are set to zero.

• The registers from the returned-from frame and the preserved registers from the
returned-to frame are added to the invalid partition of the register stack.

• The dirty partition of the register stack is shrunk by AR[PFS].pfm.sol.

• The clean partition of the register stack remains unchanged. RSE.BspLoad and
RSE.LoadReg remain unchanged.

• No other indication is given to software.

Since the size of the current frame is set to zero, the contents of some (possibly all)
stacked GRs may be overwritten by subsequent eager RSE operations or by subsequent
instructions allocating a new stack frame and then targeting a stacked GR. Therefore,
explicit register stack management sequences that manipulate PFS, use the cover
instruction, or use the loadrs instruction must avoid this situation by executing one of
the two following code sequences prior to a br.ret:

• Use a flushrs instruction prior to the br.ret. This preserves all dirty registers to
memory, and sets RSE.ndirty to zero, which avoids the condition.

• Use a loadrs instruction with an AR[RSC].loadrs value in the following range:

AR[RSC].loadrs <= 8*(ndirty_max + ((62 - AR[BSP]{8:3} + ndirty_max) / 63)),
where ndirty_max = (RSE.N_STACKED_PHYS - (AR[PFS].sof - AR[PFS].sol))

This adjusts the size of the dirty partition appropriately to avoid the condition. A loadrs
with RSC.loadrs=0 works on all processor models, regardless of the number of
implemented stacked physical registers. Note that loadrs may cause registers in the
dirty partition to be lost.

6.6 RSE Interruptions

Although the RSE runs asynchronously to processor execution, RSE related
interruptions are delivered synchronously with the instruction stream. These RSE
interruptions are a direct consequence of register stack-related instructions such as:
alloc, br.ret, rfi, flushrs, loadrs, or mov to/from BSP, BSPSTORE, RSC, PFS, IFS,
or RNAT. Register spills and fills that are executed by the RSE in the background (eager
RSE loads or stores) do not raise interruptions. If a faulting/trapping register spill or fill
operation is required for software to make forward progress (mandatory RSE load or
store) then the RSE will raise an interruption.

Mandatory RSE stores occur in the context of alloc and flushrs instructions only. Any
faults raised by these instructions are delivered on the issuing instruction. Faults raised
by mandatory RSE loads caused by a loadrs are delivered on the issuing instruction.
Mandatory RSE loads which fault while restoring the frame for a br.ret or rfi deliver
the fault on the target instruction, and the ISR.ir (incomplete register frame) bit is set.
When a mandatory RSE load faults, AR[BSPSTORE] points to a backing store location
above the faulting address reported in CR[IFA]. This allows handlers that service RSE
load faults to use the backing store switch routine described in “Switch from
Interrupted Context” on page 2:148.

The br.ret and the rfi instructions set the RSE Current Frame Load Enable bit
(RSE.CFLE) to one if the register stack frame being returned to is not entirely contained
in the stacked register file. This enables the RSE to restore registers for the current

Volume 2, Part 1: Register Stack Engine 2:145

frame of the target instruction. When RSE.CFLE is set, instruction execution is stalled
until the RSE has completely restored the current frame or an interruption occurs. This
is the only time that the RSE issues any memory traffic for the current frame.
Interruption delivery clears RSE.CFLE which allows an interruption handler to execute in
the presence of an incomplete frame (e.g., to handle the fault raised by the mandatory
RSE load). The RSE.CFLE bit is RSE internal state and is not architecturally visible.

Table 6-6 summarizes RSE raised interruptions.

Table 6-6. RSE Interruption Summary

Instruction Interruption Description

alloc Illegal Operation fault Malformed alloc immediate.

alloc Reserved Register/Field fault alloc instruction which attempted to change the size
of the rotating region when one or more of the RRB
values in CFM were non-zero.

alloc,
flushrs,
loadrs

Unimplemented Data Address fault AR[BSPSTORE] contains an unimplemented address.

Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault AR[BSPSTORE] pointed to a NaTVal data page.

Data Key Miss fault

Data Key Permission fault

Data Access Rights fault

Data Dirty Bit fault

Data Access Bit fault

Data Debug fault

br.call,
brl.call

No RSE related interruptions

br.ret No RSE load related faults RSE load related faults are delivered on target
instruction.

rfi No RSE related interruptions RSE load related faults are delivered on target
instruction.

Target of
br.ret or
rfi

IR Unimplemented Data Address
fault

Mandatory RSE load targeted an unimplemented
address.

IR Data Nested TLB fault br.ret with PSR.ic = 0 or rfi executed when IPSR.ic
= 0.

IR Alternate Data TLB fault

IR VHPT Data TLB fault

IR Data TLB fault

IR Data Page Not Present fault

IR Data NaT Page Consumption fault RSE.BspLoad pointed at a NaTPage.

IR Data Key Miss fault

IR Data Key Permission fault

IR Data Access Rights fault

IR Data Access Bit fault

IR Data Debug fault

2:146 Volume 2, Part 1: Register Stack Engine

6.7 RSE Behavior on Interruptions

When the processor raises an interruption, the current register stack frame remains
unchanged. If PSR.ic is one, the valid bit in the Interruption Function State register
(IFS.v) is cleared. When the IFS.v bit is clear, the contents of the interruption frame
marker field (IFS.ifm) are undefined.

While an interruption handler is running and the RSE is in store/load intensive or eager
mode, the RSE continues spilling/filling registers to/from the backing store on behalf of
the interrupted context as long as the registers are not part of the current frame as
defined by CFM.

A sequence of mandatory RSE loads or stores (from alloc, br.ret, flushrs, loadrs
and rfi) can be interrupted by an external interrupt.

When PSR.ic is 0, faults taken on mandatory RSE operations may not be recoverable.

6.8 RSE Behavior with an Incomplete Register Frame

The current register frame is considered incomplete when one of the mandatory RSE
loads after a br.ret or a rfi faults, leaving BSPSTORE pointing to a location above BSP
(i.e., RSE.ndirty_words is negative). The frame becomes complete when
RSE.ndirty_words becomes non-negative, either by executing a cover instruction, or by
handling the fault and completing the original sequence of mandatory RSE loads.

When the current frame is incomplete the following instructions have undefined
behavior: alloc, br.call, brl.call, br.ret, flushrs, loadrs, and move to
BSPSTORE. Software must guarantee that the current frame is complete before
executing these instructions.

6.9 RSE and ALAT Interaction

The ALAT (see “Data Speculation” on page 1:63) uses physical register addresses to
track advanced loads. RSE.BOF may only change as the result of a br.call (by
CFM.sol), cover (by CFM.sof), br.ret (by AR[PFM].sol) or rfi (by CR[IFS].ifm.sof
when CR[IFS].v =1). This ensures, for ALAT invalidation purposes, that hardware does
not update virtual to physical register address mapping, unless explicitly instructed to
do so by software.

When software performs backing store switches that could cause program values to be
placed in different physical registers, then the ALAT must be explicitly invalidated with
the invala instruction. Typically this happens as part of a process or thread context
switch, longjmp or call stack unwind, when software re-writes AR[BSPSTORE], but
cannot guarantee that RSE.BOF was preserved.

A stacked register is said to be deallocated when an alloc, br.ret, or rfi instruction
changes the top of the current frame such that the register is no longer part of the
current frame. Once a stacked register is deallocated, its value, its corresponding NaT
bit, and its ALAT state are undefined. If that register is subsequently made part of the

Volume 2, Part 1: Register Stack Engine 2:147

current frame again (either via another alloc instruction, or via a br.ret or rfi to a
previous frame that contained that register), the value stored in the register, the NaT
bit for the register, and the corresponding ALAT entry for the register remain undefined.

RSE stores do not invalidate ALAT entries. Therefore, software cannot use the ALAT to
trace RSE stores to the backing store.

Note: While an implementation is allowed to remove entries from the ALAT at any
time, performance considerations strongly encourage not invalidating ALAT
entries due to RSE stores.

6.10 Backing Store Coherence and Memory Ordering

RSE loads and stores are coherent with respect to the processor’s data cache at all
times. The backing store below BSPSTORE is defined to be consistent with the register
stack (the memory image contains consecutive register values and NaT collections).
Addresses below BSPSTORE are not modified by the RSE until br.ret, rfi or a move to
BSPSTORE causes BSP to drop below the original BSPSTORE value. The RSE never
writes to a memory address greater than or equal to BSP.

In order for software to modify a value in the backing store and guarantee that it be
loaded by the RSE, software must first place the RSE into enforced lazy mode
(RSC.mode=0), and read BSP and BSPSTORE to determine the location of the RSE
store pointer. If the location to be modified lies between BSPSTORE and BSP, software
must issue a flushrs, update the backing store location in memory, and issue a loadrs
instruction with the RSC.loadrs set to zero (this invalidates the current contents of the
physical stacked registers, except the current frame, which forces the RSE to reload
registers from the backing store). If the location to be modified lies below BSPSTORE,
unnecessary memory traffic can be avoided as follows: software must read the RNAT
application register, update the backing store location in memory, rewrite BSPSTORE
with the original value, and then rewrite RNAT.

RSE loads and stores are weakly ordered. The flushrs and loadrs instructions do not
include an implicit memory fence. Turning on and off the RSE does not affect memory
ordering. To ensure ordering of RSE loads and stores on a multiprocessor system,
software is required to issue explicit memory fence (mf) instructions.

6.11 RSE Backing Store Switches

The implementation of system calls, operating system context switches, user-level
thread packages, debugging software, and certain types of exception handling (e.g.,
setjmp/longjmp, structured exception handling and call stack unwinding) require
explicit user-level control of the RSE and/or knowledge of the backing store format in
memory. Therefore, the RSE and the backing store can be controlled at all privilege
levels.

Three RSE backing store switches are described here:

1. Switching from an interrupted context (as part of exception handler or interrupt
bubble-up code)

2. Returning to a previously interrupted context

2:148 Volume 2, Part 1: Register Stack Engine

3. Non-preemptive, synchronous backing store switch (covers system calls,
user-level thread and operating system context switches)

Failure to follow these sequences may result in undefined RSE and processor behavior.

6.11.1 Switch from Interrupted Context

To switch from the backing store of an interrupted context to a new backing store:

1. Read and save the RSC and PFS application registers.

2. Issue a cover instruction for the interrupted frame.

3. Read and save the IFS control register.

4. Place RSE in enforced lazy mode by clearing both RSC.mode bits.

5. Read and save the BSPSTORE and RNAT application registers.

6. Write BSPSTORE with the new backing store address.

7. Read and save the new BSP to calculate the number of dirty registers.

8. Select the desired RSE setting (mode, privilege level and byte order).

6.11.2 Return to Interrupted Context

To return to the backing store of an interrupted context:

1. Allocate a zero-sized frame.

2. Subtract the BSPSTORE value written in step 6 of Section 6.11.1, “Switch from
Interrupted Context” from the BSP value read in step 7 of Section 6.11.1, “Switch
from Interrupted Context” on page 2:148, and deposit the difference into
RSC.loadrs along with a zero into RSC.mode (to place the RSE into enforced lazy
mode).

3. Issue a loadrs instruction to insure that any registers from the interrupted
context which were saved on the new stack have been loaded into the stacked
registers.

4. Restore BSPSTORE from the interrupted context (saved in step 5 of Section
6.11.1, “Switch from Interrupted Context”).

5. Restore RNAT from the interrupted context (saved in step 5 of Section 6.11.1,
“Switch from Interrupted Context”).

6. Restore PFS and IFS from the interrupted context (saved in steps 1 and 3 of
Section 6.11.1, “Switch from Interrupted Context”).

7. Restore RSC from the interrupted context (saved in step 1 of Section 6.11.1,
“Switch from Interrupted Context”). This restores the setting of the RSE mode
bits as well as privilege level and byte order.

8. Issue an rfi instruction (IFS.ifm will become CFM).

6.11.3 Synchronous Backing Store Switch

A non-preemptive, synchronous backing store switch at any privilege level can be
accomplished as follows:

Volume 2, Part 1: Register Stack Engine 2:149

1. Read and save the RSC, BSP and PFS application registers.

2. Issue a flushrs instruction to flush the dirty registers to the backing store.

3. Place RSE in enforced lazy mode by clearing both RSC.mode bits.

4. Read and save the RNAT application register.

5. Invalidate the ALAT using the invala instruction when switching from code that
does not restore RSE.BOF to its original setting. A different RSE.BOF will cause
program values in the new context to be placed in different physical registers.
See “RSE and ALAT Interaction” on page 2:146 for details.

6. Write the new context’s BSPSTORE (was BSP after flushrs when switching out).

7. Write the new context’s PFS and RNAT.

8. Write the new context’s RSC which will set the RSE mode, privilege level and byte
order.

6.12 RSE Initialization

At processor reset the RSE is defined to be in enforced lazy mode, i.e., the RSC.mode
bits are both zero. The RSE privilege level (RSC.pl) is defined to be zero. RSE.BOF
points to physical register 32. The values of AR[PFS].pfm and CR[IFS].ifm are
undefined. The current frame marker (CFM) is set as follows: sof=96, sol=0, sor=0,
rrb.gr=0, rrb.fr=0, and rrb.pr=0. This gives the processor access to 96 stacked
registers.

The RSE performs no spill/fill operations until either an alloc, br.ret, rfi, flushrs or
loadrs require a mandatory RSE operation, or software explicitly enables eager RSE
operations. Software must provide the RSE with a valid backing store address in the
BSPSTORE application register prior to causing any RSE spill/fill operations. Failure to
initialize BSPSTORE results in undefined behavior.

§

2:150 Volume 2, Part 1: Register Stack Engine

Volume 2, Part 1: Debugging and Performance Monitoring 2:151

Debugging and Performance Monitoring 7

Processors based on the Itanium architecture provide comprehensive debugging and
performance monitoring facilities for both IA-32 and Itanium instructions. This chapter
describes the debug registers, performance monitoring registers and their
programming models. The debugging facilities include several data and instruction
break point registers, single step trap, breakpoint instruction fault, taken branch trap,
lower privilege transfer trap, instruction and data debug faults. The performance
monitoring facilities include two sets of registers to configure and collect various
performance-related statistics.

7.1 Debugging

Several Data Breakpoint Registers (DBR) and Instruction Breakpoint Registers (IBR)
are defined to hold address breakpoint values for data and instruction references. In
addition the following debugging facilities are supported:

• Single Step trap – When PSR.ss is 1, successful execution of each Itanium
instruction results in a Single Step trap. When PSR.ss is 1 or EFLAG.tf is 1,
successful execution of each IA-32 instruction results in an
IA_32_Exception(Debug) single step trap. After the trap, IIP and IPSR.ri point to
the next instruction to be executed. IIPA and ISR.ei point to the trapped
instruction. See “Single Stepping” for complete single stepping behavior.

• Break Instruction fault – execution of a break instruction results in a Break
Instruction fault. IIM is loaded with the immediate operand from the instruction.
IIM values are defined by software convention. break can be used for profiling,
debugging and entry into the operating system (although Enter Privileged Code
(epc) is recommended since it has lower overhead). Execution of the IA-32 INT 3
(break) instruction results in a IA_32_Exception(Break) trap.

• Taken Branch trap – When PSR.tb is 1, a Taken Branch trap occurs on every
taken Itanium branch instruction. When PSR.tb is 1, a IA_32_Exception(Debug)
taken branch trap occurs on every taken IA-32 branch instruction (CALL, Jcc, JMP,
RET, LOOP). This trap is useful for debugging and profiling. After the trap, IIP and
IPSR.ri point to the branch target instruction and IIPA and ISR.ei point to the
trapping branch instruction.

• Lower Privilege Transfer trap – When PSR.lp bit is 1, and an Itanium branch
demotes the privilege level (numerically higher), a Lower Privilege Transfer trap
occurs. This trap allows for auditing of privilege demotions, for example to remove
permissions which were granted to higher privilege code. After the trap, IIP and
IPSR.ri point to the branch target and IIPA and ISR.ei point to the trapping branch
instruction. IA-32 instructions can not raise this trap.

• Instruction Debug faults – When PSR.db is 1, any Itanium instruction memory
reference that matches the parameters specified by the IBR registers results in an
Instruction Debug fault. Instruction Debug faults are reported even if Itanium
instructions are nullified due to a false predicate. If PSR.id is 1, Itanium Instruction
Debug faults are disabled for one instruction. The successful execution of an
Itanium instruction clears PSR.id. When PSR.db is 1, any IA-32 instruction memory

2:152 Volume 2, Part 1: Debugging and Performance Monitoring

reference that matches the parameters specified by the IBR registers results in an
IA_32_Exception(Debug) fault. If PSR.id is 1 or EFLAG.rf is 1, IA-32 Instruction
Debug faults are disabled for one instruction. The successful execution of an IA-32
instruction clears the PSR.id and EFLAG.rf bits.

• Data Debug faults – When PSR.db is 1, any Itanium data memory reference that
matches the parameters specified by the DBR registers results in a Data Debug
fault. Data Debug faults are only reported if the qualifying predicate is true. Data
Debug faults can be deferred on speculative loads by setting DCR.dd to 1. If PSR.dd
is 1, Data Debug faults are disabled for one instruction or one mandatory RSE
memory reference. When PSR.db is 1, any IA-32 data memory reference that
matches the parameters specified by the DBR registers results in a
IA_32_Exception(Debug) trap. IA-32 data debug events are traps, not faults as
defined for the Itanium instruction set. The reported trap code returns the match
status of the first 4 DBR registers that matched during the execution of the IA-32
instruction. See “IA-32 Trap Code” on page 2:213 for trap code details. Zero, one or
more DBR registers may be reported as matching.

7.1.1 Data and Instruction Breakpoint Registers

Instruction or data memory addresses that match the Instruction or Data Breakpoint
Registers (IBR/DBR) shown in Figure 7-1 and Figure 7-2 and Table 7-1 result in an
Instruction or Data Debug fault. IA-32 Instruction or data memory addresses that
match the Instruction or Data Breakpoint Registers (IBR/DBR) result in an
IA_32_Exception(Debug) fault or trap. Even numbered registers contain breakpoint
addresses, odd registers contain breakpoint mask conditions. At least 4 data and 4
instruction register pairs are implemented on all processor models. Implemented
registers are contiguous starting with register 0.

When executing Itanium instructions, instruction and data memory addresses
presented for matching are always in the implemented address space. Programming an
unimplemented physical address into an IBR/DBR guarantees that physical addresses
presented to the IBR/DBR will never match. Similarly, programming an unimplemented
virtual address into an IBR/DBR guarantees that virtual addresses presented to the
IBR/DBR will never match.

Figure 7-1. Data Breakpoint Registers (DBR)

63 62 61 60 59 56 55 0

DBR0,2,4.. addr

DBR1,3,5.. r w ig plm mask

1 1 2 4 56

Figure 7-2. Instruction Breakpoint Registers (IBR)

63 62 61 60 59 56 55 0

IBR0,2,4.. addr

IBR1,3,5.. x ig plm mask

1 3 4 56

Volume 2, Part 1: Debugging and Performance Monitoring 2:153

Four privileged instructions, defined in Table 7-2, allow access to the debug registers.
Register access is indirect, where the debug register number is determined by the
contents of a general register. DBR/IBR registers can only be accessed at privilege level
0, otherwise a Privileged Operation fault is raised.

Table 7-1. Debug Breakpoint Register Fields (DBR/IBR)

Field Bits Description

addr 63:0 Match Address – 64-bit virtual or physical breakpoint address. Addresses are interpreted as
either virtual or physical based on PSR.dt, PSR.it or PSR.rt. Data breakpoint addresses trap
on load, store, semaphore, and mandatory RSE memory references. For Intel Itanium
instruction set references, IBR.addr{3:0} is ignored in the address match. For IA-32
instruction references, IBR.addr{31:0} are used in the match and IBR.addr{63:32} must be
zero to match. All 64 bits are implemented on all processors regardless of the number of
implemented address bits.

mask 55:0 Address Mask – determines which address bits in the corresponding address register are
compared in determining a breakpoint match. Address bits whose corresponding mask bits
are 1, must match for the breakpoint to be signaled, otherwise the address bit is ignored.
Address bits{63:56} for which there are no corresponding mask bits are always compared.
For IA-32 instruction references, IBR.mask{55:32} are ignored. All 56 bits are implemented
on all processors regardless of the number of implemented address bits.

plm 59:56 Privilege Level Mask – enables data breakpoint matching at the specified privilege level.
Each bit corresponds to one of the four privilege levels, with bit 56 corresponding to privilege
level 0, bit 57 with privilege level 1, etc. A value of 1 indicates that the debug match is
enabled at that privilege level.

w 62 Write match enable – When DBR.w is 1, any non-nullified mandatory RSE store, IA-32 or
Intel Itanium store, semaphore, probe.w.fault or probe.rw.fault to an address matching the
corresponding address register causes a breakpoint.

r 63 Read match enable – When DBR.r is 1, any non-nullified IA-32 or Intel Itanium load,
mandatory RSE load, semaphore, lfetch.fault, probe.r.fault or probe.rw.fault to an address
matching the corresponding address register causes a breakpoint. When DBR.r is 1, a VHPT
access that matches the DBR (except those for a tak instruction) will cause an
Instruction/Data TLB Miss fault. If DBR.r and DBR.w are both 0, that data breakpoint register
is disabled.

x 63 Execute match enable – When IBR.x is 1, execution of an IA-32 instruction or Intel Itanium
instruction in a bundle at an address matching the corresponding address register causes a
breakpoint. If IBR.x is 0, that instruction breakpoint register is disabled. Instruction
breakpoints are reported even if the qualifying predicate is false.

ig 62:60 Ignored

Table 7-2. Debug Instructions

Mnemonic Description Operation
Instr
Type

Serialization
Required

mov dbr[r3] = r2 Move to data breakpoint
register

DBR[GR[r3]] GR[r2] M data

mov r1 = dbr[r3] Move from data breakpoint
register

GR[r1] DBR[GR[r3]] M none

mov ibr[r3] = r2 Move to instruction
breakpoint register

IBR[GR[r3]] GR[r2] M inst

mov r1 = ibr[r3] Move from instruction
breakpoint register

GR[r1] IBR[GR[r3]] M none

break imm Breakpoint Instruction fault if (PSR.ic) IIM imm
fault(Breakpoint_Instruction)

B/I/M none

2:154 Volume 2, Part 1: Debugging and Performance Monitoring

Changes to debug registers and PSR are not necessarily observed by following
instructions. Software should issue a data serialization operation to ensure
modifications to DBR, PSR.db, PSR.tb and PSR.lp are observed before a dependent
instruction is executed. For register changes to IBR and PSR.db that affect fetching of
subsequent instructions, software must issue an instruction serialization operation.

On some implementations, a hardware debugger may use two or more of these
registers pairs for its own use. When a hardware debugger is attached, as few as 2 DBR
pairs and as few as 2 IBR pairs may be available for software use. Software should be
prepared to run with fewer than the implemented number of IBRs and/or DBRs if the
software is expected to be debuggable with a hardware debugger. When a hardware
debugger is not attached, at least 4 IBR pairs and 4 DBR pairs are available for software
use.

Any debug registers used by an attached hardware debugger are allocated from the
highest register numbers first (e.g. if only 2 DBR pairs are available to software, the
available registers are DBR[0-3]).

Note: When a hardware debugger is attached and is using two or more debug regis-
ters pairs, the processor does not forcibly partition the registers between soft-
ware and hardware debugger use; that is, the processor does not prevent
software from reading or modifying any of the debug registers being used by
the hardware debugger. However, if software modifies any of the registers
being used by the hardware debugger, processor and/or hardware debugger
operation may become undefined, or the processor and/or hardware debugger
may crash.

7.1.2 Debug Address Breakpoint Match Conditions

For virtual memory accesses, breakpoint address registers contain the virtual addresses
of the debug breakpoint. For physical accesses, the addresses in these registers are
treated as a physical address. Software should be aware that debug registers
configured to fault on virtual references, may also fault on a physical reference if
translations are disabled. Likewise a debug register configured for physical references
can fault on virtual references that match the debug breakpoint registers.

The range of addresses detected by the DBR and IBR registers for memory references
by Itanium instructions is defined as:

• Instruction and single or multi-byte aligned data memory references that access
any memory byte specified by the IBR/DBR address and mask fields results in an
Instruction/Data Debug fault regardless of datum size. Implementations must only
report a Debug fault if the specified aligned byte(s) are referenced.

• Floating-point load double/integer pair, floating-point spill/fill and 10-byte operands
are treated as 16-byte datums for breakpoint matching, if the accesses are aligned.
Floating-point load single pair operands are treated as 8-byte datums for
breakpoint matching, if the accesses are aligned.

• If data memory references are unaligned, multi-byte memory references that
access any memory byte specified by DBR address and mask fields result in a
breakpoint Data Debug fault regardless of datum size. Processor implementations
may also report additional breakpoint Data Debug faults for addresses not
specifically specified by the DBR registers. Debugging software should perform a
byte by byte breakpoint analysis of each address accessed by multi-byte unaligned
datums to detect true breakpoint conditions.

Volume 2, Part 1: Debugging and Performance Monitoring 2:155

• The cmp8xchg16 operands are treated as 16-byte datums for both read and write
breakpoint matching, even though this instruction only reads 8 bytes.

Address breakpoint Data Debug faults are not reported for the Flush Cache (fc, fc.i),
regular_form probe, non-faulting lfetch, insert TLB (itc, itr), purge TLB (ptc, ptr),
or translation access (thash, ttag, tak, tpa) instructions. Accesses by the RSE to a
debug region are checked, but the Data Debug fault is not reported until a subsequent
alloc, br.ret, rfi, loadrs, or flushrs which requires that the faulting load or store
actually occur.

The range of addresses detected by the DBR and IBR registers for IA-32 memory
references is defined as:

• Instruction memory references where the first byte of the IA-32 instruction match
the IBR address and mask fields results in an IA_32_Exception(Debug) fault.
Subsequent bytes of a multiple byte IA-32 instruction are not compared against the
IBR registers for breakpoints. The upper 32-bits of the IBR addr field must be zero
to detect IA-32 instruction memory references.

• IA-32 single or multi-byte data memory references that access any memory byte
specified by the DBR address and mask fields results in an
IA_32_Exception(Debug) trap regardless of datum size and alignment. The
processor ensures that all data breakpoint traps are precisely reported. Data
breakpoint traps are reported if and only if any byte in the IA-32 data memory
reference matches the DBR address and mask fields. No spurious data breakpoint
events are generated for IA-32 data memory operands that are unaligned, nor are
breakpoints reported if no bytes of the operand lie within the address range
specified by the DBR address and mask fields.

7.2 Performance Monitoring

Performance monitors allow processor events to be monitored by programmable
counters or give an external notification (such as a pin or transaction) on the
occurrence of an event. Monitors are useful for tuning application, operating system
and system performance. Two sets of performance monitor registers are defined.
Performance Monitor Configuration (PMC) registers are used to control the monitors.
Performance Monitor Data (PMD) Registers either provide data values from the
monitors, or hold data values used by the PMU. The performance monitors can record
performance values from either the IA-32 or Itanium instruction set.

As shown in Figure 7-3, all processor implementations provide at least four
performance counters (PMC/PMD[4]..PMC/PMD[7] pairs), and four performance
counter overflow status registers (PMC[0]..PMC[3]). Performance monitors are also
controlled by bits in the processor status register (PSR), the default control register
(DCR) and the performance monitor vector register (PMV). Processor implementations
may provide additional implementation-dependent PMC and PMD registers to increase
the number of “generic” performance counters (PMC/PMD pairs). The remainder of the
PMC and PMD register set is implementation dependent.

Event collection for implementation-dependent performance monitors is not specified
by the architecture. Enabling and disabling functions are implementation dependent.
For details, consult processor-specific documentation.

2:156 Volume 2, Part 1: Debugging and Performance Monitoring

Processor implementations may not populate the entire PMC/PMD register space.
Reading of an unimplemented PMC or PMD register returns zero. Writes to
unimplemented PMC or PMD registers are ignored; i.e., the written value is discarded.

Writes to PMD and PMC and reads from PMC are privileged operations. At non-zero
privilege levels, these operations result in a Privileged Operation fault, regardless of the
register address.

Reading of PMD registers by non-zero privilege level code is controlled by PSR.sp. When
PSR.sp is one, PMD register reads by non-zero privilege level code return zero.

7.2.1 Generic Performance Counter Registers

Generic performance counter registers are PMC/PMD pairs that contiguously populate
the PMC/PMD name space starting at index 4. At least 4 performance counter register
pairs (PMC/PMD[4]..PMC/PMD[7]) are implemented in all processor models. Each
counter can be configured to monitor events for any combination of privilege levels and
one of several event metrics. The number of performance counters is implementation
specific. The figures and tables use the symbol “p” to represent the index of the last
implemented generic PMC/PMD pair. The bit-width W of the counters is also
implementation specific.

Figure 7-3. Performance Monitor Register Set

Generic Performance Monitoring Register Set

 PSR

Processor Status Register
63 0

pmc0
pmc1

pmc3

Performance Counter
Overflow Status Registers

 PMV
63 0

Performance Monitor
Vector Register

cr73

cr0 DCR
63 0

Default Control Register

pmc2

63 0

Performance Counter
Configuration Registers

63 0

pmd4
pmd5

Performance Counter
Data Registers

63 0
pmdp+1
pmdp+2

pmd255

Implementation-dependent Performance Monitoring Register Set

63 0

pmdp

pmc4
pmc5

63 0

pmcp

63 0
pmcp+1
pmcp+2

pmc255

pmd0
pmd1

pmd3

pmd2

Volume 2, Part 1: Debugging and Performance Monitoring 2:157

A counter overflow interrupt occurs when the counter wraps; i.e., a carry out from bit
W-1 is detected. Counter overflow interrupts are edge-triggered; that is, the event of a
counter incrementing and causing carry out from bit W-1 thus setting the overflow bit
and the freeze bit, generates one PMU interrupt. Provided that software does not clear
the freeze bit, while either or both of PSR.up and pp are 1, without also clearing the
overflow bit (before or concurrent with the write to the freeze bit), no further interrupts
are generated based on the fact that the carry out had been earlier detected.

Figure 7-4 and Figure 7-5 show the fields in PMD and PMC respectively, while Table 7-3
and Table 7-4 describe the fields in PMD and PMC respectively.

Some implementations do not treat the upper, unimplemented bits of PMDs as ignored
bits on reads, but rather return a copy of bit W-1 in these bit positions so that count
values appear as if they were sign extended. Subsequent implementations will return 0
for these bits on reads.

Figure 7-4. Generic Performance Counter Data Registers (PMD[4]..PMD[p])

63 W W-1 0

PMD[4]..PMD[p] ig count

64-W W

Table 7-3. Generic Performance Counter Data Register Fields

Field Bits Description

ig 63:W Writes are ignored. Reads return 0.

count W-1:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit W-1).

Figure 7-5. Generic Performance Counter Configuration Register
(PMC[4]..PMC[p])

63 16 15 8 7 6 5 4 3 0

PMC[4]..PMC[p] implementation specific es ig pm oi ev plm

48 8 1 1 1 1 4

Table 7-4. Generic Performance Counter Configuration Register Fields
(PMC[4]..PMC[p])

Field Bits Description

plm 3:0 Privilege Level Mask – controls performance monitor operation for a specific privilege
level. Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to
privilege level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor
is enabled at that privilege level. Writing zeros to all plm bits effectively disables the
monitor. In this state, the corresponding PMD register(s) do not preserve values, and
the processor may choose to power down the monitor.

ev 4 External visibility – When 1, an external notification (such as a pin or transaction) may
be provided, dependent upon implementation, whenever the monitor overflows.
Overflow occurs when a carry out from bit W-1 is detected.

oi 5 Overflow interrupt – If 1, when the monitor overflows, a Performance Monitor Interrupt is
raised and the performance monitor freeze bit (PMC[0].fr) is set. If 0, no interrupt is
raised and the performance monitor freeze bit (PMC[0].fr) remains unchanged.
Overflow occurs when a carry out from bit W-1 is detected. See “Performance Monitor
Overflow Status Registers (PMC[0]..PMC[3])” for details on configuring interrupt
vectors.

2:158 Volume 2, Part 1: Debugging and Performance Monitoring

Event collection is controlled by the Performance Monitor Configuration (PMC) registers
and the processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and
PSR.sp) and the performance monitor freeze bit (PMC[0].fr) affect the behavior of all
generic performance monitor registers. Finer, per monitor, control of generic
performance monitors is provided by two PMC register fields (PMC[i].plm, PMC[i].pm).
Event collection for a generic monitor is enabled under the following constraints:

• Generic Monitor Enable[i] =(not PMC[0].fr) and PMC[i].plm[PSR.cpl] and
((not (PMC[i].pm) and PSR.up) or (PMC[i].pm and PSR.pp))

Generic performance monitor data registers (PMD[i]) can be configured to be user
readable (useful for user level sampling and tracing user level processes) by setting the
PMC[i].pm bit to 0. All user-configured monitors can be started and stopped
synchronously by the user mask instructions (rum and sum) by altering PSR.up.
User-configured monitors can be secured by setting PSR.sp to 1. A user-configured
secured monitor continues to collect performance values; however, reads of PMD, by
non-privileged code, return zeros until the monitor is unsecured.

Monitors configured as privileged (PMC[i].pm is 1) are accessible only at privilege level
0; otherwise, reads return zeros. All privileged monitors can be started and stopped
synchronously by the system mask instructions (rsm and ssm) by altering PSR.pp.
Table 7-5 summarizes the effects of PSR.sp, PMC[i].pm, and PSR.cpl on reading PMD
registers.

Updates to generic PMC registers and PSR bits (up, pp, is, sp, cpl) require implicit or
explicit data serialization prior to accessing an affected PMD register. The data
serialization ensures that all prior PMD reads and writes as well as all prior PMC writes
have completed.

pm 6 Privileged monitor – When 0, the performance monitor is configured as a user monitor,
and enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as
a privileged monitor, enabled by PSR.pp, and the corresponding PMD can only be read
by privileged software.

ig 7 ignored

es 15:8 Event select – selects the performance event to be monitored. Actual event encodings
are implementation dependent. Some processor models may not implement all event
select (es) bits. At least one bit of es must be implemented on all processors.
Unimplemented es bits are ignored.

implem.
specific

63:16 Implementation-specific bits – Reads from implemented bits return
implementation-dependent values. For portability, software should write what was read;
i.e., software may not use these bits as storage. Hardware will ignore writes to
unimplemented bits.

Table 7-5. Reading Performance Monitor Data Registers

PSR.sp PMC[i].pm PSR.cpl PMD Reads Return

0 0 0 PMD value

0 1 0 PMD value

1 0 0 PMD value

1 1 0 PMD value

0 0 >0 PMD value

Table 7-4. Generic Performance Counter Configuration Register Fields
(PMC[4]..PMC[p]) (Continued)

Field Bits Description

Volume 2, Part 1: Debugging and Performance Monitoring 2:159

Generic PMD counter registers may be read by software without stopping the counters.
Under normal counting conditions (PMC[0].fr is zero and has been serialized), the
processor guarantees that a sequence of reads of a given PMD will return
non-decreasing values corresponding to the program order of the reads. Under frozen
count conditions (PMC[0].fr is one and has been serialized), the counters are
unchanging and ordering is irrelevant. When the freeze bit is in-flight, whether counters
count events and reads return non-decreasing values is implementation dependent.
Instruction serialization is required to ensure that the behavior specified by PMC[0].fr is
observed.

Software must accept a level of sampling error when reading the counters due to
various machine stall conditions, interruptions, and bus contention effects, etc. The
level of sampling error is implementation specific. More accurate measurements can be
obtained by disabling the counters and performing an instruction serialize operation for
instruction events or data serialize operation for data events before reading the
monitors. Other (non-counter) implementation-dependent PMD registers can only be
read reliably when event monitoring is frozen (PMC[0].fr is one).

For accurate PMD reads of disabled counters, data serialization (implicit or explicit) is
required between any PMD read and a subsequent ssm or sum (that could toggle PSR.up
or PSR.pp from 0 to 1), or a subsequent epc, demoting br.ret or branch to IA-32
(br.ia) (that could affect PSR.cpl or PSR.is). Note that implicit post-serialization
semantics of sum do not meet this requirement.

Table 7-6 defines the instructions used to access the PMC and PMD registers.

0 1 >0 0

1 0 >0 0

1 1 >0 0

Table 7-6. Performance Monitor Instructions

Mnemonic Description Operation
Instr
Type

Serialization
Required

mov pmd[r3] = r2 Move to performance monitor
data register

PMD[GR[r3]] GR[r2] M data/inst

mov r1 = pmd[r3] Move from performance monitor
data register

GR[r1] PMD[GR[r3]] M nonea

a. When the freeze bit is in-flight, whether counters count events and reads return non-decreasing values is
implementation dependent. Instruction serialization is required to ensure that the behavior specified by
PMC[0].fr is observed.

mov pmc[r3] = r2 Move to performance monitor
configure register

PMC[GR[r3]] GR[r2] M data/inst

mov r1 = pmc[r3] Move from performance monitor
configure register

GR[r1] PMC[GR[r3]] M none

Table 7-5. Reading Performance Monitor Data Registers (Continued)

PSR.sp PMC[i].pm PSR.cpl PMD Reads Return

2:160 Volume 2, Part 1: Debugging and Performance Monitoring

7.2.2 Performance Monitor Overflow Status Registers
(PMC[0]..PMC[3])

Performance monitor interrupts may be caused by an overflow from a generic
performance monitor or an implementation-dependent event from a model-specific
monitor. The four performance monitor overflow registers (PMC[0]...PMC[3]) shown in
Figure 7-6 indicate which monitor caused the interruption.

Each of the 252 overflow bits in the performance monitoring overflow status
registers(PMC[0]...PMC[3]) corresponds to a generic performance counter pair or to an
implementation-dependent monitor. For generic performance counter pairs, overflow
status bit PMC[i/64]{i%64} corresponds to generic counter pair PMC[i]/PMD[i], where
4<=i<=p, and p is the index of the last implemented generic PMC/PMD pair.

There are currently two criteria for generating a performance monitor interrupt:

1. A generic performance counter pair (PMC[n]/PMD[n]) overflows and its overflow
interrupt bit (PMC[n].oi) is 1.

2. An implementation-dependent monitor wants to report an event with an
interruption.

If any of these criteria are met, the processor will:

• Set the corresponding overflow status bit in PMC[0]..PMC[3] to 1, and

• Raise a Performance Monitor interrupt, and

• Set the freeze bit (PMC[0].fr) which suspends event monitoring.

PMU interrupts are generated by events, such as the overflowing of a generic counter
pair which is configured to interrupt on overflow. Each such event generates one
interrupt. Provided that software does not clear the freeze bit, while either or both of
PSR.up and pp are 1, before clearing the overflow bits, writes to PMCs and PMDs by
software do not generate interrupts, nor cause a monitor which had generated an
interrupt to generate a second interrupt. (For overflow bits in PMC 0, even if either or
both of PSR.up and .pp are 1, software may clear the overflow bits and the freeze bit
with a single write to PMC 0 without causing any additional interrupts to be generated.)

Software may restore PMU state which has the freeze bit equal to 1 and one or more
overflow bits equal to 1 without generating any interrupts provided that it ensures
either that:

• both PSR.up and pp are zero during the restore, or

• the freeze bit is a 1 (and serialized) before any overflow bits are set to 1

When the PMU is disabled by writing a 0 into PSR.up and .pp and serializing this write,
the PMU cannot generate any interrupts and no SW writes to any PMU state can cause
any interrupts.

When a generic performance counter pair (PMC[n]/PMD[n]) overflows and its overflow
interrupt bit (PMC[n].oi) is 0, the corresponding overflow status register bit is set to 1.
However, in this case of counter overflow without interrupt, the freeze bit in the PMC[0]
is left unchanged, and event monitoring continues.

Volume 2, Part 1: Debugging and Performance Monitoring 2:161

If control register bit PMV.m is one, a performance monitoring interrupt is disabled from
being pended. When PMV.m is zero, the interruption is received and held pending.
(Further masking by the PSR.i, TPR and in-service masking can keep the interrupt from
being raised.) Figure 7-6 shows the Performance Monitor Overflow Status registers.

Implementation dependent PMD registers (0-3) cannot report events in the overflow
registers; those 4 bit positions are used for other purposes.

Under frozen count conditions when PMC[0].fr is one (either by a performance counter
overflow, or an explicit software write and serialization), the processor suspends all
event monitoring, i.e. counters do not increment and overflow bits as well as
model-specific monitoring are frozen. Normal counting conditions are restored by
software writing a zero to the freeze bit and serializing to resume event monitoring.
When the freeze bit is in-flight, whether counters count events and reads return
non-decreasing values is implementation dependent. Instruction serialization is
required to ensure that the behavior specified by PMC[0].fr is observed.

Figure 7-6. Performance Monitor Overflow Status Registers
(PMC[0]..PMC[3])

63 4 3 2 1 0

overflow ig fr

60 3 1

overflow

overflow

overflow

Table 7-7. Performance Monitor Overflow Register Fields
(PMC[0]...PMC[3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit. This bit is volatile
state, i.e., it is set by the processor whenever:

• a generic performance monitor overflow occurs
and its overflow interrupt bit (PMC[n].oi) is set
to one.

• a model-specific performance monitor signals
an interrupt.

The freeze bit can also be set by software to enable or
disable all event monitoring.
If the freeze bit is one, event monitoring is disabled.
If the freeze bit is zero, event monitoring is enabled.
If the freeze bit is in-flight, event monitoring behavior is
implementation dependent.

PMC[0] ig 3:1 Ignored

PMC[0]..PMC[3] overflow implemented
monitors

Bit vector indicating which performance monitor
overflowed. Overflow status bits are sticky, they are set
to 1 by the processor if the corresponding PMD
overflows; otherwise they are left unchanged. Multiple
overflow status bits may be set, independent of
whether counter overflow causes an interrupt or not.

unimplemented
monitors

Ignored

2:162 Volume 2, Part 1: Debugging and Performance Monitoring

Multiple overflow bits may be set to 1, if counters overflow concurrently. The overflow
bits and the freeze bit are sticky; i.e., the processor sets them to 1 but never resets
them to 0. It is software's responsibility to reset the overflow and freeze bits.

The overflow status bits are populated only for implemented counters. Overflow bits of
unimplemented counters read as zero and writes are ignored.

7.2.3 Performance Monitor Events

The set of monitored events is implementation-specific. All processor models are
required to provide at least two events:

1. The number of retired instructions. These are defined as all instructions which
execute without a fault, including nops and those which were predicated off.
Generic counters configured for this event count only when the processor is in the
NORMAL or LOW-POWER state (see Figure 11-8 on page 2:314).

2. The number of processor clock cycles. Generic counters configured for this event
count only when the processor is in the NORMAL or LOW-POWER state (see
Figure 11-8 on page 2:314).

Events may be monitorable only by a subset of the available counters. PAL calls provide
an implementation-independent interface that provides information on the number of
implemented counters, their bit-width, the number and location of other (non-counter)
monitors, etc.

7.2.4 Implementation-independent Performance Monitor Code
Sequences

This section describes implementation-independent code sequences for servicing
overflow interrupts and context switches of the performance monitors. For forward
compatibility, the code sequences outlined in Section 7.2.4.1 and Section 7.2.4.2 use
PAL-provided implementation-specific information to collect/preserve data values for all
implemented counters.

7.2.4.1 Performance Monitor Interrupt Service Routine

When a generic performance counter pair (PMC[n]/PMD[n]) overflows and its overflow
interrupt bit (PMC[n].oi) is 1, or an implementation-dependent monitor wants to report
an event with an interruption, then the processor:

• Sets the corresponding overflow status bit in PMC[0]..PMC[3] to one,

• Raises a Performance Monitor Interrupt, and

• Sets the freeze bit in PMC[0] which suspends event monitoring.

Event monitoring remains frozen until software clears the freeze bit. When the freeze
bit is in-flight, whether counters count events and reads return non-decreasing values
is implementation dependent. Instruction serialization is required to ensure that the
behavior specified by PMC[0].fr is observed. Performance monitor interrupts may be
caused by an overflow of any of the counters. The processor indicates which
performance monitor overflowed in the performance monitor overflow status registers
(PMC[0]...PMC[3]). If multiple counters overflow concurrently, multiple overflow bits
will be set to one. For forward compatibility, event collection interrupt handlers must

Volume 2, Part 1: Debugging and Performance Monitoring 2:163

follow the implementation-independent overflow interrupt service routine outlined in
Figure 7-7. Use of alternate context-switch sequences may be incompatible with future
implementations.

If the outgoing context has an interrupt pending but has not yet invoked the
performance monitor interrupt service routine, the interrupt may be delivered to the
incoming context even if it is a non-monitored process. The interrupt service routine
can recognize this kind of bogus interrupt by noticing that either: the freeze bit is zero
or the context is not being monitored.

7.2.4.2 Performance Monitor Context Switch

The context switch routine described in Figure 7-8 defines the
implementation-independent context switching of Itanium performance monitors. Using
bit masks provided by PAL (PALPMCmask, PALPMDmask) the routine can generically
save/restore the contents of all implementation-specific performance monitoring
registers. If the outgoing context is monitored, then all PMC and PMD registers whose
mask bit is set are preserved by software. But if the outgoing context is monitored and
the context switch routine determines that the outgoing context has a pending
performance monitor interrupt (by reading the freeze bit with the knowledge that it was
not generated by software) then software also preserves the outgoing context's
overflow status registers (PMC[0]..PMC[3]) before all PMC and PMD registers whose
mask bit is set. Here, it is explicitly assumed that software tracks monitored processes
and can determine whether a process is monitored prior to reading the freeze bit. The
context switch handler then restores the performance monitor freeze bit which resets
event collection for the new context. Sometime into the incoming (possibly
unmonitored) context, the performance overflow interrupt service routine will run, but
by looking at the status of the freeze bit software can determine whether this interrupt
can be ignored (for details refer to Section 7.2.4.1).

Figure 7-7. Performance Monitor Interrupt Service Routine
(Implementation Independent)

//Assumes PSR.up and PSR.pp are switched to zero together
if ((PMC[0].fr==1) && (PSR.up == 1) || (PSR.pp == 1)){

// freeze bit is set. Search for interrupt.
for (i=0; i< 4; i++) {

if (PMC[i] != 0) {
startbit = (i==0) ? 4 : 0;
for (j=startbit; j < 64 ; j++) {

if (PMC[i]{j}) {
counter_id = 64*i + j;
if (counter_id > PAL_GENERIC_PMCPMD_PAIRS) {

Implementation_Specific_Update(counter_id);
}
else { // Generic PMC/PMD counter

if (PMC[counter_id].oi)
ovflcount[counter_id] += 1;

}
}

} // scan overflow bits
}

}
}
// Either ignore bogus interrupt or clear PMC[3]..PMC[1]
for (i=3; i>=1; i--) { PMC[i] = 0; }
rfi

2:164 Volume 2, Part 1: Debugging and Performance Monitoring

When switching back to the original context (that originally caused the counter
overflow), the previously saved freeze bit can be inspected. If it was set (meaning there
was a pending performance monitor interrupt), then the context switch routine posts
an interrupt message to the incoming context’s processor at the performance monitor
vector specified by the PMV register (see Section 10.5.8, “Inter-processor Interrupts
Layout and Example” on page 2:612). This will result in a new performance monitor
overflow interrupt in the correct context. Essentially, the interrupt message is
“replaying” the overflow interrupt that was missed because of the context switch.

§

Figure 7-8. Performance Monitor Overflow Context Switch Routine

// in context or thread switch

if (outgoing process is monitored) {
1. Turn-off counting and ignore interrupts for context switch

of counters.
1a) if not already done, raise interrupt priority above

perf. mon overflow vector
1b) read and preserve PSR.up, PSR.pp, PSR.sp
1c) clear PSR.up, clear PSR.pp
1d) srlz.d

2. Preserve PMC/PMD contents
2a) For each PMC whose PALPMCmask bit is set, preserve PMC.
2b) For each PMD whose PALPMDmask bit is set, preserve PMD.

}

.... continue context switch

// Now in incoming process/thread
if (incoming process is monitored) {

// Event counting is disabled because PSR.up and pp are both
// zero (step 1c above).

3. Restore PMC/PMD contents (inverse of step 4 above)
3a) For each PMC whose PALPMCmask bit is set, reload PMC.
3b) For each PMD whose PALPMDmask bit is set, reload PMD.

4. Restore Interrupt State (inverse of step 2 and 1a above)
4a) if (PMC[0].fr) {

send myself a performance monitor interrupt
(store to interrupt address)

}
4b) Restore PSR.up and PSR.pp
4c) srlz.d
4d) lower interrupt priority below perf. mon overflow

vector
}

Volume 2, Part 1: Interruption Vector Descriptions 2:165

Interruption Vector Descriptions 8

Chapter 5 describes the interruption mechanism and programming model for the
Itanium architecture. This chapter describes the IVA-based interruption handlers.
“Interruption Vector Descriptions” describes all the Itanium IVA-based interruption
vectors and “IA-32 Interruption Vector Definitions” describes all of the IA-32 interrupt
vectors. PAL-based interruptions are described in Chapter 11, “Processor Abstraction
Layer.” Note that unless otherwise noted, references to “interruption” in this chapter
refer to IVA-based interruptions. See “Interruption Definitions” on page 2:95.

8.1 Interruption Vector Descriptions

The section lists all the Itanium interruption vectors. It describes the interruption
vectors and the parameters that are defined when the vector is entered.

If an interruption is independent of the executing instruction set (including IA-32), such
as an external interrupt or TLB fault, common Itanium interruption vectors are used.
For exceptions and intercept conditions that are specific to the IA-32 instruction set
three IA-32 specific vectors are used; IA_32_Exception, IA_32_Interrupt, and
IA_32_Intercept.

Table 8-1 defines which interruption resources are written, are left unmodified, or are
undefined for each interruption vector. The individual vector descriptions below list
interruption-specific resources for each vector.

See “IVA-based Interruption Handling” on page 2:101 for details on how the processor
handles an interruption. See “Interruption Control Registers” on page 2:36 for the
definition of bit fields within the interruption resources.

8.2 ISR Settings

For each of the interruption vectors, a figure depicts the ISR setting. These figures
show the value that hardware writes into the ISR for the corresponding interruption.

Table 8-2 provides an overview of ISR settings for all of the interruption vectors.

For some of the vectors, certain bits will always be 0 (or 1) simply because no
instruction that would set that bit differently can ever end up on that vector. For
example, ISR.sp is always 0 in the Break Instruction vector because ISR.sp is only set
by speculative loads, and speculative loads can never take a Break Instruction fault.

After interruption from the IA-32 instruction set, the following ISR bits will always be
zero: ISR.ni, ISR.na, ISR.sp, ISR.rs, ISR.ir, ISR.ei, and ISR.ed.

ISR.code settings for non-access instructions are described in “Non-access Instructions
and Interruptions” on page 2:103.

Table 8-3 on page 2:170 provides an overview of ISR.code field on all Itanium traps.

2:166 Volume 2, Part 1: Interruption Vector Descriptions

8.3 Interruption Vector Definition

Table 8-1.Writing of Interruption Resources by Vector

Interruption Resource
IIP, IPSR,

IIPA, IFS.v
IFA ITIR IHA IIM ISR IIB0, IIB1

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Alternate Data TLB vector

Alternate Data TLB fault N/Aa Wb N/A W N/A W N/A xc N/A x N/A W N/A W

IR Alternate Data TLB fault N/A W N/A W N/A W N/A x N/A x N/A W N/A x

Alternate Instruction TLB vector

Alternate Instruction TLB fault -d W - W - W x x x x W W - x

Break Instruction vector

Break Instruction fault - W x x x x x x - W W W - W

Data Access Rights vector

Data Access Rights fault - W - W - W x x x x W W - W

IR Data Access Rights fault - W - W - W x x x x W W - x

Data Access-Bit vector

Data Access Bit fault - W - W - W x x x x W W - W

IR Data Key Miss fault - W - W - W x x x x W W - x

Data Key Miss vector

Data Key Miss fault - W - W - W x x x x W W - W

IR Data Key Miss fault - W - W - W x x x x W W - x

Data Nested TLB vector

Data Nested TLB fault - N/A - N/A - N/A - N/A x N/A - N/A - N/A

IR Data Nested TLB fault - N/A - N/A - N/A - N/A x N/A - N/A - N/A

Data TLB vector

Data TLB fault N/A W N/A W N/A W N/A W N/A x N/A W N/A W

IR Data TLB fault N/A W N/A W N/A W N/A W N/A x N/A W N/A x

Debug vector

Data Debug fault - W - W x x x x x x W W - W

Instruction Debug fault - W - W x x x x x x W W - x

IR Data Debug fault - W - W x x x x x x W W - x

Dirty-Bit vector

Data Dirty Bit fault - W - W - W x x x x W W - W

Disabled FP-Register vector

Disabled Floating-Point
Register fault

- W x x x x x x x x W W - W

External Interrupt vector

External Interrupt - W x x x x x x x x W W - x

Floating-point Fault vector

Floating-Point Exception fault - W x x x x x x x x W W - W

Floating-point Trap vector

Floating-Point Exception trap - W x x x x x x x x W W - W

General Exception vector

Disabled ISA Transition fault - W x x x x x x x x W W - W

Illegal Dependency fault - W x x x x x x x x W W - W

Illegal Operation fault - W x x x x x x x x W W - W

IR Unimplemented Data
Address fault

- W x x x x x x x x W W - x

Privileged Operation fault - W x x x x x x x x W W - W

Privileged Register fault - W x x x x x x x x W W - W

Volume 2, Part 1: Interruption Vector Descriptions 2:167

Reserved Register/Field fault - W x x x x x x x x W W - W

Unimplemented Data
Address fault

- W x x x x x x x x W W - W

IA-32 Exception vector N/A W N/A x N/A x N/A x N/A x N/A W N/A x

IA-32 Intercept vector N/A W N/A x N/A x N/A x N/A W N/A W N/A x

IA-32 Interrupt vector N/A W N/A x N/A x N/A x N/A x N/A W N/A x

Instruction Access Rights vector

Instruction Access Rights
fault

- W - W - W x x x x W W - x

Instruction Access-Bit vector

Instruction Access Bit fault - W - W - W x x x x W W - x

Instruction Key Miss vector

Instruction Key Miss fault - W - W - W x x x x W W - x

Instruction TLB vector

Instruction TLB fault - W - W - W - W x x W W - x

Key Permission vector

Data Key Permission fault - W - W - W x x x x W W - W

Instruction Key Permission
fault

- W - W - W x x x x W W - x

IR Data Key Permission fault - W - W - W x x x x W W - x

Lower-Privilege Transfer Trap vector

Unimplemented Instruction
Address fault

- W x W x x x x x x W W - x

Lower-Privilege Transfer trap - W x x x x x x x x W W - W

Unimplemented Instruction
Address trap

- W x x x x x x x x W W - W

NaT Consumption vector

Data NaT Page Consumption
fault

- W - W x x x x x x W W - W

Instruction NaT Page
Consumption fault

- W - W x x x x x x W W - x

IR Data NaT Page
Consumption fault

- W - W x x x x x x W W - x

Register NaT Consumption
fault

- W - x x x x x x x W W - W

Page Not Present vector

Data Page Not Present fault - W - W - W x x x x W W - W

Instruction Page Not Present
fault

- W - W - W x x x x W W - x

IR Data Page Not Present
fault

- W - W - W x x x x W W - x

Single Step Trap vector

Single Step trap - W x x x x x x x x W W - W

Speculation vector

Speculative Operation fault - W x x x x x x - W W W - W

Taken Branch Trap vector

Taken Branch trap - W x x x x x x x x W W - W

Unaligned Reference vector

Table 8-1.Writing of Interruption Resources by Vector (Continued)

Interruption Resource
IIP, IPSR,

IIPA, IFS.v
IFA ITIR IHA IIM ISR IIB0, IIB1

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2:168 Volume 2, Part 1: Interruption Vector Descriptions

Unaligned Data Reference
fault

- W - W x x x x x x W W - W

Unsupported Data Reference vector

Unsupported Data Reference
fault

- W - W x x x x x x W W - W

VHPT Translation vector

IR VHPT Data fault N/A W N/A W N/A W N/A W N/A x N/A W N/A x

VHPT Data fault N/A W N/A W N/A W N/A W N/A x N/A W N/A W

VHPT Instruction fault N/A W N/A W N/A W N/A W N/A x N/A W N/A x

Virtual External Interrupt vector

Virtual External Interrupt - W x x x x x x x x W W - x

Virtualization vector

Virtualization fault - W x x x x x x x x W W - W

a. “N/A” indicates that this cannot happen.
b. “W” indicates that the resource is written with a new value.
c. “x” indicates that the resource may or may not be written; whether it is written and with what value is

implementation specific.
d. “-” indicates that the resource is not written.

Table 8-2. ISR Values on Interruption

Vector / Interruption ed eia so nib irc rsd spe naf r w x

Alternate Data TLB vector

Alternate Data TLB fault edk ri so nil 0 rs sp na r w 0

IR Alternate Data TLB fault 0 ri 0 nil 1 1 0 0 1 0 0

Alternate Instruction TLB vector

Alternate Instruction TLB fault 0 ri 0 ni 0 0 0 0 0 0 1

Break Instruction vector

Break Instruction fault 0 ri 0 ni 0 0 0 0 0 0 0

Data Access Rights vector

Data Access Rights fault edk ri so ni 0 rs sp na r w 0

IR Data Access Rights fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Access-Bit vector

Data Access Bit fault edk ri so ni 0 rs sp na r w 0

IR Data Access Bit fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Key Miss vector

Data Key Miss fault edk ri so ni 0 rs sp na r w 0

IR Data Key Miss fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Nested TLB vectorg

Data Nested TLB fault - - - - - - - - - - -

IR Data Nested TLB fault - - - - - - - - - - -

Data TLB vector

Data TLB fault edk ri so nil 0 rs sp na r w 0

IR Data TLB fault 0 ri 0 nil 1 1 0 0 1 0 0

Debug vector

Data Debug fault edk ri 0 ni 0 rs sp na r w 0

Table 8-1.Writing of Interruption Resources by Vector (Continued)

Interruption Resource
IIP, IPSR,

IIPA, IFS.v
IFA ITIR IHA IIM ISR IIB0, IIB1

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Volume 2, Part 1: Interruption Vector Descriptions 2:169

Instruction Debug fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Debug fault 0 ri 0 ni 1 1 0 0 1 0 0

Dirty-Bit vector

Data Dirty Bit fault edk ri so ni 0 rs 0 nah r 1 0

Disabled FP-Register vector

Disabled Floating-Point Register fault 0 ri 0 ni 0 0 sp 0 r w 0

External Interrupt vector

External Interrupt 0 ri 0 ni iri 0 0 0 0 0 0

Floating-point Fault vector

Floating-Point Exception fault 0 ri 0 ni 0 0 0 0 0 0 0

Floating-point Trap vector

Floating-Point Exception trap 0 ei 0 ni 0 0 0 0 0 0 0

General Exception vector

Disabled ISA Transition fault 0 ri 0 ni 0 0 0 0 0 0 0

Illegal Dependency fault 0 ri 0 ni 0 0 0 0 0 0 0

Illegal Operation fault 0 ri 0 ni 0 0 0 0 0 0 0

IR Unimplemented Data Address fault 0 ri 0 ni 1 1 0 0 1 0 0

Privileged Operation fault 0 ri 0 ni 0 0 0 na 0 0 0

Privileged Register fault 0 ri 0 ni 0 0 0 0 0 0 0

Reserved Register/Field fault 0 ri 0 ni 0 0 0 0 0 0 0

Unimplemented Data Address fault 0 ri 0 ni 0 rs 0 naj r w 0

IA-32 Exception vector 0 0 0 0 0 0 0 0 0 0 x

IA-32 Intercept vector 0 0 0 0 0 0 0 0 r w 0

IA-32 Interrupt vector 0 0 0 0 0 0 0 0 0 0 0

Instruction Access Rights vector

Instruction Access Rights fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction Access-Bit vector

Instruction Access Bit fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction Key Miss vector

Instruction Key Miss fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction TLB vector

Instruction TLB fault 0 ri 0 ni 0 0 0 0 0 0 1

Key Permission vector

Data Key Permission fault edk ri so ni 0 rs sp na r w 0

Instruction Key Permission fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Key Permission fault 0 ri 0 ni 1 1 0 0 1 0 0

Lower-Privilege Transfer Trap vector

Unimplemented Instruction Address fault 0 ri 0 ni ir 0 0 0 0 0 1

Lower-Privilege Transfer trap 0 ei 0 ni ir 0 0 0 0 0 0

Unimplemented Instruction Address trap 0 ei 0 ni ir 0 0 0 0 0 0

NaT Consumption vector

Data NaT Page Consumption fault 0 ri so ni 0 rs 0 na r w 0

Instruction NaT Page Consumption fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data NaT Page Consumption fault 0 ri 0 ni 1 1 0 0 1 0 0

Register NaT Consumption fault 0 ri 0 ni 0 0 0 na r w 0

Table 8-2. ISR Values on Interruption (Continued)

Vector / Interruption ed eia so nib irc rsd spe naf r w x

2:170 Volume 2, Part 1: Interruption Vector Descriptions

Table 8-3 provides the definition for the ISR.code field on all Itanium traps. Hardware
will always deliver the highest priority enabled trap. Software must look at the ISR.code
bit vector to determine if any lower priority trap occurred at the same time as the trap
being processed.

Page Not Present vector

Data Page Not Present fault edk ri so ni 0 rs sp na r w 0

Instruction Page Not Present fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Page Not Present fault 0 ri 0 ni 1 1 0 0 1 0 0

Single Step Trap vector

Single Step trap 0 ei 0 ni ir 0 0 0 0 0 0

Speculation vector

Speculative Operation fault 0 ri 0 ni 0 0 0 0 0 0 0

Taken Branch Trap vector

Taken Branch trap 0 ei 0 ni ir 0 0 0 0 0 0

Unaligned Reference vector

Unaligned Data Reference fault ed ri 0 ni 0 0 sp 0 r w 0

Unsupported Data Reference vector

Unsupported Data Reference fault ed ri 0 ni 0 0 0 0 r w 0

VHPT Translation vector

IR VHPT Data fault 0 ri 0 nil 1 1 0 0 1 0 0

VHPT Data fault edk ri so nil 0 rs sp na r w 0

VHPT Instruction fault 0 ri 0 ni 0 0 0 0 0 0 1

Virtual External Interrupt vector

Virtual External Interrupt 0 ri 0 ni irm 0 0 0 0 0 0

Virtualization vector

Virtualization fault 0 ri 0 ni 0 0 0 0 0 0 0

a. ISR.ei is equal to IPSR.ri for all faults and external interrupts (1 for faults and interrupts on the L+X instruction
of an MLX). For traps, ISR.ei points at the excepting instruction (2 for traps on the L+X instruction of an MLX).

b. If ISR.ni is 1, the interruption occurred either when PSR.ic was 0 or was in-flight.
c. ISR.ir captures the value of RSE.CFLE at the time of an interruption.
d. ISR.rs is 1 for interruptions caused by mandatory RSE fills/spills and 0 for all others.
e. ISR.sp is 1 for interruptions caused by speculative loads and zero for all others.
f. ISR.na is 1 for interruptions caused by non-access instructions and zero for all others.
g. ISR is not written.
h. A faulting probe.w.fault or probe.rw.fault can cause a Dirty Bit fault on a non-access instruction.
i. ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by a br.ret or rfi were

re-loading the current register stack frame.
j. A faulting lfetch.fault or probe.fault to an unimplemented address will set ISR.na to 1.
k. ISR.ed is 0 if the interruption was caused by a mandatory RSE fill or spill.
l. If PSR.ic was 0 when the interruption was taken, these faults do not occur, but a Data Nested TLB fault is

taken.
m. ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by a br.ret or rfi were

re-loading the current register stack frame.

Table 8-3. ISR.code Fields on Intel® Itanium® Traps

Field Bit Description

fp 0 Floating-Point Exception trap

lp 1 Lower-Privilege Transfer trap

Table 8-2. ISR Values on Interruption (Continued)

Vector / Interruption ed eia so nib irc rsd spe naf r w x

Volume 2, Part 1: Interruption Vector Descriptions 2:171

tb 2 Taken Branch trap

ss 3 Single Step trap

ui 4 Unimplemented Instruction Address trap

fp trap code 7 IEEE O (overflow) exception (Parallel FP-LO)

fp trap code 8 IEEE U (underflow) exception (Parallel FP-LO)

fp trap code 9 IEEE I (inexact) exception (Parallel FP-LO)

fp trap code 10 FPA, Added one to significand when rounding (Parallel FP-LO)

fp trap code 11 IEEE O (overflow) exception (Normal or Parallel FP-HI)

fp trap code 12 IEEE U (underflow) exception (Normal or Parallel FP-HI)

fp trap code 13 IEEE I (inexact) exception (Normal or Parallel FP-HI)

fp trap code 14 FPA, Added one to significand when rounding (Normal or Parallel FP-HI).

Table 8-4. Interruption Vectors Sorted Alphabetically

Vector Name Offset Page

Alternate Data TLB vector 0x1000 2:178

Alternate Instruction TLB vector 0x0c00 2:177

Break Instruction vector 0x2c00 2:185

Data Access Rights vector 0x5300 2:191

Data Access-Bit vector 0x2800 2:184

Data Key Miss vector 0x1c00 2:181

Data Nested TLB vector 0x1400 2:179

Data TLB vector 0x0800 2:176

Debug vector 0x5900 2:200

Dirty-Bit vector 0x2000 2:182

Disabled FP-Register vector 0x5500 2:195

External Interrupt vector 0x3000 2:186

Floating-Point Fault vector 0x5c00 2:203

Floating-Point Trap vector 0x5d00 2:204

General Exception vector 0x5400 2:192

IA-32 Exception vector 0x6900 2:210

IA-32 Intercept vector 0x6a00 2:211

IA-32 Interrupt vector 0x6b00 2:212

Instruction Access Rights vector 0x5200 2:190

Instruction Access-Bit vector 0x2400 2:183

Instruction Key Miss vector 0x1800 2:180

Instruction TLB vector 0x0400 2:175

Key Permission vector 0x5100 2:189

Lower-Privilege Transfer Trap
vector

0x5e00 2:205

NaT Consumption vector 0x5600 2:196

Page Not Present vector 0x5000 2:188

Single Step Trap vector 0x6000 2:208

Speculation vector 0x5700 2:198

Taken Branch Trap vector 0x5f00 2:207

Unaligned Reference vector 0x5a00 2:201

Table 8-3. ISR.code Fields on Intel® Itanium® Traps (Continued)

Field Bit Description

2:172 Volume 2, Part 1: Interruption Vector Descriptions

Unsupported Data Reference
vector

0x5b00 2:202

VHPT Translation vector 0x0000 2:173

Virtual External Interrupt vector 0x3400 2:187

Virtualization vector 0x6100 2:209

Table 8-4. Interruption Vectors Sorted Alphabetically (Continued)

Vector Name Offset Page

Volume 2, Part 1: Interruption Vector Descriptions 2:173

Name VHPT Translation vector (0x0000)

Cause The hardware VHPT walker encountered a TLB miss while attempting to reference the
virtually addressed hashed page table for a memory reference (including IA-32).

Interruptions on this vector:

IR VHPT Data fault
VHPT Instruction fault
VHPT Data fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IHA – The virtual address in the hashed page table which the hardware VHPT walker
was attempting to reference.

ITIR – The ITIR contains default translation information for the virtual address
contained in the IHA. The access key field within this register is set to the region id
value from the region register selected by the virtual address in the IHA. The ITIR.ps
field is set to the RR.ps field from the selected region register. All other fields are set to
0.

IIB0, IIB1 – If implemented, for VHPT Data faults, the IIB registers contain the
instruction bundle pointed to by IIP. The IIB registers are undefined for IR VHPT Data
and VHPT Instruction faults. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

If the fault is due to a VHPT data fault for both original instruction and data references:

• IFA – The faulting address that the hardware VHPT walker was attempting to
resolve.

• ISR – The ISR bits are set to reflect the original access on whose behalf the VHPT
walker was operating. If the original operation was a non-access instruction then
the ISR.code bits {3:0} are set to indicate the type of the non-access instruction;
otherwise they are set to 0. For mandatory RSE fill or spill references, ISR.ed is
always 0. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was taken, and is
1 if PSR.ic was in-flight. For IA-32 memory references the ISR.code, ni, ed, ei, ir, rs,
sp, and na bits are always 0. The defined ISR bits are specified below.

If the fault is due to a VHPT instruction fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction
address zero extended to 64-bits or, if the hardware VHPT walker was attempting to
resolve a TLB miss, the virtual address of the translation.

• ISR – The ISR bits are set based on the original instruction fetch that the VHPT
walker was attempting to resolve. The defined ISR bits are specified below. The
ISR.ni bit is 0 if PSR.ic was 1 when the interruption was taken, and is 1 if PSR.ic
was in-flight. For IA-32 memory references the ei and ni bits are always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

2:174 Volume 2, Part 1: Interruption Vector Descriptions

Notes This fault can only occur when PSR.ic is 1 or in-flight, and the VHPT walker is enabled
for the referenced region. Refer to “VHPT Environment” on page 2:67 for details on
VHPT enabling.

The original IFA address will be needed by the operating system page fault handler in
the case where the page containing the VHPT entry has not yet been allocated. When
the translation for the VHPT is available the handler must first move the address
contained in the IHA to the IFA prior to the TLB insert.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

Volume 2, Part 1: Interruption Vector Descriptions 2:175

Name Instruction TLB vector (0x0400)

Cause The instruction TLB entry needed by an instruction fetch (including IA-32) is absent,
and the hardware VHPT walker could not find the translation in the VHPT, or the
hardware VHPT walker is enabled but not implemented on this processor.

Interruptions on this vector:

Instruction TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IHA – The virtual address of the hashed page table entry which corresponds to the
reference that raised this fault.

ITIR – The ITIR contains default translation information for the original instruction
address. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address
zero extended to 64-bits.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
defined ISR bits are specified below. The ISR.ni bit is 0 if PSR.ic was 1 when the
interruption was taken, and is 1 if PSR.ic was in-flight. The ISR.ei and ni bits are always
0 for IA-32 memory references.

Notes This fault can only occur when PSR.ic is 1 or in-flight, the VHPT hardware walker is
enabled for the referenced region, the PSR.it bit is 1, and the fetched instruction bundle
is to be executed. Refer to “VHPT Environment” on page 2:67 for details on VHPT
enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag
mismatch, illegal entry, or it may have terminated before reading the data. Software
must be able to handle the case where the VHPT walker fails.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

2:176 Volume 2, Part 1: Interruption Vector Descriptions

Name Data TLB vector (0x0800)

Cause For memory references (including IA-32), the data TLB entry needed by the data access
is absent, and the hardware VHPT walker could not find the translation in the VHPT, or
the hardware VHPT walker is not implemented on this processor.

Interruptions on this vector:

IR Data TLB fault
Data TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IHA – The virtual address of the hashed page table entry which corresponds to the
reference that raised this fault.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, for Data TLB faults, the IIB registers contain the
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data TLB
faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – If the interruption was due to a non-access operation then the ISR.code bits
{3:0} are set to indicate the type of the non-access instruction; otherwise they are set
to 0. For mandatory RSE fill or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if
PSR.ic was 1 when the interruption was taken, and is 1 if PSR.ic was in-flight. The
ISR.code, ed, ei, ir, rs, sp and na bits are always 0 for IA-32 memory references. The
defined ISR bits are specified below.

Notes The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access
operation when PSR.dt is 1, and the VHPT hardware walker is enabled for the
referenced region. This fault can only occur on a mandatory RSE load/store operation if
PSR.rt is 1, and the VHPT hardware walker is enabled for the referenced region. Refer
to “VHPT Environment” on page 2:67 for details on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag
mismatch, illegal entry, or it may have terminated before reading the data. Software
must be able to handle the case where the VHPT walker fails. The Data TLB fault is only
taken if PSR.ic is 1 or in-flight, otherwise a Data Nested TLB fault is taken.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

Volume 2, Part 1: Interruption Vector Descriptions 2:177

Name Alternate Instruction TLB vector (0x0c00)

Cause The instruction TLB entry needed by an instruction fetch (including IA-32) is absent,
and the hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

Alternate Instruction TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the original instruction
address. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the
referenced region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address
zero extended to 64-bits.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – For Itanium memory references, the ISR.ei bits are set to indicate which
instruction caused the exception and ISR.ni is set to 0 if PSR.ic was 1 when the
interruption was taken, and set to 1 if PSR.ic was 0 or in-flight. For IA-32 memory
references the ISR.ei and ni bits are 0. The defined ISR bits are specified below.

The ISR.ei bits are set to indicate which instruction caused the exception. The defined
ISR bits are specified below.

Notes This fault can only occur when the VHPT walker is disabled for the referenced region,
and the fetched instruction bundle is to be executed. Refer to “VHPT Environment” on
page 2:67 for details on VHPT enabling.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

2:178 Volume 2, Part 1: Interruption Vector Descriptions

Name Alternate Data TLB vector (0x1000)

Cause For memory references (including IA-32), the data TLB entry needed by data access is
absent, and the hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

IR Alternate Data TLB fault
Alternate Data TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, for Alternate Data TLB faults, the IIB registers contain the
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Alternate
Data TLB faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle
Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – If the interruption was due to a non-access operation then the ISR.code bits
{3:0} are set to indicate the type of the non-access instruction; otherwise they are set
to 0. For mandatory RSE fill or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if
PSR.ic was 1 when the interruption was taken, and is 1 if PSR.ic was in-flight. For IA-32
memory references the ISR.code, ed, ei, ir, rs, sp and na bits are 0. The defined ISR
bits are specified below.

Notes The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access
operation when PSR.dt is 1, and the VHPT hardware walker is disabled for the
referenced region. This fault can only occur on a mandatory RSE load/store operation if
PSR.rt is 1, and the VHPT hardware walker is disabled for the referenced region. The
Alternate Data TLB fault is only taken if PSR.ic is 1 or in-flight, otherwise a Data Nested
TLB fault is taken. Refer to “VHPT Environment” on page 2:67 for details on VHPT
enabling.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

Volume 2, Part 1: Interruption Vector Descriptions 2:179

Name Data Nested TLB vector (0x1400)

Cause For memory references, the data TLB entry needed for a data reference is absent and
PSR.ic is 0. Note: Data Nested TLB faults cannot occur during IA-32 instruction set
execution, since PSR.ic must be 1.

Interruptions on this vector:

IR Data Nested TLB fault
Data Nested TLB fault

Parameters IIP, IPSR, IIPA, IFS, ISR are unchanged from their previous values; they contain
information relating to the original interruption.

ITIR – is unchanged from the previous value.

IFA – is unchanged from the previous value and contains the original address of the
data being referenced.

IIB0, IIB1 – If implemented, the IIB registers are unchanged from their previous
values. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

Notes This fault occurs when PSR.dt 1 and PSR.ic is 0 on a load, store, semaphore, and
faulting non-access instructions. It also occurs when PSR.dt is 0 and PSR.ic is 0 for a
regular_form probe instruction. Finally it can occur when PSR.rt is 1 and PSR.ic is 0 on
a RSE mandatory load/store operation. Since the operating system is in control of the
code executing at the time of the nested fault, it can by convention know which register
contains the address that raised the nested event. As the PSR.ic bit is 0 on a nested
fault, the IFA contains the original data address if the original interruption was caused
by a data TLB fault. If the translation table entry required by the nested miss handler
has not yet been allocated, then the address in the IFA will be passed to the operating
system page fault handler. If the translation for the entry is available then the general
register containing the nested fault address must be moved to the IFA prior to the
insert. The ISR contains the ISR for the original faulting instruction, and not the ISR for
the instruction that caused the nested fault.

2:180 Volume 2, Part 1: Interruption Vector Descriptions

Name Instruction Key Miss vector (0x1800)

Cause For instruction fetches (including IA-32), the PSR.it bit is 1, the PSR.pk bit is 1, and the
access key from the TLB entry for the address of the executing instruction bundle does
not match any of the valid protection keys.

Interruptions on this vector:

Instruction Key Miss fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the original instruction
address. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address
zero extended to 64-bits.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For
IA-32 memory references the ISR.ei and ni bits are 0. The defined ISR bits are specified
below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

Volume 2, Part 1: Interruption Vector Descriptions 2:181

Name Data Key Miss vector (0x1c00)

Cause For memory references (including IA-32), the PSR.dt bit is 1, the PSR.pk bit is 1, and
the access key from the TLB entry for the address referenced by a load, store, probe
(regular_form probe or probe.fault) or semaphore operation does not match any of
the valid protection keys. The RSE may cause this fault if PSR.rt is 1, the PSR.pk bit is
1, and the access key from the TLB entry for the address referenced by an RSE
mandatory load or store operation does not match any of the valid protection keys.

Interruptions on this vector:

IR Data Key Miss fault
Data Key Miss fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, for Data Key Miss faults, the IIB registers contain the
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Key
Miss faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – If the interruption was due to a non-access operation then the ISR.code bits
{3:0} are set to indicate the type of the non-access instruction; otherwise they are set
to 0. For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory
references, the ISR.code, ed, ei, ni, ir, rs, sp, and na bits are 0. The value for the ISR
bits depend on the type of access performed and are specified below.

Notes Probe (regular_form probe or probe.fault) and the faulting variant of lfetch are the
only non-access instructions that will cause a data key miss fault.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

2:182 Volume 2, Part 1: Interruption Vector Descriptions

Name Dirty-Bit vector (0x2000)

Cause IA-32 or Itanium store or semaphore operations to a page with the dirty-bit (TLB.d)
equal to 0 in the data TLB.

Interruptions on this vector:

Data Dirty Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For mandatory RSE spill references, ISR.ed is always 0. For IA-32
memory references, ISR.ed, ei, ni, and rs are 0. If the interruption was due to a
non-access operation then the ISR.code bits {3:0} are set to indicate the type of the
non-access instruction; otherwise they are set to 0.

Notes Dirty Bit fault can only occur in these situations:

• When PSR.dt is 1 on an IA-32 or Itanium store or semaphore operation

• When PSR.dt is 1 on a probe.w.fault or probe.rw.fault

• When PSR.rt is 1 on an RSE mandatory store operation

For probe.w.fault or probe.rw.fault the ISR.na bit is set, and the ISR.code field is
written with a value of 5.

Only an IA-32 or Itanium semaphore, or probe.rw.fault operation would set ISR.r on
a dirty bit fault.

Software is invoked to update the dirty bit in the data TLB entry and the Page table. The
PSR.da bit can be used to suppress this fault for one executed instruction or one
mandatory RSE store operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni 0 rs 0 na r 1 0

Volume 2, Part 1: Interruption Vector Descriptions 2:183

Name Instruction Access-Bit vector (0x2400)

Cause For instruction fetches (including IA-32), the access bit (TLB.a) in the TLB entry for this
page is 0, and an instruction on the page is referenced.

Interruptions on this vector:

Instruction Access Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address
zero extended to 64-bits.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For
IA-32 memory references the ISR.ei and ni bits are 0. The defined ISR bits are specified
below.

Notes The fault can only occur when PSR.it is 1 on an instruction reference (including IA-32).
Software uses this fault for memory management page replacement algorithms. The
PSR.ia bit can be used to suppress this fault for one executed instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

2:184 Volume 2, Part 1: Interruption Vector Descriptions

Name Data Access-Bit vector (0x2800)

Cause For data memory references (including IA-32), the access bit (TLB.a) in the TLB entry
for this page is 0, and the page is referenced.

Interruptions on this vector:

IR Data Access Bit fault
Data Access Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, for Data Access Bit faults, the IIB registers contain the
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Access
Bit faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32
memory references, ISR.code, ed, ei, ni, ir, rs, na and sp are 0.

Notes These faults can only occur in these situations:

• When PSR.dt is 1 on an IA-32 or Itanium load, store, or semaphore operation

• When PSR.dt is 1 on a probe.fault

• When PSR.dt is 1 on an lfetch.fault

• When PSR.rt is 1 on an RSE mandatory load/store operation

For probe.fault or lfetch.fault the ISR.na bit is set.

Software uses this fault for memory management page replacement algorithms. The
PSR.da bit can be used to suppress this fault for one executed instruction or one
mandatory RSE memory reference.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

Volume 2, Part 1: Interruption Vector Descriptions 2:185

Name Break Instruction vector (0x2c00)

Cause An attempt is made to execute an Itanium break instruction.

Interruptions on this vector:

Break Instruction fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIM – Is updated with the break instruction immediate value.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
defined ISR bits are specified below.

Notes This fault cannot be raised by IA-32 instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

2:186 Volume 2, Part 1: Interruption Vector Descriptions

Name External Interrupt vector (0x3000)

Cause There are unmasked external interrupts pending from external devices, other
processors, or internal processor events and:

• PSR.i is 1, while executing Itanium instructions

• PSR.i is 1 and (CFLAG.if is 0 or EFLAG.if is 1), while executing IA-32 instructions

IPSR.is indicates which instruction set was executing at the time of the interruption.

Interruptions on this vector:

External Interrupt

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IVR – Highest priority unmasked pending external interrupt vector number. If there are
no unmasked pending interrupts the “spurious” interrupt vector (15) is reported.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction was to be executed when the
external interrupt event was taken. The defined ISR bits are specified below. For
external interrupts taken in the IA-32 instruction set, ISR.ei, ni and ir bits are 0.

Notes: Software is expected to avoid situations which could cause ISR.ni to be 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0

Volume 2, Part 1: Interruption Vector Descriptions 2:187

Name Virtual External Interrupt vector (0x3400)

Cause The guest highest pending interrupt (GHPI) specified by the VMM is unmasked on the
virtual processor.

IPSR.is indicates which instruction set was executing at the time of the interruption.

Interruptions on this vector:

Virtual External Interrupt

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction was to be executed when the
external interrupt event was taken. The defined ISR bits are specified below. For
external interrupts taken in the IA-32 instruction set, ISR.ei, ni and ir bits are 0.

Notes: Software is expected to avoid situations which could cause ISR.ni to be 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0

2:188 Volume 2, Part 1: Interruption Vector Descriptions

Name Page Not Present vector (0x5000)

Cause The bundle or IA-32 instruction being executed resides on a page for which the P-bit
(TLB.p) in the instruction TLB entry is 0, or the data being referenced resides on a page
for which the P-bit in the data TLB entry is 0.

Interruptions on this vector:

IR Data Page Not Present fault
Instruction Page Not Present fault
Data Page Not Present fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IIB0, IIB1 – If implemented, for Data Page Not Present faults, the IIB registers contain
the instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data
Page Not Present and Instruction Page Not Present faults. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

If the fault is due to a data page not present fault for both instruction and data original
references:

• IFA – The virtual address of the data being referenced.

• ISR – If the interruption was due to a non-access operation then the ISR.code bits
{3:0} are set to indicate the type of the non-access instruction; otherwise they are
set to 0. The value for the ISR bits depend on the type of access performed and are
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For
IA-32 memory references, ISR.code, ed, ei, ni, ir, rs, sp and na bits are 0.

If the fault is due to an instruction page not present fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction
address zero extended to 64-bits.

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
defined ISR bits are specified below. For IA-32 memory references the ISR.ei and ni
bits are 0.

Notes This fault can only occur when PSR.it is 1 on an instruction reference, when PSR.dt is 1
on a load, store, semaphore, or non-access operation, or when PSR.rt is 1 on a RSE
mandatory load/store operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

Volume 2, Part 1: Interruption Vector Descriptions 2:189

Name Key Permission vector (0x5100)

Cause Data access (including IA-32): The PSR.dt bit is 1, the PSR.pk bit is 1 and read or write
permission is disabled by the matching protection register on a load, store, or
semaphore operation. The RSE may cause this fault if PSR.rt is 1, the PSR.pk bit is 1
and read or write permission is disabled by the matching protection register on an RSE
mandatory load/store operation. Instruction access (including IA-32): The PSR.it bit is
1, the PSR.pk bit is 1 and execute permission is disabled by the matching protection
register.

Interruptions on this vector:

IR Data Key Permission fault
Instruction Key Permission fault
Data Key Permission fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register.The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IIB0, IIB1 – If implemented, for Data Key Permission faults, the IIB registers contain
the instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Key
Permission and Instruction Key Permission faults. Please refer to Section 3.3.5.10,
“Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for
details on the IIB registers.

If the fault is due to a data key permission fault:

• IFA – Faulting data address.

• ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For
IA-32 memory references, the ISR.code, ed, ei, ni, ir, rs, sp bits are 0.

If the fault is due to an instruction key permission fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction
address zero extended to 64-bits.

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
defined ISR bits are specified below. For IA-32 memory references, ISR.ei and ni are
set to 0.

Notes For probe.fault or lfetch.fault the ISR.na bit is set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

2:190 Volume 2, Part 1: Interruption Vector Descriptions

Name Instruction Access Rights vector (0x5200)

Cause For instruction fetches (including IA-32), the PSR.it bit is 1, and the access rights for
this page do not allow execution or do not allow execution at the current privilege level.

Interruptions on this vector:

Instruction Access Rights fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address
zero extended to 64-bits.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
defined ISR bits are specified below. For IA-32 memory references, ISR.ei and ni bits
are 0.

Notes This fault does not occur if PSR.it is 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

Volume 2, Part 1: Interruption Vector Descriptions 2:191

Name Data Access Rights vector (0x5300)

Cause For memory references (including IA-32), the PSR.dt bit is 1, and the access rights for
this page do not allow read access or do not allow read access at the current privilege
level for load and semaphore operations. The PSR.dt bit is 1, and the access rights for
this page do not allow write access or do not allow write access at the current privilege
level for store and semaphore operations.

The PSR.rt bit is 1, and the access rights for this page do not allow read access or do
not allow read access at the current privilege level for the RSE mandatory load
operation. The PSR.rt bit is 1, and the access rights for this page do not allow write
access or do not allow write access at the current privilege level for the RSE mandatory
store operation.

Interruptions on this vector:

IR Data Access Rights fault
Data Access Rights fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the
IFA. The access key field within this register is set to the region id value from the
referenced region register. The ITIR.ps field is set to the RR.ps field from the referenced
region register. All other fields are set to 0.

IFA – Faulting data address.

IIB0, IIB1 – If implemented, for Data Access Rights faults, the IIB registers contain the
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Access
Rights faults. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle
Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32
memory references, ISR.code, ed, ei, ni, ir, rs, and sp bits are 0.

Notes For probe.fault or lfetch.fault the ISR.na bit is set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

2:192 Volume 2, Part 1: Interruption Vector Descriptions

Name General Exception vector (0x5400)

Cause An attempt is being made to execute an illegal operation, privileged instruction, access
a privileged register, unimplemented field, unimplemented register, unimplemented
address, or take an inter-instruction set branch when disabled.

Interruptions on this vector:

IR Unimplemented Data Address fault
Illegal Operation fault
Illegal Dependency fault
Privileged Operation fault
Disabled Instruction Set Transition fault
Reserved Register/Field fault
Unimplemented Data Address fault
Privileged Register fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP for the following faults:

Illegal Operation fault
Illegal Dependency fault
Privileged Operation fault
Disabled Instruction Set Transition fault
Reserved Register/Field fault
Unimplemented Data Address fault
Privileged Register fault

The IIB registers are undefined for IR Unimplemented Data Address faults. Please refer
to Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For
IA-32 instruction set faults, ISR.ei, ni, na, sp, rs, ir, ed bits are always 0.

• If the fault was caused by a non-access instruction, ISR.code{3:0} specifies which
non-access instruction. See “Non-access Instructions and Interruptions” on
page 2:103.

• ISR.code{7:4} = 0: Illegal Operation fault. Cannot be raised by IA-32 instructions.

• An attempt is being made to execute an illegal operation. Illegal operations
include:

• Attempts to execute instructions containing reserved major opcodes,
reserved sub-opcodes, or reserved instruction fields, writing GR 0, FR 0 or
FR 1, writing a read-only register, or accessing a reserved register.

• Attempts to execute a reserved template encoding. An rfi to a reserved
template encoding preserves IPSR.ri and will set ISR.ei to IPSR.ri.

• Attempts to execute a bundle of template MLX when PSR.ri == 2. This can
only be caused by doing an rfi with an improper setting of IPSR.ri. In this
case, IPSR.ri and ISR.ei will both be 2.

• Attempts to write outside the current register stack frame.

• Attempts to specify the same GR, when the instruction has two GR targets
(e.g., post-increment).

Volume 2, Part 1: Interruption Vector Descriptions 2:193

• If the instruction has two PR targets, and specifies the same PR for both,
predicated-off unconditional compare, fclass, tbit, tnat, and tf
instructions take this fault, even when their qualifying predicate is zero.

• Register bank conflict on a floating-point load pair instruction.

• An access to BSPSTORE or RNAT is performed with a non-zero RSC.mode,
or a loadrs is performed with a non-zero RSC.mode.

• A loadrs is performed with a non-zero CFM.sof and a non-zero RSC.loadrs,
or a loadrs causes more registers to be loaded from memory than can fit
in the physical stacked register file.

• Attempts to predicate a br.ia instruction or to execute br.ia when
AR[BSPSTORE] != AR[BSP].

• Attempts to execute epc if PFS.ppl is less than PSR.cpl.

• Attempts to access interruption registers if PSR.ic is 1.

• Attempts to execute an itc or itr instruction if PSR.ic is 1.

• Attempts to allocate a stack frame larger than 96 registers, or with the
rotating region larger than the stack frame, or with the size of locals larger
than the stack frame, or specifying a qualifying predicate other than PR 0
on an alloc instruction.

• Attempts to execute instructions that are not supported by the processor.

• Attempts to execute a ldfp instruction with two odd-numbered physical FR
targets or two even-numbered physical FR targets.

• Attempts to access an application register from the wrong unit type.

• Attempts to execute a br.cloop, br.ctop, br.cexit, br.wtop, or
br.wexit other than in slot 2 of a bundle.

• Attempts to execute an alloc, flushrs or loadrs as other than the first
instruction in an instruction group. (The result of such an attempt is
undefined, and could result in an Illegal Operation fault, depending on the
processor implementation. See Section 3.5, “Undefined Behavior” on
page 1:44 for details).

• Attempts to execute a clrrrb, clrrrb.pr, cover, itc.d, itc.i, ptc.g or
ptc.ga instruction as other than the last instruction in an instruction group.
(The result of such an attempt is undefined, and may possibly result in an
Illegal Operation fault, depending on the processor See Section 3.5,
“Undefined Behavior” on page 1:44 for details).

• ISR.code{7:4} = 1: Privileged Operation fault. Cannot be raised by IA-32
instructions.

• ISR.code{7:4} = 2: Privileged Register fault. Cannot be raised by IA-32
instructions.

• ISR.code{7:4} = 3: Reserved Register/Field fault, Unimplemented Data Address
fault or IR Unimplemented Data Address fault. Cannot be raised by IA-32
instructions. For Unimplemented Data Address fault:

• If ISR.rs = 0: A data memory reference to an unimplemented address has
occurred.

• If ISR.rs = 1: A mandatory RSE reference to an unimplemented address has
occurred.

For details, refer to “Reserved and Ignored Registers and Fields” on page 1:23 and
“Unimplemented Address Bits” on page 2:73.

2:194 Volume 2, Part 1: Interruption Vector Descriptions

• ISR.code{7:4} = 4: Disabled Instruction Set Transition fault. An instruction set
transition was attempted while PSR.di was 1. This fault can be raised by either the
Itanium br.ia instruction or the IA-32 jmpe instruction. IPSR.is indicates the
faulting instruction set.

• ISR.code{7:4} = 8: Illegal Dependency fault. Cannot be raised by IA-32
instructions. The processor has detected a resource dependency violation.

If the fault is due to a Disabled ISA Transition fault, Illegal Dependency fault, Illegal
Operation fault, Privileged Register fault or Reserved Register/Field fault:

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:4} 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:4} code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir rs 0 na r w 0

Volume 2, Part 1: Interruption Vector Descriptions 2:195

Name Disabled FP-Register vector (0x5500)

Cause An attempt is made to reference a floating-point register set that is disabled.

When PSR.dfl is 1, execution of any IA-32 FP, SSE or MMX technology instructions
raises a Disabled FP Register Low Fault (regardless of whether FR2 - FR31 are actually
referenced).

When PSR.dfh is 1, execution of the first IA-32 instruction following a br.ia or rfi
raises a Disabled FP Register High fault.

If concurrent IA-32 Disabled FP Register High and Low faults are generated, the
Disabled FP Register High fault takes precedence and is reported in the ISR code, the
Disabled FP Register Low fault is discarded and not reported in the ISR code.

Interruptions on this vector:

Disabled Floating-Point Register fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The defined ISR bits are specified below.

• ISR.code{0} = 1: FR2 - FR31 disabled and access attempted.

• ISR.code{1} = 1: FR32 - FR127 disabled and access attempted.

For IA-32 references, ISR.ei, ni, sp, r, and w bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 sp 0 r w 0

2:196 Volume 2, Part 1: Interruption Vector Descriptions

Name NaT Consumption vector (0x5600)

Cause A non-speculative operation (including IA-32) (e.g., load, store, control register access,
instruction fetch etc.) read a NaT source register, NaTVal source register, or referenced
a NaTPage.

Interruptions on this vector:

IR Data NaT Page Consumption fault
Instruction NaT Page Consumption fault
Register NaT Consumption fault
Data NaT Page Consumption fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, for Register NaT Consumption and Data NaT Page
Consumption faults, the IIB registers contain the instruction bundle pointed to by IIP.
The IIB registers are undefined for IR Data NaT Page Consumption and Instruction NaT
Page Consumption faults. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

If the fault is due to a Data NaT Page Consumption fault or an IR Data NaT Page
Consumption fault:

A non-speculative Itanium integer/FP instruction or instruction fetch or IA-32 data
memory reference accessed a page with the NaTPage memory attribute.

• IFA – faulting data address.

• ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0. For
the IA-32 instruction set, ISR.ed, ei, ni, ir, rs and na bits are 0. For probe.fault or
lfetch.fault the ISR.na bit is set.

If the fault is due to an Instruction NaT Page Consumption fault:

A non-speculative Itanium integer/FP instruction or instruction fetch accessed a
page with the NaTPage memory attribute.

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction
address zero extended to 64-bits.

• ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For the IA-32 instruction set, ISR.ni and ei bits are 0.

If the fault is due to an Register NaT Consumption fault:

A non-speculative Itanium instruction reads a NaT’ed GR or an FR containing
NaTVal. An IA-32 integer instruction reads a NaT’ed GR. For IA-32 instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 2 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei so ni ir rs 0 na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 2 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

Volume 2, Part 1: Interruption Vector Descriptions 2:197

behavior of NaT and NaTVal values is model specific, see Section 6.2.4.3,
“NaT/NaTVal Response for IA-32 Instructions” on page 1:134 for details.

• ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For the IA-32 instruction set, ISR.ed, ei, ni, ir, rs, r, w, and na bits
are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 na r w 0

2:198 Volume 2, Part 1: Interruption Vector Descriptions

Name Speculation vector (0x5700)

Cause A chk.a, chk.s, or fchkf instruction needs to branch to recovery code, and the
branching behavior is unimplemented by the processor. This fault cannot be raised by
IA-32 instructions.

Interruptions on this vector:

Speculative Operation fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIM – contains the immediate value from the chk.s, chk.a, or fchkf instruction.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
type of instruction which caused the fault is encoded in the lower four bits of the
ISR.code field.

• If ISR.code{3:0} = 0: chk.a general register speculation fault.

• If ISR.code{3:0} = 1: chk.s general register speculation fault.

• If ISR.code{3:0} = 2: chk.a floating-point speculation fault.

• If ISR.code{3:0} = 3: chk.s floating-point speculation fault.

• If ISR.code{3:0} = 4: fchkf fault.

The defined ISR bits are specified below.

Notes The Speculative Operation fault handler is required to perform the following steps:

1. Read the predicates and the IIM, IIP, IPSR, and ISR control registers, into scratch
bank 0 general registers.

2. Copy the IIP value to IIPA.

3. Sign-extend the IIM value (from 21 bits to 64), shift it left by 4 bits, add it to the
IIP value, and write this value back into IIP.

4. Set the IPSR.ri field to 0.

5. Check whether either IPSR.tb (Taken Branch trap) or IPSR.ss (Single Step
enable) is 1. If not, emulation is complete, so restore the predicates and rfi. If
so, then the check instruction would have taken one of these traps instead of
branching to its target, so this handler needs to branch directly to the appropriate
trap handler instead of performing the rfi (see steps 6 and 7).

6. If IPSR.tb was 1, then update ISR.code with its tb bit set to 1 and its ss bit also
set to 1 if IPSR.ss was 1, and all other bits 0. Restore the predicates, execute a
srlz.d, and branch to the taken branch vector (IVT offset 0x5f00).

7. If IPSR.ss was 1 (but not IPSR.tb), then update ISR.code with its ss bit set to 1,
and all other bits 0. Restore the predicates, execute a srlz.d, and branch to the
single step vector (IVT offset 0x6000).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

Volume 2, Part 1: Interruption Vector Descriptions 2:199

The Speculative Operation fault handler does not need to check for unimplemented
instruction addresses. They will be checked automatically by processor hardware when
the handler executes its rfi. On processors which report unimplemented instruction
addresses with an Unimplemented Instruction Address (UIA) trap, if an emulated check
instruction targets an unimplemented address and also needs to take a Single Step trap
or Taken Branch trap (or both), the UIA trap will not be raised until after the Single Step
and/or Taken Branch trap has been handled, making it appear that the Unimplemented
Instruction Address trap has the wrong priority. A Speculative Operation fault handler
with this behavior is architecturally compliant. On processors which report
unimplemented instruction addresses with an Unimplemented Instruction Address fault,
the UIA fault will be taken at the target of the check rather than on the check
instruction itself, so any Single Step trap and/or Taken Branch trap on the check will
naturally become visible first.

2:200 Volume 2, Part 1: Interruption Vector Descriptions

Name Debug vector (0x5900)

Cause A debug fault has occurred. Either the instruction address matches the parameters set
up in the instruction debug registers, or the data address of a load, store, semaphore,
or mandatory RSE fill or spill matches the parameters set up in the data debug
registers. All IA-32 instruction set debug events are delivered on the
IA_32_Exception(Debug) vector; see Chapter 9, “IA-32 Interruption Vector
Descriptions.” IA-32 instructions can not raise this fault, IA-32 debug events are
delivered on the IA_32_Exception(Debug) vector.

Interruptions on this vector:

IR Data Debug fault
Instruction Debug fault
Data Debug fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, for Data Debug faults, the IIB registers contain the
instruction bundle pointed to by IIP. The IIB registers are undefined for IR Data Debug
and Instruction Debug faults. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

If the fault is due to a data debug fault or an IR Data Debug fault:

• IFA – The address of the data being referenced.

• ISR – The value for the ISR bits depend on the type of access performed and are
specified below. For mandatory RSE fill or spill references, ISR.ed is always 0.

If the fault is due to an instruction debug fault:

• IFA – Faulting instruction fetch address.

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
defined ISR bits are specified below.

Notes On an instruction reference this fault is suppressed if the PSR.db bit is 0 or if the PSR.id
bit is 1. On a data reference this fault is suppressed if the PSR.db bit is 0 or if the
PSR.dd bit is 1. The only non-access data operations which can cause a debug fault are
the probe.fault and lfetch.fault instructions.

If unaligned accesses are being performed with debug faults enabled, this fault may be
taken even though there is not a match for the address programmed in the breakpoint
register. See Section 7.1.2, “Debug Address Breakpoint Match Conditions” on
page 2:154.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1

Volume 2, Part 1: Interruption Vector Descriptions 2:201

Name Unaligned Reference vector (0x5a00)

Cause If PSR.ac is 1, and the data address being referenced by an Itanium instruction is not
aligned to the natural size of the load, store, or semaphore operation, or a data
reference is made to a misaligned datum not supported by the implementation. See
“Memory Access Instructions” on page 1:57. For IA-32 data memory references, an
IA_32_Exception(Alignment Check) fault is raised; see Chapter 9, “IA-32 Interruption
Vector Descriptions.” IA-32 instructions can not raise this fault, IA-32 unaligned events
are delivered on the IA_32_Exception(Alignment_Check) vector.

If the data reference specified is both unaligned to the natural datum size and
unsupported, then an Unaligned Data Reference fault is taken.

Interruptions on this vector:

Unaligned Data Reference fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are
specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni 0 0 sp 0 r w 0

2:202 Volume 2, Part 1: Interruption Vector Descriptions

Name Unsupported Data Reference vector (0x5b00)

Cause An attempt was made to:

• Execute a fetchadd, cmpxchg, xchg, or unsupported ld16, st16 or 10-byte
memory reference (ldfe or stfe) instruction to a page that is neither cacheable
with write-back write policy nor a NaTPage.

• Execute a fetchadd instruction to a page that is an uncacheable exported (UCE)
page and the processor model does not support exporting of fetchadd instructions.

 See “Effects of Memory Attributes on Memory Reference Instructions” on page 2:86 for
details. IA-32 instructions can not raise this fault, IA-32 locked faults are delivered on
the IA_32_Intercept(Lock) vector.

If the data reference specified is both unaligned to the natural datum size and
unsupported, then an Unaligned Data Reference fault is taken.

IA-32 data memory references that require an external atomic lock when DCR.lc is 1,
raise an IA_32_Intercept(Lock) fault; see Chapter 9, “IA-32 Interruption Vector
Descriptions.”

Interruptions on this vector:

Unsupported Data Reference fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IFA – The address of the data being referenced.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The value for the ISR bits depend on the type of access performed and are
specified below.

For ldfe and stfe instructions, the processor may optionally set both ISR.r and ISR.w
to 1, although this is not recommended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni 0 0 0 0 r w 0

Volume 2, Part 1: Interruption Vector Descriptions 2:203

Name Floating-point Fault vector (0x5c00)

Cause A floating-point exception fault has occurred. IA-32 numeric instructions can not raise
this fault, IA-32 floating point faults are delivered on the
IA_32_Exception(Floating-Point) vector.

Interruptions on this vector:

Floating-Point Exception fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the FP exception fault. The ISR.code field has
eight bits defined. See Chapter 5 for details.

• ISR.code{0} = 1: IEEE V (invalid) exception (Normal or Parallel FP-HI)

• ISR.code{1} = 1: Denormal/Unnormal operand exception (Normal or Parallel
FP-HI)

• ISR.code{2} = 1: IEEE Z (divide by zero) exception (Normal or Parallel FP-HI)

• ISR.code{3} = 1: Software assist (Normal or Parallel FP-HI)

• ISR.code{4} = 1: IEEE V (invalid) exception (Parallel FP-LO)

• ISR.code{5} = 1: Denormal/Unnormal operand exception (Parallel FP-LO)

• ISR.code{6} = 1: IEEE Z (divide by zero) exception (Parallel FP-LO)

• ISR.code{7} = 1: Software assist (Parallel FP-LO)

The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

2:204 Volume 2, Part 1: Interruption Vector Descriptions

Name Floating-point Trap vector (0x5d00)

Cause A floating-point exception trap has occurred. IA-32 numeric instructions can not raise
this trap.

Interruptions on this vector:

Floating-Point Exception trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIPA. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the type of FP exception and IEEE information.
The ISR code field contains a bit vector (see Table 8-3 on page 2:170) for all traps
which occurred in the just-executed instruction. The defined ISR bits are specified
below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 fp trap code 0 0 0 ss 0 0 1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

Volume 2, Part 1: Interruption Vector Descriptions 2:205

Name Lower-Privilege Transfer Trap vector (0x5e00)

Cause Two trapping conditions transfer control to this vector:

• An attempt is made to transfer control to an unimplemented address, resulting in
either an Unimplemented Instruction Address trap or an Unimplemented Instruction
Address fault. See “Unimplemented Address Bits” on page 2:73.

• The PSR.lp bit is 1, and a branch lowers the privilege level.

IA-32 instructions can not raise this trap.

Interruptions on this vector:

Unimplemented Instruction Address fault
Unimplemented Instruction Address trap
Lower-Privilege Transfer trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP – CR19)” on page 2:37
for a further clarification of the IIP value for an unimplemented instruction
address trap.

IIB0, IIB1 – If implemented, for Lower-Privilege Transfer traps, the IIB registers
contain the instruction bundle pointed to by IIPA. The IIB registers are undefined for
Unimplemented Instruction Address faults and traps. Please refer to Section 3.3.5.10,
“Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on page 2:42 for
details on the IIB registers.

ISR – For Unimplemented Instruction Address trap and Lower-Privilege Transfer trap,
the ISR.ei bits are set to indicate which instruction caused the exception, and the
ISR.code contains a bit vector (see Table 8-3 on page 2:170) for all traps which
occurred in the just-executed instruction.

For Unimplemented Instruction Address fault ISR.fp_trap_code is set to 0.

The defined ISR bits are specified below.

If this vector was entered for an Unimplemented Instruction Address fault:

IFA – Faulting unimplemented instruction address

If this vector was entered for an Unimplemented Instruction Address trap:

If this vector was entered for a Lower-Privilege Transfer trap:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ri 0 ni ir 0 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 fp trap code 0 0 1 ss tb lp fp

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0

2:206 Volume 2, Part 1: Interruption Vector Descriptions

Notes The Unimplemented Instruction Address trap can be the result of a taken branch, a
taken chk, an rfi, or the execution of a slot 2 instruction in a bundle at the last
implemented address. The lower privilege transfer trap is only taken on a branch
demotion, and not an rfi return.

Processors may optionally report unimplemented instruction addresses with an
Unimplemented Instruction Address fault on the fetch of the unimplemented address.
To system software, this appears the same as if an Unimplemented Instruction Address
trap had been taken, except that:

• any concurrent traps (Single Step, Taken Branch, Lower-Privilege Transfer, FP) will be
taken first

• asynchronous interrupts (such as External interrupt) may be taken with IIP pointing
to the unimplemented address before the Unimplemented Instruction Address fault is
taken

• incomplete register stack frame interrupts may be taken with IIP pointing to the
unimplemented address before the Unimplemented Instruction Address fault is taken

• ISR.ei will be equal to the value of PSR.ri at the time of the fault (and therefore will
not indicate which instruction in the bundle pointed to by IIPA was responsible for the
transition to an unimplemented address).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 ss tb 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0

Volume 2, Part 1: Interruption Vector Descriptions 2:207

Name Taken Branch Trap vector (0x5f00)

Cause A taken branch was executed, and the PSR.tb bit is 1. IA-32 instructions can not raise
this trap, IA-32 taken branch traps are delivered on the IA_32_Exception(Debug)
vector.

The Taken Branch trap is not taken on an rfi instruction.

Interruptions on this vector:

Taken Branch trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP – CR19)” on page 2:37
for a further clarification of the IIP value for an unimplemented instruction
address trap or fault.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIPA. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
ISR.code contains a bit vector (see Table 8-3 on page 2:170) for all traps which
occurred in the just-executed instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 ss 1 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0

2:208 Volume 2, Part 1: Interruption Vector Descriptions

Name Single Step Trap vector (0x6000)

Cause An instruction was successfully executed, and the PSR.ss bit is 1. For IA-32 instruction
set, this condition is delivered on the IA_32_Exception(Debug) vector; see Chapter 9,
“IA-32 Interruption Vector Descriptions.” IA-32 instructions can not raise this trap,
IA-32 single step events are delivered on the IA_32_Exception(Debug) vector.

The Single Step trap is not taken on an rfi instruction.

Interruptions on this vector:

Single Step trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIPA. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The
ISR.code contains a bit vector (see Table 8-3 on page 2:170) for all traps which
occurred in the just-executed instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0

Volume 2, Part 1: Interruption Vector Descriptions 2:209

Name Virtualization vector (0x6100)

Cause An attempt is made to execute an instruction which requires virtualization. This fault
cannot be raised by IA-32 instructions.

Interruptions on this vector:

Virtualization fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers contain the instruction bundle pointed to
by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 – CR26, 27)” on page 2:42 for details on the IIB registers.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

2:210 Volume 2, Part 1: Interruption Vector Descriptions

Name IA-32 Exception vector (0x6900)

Cause A fault or trap was raised while executing from the IA-32 instruction set.

Interruptions on this vector:

IA-32 Instruction Debug fault
IA-32 Code Fetch fault
IA-32 Instruction Length > 15 bytes fault
IA-32 Device Not Available fault
IA-32 FP Error fault
IA-32 Segment Not Present fault
IA-32 Stack Exception fault
IA-32 General Protection fault
IA-32 Divide by Zero fault
IA-32 Alignment Check fault
IA-32 Bound fault
IA-32 INTO trap
IA-32 Breakpoint (INT 3) trap
IA-32 Data Breakpoint trap
IA-32 Taken Branch trap
IA-32 Single Step trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IFA – is undefined. The faulting IA-32 address is contained in IIPA.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – ISR.vector contains the IA-32 exception vector number. ISR.code contains the
IA-32 error code for faults or a trap code listing concurrent trap events for traps.

Notes See Chapter 9, “IA-32 Interruption Vector Descriptions” for complete details on each
IA-32 Exception and for error code and trap code definition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 vector error_code/trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 x

Volume 2, Part 1: Interruption Vector Descriptions 2:211

Name IA-32 Intercept vector (0x6a00)

Cause An intercept fault or trap was raised while executing from the IA-32 instruction set. This
vector handles all the IA-32 intercepts described in Chapter 9, “IA-32 Interruption
Vector Descriptions.”

Interruptions on this vector:

IA-32 Invalid Opcode fault
IA-32 Instruction Intercept fault
IA-32 Locked Data Reference fault
IA-32 System Flag Intercept trap
IA-32 Gate Intercept trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIM – 64-bit information describing the cause of the intercept.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – ISR.vector contains a number specifying the type of intercept. ISR.code contains
the IA-32 specific intercept information or a trap code listing concurrent trap events for
traps.

Notes See Chapter 9, “IA-32 Interruption Vector Descriptions” for complete details on each
IA-32 Intercept and for the intercept code and trap code definition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 intercept_number intercept_code/trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 r w 0

2:212 Volume 2, Part 1: Interruption Vector Descriptions

Name IA-32 Interrupt vector (0x6b00)

Cause An IA-32 software interrupt trap was executed. This vector handles all the IA-32
software interrupts described in Chapter 9, “IA-32 Interruption Vector Descriptions.”

Interruptions on this vector:

IA-32 Software Interrupt (INT) trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:165 for a detailed description.

IIB0, IIB1 – If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 – CR26, 27)” on
page 2:42 for details on the IIB registers.

ISR – ISR.vector contains the IA-32 defined interruption vector number. ISR.code
contains a trap code listing concurrent trap events.

Notes See Chapter 9, “IA-32 Interruption Vector Descriptions” for complete details on this
vector and the trap code definition.

§

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 vector trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:213

IA-32 Interruption Vector Descriptions 9

This section gives detailed description of all possible IA-32 exceptions, interrupts and
intercepts that can occur during IA-32 instruction set execution in the Itanium System
Environment. Interruption resources not noted below are undefined after the
interruption. For all cases where an interruption is taken out of the IA-32 instruction
set, IPSR.is is set to 1.

9.1 IA-32 Trap Code

The following trap code is defined for concurrent traps reported during IA-32 instruction
set execution. There is a bit for every possible concurrent trap condition.

9.2 IA-32 Interruption Vector Definitions

Following are the definitions of IA-32 exceptions, interrupts and intercepts that can
occur during IA-32 instruction set execution in the Itanium system environment.

Figure 9-1. IA-32 Trap Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 b3 b2 b1 b0 ss tb 0

Figure 9-2. IA-32 Trap Code

Bit Name Description

2 tb taken branch trap, set if an IA-32 branch is taken and branch traps are enabled
(PSR.tb is 1).

3 ss single step trap, set after the successful execution of every IA-32 instruction if PSR.ss
or EFLAG.tf is 1.

4-7 b0 to b3 Data breakpoint trap due to a match with the corresponding Intel Itanium data
breakpoint registers. Each bit indicates a match with the corresponding DBR
registers; b0=DBR0/1, b1=DBR2/3, b2=DBR4/5, b3=DBR6/7. Zero, one or more bits
may be set. These bits accumulate data breakpoint register matches that occurred
during the duration of executing one IA-32 instruction. In order to be reported, the
DBR register address and mask registers must precisely match the IA-32 data
memory reference address, and the DBR read, write bits match the type of memory
transaction, and the DBR privilege level mask match the value in PSR.cpl.

2:214 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (Divide) – Divide Fault

Cause IA-32 IDIV or DIV instruction attempted a divide by zero operation. Refer to the Intel®
64 and IA-32 Architectures Software Developer’s Manual for a complete
definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:215

Name IA_32_Exception (Debug) – Code Breakpoint Fault

Cause The Itanium architecture debug facilities triggered an IA-32 code breakpoint fault on a
IA-32 instruction fetch and PSR.id and EFLAG.rf are 0. Refer to the Intel® 64 and
IA-32 Architectures Software Developer’s Manual for a complete definition of this
fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 1.

ISR.x – 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 1

2:216 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (Debug) – Data Breakpoint, Single Step, Taken
Branch Trap

Cause The Itanium architecture debug facilities triggered an IA-32 data breakpoint,
single-step or branch trap. In the Itanium System Environment, IA-32 Mov SS or Pop
SS single step and data breakpoint traps are NOT deferred to the next instruction. Refer
to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for a
complete definition of this trap.

Parameters IIPA – virtual address of the trapping IA-32 instruction (zero extended to 64-bits) if
there was a taken branch trap. On jmpe taken branch traps IIPA contains the address of
the jmpe instruction. For all other trap events, IIPA is undefined.

IIP – next Itanium instruction address or the virtual IA-32 instruction address zero
extended to 64-bits.

ISR.vector – 1.

ISR.code – Trap Code, indicates Concurrent Single Step, Taken Branch, Data Breakpoint
Trap events.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:217

Name IA_32_Exception (Break) – INT 3 Trap

Cause IA-32 breakpoint instruction (INT 3) triggered a trap. Refer to the Intel® 64 and
IA-32 Architectures Software Developer’s Manual for a complete definition of this
trap.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

ISR.vector – 3.

ISR.code –Trap Code, indicates Concurrent Single Step condition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 3 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:218 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (Overflow) – Overflow Trap

Cause IA-32 INTO instruction execution when EFLAG.of is set to one. Refer to the Intel® 64
and IA-32 Architectures Software Developer’s Manual for a complete definition of
this trap.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

ISR.vector – 4.

ISR.code – Trap Code, indicates Concurrent Single Step.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 4 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:219

Name IA_32_Exception (Bound) – Bounds Fault

Cause Failed IA-32 Bound check instruction. Refer to the Intel® 64 and IA-32
Architectures Software Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 5.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 5 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:220 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (InvalidOpcode) – Invalid Opcode Fault

Cause All IA-32 invalid opcode faults are delivered to the IA_32_Intercept(Instruction)
handler, including IA-32 illegal, unimplemented opcodes, MMX technology and SSE
instructions if CR0.EM is 1, and SSE instructions if CR4.fxsr is 0. All illegal IA-32
floating-point opcodes result in an IA_32_Intercept(Instruction) regardless of the state
of CR0.em.

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:221

Name IA_32_Exception (DNA) – Device Not Available Fault

Cause The processor executed an IA-32 ESC or floating-point instruction with CR0.em is 1. Or
an IA-32 WAIT, ESC, floating-point instruction, MMX technology or SSE instruction is
executed and CR0.ts bit is 1.

Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for
a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 7.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 7 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:222 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name Double Fault

Cause IA-32 Double Faults (IA-32 vector 8) are not generated by the processor in the Itanium
System Environment.

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:223

Name Invalid TSS Fault

Cause IA-32 Invalid TSS Faults (IA-32 vector 10) are not generated in the Itanium System
Environment.

2:224 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (NotPresent) – Segment Not Present Fault

Cause Generated when the processor detects the Present-bit of the memory segment
descriptor is zero during an IA-32 segment load or far control transfer instructions.
Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for
a complete definition of this fault and error codes.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 11.

ISR.code – IA-32 defined error code. See Intel® 64 and IA-32 Architectures
Software Developer’s Manual.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 11 error_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:225

Name IA_32_Exception (StackFault) – Stack Fault

Cause IA-32 defined set of stack segment fault conditions detected during stack segment load
operations or memory references relative to the stack segment, refer to the Intel® 64
and IA-32 Architectures Software Developer’s Manual for a complete list of all
IA-32 faulting conditions. Stack faults can also be generated when the processor
detects an inconsistent stack segment register descriptor value during an IA-32 stack
reference instruction (e.g. PUSH, POP, CALL, RET,). See section “Segment Descriptor
and Environment Integrity” for a list of possible inconsistent register descriptor
conditions.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 12.

ISR.code – IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is
detected during a memory reference relative to the stack segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 12 error_code or zero

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:226 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (GPFault) – General Protection Fault

Cause IA-32 defined set of data and code segment fault conditions detected during data or
code segment load operations or memory references relative to code or data segments,
refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for
a complete list of all IA-32 General Protection Fault conditions. General Protection faults
can also be generated when the processor detects an inconsistent code or data
segment register descriptor value during an IA-32 code fetch or data memory
reference. See section “Segment Descriptor and Environment Integrity” for a list of
possible inconsistent register descriptor conditions.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 13.

ISR.code – IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is
detected during a memory reference relative to a code or data segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 13 error_code or zero

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:227

Name Page Fault

Cause IA-32 defined page faults (IA-32 vector 14) can not be generated in the Itanium
System Environment.

2:228 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (FPError) – Pending Floating-point Error

Cause An unmasked IA-32 floating-point exception is delivered on the next non-control IA-32
floating-point, MMX technology, WAIT, or jmpe instruction trigger delivery of this
exception. Floating-point errors are delivered regardless of the state of CR0.ne in the
Itanium System Environment. IA-32 numeric exception delivery is not triggered by
Itanium numeric exceptions or the execution of Itanium numeric instructions. Refer to
the Intel® 64 and IA-32 Architectures Software Developer’s Manual for a
complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

FSR, FIR, FDR and FCR contain the IA-32 floating-point environment and exception
information.

ISR.vector – 16.

. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 16 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:229

Name IA_32_Exception (AlignmentCheck) – Alignment Check Fault

Cause An IA-32 instruction performed an unaligned data memory reference while PSR.ac is 1,
or EFLAG.ac is 1 and CR0.am is 1 and the effective privilege level is 3. Refer to the
Intel® 64 and IA-32 Architectures Software Developer’s Manual for a complete
definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IFA – referenced virtual data address (byte granular) zero extended to 64-bits.

ISR.vector – 17.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 17 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:230 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name Machine Check

Cause IA-32 Machine Check (IA-32 vector 18) is not generated in the Itanium System
Environment.

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:231

Name IA_32_Exception (StreamingSIMD) – SSE Numeric Error Fault

Cause An unmasked IA-32 SSE numeric error occurred. Numeric faults generated on SSE
instructions are reported precisely on the faulting SSE instruction. SSE instructions do
NOT trigger the report of any pending IA-32 floating-point exceptions. SSE instructions
always ignore CR0.ne and the IGNNE pin. Refer to the Intel® 64 and IA-32
Architectures Software Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 19.

. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 19 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:232 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Interrupt (Vector #N) – Software Trap

Cause The IA-32 INT n instruction forces an IA-32 interrupt trap. The IA-32 IDT is not
consulted nor are any values pushed onto a memory stack.

Parameters IIPA – trapping virtual IA-32 instruction address (points to the INT instruction) zero
extended to 64-bits.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

ISR.vector – vector number.

ISR.code – TrapCode, Indicates Concurrent Single Step Trap condition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv vector trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:233

Name IA_32_Intercept (Instruction) – Instruction Intercept Fault

Cause Execution of unimplemented IA-32 opcodes, illegal opcodes or sensitive privileged
IA-32 operating system instructions results in an instruction intercept. Intercepted
opcodes include (but are not limited to); CLTS, HLT, INVD, INVLPG, IRET, LIDT, LGDT,
LLDT, LMSW, LTR, MOV to CRs, MOV to/from DRs, RDMSR, RSM, SYSENTER, SYSEXIT,
INT1, SIDT, SGDT, SLDT, SMSW, WBINVD, WRMSR, and all other unimplemented and
illegal opcode patterns. If CR0.em is 1, execution of all IA-32 Intel MMX technology and
IA-32 SSE instructions results in this intercept. If CR4.FXSR is 0, execution of all IA-32
SSE instructions results in this intercept. All illegal IA-32 floating-point opcodes result
in an IA_32_Intercept(Instruction) regardless of the state of CR0.em. Intercepted
opcodes are nullified and alter no architectural state.

Parameters IIP – Virtual IA-32 instruction address zero extended to 64-bits, points to the first byte
of the intercepted IA-32 opcode (including prefixes).

IIPA – Virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IIM – Opcode bytes, contains the first 8-bytes of the IA-32 instruction following all
prefix bytes. All prefix bytes are decoded and presented as a bitmask in the Intercept
Code along with the prefix length in bytes. Opcode bytes are loaded into IIM in the
same format as encountered in memory and as defined in the Intel® 64 and IA-32
Architectures Software Developer’s Manual. The lowest memory address byte is
placed in byte 0 of IIM, higher memory address bytes are placed in increasingly higher
numbered bytes within IIM.

The 8-byte opcode loaded into IIM is stripped of the following prefixes; lock, repeat,
address size, operand size, and segment override prefixes (opcode bytes 0xF3, 0xF2,
0xF0, 0x2E, 0x36, 0x3E, 0x26, 0x64, 0x65, 0x66, and 0x67). The 0x0F opcode series
prefix is not stripped from the opcode bytes loaded into IIM. The opcode loaded into IIM
includes all IA-32 opcode components, including 1 to 3 bytes of opcode, mod r/m bytes,
sib bytes and any possible immediates and/or displacements.

If the opcode loaded in IIM is less than 8-bytes, the remainder higher order numbered
bytes are set to 0. If the opcode is larger than 8-bytes, bytes after the 8th byte
(following all stripped prefixes) are not reported. If required, emulation code must
retrieve the extra opcode bytes by reading from the memory locations specified by IIP.

ISR.vector – 0, indicates instruction intercept.

ISR.code – Intercept Code indicates prefixes and prefix lengths.

Figure 9-3 defines intercept codes for IA-32 instruction set intercepts. Intercept code
fields are defined by Table 9-1 and Table 9-2 on page 2:234.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

byte3 byte2 byte1 byte0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

byte7 byte6 byte5 byte4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 0 intercept_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:234 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

 Figure 9-3. IA-32 Intercept Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

len 0 seg sp np rp lp as os 0

Table 9-1. Intercept Code Definition

Field Bits Description

os 1 Operand Size – (OperandSize Prefix XOR CSD.d bit). When 1, indicates the
effective operand size is 32-bits, when 0, 16-bits.

as 2 Address Size – (AddressSize Prefix XOR CSD.d bit). When 1, indicates the effective
address size is 32-bits, when 0, 16-bits.

lp 3 Lock Prefix – If 1, indicates a lock prefix is present.

rp 4 REP or REPE/REPZ Prefix – If 1, indicates a REP/REPE/REPZ prefix is in effect.

np 5 REPNE/REPNZ Prefix – If 1, indicates a REPNE/REPNZ prefix is in effect.

sp 6 Segment Prefix – If 1, indicates a Segment Override prefix is present.

seg 7:9 Segment Value – Segment Prefix Override value, see Figure 9-2 for encodings. If
there is no segment prefixes this field is undefined.

len 12:15 Length of Prefixes – Length of all prefix (in bytes) stripped from IIM. If there are no
prefixes this field has a value of zero.

Table 9-2. Segment Prefix Override Encodings

Seg Value Segment Prefix

0 ES Segment Override

1 CS Segment Override

2 SS Segment Override

3 DS Segment Override

4 FS Segment Override

5 GS Segment Override

6 reserved

7 reserved

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:235

Name IA_32_Intercept (Gate) – Gate Intercept Trap

Cause If an IA-32 control transfer is initiated through a GDT/LDT descriptor that transfers
control through a Call Gate, Task Gate or Task Segment this interception trap is
generated.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIP – next sequential virtual IA-32 instruction address zero extended to 64-bits.

IFA – Gate Selector. The gate selector is loaded in IFA{15:0}.

IIM – Gate, Task Gate or Task Segment Descriptor. The descriptor loaded in IIM adheres
to the IA-32 GDT/LDT memory format, where byte 0 of the descriptor is in IIM{7:0}.

ISR.vector – 1, indicates gate interception.

ISR.code – TrapCode, Indicates Concurrent Data Debug, taken Branch, and Single Step
Events.

ISR.code{15:14} – indicates whether CALL or JMP generated the trap. See Table 9-3
for details.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved gate selector

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gate_descriptor{31:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

gate_descriptor{63:32}

Table 9-3. Gate Intercept Trap Code Identifier

Instruction ISR.code{15:14}

CALL 00

JMP 01

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 ident trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

2:236 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Name IA_32_Intercept (SystemFlag) – System Flag Trap

Parameters System Flag Intercept Traps are generated for the following conditions:

CLI, STI, POPF, POPFD instructions. If the EFLAG.if bit changes state and CFLG.ii is
1, or EFLAG.tf or EFLAG.ac change state, a System Flag intercept notification trap is
delivered after the instruction completes. IIM contains the previous value of EFLAG
before the trapping instruction executed. If IA-32 code does not have IOPL or CPL
permission to modify the EFLAG bits, no intercept is generated. This intercept trap
condition can be used to provide virtual interrupt services, and delay enabling of
interrupts after the STI instruction.

MOV SS, POP SS instructions. After these instructions complete execution, a System
Flag intercept notification trap is delivered. This intercept trap condition can be used to
inhibit interrupts, and code breakpoints between Mov/Pop SS and the next instruction
and to inhibit Single Step and Data Breakpoint traps on the Mov, or Pop SS instruction.

IIP – next virtual IA-32 instruction address zero extended to 64-bits.

IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits.

IIM – contains the previous EFLAG value before the trapping instruction.

ISR.vector – 2.

ISR.code – Trap Code, indicates Concurrent Single Step Trap, Debug trap condition.

ISR.code{15:14} indicates which instruction generated the trap.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

old EFLAG

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 9-4. System Flag Intercept Instruction Trap Code Instruction
Identifier

Instruction ISR.code{15:14}

CLI 00

STI 01

POPF, POPFD 10

MOV/POP SS 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 2 ident trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0

Volume 2, Part 1: IA-32 Interruption Vector Descriptions 2:237

Name IA_32_Intercept (Lock) – Locked Data Reference Fault

Cause For IA-32 locked operations, if the DCR.lc bit is 1, and an atomic operation to made to
non-write-back memory or to unaligned write-back memory that would result in a
read-modify-write sequence being performed externally under an external bus lock, the
processor raises a Locked Data Reference fault.

Parameters IIP – faulting virtual IA-32 instruction address zero extended to 64-bits.

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IFA – faulting virtual data address (byte granular) zero extended to 64-bits.

ISR.vector – 4.

ISR.code – 0.

§

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 4 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 1 1 0

2:238 Volume 2, Part 1: IA-32 Interruption Vector Descriptions

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:239

Itanium® Architecture-based Operating
System Interaction Model with IA-32
Applications 10

This section describes the IA-32 system execution model from the perspective of an
Itanium architecture-based operating system interfacing with IA-32 code, while
operating in the Itanium System Environment. The main features covered are:

• IA-32 system and control register behavior

• IA-32 virtual memory support

• IA-32 fault and trap handling

• IA-32 instruction behavior

10.1 Instruction Set Transitions

Instruction set transitions are defined in Section 6.2.1, “Instruction Set Modes” on
page 1:110. Operating systems can disable instruction set transitions (jmpe and br.ia)
by setting PSR.di to one. If PSR.di is one, execution of jmpe or br.ia to IA-32 target
results in a Disabled Instruction Set Transition Fault, and the operation is nullified.

The processor also transitions into an Itanium architecture-based operating system
when IA-32 privileged system resources are accessed, on an interruption, or when the
following conditions are detected:

• Instruction Interception – IA-32 system level privileged instructions are executed

• System Flag Interception – Various EFLAG system flags are modified, (e.g. AC, TF
and IF-bits)

• Gate Interception – Control transfers are made through call gate, or transfers
through a task switch (TSS segment or Task Gate).

All software interrupts, external interrupts, faults, traps and machine checks transition
the processor to the Itanium instruction set, regardless of the state of PSR.di. IA-32
defined exceptions and software interrupts are delivered to Itanium architecture-based
interruption handlers.

10.2 System Register Model

Registers are assigned the following conventions during transitions between IA-32 and
Itanium instruction sets.

• IA-32 State: The register contains an IA-32 register during IA-32 instruction set
execution. Expected IA-32 values should be loaded before switching to the IA-32
instruction set. After completion of IA-32 instructions, these registers contain the
results of the execution of IA-32 instructions. These registers may contain any
value during Itanium instruction execution according to Itanium software

2:240 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

conventions. Software should follow IA-32 and Itanium software calling conventions
for these registers.

• Shared: Shared registers contain values that have similar functionality in either
instruction set. For example, all Itanium control registers, debug registers are used
for memory references (including IA-32). The stack pointer (ESP) and instruction
pointer (IP) are also shared.

• Unmodified: These registers are not altered by IA-32 execution. Itanium
architecture-based code can rely on these values not being modified during IA-32
instruction set execution. The register will have the have the same contents when
entering the IA-32 instruction set and when exiting the IA-32 instruction set.

• Undefined: Registers marked as undefined may be used as scratch areas for
execution of IA-32 instructions. Software can not rely on the value of these
registers across an instruction set transition.

Table 10-1. IA-32 System Register Mapping

Intel®
Itanium®

Reg
IA-32 Reg Convention Size Description

Application Registers

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags,
writes of some bits are conditioned by PSR.cpl and
EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)

SSD SSD IA-32 stack segment (register format)

CFLG CR0/CR4 64 IA-32 control flags, CR0=CFLG{31:0},
CR4=CFLG{63:32}a, writable at PSR.cpl=0 only.

Kernel Registers

KR0 IOBASEb

IA-32 state 64

IA-32 virtual I/O port Base register

KR1 TSSDc IA-32 TSS descriptor (register format)

KR2 CR3/CR2d IA-32 CR2=KR2{63:32}, CR3=KR2{31:0}

KR3-7 unmodified Intel Itanium preserved registers

Banked General Registers

GR16-31 unmodified Preserved for operating system use

Control Registers

DCR unmodified,
shared

Controls instruction set execution (including IA-32)

IFA, IIP,
IPSR, ISR,
IIM, IIPA,
ITIR, IHA,
IIB0-1, IFS,
IVA

shared 64

Intel Itanium interruption registers may be overwritten on
any TLB fault, interruption or exception encountered
during IA-32 or Intel Itanium instruction set execution.

PTA shared

64

Shared page table base for memory references
(including IA-32)

ITM shared shared Intel Itanium interruption/timer resources

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:241

10.3 IA-32 System Segment Registers

System Descriptors are maintained in an unscrambled format shown in Figure 10-1 that
differs from the IA-32 scrambled memory descriptor format. The unscrambled register
format is designed to support fast conversion of IA-32 segmented 16/32-bit pointers
into virtual addresses by Itanium architecture-based code. IA-32 segment register load
instructions unscramble the GDT/LDT memory format into the descriptor register
format on a segment register load. Itanium architecture-based software can also
directly load descriptor registers provided they are properly unscrambled by software.
When Itanium architecture-based software loads these registers, no data integrity
checks are performed at that time if illegal values are loaded in any fields. For a
complete definition of all bit fields and field semantics refer to the Intel® 64 and
IA-32 Architectures Software Developer’s Manual.

LID, IVR,
TPR, EOI,
IRR0, IRR1,
IRR2, IRR3,
ITV, PMV,
LRR0, LRR1,
CMCV

shared 64

Intel Itanium external interrupt control registers are used
to generate, prioritize and delivery external interrupts
during IA-32 or Intel Itanium instruction set execution.

Translation Resources

TRs

shared
All Intel Itanium virtual memory registers can be used for
memory references (including IA-32).

TCs

RRs

PKRs

Debug Registers

IBRs dr0-3, dr7 shared 64 Intel Itanium debug registers are used memory
references (including IA-32).DBRs dr0-3, dr7

Performance Monitors

PMCs shared 64 Intel Itanium performance monitors measure
performance events (including IA-32).

PMDs shared 64 reflect performance monitor results of execution
(including IA-32)

a. IA-32 MOV from CR0 and CR4 return the value in the CFLG register.
b. The IOBase register is used by IN/OUT instructions. If IN/OUT operations are disabled via CFLG.io, this

register can be used for other values.
c. The TSSD registers are used by IN/OUT instructions for I/O permission via CFLG.io. If access to the TSS is

disabled, these registers can be used for other values.
d. The Mov from CR2,CR3 instructions return the value contained in KR2.

Figure 10-1. IA-32 System Segment Register Descriptor Format (LDT, GDT,
TSS)

63 62 60 59 58 57 56 55 52 51 32 31 0

g ig p dpl s stype lim{19:0} base{31:0}

Table 10-1. IA-32 System Register Mapping (Continued)

Intel®
Itanium®

Reg
IA-32 Reg Convention Size Description

2:242 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

System segment selectors and descriptors for GDT and LDT are maintained in Itanium
general registers to support segment register loads used extensively by segmented
16-bit code. On the transition into the IA-32 instruction set, GDT/LDT descriptor table
must be initialized if IA-32 code will perform protected mode segment register loads or
far control transfers.

Within the IA-32 System Environment, GDT and LDT are considered privileged
operating system segmentation resources. However, in the Itanium System
Environment, applications can transition between the IA-32 and Itanium instruction set
and bypass IA-32 segmentation. Itanium user level instructions can also directly modify
all selectors and descriptors including GDT and LDT. An operating system should either
protect memory with virtual memory management mechanisms defined by the Itanium
architecture or disabled application level instruction set transitions. Within the Itanium
System Environment, GDT/LDT memory spaces must be mapped into user space, since
supervisor overrides for accesses to GDT/LDT are disabled.

The TSSD descriptor points to the I/O Permission Bitmap. If CFLG.io is 1, IN, INS, OUT,
and OUTS consult the TSSD I/O permission bitmap as defined in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual. If CFLG.io is 0, the TSSD I/O
permission bitmap is not checked. See Section 10.7, “I/O Port Space Model” for details
on I/O port permission and for TLB-based access control. The TSSD register is not used
within the Itanium System Environment to support task switches, or interlevel control
transfers. If the TSSD is used for I/O Permissions, Itanium architecture-based
operating system software must ensure that a valid 286 or 386 Task State Descriptor is
loaded, otherwise IN/OUT operations to the TSSD I/O permission bitmap will result in
undefined behavior.

The IDT descriptor is not supported or defined within the Itanium System Environment.

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS)

Field Bits Description

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for IA-32 instruction set memory references.
This value is ignored for Intel Itanium instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within the segment. See the
Intel® 64 and IA-32 Architectures Software Developer’s Manual for details and segment
limit fault conditions.

stype 55:52 Segment Type identifier. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for encodings and definition.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32
instruction set memory references.

p 59 Segment Present bit. If 0, and an IA-32 memory reference uses this segment an
IA_Exception(GPFault) is generated.

ig 62:60 Ignored – For the LDT/GDT/TSS descriptors reads of this field return the last value written
by Itanium architecture-based code. Reads of this field return zero if written by IA-32
descriptor loads.This field is ignored by the processor during IA-32 instruction set execution.
This field may have a future use and should be set to zero by software.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | 0xFFF for IA-32
instruction set memory references.

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:243

10.3.1 IA-32 Current Privilege Level

PSR.cpl is the current privilege level of the processor for instruction execution
(including IA-32). PSR.cpl is used by the processor for all IA-32 descriptor
segmentation and paging permission checks. PSR.cpl is a secured register. Typical
IA-32 processors used SSD.dpl as the official privilege level of the processor. Since,
SSD.dpl is not secured from user modification, processor implementations must base
all privilege checks and state backups based on PSR.cpl.

10.3.2 IA-32 System EFLAG Register

The EFLAG (AR24) register is made of two major components, user arithmetic flags (CF,
PF, AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF,
VIP). None of the arithmetic or system flags affect Itanium instruction execution. The
arithmetic flags are used by the IA-32 instruction set to reflect the status of IA-32
operations, control IA-32 string operations, and control branch conditions for IA-32
instructions. System flags are typically managed by an operating system and are used
to control the overall operations of the processor. System flags are broken into two
categories, system flags that control IA-32 instruction set execution behavior and
virtualizable system flags. The NT system flag shown in bold font in Figure 10-2 is
virtualized.

System flags AC, TF, RF, VIF, VIP, IOPL and VM directly control the execution of IA-32
instructions. These bits do not control any Itanium instructions. See Table 10-3 for a
complete definition these bits.

The NT bit does not directly control the execution of any IA-32 or Itanium instructions.
All IA-32 instructions that modify this bit is intercepted (e.g. IRET, Task Switches)

See Table 10-3, “IA-32 EFLAG Field Definition” for the behavior on IA-32 and Itanium
instruction reads/writes to this application register.

10.3.2.1 Virtualized Interrupt Flag

To provide for virtualization of IA-32 code, the IF bit is virtualizable in the context of an
operating system. Interrupts are enabled for IA-32 instructions, if (PSR.i and
(~CFLG.if or EFLAG.if)) is true. For Itanium architecture-based code, interrupts are
enabled if PSR.i is 1.

An optional System Flag intercept trap can be generated if CFLG.ii is 1, and the IF-flag
changes state due to IA-32 code executing CLI, STI, or POPF. See Section 10.3.3.1,
“IA-32 Control Registers” on page 2:246 for CFLG details. Using this model,
virtualization code can set CFLG.if to 0 and CFLG.ii to 0, IA-32 instruction set
modifications of EFLAG.if does not affect actual interrupt masking, therefore no
notification events need be sent to virtualizing software. When virtualization code,
detects and queues an external interrupt for delivery into a virtualized IA-32 operating

Figure 10-2. IA-32 EFLAG Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vip vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)

2:244 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

system/application, it can set CFLG.ii to1 to force notification the next time the IF-bit
changes state, indicating IA-32 code is either opening or closing the interrupt window.
Setting CFLG.if to 1, allows for direct IA-32 control of interrupt masking.

Virtualization of the IF flag is independent of VME extensions. Both mechanisms can be
used independently, see the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for the complete VME definition.

Table 10-3. IA-32 EFLAG Field Definition

EFLAGa Bits Description

EFLAG.cf 0 IA-32 Carry Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

1 Ignored – For IA-32 instructions, writes are ignored, reads return one. For Itanium
instructions, the implementation can either ignore writes and return one on reads; or
write the value, and return the last value written on reads.

3,5,
15

Ignored – For IA-32 instructions, writes are ignored, reads return zero. For Itanium
instructions, the implementation can either ignore writes and return zero on reads, or
write the value and return the last value written on reads.

EFLAG.pf 2 IA-32 Parity Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

EFLAG.af 4 IA-32 Aux Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

EFLAG.zf 6 IA-32 Zero Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

EFLAG.sf 7 IA-32 Sign Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

EFLAG.tf 8 IA-32 Trap Flag- In the Intel Itanium System Environment, IA-32 instruction single
stepping is enabled when EFLAG.tf is 1 or PSR.ss is 1. EFLAG.tf does not control
single stepping for Intel Itanium instruction set execution. When single stepping is
enabled, the processor generates a IA_32_Exception(Debug) trap event after the
successful execution of each IA-32 instruction. If EFLAG.tf is modified by the POPF
or POPFD instruction an IA_32_Intercept(SystemFlag) trap is raised. See the Intel®
64 and IA-32 Architectures Software Developer’s Manual for details on this bit.

EFLAG.if 9 IA-32 Interruption Flag. In the Intel Itanium System Environment, when PSR.i and
(~CFLG.if or EFLAG.if) is 1, external interrupts are enabled during IA-32 instruction
set execution, otherwise external interrupts are held pending. If CFLG.if is 1,
modification of the EFLAG.if directly affects external interrupt enabling. If CFLG.if is 0,
EFLAG.if does not affect interrupt enabling. The IF-bit does not affect external
interrupt enabling for Intel Itanium instructions nor NMI interrupts.
The IF bit can be modified by IA-32 and Itanium architecture-based code only when
PSR.cpl is less than or equal to EFLAG.iopl. If PSR.cpl is greater than EFLAG.iopl,
writes to the IF-bit are silently ignored.
If CFLG.ii is 1, successful modification of the IF-bit by CLI, STI, or POPF results in an
IA_32_Intercept(SystemFlag) trap, otherwise the IF-bit is modified without
interception. Modification of this bit by Intel Itanium instructions does not result in an
intercept. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details on this bit.

EFLAG.df 10 IA-32 Direction Flag. See Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

EFLAG.of 11 IA-32 Overflow Flag. See Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:245

EFLAG.iopl 13:12 IA-32 In/Out Privilege Level, controls accessibility by IA-32 IN/OUT instructions to the
I/O port space and permission to modify the IF-bit for Intel Itanium and IA-32
instructions. If PSR.cpl > IOPL, permission is denied for IA-32 IN/OUT instructions,
and modifications of EFLAG.if by either IA-32 or Intel Itanium instructions are ignored.
IOPL can only be modified by IA-32 or Intel Itanium instructions executing at privilege
level 0, otherwise modifications of this bit are silently ignored. This bit is supported in
both the IA-32 and Intel Itanium System Environments. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for details on this bit.

EFLAG.nt 14 IA-32 Nested Task switch. In the IA-32 System Environment, indicates a nested task
flag when chaining interrupted and called IA-32 tasks. IA-32 task switches are not
directly supported in the Intel Itanium System Environment, since IRET, interruptions,
calls, and jumps through task gates are always intercepted. EFLAG.nt can be
modified by the POPF or POPFD instruction in both system environments.
Modification of EFLAG.nt by POPF and POPFD does not result in a System Flag
Intercept. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details on this bit.

EFLAG.rf 16 IA-32 Resume Flag. In the Intel Itanium System Environment, when EFLAG.rf or
PSR.id is 1, code breakpoint faults are temporarily disabled for one IA-32 instruction,
so that IA-32 instructions can be restarted after a code breakpoint fault without
causing another code breakpoint fault. EFLAG.rf does not affect Intel Itanium
Instruction Debug faults. After the successful execution of each IA-32 instruction,
PSR.id and EFLAG.rf are cleared to zero. On entry into the IA-32 instruction set via
rfi or br.ia, EFLAG.rf and PSR.id is not cleared until the successful completion of
the first (target) IA-32 instruction. jmpe clears the PSR.id and the EFLAG.rf bit.
EFLAG.rf is set to 1 if a repeat string sequence (REP MOVS, SCANS, CMPS, LODS,
STOS, INS, OUTS) takes an external interrupt, trap or fault before the final iteration.
EFLAG.rf and PSR.id are set to 0 after the last iteration. For all other cases, external
interrupts, faults, traps, and intercept conditions EFLAG.rf is unmodified.
The RF-bit can be modified by Intel Itanium instructions running at any privilege level.
IA-32 instructions cannot directly modify the RF-bit or PSR.id. Specifically, POPF
cannot modify the RF-bit and execution of IRET is always intercepted in the Intel
Itanium System Environment. See the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for details on this bit.

EFLAG.vm 17 IA-32 Virtual Mode 86. When 1, IA-32 instructions execute in the VM86 environment.
This bit can only be modified by IA-32 or Intel Itanium instructions executing at
privilege ring 0, otherwise modifications of this bit by Intel Itanium or IA-32
instructions is silently ignored. Itanium architecture-based software is responsible for
initializing the processor with the required VM86 register state before transferring to
IA-32 VM86 environment. This bit is supported in both the IA-32 and Intel Itanium
System Environments. See the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for complete details of the VM86 environment. Software must
ensure the processor is in IA-32 Protected Mode when setting the VM bit.

EFLAG.ac 18 IA-32 Alignment Check. In the Intel Itanium System Environment, IA-32 instructions
raise an IA_32_Exception(AlignmentCheck) fault if an unaligned reference is
performed and PSR.ac is 1 or (CFLG.am is 1 and EFLAG.ac is 1 and memory is
accessed at an effective privilege level of 3). Neither EFLAG.ac, CR0.am nor privilege
level affect alignment check faults for Intel Itanium instructions. See Section 10.6.7,
“Memory Alignment” on page 2:263 for details on alignment conditions. This bit can
be modified by IA-32 and Intel Itanium instructions at any privilege level. Modification
of this bit by the POPF instructions results in an IA_32_Intercept(SystemFlag) trap.
See the Intel® 64 and IA-32 Architectures Software Developer’s Manual for
details on this bit.

Table 10-3. IA-32 EFLAG Field Definition (Continued)

EFLAGa Bits Description

2:246 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

10.3.3 IA-32 System Registers

IA-32 system registers such as CR3, CR2, debug registers, performance counters.
IA-32 control registers do not affect execution of Itanium instructions. All IA-32
privileged instructions that access prior IA-32 system registers are intercepted.

10.3.3.1 IA-32 Control Registers

IA-32 control registers CR0 and CR4 are mapped into the Itanium application register
CFLG (AR27). IA-32 control bits, shown in Figure 10-3, only control execution of the
IA-32 instruction set. Additional CR0 bits are defined in CFLG to control virtualization of
IA-32 code (namely the IO and IF bits) as shown in Figure 10-3. CFLG is readable by
Itanium architecture-based code at all privilege levels but can only be written at
privilege level 0, otherwise a Privileged Register fault is generated. When Itanium
architecture-based software loads this application register (AR24), a Reserved
Register/Field fault will be raised if a non-zero value is written into bits listed as
reserved.

• State in italics is virtualized. This state has no impact on a IA-32 or Itanium
instruction set execution.

• State in bold only affects IA-32 instruction set execution, Itanium instruction
execution is not affected.

EFLAG.vif 19 IA-32 Virtual Interrupt Flag. See VME extensions in the Intel® 64 and IA-32
Architectures Software Developer’s Manual for details. Affects execution of POPF,
PUSHF, CLI and STI. This bit is supported in both the IA-32 and Intel Itanium System
Environments. A IA-32 Code Fetch fault (GPFault(0)) is generated on every IA-32
instruction (including the target of rfi and br.ia), if the following condition is true:
EFLAG.vip & EFLAG.vif & CFLG.pe & PSR.cpl==3 & (CFLG.pvi | (EFLAG.vm &
CFLG.vme))

EFLAG.vip 20 IA-32 Virtual Interrupt Pending. See VME extensions in the Intel® 64 and IA-32
Architectures Software Developer’s Manual for programming details. Affects
execution of POPF, PUSHF, CLI and STI. This bit is supported in both the IA-32 and
Intel Itanium System Environments.

EFLAG.id 21 IA-32 Identifier bit, can be written and read by IA-32 instructions, indicates IA-32
CPUID instruction is supported. This bit is supported in both the IA-32 and Intel
Itanium System Environments.

63:22 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the
implementation can either raise Reserved Register/Field fault on non-zero writes and
return zero on reads, or write the value (no Reserved Register/Field fault), and return
the last value written on reads.

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits
alter the behavior of Itanium instruction set execution.

Figure 10-3. Control Flag Register (CFLG, AR27)

31 30 29 28272625242322212019 18 17 16 1514131211 10 9 8 7 6 5 4 3 2 1 0

PGCDNW ignored (set to 0) AM ig WP ignored (set to 0) II IF IO NE ET TS EM MP PE

63 62 61 60595857565554535251 50 49 48 4746454443 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) MMXEX FXSR PCEPGEMCEPAEPSEDETSDPVIVME

Table 10-3. IA-32 EFLAG Field Definition (Continued)

EFLAGa Bits Description

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:247

Table 10-4 defines all IA-32 control register state and the behavior of each bit in the
Itanium System Environment.

Table 10-4. IA-32 Control Register Field Definition

Field Intel® Itanium® State Bits Description

CR0 CFLG{31:0} CR0: IA-32 Mov to CR0 result in a instruction
interception fault. Mov from CR0 returns the value
contained in CFLG{31:0}. Modification of
CFLG{31:0} by Intel Itanium instructions only alters
the CR0 state, no side effects (such as TLB flushes)
occur.

CR0.PE CFLG.pe 0 Protected Mode Enable: This bit determines
whether the processor operates in IA-32 Protected
Mode or Real Mode. This bit affects only IA-32
instruction set execution, Intel Itanium operations
are not affected by this bit. Modification of this bit by
Itanium architecture-based code does have NOT
any side effects such as flushing the TLBs. This bit
is supported in both the IA-32 and Intel Itanium
System Environments. See Intel® 64 and IA-32
Architectures Software Developer’s Manual for
details on this bit and the Protected Mode
environment.

CR0.MP CFLG.mp 1 Monitor co-Processor: When CFLG.ts is 1 and
CFLG.mp is 1, execution of IA-32 FWAIT/WAIT
instructions results in an Device Not Available fault.
This bit is ignored by Intel Itanium floating-point
instructions. This bit is supported in both IA-32 and
Intel Itanium System Environments. See the Intel®
64 and IA-32 Architectures Software
Developer’s Manual for details on this bit.

CR0.EM CFLG.em 2 Emulation: When CFLG.em is set, execution of
IA-32 ESC and floating-point instructions generates
an IA_32_Exception(DNA) fault. When CFLG.em is
1, execution of IA-32 MMX technology or SSE
instructions results in an IA_32_Intercept
(Instruction) fault. This bit does not affect Intel
Itanium floating-point instructions. This bit is
supported in both the IA-32 and Intel Itanium
System Environments. See Intel® 64 and IA-32
Architectures Software Developer’s Manual for
details on this bit.

CR0.TS CFLG.ts 3 Task Switched: When CFLG.ts is 1, execution of an
IA-32 ESC, floating-point instruction, MMX
technology or SSE instruction results in a
IA_32_Exception(DNA) fault. When CFLG.ts is 1
and CFLG.mp is 1, execution of IA-32 FWAIT/WAIT
instructions results in an IA_32_Exception(DNA)
fault. This bit is ignored by Intel Itanium instructions.
This bit is supported in both the IA-32 and Intel
Itanium System Environments. See Intel® 64 and
IA-32 Architectures Software Developer’s
Manual for details on this bit.

CR0.ET CFLG.et 4 Extension Type: ET is ignored since i387
co-processor instructions are supported. This bit is
reserved on all Pentium processors. Reads always
return 1. This bit is supported in both the IA-32 and
Intel Itanium System Environments.

2:248 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

CR0.NE CFLG.ne 5 Numeric Error: Numeric errors are always enabled
in the Intel Itanium System Environment. The NE bit
and the IGNNE# pin are ignored by the processor
and the FERR# pin is not asserted for any numeric
errors on IA-32 or Intel Itanium floating-point
instructions.
In the IA-32 System Environment, this bit is
supported as defined in the Intel® 64 and IA-32
Architectures Software Developer’s Manual.

-- CFLG.io 6 I/O Enable: If CFLG.io is 1 and CPL>IOPL, IA-32
IN, INS, OUT, OUTS instructions consulted the TSS
for I/O permission. If CFLG.io is 0 or CPL<=IOPL,
permission is granted regardless of the state of the
TSS I/O permission bitmap (the bitmap is not
referenced). This bit always returns zero when read
by the IA-32 Mov from CR0 instruction. This bit is
not defined in the IA-32 System Environment.

-- CFLG.if 7 IF Enable: When CFLG.if is 1, EFLAG.if can be
used to enabled or disable external interrupts for
IA-32 instructions. If CFLG.if is 0, EFLAG.if does not
control external interrupt enabling. External
interrupts are enabled for the IA-32 instruction set
by if PSR.i and (~CLFG.if or EFLAG.if). This bit
always returns zero when read by the IA-32 Mov
from CR0 instruction. This bit is not defined in the
IA-32 System Environment.

-- CFLG.ii 8 IF Intercept: When CFLG.ii is 1, successful
modification of the EFLAG.if bit by IA-32 CLI, STI or
POPF instructions result in a
IA_32_Intercept(SystemFlag) trap. This bit always
returns zero when read by the IA-32 Mov from CR0
instruction. This bit is not defined in the IA-32
System Environment.

ignored 9:15, 17, 19:28 Ignored – This field is ignored by the processor
during IA-32 instruction set execution. This field
may have a future use and should be set to zero by
IA-32 software. For Itanium instructions, the
implementation can either ignore the writes and
return zero on reads, or write the value and return
the last value written on reads.

CR0.WP CFLG.wp 16 Write Protect: This bit is ignored in the Itanium
System Environment. In the IA-32 System
Environment, WP controls supervisor
write-protection for IA-32 paging. See Intel® 64 and
IA-32 Architectures Software Developer’s
Manual for details on this bit.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:249

CR0.AM CFLG.am 18 Alignment Mask: For IA-32 instructions an
IA_32_Exception(AlignmentCheck) fault is
generated on a reference to an unaligned data
memory operand if PSR.ac is 1 or (CFLG.am is 1
and EFLAG.ac is 1 and memory is accessed at an
effective privilege level of 3). Neither EFLAG.ac,
CR0.am nor privilege level affect alignment check
faults for Itanium instructions. This bit is supported
in both the IA-32 and Itanium System
Environments. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for
details on this bit.

CR0.NW CFLG.nw 29 Not Write-through and Cache Disable: These bits
are ignored in the Itanium System Environment.
Cacheability is controlled virtual memory attributes.
These bits are provided as storage for compatibility
purposes.

CR0.CD CFLG.cd 30

CR0.PG CFLG.pg 31 Paging Enable: In the Intel Itanium System
Environment, this bit is ignored for IA-32 and Intel

Itanium memory references. Virtual translations are
enabled via PSR.it and PSR.dt. This bit is provided
as storage for compatibility purposes. Modification
of this bit by Itanium architecture-based code does
NOT have any side effects such as flushing the
TLBs. This bit is supported as defined in the Intel®
64 and IA-32 Architectures Software
Developer’s Manual for the IA-32 System
Environment.

CR2 KR2{63:32} IA-32 Page Fault Virtual Address: IA-32 Mov to CR2
result in an interception fault. Mov from CR2 returns
the value contained in KR2{63:32}. CR2 is replaced
by IFA in the Intel Itanium System Environment.

CR3 KR2{31:0} IA-32 Page Table Address: IA-32 Mov to CR3 result
in an interception fault. Mov from CR3 return the
value contained in KR2{31:0}. CR3 is replaced by
PTA in the Intel Itanium System Environment.
Modification of KR2{31:0} by Itanium
architecture-based code does NOT have the side
effect of flushing the TLBs.

CR3.PWT KR4.pwt Page Write-Through and Cache Disabled: In the
Intel Itanium System Environment, these bits are
ignored. This bit are provided as storage for
compatibility purposes. These bits are supported as
defined in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual for the IA-32
System Environment.

CR3.PCD KR4.pcd

CR4 CFLG{63:32} CR4: A-32 Mov to CR4 result in an instruction
interception fault. Mov from CR4 returns the value
contained in CFLG{63:32}. Modification of
CFLG{63:32} by Intel Itanium instructions only
alters the register state, no side effects (such as
TLB flushes) occur.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description

2:250 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

CR4.VME CFLG.vme 32 IA-32 Virtual Machine Extension and Protected
Mode Virtual Interrupt Enable: These bits control
the VM86 VME extensions and Protected Mode
Virtual Interrupt extensions defined in the Intel® 64
and IA-32 Architectures Software Developer’s
Manual for STI, CLI and PUSHF. These bits have
no effect on Intel Itanium instructions. This bit is
supported in both the IA-32 and Intel Itanium
System Environments.

CR4.PVI CFLG.pvi 33

CR4.TSD CFLG.tsd 34 Time Stamp Disable: IA-32 RDTSC user level reads
of the Time Stamp Counter are enabled when
CR4.tsd when zero. Otherwise execution of the
RDTSC instruction results in a GPFault. CFLG.tsd
is ignored by Intel Itanium instructions. This bit is
supported in both the IA-32 and Intel Itanium
System Environments. See the Intel® 64 and
IA-32 Architectures Software Developer’s
Manual for details on these bits.

CR4.DE CFLG.de 25 Debug Extensions: In the Intel Itanium System
Environment, this bit is ignored by IA-32 or Intel
Itanium references to the I/O port space. This bit is
provided as storage for compatibility purposes. This
bit is supported as defined in the Intel® 64 and
IA-32 Architectures Software Developer’s
Manual for the IA-32 System Environment.

CR4.PSE CFLG.pse 36 Page Size Extensions: In the Intel Itanium System
Environment, this bit is ignored by IA-32 or Intel
Itanium references. In the IA-32 System
Environment, this bit enables 4M-byte page
extensions for IA-32 paging. Modification of this bit
by Itanium architecture-based code does have any
side effects such as flushing the TLBs.

CR4.PAE CFLG.pae 37 Physical Address Extensions: In the IA-32 System
Environment, this bit enables IA-32 Physical
Address Extensions for IA-32 paging This bit is
ignored in the Intel Itanium System Environment.
Modification of this bit by Itanium
architecture-based code does have any side effects
such as flushing the TLBs.

CR4.MCE CFLG.mce 38 Machine Check Enable: This bit is ignored in the
Intel Itanium System Environment. This bit is
provided as storage for compatibility purposes. This
bit is supported as defined in the Intel® 64 and
IA-32 Architectures Software Developer’s
Manual for the IA-32 System Environment.

CR4.PGE CFLG.pge 39 Paging Global Enable: This bit is ignored in the Intel
Itanium System Environment. This bit is provided as
storage for compatibility purposes. This bit is
supported as defined in the Intel® 64 and IA-32
Architectures Software Developer’s Manual for
the IA-32 System Environment, where this bit
enables global pages for the IA-32 paging.
Modification of this bit by Itanium
architecture-based code does have any side effects
such as flushing the TLBs.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:251

10.3.3.2 IA-32 Debug Registers

Within the Itanium System Environment, the IA-32 debug registers (DR0 - DR7) are
superseded by the Itanium debug registers DBR0-7 and IBR0-7, see Section 10.8.1,
“Data Breakpoint Register Matching” on page 2:274 for details. Accesses to the IA-32
debug registers result in an interception fault.

The Itanium debug registers are designed to facilitate debugging of both IA-32 and
Itanium architecture-based code. Specifically, instruction and data breakpoints can be
programmed by loading 64-bit virtual addresses into IBR and DBR along with an
address mask. Itanium defined single stepping mechanisms, and taken branch traps
are also defined to trap on IA-32 instructions. See Section 10.8.1, “Data Breakpoint
Register Matching” on page 2:274 for details on IA-32 instruction set behavior with
respect to the debug facilities defined by the Itanium architecture.

CR4.PCE CFLG.pce 40 Performance Counter Enable: IA-32 RDPMC user
level reads of the performance counters are
enabled when CR4.pce is 1. Otherwise execution of
the RDPMC instruction results in a GPFault.
CFLG.pce is ignored by Intel Itanium instructions.
This bit is supported in both the IA-32 and Intel
Itanium System Environments. See the Intel® 64
and IA-32 Architectures Software Developer’s
Manual for details on these bits.

CR4.FXSR CFLG.FXSR 41 SSE FXSR Enable. When 1, enables the SSE
register context. When 0, execution of all SSE
instructions results in an
IA_32_Intercept(Instruction) fault. This bit does not
control the behavior of Intel Itanium instructions.
This bit is supported in both the IA-32 and Intel
Itanium System Environments. See the Intel® 64
and IA-32 Architectures Software Developer’s
Manual for details on these bits.

CR4.MMXEX CFLG.MMXEX 42 SSE Exception Enable: When 1, enables SSE
unmasked exceptions. When 0, all SSE Exceptions
are masked. This bit does not control the behavior
of Intel Itanium instructions. This bit is supported in
both the IA-32 and Intel Itanium System
Environments. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for
details on these bits.

reserved 43:63 This field is reserved for IA-32 instructions – reads
return zeros and non-zero writes causes
IA_32_Exception (General Protection) faults. For
Itanium instructions, the implementation can either
raise Reserved Register/Field fault on non-zero
writes and return zero on reads, or write the value
(no Reserved Register/Field fault) and return the
last value written on reads.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Field Intel® Itanium® State Bits Description

2:252 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

10.3.3.3 IA-32 Memory Type Range Registers (MTRRs)

Within the Itanium System Environment, IA-32 MTRR registers are superseded by
physical memory attributes supplied by the TLB, as defined in Section 4.4.3,
“Cacheability and Coherency Attribute” on page 2:77. IA-32 instruction references to
the MTRRs in the MSR register space results in an instruction intercept fault.

10.3.3.4 IA-32 Model Specific and Test Registers

Within the Itanium System Environment, the IA-32 Model Specific Register space
(MSRs) are superseded by the PAL firmware interface. Cache testing, initialization,
processor configuration should be performed through the PAL interface. See
Section 11.10, “PAL Procedures” on page 2:353 for a complete definition of the PAL
functions and interfaces. Accesses to the IA-32 Model Specific Register space result in
an instruction interception fault.

10.3.3.5 IA-32 Performance Monitor Registers

Within the Itanium System Environment, the Itanium performance monitors are
designed to measure IA-32 and Itanium instructions, and system performance through
a unified performance monitoring facility. Itanium architecture-based code can program
the performance monitors for IA-32 and/or Itanium events by configuring the PMC
registers. Count values are accumulated in the PMD registers for both IA-32 and
Itanium events. See implementation-specific documentation for the list of supported
events and encodings.

IA-32 code can sample the performance counters by issuing the RDPMC instruction.
RDPMC returns count values from the specified Itanium performance monitor.
Operating systems can secure the monitors from being read by IA-32 code by setting
PSR.sp to 1, or setting CR4.pce to 0, or setting the performance monitor’s pm-bit.
Reads of a secured counter by RDPMC return a IA_32_Exception(GPFault(0)). IA-32
code cannot write or configure the performance monitors, all writes to the MSR register
space are intercepted.

10.3.3.6 IA-32 Machine Check Registers

Within the Itanium System Environment, IA-32 machine check registers are
superseded by the Itanium machine check architecture. See Section 11.3, “Machine
Checks” on page 2:296 for details. IA-32 accesses to the Pentium III Processor machine
check registers results in an instruction intercept.

10.4 Register Context Switch Guidelines for IA-32 Code

The following section gives operating system performance guidelines to minimize the
amount of register context that must be saved and restored for IA-32 processes during
a context switch.

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:253

10.4.1 Entering IA-32 Processes

High FP registers (FR32-127) – The processor requires access to all high FP registers
during the execution of IA-32 instructions. It is recommended on entering an IA-32
process, that the OS save the high FP registers belonging to a prior context and then
enable the high FP registers (PSR.dfh is 0). Otherwise, the processor will immediately
raise a Disabled FP Register fault on the first IA-32 instruction executed in the IA-32
process. Performing the state save of the prior high FP register context during the
context switch avoids the unnecessary generation of the Disabled FP Register fault.

Low FP registers (FR2-31) – The processor does not require access to the low FP
registers unless executing IA-32 FP, MMX technology or SSE instructions. It is
recommended on entry to an IA-32 process, that the OS disable the low FP registers
by setting PSR.dfl to 1. PSR.dfl set to 0 indicates that there was a possibility that IA-32
FP, MMX technology or SSE instruction could execute and write FR8-31. If the low FP
registers are enabled on entry to an IA-32 process (PSR.dfl is 0), all low FP registers
will appear to be dirty on IA-32 process exit.

High Integer Registers (GR32-127) – Since the processor leaves all high registers in the
register stack in an undefined state, these registers must be saved by the RSE before
entering an IA-32 process.

Low Integer registers (GR1-31) – These registers must be explicitly saved before
entering an IA-32 process.

10.4.2 Exiting IA-32 Processes

High FP registers (FR32-127) – PSR.mfh is unmodified when leaving the IA-32
instruction set. IA-32 instruction set execution leaves FR32-127 in an undefined state.
Software can not rely on register values being preserved across an instruction set
transition. These registers do NOT need to be preserved across a context switch.

Low FP registers (FR2-31) – PSR.mfl indicates there is a possibility that FR8-31 were
modified by IA-32 FP, MMX technology, or SSE instruction. The modify bit is set by the
processor when leaving the IA-32 instruction set, if PSR.dfl is 0, otherwise PSR.mfl is
unmodified. During the state save of the outbound IA-32 process, it is recommended
that the OS save FR2-31 if and only if the lower FP registers are marked as modified.

High Integer Registers (GR32-127) – Since the processor leaves all high registers
undefined across an instruction set transition, these registers do NOT need to be
preserved across an IA-32 context switch.

Low Integer registers (GR1-31) – These registers must be explicitly preserved across a
context switch.

10.5 IA-32 Instruction Set Behavior Summary

Table 10-5 summarizes IA-32 instruction behavior within the Itanium System
Environment. All IA-32 instructions are unchanged from the Intel® 64 and IA-32
Architectures Software Developer’s Manual except where noted. IA-32 instructions
can also generate additional Itanium register and memory faults as defined in

2:254 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

Table 5-6. Please refer to the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for the behavior of all IA-32 instructions in the IA-32 System
Environment.

For all listed and unlisted IA-32 instructions in Table 10-5 the following relationships
hold:

• Writes of any IA-32 general purpose, floating-point or MMX technology or SSE
registers by IA-32 instructions are reflected in the Itanium registers defined to hold
that IA-32 state when the IA-32 instruction set completes execution.

• Reads of any IA-32 general purpose, floating-point or MMX technology or SSE

registers by IA-32 instructions see the state of the Itanium registers defined to hold
the IA-32 state after entering the IA-32 instruction set.

• IA-32 numeric instructions are controlled by and reflect their status in FCW, FSW,
FTW, FCS, FIP, FOP, FDS and FEA. On exit from the IA-32 instruction set, Itanium
registers defined to hold IA-32 state reflect the results of all IA-32 prior numeric
instructions (FSR, FCR, FIR, FDR). Itanium numeric status and control resources
defined to hold IA-32 state are honored by IA-32 numeric instructions when
entering the IA-32 instruction set.

In Table 10-5 unchanged indicates there is no change in behavior with respect to the
IA-32 System Environment.

 Table 10-5. IA-32 Instruction Summary

IA-32 Instruction
Intel® Itanium® System

Environment
Comments

AAA, AAD. AAM, AAS

unchanged

ADC, ADD, AND,

ADDPS, ADDSS,
ANDNPS, ANDPS

ARPL

BOUND

BSF, BSR

BSWAP

BT, BTC, BTS, BTR

CALL near: no change
far: no change
gate more privilege: Gate
Intercept
gate same privilege: Gate
Intercept
task gate: Gate Intercept
+ additional taken branch trap

Intercept if through a call or task gate

If PSR.tb is 1, raise a taken branch trap.

CBW, CWDE, CDQ
unchanged

CLC, CLD

CLI Optional System Flag
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1

CLTS Instruction Intercept IA-32 privileged instruction

CMC

unchanged

CMOV

CMP

CMPPS, CMPSS,
COMISS

CMPS

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:255

CMPXCHG, 8B Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor
external lock transaction is required

CPUID

unchanged

CWD, CDQ

CVTPI2PS, CVTPS2PI,
CVTSI2SS, CVTSS2SI,
CVTTPS2PI, CVTTSS2SI

DAA, DAS

DEC

DIV

DIVPS, DIVSS

ENTER

EMMS

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments

2:256 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

F2XM1

unchanged

IA-32 numeric instructions manipulate the IA-32
numeric register stack contained in f8-f15, status is
reflected in FSR. Modification of the IA-32 numeric
environment changes FIR, FDR FCR and FSR.

FABS

FADD, FADDP, FIADD

FBLD

FBSTP

FCHS

FCLEX, FNCLEX

FCMOV

FCOM, FCOMPP

FCOMI, FCOMIP

FUCOMI, FUCOMIP

FCOS

FDECSTP

FDIV, FDIVP, FIDIV

FDIVR, FDIVRP, FDIVR

FFREE

FICOM, FICOMP

FILD

FINCSTP

FINIT, FNINIT

FIST, FISTP

FLD

FLD constant

FLDCW

FLDENV

FMUL, FMULP, FIMUL

FNOP

FPATAN, FPTAN

FPREM, FPREM1

FRNDINT

FRSTOR

FSAVE, FNSAVE

FSCALE

FSIN, FSINCOS

FSQRT

FST, FSTP

FSTCW, FNSTCW

FSTENV, FNSTENV

FSTSW, FNSTSW

FSUB, FSUBP, FISUB

FSUBR, FSUBRP,
FISUBR

FTST

FUCOM, FUCOMP

FWAIT

FXAM

FXCH

FXTRACT

FXRSTOR, FXSAVE

FYL2X, FYL2XP1

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:257

HLT Instruction Intercept IA-32 privileged instruction

IDIV unchanged

IMUL

IN, INS unchanged + I/O ports are
mapped virtually

If CFLG.io is 0, the TSS I/O permission bitmap is
not consulted. Intel Itanium TLB faults control
accessibility to I/O ports.

INC unchanged

INT 3, INTO Mandatory Exception vector
#

Delivered as an IA_32_Interrupt

INT n Mandatory Interruption vector
#

Delivered as an IA_32_Exception

INVD Instruction Intercept IA-32 privilege instruction

INVLPG

IRET, IRETD Real Mode: Instruction
Intercept
to VM86: Instruction Intercept
from VM86: Instruction
Intercept
same privilege: Instruction
Intercept
less privilege: Instruction
Intercept
different task: Instruction
Intercept

All forms of IRET result in an instruction intercept

Jcc additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

JMP near: no change
far: no change
gate task: Gate Intercept
call gate: Gate Intercept
additional taken branch trap

Intercept fault if through a call or task gate

If PSR.tb is 1, raise a taken branch trap.

JMPE Jumps to the Intel Itanium instruction set

LAHF

unchanged

LAR

LDMXCSR

LDS, LES, LFS, LGS,
LSS

LEA

LEAVE

LGDT, LLDT

Instruction Intercept IA-32 privileged register resourceLIDT

LMSW

Lock prefix Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor
external lock transaction is required

LODS unchanged

LOOP, LOOPcc additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

LSL unchanged User level instruction

LTR Instruction Intercept IA-32 privileged register

MASKMOVQ

unchanged
MAXPS, MAXSS, MINPS,
MINSS

MOV

MOVNTPS, MOVNTQ

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments

2:258 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

MOV from CR unchanged

MOV to CR Instruction Intercept IA-32 privileged system registers

MOV to/from DR

Mov SS System Flag Intercept Trap System Flag Intercept Trap after instruction
completes

MOVAPS, MOVHPS,
MOVLPS. MOVMSKPS,
MOVSS, MOVUPS

unchanged

MOVD, MOVQ

MOVS

MOVSX, MOVZX

MUL

MULPS, MULSS

NEG

NOP

NOT

OR

ORPS

OUT, OUTS unchanged + I/O ports are
mapped virtually

If CFLG.io is 0, the TSS I/O permission bitmap is
not consulted. Intel Itanium TLB faults control
accessibility to I/O ports.

PACKSS, PACKUS

unchanged

PADD, PADDS, PADDUS

PAND, PANDN

PCMPEQ, PCMPGT

PEXTRW, PINSRW

PMADD

PMULHW, PMULLW,
PMULHUW

PMOVMSKB

POP, POPA

POP SS System Flag Intercept System Flag Intercept Trap after instruction
completes

POPF, POPFD Optional System Flag
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept if EFLAG.ac, or tf change state.

POR

unchanged

PREFETCH

PSHUFW

PSLL, PSRA, PSRL

PSUB, PSUBS, PSUBUS

PUNPCKH, PUNPCKL

PXOR

PUSH, PUSA

unchanged
PUSHF, PUSHFD Pushes value in EFLAG, no intercept

RCL, RCR, ROL, ROR

RCPPS, RSQRTPS

RDMSR Instruction Intercept IA-32 privileged system register space

RDTSC Optional GPFault No longer faults in VM86, GPFault if secured by
PSR.si or CFLG.tsd.RDPMC

REP, REPcc prefix unchanged

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:259

10.6 System Memory Model

Within the Itanium System Environment, a unified memory model is presented to the
programmer. Applications and the operating system see the same 64-bit virtual
memory space and virtual addressing mechanisms regardless of the referencing
instruction set. A virtual address points to the same physical storage location from both
IA-32 and Itanium instruction sets.

RET near: no change
far: no change
less privilege: no change
same privilege: no change
+ additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

RSM Instruction Intercept IA-32 privileged instruction

SAHF

unchanged

SAL, SAR, SHL, SHR

SBB

SCAS

SFENCE

SETcc

SGDT, SLDT Instruction Intercept IA-32 privileged instruction

SHLD, SHRD unchanged

SHUFPS, SQRTPS,
SQRTSS

SIDT Instruction Intercept IA-32 privileged instructions

SMSW

STC, STD unchanged

STI Optional System Flag
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1

STMXCSR unchanged

STOS

STR Instruction Intercept IA-32 privileged instruction

SUB unchanged

SUBPS, SUBSS

SYSENTER, SYSEXIT Instruction Intercept

TEST

unchangedUCOMISS

UNPCKHPS, UNPCKLPS

UD2 Instruction Intercept Reserved undefined opcodes

VERR, VERW unchanged User level instruction

WAIT

WBINVD Instruction Intercept IA-32 privileged instructions

WRMSR

XADD Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor
external lock transaction is required than a Lock
Intercept.

XCHG

XLAT, XLATB

unchangedXOR

XORPS

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments

2:260 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

Itanium architecture-based operating systems must not use IA-32 segmentation as a
protected system resource. An Itanium architecture-based operating system must use
virtual memory management defined by the Itanium architecture to secure IA-32 and
Itanium architecture-based applications, memory and I/O devices. The Itanium
architecture is defined to be unsegmented architecture and all Itanium memory
references bypass IA-32 segmentation and protection checks. In addition, Itanium
architecture-based user level code can directly modify IA-32 segment selector and
descriptor values for all segments (including GDT and LDT). If operating systems do not
rely on segmentation for protection, there are no security concerns for exposing IA-32
segment registers and descriptors to Itanium architecture-based user level applications

IA-32 instruction and data reference addresses are generated as 16/32-bit effective
addresses as shown in Figure 10-2. IA-32 segmentation is then applied to map 32-bit
effective addresses into 32-bit virtual addresses, the processor then converts the
address into a 64-bit virtual address by zero extension from 32 to 64-bits. Itanium
instructions bypass all of these steps and directly generate addresses within the 64-bit
virtual address space.

For both IA-32 and Itanium instruction set memory references, virtual memory
management defined by the Itanium architecture is used to map a given virtual address
into a physical address. Itanium architecture-based virtual memory management
hardware does not distinguish between Itanium and IA-32 instruction set generated
memory references during the conversion from a virtual to physical address.

10.6.1 Virtual Memory References

In the Itanium System Environment the following virtual memory options are available
for supporting IA-32 and Itanium memory references.

• Software TLB fills (TLBs are enabled, but the VHPT is disabled).

• 8-byte short format VHPT, see Section 4.1.5, “Virtual Hash Page Table (VHPT)” on
page 2:61 for details.

• 32-byte long format VHPT.

Itanium virtual memory resources can be used by the operating system for all IA-32
memory references. These resources include virtual Region Registers (RR), Protection
Key Registers (PKR), the Virtual Hash Page Table (VHPT), all supported range of page
sizes, Translation Registers (ITR, DTR), the Translation Cache (ITC, DTC) and the
complete set of Itanium virtual memory management faults defined in Chapter 5.

Figure 10-4. Virtual Memory Addressing

Base

Index

Displacement

Base

Segmen-+

16/32-bit
32-bit Virtual

64-bit

IA-32

Intel® Itanium®

TLB

Address

 Zero

64-bit Virtual
Address

Effective Physical

Extend

Address Address

tation

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:261

10.6.2 IA-32 Virtual Memory References

By definition, IA-32 instruction and data memory references are confined to 32-bits of
virtual addressing, the first 4 G-bytes of virtual region 0. However, IA-32 memory
references can be mapped anywhere within the implemented physical address space by
operating system code.

Virtual addresses are converted into physical addresses through the process defined in
Section 4.1, “Virtual Addressing” on page 2:45. IA-32 references use the Itanium TLB
resources as follows.

• Region Identifiers – Operating systems can place IA-32 processes within virtual
region 0, and use the entire 224 region identifier name space. By using region
identifiers there is no requirement to flush IA-32 mappings on a context switch.

• Protection Keys – Operating systems can place mappings used by IA-32
processes within any number of protection domains. If PSR.pk is 1, all IA-32
references search the Protection Key Registers (PKR) for matching keys. If a key is
not found, a Key Miss fault is generated. Otherwise, key read, write, execute
permissions are verified.

• TLB Access Bit – If this bit is zero, an Access Bit fault is generated during Itanium
or IA-32 instruction set memory references. Note: the processor does not
automatically set the Access bit in the VHPT on every reference to the page. Access
bit updates are controlled by the operating system.

• TLB Dirty Bit – If this bit is zero, a Dirty bit fault is generated during any Itanium
or IA-32 instruction that stores to a dirty page. Note: the processor does not
automatically set the Dirty bit in the VHPT on every write. Dirty bit updates are
managed by the operating system.

10.6.3 IA-32 TLB Forward Progress Requirements

To ensure forward progress while executing IA-32 instructions, additional TLB resources
and replacement policies must be defined over and above the definition given in
Section 4.1.1.2, “Translation Cache (TC)” on page 2:49. IA-32 instructions and data
accesses may not be aligned resulting in a worst case scenario for two possible pages
being referenced for every memory datum referenced during the execution of an IA-32
instruction. Furthermore, the worst case non-intercepted IA-32 opcode can reference
up to 4 independent data pages.

The Translation Cache’s (TC) are required to have the following minimum set of
resources to ensure forward progress. Given that software TLB fills can be used to
insert entries into the TLB and a hardware page table walker is not necessarily used,
the following requirements must be satisfied by the processor:

• Instruction Translation Cache – at least 1 way set associative with 2 sets, or 2
entries in a fully associative design. Replacement algorithms must not consistently
displace the last 2 entries installed by software.

• Data Translation Cache – at least 4 way set associative with 2 sets, or 8 entries in a
fully associative design. Replacement algorithms must not consistently displace the
last 8 entries installed by software or the last 8 translations referenced by an IA-32
instruction.

2:262 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

• Unified Translation Cache – at least 5 way set associative with 2 sets, or 10 entries
in a fully associative design. The processor must not consistently displace the last
10 entries installed or the last 10 translations referenced by an IA-32 instruction.

The processor must ensure that the minimum number of entries can co-exist in the
TLB, and TC replacement algorithms allow software insertion of the required entries
such that the required number of translations can be co-resident in the TLB.

The processor cannot ensure forward progress unless translations mapping the Itanium
architecture-based TLB Miss handlers are statically mapped by the Instruction
Translation Registers.

10.6.4 Multiprocessor TLB Coherency

Global TLB purges can not occur on another processor unless that processor is at an
interruptible point. For IA-32 instruction set execution, interruptible points are defined
as; 1) when the processor is between instructions (regardless of the state of PSR.i and
EFLAG.if), and 2) each iteration of an IA-32 string instruction, regardless of the state of
PSR.i and EFLAG.if

The processor may delay in its response and acknowledgment to a broadcast purge TC
transaction until the processor executing an IA-32 instruction has reached a point (e.g.
an IA-32 instruction boundary) where it is safe to process the purge TC request. The
amount of the delay is implementation specific and can vary depending on the receiving
processor and what instructions or operations are executing when it receives the purge
request.

10.6.5 IA-32 Physical Memory References

When running IA-32 code, virtual addressing must be utilized by setting PSR.dt to 1
and PSR.it to 1, otherwise processor operation is undefined. Undefined behavior can
include, but is not limited to: machine check abort on entry to IA-32 code, and
unpredictable behavior for IA-32 self modifying code.

Operating systems must ensure PSR.dt and PSR.it are 1 before invoking IA-32 code.
From a practical standpoint, the TLBs must be enabled so IA-32 code can access the
virtual address space, and access memory areas other than WB (e.g. UC or the I/O port
space).

Figure 10-5. Physical Memory Addressing

Base

Index

Displacement

Base

Segmen-+

16/32-bit 64-bit

IA-32

Intel® Itanium®

Effective Address Physical Address

PA{31:0}
PA{63:32}=0

PA{63:0}

tation

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:263

10.6.6 Supervisor Accesses

If the processor is operating in the Itanium System Environment, supervisor override is
disabled, and LDT, GDT, TSS references are performed at the privilege level specified by
PSR.cpl. Unaligned processor references to LDT, GDT, and TSS segments will never
generate an EFLAG.ac enabled IA-32 Exception (AlignmentCheck) fault, even if PSR.cpl
equals 3 and supervisor override is disabled.

Operating systems must ensure that the GDT/LDT are mapped to pages with user level
read/write access.

Write permission is required if GDT, or LDT memory descriptor Access-bits are zero
regardless of supervisor override conditions. If all GDT/LDT descriptor Access-bits are
one, write permission can be removed. Otherwise, Access Rights, Key Miss or Key Miss
faults can be generated during all segment descriptor referencing instructions.

If a fault is generated during a supervisory access, the ISR.so bit indicates that CPL is
zero or a supervisor override condition was in effect (reference as made to GDT, LDT or
TSS).

10.6.7 Memory Alignment

Depending on software conventions, memory structures may have different alignment
or padding restrictions for the IA-32 and Itanium instruction sets. IA-32 and Itanium
architecture-based software should use aligned memory operands as much as possible
to avoid possible severe performance degradation associated with un-aligned values
and extra over-head for unaligned data memory fault handlers.

The processor provides full functional support for all cases of un-aligned IA-32 data
memory references. If PSR.ac is 1 or EFLAG.ac is 1 and CR0.am is 1and the effective
privilege level is 3, unaligned IA-32 memory references result in an IA-32 Exception
(AlignmentCheck) fault. Unaligned processor references to LDT, GDT, and TSS
segments will never generate an EFLAG.ac enabled IA-32 Exception (AlignmentCheck)
fault, even if the effective privilege level is 3 and supervisor override is disabled.

Alignment conditions for Itanium memory references are not affected by the EFLAG.ac,
CFLG.am bits.

If EFLAG.ac and CFLG.am are 1 and the reference is done at privilege level 3, IA-32
instruction set unaligned conditions are; 2-byte references not a 2-byte boundary,
4-byte references not on a 4-byte boundary, 8-byte references not on a 8-byte
boundary, and 10-byte references not on a 8-byte boundary.

If PSR.ac is 1, IA-32 instruction set unaligned conditions are; 2-byte references not a
2-byte boundary, 4-byte references not on a 4-byte boundary, 8-byte references not on
a 8-byte boundary, and 10-byte references not on a 16-byte boundary.

The processor exhibits the following behavior when accesses are made to un-aligned
data operands that span virtual page boundaries:

• IA-32 instruction set – If either page contains a fault, no memory location is
modified. For reads, the destination register is not modified.

• Itanium instruction set – All page crossers result in an unaligned reference fault.
Memory contents and register contents are not modified.

2:264 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

10.6.8 Atomic Operations

All Itanium load/stores and IA-32 non-locked memory references up to 64-bits that are
aligned to their natural data boundaries are atomic.

Both IA-32 and Itanium atomic semaphore operations can be performed on the same
shared memory location. The processor ensures IA-32 locked read-modify-write
opcodes and Itanium semaphore operations are performed atomically even if the
operations are initiated from the other instruction set by the same processors, or
between multiple processors in an multiprocessing system.

There are some restrictions placed on Itanium atomic operations that may prevent
Itanium architecture-based code from manipulating IA-32 semaphores in some rare
cases:

• Unaligned Itanium semaphore operations result in an Unaligned Data Reference
fault. Itanium architecture-based code manipulation of an IA-32 semaphore can
only be performed if the IA-32 semaphore is aligned.

• Itanium semaphore operations to memory which is neither write-back cacheable
nor a NaTPage result in an Unsupported Data Reference fault (regardless of the
state of the DCR.lc). Itanium architecture-based code manipulation of an IA-32
semaphore can only be performed if the IA-32 semaphore is allocated in aligned
write-back cacheable memory.

If an IA-32 locked atomic operation is defined as requiring a read-modify-write
operation external to the processor under external bus lock and if DCR.lc is set to 1, an
IA_32_Intercept(Lock) fault is generated. (IA-32 atomic memory references are
defined to require an external bus lock for atomicity when the memory transaction is
made to non-write-back memory or are unaligned across an implementation-specific
non-supported alignment boundary.) If DCR.lc is set to 0, the processor may either
execute the transaction as a series of non-atomic transactions or perform the
transaction with an external bus lock, depending on the processor implementation. For
processor implementations that do support external bus locks, software must ensure
that the Bus Lock Mask bit is set to one, in order to ensure atomicity of these IA-32
operations when DCR.lc=0. The Bus Lock Mask bit is a feature controllable by the
PAL_BUS_SET_FEATURES procedure. (See Table 11-63 on page 2:368 for more
information).

If the processor supports external bus locks, unaligned IA-32 atomic references are
supported, but their usage is strongly discouraged since they are typically performed
outside the processor's cache which can severely degrade performance of the system.
IA-32 external bus locks are not supported on all processor implementations.

For IA-32 semaphores, atomicity to uncached memory areas (UC) is platform specific,
atomicity can only be ensured by the platform design and can not be enforced by the
processor.

10.6.9 Multiprocessor Instruction Cache Coherency

The processor and platform ensure the processor’s instruction cache is coherent for the
following conditions:

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:265

• For all processors in the coherence domain, local and remote instruction cache
coherency on all processors is enforced for any store generated by any processor
running the IA-32 instruction set.

• For all processors in the coherence domain, instruction cache coherency on all
processors is enforced for all coherent I/O traffic. (For non-coherent I/O, a
processor may or may not see the results of an I/O operation.)

• For all processors in the coherence domain, instruction cache coherency is not
enforced for stores generated by any processor running the Itanium instruction set.
To ensure instruction cache coherency, Itanium architecture-based code must use
the code sequence defined in Section 4.4.6.2, “Memory Consistency” on page 1:72.

10.6.10 IA-32 Memory Ordering

IA-32 memory ordering follows the Pentium III defined processor ordered model for
cacheable and uncacheable memory. IA-32 processor ordered memory references are
mapped onto the Itanium memory ordering model as follows:

• All IA-32 stores have release semantics. Except for IA-32 stores to
write-coalescing memory that are unordered. Subsequent loads are allowed to
bypass buffered local store data before it is globally visible. The amount of store
buffering is model specific and can vary across processor generations.

• All IA-32 loads have acquire semantics. Some high performance processor
implementations may speculatively issue acquire loads into the memory system for
speculative memory types, if and only if the loads do not appear to pass other loads
as observed by the program. If there is a coherency action that would result in the
appearance to the program of a load bypassing other load, the processor will
reissue the load operation(s) in program order.

• All IA-32 read-modify-write or locked instructions have memory fence semantics.
All buffered stores are flushed.

• IA-32 IN, OUT and serializing operations (as defined in the Intel® 64 and IA-32
Architectures Software Developer’s Manual) have memory fence semantics.
In addition, the processor will wait for completion (acceptance by the platform) of
the IN or OUT before executing the next instruction. All buffered stores are flushed
before the IN or OUT operation.

• IA-32 SFENCE has release semantics and will flush all buffered stores.

Table 10-6. Instruction Cache Coherency Rules

Originating
Instruction Set

Local Processor External Processor Coherent, I/O Non-Coherent I/O

IA-32 Coherent Coherent

Coherent

Maybe
Non-CoherentIntel Itanium May be

Non-coherent
May be
Non-coherent

Table 10-7. IA-32 Load/Store Sequentiality and Ordering

IA-32 Memory
Reference

Uncacheable
Write

Coalescing
Cacheable

store sequential
releasea

non-sequential
unordered

non-sequential
releaseb

load sequential
acquirea

non-sequential
unordered

non-sequential
acquireb

2:266 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

Per Table 10-7, IA-32 memory references can be expressed in terms of acquire,
release, fence and sequential ordering rules defined by the Itanium architecture. IA-32
data memory references follow the same ordering relationships as defined for Itanium
architecture-based code as defined in Section 4.4.7, “Sequentiality Attribute and
Ordering” on page 2:82. The following additional clarifications need to be made for
IA-32 instruction set execution:

• IA-32 loads and instruction fetches to speculative memory can occur randomly.
Read accesses to speculative memory can occur at arbitrary times even if the
in-order execution of the program does not require a read or instruction fetch from
a given memory location.

• IA-32 instruction fetches and loads to non-speculative memory occur in program
order. IA-32 instruction cache line fetch accesses to uncached memory occur in the
order specified by an in-order execution of the program. Note however that the
same cache line may be fetched multiple times by the processor as multiple
instructions within the cache line are executed. The size of a cache line and number
of instruction fetches is model specific.

• IA-32 instruction fetches are not perceived as passing prior IA-32 stores. IA-32
stores into the IA-32 instruction stream are observed by the processor’s self
modifying code logic. Speculative instruction fetches may be emitted by the
processor before a store is seen to the instruction stream and then discarded. Self
modifying code due to Itanium stores is not detected by the processor.

• IA-32 instruction fetches can pass prior loads or memory fence operations from the
same processor. Data memory accesses, and memory fences are not ordered with
respect to IA-32 instruction fetches.

• IA-32 instruction fetches can not pass any serializing instructions, including Itanium
srlz.i and IA-32 CPUID. For speculative memory types the processor may
prefetch ahead of a serialization operation and then discard the prefetched
instructions.

• IA-32 serializing operations wait for all previous stores and loads to complete, and
for all prior stores buffered by the processor to become visible. IA-32 serializing
instructions include CPUID.

• IA-32 OUT instructions may be buffered, however the processor will not start
execution of the next IA-32 instruction until the OUT has completed (been accepted
by the platform).

• The processor does not begin execution of the next IA-32 instruction until the IN or
OUT has been completed (accepted) by the platform. This statement does not apply

locked
or read-modify-write
operation

sequential
fence
flush prior stores

non-sequential
fence
flush prior stores

non-sequential
fence
flush prior stores

IN, INS, OUT, OUTS sequential
fence
flush prior stores

undefined undefined

IA-32 Serialization fence, flush prior stores

SFENCE release, flush prior stores

a. However, IA-32 loads/stores to uncacheable memory flush the write coalescing buffers.
b. However, IA-32 load/stores to cacheable memory do not flush the write coalescing buffers.

Table 10-7. IA-32 Load/Store Sequentiality and Ordering (Continued)

IA-32 Memory
Reference

Uncacheable
Write

Coalescing
Cacheable

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:267

for Itanium memory references to the I/O port space. The processor may issue
instruction fetches and VHPT walks ahead of an IN or OUT.

• VHPT Walks are speculative and can occur at any time. VHPT walks can pass all
prior IA-32 loads, stores, instruction fetches, I/O operations and serializing
instructions.

10.6.10.1 Instruction Set Transitions

Instruction set transitions do not automatically fence memory data references. To
ensure proper ordering software needs to take into account the following ordering
rules.

10.6.10.1.1 Transitions from Intel® Itanium® Instruction Set to IA-32
Instruction Set

• All data dependencies are honored, IA-32 loads see the results of all prior Itanium
and IA-32 stores.

• IA-32 stores (release) can not pass any prior Itanium load or store.

• IA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium
store to a different address. Itanium architecture-based software can prevent IA-32
loads from passing prior Itanium loads and stores by issuing an acquire operation
(or mf) before the instruction set transition.

10.6.10.1.2 Transitions from IA-32 Instruction Set to Intel® Itanium®
Instruction Set

• All data dependencies are honored, Itanium loads see the results of all prior
Itanium and IA-32 stores.

• Itanium stores or loads can not pass prior IA-32 loads (acquire).

• Itanium unordered stores or any Itanium load can pass prior IA-32 stores (release)
to a different address. Itanium architecture-based software can prevent Itanium
loads and stores from passing prior IA-32 stores by issuing a release operation (or
mf) after the instruction set transition.

10.7 I/O Port Space Model

A consistent unified addressing model is used for both IA-32 and Itanium references to
the I/O port space. On prior IA-32 processors two I/O models exist; memory mapped
I/O and the 64KB I/O port space. On processors based on the Itanium instruction set,
the 64KB I/O port space defined by IA-32 processors is effectively mapped into the
64-bit virtual address space of the processor, producing a single memory mapped I/O
model as shown in Figure 10-1. This model allows Itanium normal load and store
instructions to also access the I/O port space.

Itanium architecture-based operating system code can directly control IA-32 IN, OUT
instruction and accessibility by IA-32 or Itanium load/store instructions to blocks of 4
virtual I/O ports using the TLBs. The entire range of virtual memory mechanisms
defined by the Itanium architecture: access rights, dirty, access bits, protection keys,
region identifiers can be used to control permission and addressability.

2:268 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

In the Itanium System Environment, the virtual location of the 64 MB I/O port space is
determined by operating system. For IA-32 IN and OUT instructions, the operating
system can specify the virtual base location via the I/O base register.

Any IA-32 or Itanium load or store within the virtual region mapped by the operating
system to the platform’s physical 64 MB I/O port block, directly accesses physical I/O
devices within the I/O port space. The location of the 64 MB I/O port block within the
263 byte physical address space is determined by platform conventions, see
Section 10.7.2, “Physical I/O Port Addressing” on page 2:270 for details.

10.7.1 Virtual I/O Port Addressing

The IA-32 defined 64-KB I/O port space is expanded into 64 MB. This effectively places
4 I/O ports per each 4KB virtual and physical page. Since there are 4 ports per virtual
page, the TLBs can be used port address translation, and permission checks as shown
in Figure 10-2.

Figure 10-1. I/O Port Space Model

Virtual Address Space Physical Address Space

IOBase

IN/OUT
I/O Ports

Platform
I/O Ports

0

263

64MB

264

216

0

216

Memory
Mapped I/OMemory

Map I/O

IA-32/Intel® Itanium® Loads/Stores

64MB

Platform Physical

I/O Block

IA-32

IN, OUT

0

0

IA-32/Intel® Itanium® Loads/Stores

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:269

For IA-32 IN and OUT instructions a port’s virtual address is computed as:

port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

This address computation places 4 ports on each 4K page and expands the space to
64MB, with the ports being at a relative offset specified by port{11:0} within each
4K-byte virtual page. IOBase is a kernel register (KR) maintained by the operating
system that points to the base of the 64MB Virtual I/O port space. The value in IOBase
must be aligned on a 64MB boundary otherwise port address aliasing will occur and
processor operation is undefined.

For Itanium load and stores accesses to the I/O port space, a port’s virtual address can
be computed in the same manner, specifically.

port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

In practice this address is a constant for any given physical I/O device.

Note: In the generation of the I/O port virtual address, software MUST ensure that
port_virtual_address{11:2} are equal to port{11:2} bits. Otherwise, some pro-
cessors implementations may place the port data on the wrong bytes of the
processor’s bus and the port will not be correctly accessed.

IA-32 IN and OUT instructions and Itanium or IA-32 load/store instructions can
reference I/O ports in 1, 2, or 4-byte transactions. References to the legacy I/O port
space cannot be performed with greater than 4 byte transactions due to bus limitations
in most systems. Since an IA-32 IN/OUT instruction can access up to 4 bytes at port
address 0xFFFF, the I/O port space effectively extends 3 bytes beyond the 64KB
boundary. Operating systems can; 1) not map the excess 3 bytes, resulting in denial of
permission for the excess 3 bytes, or 2) map via the TLB the excess 3 bytes back to
port address 0 effectively wrapping the I/O port space at 64KB.

Operating system code can map each virtual I/O port space page anywhere within the
physical address space using the Data Translation Registers or the Data Translation
Cache. Large page translations can be used to reduce the number of mappings required
in the TLB to map the I/O port space. For example, one 64MB translation is sufficient to
map the entire expanded 64MB I/O port space. The UC memory attribute must be
used for all I/O port space mappings to avoid speculative processor references to I/O
devices, otherwise processor and platform operation is undefined.

Figure 10-2. I/O Port Space Addressing

I/O Port

64-bit

IA-32

TLB

64-bit Virtual
Address Physical Address

OR
Shift
Left
12-bits

Port{15:2}

Port{11:0}

IN, I/O Port

Load,
Store

OUT

IOBase

Intel®

Itanium®

Number

Address

2:270 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

Operating System Warning: Operating system code can not remap a given port to
another port address within the I/O port space, such that
port_physical_address{21:12} != port_physical_address{11:2}. Otherwise, based on
the processor model, I/O port data may be placed on the wrong bytes of the
processor’s bus and the port will not be correctly accessed.

I/O port space breakpoints can be configured by loading the address and mask fields
with the virtual address defined by the operating system to correspond to the I/O port
space.

The processor (as defined in the next section) ensures that load, store references will
not result in references to I/O devices for which permission was not granted.

All memory related faults defined in Chapter 5, “Interruptions” can be generated by
IA-32 IN and OUT references to the I/O port space, including IA_32_Exception(Debug)
traps for data address breakpoints and IA_32_Exception(AlignmentCheck) for
unaligned references. (EFLAG.ac enabled unaligned port references are not detected by
the processor). Itanium Data Breakpoint registers (DBRs) can be configured to
generate debug traps for references into the I/O port space by either IA-32 IN/OUT
instructions or by IA-32 or Itanium load/store instructions.

10.7.2 Physical I/O Port Addressing

Some processors implementations will provide an M/IO pin or bus indication by
decoding physical addresses if references are within the 64MB physical I/O block. If so
the 64MB I/O port space is compressed back to 64KB. Subsequent processor
implementations may drop the M/IO pin (or bus indication) and rely on platform or
chip-set decoding of a range of the 64MB physical address space.

Through the PAL firmware interface, the 64MB physical I/O block can be programmed
to any arbitrary physical location. It is suggested that to be compatible with IA-32
based platforms, the platform physical location of the physical I/O block be
programmed above 4G-bytes and above all useful DRAM, ROM and existing memory
mapped I/O areas. See PAL_PLATFORM_ADDR on page 2:442 for details.

Based on the platform design, some platforms can accept addresses for the expanded
64MB I/O block, while other platforms will require that the I/O port space be
compressed back to 64KB by the processor. If the I/O port space needs to be
compressed either the processor or platform (based on the implementation) will
perform the following operation for all memory references within the physical I/O block.

IO_address{1:0} = PA{1:0}
IO_address{15:2} = PA{25:12}// byte strobes are generated

// from the lower I/O_address bits

The processor ensures that the bus byte strobes and bus port address are derived from
PA{25:12,1:0}. Thus allowing an operating system to control security of each 4 ports
via TLB management of PA{25:12}.

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:271

10.7.2.1 I/O Port Addressing Restrictions

For the 64MB physical I/O port block the following operations are undefined and may
result in unpredictable processor operation; references larger than 4-bytes, instruction
fetch references, references to any memory attribute other than UC, or semaphore
references which require an atomic lock. To ensure I/O ports accesses are not granted
for which the TLB has not been consulted, the processor ensures:

• All byte addresses within the same 4KB page alias to the 4 ports defined by the
mapped physical I/O port page.

• All IA-32 and Itanium unaligned loads and stores that cross a 4-byte boundary to
the processor’s physical I/O port block are truncated. That is the bus transaction to
the area before the 4-byte boundary is performed (the number of bytes emitted is
model specific). No bus transaction is performed for the bytes that are beyond the
4-byte boundary. 4-byte crosser loads while return some undefined data. 4-byte
crosser stores will not write all intended bytes.

• For IA-32 IN/OUT accesses that cross a 4-port boundary the processor will break
the operation into smaller 1, 2, or 3 byte I/O port transactions within each 4KB
virtual page.

10.7.3 IA-32 IN/OUT instructions

IA-32 I/O instructions (IN, OUT, INS, OUTS) defined in the Intel® 64 and IA-32
Architectures Software Developer’s Manual are augmented as follows:

• I/O instructions first check for IOPL permission. If PSR.cpl<=EFLAG.iopl, access
permission is granted. Otherwise the TSS I/O permission bitmap may be consulted
as defined below. If the Bitmap denies permission or is not consulted an
IA_32_Exception(GPFault) is generated.

• If IOPL permission is denied and CFLG.io is 1, the TSS I/O permission bitmap is
consulted for access permission. If the corresponding bit(s) for the I/O port(s) is 1,
indicating permission is denied, a GPFault is generated. Otherwise access
permission is granted. The TSS I/O permission bitmap provides 1 port permission
control at the expense of additional processor data memory references. This
mechanism can be used in the Itanium System Environment, but is not
recommended since TLB access controls defined by the Itanium architecture are
faster and provide a consistent control mechanism for both IA-32 and Itanium
architecture-based code. Whereas, the TLB mechanism provides a control
mechanism for both IA-32 and Itanium memory references.

• If CFLG.io is 0, the TSS I/O permission bitmap is not consulted and if the IOPL
check failed an IA_32_Exception(GPFault) is generated. By setting CFLG.io to 0,
operating system code can disable all processor references to the TSS. By setting
IOPL<PSR.cpl and setting CFLG.io to 0, operating system code can block all user
level execution of IA-32 I/O instructions, no TSS needs to be allocated or defined by
the operating system.

• I/O port references generate a virtual port address relative to the IOBase register
as defined in Section 10.7.1, “Virtual I/O Port Addressing” on page 2:268.

• If data translations are enabled, the TLB is consulted for the required virtual to
physical mapping. If the required mapping is not present a VHPT Translation, Data
TLB Miss or Alternative Data TLB Miss fault is generated.

• If data translations are enabled, Access Rights, Permission Keys, Access, Dirty and
Present bits are checked and faults generated.

2:272 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

• If data translations are disabled (PSR.dt is 0) or the referenced I/O port is mapped
to an unimplemented virtual address (via the IOBase register), a GPFault is raised
on the referencing IA-32 IN, OUT, INS, or OUTS instruction.

• Alignment and Data Address breakpoints are also checked and may result in an
IA_32_Exception(AlignmentCheck) fault (if PSR.ac is 1) or
IA_32_Exception(Debug) trap.

• If an IA-32 IN/OUT I/O port Accesses cross a 4-port boundary the processor will
break the operation into smaller 1, 2, or 3 byte transactions.

• Assuming no faults, a physical transaction is emitted to the mapped or specified
physical address.

The processor ensures that IA-32 IN, INS, OUT, OUTS references are fully ordered and
will not allow prior or future data memory references to pass the I/O operation as
defined in Section 10.6.10, “IA-32 Memory Ordering” on page 2:265. The processor will
wait for acceptance for IN and OUT operations before proceeding with subsequent
externally visible bus transactions.

10.7.4 I/O Port Accesses by Loads and Stores

If an access is made to the I/O port block using IA-32 or Itanium loads and stores the
following differences in behavior should be noted; EFLAG.iopl permission is not
checked, TSS permission bitmap is not checked, and stores and loads do not honor IN
and OUT memory ordering and acceptance semantics (the processor will not
automatically wait for a store to be accepted by the platform).

Virtual addresses for the I/O port space should be computed as defined in
Section 10.7.1, “Virtual I/O Port Addressing” on page 2:268 If data translations are
enabled, the TLB is consulted for mappings and permission, and the resulting mapped
physical address used to address the physical I/O device.

If IA-32 ordering semantics are required to a particular I/O port device (or memory
mapped I/O device), IA-32 or Itanium architecture-based software must enforce
ordering to the I/O device. Software can either perform a memory ordering fence
before and after the transaction, or use an load acquire or store release

To ensure the processor does not speculatively access an I/O device, all I/O devices
must be mapped by the UC memory attribute.

If IA-32 acceptance semantics are required (i.e. additional data memory transactions
are not initiated until the I/O transaction is completed), Itanium architecture-based
code can issue a memory acceptance fence. Conversely, if certain I/O devices do not
require IA-32 IN/OUT ordering or acceptance semantics, Itanium architecture-based
code can relax ordering and acceptance requirements as shown below.

OUT

[mf]//Fence prior memory references, if required

add port_addr = IO_Port_Base, Expanded_Port_Number
st.rel (port_addr), data
[mf.a] //Wait for platform acceptance, if required
[mf] //Fence future memory operations, if required

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:273

IN

[mf] //Fence prior memory references, if required
add port_addr = IO_Port_Base, Expanded_Port_Number
ld.acq data, (port_addr)
[mf.a] //Wait for platform acceptance, if required
[mf] //Fence future memory references, if required

10.8 Debug Model

The debug facilitates defined by the Itanium architecture are designed to support
debugging of both the Itanium and IA-32 instruction set. The following debug events
can be triggered during IA-32 instruction set execution by Itanium debug resources.

• Single Step trap – When PSR.ss is 1 (or EFLAG.tf is 1), successful execution of
each IA-32 instruction, results in an IA_32_Exception(Debug) trap. After the single
step trap, IIP points to the next IA-32 instruction to be executed.

• Breakpoint Instruction trap – execution of INT 3 (breakpoint) instruction results
in a IA_32_Exception(Debug) trap.

• Instruction Debug fault – When PSR.db is 1 and PSR.id is 0 and EFLAG.rf is 0,
any IA-32 instruction fetch that matches the parameters specified by the IBR
registers results in an IA_32_Exception(Debug) fault. After servicing a Debug fault,
debuggers can set PSR.id (or EFLAG.rf for IA-32 instructions) before restarting the
faulting instruction. If PSR.id is 1, Instruction Debug faults are temporarily disabled
for one Itanium instruction. If PSR.id is 1 or EFLAG.rf is 1, Instruction Debug faults
are temporarily disabled for one IA-32 instruction. The successful execution of an
IA-32 instruction clears both PSR.id and EFLAG.rf bits. The successful execution of
an Itanium instruction only clears PSR.id.

• Data Debug traps – When PSR.db is 1, any IA-32 data memory reference that
matches the parameters specified by the DBR registers results in a
IA_32_Exception(Debug) trap. IA-32 data debug events are traps, not faults as
defined for Itanium instruction set data debug events. Trap behavior is required
since any given IA-32 instruction can access several memory locations during its
execution. The reported trap code returns the match status of the first four DBR
registers that matched during the execution of the IA-32 instruction. Zero, one or
DBR registers may be reported as matching.

• Taken Branch trap – When PSR.tb is 1, a IA_32_Exception(Debug) trap occurs on
every IA-32 taken branch instruction (CALL, Jcc, JMP, RET, LOOP). After the trap,
IIP points to the branch target.

• Lower Privilege Transfer trap – Does not occur during IA-32 instruction set
execution.

For virtual memory accesses, breakpoint address registers contain the virtual addresses
of the debug breakpoint. For physical accesses, the addresses in these registers are
treated as a physical address. Software should be aware that debug registers
configured to fault on virtual references, may also fault on a physical reference if
translations are disabled. Likewise a debug register configured for physical references
can fault on virtual references that match the debug breakpoint registers.

2:274 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

10.8.1 Data Breakpoint Register Matching

Each Itanium data breakpoint register has the following matching behavior for IA-32
instruction set data memory references:

• DBR.addr – IA-32 single or multi-byte data memory references that access ANY
memory byte specified by the DBR address and mask fields results in a debug
breakpoint trap regardless of datum size and alignment. The upper 32-bits of
DBR.addr must be zero to detect IA-32 data memory references. Since IA-32 data
breakpoints are traps, all processor implementations ensure data breakpoint traps
are precise. Traps are only reported if any byte in the data memory reference
ANDed with the DBR mask bitwise matches the DBR address field ANDed with the
DBR mask. No spurious data breakpoint faults are generated for IA-32 data
memory operands that are unaligned, nor are matches reported if no bytes of the
operand lie within the address range specified by the DBR address and mask fields.
Note, Itanium instruction set generated unaligned data memory references may
result in spurious imprecise breakpoint faults.

• DBR.mask – by programming the mask a breakpoint range of 1, 2, 4, 8, or any
power of 2 combination can be supported. Mask bits above bit 31 are checked by
the processor during IA-32 data memory references

• Trap code B bits – are set indicating a match with the corresponding data
breakpoint register DBR0-3. For IA-32 data debug traps, any number of B-bits can
be set indicating a match.

The B-bits are only set and a data breakpoint trap generated if 1) the breakpoint
register precisely matches the specified DBR address and mask, 2) it is enabled by the
DBR read or write bits for the type of the memory transaction, 3) the DBR privilege field
matches PSR.cpl, 4) PSR.db is 1, and 5) no other higher priority faults are taken.

I/O port space breakpoints can be configured by loading the address and mask fields
with the virtual address defined by the operating system to correspond to the I/O port
space.

10.8.2 Instruction Breakpoint Register Matching

Each Itanium instruction breakpoint register has the following matching behavior for
IA-32 instruction set memory fetches:

• IBR.addr – an IBR register matches an IA-32 instruction fetch address, if the first
byte of an IA-32 instruction address ANDed with the IBR mask bitwise matches the
IBR address field ANDed with the IBR mask. Note that only the first byte is
analyzed. The upper 32-bits of IBR.addr must be zero to detect IA-32 instruction
fetches.

• IBR.mask – by programming the mask a breakpoint range of 1, 2, 4, 8, or any
power of 2 combination can be supported. Mask bits above bit 31 are ignored
during IA-32 instruction fetches.

The instruction breakpoint fault is generated if 1) the breakpoint register precisely
matches the specified IBR address and mask, 2) it is enabled by the IBR execute bit, 3)
the IBR privilege field matches PSR.cpl, 4) PSR.db is 1, 5) PSR.id is 0, and 6) no other
higher priority faults are taken.

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:275

10.9 Interruption Model

Within the Itanium System Environment, all interruptions originating out of the IA-32 or
Itanium instruction sets are delivered to Itanium architecture-based Interruption
Handlers within the Itanium architecture-based operating system. Virtual memory
management faults, machine checks, and external interrupts are always delivered to
Itanium architecture-based interruption handlers regardless of the instruction set
running at the time of the interruption. IA-32 exceptions, control transfers through
gates, task switches, and accesses to sensitive IA-32 system resources are intercepted
into Itanium architecture-based interruption handlers. Using these intercepts, Itanium
architecture-based software can implement specific policies with regard to that
resource. Policies may include virtualization, emulation of an IA-32 opcode or memory
access, or various permission policies.

In general, if an interruption is independent of the executing instruction set (such as an
external interruption or TLB fault) common Itanium architecture-based handlers are
invoked. For classes of exceptions and intercept conditions that are specific to the IA-32
instruction set, three special Itanium architecture-based software handlers are invoked
to deal with IA-32 instruction set interruptions. Table 10-8 shows the three interruption
handlers defined to support IA-32 events. See Section 9.2, “IA-32 Interruption Vector
Definitions” on page 2:213 for details on these interruption handlers.

This grouping of interruption handlers simplifies software handlers such that they do
not need to be concerned with behavior of both IA-32 and Itanium instruction sets.

Interruption registers (defined in Chapter 3) record the state of IA-32 execution at the
point of interruption. For IA-32 exceptions, ISR contains IA-32 defined error codes and
vector numbers as defined by the Intel® 64 and IA-32 Architectures Software
Developer’s Manual. IA-32 instruction set related exceptions and software
interruptions vector directly through the interruption mechanism defined by the
Itanium architecture without consulting the IA-32 IDT or performing any memory stack
pushes.

10.9.1 Interruption Summary

Table 10-9 summarizes the set of all IA-32 interruptions and how they are mapped to
Itanium architecture-based interruption handlers within the Itanium System
Environment. See Chapter 9 and Chapter 8 for a detailed definition of each interruption.

Table 10-8. IA-32 Interruption Vector Summary

Handler Description

IA_32_Intercept Intercepted IA-32 instructions, I/O, system flag manipulation and gate transfers.

IA_32_Exception IA-32 instruction set generated exceptions.

IA_32_Interrupt IA-32 instruction set generated software interrupts

Table 10-9. IA-32 Interruption Summary

IA-32
Vector

Itanium®Architecture-based
Interruption Handler

ISR
Vector

ISR
Code

Description

IA-32 Defined Interruptions

0 IA_32_Exception (Divide) 0 0 IA-32 divide by zero fault.

2:276 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

1 IA_32_Exception (Debug) 1 0 IA-32 instruction breakpoint fault.

1 IA_32_Exception (Debug) 1 TrapCode IA-32 debug events. The Trap
Code indicates concurrent taken
branch, data breakpoint and single
step trap conditions.

2 External Interrupt 0 0 NMI is delivered through the Intel
Itanium External Interrupt vector.

3 IA_32_Exception(Break) 3 TrapCode IA-32 INT 3 instruction.

4 IA_32_Exception(INTO) 4 TrapCode IA-32 INTO detected overflow trap.

5 IA_32_Exception (Bound) 5 0 IA-32 BOUND range exceeded
fault.

6 IA_32_Intercept(Inst) 0 InterceptCode All IA-32 unimplemented and
illegal opcodes.

7 IA_32_Exception(DNA) 7 0 IA-32 Device not available fault.

8 -- N/A IA-32 Double fault can not be
generated in the Intel Itanium
System Environment, Intel
reserved.

9 -- N/A Intel reserved

10 -- N/A IA-32 Invalid TSS fault can not
generated in the Intel Itanium
System Environment, Intel
reserved,

11 IA_32_Exception(NotPresent) 11 ErrorCodea IA-32 Segment Not present fault.

12 IA_32_Exception (Stack) 12 ErrorCode IA-32 Stack Exception fault.

13 IA_32_Exception (GPFault) 13 ErrorCode IA-32 General Protection fault.

14 Intel Itanium TLB faults see Data TLB
faults below

IA-32 Page fault can not be
generated in the Intel Itanium
System Environment, replaced by
Intel Itanium TLB faults, Intel
reserved,

15 -- N/A Intel reserved.

16 IA_32_Exception (FPError) 16 0 IA-32 floating-point fault.

17 IA_32_Exception(AlignCheck) 17 0 IA-32 un-aligned data references.

18 Corrected MCHK N/A IA-32 Machine Check can not be
generated in the Intel Itanium
System Environment, replaced by
the PAL Machine Check
Architecture, Intel reserved.

19 IA_32_Exception (StreamSIMD) 19 0 IA-32 SSE Numeric Error fault.

20-31 -- N/A Intel reserved.

0-255 External Interrupt 0 0 External interrupts are delivered
through the Intel Itanium External
lnterrupt vector. Software must
read the IVR register to determine
the vector number.

0-255 IA_32_Interrupt (vector #) Vect# TrapCode IA-32 Software Interrupt trap. ISR
contains the vector number.

IA-32 Interceptions

Table 10-9. IA-32 Interruption Summary (Continued)

IA-32
Vector

Itanium®Architecture-based
Interruption Handler

ISR
Vector

ISR
Code

Description

Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 2:277

10.9.2 IA-32 Numeric Exception Model

IA-32 numeric instructions follow the IA-32 delayed floating-point exception model.
Specifically IA-32 numeric exceptions are held pending until the next IA-32 numeric or
MMX technology instruction as defined in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. Numeric faults generated on SSE instructions are
reported precisely on the faulting SSE instruction. SSE instructions do NOT trigger the
report of pending IA-32 numeric exceptions.

For voluntary transitions out of the IA-32 instruction, an implicit FWAIT operation is
performed by the jmpe instruction to ensure all pending numeric exceptions are
reported. For involuntary transitions out of the IA-32 instruction set (external
interruptions, TLB faults, exceptions, etc.) the processor does not perform a FWAIT
operation. However, every IA-32 numeric instruction that generates a pending numeric
exception loads the application registers FSR, FIR, and FDR with the IA-32
floating-point state on the instruction that generating the exception. This state contains
information defined by the IA-32 FSTENV and FLDENV instructions. During a process
context switch, the operating system must save and restore FSR, FIR, and FDR
(effectively performing an FSTENV and FLDENV) to ensure numeric exceptions are
correctly reported across a process switch.

10.10 Processor Bus Considerations for IA-32
Application Support

The section briefly discusses bus and platform considerations when supporting IA-32
applications in the Itanium System Environment.

Itanium architecture-based code does not assert the SPLCK and LOCK pins. The LOCK
pin is used by IA-32 code to signal an external atomic bus transaction for which
atomicity cannot be enforced within the processor's caches, whereas, SPLCK indicates if
an unaligned external bus lock requires a split lock operation and hence several bus

IA_32_Intercept(Inst) 0 InterceptCode Intercept for unimplemented, illegal
or privileged IA-32 opcodes.

IA_32_Intercept(Gate) 1 TrapCode Intercept for control transfers
through a Call Gate, Task gate or
Task Segment.

IA_32_Intercept(SystemFlag) 2 TrapCode Intercept for modification of system
flag values.

IA_32_Intercept(Lock) 4 0 IA-32 semaphore operation
requires an external bus lock when
DCR.lc is 1.

3,5-25
5

-- Intel reserved

a. The IA-32 Error Code is defined as a Selector Index, and TI, IDT and EXT bits are set based on the
exception. See Intel® 64 and IA-32 Architectures Software Developer’s Manual for the complete
definition.

Table 10-9. IA-32 Interruption Summary (Continued)

IA-32
Vector

Itanium®Architecture-based
Interruption Handler

ISR
Vector

ISR
Code

Description

2:278 Volume 2, Part 1: Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications

transactions. For IA-32 code, if the platform does not support LOCK or SPLCK, the
operating system must disable external bus lock transactions by setting DCR.lc to 1.
When DCR.lc is 1, any IA-32 atomic reference not serviced internally in the processor’s
caches results in an IA_32_Intercept(Lock) fault. See Section 3.3.4.1, “Default Control
Register (DCR – CR0)” on page 2:31 for details. When DCR.lc is 0, operating system
code is responsible for emulation of the IA-32 instruction and ensuring atomicity (if
required).

The A20M and IGNE pins are ignored in the Itanium System Environment. FERR is not
asserted in the Itanium System Environment.

In both IA-32 and Itanium System Environments, the M/IO pin (or an external bus
indication) is asserted by any memory reference to the 64MB I/O port block range of
the physical address space. See Section 10.7, “I/O Port Space Model” on page 2:267
for details.

SMI and the SMM environment are not supported on processors based on the Itanium
architecture. The PMI interrupt and PAL firmware environment replace them. See
Section 11.5, “Platform Management Interrupt (PMI)” on page 2:310 for details.

10.10.1 IA-32 Compatible Bus Transactions

Within the Itanium System Environment, the following bus transactions are initiated:

• INTA – Interrupt Acknowledge - emitted by the operating system (via a read to the
INTA byte in the processor’s Interrupt Block) to acquire the interrupt vector number
from an external interrupt controller.

• HALT – Emitted when the processor has entered the halt state due to the operating
system/platform firmware calling PAL_HALT or PAL_HALT_LIGHT.

• SHUTDOWN – Emitted when the processor has entered the shutdown state. This
can only be generated when the processor has entered into the IA-32 System
Environment by calling PAL_ENTER_IA_32_ENV procedure call.

• STPACK – Stop Acknowledge. Emitted by calling an implementation-specific PAL
firmware procedure. See the processor-specific firmware guide for more
information.

• FLUSH – Emitted when the WBINVD or INVD instruction is executed when running
in the IA-32 System Environment entered by calling PAL_ENTER_IA_32_ENV
procedure call. Indicates that external caches (if any) should be invalidated.

• SYNC – Emitted when the WBINVD instruction is executed when running in the
IA-32 System Environment entered by calling PAL_ENTER_IA_32_ENV procedure
call. Indicates that external caches (if any) should copy all modified cache lines
back to main memory.

§

Volume 2, Part 1: Processor Abstraction Layer 2:279

Processor Abstraction Layer 11

This chapter defines the architectural requirements for the Processor Abstraction
Layer (PAL) for all processors based on the Itanium architecture. It is intended for
processor designers, firmware/BIOS designers, system designers, and writers of
diagnostic and low level operating system software.

PAL is part of the Itanium processor architecture and its goal is to provide a consistent
firmware interface to abstract processor implementation-specific features.

The objectives of this chapter are to define:

• The architectural behavior and interface requirements for processor testing,
configuration and error recovery. This includes the hardware entrypoints into PAL
and the PAL interfaces to platform firmware and system software.

• A set of boot and runtime PAL procedures to access processor
implementation-specific hardware and to return information about processor
implementation-dependent configuration.

• A computing environment for both PAL entrypoints and procedures such that:

• Memory used by PAL procedures is allocated by the caller of PAL procedures.

• PAL code runs little endian.

• PAL interface is as endian neutral as possible.

• PAL is Itanium architecture-based code.

• PAL code runs at privilege level 0.

• PAL procedures can be called without backing store, except where
memory-based parameters are returned.

• The processor and platform hardware requirements for PAL. This includes
minimizing PAL dependencies on platform hardware and clearly stating where those
dependencies exist.

• A PAL interface and requirements to support firmware update and recovery.

11.1 Firmware Model

As shown in Figure 11-1, Itanium architecture-based firmware consists of several major
components: Processor Abstraction Layer (PAL), System Abstraction Layer (SAL),
Unified Extensible Firmware Interface (UEFI) and Advanced Configuration and Power
Interface (ACPI). PAL, SAL, UEFI and ACPI together provide processor and system
initialization for an operating system boot. PAL and SAL provide machine check abort
handling. PAL, SAL, UEFI and ACPI provide various run-time services for system
functions which may vary across implementations. The interactions of the various
services that PAL, SAL, UEFI and ACPI provide are illustrated in Figure 11-1.

In the context of this model and throughout the rest of this chapter, the System
Abstraction Layer (SAL) is a firmware layer which isolates operating system and other
higher level software from implementation differences in the platform, while PAL is the
firmware layer that abstracts the processor implementation.

2:280 Volume 2, Part 1: Processor Abstraction Layer

11.1.1 Processor Abstraction Layer (PAL) Overview

The purpose of the Processor Abstraction Layer, is to provide a firmware abstraction
between the processor hardware implementation and system software and platform
firmware, so as to maintain a single software interface for multiple implementations of
the processor hardware. PAL is defined to be independent of the number of processors
on a platform.

Figure 11-1. Firmware Model

Non-performance criti-
cal hardware events,
e.g., reset, machine
checks

Operating System Software

System Abstraction Layer
(SAL)

 Processor (hardware)

Performance critical hard-
ware events, e.g., inter-
rupts

Instruction
Execution

Platform

Processor Abstraction Layer (PAL)

Interrupts,
traps, and
faults

Transfers to
SAL entrypoints

PAL
procedure
calls

Access to
platform
resources

Unified Extensible Firmware
 Interface (UEFI)

SAL
procedure
calls

OS Boot
Handoff

UEFI
runtime
services

OS Boot
SelectionAdvanced

Configuration
and Power
Interface

(ACPI)

Power mgmt,
hot-plug,
etc.

Transfers
to OS
entrypoints

Volume 2, Part 1: Processor Abstraction Layer 2:281

PAL encapsulates those processor functions that are likely to change on an
implementation to implementation basis so that SAL firmware and operating system
software can maintain a consistent view of the processor. These include
non-performance critical functions dealing such as processor initialization, configuration
and error handling.

PAL consists of two main components:

• Entrypoints, which are invoked directly by hardware events such as reset, init and
machine checks. These interruption entrypoints perform functions such as
processor initialization and error recovery.

• Procedures, which may be called by higher level firmware and software to obtain
information about the identification, configuration, and capabilities of the processor
implementation; to perform implementation-dependent functions such as cache
initialization; or to allow software to interact with the hardware through such
functions as power management or enabling/disabling processor features.

11.1.2 Firmware Entrypoints

Figure 11-2. Firmware Entrypoints Logical Model

PALE_RESET

PALE_INIT OS_INIT

Reset

Power-On
SAL_RESET OS_LOADER

SAL_BOOT_RENDEZ

PAL OS

SAL_INIT
Initialize

SAL

PALE_CHECK OS_MCA
Error

SAL_CHECK

Firmware Recovery Complete

PALE_PMI SALE_PMI

PMI

Resume

S
A

LE
_E

N
T

R
Y

Application
Processors

Rendezvous Complete

UEFI Boot Manager

Bootstrap Processor (BSP)

(APs)

BSP BSP

UEFI

Wake Up

SAL_MC_RENDEZ

Application Processors (APs)

Bootstrap Processor (BSP)

MC_Rendezvous
Interrupt

Wake Up

2:282 Volume 2, Part 1: Processor Abstraction Layer

11.1.3 PAL Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:

• Power-on/reset

• Hardware errors (both correctable and uncorrectable)

• Initialization event (via external interrupt bus message or processor pin)

• Platform management interrupt (via external interrupt bus message or processor
pin)

These hardware events trigger the execution of one of the following PAL entrypoints (as
shown in Figure 11-2):

• PALE_RESET – Initializes and tests the processor following power-on or reset and
then branches to SALE_ENTRY to determine whether to perform firmware recovery
update, or to boot the machine for OS use. See Section 11.1.4, “SAL Entrypoints”
on page 2:282.

• PALE_CHECK – Determines if errors are processor related, saves processor related
error information and corrects errors where possible (for example, by flushing a
corrupted instruction cache line and marking the cache line as unusable). In all
cases, PALE_CHECK branches to SALE_ENTRY to complete the error logging,
correction, and reporting.

• PALE_INIT – Saves the processor state, places the processor in a known state, and
branches to SALE_ENTRY. PALE_INIT is entered as a response to an initialization
event.

• PALE_PMI – Saves the processor state and branches to SALE_PMI. PALE_PMI is
entered as a response to a platform management interrupt.

11.1.4 SAL Entrypoints

There are two entrypoints from PAL into SAL:

• SALE_ENTRY – PAL branches to this SAL entrypoint after a power-on, reset,
machine check, or initialization event. If SALE_ENTRY was invoked by a machine
check or initialization event, SALE_ENTRY branches to the appropriate routine:

• SAL_CHECK is invoked after a machine check.

• SAL_INIT is invoked after an initialization event.

If SALE_ENTRY was invoked by a reset or power on, it checks to determine if a
firmware recovery condition exists. If it does, SALE_ENTRY performs the firmware
update, then performs a RESET operation to invoke PAL_RESET. If a recovery
condition does not exist, SAL_ENTRY returns to PAL_RESET to complete processor
self-test. PAL_RESET then branches back to SALE_ENTRY, which, in turn, branches
to SAL_RESET.

• SALE_PMI – platform management interrupt. PALE_PMI branches to this SAL
entrypoint after saving processor state in response to the platform management
interrupt.

Volume 2, Part 1: Processor Abstraction Layer 2:283

11.1.5 OS Entrypoints

There are several entrypoints from SAL into an operating system (or equivalent
software). Entrypoints from SAL into the operating system are expected to meet the
following model:

• OS_BOOT – Operating System Boot interface.

• OS_MCA – Operating System Machine Check Abort Handler.

• OS_INIT – Operating System Initialization Handler.

• OS_RENDEZ – Operating System Multiprocessor Rendezvous interface.

11.1.6 Firmware Address Space

The firmware address space occupies the 16 MB region between 4 GB - 16 MB and 4 GB
(addresses 0xFF00_0000 through 0xFFFF_FFFF). There are two primary layouts of this
address space. The first version is shown in Figure 11-3 and the second version is
shown in Figure 11-4. The first version has one PAL_A component. This layout allows
for robust recovery of PAL_B and SAL_B components. This layout is useful for cases
where PAL_A will not need to be upgraded. The second version splits the PAL_A block
into two components. The first component is referred to as the generic PAL_A and the
second component is the processor-specific PAL_A. Splitting the PAL_A up in this
manner allows for a robust upgrade of the processor-specific PAL_A firmware as well as
the PAL_B and SAL_B components. This is very useful if a platform is designed to
support multiple processor generations which would require a PAL_A upgrade when the
new processor generation is released. The generic PAL_A which resides in the Protected
Boot Block will work across processor generations for a given platform. The
processor-specific PAL_A resides outside the Protected Boot Block and works for a
specific processor generation.

2:284 Volume 2, Part 1: Processor Abstraction Layer

Figure 11-3.Firmware Address Space

4GB

4GB-16
4GB-24
4GB-32

4GB-X

4GB-(X+Y)

4GB-(X+Y+C)

4GB-(X+Y+C+D)

4GB-16MB

IA-32 Reset Vector

SALE_ENTRY Address
Firmware Interface Table Address

PAL_A Block

SAL_A Block
(Itanium® Architecture-based and

Firmware Interface Table (FIT)

Reserved PAL Space (Optional)

PAL_B Block

Reserved SAL space (Optional)

SAL_B Block

Available Space

(16 Bytes)

(8 Bytes)

(Multiple of 16 Bytes)

(8 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 bytes)

(Multiple of 16 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 bytes)
SALE_ENTRY

CPU Reset

Init

H/W Error

PALE_RESET

PALE_INIT

PALE_CHECK

C

X

16MB
Maximum

Protected Bootblock)
4GB-48

4GB-64
Reserved (16 Bytes)

PAL_A FIT Entry (16 Bytes)

(PAL_B Size)

D
(SAL_B Size)

Y
(FIT Size)

B
(SAL_A Size)

A
(PAL_A Size)

64 Bytes

FIT_BASE

PAL_BASE

SAL_BASE

Optional IA-32 Code)

Volume 2, Part 1: Processor Abstraction Layer 2:285

The firmware address space is shared by SAL and PAL. Some of the SAL/PAL boundaries
are implementation dependent. The address space contains the following regions and
locations.

• The 16 bytes at 0xFFFF_FFF0 (4GB-16) contain IA-32 Reset Code.

• The 8 bytes at 0xFFFF_FFE8 (4GB-24) contain the physical address of the
SALE_ENTRY entrypoint.

Figure 11-4.Firmware Address Space with Processor-specific PAL_A Components

4GB

4GB-16
4GB-24
4GB-32

4GB-X

4GB-(X+Y)

4GB-(X+Y+Z+

4GB-(X+Y+Z+

4GB-16MB

IA-32 Reset Vector

SALE_ENTRY Address
Firmware Interface Table Address

Generic PAL_A Block

SAL_A block

(Itanium® Architecture-based and

Firmware Interface Table (FIT)

Reserved PAL Space (Optional)

PAL_B Block

Reserved SAL Space (Optional)

SAL_B Block

Available Space

(16 Bytes)

(8 Bytes)

(Multiple of 16 Bytes)

(8 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 Bytes)

(Multiple of 16 Bytes)

CPU Reset

Init

H/W Error

PALE_RESET

PALE_INIT

PALE_CHECK

C

X

16MB
(Maximum)

(Protected

4GB-48

4GB-64 Reserved (8 Bytes)

PAL_A FIT Entry (16 Bytes)

(PAL_B Size)

D
(SAL_B Size)

Y
(FIT Size)

B
(SAL_A Size)

A
(PAL_A Size)

64 Bytes

FIT_BASE

PAL_BASE

SAL_BASE

4GB-56 Alternate Firmware Interface Table Address (Optional) (8 Bytes)

Processor-specific PAL_A (Multiple of 16 Bytes)

Alternate Firmware Interface Table (Multiple of 16 Bytes)

Alternate Processor-specific PAL_A (Multiple of 16 Bytes)

(Optional)

(Optional)

Bootblock)

(FIT size)

(Processor PAL_A Size)

(Processor PAL_A Size)

E

F

Z

C+E+F)

C+D+E+F)

Optional IA-32 Code)

2:286 Volume 2, Part 1: Processor Abstraction Layer

• The 8 bytes at 0xFFFF_FFE0 (4GB-32) contain the physical address of the Firmware
Interface Table.

• The 16 bytes at 0xFFFF_FFD0 (4GB-48) contain the FIT entry for the PAL_A (or
generic PAL_A in the split PAL_A model) code provided by the processor vendor.
The format of this FIT entry is described in Figure 11-6.

• The 8 bytes at 0xFFFF_FFC8 (4GB-56) contains the physical address of the
alternate Firmware Interface Table. This pointer is optional and is only needed if the
firmware contains an alternate FIT table. If no alternate FIT table it provided a
value of 0x0 should be encoded in this entry.

• The 8 bytes at 0xFFFF_FFC0 (4GB-64) are zero-filled and reserved for future use.

• PAL_A code (also known as generic PAL_A code in split PAL_A model) resides below
0xFFFF_FFC0. This area contains the hardware-triggered entrypoints PALE_RESET,
PALE_INIT, and PALE_CHECK. In the model where PAL_A is not split, the PAL_A
code will perform any processor-specific initialization needed in order for SAL to
perform a firmware recovery. In the split PAL_A model, the generic PAL_A will
search the FIT table(s) to find the first compatible and error-free processor-specific
PAL_A code. It will then branch to this code to perform the processor-specific
initialization needed in order for SAL to perform a firmware recovery. The PAL_A
code area is a multiple of 16 bytes in length.

• SAL_A code occupies the region immediately below the PAL_A code. This area
contains the SALE_ENTRY entrypoint as well as optional
implementation-independent firmware update code. The SAL_A code area is a
multiple of 16 bytes in length.

• The collection of regions above from the beginning of the SAL_A code to 4GB is
called the Protected Bootblock. The size of the Protected Bootblock is SAL_A size +
PAL_A size + 64.

• The Firmware Interface Table (FIT) comprises of 16-byte entries containing starting
address and size information for the firmware components. The FIT is generated at
build time, based on the size and location of the firmware components. Optionally,
an alternate FIT may be included in the firmware. The alternate FIT will only be
used if the primary FIT failed its checksum. In the split PAL_A model, this allows the
generic PAL_A firmware to find the processor-specific PAL_A component(s), even if
the primary FIT is corrupt. This feature allows hand-off to the SAL recovery code,
even if there is a primary FIT checksum failure.

• The processor-specific PAL_A contains the code that is required to be run before
handing off to SAL for a firmware recovery check. This component is only available
on processors that support a split PAL_A firmware model. One processor-specific
PAL_A is architecturally required in this model. The firmware may optionally contain
two or more processor-specific PAL_A components.

• The PAL_B block is comprised of code that is not required to be executed for SAL to
perform a firmware recovery update. The PAL_B code area is a multiple of 16 bytes
in length. The PAL_B block must be aligned on a 32K byte boundary or a 64K byte
boundary depending on the implementation. Processor specific documentation
provides the requirement for alignment. An OEM can choose to have more than one
PAL_B block in the firmware image.

• The remainder of the firmware address space is occupied by SAL_B code. SAL_B
may include IA-32 BIOS code. The location of the SAL_B and IA-32 BIOS code
within the firmware address space is implementation dependent.

Volume 2, Part 1: Processor Abstraction Layer 2:287

At a minimum, all of the PAL firmware components, pointers at the top of the firmware
address space, FIT tables and the portion of the SAL code that is executed at the
RECOVERY CHECK hand-off must be accessible from the processor without any special
system fabric initialization sequence. This implies that the system fabric is implicitly
initialized at power on for accessing the portions of the firmware address space listed
above or that the special hardware which contains the firmware code and data is
implemented on the processor and not accessed across the system fabric. The entire
firmware code and data area can also be implicitly initialized at power on from the
processor as well, but the minimum set is listed above.

The Firmware Interface Table (FIT) contains starting addresses and sizes for the
different firmware components. Because these code blocks may be compiled at
different times and places, code in one block (such as PAL_A) cannot branch to code in
another block (such as PAL_B) directly. The FIT allows code in one block to find
entrypoints in another. Figure 11-5 below shows the FIT layout.

Each FIT entry contains information for the corresponding firmware component. The
first entry contains size and checksum information for the FIT itself. The order of the
following FIT entries must be arranged in ascending order by the type field, otherwise
execution of firmware code will be unpredictable. Multiple FIT entries of the same type
are allowed as shown in Figure 11-5.

When multiple entries of the same type exist for PAL components, PAL searches the FIT
table in ascending order looking for the first entry that is compatible and error free for
the processor it is currently executing on.

Figure 11-5. Firmware Interface Table

4GB-X

4GB-(X+Y)

PAL_B entry (one entry is required)

Y
Processor-specific PAL_A (one entry is required for the split PAL_A model)

FIT header (16 bytes)

(16 bytes)

(16 bytes)

(16 bytes)

(16 bytes)

PAL_B entry (other entries are optional)

Processor-specific PAL_A (other entries are optional)

OEM use

(16 bytes)

(16 bytes)

OEM use

2:288 Volume 2, Part 1: Processor Abstraction Layer

• Size – A 3-byte field containing the size of the component in bytes divided by 16.

• Reserved – All fields listed as reserved must be zero filled.

• Version – A 2-byte field containing the component’s version number.

• Type – A 7-bit field containing the type code for the element. Types are defined in
Table 11-1.

OEMs may define unique types for one or more blocks of SAL_B, IA-32 BIOS, etc.,
within the OEM-defined type range of 0x10 to 0x7E.

• C_V – A 1-bit flag indicating whether the component has a valid checksum. If this
field is zero, the value in the Chksum field is not valid.

• Chksum – A 1-byte field containing the component’s checksum. The modulo sum of
all the bytes in the component and the value in this field (Chksum) must add up to
zero. This field is only valid if the C_V flag is non-zero. If the checksum option is
selected for the FIT, in the FIT Header entry (FIT type 0), the modulo sum of all the
bytes in the FIT table must add up to zero.

Note: The PAL_A FIT entry is not part of the FIT table checksum.
• Address – An 8-byte field containing the base address of the component. For the

FIT header, this field contains the ASCII value of “_FIT_<sp><sp><sp>” (<sp>
represents the space character).

The FIT allows simpler firmware updates. Different components may be updated
independently. This address layout can also support firmware images spanning multiple
storage devices. FIT entries must be arranged in ascending order by the type field,
otherwise execution of firmware code will be unpredictable.

Figure 11-6. Firmware Interface Table Entry

Table 11-1. FIT Entry Types

Type Meaning

0x00 FIT Header

0x01 PAL_B (required)

0x02-0x0D Reserved

0x0E Processor-specific PAL_A

0x0F PAL_A (also generic PAL_A)a

a. The PAL_A FIT entry is located at 0xFFFF_FFDO (4GB-48) and is not
part of the actual FIT table.

0x10-0x7E OEM-defined

0x7F Unused Entry

Address (8 bytes)

Chksum

Start of entry

Start + 16

Start + 8
Reserved (3 bytes)C Size

V

063 56 55 32 31 24 23

(2 bytes)

48 47

VersionType

54

Volume 2, Part 1: Processor Abstraction Layer 2:289

11.2 PAL Power On/Reset

11.2.1 PALE_RESET

The purpose of PALE_RESET is to initialize and test the processor. Upon receipt of a
power-on/reset event the processor begins executing code from the PALE_RESET
entrypoint in the firmware address space. PALE_RESET initializes the processor and
may perform a minimal processor self test. PAL may optionally perform authentication
of the PAL firmware to ensure data integrity. If the authentication code runs cacheable
by default, then a processor-specific mechanism will be provided to disable caching for
diagnostic purposes.

PALE_RESET then branches to SALE_ENTRY to determine if a recovery condition exists,
which would require an update of the firmware. If it does, SALE_ENTRY performs the
update and resets the system. If no firmware recovery is needed, SAL returns to
PALE_RESET to perform the processor self-tests and initialization. SAL can control the
length and coverage of the PAL processor self-test by examining and modifying the
self-test control word passed to SAL at the firmware recovery hand-off state. Please see
Section 11.2.3, “PAL Self-test Control Word” for more information on the self-test
control word.

The PAL processor self-tests are split into two phases. The first phase is written to test
processor features that do not require external memory to be present to execute
correctly. These tests are automatically run when SAL returns to PAL after the branch to
SALE_ENTRY for a firmware recovery check. This section is referred to as phase one of
processor self-test and they are generally run early during the processor boot process.
The second phase is written requiring that external memory is available to execute
correctly. These tests are run when a call to the PAL procedure PAL_TEST_PROC is
made with the correct parameters set up. These tests are referred to as phase two of
processor self-test since they are usually run later in the processor boot process after
external memory has been initialized on the platform.

PAL may execute IA-32 instructions to fully test and initialize the processor. This IA-32
code will not generate any special IA-32 bus transactions nor will it require any special
platform features to correctly execute. PAL then branches to SALE_ENTRY to conduct
platform initialization and testing before loading the operating system software.

11.2.2 PALE_RESET Exit State

• GRs: The contents of all general registers are undefined except the following:

• GR20 (bank 1) contains the SALE_ENTRY State Parameter as defined in
Figure 11-7. For the function field of the SALE_ENTRY State Parameter, only the
values 3, RECOVERY CHECK, for the first call to SALE_ENTRY, and 0, RESET, for
the second call to SALE_ENTRY are valid.

• GR32 contains 0 indicating that SALE_ENTRY was entered from PALE_RESET.

• GR33 contains information about the geographically significant unique
processor ID, and a mask that indicates which bits in the LID register (CR64)
are read-only. Firmware should write the processor's local interrupt identifier in
the programmable portion of the LID register. Writes to the read-only bits are
ignored. See Figure 11-8 for the definition of this parameter.

2:290 Volume 2, Part 1: Processor Abstraction Layer

• GR34 contains the physical address for making a PAL procedure call. If the call
is for RECOVERY CHECK, only the subset of PAL procedures needed for
SALE_ENTRY to perform firmware recovery will be available. These procedures
are:

• PAL_FREQ_RATIOS

• PAL_LOGICAL_TO_PHYSICAL

• PAL_PLATFORM_ADDR

• An implementation-specific PAL procedure for PAL authentication.

• GR35 contains the Self Test State Parameter as defined in Figure 11-9.

• GR36 contains the PAL_RESET return address for SALE_ENTRY to return to if a
recovery condition does not exist. When PAL_RESET calls SALE_ENTRY the
second time to initialize the system for operating system use, this register will
contain the physical address for making an implementation-specific PAL
procedure call for PAL authentication.

Note: For all other PAL procedure calls, the physical address at GR34 should
be used.

• GR37 contains the self-test control word as defined in Figure 11-10. This
control word is processor implementation-specific and informs SAL if self-test
control is implemented and the number of controllable bits. If self-test control is
implemented, PAL will read this value when SAL returns to PAL after firmware
recovery check. If the self-test control is not supported, this register will be
ignored when SAL returns to PAL after firmware recovery check.

• GR38 – Indicates if the PAL_MEMORY_BUFFER procedure is required to be
called on this processor implementation for correct behavior. Also indicates the
minimum buffer size required for the PAL_MEMORY_BUFFER procedure.
Table 11-2 defines the layout of this register.

• Banked GRs: All bank 0 general registers are undefined.

• FRs: The contents of all floating-point registers are undefined. The floating-point
registers are enabled unless the state field of the Self Test State Parameter is
FUNCTIONALLY RESTRICTED and the floating-point unit failed self test. Then, the
floating-point registers are disabled. Refer to Section 11.2.2.3, “Definition of Self
Test State Parameter” for the definition of FUNCTIONALLY RESTRICTED.

• Predicates: The contents of all predicate registers are undefined.

• BRs: The contents of all branch registers are undefined.

• ARs: The contents of all application registers are undefined except the following:

• RSC: All fields in the register stack configuration register are 0, which places
the RSE in enforced lazy mode.

• CFM: The CFM is set up so that all stacked registers are accessible, CFM.sof = 96
and all other CFM fields are 0.

Table 11-2. GR38 Reset Layout

Bit Field Description

31:0 Unsigned integer denoting the minimum number of bytes required by the PAL_MEMORY_BUFFER
procedure.

32:62 Reserved

63 Indicates if the PAL_MEMORY_BUFFER procedure is required by this processor implementation. A
value of 1 indicates that it is required, a value of 0 indicates that it is not required.

Volume 2, Part 1: Processor Abstraction Layer 2:291

• PSR: PSR.bn is 1; PSR.df1 and PSR.dfh are 1 if the floating-point unit failed self
test. All other PSR bits are 0. PSR.ic and PSR.i are zero to ensure external
interrupts, NMI and PMI interrupts are disabled.

• CRs: The contents of all control registers are undefined except the following:

• DCR: contains the value 0.

• IVA: contains the physical address of an interruption vector table previously
set up by PAL. SAL may choose to change this value. The IVA will be 0 when
the SALE_ENTRY State Parameter function is RECOVERY CHECK.

• RRs: The contents of all region registers are undefined.

• PKRs: The contents of all protection key registers are undefined.

• DBRs: The contents of all data breakpoint registers are undefined

• IBRs: The contents of all instruction breakpoint registers are undefined.

• PMCs: The contents of all performance monitor control registers are undefined.

• PMDs: The contents of all performance monitor data registers are undefined.

• Cache: The processor internal caches are enabled and invalidated. Unless directed
otherwise by the self-test control word, phase one of the processor self-test verifies
the caches themselves and the paths from the caches to the processor core. The
path from external memory to the caches cannot be tested until phase two of the
processor self-test.

Note: All cache contents will be invalidated when SAL returns to PAL after the
RECOVERY_CHECK hand-off. If the SAL uses the caches in their
RECOVERY_CHECK code, it is SAL's responsibility to write back any
modified data in the caches before returning to PAL

• TLB: The TRs and TCs are initialized with all entries having been invalidated. The
TLB is disabled because PSR.it=PSR.dt=PSR.rt=0. The TLBs cannot be fully tested
until phase two of the processor self-test.

Prior to passing control to SALE_ENTRY, PALE_RESET must ensure that the processor
Interrupt block pointer is set to point to address 0x0000_0000_FEE0_0000.

11.2.2.1 Definition of SALE_ENTRY State Parameter

• function – An 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

Figure 11-7. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved status function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

min-state_size reserved

Table 11-3. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition

2:292 Volume 2, Part 1: Processor Abstraction Layer

• status – A function-dependent 8-bit field indicating the firmware status on entry to
SALE_ENTRY. If the function value is RESET or RECOVERY_CHECK, the status
values are:

Table 11-4. status Field Values

Status Value Description

Normal 0 Normal reset.

FIT Header Failure 1 FIT header for FIT and alternate FIT (if supported) is
incorrect

FIT Checksum Failure 2 FIT checksum for FIT and alternate FIT (if supported) is
incorrect

PAL_B Checksum Failure 3 PAL_B checksum (for all compatible PAL_B's found) is
incorrect

PAL_A Authentication Failure 4 PAL_A (generic in split model) failed authentication

PAL_B Authentication Failure 5 PAL_B (for all compatible PAL_B's found) failed
authentication

PAL_B Not Found 6 FIT Entry for PAL_B missing from the FIT and alternate
FIT (if supported)

Incompatible 7 No PAL_B was found in the FIT and alternate FIT (if
supported) that is compatible with the processor
stepping

32K Unaligned 8 No PAL_B was found in the FIT and alternate FIT (if
supported) that was correctly aligned to a 32KB
boundary

PAL_A_Spec Not Found /
FIT Checksum Failure

9 No compatible processor-specific PAL_A was found in
the FIT because of a FIT checksum failure and no
compatible processor-specific PAL_A was found in the
alternate FIT (if supported)

PAL_A_Spec Found / FIT Checksum Failure 10 A compatible processor-specific PAL_A was found in
the alternate FIT. No compatible processor-specific
PAL_A was found in the FIT due to a FIT checksum
failure.

PAL_A_Spec Failure /
Good PAL_A_Spec found in FIT

11 One or more compatible processor-specific PAL_A's
found in the FIT failed its checksum or authentication.
Another compatible processor-specific PAL_A was
found in the FIT that passed its checksum and
authentication.

PAL_A_Spec Auth Failure 12 No compatible processor-specific PAL_A's were found
in the FIT or alternate FIT (if supported) that passed its
checksum and authentication

PAL_A_Spec Auth Failure /
Good PAL_A_Spec found in AF

13 One or more compatible processor-specific PAL_A's
found in the FIT or alternate FIT (if supported) failed its
checksum and authentication. Another compatible
processor-specific PAL_A was found in the alternate
FIT that passed its checksum and authentication.

PAL_A_Spec Not Found 14 No compatible processor-specific PAL_A was found in
the FIT or alternate FIT (if supported)

PAL_A_Spec Not Found in FIT /
Good PAL_A_Spec found in AF

15 No compatible processor-specific PAL_A was found in
the FIT. A compatible processor-specific PAL_A was
found in the alternate FIT.

Volume 2, Part 1: Processor Abstraction Layer 2:293

All other values of status are reserved.

Definitions of status values for other values of function are listed in the machine
check and init sections.

For the case of RECOVERY CHECK, authentication of PAL_A and PAL_B should be
completed before call to SALE_ENTRY.

• min-state_size – An 8-bit field indicating the size in kilobytes (KB) of the min-state
save area required for this implementation. A value of zero indicates a size of 4KB.
A value greater than zero indicates the actual size in KB of the min-state save area
required for this implementation. Values of 1-4 are reserved. For more information
about the min-state save area, please refer to Section 11.3.2.4, “Processor
Min-state Save Area Layout” on page 2:302.

11.2.2.2 Definition of Geographically Significant Processor Identifier Parameter

11.2.2.3 Definition of Self Test State Parameter

PAL_B Auth Failure / Good PAL_B found 16 One or more compatible PAL_B's failed authentication
and checksum. Another compatible PAL_B was found
that passed authentication and checksum.

64K Unaligned 17 No PAL_B was found in the FIT and alternate FIT (if
supported) that was correctly aligned to a 64KB
boundary.

Figure 11-8. Geographically Significant Processor Identifier

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved proc_id

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved eid_mask id_mask

Table 11-5. Geographically Significant Processor Identifier Fields

Field Bits Description

proc_id 15:0 Geographically significant processor ID. The value returned in this field is the
same as that returned by PAL_FIXED_ADDR.

Reserved 31:16 Reserved

id_mask 39:32 Mask indicating which bits in id are programmable:
0 = Programmable
1 = Read-only

eid_mask 47:40 Mask indicating which bits in eid are programmable:
0 = Programmable
1 = Read-only

Reserved 63:48 Reserved

Figure 11-9. Self Test State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved mf fp ia vm reserved te state

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_status

Table 11-4. status Field Values (Continued)

Status Value Description

2:294 Volume 2, Part 1: Processor Abstraction Layer

• state – A 2-bit field indicating the state of the processor after self-test. If SAL
directed PAL to skip some self-tests by modifying the self-test control word, failures
related to these self-tests will not be reflected in this state.

To further qualify FUNCTIONALLY RESTRICTED, the following requirements will be
met:

• The processor has detected and isolated the failing component so that it will not
be used.

• The processor must have at least one functioning memory unit, ALU, shifter,
and branch unit.

• The floating-point unit may be disabled.

• The RSE is not required to work, but register renaming logic must work
properly.

• The paths between the processor controlled caches and the register files have
been shown to work. The path between the processor caches and memory
cannot be validated until phase two of the processor self-test invoked by the
PAL_TEST_PROC procedure.

• Loads and stores to firmware address space must work correctly.

Additional information about the failure can be obtained by examining the
test_status field of the Self Test State Parameter.

For the case of FUNCTIONALLY RESTRICTED, it is required that higher level
firmware or OS not use failing functional units during their execution. PAL will not
prevent failing functional units from being used.

• te – A 1-bit field indicating whether testing has occurred. If this field is zero, the
processor has not been tested, and no other fields in the Self Test State Parameter
are valid. The processor can be tested prior to entering SALE_ENTRY for both
RECOVERY CHECK and RESET functions.

If the state field indicates that the processor is functionally restricted, then the
fields vm, ia & fp specify additional information about the functional failure.

• vm – a 1-bit field, if set to 1, indicating that virtual memory features are not
available

• ia – a 1-bit field, if set to 1, indicating that IA-32 execution is not available

• fp – a 1-bit field, if set to 1, indicating that floating-point unit is not available

• mf – a 1-bit field, if set to 1, indicating miscellaneous functional failure other
than vm, ia, or fp. The test_status field provides additional information about
this failure on an implementation-specific basis.

Table 11-6. state Field Values

State Value Description

Catastrophic Failure N/A The processor is not capable of continuing. In this case it does not
branch to SALE_ENTRY.

Healthy 00 No hardware failures have occurred in testing that would affect either
the performance or functionality of the processor.

Performance Restricted 01 A hardware failure has occurred in testing that does not affect the
functionality of the processor, but performance may be degraded.

Functionally Restricted 10 A hardware failure has occurred in testing that affects the
functionality of the processor, but firmware code can still be run. The
processor may also be performance restricted.

Volume 2, Part 1: Processor Abstraction Layer 2:295

• test_status – An unsigned 32-bit-field providing additional information on test
failures when the state field returns a value of PERFORMANCE RESTRICTED or
FUNCTIONALLY RESTRICTED. The value returned is implementation dependent.

11.2.3 PAL Self-test Control Word

The PAL self-test control word is a 48-bit value. This bit field is defined in Figure 11-10.

• test_control – This is an ordered implementation-specific control word that allows
the user control over the length and runtime of the processor self-tests. This control
word is ordered from the longest running tests up to the shortest running tests with
bit 0 controlling the longest running test.

PAL may not implement all 47-bits of the test_control word. PAL communicates if a
bit provides control by placing a zero in that bit. If a bit provides no control, PAL will
place a one in it.

PAL will have two sets of test_control bits for the two phases of the processor
self-test.

PAL provides information about implemented test_control bits at the hand-off from
PAL to SAL for the firmware recovery check. These test_control bits provide control
for phase one of processor self-test. It also provides this information via the PAL
procedure call PAL_TEST_INFO for both the phase one and phase two processor
tests depending on which information the caller is requesting.

PAL interprets these bits as input parameters on two occasions. The first time is
when SAL passes control back to PAL after the firmware recovery check. The
second time is when a call to PAL_TEST_PROC is made. When PAL interprets these
bits it will only interpret implemented test_control bits and will ignore the values
located in the unimplemented test_control bits.

PAL interprets the implemented bits such that if a bit contains a zero, this indicates
to run the test. If a bit contains a one, this indicates to PAL to skip the test.

If the cs bit indicates that control is not available, the test_control bits will be
ignored or generate an illegal argument in procedure calls if the caller sets these
bits.

• cs – Control Support: This bit defines if an implementation supports control of the
PAL self-tests via the self-test control word. If this bit is 0, the implementation does
not support control of the processor self-tests via the self-test control word. If this
bit is 1, the implementation does support control of the processor self-tests via the
self-test control word.

If control is not supported, GR37 will be ignored at the hand-off between SAL and
PAL after the firmware recovery check and the PAL procedures related to the
processor self-tests may return illegal arguments if a user tries to use the self-test
control features.

Figure 11-10. Self-test Control Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

test_control

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved cs test_control

2:296 Volume 2, Part 1: Processor Abstraction Layer

11.3 Machine Checks

11.3.1 PALE_CHECK

When a machine check abort (MCA) occurs, PALE_CHECK is responsible for saving
minimal processor state to a uncacheable platform-specific memory location previously
registered with PAL via the PAL_MC_REGISTER_MEM procedure. This platform location
is called the Minimal State Save Area (min-state save area) and is described in
Section 11.3.2.4, “Processor Min-state Save Area Layout” on page 2:302. PALE_CHECK
is also responsible for correcting processor related errors whenever possible.
PALE_CHECK terminates either by returning to the interrupted context or by branching
to SALE_ENTRY, passing the state of the processor at the time of the error. The level of
recovery provided by PALE_CHECK is implementation dependent and is beyond the
scope of this specification.

At the hand-off from PALE_CHECK to SALE_ENTRY, error information is passed in the
Processor State Parameter described in Section 11.3.2.1, “Processor State Parameter
(GR 18)” on page 2:299. After exit from PALE_CHECK, more detailed error information
is available by calling the PAL_MC_ERROR_INFO procedure. Information about
implementation-dependent state is available by calling the PAL_MC_DYNAMIC_STATE
procedure. The interrupted process may be resumed by calling the PAL_MC_RESUME
procedure. See Section 11.3.3, “Returning to the Interrupted Process” for more
information on returning to the interrupted context and Section 11.10, “PAL
Procedures” on page 2:353 for detailed descriptions of all these procedure calls.

Code for handling machine checks must take into consideration the possibility that
nested machine checks may occur. A nested machine check is a machine check that
occurs while a previous machine check is being handled.

PALE_CHECK is entered in the following conditions:

• When PSR.mc = 0 and an error occurs which results in a machine check, or

• When PSR.mc changes from 1 to 0 and there is a pending machine check from an
earlier error.

PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. When PALE_CHECK
branches to SALE_ENTRY, PSR.mc remains set (PSR.mc is restored to its original value
if PALE_CHECK terminates by returning to the interrupted context). SAL must not clear
PSR.mc to 0 before all the information from the current machine check is logged. If SAL
enables machine checks (by setting PSR.mc=0) during the SAL MCA handling, there is
a potential for the error logs in the processor and the min-state save area to be
overwritten by a subsequent MCA event.

The error information logged will reflect the state at the time the error occurred. State
information from a different point in time will NOT be logged. If complete information is
not available a code is logged which indicates that the information is not available.

• The processor state information used to resume a process for which an error has
been corrected will reflect the state at the time the machine check interruption
occurred and will be sufficient to resume the interrupted process.

• When a single error is signalled multiple times (for example, multiple operations to
a single bad cache line), hardware and firmware will be able to perform the same
logging and recovery as if the error had been signalled once.

Volume 2, Part 1: Processor Abstraction Layer 2:297

For testing and configuration purposes, it may be necessary for software to
intentionally generate a machine check. In this case PALE_CHECK will log the error
information, but not attempt recovery before branching to SALE_ENTRY. To allow for
this, the PAL_MC_EXPECTED procedure call is defined to indicate that PALE_CHECK
should not to attempt recovery.

11.3.1.1 Resources Required for Machine Check and Initialization Event
Recovery

While the level of recovery from machine checks is implementation dependent, for each
particular level of recovery there is a set of architecturally required resources. The
following paragraphs define the required and optional resources needed to support
firmware and software recovery of machine checks and initialization events.

• Minimal resources required to allow software recovery of machines checks when
PSR.ic=1:

• XR0 register: memory pointer to min-state save area previously registered with
PAL via the PAL_MC_REGISTER_MEM procedure. The layout of this memory
area is described in Section 11.3.2.4, “Processor Min-state Save Area Layout”
on page 2:302.

• Bank zero registers GR 24 through GR 31. These registers are not preserved
across interruptions and may be used as scratch registers by machine check
recovery code. See Section 3.3.7, “Banked General Registers” on page 2:42 for
the definition of the bank 0 registers.

• Additional resources required to allow software recovery of machine checks when
PSR.ic=0. The presence of these resources is processor implementation specific.
The PAL_PROC_GET_FEATURES procedure described on page 2:440 returns
information on the existence of these optional resources.

• XIP, XPSR, XFS: interruption resources implemented to store information about
the IIP, IPSR and IFS when the machine check occurred. A model-specific
version of the rfi instruction must also be implemented to restore the machine
context from these resources.

• XR1-XR3: scratch registers implemented to preserve bank 0 GR 24 through GR
31.

Each of the registers described above should be accessed only by PAL in order to
support firmware and software recovery of machine checks.

11.3.2 PALE_CHECK Exit State

The state of the processor on exiting PALE_CHECK is listed below. For registers
described as being saved to the min-state save area and available for use, the actual
values in these registers are undefined unless specifically stated otherwise.

• GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static
registers and bank one static registers (GR16-31) at the time of the MCA have been
saved in the min-state save area and are available for use.

• If recovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are
undefined and their contents have been lost. In this case, recovery is not
possible. See Section 11.3.1.1, “Resources Required for Machine Check and
Initialization Event Recovery” for details.

2:298 Volume 2, Part 1: Processor Abstraction Layer

• GR16 through GR20 (bank 0) contain parameters which PALE_CHECK passes to
SALE_ENTRY for diagnostic and recovery purposes:

• GR16 contains the address to the first available location in the min-state
save area for use by SAL. The address is 8-byte aligned.

• GR17 contains the value of the min-state save area address stored in XR0.

• GR18 contains the Processor State Parameter, as defined in Figure 11-11.

• GR19 contains the PALE_CHECK return address for rendezvous, or 0 if no
return is expected. (See Section 11.3.2.2, “Multiprocessor Rendezvous
Requirements for Handling Machine Checks”)

• GR20 contains the SALE_ENTRY State Parameter as defined in Figure 11-4.

• FRs: The contents of all floating-point registers are unchanged from the time of the
MCA.

• Predicates: All predicate registers have been saved in the min-state save area and
are available for use.

• BRs: The contents of all branch registers are unchanged from the time of the MCA,
except the following.

• BR0 and BR1 have been saved to the min-state save area and are available for
use. Either register may have been changed from the time of entry into
PALE_CHECK.

• ARs: The contents of all application registers are unchanged from the time of the
MCA, except the RSE control register (RSC), the RSE backing store pointer (BSP),
and the ITC and RUC counters. The RSC register is unchanged, except that the
RSC.mode field will be set to 0 (enforced lazy mode) and the RSC register at the
time of the MCA has been saved in the min-state save area. A cover instruction is
executed in the PALE_CHECK handler which allocates a new stack frame of zero
size. BSP will be modified to point to a new location, since all the registers from the
current frame at the time of interruption were added to the RSE dirty partition by
the allocation of a new stack frame. The ITC register will not be directly modified by
PAL, but will continue to count during the execution of the MCA handler. The RUC
register will not be directly modified by PAL, but will continue to count during the
execution of the MCA handler while the processor is active.

• CFM: The CFM register points to a zero-size current frame and all the rotating
register bases are set to zero. The CFM register at the time of the MCA has been
saved to the min-state save area in either the IFS or XFS slot depending on the
implementation.

• RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time
of the MCA.

• PSR: PSR.mc is 1; PSR.mfl, PSR.mfh, and PSR.pk are unchanged; all other bits are
0. The PSR at the time of the MCA is saved in the min-state save area.

• CRs: The contents of all control registers are unchanged from the time of the MCA
with the exception of interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the MCA.

• PKRs: The contents of all protection key registers are unchanged from the time of
the MCA.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of
the MCA.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the
MCA. The contents of the PMD registers are not modified by PAL code, but may be
modified if events it is monitoring are encountered.

Volume 2, Part 1: Processor Abstraction Layer 2:299

• Cache: The processor internal cache is enabled and is unchanged from the time of
the MCA except for any lines that were invalidated to correct the error.

• TLB: The TCs may be initialized and the TRs are unchanged from the time of the
MCA.

• Interruption Resources:

• IRR: PALE_CHECK may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

• The contents of IIP, IPSR and IFS at the time of the MCA are saved to the
min-state save area and are available for use.

11.3.2.1 Processor State Parameter (GR 18)

Figure 11-11. Processor State Parameter

The term “valid” in Table 11-7 indicates that the registers are either unchanged from
the time of interruption or that the values have been preserved in the min-state save
area.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gr b0 b1 fp pr br ar rr tr dr pc cr ex cm rs in dy pm pi mi tl hd us ci co sy mn me ra rz rsvd

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

uc rc bc tc cc reserved se dsize

Table 11-7. Processor State Parameter Fields

Field Bits Description

rsvd 1:0 Reserved

rz 2 The attempted processor rendezvous was successful if set to 1.

ra 3 A processor rendezvous was attempted if set to 1.

me 4 Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

mn 5 Min-state save area has been registered with PAL if set to 1.

sy 6 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and that
no loads or stores beyond that point occurred. See Table 11-8.

co 7 Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this bit
is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-8.

ci 8 Machine check is isolated. A value of 1 indicates that the error has been isolated by the
system, it may or may not be recoverable. If 0, the hardware was unable to isolate the
error within the CPU and memory hierarchy. The error may have propagated off the
system (to persistent storage or the network). If ci = 0 then us will be set to 1, and co
and sy are cleared to 0. See Table 11-8.

us 9 Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-8.

hd 10 Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

2:300 Volume 2, Part 1: Processor Abstraction Layer

tl 11 Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi 12 More information. A value of 1 indicates that more error information about the machine
check event is available by making the PAL_MC_ERROR_INFO procedure call.

pi 13 Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm 14 Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 Processor Dynamic State is valid. (1=valid, 0=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 Interruption caused by INIT. (0=machine check, 1=INIT)

rs 17 The RSE is valid. (1=valid, 0=not valid)

cm 18 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 A machine check was expected. (1=expected, 0=not expected)

cr 20 Control registers are valid. (1=valid, 0=not valid)

pc 21 Performance counters are valid. (1=valid, 0=not valid)

dr 22 Debug registers are valid. (1=valid, 0=not valid)

tr 23 Translation registers are valid. (1=valid, 0=not valid)

rr 24 Region registers are valid. (1=valid, 0=not valid)

ar 25 Application registers are valid. (1=valid, 0=not valid)

br 26 Branch registers are valid. (1=valid, 0=not valid)

pr 27 Predicate registers are valid. (1=valid, 0=not valid)

fp 28 Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

se 48 Shared Error. Machine check corresponds to structure shared by multiple logical
processors.

rsvd 58:49 Reserved

cc 59 Cache check. A value of 1 indicates that a cache related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information. This bit must not be
set for non-cacheable transaction errors.

tc 60 TLB check. A value of 1 indicates that a TLB related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

bc 61 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

Table 11-7. Processor State Parameter Fields (Continued)

Field Bits Description

Volume 2, Part 1: Processor Abstraction Layer 2:301

11.3.2.1.1 Using Processor State Parameter to Determine if Software
Recovery of a Machine Check is Possible

The us, ci, co, and sy bits in the Processor State Parameter are valid only if the error
has not been previously corrected in hardware or firmware (cm bit is 0). Even then,
only the bit combinations shown in Table 11-8 are valid. If the multiple error bit is set
(me=1) both the co and sy bits must be 0. The us and ci bits will be set according to
the worst case of the errors that occurred.

11.3.2.2 Multiprocessor Rendezvous Requirements for Handling Machine
Checks

When PALE_CHECK has determined that an error has occurred which could cause a
multiprocessor system to lose error containment, it must rendezvous the other
processors in the system before proceeding with further processing of the machine
check. This is accomplished by branching to SALE_ENTRY with a non-zero return vector
address in GR19. It is then the responsibility of SAL to rendezvous the other processors
and return to PALE_CHECK through the address in GR19. If the rendezvous was
successful GR19 must be set to 0 before return.

At the time PALE_CHECK makes the rendezvous call to SALE_ENTRY, the processor
state is exactly the same as defined in See “PALE_CHECK Exit State” on page 2:297.
with the following requirement on the use of registers by SAL:

Any processor state not listed below must be either unchanged or restored by SAL
before returning to PALE_CHECK.

• SAL will preserve the values in GR4-GR7 and GR17-GR18.

• SAL will return to PALE_CHECK via the address in GR19.

• SAL will set up GR19 to indicate the success of the rendezvous before returning to
PAL.

• GR19 is zero to indicate the rendezvous was successful.

• GR19 is non zero to indicate that the rendezvous was unsuccessful.

• All other non-banked (GR1-3, GR8-15), bank 0 GRs (GR20-GR31) and BR0 are
undefined and available for use by SAL.

Table 11-8. Software Recovery Bits in Processor State Parameter

cm us ci co sy Description

1 x x x x The machine check is corrected. The us, ci, co, and sy bits are not valid.

0 1 0 0 0 The error was not isolated. Software must reset system. Data on disk may be
corrupt.

0 1 1 0 0 The error was isolated but not contained. Corrupt data was not written to I/O, but
may remain in the CPU or memory untagged. Software must reset system.

0 0 1 0 0 The error was isolated and contained, but is not continuable. The current
instruction stream cannot be restarted without loss of information. Partial
recovery may be possible.

0 0 1 1 0 The error was isolated, contained, and is continuable. If software can correct the
error the current instruction stream can be continued with no loss of information.

0 0 1 1 1 The error was isolated, contained, and is continuable. The instruction pointer
points to the instruction where the error occurred. If software can correct the error
the current instruction stream can be continued with no loss of information.

2:302 Volume 2, Part 1: Processor Abstraction Layer

After return from the SAL rendezvous call, PALE_CHECK will complete processing the
machine check if the rendezvous was successful and then branch to SALE_ENTRY with
GR19 set to zero. The processor state when transferring to SAL is as defined in
Section 11.3.2, “PALE_CHECK Exit State” on page 2:297. If the rendezvous failed
PALE_CHECK will simply construct the Processor State Parameter and branch to
SALE_ENTRY.

Any further discussion of multiprocessor rendezvous, including platform requirements
and implications, is beyond the scope of this specification. See the relevant SAL/Error
handling documents for further information.

11.3.2.3 Unconsumed Data-Poisoning Event Handling

If, during the transfer/access of information between levels of the cache/memory
hierarchy, there is data found to have an uncorrectable error and is marked poison,
error reporting events may be raised. If such an error event is sent to a processor that
doesn't consume the corrupted data, then the error is termed an unconsumed
data-poisoning event.

Unconsumed data-poisoning events are by default reported as a CMC and can
optionally be promoted to an MCA via bit 53 of feature_set 0 of
PAL_PROC_SET_FEATURES. When they are signaled as a CMC the PSP.cm is set to 1 to
indicate that the error has been corrected (in the sense that the line has been marked
poison, preventing any silent data corruption).

If bit 53 is 1, unconsumed data-poisoning events are reported as MCAs. To immediately
report unconsumed data-poisoning events as uncorrected errors (in the sense that
the data in question has been lost), the caller can set bit 53 to 1. PSP settings for a
data-poisoning event with bit 53 equal to 1 are given in the table below. See also
Table 11-8.

When promotion is enabled (bit 53 is 1), and a continuable data-poisoning event is
indicated (i.e., the PSP bits are set as in the above table, and either cache_check.dp,
bus_check.dp or both are 1), and if no other MCAs occur at the same time (i.e., no
other errors are indicated in the error information from PAL_MC_ERROR_INFO), the
interrupted process is always continuable. Promotion to MCA with bit 53 allows the OS
to take proactive measures to recover from the poisoned data, but this is not required
for the interrupted process to be continuable.

11.3.2.4 Processor Min-state Save Area Layout

The processor min-state save area is minimally 4KB in size, but an implementation may
require larger sizes. The reset hand-off state indicates if a size greater than 4KB is
required and also provides the required size. Please refer to Section 11.2.2.1,
“Definition of SALE_ENTRY State Parameter” on page 2:291 for more information on
the reset hand-off state. The required size is referred to as MIN_STATE_REQ. The
min-state save area is required to be in an uncacheable region. The first 1KB of this

Table 11-9. PSP Bit Settings for Unconsumed Data-poisoning Events on
MCA

cm us ci co sy

0 0 1 1 0

Volume 2, Part 1: Processor Abstraction Layer 2:303

area is architectural state needed by the PAL code to resume during MCA and INIT
events (architected min-state save area + reserved). The remaining space in the buffer
is a scratch space reserved exclusively for PAL use, therefore SAL and OS must not use
this area. The layout of the processor min-state save area is shown in Figure 11-1.

The processor min-state save area is 4KB in size and must be in an uncacheable region.
The first 1KB of this area is architectural state needed by the PAL code to resume
during MCA and INIT events (architected min-state save area + reserved). The
remaining 3KB is a scratch buffer reserved exclusively for PAL use, therefore SAL and
OS must not use this area. The layout of the processor min-state save area is shown in
Figure 11-1.

The layout for the processors portion of the architectural 1KB processor min-state save
area is shown in Figure 11-2. When SAL registers the area with PAL, it passes in a
pointer to offset zero of the area. When PALE_CHECK is entered as a result of a
machine check, it fills in processor state, processes the machine check, and branches to
SALE_ENTRY with a pointer to the first available memory location that SAL can use in
GR16. SAL may allocate a variable sized area above the address passed in GR16 up to
the 1KB architectural limit, but this is internal to SAL and not known to PAL.

The base address of the min-state save area must minimally be aligned to a 512-byte
boundary, but larger alignments are allowed. All saves and restores to and from the
min-state save area are made using 8-byte wide load and store instructions. If the
processor min-state save area is not registered via the PAL_MC_REGISTER_MEM
procedure prior to the machine check, software recovery is not possible.

Figure 11-1. Processor Min-state Save Area Layout

Architectural

PAL Reserved Memory

Min-state save ptr

Min-state save ptr + 1KB

Min-state save ptr +

1
K

B

MIN_STATE_REQ

(M
IN

_S
TA

T
E

_R
E

Q
 -

 1
K

B
)

2:304 Volume 2, Part 1: Processor Abstraction Layer

Figure 11-2. Processor State Saved in Min-state Save Area

NaT bits for saved GRs

GR1

GR2

GR3

GR4

GR5

GR6

GR7

GR8

GR9

GR10

GR11

GR12

GR13

GR14

GR15

Bank 0 GR16

Bank 0 GR17

Bank 0 GR18

Bank 0 GR19

Bank 0 GR20

Bank 0 GR21

Bank 0 GR22

Bank 0 GR23

Bank 0 GR24

Bank 0 GR25

Bank 0 GR26

Bank 0 GR27

Bank 0 GR28

Bank 0 GR29

Bank 0 GR30

Bank 0 GR31

Bank 1 GR16

Bank 1 GR17

Bank 1 GR18

Bank 1 GR19

Bank 1 GR20

Bank 1 GR21

Bank 1 GR22

Bank 1 GR23

Bank 1 GR24

Bank 1 GR25

Bank 1 GR26

Bank 1 GR27

Bank 1 GR28

Bank 1 GR29

Bank 1 GR30

Bank 1 GR31

Predicate Registers

BR0

RSC

IIP

IPSR

IFS

XIP or undefined

XPSR or undefined

XFS or undefined

0x0

0x8

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

0x50

0x58

0x60

0x68

0x70

0x78

0x80

0x88

0x90

0x98

0xa0

0xa8

0xb0

0xb8

0xc0

0xc8

0xd0

0xd8

0xe0

0xe8

0xf0

0xf8

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

0x140

0x148

0x150

0x158

0x160

0x168

0x170

0x178

0x180

0x188

0x190

0x198

0x1a0

0x1a8

0x1b0

0x1b8

0x1c0

GR16

~~ ~~
BR10x1c8

Volume 2, Part 1: Processor Abstraction Layer 2:305

The NaT bits stored in the first entry of the min-state save area have the following
layout.

The value passed in GR16 to SAL may point beyond the defined processor state shown
in Figure 11-2. PAL may use this area for implementation-dependent processor state
that needs to be saved and restored.

11.3.2.5 Definition of SALE_ENTRY State Parameter

• function – An 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

11.3.3 Returning to the Interrupted Process

The PAL_MC_RESUME procedure is defined to return to the interrupted context after
handling a machine check or initialization event. See page 2:436 for a description of
the PAL_MC_RESUME procedure. If software attempts to return to the interrupted
context without using this procedure, processor behavior is undefined.

Figure 11-3. NaT Bits for Saved GRs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NaT bits for Bank 0 GR16 to GR31 NaT bits for GR15 to GR1 UD

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Undefined (not used) NaT bits for Bank 1 GR16 to GR31

Table 11-10. NaT Bits for Saved GRs

Bits Description

0 Undefined (not used)

15:1 NaT bits for GR15 to GR1. Bit 1 represents GR1 and subsequent bits follow the ascending pattern.

31:16 NaT bits for Bank 0 GR16 to GR31. Bit 16 represents Bank 0 GR16 and subsequent bits follow the
ascending pattern.

47:32 NaT bits for Bank 1 GR16 to GR31. Bit 32 represents Bank 1 GR16 and subsequent bits follow the
ascending pattern.

63:48 Undefined (not used)

Figure 11-4. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-11. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition in SAL

2:306 Volume 2, Part 1: Processor Abstraction Layer

There are certain error cases that may require returning to a new context in order to
recover from the machine check. If this occurs a new context can be returned to via the
PAL_MC_RESUME procedure with the new_context flag set. The caller needs to set up
the new processor min-state save area as shown in Figure 11-2 for all the listed
register states. If the caller wants to return to a context where PSR.ic is zero (i.e., an
interruption handler) the IIP, IPSR and IFS values in the min-state save area must be
set up with the first level return values. These are the values for the IP, PSR and CFM of
the interruption handler it wishes to return to. The XIP, XPSR, XFS values in the
min-state save area must be set up with the second level return values. These are the
IP, PSR and CFM values for where the interruption handler will return to. If the caller
wants to return to a context where PSR.ic is one, it must set up the IIP, IPSR, IFS and
the XIP, XPSR, and XFS both to contain the new instruction pointer, PSR value, and CFM
values.

When returning to a new context, the memory area from BR1 up to the 1KB
architectural limit is ignored by the PAL_MC_RESUME procedure. The software
constructing the new context min-state save area does not have to worry filling in this
memory area with any values. When a new context is returned to, the state originally
saved in the min-state save area (old context) shall be discarded and never used again.

In order to return to the interrupted context without loss of any architectural state, the
caller must restore all register state that is not stored in the processors min-state save
area before making the PAL_MC_RESUME procedure call. Since BR0 and BR1 are the
only two branch registers saved in the min-state save area, the caller must only use
these two branch registers when making the PAL_MC_RESUME procedure call.

11.4 PAL Initialization Events

11.4.1 PALE_INIT

PALE_INIT is entered when an initialization event (INIT) occurs, as a result of the
assertion on an INIT signal to the processor or an INIT interruption occurring. If
PSR.mc = 1, the initialization event is held pending until PSR.mc becomes 0. The
purpose of PALE_INIT is to save the architecturally defined processor state to the
Minimal State Save Area (min-state save area) and to branch to SALE_ENTRY. The code
sequence interrupted by the initialization event can be restarted via PAL_MC_RESUME if
PSR.ic = 1. The code sequence interrupted by the initialization event can be restarted if
PSR.ic = 0 and the processor has implemented the optional recovery resources
described in Section 11.3.1.1, “Resources Required for Machine Check and Initialization
Event Recovery” on page 2:297. If PSR.ic = 0 and the optional recovery resources have
not been implemented, then the initialization event is not recoverable.

11.4.2 PALE_INIT Exit State

The state of the processor on exiting PALE_INIT is listed below. For registers described
as being saved to the min-state save area and available for use, the actual values in
these registers are undefined unless specifically stated otherwise.

• GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static
registers and bank one static registers (GR16-31) at the time of the INIT have been
saved in the min-state save area and are available for use.

Volume 2, Part 1: Processor Abstraction Layer 2:307

• If recovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are
undefined and their contents have been lost. In this case, recovery is not
possible. See Section 11.3.1.1, “Resources Required for Machine Check and
Initialization Event Recovery” for details.

• GR16 through GR20 (bank 0) contain parameters which PALE_INIT passes to
SALE_ENTRY for diagnostic and recovery purposes:

• GR16 contains the address to the first available location in the min-state
save area for use by SAL. The address is 8-byte aligned.

• GR17 contains the value of the min-state save area address stored in XR0.

• GR18 contains the Processor State Parameter, as defined in Figure 11-5 on
page 2:308.

• GR19 contains the PALE_INIT return address for rendezvous, or 0 if no
return is expected. (See Section 11.3.2.2, “Multiprocessor Rendezvous
Requirements for Handling Machine Checks”)

• GR20 contains the SALE_ENTRY state as defined in Figure 11-4.

• FRs: The contents of all floating-point registers are unchanged from the time of the
INIT.

• Predicates: All predicate registers have been saved in the min-state save area and
are available for use.

• BRs: The contents of all branch registers are unchanged from the time of the INIT
except the following:

• BR0 and BR1 have been saved to the min-state save area and are available for
use. Either register may have been changed from the time of entry into
PALE_CHECK.

• ARs: The contents of all application registers are unchanged from the time of the
INIT, except the RSE control register (RSC), the RSE backing store pointer (BSP),
and the ITC and RUC counters. The RSC register is unchanged, except that the
RSC.mode field will be set to 0 (enforced lazy mode) and the RSC register at the
time of the INIT has been saved in the min-state save area. A cover instruction is
executed in the PALE_INIT handler which allocates a new stack frame of zero size.
BSP will be modified to point to a new location, since all the registers from the
current frame at the time of interruption were added to the RSE dirty partition by
the allocation of a new stack frame. The ITC register will not be directly modified by
PAL, but will continue to count during the execution of the INIT handler. The RUC
register will not be directly modified by PAL, but will continue to count during the
execution of the INIT handler while the processor is active.

• CFM: The CFM register points to a zero-size current frame and all the rotating
register bases are set to zero. The CFM register at the time of the INIT has been
saved to the min-state save area in either the IFS or XFS slot depending on the
implementation.

• RSE: The RSE is in enforced lazy mode, and all stacked registers are unchanged
from the time of the INIT.

• PSR: PSR.mc is 1; PSR.mfl, PSR.mfh, and PSR.pk are unchanged; all other bits are
0. The PSR at the time of the INIT is saved in the min-state save area.

• CRs: The contents of all control registers are unchanged from the time of the INIT
with the exception of the interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the INIT.

• PKRs: The contents of all protection key registers are unchanged from the time of
the INIT.

2:308 Volume 2, Part 1: Processor Abstraction Layer

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of
the INIT.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the
INIT. The contents of the PMD registers are not modified by PAL code, but may be
modified if events it is monitoring are encountered.

• Cache: The contents of the caches are unchanged from the time of the INIT.

• TLB: The TCs may be initialized and the TRs are unchanged from the time of the
INIT.

• Interruption Resources:

• IRR: PALE_INIT may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

• The contents of IIP, IPSR and IFS at the time of INIT are saved to the min-state
save area and are available for use.

11.4.2.1 Processor State Parameter (GR18)

Figure 11-5. Processor State Parameter

The term “valid” in Table 11-7 indicates that the registers are either unchanged from
the time of interruption or that the values have been preserved in the min-state save
area.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gr b0 b1 fp pr br ar rr tr dr pc cr ex cm rs in dy pm pi mi tl hd us ci co sy mn me ra rz rsvd

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

uc rc bc tc cc reserved se dsize

Table 11-12. Processor State Parameter Fields

Field Bits
INIT

value
Description

rsvd 1:0 Reserved

rz 2 xa The attempted processor rendezvous was successful if set to 1.

ra 3 xa A processor rendezvous was attempted if set to 1.

me 4 0 Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

mn 5 xa Min-state save area has been registered with PAL if set to 1.

sy 6 0 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and
that no loads or stores beyond that point occurred. See Table 11-8.

co 7 1 Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this
bit is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-8.

ci 8 1 Machine check is isolated. A value of 1 indicates that the error has been isolated by
the system, it may or may not be recoverable. If 0, the hardware was unable to isolate
the error within the CPU and memory hierarchy. The error may have propagated off
the system (to persistent storage or the network). If ci = 0 then us will be set to 1, and
co and sy are cleared to 0. See Table 11-8.

Volume 2, Part 1: Processor Abstraction Layer 2:309

us 9 0 Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-8.

hd 10 0 Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

tl 11 0 Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi 12 0 More information. A value of 1 indicates that more error information about the
machine check event is available by making the PAL_MC_ERROR_INFO procedure
call.

pi 13 0 Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm 14 0 Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 xa Processor Dynamic State is valid. (1=valid, 0=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 1 Interruption caused by INIT. (0=machine check, 1=INIT)

rs 17 xa The RSE is valid. (1=valid, 0=not valid)

cm 18 0 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 0 A machine check was expected. (1=expected, 0=not expected)

cr 20 xa Control registers are valid. (1=valid, 0=not valid)

pc 21 xa Performance counters are valid. (1=valid, 0=not valid)

dr 22 xa Debug registers are valid. (1=valid, 0=not valid)

tr 23 xa Translation registers are valid. (1=valid, 0=not valid)

rr 24 xa Region registers are valid. (1=valid, 0=not valid)

ar 25 xa Application registers are valid. (1=valid, 0=not valid)

br 26 xa Branch registers are valid. (1=valid, 0=not valid)

pr 27 xa Predicate registers are valid. (1=valid, 0=not valid)

fp 28 xa Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 xa Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 xa Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 xa General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 xa Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

se 48 0 Shared Error. Machine check corresponds to structure shared by multiple logical
processors.

rsvd 58:49 Reserved

cc 59 0 Cache check. A value of 1 indicates that a cache related machine check occurred.
See the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 0 TLB check. A value of 1 indicates that a TLB related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information.

bc 61 0 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

Table 11-12. Processor State Parameter Fields (Continued)

Field Bits
INIT

value
Description

2:310 Volume 2, Part 1: Processor Abstraction Layer

11.4.2.2 Definition of SALE_ENTRY State Parameter

• function – An 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

11.5 Platform Management Interrupt (PMI)

11.5.1 PMI Overview

PMI is an asynchronous interrupt that encapsulates a collection of platform-specific
interrupts. Platform Management Interrupts occur during instruction processing,
causing the flow of control to be passed to the PAL PMI handler. In the process, state is
saved in the interruption registers (IIP, IPSR) by the processor hardware and the
processor starts executing instructions at the PALE_PMI entrypoint. The PAL code will
save some additional state in the bank 0 registers. The PAL will either handle the PMI if
it is PAL related PMI or transition to the SAL PMI code if it is a SAL related PMI. Upon
completion of processing, the SAL PMI code returns to PAL PMI code to restore the
interrupted processor state and to resume execution at the interrupted instruction.

As shown in Figure 11-7, PMI code consists of two major components, namely the PAL
PMI handler which handles all processor-specific processing, and the SAL PMI handler
which handles all platform-related processing. The location of the PALE_PMI and
SALE_PMI handlers are programmable. The location of the PALE_PMI handler can be
programmed by the PAL_COPY_PAL procedure described on page 2:389. The SALE_PMI
handler can be programmed by the PAL_PMI_ENTRYPOINT procedure described on
page 2:443. If a PMI is taken very early in the boot sequence before PAL has a chance

rc 62 0 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 0 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

a. The values of the fields marked with x are set by the PAL INIT handler based on the INIT handling.

Figure 11-6. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-13. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition in SAL

Table 11-12. Processor State Parameter Fields (Continued)

Field Bits
INIT

value
Description

Volume 2, Part 1: Processor Abstraction Layer 2:311

to register its PALE_PMI entrypoint, processor operation is undefined. If a SAL related
PMI is seen before the SAL PMI handler is registered, the PAL PMI code will just return
to the interrupted context

The hardware events that can cause the PMI request are referred to as PMI events. PMI
events are asynchronous interrupts higher priority than all external interrupts and are
only maskable when the system software is processing very critical tasks with
PSR.ic=0. When PSR.ic is 1, PMI events are unmasked. PSR.i has no effect on PMI
events. All PMI events are internally latched into an array of implementation-specific
latches in the processor. The PAL PMI handler reads the latches to determine what PMI
vector requests are pending and dispatches them in priority order. Table 11-14 lists the
PMI events and their priority.

PMI messages can be delivered by an external interrupt controller, or as an
inter-processor interrupt using delivery mode 010. Table 11-15 shows the PMI message
vector assignments. Vectors 4-15 are reserved for PAL, and within these PAL vectors, a
higher vector number has higher priority. Vectors 1-3 are available for SAL to use, and
within these SAL vectors, a higher vector number has higher priority. A PMI pin event,
when the PMI pin1 is present, is indicated by vector 0. The PMI vector number is passed
to the SAL PMI handler in GR 24.

Figure 11-7. PMI Entrypoints

Table 11-14. PMI Events and Priorities

PMI Events Priority

PMI message for PAL (vectors 4-15) High

PMI message for SAL (vectors 1-3)

PMI pina (vector 0)

a. PMI pin is not required to be present on all systems.

Low

1. PMI pin is not required to be present. Software can query the presence of PMI pin via the
PAL_PROC_GET_FEATURES procedure call.

Table 11-15. PMI Message Vector Assignments

Priority Vector Description

0 PMI pin

1

Available for SAL firmware2

3

PAL SAL

PALE_PMI SALE_PMI

OS

Low

High S
A

L
V

ec
to

rs

2:312 Volume 2, Part 1: Processor Abstraction Layer

11.5.2 PALE_PMI Exit State

The state of the processor on exiting PALE_PMI is:

• GRs: The contents of non-banked general registers are unchanged from the time of
the interruption.

• Bank 1 GRs: The contents of all bank one general registers are unchanged from
the time of the interruption.

• Bank 0:GR16-23: The contents of these bank zero general registers are
unchanged from the time of the interruption.

• Bank 0:GR24-31: contain parameters which PALE_PMI passes to SALE_PMI:

• GR24 contains the value decoded as follows:

• Bits 7-0: PMI Vector Number

• Bit 63-8: Reserved

• GR25 contains the value of the min-state save area address stored in XR0.

• GR26 contains the value of saved RSC. The contents of this register shall be
preserved by SAL PMI handler.

• GR27 contains the value of saved B0. The contents of this register shall be
preserved by SAL PMI handler.

• GR28 contains the value of saved B1. The contents of this register shall be
preserved by SAL PMI handler.

• GR29 contains the value of the saved predicate registers. The contents of
this register shall be preserved by SAL PMI handler

• GR30-31 are scratch registers available for use.

• FRs: The contents of all floating-point registers are unchanged from the time of the
interruption.

• Predicates: The contents of all predicate registers are undefined and available for
use.

• BRs: The contents of all branch registers are unchanged, except the following which
contain the defined state.

• BR1 is undefined and available for use.

4

PAL Reserved

5

6

7

8

9

10

11

12

13 IA-32 Machine Check Rendezvous

14 PAL Reserved

15

Table 11-15. PMI Message Vector Assignments

Priority Vector Description

Low

High

P
A

L
R

es
er

ve
d

Volume 2, Part 1: Processor Abstraction Layer 2:313

• BR0 PAL PMI return address.

• ARs: The contents of all application registers are unchanged from the time of the
interruption, except the RSE control register (RSC) and the ITC and RUC counters.
The RSC.mode field will be set to 0 (enforced lazy mode) while the other fields in
the RSC are unchanged. The ITC register will not be directly modified by PAL, but
will continue to count during the execution of the PMI handler. The RUC register will
not be directly modified by PAL, but will continue to count during the execution of
the PMI handler while the processor is active.

• CFM: The contents of the CFM register is unchanged from the time of the
interruption.

• RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time
of the interruption.

• PSR: PSR.mc, PSR.mfl, PSR.mfh, and PSR.pk are unchanged; all other bits are 0.

• CRs: The contents of all control registers are unchanged from the time of the
interruption with the exception of interruption resources, which are described
below.

• RRs: The contents of all region registers are unchanged from the time of the
interruption.

• PKRs: The contents of all protection key registers are unchanged from the time of
the interruption.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of
the interruption.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the
PMI. The contents of the PMD registers are not modified by PAL code, but may be
modified if events it is monitoring are encountered

• Cache: The processor internal cache is not specifically modified by the PMI handler
but may be modified due to normal cache activity of running the handler code.

• TLB: The TCs are not modified by the PALE_PMI handler and the TRs are unchanged
from the time of the interruption.

• Interruption Resources:

• IRRs: The contents of IRRs are unchanged from the time of the interruption.

• IIP and IPSR contain the value of IP and PSR. The IFS.v bit is reset to 0.

11.5.3 Resume from the PMI Handler

To return to the instruction that was interrupted by the PMI event, SAL PMI must
branch to the PAL PMI target address in BR0. All register contents must be preserved as
specified in Section 11.5.2, “PALE_PMI Exit State” on page 2:312.

11.6 Power Management

This section describes the architecturally supported set of required and optional power
states that may be implemented to reduce power consumption in implementations
where this is a design goal. In addition, the PAL interfaces required to manage these
states are described.

2:314 Volume 2, Part 1: Processor Abstraction Layer

Figure 11-8 shows state transitions for the various power states and the software
interfaces required for the transitions.

• NORMAL – The normal, fully functional, highest power state.

• LOW-POWER – An implementation may choose to dynamically reduce power via
microarchitectural low power techniques. The operation of interrupts, snoops, etc.,
in low-power mode will be identical to those in normal-power mode. This dynamic
power reduction is optional for an implementation to support. The PAL procedures
PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES returns whether an
implementation supports dynamic power reduction. If an implementation supports
dynamic power reduction then this procedure will allow the caller to enable or
disable this feature.

The following software controllable low power states may be provided. They are
described below.

• LIGHT_HALT – Entered by calling PAL_HALT_LIGHT. This state reduces power by
stopping instruction execution, but maintains cache and TLB coherence in response
to external requests. The processor transitions from this state to the NORMAL state
in response to any unmasked external interrupt (including NMI), machine check,
reset, PMI or INIT. An unmasked external interrupt is defined to be an interrupt that
is permitted to interrupt the processor based on the current setting of the TPR.mic
and TPR.mmi fields. This state is a required state.

• HALT 1 – Entered by calling PAL_HALT with a power state argument equal to one.
This implementation-dependent low-power state will maintain the processor caches
but will ignore any coherency bus traffic. This state is optional for a processor to

Figure 11-8. Power States

HALT 1

PAL_HALT

LIGHT HALT

NORMAL/

Cache
coherent, but no

instruction
execution

Cache not
coherent, no
instruction
execution

LOW-POWER
PAL_HALT_LIGHT

HALT 2 - 7

No instruction
execution.

Implementation-
dependent state.

PAL_HALT

Unmasked external
interrupts, Machine
check, Reset, PMI

and INIT

Unmasked external
Interrupts, Machine
check, Reset, PMI

and INIT

Unmasked external
Interrupts, Machine
check, Reset, PMI

and INIT

Volume 2, Part 1: Processor Abstraction Layer 2:315

implement. It is the responsibility of the caller to ensure cache coherency in this
state.

• HALT 2 - 7 – These are optional implementation-dependent states entered by
calling PAL_HALT with a power state argument in the range of 2-7. Before making
this procedure call, the operating system software should first ascertain that the
states are implemented by calling PAL_HALT_INFO. The information returned from
the PAL_HALT_INFO procedure will also specify the coherency of caches and TLBs
for each of these low-power states.

The interval timer within the processor will function at a constant frequency in all the
power states as long as the input clock to the processor is maintained. If all logical
processors on the physical processor are in a halt state, the resource utilization counter
for the last logical processor to enter a halt state will function at a constant frequency
as long as the input clock to the processor is maintained. However, the performance
monitor event that counts the number of processor clock cycles will only increment in
either the NORMAL or LOW-POWER state.

The PAL procedure PAL_HALT_INFO returns information about the power states
implemented in a particular processor. This information allows the caller to decide which
low power states are implemented and which ones to call based on the callers
requirements.

11.6.1 Power/Performance States (P-states)

This section describes the power/performance states (hence to be referred to as
P-states) supported by the Itanium architecture. P-states enable the caller to adjust the
power/performance characteristics of the processor in response to changing workload
requirements. This allows for implementation of a processor-level power management
policy which is driven by system demand and response time requirements.

The P-states are defined within the context of the active/executing processor state. At
the highest performing P-state (referred to as the P0 state), the processor uses its
maximum performance capability and may consume maximum power. In the next
P-state (P1), the processor performance capability is limited below the maximum
performance, and it consumes less than the maximum power. Successive P-states
continue to have reduced performance capabilities and reduced power consumption.
The Itanium architecture supports a maximum of 16 P-states, with the highest
numbered P-state that is available on an implementation providing the least possible
performance capability and minimal power consumption while remaining in a non-HALT
state.

2:316 Volume 2, Part 1: Processor Abstraction Layer

P-states can be utilized by software to implement a demand-based dynamic power
management policy where it would continuously try to adapt the processor
performance to the current workload characteristics. This allows software to achieve
power savings at the system level, while allowing it to quickly respond to changing
workload requirements.

The example in Figure 11-10 assumes four P-states (P0, P1, P2 and P3), and a software
policy that transitions between the states depending on the current system utilization.
During times of high utilization, the software migrates the processor towards
lower-numbered P-states, which increases processor performance and increases the
dissipated power. When system utilization is low, the software policy migrates the
processor towards higher-numbered P-states, thereby reducing the processor
performance and reducing dissipated power. The figure also shows the HALT state,
which the software can transition to at any time from a given P-state.

Figure 11-9. Power and Performance Characteristics for P-states

P0

P1

P2

Pn

Power

Performance

Volume 2, Part 1: Processor Abstraction Layer 2:317

11.6.1.1 Power Dependency Domains

The concept of P-states applies to each logical processor, and this gives software the
required granularity to individually control the power/performance characteristics for
each available thread of execution in the system. In the most simplistic case, the
processor package has only one thread of execution, and this allows software to apply
the same P-state policy at the package-level as well as at the logical processor level.
However, with implementations that support multithreading and multiple cores, a single
package can have multiple logical processors (threads of execution). These may have
P-state dependencies among them, which may not allow for individual P-state control
flexibility at the software level. For example, these logical processors may be sharing
the same clock and power delivery network. In such circumstances, software would
need to know which logical processors have dependencies and what the nature of the
dependencies is, so that appropriate coordination techniques can be applied. To allow
the architecture definition to comprehend multi-threaded/multi-core designs, we define
the concept of dependency domain and coordination mechanisms.

A dependency domain is comprised of logical processors that share a common set of
implementation-dependant domain parameters that affect power consumption and
performance for all logical processors in that domain. As an example, a processor
package comprised of two cores controlled by the same clock and power distribution
network are part of the same dependency domain, since changing either the operating
frequency or voltage will affect power consumption and performance for both cores.
Alternatively, if these two cores on the processor package had independent distribution
networks for clocks and power, then a change in the parameters for one core would not
have any effect on the other core, and in that case, the cores would not belong to the
same dependency domain. Software can utilize P-states to effect changes in the domain

Figure 11-10. Example of a P-state Transition Policy

HaltP0

P1

P2

P3

Transitions initiated
by software

High
Utilization

Low
Utilization

2:318 Volume 2, Part 1: Processor Abstraction Layer

parameters. Each P-state maps to a set of values for the domain parameters, and
hence a P-state transition results in a change in the underlying power/performance
characteristics for the logical processor.

The Itanium architecture supports different types of dependency domains, which
enables software to have different degrees of control for P-state changes affecting
logical processors in the domain.

A software-coordinated dependency domain (SCDD) relies on the software to
coordinate P-state changes among the processors in that dependency domain.
Software will have knowledge about logical processors belonging to that domain, and
will decide when it is appropriate to request the P-state transition. The software policy
has to be aware that a P-state change on any logical processor will change the P-state
for all logical processors in that domain. As an example, let us assume that the SCDD
consisted of two cores with the same clock and power distribution networks and the
intent of the software policy was to lower power/performance only when the workload
utilization was low on both cores. Software could then monitor utilization on both cores,
and when both cores were under-utilized (i.e., were running at a higher performance
P-state than required by the current system demand), it could migrate one of the cores
to a lower performance P-state. This transition would simultaneously reduce
performance and power dissipation for both cores, and would result in both cores
operating at the same lower P-state.

A hardware-coordinated dependency domain (HCDD) relies on hardware-based
mechanisms to synchronize P-state changes. Software can make independent P-state
change requests on individual processors, recognizing that hardware is responsible for
the required coordination with other processors in the same HCDD. Hardware-based
coordination mechanisms would be implemented to allow for changes to the logical
processor's power and performance local parameters (which are
implementation-dependant), in addition to the existing domain parameters. Hardware
would use a combination of changes to both of these parameters to satisfy the
software-initiated P-state change request. This type of coordination mechanism is
effective when it is desired to have individual control over all logical processors, and
when the hardware has local parameters for power/performance at the logical
processor level. The local parameters allow for fine-grained control (affecting only the
logical processor power/performance), whereas the domain parameters allow for
coarse-grained control (affecting all logical processors). Domain parameters are set by
hardware according to the highest requested power/performance level (i.e., the lowest
numbered P-state) of the logical processors in the power domain. As an example, let us
assume that the HCDD consisted of two cores with the same clock and power
distribution networks, and that there were also some other techniques to affect power
and performance which were local to each logical processor. Let us also assume that
software has initially set both cores to the P0 state. When software initiates a P-state
transition to P1 (which is a lower power/performance level) on the first core, hardware
would use only the local parameters to carry out the request, and the domain
parameters would remain at P0. Suppose software on the second core then initiates a
P-state transition to P3. Hardware would then set the local parameters for the second
core to reflect this request, undo the changes to the local parameters for the first core
plus initiate changes to the domain parameters to transition the domain to the P1 state
(the highest requested power/performance level of the two cores).

Volume 2, Part 1: Processor Abstraction Layer 2:319

A hardware-independent dependency domain (HIDD) is a self-contained domain
that typically means that every logical processor is the only logical processor in that
domain, and its domain parameters are individually controllable. Since there are no
dependencies with any other logical processors, there is no P-state coordination needed
for such domains. Software can make P-state change requests independently on that
logical processor.

11.6.1.2 Platform Power-Cap and P-states

Some processor implementations include mechanisms which allow the platform
hardware and firmware to temporarily decrease the operating frequency of logical
processors, to implement fast-response power capping. This is referred to as a
Platform Power-Cap. In such implementations, the P-state requested by software is
not changed by the platform power-cap. Software is able to change its P-state request
during platform power-caps; when the platform power-cap is removed, the processor
operating frequency returns to the frequency determined by software's most recent
P-state settings.

Platform power caps are meant to have a very short duration and very low duty cycle so
they do not significantly affect software methods for managing power through P-states.
Platform power-caps do not affect the instantaneous operating P-state observed by
software, but do affect the weighted-average performance index reported to software
by PAL, so that software may take into account any small effects. (See the
PAL_GET_PSTATE procedure for details.)

11.6.1.3 PAL Interfaces for P-states

The PAL procedure PAL_PROC_GET_FEATURES returns whether an implementation
supports P-states. If an implementation supports P-states then the
PAL_PROC_SET_FEATURE procedure will allow the caller to enable or disable this
feature.

The Itanium architecture provides three PAL procedures to enable P-state functionality.

PAL_PSTATE_INFO: This procedure returns information about the P-states
implemented on a particular processor. For details on the information returned by this
procedure, please refer to the procedure description on page 2:396. The Itanium
architecture supports a maximum of 16 P-states.

PAL_SET_PSTATE: This procedure allows the caller to request the transition of the
processor to a new P-state. The procedure can either return with transition success
(request was accepted) or transition failure (request was not accepted) depending on
hardware capabilities, implementation-specific event conditions, and the spacing
between successive PAL_SET_PSTATE procedure calls.

If hardware has the ability to either preempt a previous in-progress P-state transition,
or to queue successive P-state requests while the first request is in transition, then the
implementation has a pre-emptive policy for P-state request handling. The architecture
also allows for a non-preemptive policy for P-state request handling, whereby a new
PAL_SET_PSTATE request is not accepted if a previous P-state transition is already in
progress. The PAL_SET_PSTATE procedure returns different status values
corresponding to the accepted and not accepted cases for P-state requests. If the
transition is not accepted, no P-state transition is initiated by the PAL_SET_PSTATE

2:320 Volume 2, Part 1: Processor Abstraction Layer

procedure, and the caller is expected to make another PAL_SET_PSTATE request to
transition to the desired P-state. The transition_latency_2 field in the pstate_buffer
returned by PAL_PSTATE_INFO indicates the time interval the caller needs to wait to
have a reasonable chance of success when initiating another PAL_SET_PSTATE call.

Implementation-specific event conditions may prevent a PAL_SET_PSTATE request from
being accepted (e.g., due to a thermal protection mechanism), in which case the PAL
procedure returns a status of transition failure. Such events are expected to be rare
and to happen only in abnormal situations.

It should be noted that platform power-caps do not cause a PAL_SET_PSTATE request
to fail. The requested P-state is registered with PAL, and the procedure returns a status
of transition success.

SCDD: If the logical processor belongs to a software-coordinated dependency domain,
the PAL_SET_PSTATE procedure will change the domain parameters resulting in a
transition to the requested P-state for all logical processors in that domain.

HCDD: If the logical processor belongs to a hardware-coordinated dependency domain,
the PAL_SET_PSTATE procedure will attempt to change the power/performance
characteristics for that logical processor. Since the power/performance characteristics
for the domain depend on the P-state settings of the other logical processors in the
domain, a PAL_SET_PSTATE call on one logical processor may result in either partial or
complete transition to the requested P-state. In case of partial transition (see
Figure 11-11, “Computation of performance_index” on page 2:321 for an example,
where the logical processor transitions from state P0 to state P3 in partial increments),
the logical processor may attempt to perform changes at a later time to the local
parameters and/or domain parameters to transition to the originally requested P-state
based on P-state transition requests on other logical processors. Software can also
approximate the behavior of a SCDD by forcing P-state transitions. See the description
of the PAL_SET_PSTATE procedure for more details.

HIDD: If the logical processor belongs to a hardware-independent dependency domain,
the PAL_SET_PSTATE procedure will attempt to change the domain parameters, which
will transition the logical processor in that domain to the requested P-state.

PAL_GET_PSTATE: This procedure returns the performance index of the logical
processor, relative to the highest available P-state (P0). A value of 100 in P0 represents
the minimum processor performance in the P0 state. For example, if the value returned
by the procedure is 80, this indicates that the performance of the logical processor over
the last time period was 20% lower than the minimum P0 performance. For processors
that support variable P-states, it is possible for a processor to report a number greater
than 100, representing that the processor is running at a performance level greater
than the minimum P0 performance. For example, if the value returned by the processor
is 120, it indicates that the performance of the logical processor over the last time
period was 20% higher than the minimum P0 performance. The performance index is
measured over the time interval since the last PAL_GET_PSTATE call with a type
operand of 1. If the processor supports variable P-state performance then the
PAL_PROC_SET_FEATURE procedure can be used to enable or disable this feature.
Software may choose, on each invocation of the PAL_GET_PSTATE procedure, whether
to reset the internal performance measurement logic; resetting the measurement logic

Volume 2, Part 1: Processor Abstraction Layer 2:321

initiates a new performance_index count, which is reported when the next
PAL_GET_PSTATE procedure call is made. A call to PAL_GET_PSTATE with a type
operand of 1 resets the performance measurement logic.

SCDD: If the logical processor belongs to a software-coordinated dependency domain,
the performance index returned (for either type=0 or 3) corresponds to the target
P-state requested by the most recent successful PAL_SET_PSTATE procedure call. No
weighted average (type=1 or 2) is computed by PAL; calling PAL_GET_PSTATE with
type=1 or 2 on a SCDD logical processor is undefined.

HCDD: If the logical processor belongs to a hardware-coordinated dependency domain,
the performance index returned (type=1 or 2) will be a weighted-average sum of the
performance_index values corresponding to the different P-states that the logical
processor was operating in since performance measurement was last reset. Note that
this return value may not necessarily correspond to the performance index of the target
P-state requested by the most recent PAL_SET_PSTATE procedure call. For example,
let's assume that the previous PAL_GET_PSTATE procedure was called at time t0, when
the processor was operating in state P0. The previous PAL_SET_PSTATE procedure
requested a transition from P0 to P3. The transition happened over a period of time,
such that the logical processor went through states P1 at time t1, P2 at time t2 and P3
at time t3, and was in state P3 at time t4 when the current PAL_GET_PSTATE procedure
was called. The performance_index returned is calculated as:

performance_index =
((time spent in P0 after the previous PAL_GET_PSTATE) * (performance_index for P0)+
(time spent in P1) * (performance_index for P1) +
(time spent in P2) * (performance_index for P2) +
(time spent in P3 up to the current PAL_GET_PSTATE) * (performance_index for P3)) /
(time interval between previous and current PAL_GET_PSTATE) =

Figure 11-11. Computation of performance_index

t1 t0– pf0 t2 t1– pf1 t3 t2– pf2 t4 t3– pf3+++
t4 t0–

--

pf0 (P0)

pf1 (P1)

pf2 (P2)

pf3 (P3)

t0 t1 t2 t3 t4

Performance

Time

(Previous) GET SET(P3) (Current) GET

2:322 Volume 2, Part 1: Processor Abstraction Layer

As seen above, for a HCDD, the PAL_GET_PSTATE procedure allows the caller to get
feedback on the dynamic performance of the processor over a software-controlled time
period. The caller can use this information to get better system utilization over a
subsequent time period by changing the P-state in correlation with the current
workload demand. The caller can also use PAL_GET_PSTATE to see the most recent
P-state set for this logical processor (type=0) and the instantaneous current P-state
that the domain parameters are set to (type=3). Platform power-caps do not affect
either of these return values.

HIDD: If the logical processor belongs to a hardware-independent dependency domain,
a weighted-average performance index can be returned by PAL_GET_PSTATE (type=1
or 2). Since software could calculate the performance index based on P-states it set,
the weighted-average performance index is only of value when factoring in the effect of
platform power-caps.

Note that P-state transitions typically do not happen instantaneously. An
implementation-specific amount of time is required for a given transition to complete.
The computation of the weighted-average performance_index may not take into
account the fact that transitions of power/performance are gradual, but may be done as
though they were instantaneous at the point when the transition starts. The
expectation is that any errors in computing the performance_index due to
non-instantaneous transitions to higher and lower P-states will tend to cancel out, and
to the extent that they do not, will be insignificant.

11.6.1.4 Variable P-state Performance

Some processors support variable P-state performance which allows the frequency to
vary within a given P-state in order to achieve the maximum performance for that
P-state's power budget. The PAL_PROC_GET_FEATURES procedure indicates whether
the processor supports variable P-state performance (see “PAL_PROC_GET_FEATURES
– Get Processor Dependent Features (17)” on page 2:446 for details).

Since the frequency within a P-state can vary, the performance index calculation is
slightly different when a processor supports variable P-state performance. Frequencies
for a given P-state are represented by an index value Fx,y. The value x is the P-state
number and y represents a frequency point in the range from 0 to N. A value of 0
represents the minimum frequency index value for the given P-state. For example:

F0,0 to F0,N – Frequency index values for the P0 state
F1,0 to F1,N – Frequency index values for the P1 state
…etc.

F0,0 is the minimum frequency index for the P0 state and its value is 100. F0,1
represents a higher frequency point for P0 and will have a value greater than 100. For
example, if F0,1 frequency is 5% greater than F0,0 it would have a value of 105.

The performance_index equation for P0 is calculated as follows:

((F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+ .. (F0,N * time spent in F0,N)) /
(Total Time spent in P0)

Volume 2, Part 1: Processor Abstraction Layer 2:323

For example, let's say the minimum frequency of P0 is 1 GHz and the maximum
frequency of P0 is 1.5 GHz. If we are at 1 GHz for a time period of 4, 1.25 GHz for a
time period of 16 and 1.5 GHz for a time period of 20, the average performance index
is:

((100 * 4) + (125 * 16) + (150 * 20)) / (5 + 15 + 20) = 135

The performance_index equation for other P-states can be calculated in a similar manner
using their respective frequency index values.

The total performance_index equation for a processor with four P-states (P0, P1, P2, P3)
would be:

((F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+ .. (F0,N * time spent in F0,N)+
(F1,0 * time spent in F1,0) + (F1,1 * time spent in F1,1)+ .. (F1,N * time spent in F1,N)+
(F2,0 * time spent in F2,0) + (F2,1 * time spent in F2,1)+ .. (F2,N * time spent in F2,N)+
(F3,0 * time spent in F3,0) + (F3,1 * time spent in F3,1)+ .. (F3,N * time spent in F3,N)) /
(Total Time)

11.6.1.5 Interaction of P-states with HALT State

It is possible for a logical processor to enter and exit a HALT state between two
consecutive calls to PAL_GET_PSTATE. Since the logical processor is not executing any
instructions while in the HALT state, the performance index contribution during this
period is essentially 0, and will not be accounted for in the performance_index value
returned when the next PAL_GET_PSTATE procedure call is made.

For example, let us assume that the previous PAL_GET_PSTATE procedure was called at
time t0, when the processor was operating in state P2. The previous PAL_SET_PSTATE
procedure initiated a transition from P2 to P3 at time t1. The processor entered HALT
state at time th1, and exited the HALT state at time th2, and was in state P3 at time t2
when the current PAL_GET_PSTATE procedure was called. The performance_index
returned is calculated as:

performance_index =
((time in P2 after the previous PAL_GET_PSTATE) * (performance_index for P2) +
(time in P3 before entering HALT state) * (performance_index for P3) +
(time in P3 after exiting HALT up to current PAL_GET_PSTATE))) * (performance_index for
P3)) /
(time interval between previous and current GET, excluding time spent in HALT) =

t1 t0– pf2 th1 t1– pf3 t2 th2– pf3++
t2 t0– th2 th1– –

--

2:324 Volume 2, Part 1: Processor Abstraction Layer

As shown above, the value returned for performance_index does not account for the
performance during the time spent by the logical processor in the HALT state. This
provides for better accuracy in the value reported for performance_index, allowing the
caller to make optimal adjustments to the system utilization even in scenarios where
we have interactions between P-states and HALT state.

11.7 PAL Virtualization Support

This section describes the PAL architectural support for Itanium processor virtualization.

On processors in the Itanium Processor Family that support processor virtualization, the
PAL virtualization support described in this document will be available. Itanium
processor virtualization support can be determined by calling
PAL_PROC_GET_FEATURES.

The virtualization support in PAL presents an implementation-independent interface to
enable the VMM to implement software policies to manage/support virtualization of
Itanium processors.

The PAL extensions for virtualization consist of three main components:

1. A set of procedures to support virtualization operations. These procedures allow
the VMM to configure logical processors for virtualization operations and
suspend/resume virtual processors on logical processors. Details for this
component are described in Section 11.10, “PAL Procedures” on page 2:353.

2. A set of services to provide low-latency, low-overhead support for
performance-critical VMM operations. Details for this component are described in
Section 11.11, “PAL Virtualization Services” on page 2:486.

3. A PAL intercept interface to allow PAL to deliver virtualization events to the VMM
in a low-latency, low-overhead manner. This PAL-to-VMM interface also allows
PAL to provide optimizations for VMM operations. Details for this component are
described in Section 11.7.3, “PAL Intercepts in Virtual Environment” on
page 2:332.

Figure 11-12. Interaction of P-states with HALT State

pf0 (P0)

pf1 (P1)

pf2 (P2)

pf3 (P3)

t0 t1 th1 th2 t2

Performance

(Previous) GET SET(P3) (Current) GET

Time

Enter HALT State Exit HALT State

Volume 2, Part 1: Processor Abstraction Layer 2:325

The VMM is responsible for managing the set of available system resources (CPU,
memory, peripherals) and implement policies to virtualize these resources. In order to
support virtual processor operations, the VMM will create a virtual environment and
associate logical processors with the virtual environment. A virtual environment
consists of one or more logical processors plus the memory resource allocated by the
VMM during PAL_VP_INIT_ENV.

The VMM creates a virtual environment by calling PAL_VP_ENV_INFO to obtain the
memory requirement for creating a virtual environment, and then by calling
PAL_VP_INIT_ENV on each logical processor that is to be part of the virtual
environment. After a virtual environment is created, the VMM can create and initialize
virtual processors to run in the environment by calling PAL_VP_CREATE.

The state of a virtual processor belonging to a virtual environment can be
restored/saved on a logical processor in the environment by calling PAL_VP_RESTORE
or PAL_VP_SAVE respectively. The VMM starts virtual processor operations on a logical
processor by invoking either PAL_VPS_RESUME_NORMAL or
PAL_VPS_RESUME_HANDLER.

The VMM can add/remove a logical processor from a virtual environment at any time by
calling PAL_VP_INIT_ENV or PAL_VP_EXIT_ENV respectively.

11.7.1 Virtual Processor Descriptor (VPD)

The Virtual Processor Descriptor (VPD) represents the abstraction of processor
resources of a single virtual processor. The VPD consists of per-virtual-processor control
information together with performance-critical architectural state. The VPD is 64K in
size and the base must be 32K aligned. Table 11-16 shows the fields and layout of the
VPD. The values in the VPD can be stored in little or big endian format, depending on
the setting of be field setting in “config_options – Global Configuration Options” during
PAL_VP_INIT_ENV call. See “PAL_VP_INIT_ENV – PAL Initialize Virtual Environment
(268)” on page 2:478 for details. The VPD is divided into two classes – the first class
stores control information and the second class stores the performance-critical
architectural state of the virtual processor.

The VMM must keep the virtual processor state in the VPD for a particular state entry
either: always, or only when one or more particular accelerations is enabled, as
described in the Class columns of Table 11-16, Table 11-17 and Table 11-18. See
Section 11.7.4.2, “Virtualization Accelerations” on page 2:337 for details.

Note: Not all architectural state of the virtual processor is included in the VPD. The
VMM is responsible for setting up all the required virtual processor state in the
architectural registers as well as in the VPD prior to resuming virtual processor
execution. See Table 11-122, “Virtual Processor Settings in Architectural
Resources for PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER”
on page 2:489 and Table 11-123, “Processor Status Register Settings for Vir-
tual Processor Execution” on page 2:490 for details.

2:326 Volume 2, Part 1: Processor Abstraction Layer

Table 11-16. Virtual Processor Descriptor (VPD)

Name Entries Offset Description Class

vac 1 0 Virtualization Acceleration Control – these con-
trol bits enable virtualization acceleration of a
particular resource or instruction. See
Section 11.7.1.1, “Virtualization Controls” on
page 2:329 for details.

Control [always]

vdc 1 8 Virtualization Disable Control – these control
bits disable the virtualization of a particular
resource or instruction. See Section 11.7.1.1,
“Virtualization Controls” on page 2:329 for
details.

Control [always]

virt_env_vaddr 1 16 PAL Virtual Environment Buffer Address – this
field stores the host virtual address of the vir-
tual environment which the virtual processor
belongs to. The value in this field must be the
same as the vbase_addr field during
PAL_VP_INIT_ENV call.

Control [always]

Reserved 29 24 Reserved Area – Reserved for future expan-
sion.

Reserved

vhpi 1 256 Virtual Highest Priority Pending Interrupt –
Specifies the current highest priority pending
interrupt for the virtual processor. See
Table 11-124, “vhpi – Virtual Highest Priority
Pending Interrupt” on page 2:495 for details.

Control [a_int]

Reserved 95 264 Reserved Area – Reserved for future expan-
sion.

Reserved

vgr[16-31] 16 1024 Virtual General Registers – Represent the
bank 1 general registers 16-31 of the virtual
processor. When the virtual processor is run-
ning and vpsr.bn is 1, the values in these
entries are undefined.

Architectural State
[a_bsw]

vbgr[16-31] 16 1152 Virtual Banked General Registers – Represent
the bank 0 general registers 16-31 of the virtual
processor. When the virtual processor is run-
ning and vpsr.bn is 0, the values in these
entries are undefined.

Architectural State
[a_bsw]

vnat 1 1280 Virtual General Register NaTs – Bits 0-15 rep-
resent the NaT values corresponding to
vgr16-31, where the NaT bit for vgr16 is in bit
0. Bits 16-63 are don’t cares.

Architectural State
[a_bsw]

vbnat 1 1288 Virtual Banked Register NaTs – Bits 16-31 rep-
resent the NaT values corresponding to
vbgr16-31, where the NaT bit for vbgr16 is in
bit 16. Bits 0-15 and 32-63 are don’t cares.

Architectural State
[a_bsw]

vcpuid[0-4] 5 1296 Virtual CPUID Registers – Represent cpuid
registers 0-4 of the virtual processor.
NOTE: If a_tf is disabled or not supported,
vcpuid[0-1] and vcpuid[4]{63:32} must contain
the same values as the corresponding values
of the logical processor on which this virtual
processor is running.
If a_tf is enabled, The VMM may maintain a dif-
ferent VCPUID[4]{63:32} value from the
CPUID[4]{63:32} value of the logical processor
on which the virtual processor is running.

Architectural State
[a_from_cpuid, a_tfa]

Volume 2, Part 1: Processor Abstraction Layer 2:327

Table 11-17 provides details on which vpsr bits are required to be store in the VPD for
different accelerations. Two bits, vpsr.ic and vpsr.si are always required to be in the
VPD. The remaining vpsr bits are only required to be stored in the VPD if certain
virtualization accelerations are enabled. Even though some fields are not required to be
stored in the VPD, the VMM is free to store the entire vpsr in the VPD.

Reserved 11 1336 Reserved Area – Reserved for future expan-
sion.

Reserved

vpsr 1 1424 Virtual Processor Status Register – Represents
the Processor Status Register of the virtual pro-
cessor.

Architectural State
See Table 11-17 for
details.

vpr 1 1432 Virtual Predicate Registers – Represents the
Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predicate
registers in the same manner as with the mov
predicates instruction. The contents in this field
are undefined except at virtualization intercept
handoff. The VMM can not rely on the contents
in this field to be preserved when the virtual
processor is running.

Architectural State
[always]

Reserved 76 1440 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state.

Reserved

vcr[0-127] 128 2048 Virtual Control Registers – Represent the con-
trol registers of the virtual processor. For the
reserved control registers, the corresponding
VPD entries are reserved.

Architectural State
See Table 11-18 for
details.

Reserved 128 3072 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

Reserved 3456 4096 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

vmm_avail 128 31744 Available for VMM use. This area is ignored by
the processor and PAL.

Ignored

Reserved 4096 32768 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

a. The a_tf acceleration only requires vcpuid[4] be kept in the VPD.

Table 11-16. Virtual Processor Descriptor (VPD) (Continued)

Name Entries Offset Description Class

2:328 Volume 2, Part 1: Processor Abstraction Layer

Table 11-17. Virtual Processor Descriptor (VPD) – VPSR

Field Bits Class

User Mask = PSR{5:0}

rv 0 Reserved

be 1

No accelerations require these fields.a

a. The user mask is not virtualized. See Section 11.7.4.2.4, “MOV-from-PSR Optimization” on page 2:341 and
Section 11.7.4.2.10, “Interruption Collection and User Mask Optimization” on page 2:345 for further details.

up 2

ac 3

mfl 4

mfh 5

System Mask = PSR{23:0}

ic 13 Always

i 14 a_int, a_from_psr

pk 15 a_from_psr

rv 12:6, 16 Reserved

dt 17

a_from_psr

dfl 18

dfh 19

sp 20

pp 21

di 22

si 23 Always

PSR.l = PSR{31:0}

db 24

a_from_psr
lp 25

tb 26

rt 27

rv 31:28 Reserved

PSR{63:0}

cpl 33:32
No accelerations require these fields.

is 34

mc 35
a_from_psr

it 36

id 37

No accelerations require these fields.

da 38

dd 39

ss 40

ri 42:41

ed 43

bn 44 a_bsw

ia 45
No accelerations require these fields.

vm 46

rv 63:47 Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:329

11.7.1.1 Virtualization Controls

The Virtualization Acceleration Control (vac) and Virtualization Disable Control (vdc)
fields in the VPD contain configuration control bits which define the set of events that
will cause an intercept from PAL to the VMM. The virtualization controls are divided into
two categories:

1. Virtualization Acceleration Control – these control bits enable virtualization
optimization support of a particular resource or instruction. Figure 11-13 and
Table 11-19 describe these control bits.

2. Virtualization Disable Control – these control bits disable the virtualization of a
particular resource or instruction. Figure 11-14 and Table 11-20 describe these
control bits.

The vac and vdc settings are specified by the VMM during virtual processor initialization
when the PAL_VP_CREATE procedure is called, and cannot be changed until the virtual
processor is terminated by PAL_VP_TERMINATE.

Table 11-18. Virtual Processor Descriptor (VPD) – VCR[0-127]

Register Name Class

VCR0-15 No accelerations require these virtual control registers.

VCR16 VIPSR
a_from_int_cr, a_to_int_cr

VCR17 VISR

VCR18 No accelerations require this virtual control register.

VCR19 VIIP a_from_int_cr, a_to_int_cr

VCR20 VIFA Always

VCR21 VITIR Always

VCR22 VIIPA a_from_int_cr, a_to_int_cr

VCR23 VIFS a_cover, a_from_int_cr, a_to_int_cr

VCR24 VIIM

a_from_int_cr, a_to_int_cr
VCR25 VIHA

VCR26 VIIB0

VCR27 VIIB1

VCR28-65 No accelerations require these virtual control registers.

VCR66 VTPR a_int

VCR67-127 No accelerations require these virtual control registers.

Figure 11-13. Virtualization Acceleration Control (vac)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Acceleration Controls

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-19. Virtualization Acceleration Control (vac) Fields

Field Bit Description

a_int 0 Enable the virtual external interrupt optimization. See Section 11.7.4.2.1, “Vir-
tual External Interrupt Optimization” on page 2:338 for details.

a_from_int_cr 1 Enable the interruption control register (CR16-27) read optimization. See
Section 11.7.4.2.2, “Interruption Control Register Read Optimization” on
page 2:340 for details.

2:330 Volume 2, Part 1: Processor Abstraction Layer

a_to_int_cr 2 Enable the interruption control register (CR16-27) write optimization. See
Section 11.7.4.2.3, “Interruption Control Register Write Optimization” on
page 2:341 for details.

a_from_psr 3 Enable the processor status register read optimization. See
Section 11.7.4.2.4, “MOV-from-PSR Optimization” on page 2:341 for details.

a_from_cpuid 4 Enable the CPUID read optimization. See Section 11.7.4.2.5,
“MOV-from-CPUID Optimization” on page 2:342 for details.

a_cover 5 Enable the cover instruction optimization. See Section 11.7.4.2.6, “Cover
Optimization” on page 2:343 for details.

a_bsw 6 Enable the bsw instruction optimization. See Section 11.7.4.2.7, “Bank Switch
Optimization” on page 2:343 for details.

a_all_probes 7 Enable virtualization of probe instructions. See Section 11.7.4.2.8, “Probe
Instruction Virtualization” on page 2:344 for details.a_select_probes 8

a_tf 9 Enable the test feature optimization. See Section 11.7.4.2.9, “Test Feature
Optimization” on page 2:345 for details.

a_ic_um 10 Enable the interruption collection and user mask optimization. See
Section 11.7.4.2.10, “Interruption Collection and User Mask Optimization” on
page 2:345 for details.

Reserved 63:11 Reserved

Figure 11-14. Virtualization Disable Control (vdc)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Disable Controls

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-20. Virtualization Disable Control (vdc) Fields

Field Bits Description

d_vmsw 0 Disable vmsw instruction – If 1, disables vmsw instruction on the logical pro-
cessor. Execution of the vmsw instruction, independent of the state of
PSR.vm, will cause a virtualization intercept.

d_extint 1 Disable external interrupt control register virtualization – If 1, accesses
(reads/writes) of the external interrupt control registers (CR65-71) are not vir-
tualized. Code running with PSR.vm==1 can read and write the external inter-
rupt control registers of the logical processor directly and without handling off
to the VMM. See Section 11.7.4.3.2, “Disable External Interrupt Control Reg-
ister Virtualization” on page 2:347 for details.

d_ibr_dbr 2 Disable breakpoint register virtualization – If 1, accesses (reads/writes) of the
data and instruction breakpoint registers (IBR/DBR) are not virtualized. Code
running with PSR.vm==1 can read and write the data/instruction breakpoint
registers of the logical processor directly and without handling off to the VMM.
If 0, accesses of the breakpoint registers with PSR.vm==1 result in virtualiza-
tion intercepts.

d_pmc 3 Disable PMC virtualization – If 1, accesses (reads/writes) of the performance
monitor configuration registers (PMCs) are not virtualized. Code running with
PSR.vm==1 can read and write the performance monitor configuration regis-
ters of the logical processor directly and without handling off to the VMM.
If 0, accesses of the performance counter configuration registers with
PSR.vm==1 result in virtualization intercepts.

Table 11-19. Virtualization Acceleration Control (vac) Fields (Continued)

Field Bit Description

Volume 2, Part 1: Processor Abstraction Layer 2:331

11.7.2 Interruption Handling in a Virtual Environment

For logical processors which have been added to a virtual environment through
PAL_VP_INIT_ENV, all IVA-based interruptions continue to be delivered to the host IVT
independent of the state of PSR.vm at the time of interruption. All IVA-based
interruptions are serviced by the host IVT pointed to by the IVA (CR2) control register
on the logical processor.

IVA-based interruptions that do not represent virtualization events will be delivered to
the guest IVT by the VMM. The guest IVT is specified by the VIVA control register in
the VPD of the virtual processor.

For IVA-based interruption handling during virtual processor operations, PAL provides
maximum flexibility to the VMM by supporting per-virtual-processor host IVTs. This
allows the VMM to provide a different host IVT with optimizations specific to a particular
guest operating system on the virtual processor. The VMM can also choose to provide
the same IVT for some or all of the virtual processors in a virtual environment.

Hence, at any time in a virtual environment, the IVA (CR2) control register of the
logical processor will be pointing to either:

• The per-virtual-processor host IVT

• The generic host IVT not specific to any virtual processor

The per-virtual-processor host IVT for each virtual processor is setup by PAL when the
virtual processor is first created (PAL_VP_CREATE) or registered (PAL_VP_REGISTER) in
the virtual environment. The VMM passes a pointer to the host IVT specific to the virtual
processor as an incoming parameter to the PAL_VP_CREATE or PAL_VP_REGISTER
procedures. The per-virtual-processor host IVT is setup to perform long branches to the
corresponding vector of the IVT specified in the incoming parameter for all IVA-based

d_to_pmd 4 Disable PMD write virtualization – If 1, writes to the performance monitor data
registers (PMDs) are not virtualized. Code running with PSR.vm==1 can write
the performance monitor data registers of the logical processor directly and
without handling off to the VMM.
If 0, writes of the performance counter data registers with PSR.vm==1 result
in virtualization intercepts.

d_itm 5 Disable ITM virtualization – If 1, writes to the Interval Timer Match (ITM) regis-
ter are not virtualized. Code running with PSR.vm==1 can write the ITM regis-
ter of the logical processor directly and without handling off to the VMM.
If 0, writes of the ITM register with PSR.vm==1 result in virtualization inter-
cepts.

d_psr_i 6 Disable PSR.i virtualization – If 1, accesses (reads/writes) to the interrupt bit
in processor state register (PSR.i) are not virtualized. Code running with
PSR.vm==1 can read and write only the interrupt bit via the ssm and rsm
instructions directly without handling off to the VMM. Attempts to modify other
PSR bits in addition to the interrupt bit via the ssm and rsm instructions will
result in virtualization intercepts. Attempts to modify the interrupt bit with the
mov psr.l instruction will continue to result in virtualization intercepts.
If 0, accesses to the PSR.i bit with PSR.vm==1 result in virtualization inter-
cepts.

Reserved 63:7 Reserved

Table 11-20. Virtualization Disable Control (vdc) Fields (Continued)

Field Bits Description

2:332 Volume 2, Part 1: Processor Abstraction Layer

interruptions except the Virtualization vector. Virtualization vector will be delivered as
virtualization intercept in the per-virtual-processor host IVT. See Section 11.7.3, “PAL
Intercepts in Virtual Environment” on page 2:332 for details on PAL intercepts.

In the virtual environment, the IVA (CR2) control register will be set by PAL
virtualization-related procedures and services as summarized in Table 11-21.

After successful execution of PAL_VP_RESTORE procedure or PAL_VPS_RESTORE
service, the IVA control register on the logical processor is set to point to the
per-virtual-processor host IVT. After successful completion of PAL_VP_RESTORE
procedure, the VMM must not change the IVA control register on the logical processor
until after the next invocation of PAL_VP_SAVE or PAL_VPS_SAVE.

On IVA-based interruptions when a virtual processor is running (after
PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER), the IVA control register
on the logical processor is unchanged and will continue to point to the
per-virtual-processor host IVT. On resume execution to the same virtual processor
through PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER PAL services, the
VMM must ensure the IVA control register on the logical processor is set to point to the
per-virtual-processor host IVT at the time of interruption.1

11.7.3 PAL Intercepts in Virtual Environment

When the IVA control register on the logical processor is set to point to the
per-virtual-processor host IVT, virtualization intercepts will be raised at the
Virtualization vector or at an optional virtualization intercept handler specified by the
VMM. By default, virtualization intercepts are delivered to the Virtualization vector of
the IVT specified by the VMM during PAL_VP_CREATE / PAL_VP_REGISTER. If the VMM
specified the optional virtualization intercept handler, all virtualization intercepts are
delivered to that handler (instead of the Virtualization vector.)

Table 11-21. IVA Settings after PAL Virtualization-related Procedures and
Services

PAL
Virtualization-related
Procedure / Service

Description

PAL_VP_CREATE
These procedures do not change the IVA control register.

PAL_VP_ENV_INFO

PAL_VP_EXIT_ENV This procedure sets the IVA control register to point to the IVT specified by the caller.

PAL_VM_INIT_ENV
These procedures do not change the IVA control register.

PAL_VP_REGISTER

PAL_VP_RESTORE /
PAL_VPS_RESTORE

This procedure / service sets the IVA control register to point to the
per-virtual-processor host IVT.

PAL_VP_SAVE /
PAL_VPS_SAVE

This procedure / service does not change the IVA control register.

PAL_VP_TERMINATE This procedure sets the IVA control register to point to the IVT specified by the caller.

1. In other words, the VMM is allowed to change to another IVT after IVA-based interruptions happen-
ing during virtual processor execution. The VMM must ensure the per-virtual processor IVT is
restored before resuming to the same virtual processor through PAL_VPS_RESUME_NORMAL or
PAL_VPS_RESUME_HANDLER.

Volume 2, Part 1: Processor Abstraction Layer 2:333

Section 11.7.3.1, “PAL Virtualization Intercept Handoff State” on page 2:333 describes
the handoff state of the PAL intercepts. For all interruption vectors other than
Virtualization vector, the architectural state at the corresponding IVA-based interruption
vector is the same as defined in Chapter 8, “Interruption Vector Descriptions” in Volume
2.

11.7.3.1 PAL Virtualization Intercept Handoff State

The state of the logical processor at virtualization intercept handoff is:

• GRs:

• Non-banked GRs: The contents of non-banked general registers are preserved
from the time of the interruption.

• Bank 1 GRs: The contents of all bank one general registers are preserved from
the time of the interruption.

• Bank 0: GR16-23: The contents of these bank zero general registers are
preserved from the time of the interruption.

• Bank 0: GR24-31: Scratch, contains parameters/state for VMM:

• GR24 indicates the cause of virtualization intercept. See Table 11-22, “PAL
Virtualization Intercept Handoff Cause (GR24)” for details. This field is not
provided to the VMM if the value of the cause field in the config_options
parameter passed to PAL_VP_INIT_ENV is 0. If the value of the cause field
in the config_options parameter passed to PAL_VP_INIT_ENV is 0, the
value of GR24 on virtualization intercept handoff is undefined.

• GR25 contains the 41-bit opcode in little endian format and the type of the
instruction which caused the fault, excluding the qualifying predicate (qp)
field. See Figure 11-15, “PAL Virtualization Intercept Handoff Opcode
(GR25),” on page 2:335 for details.

• GR26-31 are available for the VMM to use.

• FRs: The contents of all floating-point registers are preserved from the time of the
interruption.

• Predicates: The contents of all predicate registers are undefined and available for
use. The original contents are saved in the VPD.

• BRs: The contents of all branch registers are preserved from the time of the
interruption.

• ARs: The contents of all application registers are preserved from the time of the
interruption, except the ITC and RUC counters. The ITC register will not be directly
modified by PAL, but will continue to count during the execution of the virtualization
intercept handler. The RUC register will not be directly modified by PAL, but will
continue to count during the execution of the virtualization intercept handler while
the processor is active.

• CFM: The contents of the CFM register is preserved from the time of the
interruption.

• RSE: All RSE state is preserved from the time of the interruption.

• PSR: PSR fields are set according to the “Interruption State” column in Table 3-2,
“Processor Status Register Fields” on page 2:24. PSR.up and pp are set to 0 when
fr_pmc field in config_options parameter during PAL_VP_INIT_ENV is 1.

• CRs: The contents of all control registers are preserved from the time of the
interruption with the exception of resources described below.

2:334 Volume 2, Part 1: Processor Abstraction Layer

• IRRs: The contents of IRRs are not changed by PAL. Incoming interruptions
may change the contents.

• IFS: IFS is unchanged from the time of the interruption.

• IIP: Contains the value of IP at the time of the interruption.

• IPSR: Contains the value of PSR at the time of the interruption.

• RRs: The contents of all region registers are preserved from the time of the
interruption.

• PKRs: The contents of all protection key registers are preserved from the time of
the interruption.

• DBRs/IBRs: The contents of all breakpoint registers are preserved from the time of
the interruption.

• PMCs/PMDs: The contents of the PMC registers are preserved from the time of the
virtualization intercept. The contents of the PMD registers are not modified by PAL
code, but may be modified if events being monitored are encountered. The
performance counters will be frozen if specified by the VMM through a parameter of
PAL_VP_INIT_ENV procedure.

• Cache: The processor internal cache is not specifically modified by PAL handler but
may be modified due to normal cache activity of running the handler code.

• TLB: The TRs are unchanged from the time of the interruption.

Table 11-22. PAL Virtualization Intercept Handoff Cause (GR24)

Value Cause Description

1 toAR Due to MOV-to-AR instruction.

2 toARimm Due to MOV-to-AR-imm instruction.

3 fromAR Due to MOV-from-AR instruction.

4 toCR Due to MOV-to-CR instruction.

5 fromCR Due to MOV-from-CR instruction.

6 toPSR Due to MOV-to-PSR instruction.

7 fromPSR Due to MOV-from-PSR instruction.

8 itc_d Due to itc.d instruction.

9 itc_i Due to itc.i instruction.

10 toRR Due to MOV-to-RR instruction.

11 toDBR Due to MOV-to-DBR instruction.

12 toIBR Due to MOV-to-IBR instruction.

13 toPKR Due to MOV-to-PKR instruction.

14 toPMC Due to MOV-to-PMC instruction.

15 toPMD Due to MOV-to-PMD instruction.

16 itr_d Due to itr.d instruction.

17 itr_i Due to itr.i instruction.

18 fromRR Due to MOV-from-RR instruction.

19 fromDBR Due to MOV-from-DBR instruction.

20 fromIBR Due to MOV-from-IBR instruction.

21 fromPKR Due to MOV-from-PKR instruction.

22 fromPMC Due to MOV-from-PMC instruction.

23 fromCPUID Due to MOV-from-CPUID instruction.

24 ssm Due to ssm instruction.

25 rsm Due to rsm instruction.

26 ptc_l Due to ptc.l instruction.

Volume 2, Part 1: Processor Abstraction Layer 2:335

11.7.4 Virtualization Optimizations

After the PAL_VP_INIT_ENV procedure is called, execution of the virtualized
instructions listed in Table 3-10, “Virtualized Instructions” on page 2:44 with
PSR.vm==1 results in virtualization intercepts to the VMM. Virtualization optimizations
reduce overall virtualization overhead by allowing these instructions to execute, with
PSR.vm==1, without causing intercepts to the VMM. There are two types of
virtualization optimizations – global and local. Local virtualization optimizations are
further divided into virtualization accelerations and virtualization disables.

Global virtualization optimizations are specified during initialization of the virtual
environment (i.e., during PAL_VP_INIT_ENV). The specified optimizations are
applicable to all the virtual processors running in the virtual environment. See Section
11.7.4.1, “Global Virtualization Optimizations” for details on the global virtualization
optimizations supported in the architecture.

Local virtualization optimizations are specified during the creation of the virtual
processor (i.e., during PAL_VP_CREATE). The optimization settings were specified in the
VPD and hence local to each virtual processor. The VMM can specify different local
optimization settings for different virtual processors. The two classes of local
virtualization optimizations are:

• Virtualization accelerations – Virtualization accelerations optimize the execution of
virtualized instructions by supporting fast access to the virtual instance of the

27 ptc_g Due to ptc.g instruction.

28 ptc_ga Due to ptc.ga instruction.

29 ptr_d Due to ptr.d instruction.

30 ptr_i Due to ptr.i instruction.

31 thash Due to thash instruction.

32 ttag Due to ttag instruction.

33 tpa Due to tpa instruction.

34 tak Due to tak instruction.

35 ptc_e Due to ptc.e instruction.

36 cover Due to cover instruction.

37 rfi Due to rfi instruction.

38 bsw_0 Due to bsw.0 instruction.

39 bsw_1 Due to bsw.1 instruction.

40 vmsw Due to vmsw instruction.

41 probe Due to probe instruction.

All
other
values

Reserved Reserved for future expansion.

Figure 11-15. PAL Virtualization Intercept Handoff Opcode (GR25)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode {31:6} Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

b m Reserved Opcode {40:32}

Table 11-22. PAL Virtualization Intercept Handoff Cause (GR24) (Continued)

Value Cause Description

2:336 Volume 2, Part 1: Processor Abstraction Layer

resource and perform the virtualized operations based on the virtual instance of the
resource without handling off to the VMM. Section 11.7.4.2, “Virtualization
Accelerations” on page 2:337 describes the supported Virtualization accelerations
in the architecture.

• Virtualization disables – Virtualization disables optimize the execution of virtualized
instructions by disabling virtualization of a particular resource or instruction.
Accesses to the virtualization-disabled resources or executions of
virtualization-disabled instructions, even with PSR.vm==1, will not cause intercepts
to the VMM. Section 11.7.4.3, “Virtualization Disables” on page 2:346 describes the
supported Virtualization disables in the architecture.

11.7.4.1 Global Virtualization Optimizations

Table 11-23 summarizes the global virtualization optimizations supported in Itanium
architecture.

Certain global virtualization optimizations have VPD synchronization requirements.
Please refer to the corresponding section of each global virtualization optimizations for
more details on these requirements.

11.7.4.1.1 Virtualization Opcode Optimization

Virtualization opcode optimization is always enabled. Opcode information is provided to
the VMM during PAL intercepts in the virtual environment. In some processor
implementations, the opcode provided may not be guaranteed to be the opcode that
triggered the intercept; virtual machine monitors can determine whether this is
guaranteed from the vp_env_info return value of PAL_VP_ENV_INFO.

Table 11-24 and Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326
shows the synchronization requirements and the VPD states that will be accessed for
this optimization.

Table 11-23.Global Virtualization Optimizations Summary

Optimization config_optionsa

a. config_options is a parameter for the PAL_VP_INIT_ENV procedure. See “PAL_VP_INIT_ENV – PAL
Initialize Virtual Environment (268)” on page 2:478 for details.

Description

Virtualization Opcode Optimization opcode Section 11.7.4.1.1

Virtualization Cause Optimization cause Section 11.7.4.1.2

Guest MOV-from-AR.ITC Optimization gitc Section 11.7.4.1.3

Table 11-24.Synchronization Requirements for Virtualization Opcode Optimi-
zation

VPD Resource Synchronization Required

vpsr.ic Write

vpsr.si Write

vifa Write

vitir Write

Volume 2, Part 1: Processor Abstraction Layer 2:337

11.7.4.1.2 Virtualization Cause Optimization

Virtualization cause optimization is enabled by the cause bit in the config_options
parameter of PAL_VP_INIT_ENV. When enabled, the causes of virtualization intercepts
will be provided to the VMM during PAL intercept handoffs within the virtual
environment. When disabled, no cause information will be provided during PAL
intercept handoffs.

This optimization requires no special synchronization.

11.7.4.1.3 Guest MOV-from-AR.ITC Optimization

Guest MOV-from-AR.ITC optimization allows software running with PSR.vm==1 to
execute MOV-from-AR.ITC instructions without any intercepts to the VMM. The value
returned will be the sum of the value in the interval timer counter register (ITC) and
interval timer offset register (ITO), unless a fault condition is detected (see
Table 11-25, “Behavior of Guest MOV-from-AR.ITC Instruction in Virtual Environment”
for details). The VMM is responsible for programming the ITO register to provide the
desired return value for guest execution with PSR.vm = 1 of the MOV-from-ITC
instruction when this optimization is enabled.

This optimization is enabled by the gitc bit in the config_options parameter of
PAL_VP_INIT_ENV. The behavior of the guest MOV-from-AR.ITC instruction is affected
by the settings of psr.ic and vpsr.ic as well, as shown in Table 11-25.

This optimization requires no special synchronization.

This optimization is not supported on all processor implementations. Software can call
PAL_VP_ENV_INFO to determine the availability of this feature.

11.7.4.2 Virtualization Accelerations

Table 11-26 summarizes the virtualization accelerations supported in Itanium
architecture.

Table 11-25.Behavior of Guest MOV-from-AR.ITC Instruction in Virtual Envi-
ronment

gitca

a. gitc=0: Optimization disabled; gitc=1: Optimization enabled.

psr.si vpsr.si MOV-from-AR.ITC when PSR.vm==1

0

0 0 No virtualization intercept – guest reads AR.ITC

0 1 Invalid setting – behavior is undefined.

1 0 Virtualization intercept

1 1
If vpsr.cpl is not zero: Privileged Register fault
If vpsr.cpl is zero: Virtualization intercept

1

0 0 No virtualization intercept – guest reads the sum of ITC and ITO

0 1
If vpsr.cpl is not zero: Privileged Register fault
If vpsr.cpl is zero: No Virtualization intercept – guest reads the sum of ITC and ITO

1 0 Virtualization intercept.

1 1
If vpsr.cpl is not zero: Privileged Register fault
If vpsr.cpl is zero: Virtualization intercept

2:338 Volume 2, Part 1: Processor Abstraction Layer

For each of the accelerations, certain virtual processor control and architectural state is
managed directly by hardware/firmware, and hence must be maintained in the VPD,
and synchronization is required when the VMM reads or writes this state in the VPD.
Some entries must be maintained in the VPD independent of any accelerations. (These
are marked as [always].) See Table 11-16 for details on which VPD state is used with
each of the accelerations. See Section 11.11, “PAL Virtualization Services” on
page 2:486 for a description of the synchronization services.

11.7.4.2.1 Virtual External Interrupt Optimization

The virtual external interrupt optimization allows the VMM to specify the virtual highest
priority pending interrupt so that a virtual external interrupt is raised on changes of
vtpr or vpsr.i only when that the virtual highest priority pending interrupt is unmasked.
For details on virtual external interrupts, see “Virtual External Interrupt vector
(0x3400)” on page 2:187.

The virtual external interrupt optimization is enabled by the a_int bit in the
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is
enabled, the VMM specifies the virtual highest priority pending interrupt (vhpi) through
the PAL_VPS_SET_PENDING_INTERRUPT service described in Section 11.11.2, “PAL
Virtualization Service Specifications” on page 2:488. If this optimization is disabled,
processor behavior is undefined if PAL_VPS_SET_PENDING_INTERRUPT is invoked.

When this optimization is enabled, execution of rsm and ssm instructions1, with
PSR.vm==1, which modify only vpsr.i will not intercept to the VMM and vpsr.i is
updated with the new value, unless a fault condition is detected (see Table 11-29 for
details).

Table 11-26. Virtualization Accelerations Summary

Optimization
Virtualization
Acceleration

Control (vac)a

a. The Virtualization Acceleration Control (vac) field resides in the Virtual Processor Descriptor (VPD), see
Section 11.7.1, “Virtual Processor Descriptor (VPD)” on page 2:325 for details.

Description

Virtual External Interrupt Optimization a_int Section 11.7.4.2.1

Interruption Control Register Read Optimization a_from_int_cr Section 11.7.4.2.2

Interruption Control Register Write Optimization a_to_int_cr Section 11.7.4.2.3

MOV-from-PSR Optimization a_from_psr Section 11.7.4.2.4

MOV-from-CPUID Optimization a_from_cpuid Section 11.7.4.2.5

Cover Optimization a_cover Section 11.7.4.2.6

Bank Switch Optimization a_bsw Section 11.7.4.2.7

Virtualize all probe instructions a_all_probes Section 11.7.4.2.8

Virtualize selected probe instructions a_select_probes

Test Feature Optimization a_tf Section 11.7.4.2.9

Interruption Collection and User Mask Optimization a_ic_um Section 11.7.4.2.10

1. The execution of rsm and ssm instructions with PSR.vm==1 is affected by both the virtual external
interrupt optimization (a_int) and the interruption collection and user mask optimization (a_ic_um).
Software can enable or disable both optimizations together, or enable each optimization indepen-
dently. Section 11.7.4.4.1, “Virtual External Interrupt Optimization and Interruption Collection and
User Mask Optimization” on page 2:349 describes the behavior when both optimizations are
enabled.

Volume 2, Part 1: Processor Abstraction Layer 2:339

When this optimization is enabled, execution of rsm and ssm instructions1, with
PSR.vm==1 and system mask equal to zero (0x0), will not intercept to the VMM unless
a fault condition is detected (see Table 11-29 for details).

A virtual external interrupt is raised if the virtual highest priority pending interrupt
(vhpi) is unmasked by the new vpsr.i and vtpr. If the virtual highest priority pending
interrupt (vhpi) is still masked by the new vpsr.i or vtpr, no virtual external interrupt will
be raised. Note that execution of MOV-to-PSR instructions with PSR.vm==1 always
results in a virtualization intercept no matter which PSR bits are modified.

When this optimization is enabled, execution of rsm and ssm instructions1, with
PSR.vm==1, which modify any bits in addition to vpsr.i result in a virtualization
intercepts. No virtual external interrupts are raised and the VMM is responsible for
delivering a virtual external interrupt if the virtual highest priority pending interrupt
(vhpi) is unmasked.

When this optimization is enabled, execution of a MOV-from-CR instruction, with
PSR.vm==1, targeting vtpr reads the most recent value, unless a fault condition is
detected (see Table 11-29 for details).

When this optimization is enabled, on execution of MOV-to-TPR instructions with
PSR.vm==1, vtpr will be updated with the new value without handling off to the VMM,
unless a fault condition is detected (see Table 11-29 for details). A virtual external
interrupt is raised if the virtual highest priority pending interrupt (vhpi) is unmasked by
the new vpsr.i and vtpr. No virtual external interrupt is raised if the virtual highest
priority pending interrupt is still masked by vpsr.i or vtpr.

When this optimization is enabled, after completion of an instruction with PSR.vm==1
which modifies vtpr or vpsr.i (if the instruction completes without an intercept), a
determination is made as to whether the new state unmasks the virtual highest priority
pending interrupt. If it does, then a virtual external interrupt will be raised and the VMM
will be entered on the Virtual External Interrupt vector. See Table 11-27 for details on
the detection of virtual external interrupts.

Synchronization is required when this optimization is enabled, see Table 11-28 for
details.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Table 11-27. Detection of Virtual External Interrupts

Condition Virtual External Interrupt

vhpi <= (!vpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) No – virtual highest priority pending interrupt
is still masked.

vhpi > (!vpsr.i << 5 | vtpr.mmi <<4 | vtpr.mic) Yes – virtual highest priority pending
interrupt is unmasked.

Table 11-28. Synchronization Requirements for Virtual External Interrupt
Optimization

VPD Resource Synchronization Required

vtpr Read, Write

vpsr.i Read, Write

vhpi Write

2:340 Volume 2, Part 1: Processor Abstraction Layer

Note: This field cannot be enabled together with d_extint or d_psr_i virtualization dis-
ables. If this control is enabled together with any one of described disables, an
error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER. See
Section 11.7.4.4, “Virtualization Optimization Combinations” on page 2:349 for
details.

11.7.4.2.2 Interruption Control Register Read Optimization

The interruption control register read optimization is enabled by the a_from_int_cr bit
in the Virtualization Acceleration Control (vac) field in the VPD. When this optimization
is enabled, and vpsr.ic is 0, software running with PSR.vm==1 will be able to read the
virtual interruption control registers (vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha,
viib0-1) without any intercepts to the VMM, unless a fault condition is detected (see
Table 11-31 for details).

If this optimization is disabled, a read of the interruption CRs with PSR.vm==1 results
in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-30 for
details.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Table 11-29. Interruptions when Virtual External Interrupt Optimization is
Enabled

Instructions Interruptions

rsm, ssm When the virtual external interrupt optimization is enabled, execution
of rsm and ssm instructions with PSR.vm==1 which modify only
vpsr.i, may raise the following faults:

• Privileged Operation fault – if vpsr.cpl is not zero

MOV-from-TPR When the virtual external interrupt optimization is enabled, execution
of MOV-from-CR instruction targeting vtpr with PSR.vm==1, may
raise the following faults:

• Illegal Operation fault – if the target operand specifies GR 0 or
an out-of-frame stacked register

• Privileged Operation fault – if vpsr.cpl is not zero

MOV-to-TPR When the virtual external interrupt optimization is enabled, execution
of MOV-to-CR instruction targeting vtpr with PSR.vm==1, may raise
the following faults:

• Privileged Operation fault – if vpsr.cpl is not zero

• Register NaT Consumption fault – if the NaT bit in the source
register is one

• Reserved Register/Field fault – if the reserved field in the vtpr is
being written with a non-zero value

Table 11-30. Synchronization Requirements for Interruption Control Register
Read Optimization

VPD Resource Synchronization Required

vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, viib0-1 Write

Volume 2, Part 1: Processor Abstraction Layer 2:341

11.7.4.2.3 Interruption Control Register Write Optimization

The interruption control register write optimization is enabled by the a_to_int_cr bit in
the Virtualization Acceleration Control (vac) field in the VPD. When this optimization is
enabled, and vpsr.ic is 0, software running with PSR.vm==1 will be able to write the
virtual interruption control registers (vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha,
viib0-1) without any intercepts to the VMM, unless a fault condition is detected (see
Table 11-33 for details).

If this optimization is disabled, a write of the interruption control registers with
PSR.vm==1 results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-32 for
details.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.2.4 MOV-from-PSR Optimization

The MOV-from-PSR optimization is enabled by the a_from_psr bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, software
running with PSR.vm==1 will be able to execute MOV-from-PSR instructions to read

Table 11-31. Interruptions when Interruption Control Register Read
Optimization is Enabled

Instructions Interruptions

Move from interruption control registers When the interruption control register read optimization is enabled,
reads of interruption control registers with PSR.vm==1, may raise
the following faults:

• Illegal Operation fault – if vpsr.ic is not zero or the target
operand specifies GR 0 or an out-of-frame stacked register

• Privileged Operation fault – if vpsr.cpl is not zero

Table 11-32. Synchronization Requirements for Interruption Control Register
Write Optimization

VPD Resource Synchronization Required

vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, viib0-1 Read

Table 11-33. Interruptions when Interruption Control Register Write
Optimization is Enabled

Instructions Interruptions

Move to interruption control registers When the interruption control register write optimization is enabled,
writes to interruption control registers with PSR.vm==1, may raise
the following faults:

• Illegal Operation fault – if vpsr.ic is not zero

• Privileged Operation fault – if vpsr.cpl is not zero

• Register NaT Consumption fault – if the NaT bit of the source
operand is one

• Reserved Register/Field fault – if any reserved field in the
specified control register is written with a non-zero value

• Unimplemented Data Address fault – if writing to vifa and an
unimplemented virtual address is specified

2:342 Volume 2, Part 1: Processor Abstraction Layer

the virtual processor status register without any intercepts to the VMM; and the last
value written to the vpsr will be returned, unless a fault condition is detected (see
Table 11-35 for details). The value returned for the fml, mfh, ac, up and be bits are
simply the values of those bits in the PSR of the logical processor, since those bits are
not virtualized.

If this optimization is disabled, execution of a MOV-from-PSR instruction with
PSR.vm==1 results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-34 for
details.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Note: This field cannot be enabled together with the d_psr_i virtualization disable
control (vdc) described in Section 11.7.4.3.7, “Disable PSR Interrupt-bit Virtu-
alization” on page 2:348. If this control is enabled together with the d_psr_i
control, an error will be returned during PAL_VP_CREATE and
PAL_VP_REGISTER. See Section 11.7.4.4, “Virtualization Optimization Combi-
nations” on page 2:349 for details.

11.7.4.2.5 MOV-from-CPUID Optimization

The MOV-from-CPUID optimization is enabled by the a_from_cpuid bit in the
Virtualization Acceleration Control (vac) field in the VPD. When this optimization is
enabled, software running with PSR.vm==1 will be able to execute MOV-from-CPUID
instruction to read the virtual CPUID registers without any intercepts to the VMM; and
the corresponding VCPUID value from the VPD will be returned, unless a fault condition
is detected (see Table 11-37 for details).

If this optimization is disabled, execution of a MOV-from-CPUID instruction with
PSR.vm==1 results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-36 for
details.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

Table 11-34. Synchronization Requirements for MOV-from-PSR Optimization

VPD Resource Synchronization Required

vpsr{36:35, 31:6}
See Table 11-17, “Virtual Processor
Descriptor (VPD) – VPSR” on
page 2:328 for details.

Write

Table 11-35. Interruptions when MOV-from-PSR Optimization is Enabled

Instructions Interruptions

MOV-from-PSR When the MOV-from-PSR optimization is enabled, MOV-from-PSR
instructions with PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the target operand specifies GR 0 or
an out-of-frame stacked register

• Privileged Operation fault – if vpsr.cpl is not zero

Volume 2, Part 1: Processor Abstraction Layer 2:343

11.7.4.2.6 Cover Optimization

The cover optimization is enabled by the a_cover bit in the Virtualization Acceleration
Control (vac) field in the VPD. When this optimization is enabled, software running with
PSR.vm==1 will be able to execute cover instructions without any intercepts to the
VMM, unless a fault condition is detected (see Table 11-39 for details). The cover
instruction will execute and vcr.ifs will be updated if vpsr.ic is 0.

If this optimization is disabled, execution of the cover instruction with PSR.vm==1
results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-38 for
details.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.2.7 Bank Switch Optimization

The bank switch optimization is enabled by the a_bsw bit in the Virtualization
Acceleration Control (vac) field in the VPD. When this optimization is enabled, execution
of the bsw instruction with PSR.vm==1 spills the currently active banked registers and
the corresponding NaT bits to the VPD, and loads the other banked registers and the

Table 11-36. Synchronization Requirements for MOV-from-CPUID
Optimization

VPD Resource Synchronization Required

vcpuid0-4 Write

Table 11-37. Interruptions when MOV-from-CPUID Optimization is Enabled

Instructions Interruptions

MOV-from-CPUID When the MOV-from-CPUID optimization is enabled,
MOV-from-CPUID instructions with PSR.vm==1, may raise the fol-
lowing faults:

• Illegal Operation fault – if the target operand specifies GR 0 or
an out-of-frame stacked register

• Register NaT Consumption fault – if the NaT bit in the target
register is one

• Reserved Register/Field fault – if a reserved CPUID register is
being read

Table 11-38. Synchronization Requirements for Cover Optimization

VPD Resource Synchronization Required

vifs Read, Write

Table 11-39. Interruptions when Cover Optimization is Enabled

Instructions Interruptions

cover When the cover optimization is enabled, cover instructions with
PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the instruction is not the last instruction
in an instruction group

2:344 Volume 2, Part 1: Processor Abstraction Layer

corresponding NaT bits from the VPD. vpsr.bn is updated to reflect the new register
bank without any intercepts to the VMM, unless a fault condition is detected (see
Table 11-46 for details).

If this optimization is disabled, execution of the bsw instruction with PSR.vm==1
results in a virtualization intercept.

Synchronization is required when this optimization is enabled, see Table 11-40 for
details.

Note: This field cannot be enabled together with the d_psr_i virtualization disable
control (vdc) described in Section 11.7.4.3.7, “Disable PSR Interrupt-bit Virtu-
alization” on page 2:348. If this control is enabled together with the d_psr_i
control, an error will be returned during PAL_VP_CREATE and
PAL_VP_REGISTER. See Section 11.7.4.4, “Virtualization Optimization Combi-
nations” on page 2:349 for details.

11.7.4.2.8 Probe Instruction Virtualization

The probe instruction virtualization is controlled by the a_all_probes and
a_select_probes bits in the Virtualization Acceleration Control (vac) field in the VPD.

When the a_all_probes bit is set to 1, all probe instructions running at all privilege
levels with PSR.vm==1 will result in virtualization intercepts.

When the a_select_probes bit is set to 1, the following probe instructions will raise
virtualization intercepts when executed with PSR.vm==1 at the most privileged level
(VPSR.cpl==0):

• probe instructions in immediate-form, with immediate field equal to privilege level
0

• All probe instructions in register-form

Please refer to the instruction description page for the probe instruction for details on
the usage of immediate-form and register-form of the instruction.

Note: Software cannot enable both a_all_probes and a_select_probes bits together -
an error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER.

The virtualization of probe instructions is not supported on all processor
implementations. Software can call PAL_VP_ENV_INFO to determine the availability of
this feature.

Table 11-40. Synchronization Requirements for Bank Switch Optimization

VPD Resource Synchronization Required

vpsr.bn Read, Write

Table 11-41. Interruptions when Bank Switch Optimization is Enabled

Instructions Interruptions

bsw When the bank switch optimization is enabled, bsw instructions with
PSR.vm==1, may raise the following faults:

• Illegal Operation fault – if the instruction is not the last instruction
in an instruction group

• Privileged Operation fault – if vpsr.cpl is not zero

Volume 2, Part 1: Processor Abstraction Layer 2:345

There is no synchronization requirement for the virtualization of probe instructions.

11.7.4.2.9 Test Feature Optimization

The test feature optimization is enabled by the a_tf bit in the Virtualization Acceleration
Control (vac) field in the VPD.

When this optimization is enabled, test feature (tf) instructions running with
PSR.vm==1 will test the VCPUID[4] register in the VPD. The VMM may maintain a
different VCPUID[4]{63:32} value from the CPUID[4]{63:32} value of the logical
processor on which the virtual processor is running.

If the VMM indicates to a guest that an instruction is not supported by clearing the
corresponding bit in VCPUID[63:32], then guest execution of that instruction, when
a_tf is enabled, will behave the same as it would in implementations that do not
implement that instruction. See Table 11-42 for more information.

If this optimization is disabled or not supported, execution of the test feature (tf)
instruction with PSR.vm==1 will test the CPUID[4] register. The VMM must maintain
the same VCPUID[4]{63:32} value as the CPUID[4]{63:32} value of the logical
processor on which the virtual processor is running.

Synchronization is required when this optimization is enabled; see Table 11-43 for
details.

This optimization is not supported on all processor implementations. Software can call
PAL_VP_ENV_INFO to determine the availability of this feature.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.2.10 Interruption Collection and User Mask Optimization

The interruption collection and user mask optimization is enabled by the a_ic_um bit in
the Virtualization Acceleration Control (vac) field in the VPD.

When this optimization is enabled and PSR.vm==1, execution of rsm and ssm
instructions1 with a mask targeting no fields other than the ic and user mask fields will
not intercept to the VMM, unless a fault condition is detected (see Table 11-45 for
details). The ic field in vpsr and user mask bits in PSR targeted by the mask will be
updated with the new value.

Table 11-42.Impact of clearing VCPUID bits with the a_tf optimization

VCPUID[4] bit Instructions affected Behavior when vCPUID[4] is bit is 0

32 clz Illegal Operation fault

33
mpy4 Illegal Operation fault

mpyshl4 Illegal Operation fault

Table 11-43.Synchronization Requirements for Test Feature Optimization

VPD Resource Synchronization Required

vcpuid[4]{63:32} Write

2:346 Volume 2, Part 1: Processor Abstraction Layer

When this optimization is enabled, execution of rsm and ssm instructions, with
PSR.vm==1 and system mask equal to zero (0x0), will not intercept to the VMM unless
a fault condition is detected (see Table 11-45 for details).

When PSR.vm==1, execution of rsm and ssm instructions1, which modify any bits other
than vpsr.ic and user mask fields will result in virtualization intercepts independent of
whether this optimization is enabled or not.

Synchronization is required when this optimization is enabled; see Table 11-44 for
details.

This optimization is not supported on all processor implementations. Software can call
PAL_VP_ENV_INFO to determine the availability of this feature.

When this optimization is enabled, certain VPD state is accessed, as described in
Table 11-16, “Virtual Processor Descriptor (VPD)” on page 2:326.

11.7.4.3 Virtualization Disables

Table 11-26 summarizes the virtualization disables supported in Itanium architecture.

1. The execution of rsm and ssm instructions with PSR.vm==1 is affected by both the virtual external
interrupt optimization (a_int) and the interruption collection and user mask optimization (a_ic_um).
Software can enable or disable both optimizations together, or enable each optimization indepen-
dently. Section 11.7.4.4.1, “Virtual External Interrupt Optimization and Interruption Collection and
User Mask Optimization” on page 2:349 describes the behavior when both optimizations are
enabled.

Table 11-44.Synchronization Requirements for Interrupt Collection and User
Mask Optimization

VPD Resource Synchronization Required

vpsr.ic Read, Write

Table 11-45.Interruptions when Interrupt Collection and User Mask
Optimization is Enabled

Instructions Interruptions

rsm, ssm When the interruption collection and user mask optimization is
enabled, execution of rsm and ssm instructions with PSR.vm==1
which modify vpsr.ic and any user mask fields, may raise the follow-
ing faults:

•Privileged Operation fault – if vpsr.cpl is not zero

Table 11-46. Virtualization Disables Summary

Disable
Virtualization

Disable Control
(vdc)a

Description

Disable VMSW Instruction d_vmsw Section 11.7.4.3.1

Disable External Interrupt Control Register Virtualization d_extint Section 11.7.4.3.2

Disable Breakpoint Register Virtualization d_ibr_dbr Section 11.7.4.3.3

Disable PMC Virtualization d_pmc Section 11.7.4.3.4

Disable MOV-to-PMD Virtualization d_to_pmd Section 11.7.4.3.5

Volume 2, Part 1: Processor Abstraction Layer 2:347

11.7.4.3.1 Disable VMSW Instruction

The VMSW instruction disable is controlled by the d_vmsw bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, the vmsw instruction
is disabled on the logical processor. Execution of the vmsw instruction, independent of
the state of PSR.vm, results in a virtualization intercept.

If this control is set to 0, the vmsw instruction can be executed by both the VMM and
guest without virtualization intercepts, if PSR.it is 1 and the vmsw instruction is
executed on a page with access rights of 7.

11.7.4.3.2 Disable External Interrupt Control Register Virtualization

The external interrupt control register virtualization disable is controlled by the d_extint
bit in the Virtualization Disable Control (vdc) field in the VPD. When this control is set to
1, the external interrupt control registers (CR65-71) are not virtualized, and code
running with PSR.vm==1 can read and write these resources directly without any
intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the external interruption control
registers with PSR.vm==1 result in virtualization intercepts.

Note: This field cannot be enabled together with the a_int virtualization acceleration
control (vac) described in Section 11.7.4.2.1, “Virtual External Interrupt Opti-
mization” on page 2:338. If this control is enabled together with the a_int con-
trol, an error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER.
See Section 11.7.4.4, “Virtualization Optimization Combinations” on
page 2:349 for details.

11.7.4.3.3 Disable Breakpoint Register Virtualization

The breakpoint register virtualization disable is controlled by the d_ibr_dbr bit in the
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1,
accesses (reads/writes) to the data and instruction breakpoint registers (DBR/IBR) are
not virtualized, and code running with PSR.vm==1 can read and write these resources
directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the breakpoint registers with
PSR.vm==1 result in virtualization intercepts.

Disable ITM Virtualization d_itm Section 11.7.4.3.6

Disable PSR Interrupt-bit Virtualization d_psr_i Section 11.7.4.3.7

a. The Virtualization Disable Control (vdc) field resides in the Virtual Processor Descriptor (VPD), see
Section 11.7.1, “Virtual Processor Descriptor (VPD)” on page 2:325 for details.

Table 11-46. Virtualization Disables Summary (Continued)

Disable
Virtualization

Disable Control
(vdc)a

Description

2:348 Volume 2, Part 1: Processor Abstraction Layer

11.7.4.3.4 Disable PMC Virtualization

The PMC virtualization disable is controlled by the d_pmc bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, accesses
(reads/writes) to the performance monitor configuration registers (PMCs) are not
virtualized, and code running with PSR.vm==1 can read and write these resources
directly without any intercepts to the VMM.

If this control is set to 0, accesses (reads/writes) to the performance counter
configuration registers with PSR.vm==1 result in virtualization intercepts.

11.7.4.3.5 Disable MOV-to-PMD Virtualization

The MOV-to-PMD1 virtualization disable is controlled by the d_to_pmd bit in the
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1, writes
to the performance monitor data registers (PMDs) are not virtualized, and code running
with PSR.vm==1 can write these resources directly without any intercepts to the VMM.

If this control is set to 0, writes to the performance monitor data registers with
PSR.vm==1 result in virtualization intercepts.

11.7.4.3.6 Disable ITM Virtualization

The ITM virtualization disable is controlled by the d_itm bit in the Virtualization Disable
Control (vdc) field in the VPD. When this control is set to 1, writes to the Interval Timer
Match (ITM) register are not virtualized, and code running with PSR.vm==1 can write
this resource directly without any intercepts to the VMM.

If this control is set to 0, writes to the ITM register with PSR.vm==1 result in
virtualization intercepts.

11.7.4.3.7 Disable PSR Interrupt-bit Virtualization

The PSR interrupt-bit virtualization disable is controlled by the d_psr_i bit in the
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1,
accesses (reads/writes) to the interrupt bit in processor state register (PSR.i) are not
virtualized. Code running with PSR.vm==1 can read and write to PSR.i through ssm and
rsm instructions without any intercepts to the VMM. Attempts to modify other PSR bits
in addition to the interrupt bit via the ssm and rsm instructions will result in
virtualization intercepts.

This control has no effect on mov psr.l instructions; attempts to modify the interrupt
bit with the mov psr.l instruction result in virtualization intercepts.

Note: This field cannot be enabled together with a_int, a_from_psr or a_bsw virtual-
ization accelerations. If this control is enabled together with any one of
described accelerations, an error will be returned during PAL_VP_CREATE and
PAL_VP_REGISTER. See Section 11.7.4.4, “Virtualization Optimization Combi-
nations” on page 2:349 for details.

1. The MOV-from-PMD instruction is not virtualized. Hence there is no need to provide optimizations for
the MOV-from-PMD instruction.

Volume 2, Part 1: Processor Abstraction Layer 2:349

11.7.4.4 Virtualization Optimization Combinations

Table 11-47 describes the supported combinations of virtualization accelerations and
disables.

11.7.4.4.1 Virtual External Interrupt Optimization and Interruption Collection
and User Mask Optimization

The execution of rsm and ssm instructions with PSR.vm==1 is affected by both of these
optimizations:

• Virtual External Interrupt Optimization (a_int), described in Section 11.7.4.2.1,
“Virtual External Interrupt Optimization”, and

• Interruption Collection and User Mask Optimization (a_ic_um), described in Section
11.7.4.2.10, “Interruption Collection and User Mask Optimization”.

Software can enable or disable both optimizations together, or enable each optimization
independently.

When both optimizations are enabled and PSR.vm==1, rsm and ssm instructions with a
mask targeting any fields in i, ic and user mask will not be intercepted to the VMM,
unless a fault condition is detected, The i and ic fields in vpsr and user mask in PSR will
be updated with the new value.

When PSR.vm==1, rsm and ssm instructions with a mask targeting any fields other
than i, ic and user mask fields will result in virtualization intercepts independent of
whether these two optimizations are enabled or not.

11.7.4.5 Virtualization Synchronizations

When certain virtualization accelerations described in Section 11.7.4.2, “Virtualization
Accelerations” on page 2:337 are enabled, processor implementations can provide
implementation-specific control resources to enhance the performance of virtual
processors. Two PAL services are provided to synchronize the implementation-specific
control resources and the resources in the VPD. There are two types of
synchronizations:

Table 11-47.Supported Virtualization Optimization Combinations

d_vmsw d_extint d_ibr_dbr d_pmc d_to_pmd d_itm d_psr_i

a_int oa

a. “o” indicates the corresponding virtualization acceleration and disable can be enabled together.

xb

b. “x” indicates the corresponding virtualization acceleration and disable cannot be enabled together.

o o o o x

a_from_int_cr o o o o o o o

a_to_int_cr o o o o o o o

a_from_psr o o o o o o x

a_from_cpuid o o o o o o o

a_cover o o o o o o o

a_bsw o o o o o o x

a_all_probes o o o o o o o

a_select_probes o o o o o o o

a_tf o o o o o o o

a_ic_um o o o o o o o

2:350 Volume 2, Part 1: Processor Abstraction Layer

1. Read synchronization – When a specific acceleration is enabled, after
interruptions and intercepts that occur when PSR.vm was 1, the VMM must
invoke PAL_VPS_SYNC_READ to synchronize the related resources before reading
their values from the VPD.

2. Write synchronization – When a specific acceleration is enabled, the VMM must
invoke PAL_VPS_SYNC_WRITE to synchronize the related resources after
modifying their values in the VPD and before resuming the virtual processor.

For details on PAL_VPS_SYNC_READ and PAL_VPS_SYNC_WRITE, see Section 11.11.2,
“PAL Virtualization Service Specifications” on page 2:488.

Read and/or write synchronizations are required only if the specific acceleration is
enabled. For the resources that require synchronizations if the acceleration is enabled,
failure to perform the proper synchronizations will result in undefined processor
behavior1.

The synchronization requirements of the related resources for each acceleration are
described in the corresponding sections for each acceleration in Section 11.7.4.2,
“Virtualization Accelerations” on page 2:337.

No synchronization is required for any of the virtualization disables.

11.8 PAL Glossary

Corrected Error
All errors of this type are corrected by the platform or processor in either hardware or
firmware. This severity is for logging purposes only. There is no architectural damage
caused by the detecting and reporting functions. Corrected errors require no operating
system intervention to correct the error.

Corrected Machine Check (CMC)
A corrected machine check is a machine check that as been successfully corrected by
hardware and/or firmware. Information about the cause of the error is recorded, and an
interrupt is set to allow the Operating System software to examine and diagnose the
error. Return is controlled to the program executing at the time of the error.

Entrypoint
A firmware entrypoint is a piece of code which is triggered by a hardware event, usually
the assertion of a processor pin, or the receipt of an interruption. If return to the caller
is done, it is though the RFI instruction. The currently defined PAL entrypoints are
PALE_RESET, PALE_INIT, PALE_PMI, and PALE_CHECK.

Fatal Error
An uncorrected error which can corrupt state, and the state information is not known.
These type of errors cannot be corrected by the hardware, firmware, or the operating
system. The integrity of the system, including the IO devices is not guaranteed and
may require I/O device initialization and a system reboot to continue. Fatal errors may
or may not be contained within the processor or memory hierarchy.

1. Virtual machine monitors must perform all the required synchronizations specified. Virtual machine
monitors not conforming to this specification are not guaranteed to work on all processor implemen-
tations.

Volume 2, Part 1: Processor Abstraction Layer 2:351

Machine Check (MC)
A machine check is a hardware event that indicates that a hardware error or
architectural violation has occurred that threatens to damage the architectural state of
the machine, possibly causing data corruption. The occurrence of the error triggers the
execution of firmware code which records information about the error, and attempts to
recover when possible.

OLR
On line replacement. The replacement of a computer component while the system is up
and running without requiring a reboot.

PAL Intercepts
Interfaces where PAL transfers control to the VMM on virtualization events (execution of
virtualized instructions/operations with PSR.vm==1). For details see Section 11.7.3,
“PAL Intercepts in Virtual Environment” on page 2:332.

Power-on
The reset event that occurs when the power input to the processor is applied and the
reset input to the processor is asserted.

Preserved
When applied to an entrypoint, preserved means that the value contained in a register
at exit from the entrypoint code is the same as the value at the time of the hardware
event that caused the entrypoint to be invoked. When applied to a procedure,
preserved means that the value contained in a register at exit from the procedure is the
same as the value at entry to the procedure. The value may have been changed and
restored before exit.

Processor Abstraction Layer (PAL)
PAL is firmware that abstracts processor implementation differences and provides a
consistent interface to higher level firmware and software. PAL has no knowledge of
platform implementation details.

Procedure
A firmware procedure is a piece of code which is called from other firmware or software,
and which uses the return mechanism of the Itanium Runtime Calling Conventions to
return to its caller.

Recoverable Error
An uncorrected error which can corrupt state, but the state information is known.
Recoverable errors cannot be corrected by either the hardware or firmware. This type of
error requires operating system analysis and a corrective action to recover. System
operation/state may be impacted.

Reserved
When applied to a data variable, it means that the variable must not be used to convey
information. All software passing the variable must place a value of zero in the variable.
The occurrence of a non-zero value may cause undefined results.

When applied to a value or range of values, any values not defined in the range and
specified as reserved must not be used. The occurrence of a reserved value may cause
undefined results.

Reset
The reset event that occurs when the reset input to the processor is asserted.

2:352 Volume 2, Part 1: Processor Abstraction Layer

Scratch
When applied to either an entrypoint or procedure, scratch means that the contents of
the register has no meaning and need not be preserved. Further the register is
available for the storage of local variables. Unless otherwise noted, the register should
not be relied upon to contain any particular value after exit.

Stacked Calling Convention
The firmware calling convention which adheres fully to the Itanium Runtime Calling
Conventions. To use this calling convention, the RSE must be working and usable.

Static Calling Convention
The firmware calling convention which adheres to the Itanium Runtime Calling
Conventions for the static general registers, branch registers, predicate registers, but
for which all other registers are unused except for the RSE control registers. The RSE is
placed in enforced lazy mode, and the stacked general registers or memory are not
referenced.

System Abstraction Layer (SAL)
SAL is firmware that abstracts platform implementation differences for higher level
software. SAL has no knowledge of processor implementation details.

Unchanged
When applied to an entrypoint, unchanged means that the register referenced has not
been changed from the time of the hardware event that caused the entrypoint to be
invoked until it exited to higher level firmware or software. When applied to a
procedure, unchanged means that the register referenced has not been changed from
procedure entry until procedure exit. In all cases, the value at exit is the same as the
value at entry or the occurrence of the hardware event.

Virtual Machine Monitor (VMM)
The VMM is the system software which implements software policies to
manage/support virtualization of processor and platform resources.

Virtual Processor Descriptor (VPD)
Represents the abstraction of the processor resources of a single virtual processor. The
VPD consists of per-virtual-processor control information together with
performance-critical architectural state. See Section 11.7.1, “Virtual Processor
Descriptor (VPD)” on page 2:325 for details.

Virtual Processor State
A memory data structure which represents the architectural state of a virtual processor.
Part of the virtual processor state is located in the Virtual Processor Descriptor (VPD),
and the rest is located in memory data structures maintained by the virtual machine
monitor.

11.9 PAL Code Memory Accesses and Restrictions

PAL issues load and store operations to memory in the following cases with the
following memory attributes:

• During machine check/INIT handling to the min-state save area memory region
registered with PAL using the UC memory attribute.

Volume 2, Part 1: Processor Abstraction Layer 2:353

• During the execution of PAL procedures to the memory buffer allocated by the
caller of the procedure using the memory attribute of the address passed by
the caller.

• PAL may also issue loads from the architected firmware address space and
loads/stores from the registered min-state save area whenever it is executing a
PAL procedure or handling PAL-based interruptions (reset, MCA, INIT and PMI).
PAL code may use either the UC or WBL memory attribute when accessing
these areas.

PAL code will not send IPIs that require any special support from the platform.

11.10 PAL Procedures

PAL procedures may be called by higher-level firmware and software to obtain
information about the identification, configuration, and capabilities of the processor
implementation, or to perform implementation-dependent functions such as cache
initialization. These procedures access processor implementation-dependent hardware
to return information that characterizes and identifies the processor or implements a
defined function on that particular processor.

PAL procedures are implemented by a combination of firmware code and hardware. The
PAL procedures are defined to be relocatable from the firmware address space. Higher
level firmware and software must perform this relocation during the reset flow. The PAL
procedures may be called both before and after this relocation occurs, but performance
will usually be better after the relocation. In order to ensure no problems occur due to
the relocation of the PAL procedures, these procedures are written to be position
independent. All references to constant data done by the procedures is done in an IP
relative way.

PAL procedures are provided to return information or allow configuration of the
following processor features:

• Cache and memory features supported by the processor

• Processor identification, features, and configuration

• Machine Check Abort handling

• Power state information and management

• Processor self test

• Firmware utilities

PAL procedures are implemented as a single high level procedure, named PAL_PROC,
whose first argument is an index which specifies which PAL procedure is being called.
Indices are assigned depending on the nature of the PAL procedure being referenced,
according to Table 11-48.

2:354 Volume 2, Part 1: Processor Abstraction Layer

The assignment of indices for all architected procedures is controlled by this document.
The assignment of indices for implementation-specific procedures is controlled by the
specific processor for which the procedures are implemented. No
implementation-specific procedure calls are required for the correct operation of a
processor. No SAL or operating system code should ever have to call an
implementation-specific procedure call for normal activity. They are reserved for
diagnostic and bring-up software and the results of such calls may be unpredictable.

Architected procedures may be designated as required or optional. If a procedure is
designated as optional, a unique return code will be returned to indicate the procedure
is not present in this PAL implementation. It is the caller’s responsibility to check for
this return code after calling any optional PAL procedure

In addition to the calling conventions described below, PAL procedure calls may be
made in physical mode (PSR.it=0, PSR.rt=0, and PSR.dt=0) or virtual mode (PSR.it=1,
PSR.rt=1, and PSR.dt=1). All PAL procedures may be called in physical mode. Only
those procedures specified later in this chapter may be called in virtual mode. PAL
procedures written to support virtual mode, and the caller of PAL procedures written in
virtual mode must obey the restrictions documented in this chapter, otherwise the
results of such procedure calls may be unpredictable.

11.10.1 PAL Procedure Summary

The following tables summarize the PAL procedures by application area. Included are
the name of the procedure, the index of the procedure, the class of the procedure
(whether required or optional), the calling convention used for the procedure (static or
stacked), and whether the procedure can be called in physical mode only, virtual mode
only, or both physical and virtual modes.

On processor implementations with multiple logical processors in a physical processor
package, calling a certain PAL procedures may affect resources shared by the logical
processors. In the following tables, procedures that may affect resources on multiple
processors are marked next to the corresponding procedure names; procedures that
are not marked have no effects on other logical processors.

Table 11-48. PAL Procedure Index Assignment

Index Description

0 Reserved

1 - 255 Architected procedures; static register calling conventions

256 - 511 Architected procedures; stacked register calling conventions

512 - 767 Implementation-specific procedures; static registers calling conventions

768 - 1023 Implementation-specific procedures; stacked register calling conventions

1024 + Reserved

Table 11-49.PAL Cache and Memory Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_CACHE_FLUSHa 1 Req. Static Both No Flush the instruction or data caches.

PAL_CACHE_INFO 2 Req. Static Both No Return detailed instruction or data cache
information.

PAL_CACHE_INITa 3 Req. Static Phys. No Initialize the instruction or data caches.

Volume 2, Part 1: Processor Abstraction Layer 2:355

PAL_CACHE_PROT_INFO 38 Req. Static Both No Return instruction or data cache protection
information.

PAL_CACHE_SHARED_INFO 43 Opt. Static Both No Returns information on which logical processors
share caches.

PAL_CACHE_SUMMARY 4 Req. Static Both No Return a summary of the cache hierarchy.

PAL_MEM_ATTRIB 5 Req. Static Both No Return a list of supported memory attributes.

PAL_PREFETCH_VISIBILITY 41 Req. Static Both No Used in architected sequence to transition
pages from a cacheable, speculative attribute to
an uncacheable attribute. See Section 4.4.11.2,
“Physical Addressing Attribute Transition –
Disabling Prefetch/Speculation and Removing
Cacheability” on page 2:90.

PAL_PTCE_INFO 6 Req. Static Both No Return information needed for ptc.e
instruction to purge entire TC.

PAL_VM_INFO 7 Req. Static Both No Return detailed information about virtual
memory features supported in the processor.

PAL_VM_PAGE_SIZE 34 Req. Static Both No Return virtual memory TC and hardware walker
page sizes supported in the processor.

PAL_VM_SUMMARY 8 Req. Static Both No Return summary information about virtual
memory features supported in the processor.

PAL_VM_TR_READ 261 Req. Stacked Phys. No Read contents of a translation register.

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals
for details.

Table 11-50.PAL Processor Identification, Features, and Configuration Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_BRAND_INFO 274 Opt. Stacked Both No Provides processor branding information.

PAL_BUS_GET_FEATURES 9 Req. Static Phys. No Return configurable processor bus interface
features and their current settings.

PAL_BUS_SET_FEATURESa 10 Req. Static Phys. No Enable or disable configurable features in
processor bus interface.

PAL_DEBUG_INFO 11 Req. Static Both No Return the number of instruction and data
breakpoint registers.

PAL_FIXED_ADDR 12 Req. Static Both No Return the fixed component of a processor’s
directed address.

PAL_FREQ_BASE 13 Opt. Static Both No Return the frequency of the output clock for use
by the platform, if generated by the processor.

PAL_FREQ_RATIOS 14 Req. Static Both No Return ratio of processor, bus, and interval time
counter to processor input clock or output clock
for platform use, if generated by the processor.

PAL_GET_HW_POLICY 48 Opt. Static Both Dep. Get current hardware resource sharing policy.

PAL_LOGICAL_TO_PHYSICAL 42 Opt. Static Both No Return information on which logical processors
map to a physical processor package.

PAL_PERF_MON_INFO 15 Req. Static Both No Return the number and type of performance
monitors.

PAL_PLATFORM_ADDRa 16 Req. Static Both No Specify processor interrupt block address and
I/O port space address.

PAL_PROC_GET_FEATURES 17 Req. Static Phys. No Return configurable processor features and
their current setting.

Table 11-49.PAL Cache and Memory Procedures (Continued)

Procedure Idx Class Conv. Mode Buffer Description

2:356 Volume 2, Part 1: Processor Abstraction Layer

PAL_PROC_SET_FEATURESa 18 Req. Static Phys. No Enable or disable configurable processor
features.

PAL_REGISTER_INFO 39 Req. Static Both No Return AR and CR register information.

PAL_RSE_INFO 19 Req. Static Both No Return RSE information.

PAL_SET_HW_POLICYa 49 Opt. Static Both Dep. Set current hardware resource sharing policy.

PAL_VERSION 20 Req. Static Both No Return version of PAL code.

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals
for details.

Table 11-51.PAL Machine Check Handling Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_MC_CLEAR_LOGa

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals
for details.

21 Req. Static Both No Clear all error information from processor error
logging registers.

PAL_MC_DRAIN 22 Req. Static Both No Ensure that all operations that could cause an
MCA have completed.

PAL_MC_DYNAMIC_STATE 24 Opt. Static Both No Return Processor Dynamic State for logging by
SAL.

PAL_MC_ERROR_INFO 25 Req. Static Both No Return Processor Machine Check Information
and Processor Static State for logging by SAL.

PAL_MC_ERROR_INJECTa 276 Opt. Stacked Both Dep. Injects the requested processor error or returns
information on the supported injection
capabilities for this particular processor
implementation.

PAL_MC_EXPECTED 23 Req. Static Phys. No Set/Reset Expected Machine Check Indicator.

PAL_MC_HW_TRACKING 51 Opt. Static Both Dep. Query which hardware structures are
performing hardware status tracking

PAL_MC_REGISTER_MEM 27 Req. Static Phys. No Register min-state save area with PAL for
machine checks and inits.

PAL_MC_RESUME 26 Req. Static Phys. No Restore minimal architected state and return to
interrupted process.

Table 11-52.PAL Power Information and Management Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_GET_PSTATE 262 Opt. Stacked Both Dep. Returns information on the performance index
of the processor.

PAL_HALT 28 Opt. Static Phys No Enter the low-power HALT state or an
implementation-dependent low-power state.

PAL_HALT_INFO 257 Req. Stacked Both No Return the low power capabilities of the
processor.

PAL_HALT_LIGHT 29 Req. Static Both No Enter the low power LIGHT HALT state.

PAL_PSTATE_INFO 44 Opt. Static Both No Returns information about the P-states
supported by the processor.

PAL_SET_PSTATEa 263 Opt. Stacked Both Dep. Request processor to enter power/performance
state.

PAL_SHUTDOWN 45 Opt. Static Phys Dep. Puts the processor in a low power state which
can be exited only by a reset event.

Table 11-50.PAL Processor Identification, Features, and Configuration Procedures

Procedure Idx Class Conv. Mode Buffer Description

Volume 2, Part 1: Processor Abstraction Layer 2:357

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals
for details.

Table 11-53.PAL Processor Self Test Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_CACHE_LINE_INITa

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals
for details.

31 Req. Static Phys. No Initialize tags and data of a cache line for
processor testing.

PAL_CACHE_READ 259 Opt. Stacked Phys. No Read tag and data of a cache line for diagnostic
testing.

PAL_CACHE_WRITEa 260 Opt. Stacked Phys. No Write tag and data of a cache for diagnostic
testing.

PAL_TEST_INFO 37 Req. Static Phys. No Returns alignment and size requirements
needed for the memory buffer passed to the
PAL_TEST_PROC procedure as well as
information on self-test control words for the
processor self tests.

PAL_TEST_PROCa 258 Req. Stacked Phys. No Perform late processor self test.

Table 11-54.PAL Support Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_COPY_INFO 30 Req. Static Phys. No Return information needed to relocate PAL
procedures and PAL PMI code to memory.

PAL_COPY_PAL 256 Req. Stacked Phys. No Relocate PAL procedures and PAL PMI code to
memory.

PAL_MEMORY_BUFFERa

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals
for details.

277 Opt. Stacked Phys. No Provides cacheable memory to PAL for
exclusive use during runtime.

PAL_PMI_ENTRYPOINTa 32 Req. Static Phys. No Register PMI memory entrypoints with
processor.

Table 11-55.PAL Virtualization Support Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_VP_CREATE 265 Opt. Stacked Virt. Dep. Initializes a new VPD for the operation of a new
virtual processor in the virtual environment.

PAL_VP_ENV_INFO 266 Opt. Stacked Virt. Dep. Returns the parameters needed to enter a
virtual environment.

PAL_VP_EXIT_ENV 267 Opt. Stacked Virt. Dep. Allows a logical processor to exit a virtual
environment.

PAL_VP_INFO 50 Opt. Static Phys. No Returns information about virtual processor
features.

PAL_VP_INIT_ENV 268 Opt. Stacked Virt. Dep. Allows a logical processor to enter a virtual
environment.

PAL_VP_REGISTER 269 Opt. Stacked Virt. Dep. Register a different host IVT for the virtual
processor.

PAL_VP_RESTORE 270 Opt. Stacked Virt. Dep. Restore virtual processor state on the logical
processor.

2:358 Volume 2, Part 1: Processor Abstraction Layer

11.10.2 PAL Calling Conventions

The following general rules govern the definition of the PAL procedure calling
conventions.

11.10.2.1 Overview of Calling Conventions

There are two calling conventions supported for PAL procedures: static registers only
and stacked registers. Any single PAL procedure will support only one of the two calling
conventions. In addition, PAL procedure may be called in either physical mode
(PSR.it=0, PSR.rt=0, and PSR.dt=0) or virtual mode (PSR.it=1, PSR.rt=1, and
PSR.dt=1).

11.10.2.1.1 Static Registers Only

This calling convention is intended for boot time usage before main memory may be
available or error recovery situations, where memory or the RSE may not be reliable.
All parameters are passed in the lower 32 static general registers. The stacked registers
will not be used within the procedure. No memory arguments may be passed as
parameters to or from PAL procedures written using the static register calling
convention. To avoid RSE activity, static register PAL procedures must be called with the
br.cond instruction, not the br.call instruction. Please refer to Table 11-59 for a detailed
list of the general register usage for static registers only calling convention.

11.10.2.1.2 Stacked Registers

This calling convention is intended for usage after memory has been made available,
and for procedures which require memory pointers as arguments. The stacked registers
are also used for parameter passing and local variable allocation. This convention
conforms to the Itanium Software Conventions and Runtime Architecture Guide. Thus,
procedures using the stacked register calling convention can be written in the C
language. There are two exceptions to the runtime conventions.

1. The first argument to the procedure must also be copied to GR28 prior to making
the procedure call. This allows procedures written using both static and stacked
register calling conventions to call a single PAL_PROC entrypoint. This should be
accomplished by having the stacked register procedures call a stub module which
copies GR32 to GR28, then call PAL_PROC. It is the responsibility of the caller to
provide this stub. Please refer to Table 11-60 for a detailed list of the general
register usage for the stacked register calling convention.

2. Floating point registers 32-127 are preserved (rather than scratch, as in the
normal Itanium Software Conventions), except on the PAL_TEST_PROC
procedure. This allows OSs to avoid having to save and restore these registers
around a stacked-convention PAL procedure call.

PAL_VP_SAVE 271 Opt. Stacked Virt. Dep. Save virtual processor state on the logical
processor.

PAL_VP_TERMINATE 272 Opt. Stacked Virt. Dep. Terminates operation for the specified virtual
processor.

Table 11-55.PAL Virtualization Support Procedures (Continued)

Procedure Idx Class Conv. Mode Buffer Description

Volume 2, Part 1: Processor Abstraction Layer 2:359

11.10.2.1.3 Making PAL Procedure Calls in Physical or Virtual Mode

PAL procedure calls which are made in physical mode must obey the calling conventions
described in this chapter, but there are no additional restrictions beyond those noted
above. PAL procedure calls made in virtual mode must have the region occupied by
PAL_PROC virtually mapped with an ITR. It needs to map this same area with either a
DTR or DTC using the same translation as the ITR. In addition, it must also provide a
DTR or DTC mapping for any memory buffer pointers passed as arguments to a
procedure. It is the responsibility of the caller to provide these mappings.

If the caller chooses to map the PAL_PROC area or any memory pointers with a DTC it
must call the procedure with PSR.ic = 1 to handle any TLB faults that could occur. The
PAL_PROC code needs to be mapped with an ITR. Unpredictable results may occur if it
is mapped with an ITC register.

11.10.2.1.4 Dependence on the PAL Memory Buffer

The PAL_MEMORY_BUFFER procedure must be called to establish a PAL memory buffer
before calling certain PAL procedures that are dependent on the buffer.

11.10.2.2 Processor State

The PAL procedures are only available to the code running at privilege level 0. They
must run in physical mode (unless specified as callable in virtual mode). PAL
procedures are not interruptible by external interrupt or NMI, since PSR.i must be 0
when the PAL procedure is called. PAL procedures are not interruptible by PMI events, if
PSR.ic is 0. If PSR.ic is 1, PAL procedures can be interrupted by PMI events. PAL
procedures can be interrupted by machine checks and initialization events.

Generally PAL procedures will not enable interruptions not already enabled by the caller.
Any PAL call that might cause interruptions (besides data TLB faults, see Section
11.10.2.1.3, “Making PAL Procedure Calls in Physical or Virtual Mode”), must install an
IVA handler to handle them. PAL_TEST_PROC may generate any interruptions it needs
to test the processor.

Table 11-56 defines the requirements for the PSR at entry to and at exit from a PAL
procedure call. The operating system must follow the state requirements for PSR shown
below. PAL procedure calls made by SAL may impose additional requirements.
PAL_TEST_PROC may change PSR bits shown as unchanged in order to test the
processor. These bits will be preserved in this case. PSR bits are described in increasing
bit number order. Any PSR bit numbers not specified are reserved and unchanged.

Table 11-56. State Requirements for PSR

PSR Bit Description Entry Exit Class

be big-endian memory access enable 0 0 preserved

up user performance monitor enable C C unchanged

ac alignment check C C preserved

mfl floating-point registers f2-f31 written C C preserved

mfh floating-point registers f32-f127 written C C preserved

ic interruption state collection enable 0 0 unchanged

1 1 preserved

i interrupt enable 0 0 unchanged

2:360 Volume 2, Part 1: Processor Abstraction Layer

11.10.2.2.1 Definition of Terms

The terms used in the definition of the requirements have the following meaning:

pk protection key validation enable C C unchanged

dt data address translation enablea 0 0 unchanged

1 1 preserved

dfl disabled FP register f2 to f31 0 0 unchanged

dfh disabled FP register f32 to f127b 0 0 unchanged

1 1 unchanged

sp secure performance monitors C C unchanged

pp privileged performance monitor enable C C unchanged

di disable ISA transition C C preserved

si secure interval timer C C unchanged

db debug breakpoint fault enable 0 0 unchanged

lp lower-privilege transfer trap enable 0 0 unchanged

tb taken branch trap enable 0 0 unchanged

rt register stack translation enablea 0 0 unchanged

1 1 preserved

cpl current privilege level 0 0 unchanged

is instruction set 0 0 preserved

mc machine check abort maskc 0 0 preserved

1 1 unchanged

it instruction address translation enablea 0 0 unchanged

1 1 preserved

id instruction debug fault disable 0 0 unchanged

da data access and dirty-bit fault disable 0 0 unchanged

dd data debug fault disable 0 0 unchanged

ss single step trap enable 0 0 unchanged

ri restart instruction 0 0 preserved

ed exception deferral 0 0 preserved

bn register bank 1 1 preserved

ia instruction access-bit fault disable 0 0 unchanged

vm processor virtualization 0 0 unchanged

a. PAL procedures which are called in physical mode must remain in physical mode for the duration of the call.
PAL procedures which are called in virtual mode, may perform specific actions in physical mode, but must
return to the same virtual mode state before returning from the call.

b. PAL_TEST_PROC and an implementation-specific authentication procedure call need to be called with
PSR.dfh equal to 0. If they are not they will return invalid argument. All other PAL procedure calls may be
called with PSR.dfh equal to 0 or 1.

c. Most PAL runtime procedures should be called with PSR.mc = 0 except for code flow involved in handling
machine checks.

Table 11-57. Definition of Terms

Term Description

entry Start of the first instruction of the PAL procedure.

exit Start of the first instruction after return to caller’s code.

Table 11-56. State Requirements for PSR (Continued)

PSR Bit Description Entry Exit Class

Volume 2, Part 1: Processor Abstraction Layer 2:361

11.10.2.2.2 System Registers

The PAL_TEST_PROC procedure may change system registers marked as unchanged in
order to fully test the processor. When this is done, the values of the system registers
will be preserved.

0 Must be zero at entry to the procedure or on exit from the procedure. If the value at entry is
not zero, the procedure may return an illegal argument or execute in an undefined manner.

1 Must be one at entry to the procedure or on exit from the procedure. If the value at entry is
not one, the procedure may return an illegal argument or execute in an undefined manner.

reserved When any input parameter is listed as reserved, this value must be zero. If an input value
has a range of values, any values outside the range, listed as reserved, must not be used.
For either case, the PAL procedure may return an illegal argument or execute in an
undefined manner.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it
must be the same as the value at entry.

unchanged The PAL procedure must not change these values from their entry values during execution
of the procedure.

scratch The PAL procedure may modify these values as necessary during execution of the
procedure. The caller cannot rely on these values.

preserved The PAL procedure may modify these values as necessary during execution of the
procedure. However, they will be restored to their entry values prior to exit from the
procedure.

Table 11-58. System Register Conventions

Name Description Class

DCR Default Control Register preserved

ITM Interval Timer Match Register unchanged

IVA Interruption Vector Address preserveda

PTA Page Table Address preserved

GPTA Guest Page Table Address preserved

IPSR Interruption Processor Status Register scratch

ISR Interruption Status Register scratch

IIP Interruption Instruction Bundle Pointer scratch

IFA Interruption Faulting Address scratch

ITIR Interruption TLB Insertion Register scratch

IIPA Interruption Instruction Previous Address scratch

IFS Interruption Function State scratch

IIM Interruption Immediate Register scratch

IHA Interruption Hash Address scratch

IIB0-1 Interruption Instruction Bundle Registers scratch

LID Local Interrupt ID unchanged

IVR Interrupt Vector Register (read only) unchanged

TPR Task Priority Register unchanged

EOI End Of Interrupt unchanged

IRR0-IRR3 Interrupt Request Registers 0-3 (read only) unchanged

ITV Interval Timer Vector unchanged

PMV Performance Monitoring Vector unchanged

Table 11-57. Definition of Terms

Term Description

2:362 Volume 2, Part 1: Processor Abstraction Layer

11.10.2.2.3 General Registers

PAL will use one of two general register calling conventions described in
Section 11.10.2.1, “Overview of Calling Conventions” on page 2:358, depending on the
availability of memory and the stacked registers at the time of the call. The following
tables describe the contents of the general registers.

CMCV Corrected Machine Check Vector unchanged

LRR0-LRR1 Local Redirection Registers 0-1 unchanged

RR Region Registers preserved

PKR Protection Key Registers preserved

TR Translation Registers unchangedb

TC Translation Cache scratch

IBR/DBR Break Point Registers preservedc

PMC Performance Monitor Control Registers preserved

PMD Performance Monitor Data Registers unchangedd

a. On some implementations, PAL virtualization support procedures may program IVA to a different value. Refer
to the description of the PAL virtualization procedures for details.

b. If an implementation provides a means to read TRs for PAL, this should be preserved.
c. The PAL_MC_ERROR_INJECT may modify these registers if the caller is using the triggering capability.

Refer to “PAL_MC_ERROR_INJECT – Inject Processor Error (276)” on page 2:421 for more information.
d. No PAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance

monitor events during a procedure call. The exception is PAL_TEST_PROC, which tests the performance
counters.

Table 11-59. General Registers – Static Calling Convention

Register Conventions

GR0 always 0

GR1 preserved

GR2 - GR3 scratch, used with 22 bit immediate add

GR4 - GR7 preserved

GR8 - GR11 scratch, procedure return value

GR12 preserved

GR13 unchanged

GR14 - GR27 scratch

GR28 - GR31 input arguments, scratch (PAL index must be passed in GR28)

Bank 0 Registers
(GR16 - GR23)

preserved

Bank 0 Registers
(GR 24 - GR31)

scratch

GR32 - GR127 unchanged

Table 11-60. General Registers – Stacked Calling Conventions

Register Conventions

GR0 always 0

GR1 preserved

GR2 - GR3 scratch, used with 22 bit immediate add

GR4 - GR7 preserved

Table 11-58. System Register Conventions (Continued)

Name Description Class

Volume 2, Part 1: Processor Abstraction Layer 2:363

The caller must initialize SP for physical and virtual procedure calls only prior to calling
a PAL procedure. A minimum 8 KB of room must be available for the stack space of the
PAL procedure. The caller to a PAL procedure should set up the RSE backing store
before making any procedure calls using the stacked calling conventions. The backing
store memory should have a minimum of 8 KB of room for RSE spills.

PAL shall be called with PSR.bn=1. The GR specifications for GR16 through GR31 are
for bank one. The bank zero register requirements are specified as a separate line item.

11.10.2.2.4 Floating-point Registers

Floating point registers 32-127 are preserved. PAL must either not use these, or must
save and restore them, except on the PAL_TEST_PROC procedure, which may overwrite
these registers without preserving them. The remainder of the floating-point register
conventions are the same as those of the Itanium Software Conventions and Runtime
Architecture Guide.

11.10.2.2.5 Predicate Registers

The conventions for the predicate registers follow the Itanium Software Conventions
and Runtime Architecture Guide.

11.10.2.2.6 Branch Registers

The conventions for the branch registers follow the Itanium Software Conventions and
Runtime Architecture Guide.

11.10.2.2.7 Application Registers

GR8 - GR11 scratch, procedure return value

GR12 special, stack pointer (sp)

GR13 special, thread pointer (tp)

GR14 - GR27 scratch

GR28 input argument, scratch (PAL Index must be passed in GR28)

GR29-GR31 scratch

Bank 0 Registers
(GR16 - GR23)

preserved

Bank 0 Registers
(GR 24 - GR31)

scratch

GR32 - GR127 stacked registers;
in0 - in95: input arguments (PAL index must be in0)
loc0 - loc95: local variables
out0 - out95: output arguments

Table 11-61. Application Register Conventions

Register Description Class

KR0-7 Kernel Registers unchanged

RSC Register Stack Configuration Register unchanged

BSP Backing Store Pointer (read only) unchangeda

Table 11-60. General Registers – Stacked Calling Conventions (Continued)

Register Conventions

2:364 Volume 2, Part 1: Processor Abstraction Layer

PAL procedures that use the static calling conventions do not use stacked registers or
the RSE. Therefore RSE internal state and the CFM are unchanged by these procedures.

11.10.2.3 Return Buffers

Any addresses passed to PAL procedures as buffers for return parameters must be
8-byte aligned. Unaligned addresses may cause undefined results.

11.10.2.4 Invalid Arguments

The PAL procedure calling conventions specify rules that must be followed. These rules
specify certain PSR values, they specify that reserved fields and arguments must be
zero filled and specify that values not defined in a range and defined as reserved must
not be used.

If the caller of a PAL procedure does not follow these rules, an invalid argument return
value may be returned or undefined results may occur during the execution of the
procedure. If the caller passes in a PAL procedure index value that is not defined, PAL
will return an Unimplemented procedure (-1) status to the caller.

BSPSTORE Backing Store Pointer for Memory Stores unchangeda

RNAT RSE NaT Collection Register unchangeda

FCR IA-32 Floating-point Control Registers preserved

EFLAG IA-32 EFLAG register preserved

CSD IA-32 Code Segment Descriptor preserved

SSD IA-32 Stack Segment Descriptor preserved

CFLG IA-32 Combined CR0 and CR4 Register preserved

FSR IA-32 Floating-point Status Register preserved

FIR IA-32 Floating-point Instruction Register preserved

FDR IA-32 Floating-point Data Register preserved

CCV Compare and Exchange Compare Value Register scratch

UNAT User NaT Collection Register according to GR class

FPSR Floating-point Status Register preserved

ITC Interval Time Counter unchangedb

RUC Resource Utilization Counter unchangedc

PFS Previous Function State preserved

LC Loop Counter Register preserved

EC Epilog Counter Register preserved

a. BSP, BSPSTORE, and RNAT may not be changed by PAL, but the value at exit may be different due to RSE
activity. PAL_TEST_PROC is an exception to this rule, and the RSE contents may not be relied on after
making this procedure call.

b. No PAL procedure writes to the ITC. The value at exit is the value at entry plus the elapsed time of the
procedure call.

c. No PAL procedure writes to the RUC. The value at exit is the value at entry plus the number of cycles
provided to the processor during the procedure call.

Table 11-61. Application Register Conventions

Register Description Class

Volume 2, Part 1: Processor Abstraction Layer 2:365

11.10.3 PAL Procedure Specifications

The following pages provide detailed interface specifications for each of the PAL
procedures defined in this document. Included in the specification are the input
parameters, the output parameters, and any required behavior.

2:366 Volume 2, Part 1: Processor Abstraction Layer

PAL_BRAND_INFO

PAL_BRAND_INFO – Provides Processor Branding Information
(274)

Purpose: Provides processor branding information.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_BRAND_INFO procedure calls are used to ascertain the processor branding
information.

The info_request input argument for PAL_BRAND_INFO describes which processor
branding information is being requested. The info_request values are split into two
categories: architected and implementation-specific. The architected info_request have
values from 0-15. The implementation-specific info_request have values 16 and above.
The architected info_request are described in this document. The
implementation-specific info_request are described in processor-specific documentation.

This call returns the processor brand information as requested with the info_request
argument. Table 11-62 describes the values.

This procedure will return an invalid argument if an unsupported info_request argument
is passed as an input or a -6 if the requested information was not available on the
current processor.

Argument Description
index Index of PAL_BRAND_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer specifying the information that is being requested. (See Table 11-62)
address Unsigned 64-bit integer specifying the address of the 128-byte block to which the processor

brand string shall be written.
Reserved 0

Return Value Description
status Return status of the PAL_BRAND_INFO procedure.
brand_info Brand information returned. The format of this value is dependent on the input values

passed.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-6 Input argument is not implemented
-9 Call requires PAL memory buffer

Table 11-62. Processor Brand Information Requested

Value Description

0 The ASCII brand identification string will be copied to the address specified in the
address input argument. The processor brand identification string is defined to be a
maximum of 128 characters long; 127 bytes will contain characters and the 128th byte
is defined to be NULL (0). A processor may return less than the 127 ASCII characters
as long as the string is null terminated. The string length will be placed in the
brand_info return argument.

All Other Values Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:367

PAL_BUS_GET_FEATURES

PAL_BUS_GET_FEATURES – Get Processor Bus Dependent
Configuration Features (9)

Purpose: Provides information about configurable processor bus features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Table 11-63 defines the set of possible bus interface features and their bit position in
the return vector. Different busses will implement similar features in different ways. For
example, data error detection may be implemented by ECC or parity. In other cases,
certain features may be tied together. In this case, enabling any one feature in a group
will enable all features in the group, and similarly, disabling any one feature in a group
will disable all features. Caller algorithms should be written to obtain desired results in
these instances. Only those configuration features for which a 1 is returned in
feature_control can be changed via PAL_BUS_SET_FEATURES.

For all values in Table 11-63, the Class field indicates whether a feature is required to
be available (Req.) or is optional (Opt.). The Control field indicates which features are
required to be controllable. These features will either be controllable through this PAL
call or through other hardware means like forcing bus pins to a certain value during
processor reset. The control field applies only when the feature is available.
PALE_CHECK and PALE_INIT should not modify these features. An operating system
should not modify bus features without detailed information about the platform it is
running on.

Argument Description
index Index of PAL_BUS_GET_FEATURES within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_BUS_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-63. (1=implemented, 0=not

implemented)
feature_status 64-bit vector of current feature settings. See Table 11-63.
feature_control 64-bit vector of features controllable by software. (1=controllable, 0= not controllable)

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:368 Volume 2, Part 1: Processor Abstraction Layer

PAL_BUS_GET_FEATURES

Table 11-63. Processor Bus Features

Bits Class Control Description

63 Opt. Req. Disable Bus Data Error Checking. When 0, bus data errors are detected and
single bit errors are corrected. When 1, no error detection or correction is done.

62 Opt. Req. Disable Bus Address Error Signalling. When 0, bus address errors are signalled
on the bus. When 1, no bus errors are signalled on the bus. If Disable Bus
Address Error Checking is 1, this bit is ignored.

61 Opt. Req. Disable Bus Address Error Checking. When 0, bus errors are detected, single
bit errors are corrected., and a CMCI or MCA is generated internally to the
processor. When 1, no bus address errors are detected or corrected.

60 Opt. Req. Disable Bus Initialization Event Signaling. When 0, bus protocol errors (BINIT#)
are signaled by the processor on the bus. When 1, bus protocol errors (BINIT#)
are not signaled on the bus. If Disable Bus Initialization Event Checking is 1,
this bit is ignored.

59 Opt. Req. Disable Bus Initialization Event Checking. When 0, bus protocol errors (BINIT#)
are detected and sampled and an MCA is generated internally to the processor.
When 1, the processor will ignore bus protocol error conditions (BINIT#).

58 Opt. Req. Disable Bus Requester Bus Error Signalling. When 0, BERR# is signalled if a
bus error is detected. When 1, bus errors are not signalled on the bus.

57 Opt. Req. Disable Bus Requester Internal Error Signalling. When 0, BERR# is signalled
when internal processor requestor initiated bus errors are detected. When 1,
internal requester bus errors are not signalled on the bus.

56 Opt. Req. Disable Bus Error Checking. When 0, the processor takes an MCA if BERR# is
asserted. When 1, the processor ignores the BERR# signal.

55 Opt. Req. Disable Response Error Checking. When 0, the processor asserts BINIT# if it
detects a parity error on the signals which identify the transactions to which this
is a response. When 1, the processor ignores parity on these signals.

54 Opt. Req. Disable Transaction Queuing. When 0, the in-order transaction queue is limited
only by the number of hardware entries. When 1, the processor’s in-order
transactions queue is limited to one entry.

53 Opt. Req. Enable a bus cache line replacement transaction when a cache line in the
exclusive state is replaced from the highest level processor cache and is not
present in the lower level processor caches. When 0, no bus cache line
replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

52 Opt. Req. Enable a bus cache line replacement transaction when a cache line in the
shared or exclusive state is replaced from the highest level processor cache
and is not present in the lower level processor caches. When 0, no bus cache
line replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

51:32 N/A N/A Reserved

31 Opt. Opt. Enable Half transfer rate. When 0, the data bus is configured at the 2x data
transfer rate.When 1, the data bus is configured at the 1x data transfer rate,

30 Opt. Req. Disable Bus Lock Mask. When 0, the processor executes locked transactions
atomically. When 1, the processor masks the bus lock signal and executes
locked transactions as a non-atomic series of transactions.

29 Opt. Req. Request Bus Parking. When 0, the processor will deassert bus request when
finished with each transaction. When 1, the processor will continue to assert
bus request after it has finished, if it was the last agent to own the bus and if
there are no other pending requests.

28:0 N/A N/A Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:369

PAL_BUS_SET_FEATURES

PAL_BUS_SET_FEATURES – Set Processor Bus Dependent
Configuration Features (10)

Purpose: Enables/disables specific processor bus features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_BUS_GET_FEATURES should be called to ascertain the implemented processor bus
configuration features, their current setting, and whether they are software
controllable, before calling PAL_BUS_SET_FEATURES. The list of possible processor
features is defined in Table 11-63. Attempting to enable or disable any feature that
cannot be changed will be ignored.

Argument Description
index Index of PAL_BUS_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_BUS_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error

2:370 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_FLUSH

PAL_CACHE_FLUSH – Flush Data or Instruction Caches (1)

Purpose: Flushes the processor instruction or data caches.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Flushes the instruction or data caches controlled by the processor as specified by the
cache_type parameter. Encoding for the cache_type parameter follows:

All other values of cache_type are reserved. If the cache is unified, both instruction and
data lines are flushed, regardless of the value of cache_type.

Flushing all caches containing instructions, causes the instruction and unified caches to
be flushed. Flushing all caches containing data, causes all data and unified caches to be
flushed. Flushing all caches causes all data, instruction, and unified caches to be
flushed.

When the caller specifies to make local instruction caches coherent with the data
caches, this procedure will ensure that the instruction caches on the processor that this
procedure call was made, will see the effects of stores to instruction code performed by
this processor. This procedure is not required to ensure coherency of instruction caches
on other processors in the system when this input argument is used. Refer to
Section 4.4.3, “Cacheability and Coherency Attribute” on page 2:77 for more
information on stores and their coherency requirements with local instruction caches.

The effects of flushing data and unified caches is broadcast throughout the coherence
domain. The effects of flushing instruction caches may or may not be broadcast

Argument Description
index Index of PAL_CACHE_FLUSH within the list of PAL procedures.
cache_type Unsigned 64-bit integer indicating which cache to flush. See Table 11-64.
operation Formatted bit vector indicating the operation of this call. See Figure 11-1.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.

Return Value Description
status Return status of the PAL_CACHE_FLUSH procedure.
vector Unsigned 64-bit integer specifying the vector number of the pending interrupt.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.
Reserved 0

Status Value Description
2 Call completed without error, but a PMI was taken during the execution of this

procedure.
1 Call has not completed flushing due to a pending interrupt
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Table 11-64. cache_type Encoding

Value Description

1 Flush all caches containing instructions.

2 Flush all caches containing data.

3 Flush all caches (instruction and data).

4 Make local instruction caches coherent with the data caches.

Volume 2, Part 1: Processor Abstraction Layer 2:371

PAL_CACHE_FLUSH

throughout the coherence domain. The procedure will perform the necessary
serialization and synchronization as required by the architecture.

This call does not ensure that data in the processors coalescing buffers are flushed to
memory. See Section 4.4.5, “Coalescing Attribute” on page 2:78 on how to flush the
coalescing buffers.

The operation parameter controls how this call will operate. The operation parameter
has the following format:

Figure 11-1. operation Parameter Layout

• inv – 1 bit field indicating whether to invalidate clean lines in the cache.

If this bit is 0, all modified cache lines for the specified cache_type are copied back
to memory. Optimally, modified and non-modified cache lines are left valid in the
specified cache in a clean (non-modified) state. However, based on the processor
implementation, cache lines in the specified cache may alternatively be invalidated.

If this bit is 1, all modified cache lines for the specified cache_type are flushed by
copying the cache line to memory. All cache lines in the specified cache are then
invalidated.

If cache_type is equal to 4 (make local instruction caches coherent with the data
caches) the inv bit will be ignored.

Table 11-65 will clarify the effects of the inv bit. The modified state represents a
cache line that contains modified data. The clean state represents a cache line that
contains no modified data.

• int – 1 bit field indicating if the processor will periodically poll for external interrupts
while flushing the specified cache_type(s).

If this bit is a 0, unmasked external interrupts will not be polled. The processor will
ignore all pending unmasked external interrupts until all cache lines in the specified
cache_type(s) are flushed. Depending on the size of the processor’s caches, bus
bandwidth and implementation characteristics, flushing the caches can take a long
period of time, possibly delaying interrupt response times and potentially causing
I/O devices to fail.

If this bit is a 1, external interrupts will be polled periodically and will exit the
procedure if one is seen. If an unmasked external interrupt becomes pending, this
procedure will return and allow the caller to service the interrupt before all cache
lines in the specified cache_type(s) are flushed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved int inv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-65. Cache Line State when inv = 0

Old State New State Comments

Invalid Invalid

Clean Cleana

a. Based on the processor implementation the cache line can be invalidated or left in a model-specific clean
state

Modified Cleana Modified data is copied back to memory

2:372 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_FLUSH

The progress_indicator is an unsigned 64-bit integer specifying the starting position of
the flush operation. Values in this parameter are model specific and will vary across
processor implementations.

The first time this procedure is called, the progress_indicator must be set to zero. If this
procedure exits due to an external interrupt and this procedure is then again called to
resume flushing, the progress_indicator must be set to the value previously returned by
PAL_CACHE_FLUSH. Software must program no value other than zero or the value
previously returned by PAL_CACHE_FLUSH otherwise behavior is undefined.

This procedure makes one flush pass through all caches specified by cache_type and all
sets and associativities within those caches. The specified cache_type(s) are ensured to
be flushed only of cache lines resident in the caches prior to PAL_CACHE_FLUSH initially
being called with the progress_indicator set to 0.

This procedure ensures that prefetches initiated prior to making this call with
progress_indicator set to 0 are flushed based on the cache_type argument passed.

• If cache_type specifies to flush all instruction caches then the call ensures all prior
instruction prefetches are flushed.

• If cache_type specifies to flush all data caches then the call ensures all prior data
prefetches are flushed.

• If cache_type specifies to flush all caches then the call ensures all prior instruction
and data prefetches are flushed from the caches.

• If cache_type specifies to make local instruction caches coherent with the data
caches, then the call will ensure all prior instruction prefetches are flushed.

Due to the following conditions, software cannot assume that when this procedure
completes the entire flush pass that the specified cache_type(s) are empty of all clean
and/or modified cache lines.

• After an interruption, the flush pass resumes at the interruption point (specified by
progress_indicator). Due to execution of the interrupt handlers during the flush
pass, the specified caches may contain new and possibly modified cache lines in
sections of the caches already flushed. The caller specifies if this procedure should
poll for interrupts via the int bit of the operation parameter.

• Prior prefetches initiated before this procedure is called are disabled and flushed
from the cache as described above. However, if a speculative translation exists in
either the ITLB or DTLB, speculative instruction or data prefetch operation could
immediately reload a non-modified cache line after it was flushed. To ensure
prefetches do not occur, software must remove all speculative translation before

Table 11-66. Cache Line State when inv = 1

Old State New State Comments

Invalid Invalid

Clean Invalid

Modified Invalid Modified data is copied back to memory.

Volume 2, Part 1: Processor Abstraction Layer 2:373

PAL_CACHE_FLUSH

calling this routine. Alternatively, software can disable the TLBs by setting PSR.it,
PSR.dt, and PSR.rt to 0.

• The specified caches may also contain PAL firmware code cache entries required to
flush the cache.

• The specified caches may contain PAL and SAL PMI code if this call was made with
PSR.ic = 1 and a PMI interrupt is seen during the execution of the call.

• The specified caches may contain SAL or OS machine check or INIT code if these
handlers run in a cacheable mode and a machine check or INIT event is seen.

• In a processor that contains multiple logical processors, the specified caches may
contain new and possibly modified cache lines in sections of the cache already
flushed due to execution of instructions on other logical processors that share the
specified caches. Information about how caches are shared among logical
processors is described in the PAL_CACHE_SHARED_INFO procedure on
page 2:382. Information about logical processors on the same physical processor
package are described in the PAL_LOGICAL_TO_PHYSICAL procedure on
page 2:404.

This procedure does ensure that all cache lines resident in the specified cache_type(s)
prior to this procedure being initially called are flushed regardless of intervening
external interrupts. It also ensures that prefetches initiated prior to the initial call to
this procedure that affect the caches specified in cache_type, as described above, are
flushed regardless of intervening external interrupts.

To ensure forward progress, PAL_CACHE_FLUSH advances through the cache flush
sequence at least by one cache line before sampling for pending external interrupts.
The amount of flushing that occurs before interrupts are polled will vary across
implementations.

PAL_CACHE_FLUSH will return the following values to indicate to the caller the status of
the call.

• status – When the call returns a 1, it indicates that the call did not have any errors
but is returning due to a pending unmasked external interrupt. To continue flushing
the caches, the caller must call PAL_CACHE_FLUSH again with the value returned in
the progress_indicator return value.

When the call returns a 0, it indicates that the call completed without any errors. All
cache lines that were present in the cache (when the most recent call to
PAL_CACHE_FLUSH with a progress_indicator of zero) are flushed and possibly
invalidated. All intermediate calls must have used the proper progress_indicator,
otherwise behavior is undefined.

When the call returns a 2, it indicates that the call completed without any errors but
that a PMI was taken during the execution of this call. This indicates to the caller
that all cache lines that were present in the cache (when the most recent call to
PAL_CACHE_FLUSH with a progress_indicator of zero) are flushed but that code
and data related to handling PMIs may be present in the cache.

• vector – If the return status is 1 and this procedure exited due to a pending
unmasked external interrupt, this field returns the interrupt vector number. The
external interrupt will have been removed. The interrupt is considered to be
“in-service” and software must service this interrupt for the specified vector and
then issue EOI. If the return status is not 1, the values returned is undefined.

• progress_indicator – When the return status is 1, specifies the current position in
the flush pass. The value returned is model specific and will vary across processor
implementations. If the return status is not 1, the value returned is undefined.

2:374 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_INFO

PAL_CACHE_INFO – Get Detailed Cache Information (2)

Purpose: Returns information about a particular processor instruction or data cache at a specified
level in the cache hierarchy.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call describes in detail the characteristics of a given processor controlled cache in
the cache hierarchy. It returns information in the config_info_1 and config_info_2
returns parameters.

The config_info_1 return value has the following structure:

• u – Bit that is 1 if the cache is unified and 0 if the cache is split.

• at - 2-bit field denoting cache memory attributes, as follows:

• associativity – Unsigned 8-bit integer denoting the associativity of the cache. A
value of 0 indicates a fully associative cache. A value of 1 indicates a direct mapped
cache.

• line_size – Unsigned 8-bit integer denoting the binary logarithm (log2) of the
minimum write back size of a flush operation to memory or the line size of the

Argument Description
index Index of PAL_CACHE_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is

requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_CACHE_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-2.
config_info_2 The format of config_info_2 is shown in Figure 11-3.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-2. config_info_1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

stride line_size associativity reserved at u

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

load_hints store_hints load_latency store_latency

Table 11-67. Cache Memory Attributes

Value Description

0 Write through cache

1 Write back cache

2-3 Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:375

PAL_CACHE_INFO

cache if the cache contents never get flushed to memory (for example an
instruction cache).

• stride – Unsigned 8-bit integer denoting the binary log of the most effective stride
in bytes for flushing the cache.

• store_latency – Unsigned 8-bit integer denoting the number of cycles after issue
until the value is written into the cache. If the cache cannot accept a store (like an
instruction cache) the value returned will be 256 (0xff).

• load_latency – Unsigned 8-bit integer denoting the number of processor cycles after
issue until the value may be used if it is found in the cache.

• store_hints – 8-bit vector denoting hints implemented by the processor store
instruction. For instruction caches this bit vector will be zero indicating no store
hints are supported.

• load_hints – 8-bit vector denoting hints implemented by the processor load
instruction.

The config_info_2 return value has the following structure:

• cache_size – Unsigned 32-bit integer denoting the size of the cache in bytes.

• alias_boundary – Unsigned 8-bit integer indicating the binary log of the minimum
number of bytes which must separate aliased addresses in order to obtain the
highest performance.

• tag_ls_bit – Unsigned 8-bit integer denoting the least-significant address bit of the
tag.

• tag_ms_bit – Unsigned 8-bit integer denoting the most-significant address bit of the
tag.

Table 11-68. Cache Store Hints

Bits Description

0 Temporal, level 1

2:1 Reserved

3 Non-temporal, all levels

7:4 Reserved

Table 11-69. Cache Load Hints

Bits Hint

0 Temporal, level 1

1 Non-temporal, level 1

2 Reserved

3 Non-temporal, all levels

7:4 Reserved

Figure 11-3. config_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved tag_ms_bit tag_ls_bit alias_boundary

2:376 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_INIT

PAL_CACHE_INIT – Initialize Caches (3)

Purpose: Initializes the processor controlled caches.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Initializes one or all the processor’s caches. The effect of this procedure is to initialize
the caches without causing writebacks. This procedure cannot be used where
coherency is required because any data in the caches will be lost.

The level argument must either be -1, indicating all cache levels, or a non-negative
number indicating the specific level to initialize. In the latter case, level must be in the
range from 0 up to one less than the cache_levels return value from
PAL_CACHE_SUMMARY:

The restrict argument specifies how to handle potential side-effects, where:

All other values of restrict are reserved.

Argument Description
index Index of PAL_CACHE_INIT within the list of PAL procedures.
level Unsigned 64-bit integer containing the level of cache to initialize. If the cache level can be

initialized independently, only that level will be initialized. Otherwise
implementation-dependent side-effects will occur.

cache_type Unsigned 64-bit integer with a value of 1 to initialize the instruction cache, 2 to initialize the
data cache, or 3 to initialize both. All other values are reserved.

restrict Unsigned 64-bit integer with a value of 0 or 1. All other values are reserved. If restrict is 1
and initializing the specified level and cache_type of the cache would cause side-effects,
PAL_CACHE_INIT will return -4 instead of initializing the cache.

Return Value Description
status Return status of the PAL_CACHE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-4 Call could not initialize the specified level and cache_type of the cache without side-effects

and restrict was 1.

Table 11-70. PAL_CACHE_INIT level Argument Values

Value Description

-1 Initializes all cache levels (cache_type and restrict are ignored)

0 to N Initialize only the specified cache level.

Table 11-71. PAL_CACHE_INIT restrict Argument Values

Value Description

0 No restriction: initialize the specified level and cache_type of the cache, even if doing so will
cause side effects in other caches.

1 Restrict initialization to the specified level and cache_type without side effects to other cache
levels. If this cannot be done, return -4.

Volume 2, Part 1: Processor Abstraction Layer 2:377

PAL_CACHE_LINE_INIT

PAL_CACHE_LINE_INIT – Initialize a Data Cache Line (31)

Purpose: Initializes the tags and data of a data or unified cache line of a processor controlled
cache to known values without the availability of backing memory.

Calling Conv: Static

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: A line in the data or unified cache is initialized to the values passed in the arguments of
this procedure. The physical page number of the line is derived from the address value
passed. The tags of the line are set to Private, Dirty, and Valid. The cache line is
initialized using data_value repeated until it fills the line. This procedure replicates
data_value to a size equal to the largest line size in the processor-controlled cache
hierarchy.

This procedure call cannot be used where coherency is required.

Argument Description
index Index of PAL_CACHE_LINE_INIT within the list of PAL procedures.
address Unsigned 64-bit integer value denoting the physical address from which the physical page

number is to be generated. The address must be an implemented physical address, bit 63
must be zero.

data_value 64-bit data value which is used to initialize the cache line.
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_LINE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error

2:378 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_PROT_INFO

PAL_CACHE_PROT_INFO – Get Detailed Cache Protection
Information (38)

Purpose: Returns protection information about a particular processor instruction or data cache at
a specified level in the cache hierarchy.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_CACHE_PROT_INFO returns information about the data and tag protection method
for the specified cache. The three returns compose a six-element array of 32-bit
protection information structures.

The config_info_1 return value has the following structure:

The config_info_2 return value has the following structure:

The config_info_3 return value has the following structure:

Argument Description
index Index of PAL_CACHE_PROT_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is

requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_CACHE_PROT_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-4.
config_info_2 The format of config_info_2 is shown in Figure 11-5.
config_info_3 The format of config_info_3 is shown in Figure 11-6.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-4. config_info_1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[0]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[1]

Figure 11-5. config_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[2]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[3]

Volume 2, Part 1: Processor Abstraction Layer 2:379

PAL_CACHE_PROT_INFO

Each cache_protection element has the following structure:

• data_bits – Unsigned 8-bit integer denoting the number of data bits that each unit
of protection covers. For example, if the cache hardware generates 8 bits of ECC
per 64 bits of data, data_bits would be 64. This field is only valid if t_d is 0, 2, or 3.

• tagprot_lsb – Unsigned 6-bit integer denoting the least-significant tag address bit
that this protection method covers. This field is only valid if t_d is 1, 2, or 3.

• tagprot_msb – Unsigned 6-bit integer denoting the most-significant tag address bit
that this protection method covers. This field is only valid if t_d is 1, 2, or 3.

• prot_bits – Unsigned 6-bit integer denoting the number of protection bits generated
for the field specified by the t_d element.

• method – Unsigned 4-bit integer denoting the protection method, where:

All other values of method are reserved.

• t_d – 2-bit field denoting whether this protection method applies to the tag, the
data, or both. If over both, the tag and data unit could be concatenated with the
tag either to the left (more significant) or to the right (less significant) than a unit
of data. For the values of 2 and 3, the difference of tagprot_msb and tagprot_lsb
indicates the number of tag bits that are protected with the data bits. The data bits
are described by the data_bits field below. This field is encoded as follows:

When obtaining cache information via this call, information for the data cache should be
obtained first, then if the u bit of the config_info_1 parameter is not set, obtain the
information for the instruction cache.

Figure 11-6. config_info_3 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[4]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[5]

Figure 11-7. cache_protection Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_d method prot_bits tagprot_msb tagprot_lsb data_bits

Table 11-72. method Values

Value Description

0 no ECC or parity protection

1 odd parity protection

2 even parity protection

3 ECC protection

Table 11-73. t_d Values

Value Description

0 Data protection

1 Tag protection

2 Tag+data protection (tag is more significant)

3 Data+tag protection (data is more significant)

2:380 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_READ

PAL_CACHE_READ – Read Values from the Processor Cache (259)

Purpose: Reads the data and tag of a processor-controlled cache line for diagnostic testing.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: A value is read from the specified cache line, if present. This procedure allows reading
cache data, tag, protection, or status bits.

The line_id argument is an 8-byte quantity in the following format:

• cache_type – Unsigned 8-bit integer denoting whether to read from instruction (1)
or data/unified (2) cache. All other values are reserved.

• level – Unsigned 8-bit integer specifying which cache within the cache hierarchy to
read. This value must be in the range from 0 up to one less than the cache_levels
return value from PAL_CACHE_SUMMARY.

• way – Unsigned 8-bit integer denoting within which cache way to read. If the cache
is direct-mapped this argument is ignored.

• part – Unsigned 8-bit integer denoting which portion of the specified cache line to
read:

Argument Description
index Index of PAL_CACHE_READ within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to read the data.
address 64-bit 8-byte aligned physical address from which to read the data. The address must be an

implemented physical address on the processor model with bit 63 set to zero.
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_READ procedure.
data Right-justified value returned from the cache line.
length The number of bits returned in data.
mesi The status of the cache line.

Status Value Description
1 The word at address was found in the cache, but the line was invalid.
0 Call completed without error.

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-5 The word at address was not found in the cache.
-7 The operation requested is not supported for this cache_type and level.

Figure 11-8. Layout of line_id Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

part way level cache_type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Volume 2, Part 1: Processor Abstraction Layer 2:381

PAL_CACHE_READ

All other values of part are reserved.

The data return value contains the value read from the cache. Its contents are
interpreted according to the line_id.part field as follows:

The length return value contains the number of valid bits returned in data.

The mesi return value contains the status bits of the cache line. Values are defined as
follows:

All other values of mesi are reserved.

To guarantee correct behavior for this procedure, it is required that there shall be no
RSE activity that may cause cache side effects.

Table 11-74. part Input Values

Value Description

0 data

1 tag

2 data protection bits

3 tag protection bits

4 combined protection bits for data and tagsa

a. Note that for this part no data is returned. Only
protection bits are returned.

Table 11-75. part Input Values and corresponding data Return Values

Part Data

0 64-bit data.

1 right-justified tag of the specified line.

2 right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses
less than 64-bits of data to generate protection, data will contain more than one value. For
example if a cache generates parity for every 8-bits of data, this return value would contain 8
parity values. The PAL_CACHE_PROT_INFO call returns information on how a cache
generates protection information in order to decode this return value. If a cache uses greater
than 64-bits of data to generate protection, data will contain the value to use for the portion of
the cache line indicated by address.

3 right-justified protection bits for the cache line tag.

4 right-justified protection bits for the cache line tag and 64 bits of data at address.

Table 11-76. mesi Return Values

Value Description

0 invalid

1 shared

2 exclusive

3 modified

2:382 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_SHARED_INFO

PAL_CACHE_SHARED_INFO – Get Information on Caches Shared by
Logical Processors (43)

Purpose: Returns information on caches shared between logical processors.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure will return information about how the processor caches are shared
among logical processors (See “PAL_LOGICAL_TO_PHYSICAL – Get Information on
Logical to Physical Processor Mappings (42)” on page 2:404 for a definition of a logical
processor). If the caller is only interested in how many logical processors are sharing a
particular cache level, this procedure will only need to be called once. If the caller is
interested in identifying which logical processors are sharing the processor caches, this
procedure will need to be called a number of times equal to the value returned in
num_shared to gather identification information for all the logical processors sharing
the particular cache for which information is being requested.

Identification information about the logical processors sharing the cache is in the return
values proc_n_cache_info1 and proc_n_cache_info2. The format of these return values
is shown in Figure 11-9 and Figure 11-10.

Argument Description
index Index of PAL_CACHE_SHARED_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is

requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified
cache. All other values are reserved.

proc_number Unsigned 64-bit integer that specifies for which logical processor information is being
requested. This input argument must be zero for the first call to this procedure and can be a
maximum value of one less than the number of logical processors sharing this cache, which
is returned by the num_shared return value.

Return Value Description
status Return status of the PAL_CACHE_SHARED_INFO procedure.
num_shared Unsigned integer that returns the number of logical processors that share the processor

cache level and type, for which information was requested.
proc_n_cache_info1 The format of proc_n_cache_info1 is shown in Figure 11-9.
proc_n_cache_info2 The format of proc_n_cache_info2 is shown in Figure 11-10.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:383

PAL_CACHE_SHARED_INFO

• tid – Thread id: The thread identifier of the logical processor for which information
is being returned. This value will be unique on a per core basis.

• rv – Reserved

• cid – Core id: The core identifier of the logical processor for which information is
being returned. This value will be unique on a per physical processor package basis.

• rv – Reserved

There is no guarantee that the core id's and thread id's will be contiguous on a given
physical processor package.

• la – Logical address: geographical address of the logical processor for which
information is being returned. This is the same value that is returned by the
PAL_FIXED_ADDR procedure when it is called on the logical processor.

• rv – Reserved

This procedure must be supported on all implementations that contain more than one
logical processor on a physical processor package and returns an unimplemented
procedure error code otherwise.

Figure 11-9. Layout of proc_n_cache_info1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv cid

Figure 11-10. Layout of proc_n_cache_info2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv la

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv

2:384 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_SUMMARY

PAL_CACHE_SUMMARY – Get Cache Hierarchy Summary (4)

Purpose: Returns summary information about the hierarchy of caches controlled by the
processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Software is expected to call PAL_CACHE_SUMMARY before calling PAL_CACHE_INFO to
determine the number of times PAL_CACHE_INFO should be called and the amount of
storage that must be allocated to hold all of the information returned by
PAL_CACHE_INFO.

Argument Description
index Index of PAL_CACHE_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_SUMMARY procedure.
cache_levels Unsigned 64-bit integer denoting the number of levels of cache implemented by the

processor. Strictly, this is the number of levels for which the cache controller is integrated
into the processor (the cache SRAMs may be external to the processor).

unique_caches Unsigned 64-bit integer denoting the number of unique caches implemented by the
processor. This has a maximum of 2*cache_levels, but may be less if any of the levels in
the cache hierarchy are unified caches or do not have both instruction and data caches.

Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:385

PAL_CACHE_WRITE

PAL_CACHE_WRITE – Write Values into the Processor Cache (260)

Purpose: Writes the data and tag of a processor-controlled cache line for diagnostic testing.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The value of data is written into the specified level, way, and part of the cache. This
procedure allows writing cache data, tag, protection, or status bits.

This procedure may also be used to seed errors into a cache line. It calculates the
protection bits based on the value of data, then inverts a specified bit field before
writing data to the cache. Bit field inversion is only used for writes to the cache data or
tag.

If seeding an error into the instruction cache or seeding an unrecoverable error, then
return back to the caller may not be possible.

This procedure call cannot be used where coherency is required.

The line_id argument is an 8-byte quantity in the following format:

• cache_type – Unsigned 8-bit integer denoting whether to write to instruction (1) or
data/unified (2) cache. All other values are reserved.

• level – Unsigned 8-bit integer specifying which cache within the cache hierarchy to
write data. This value must be in the range from 0 up to one less than the
cache_levels return value from PAL_CACHE_SUMMARY.

• way – Unsigned 8-bit integer denoting within which cache way to write data. If the
cache is direct-mapped this argument is ignored.

• part – Unsigned 8-bit integer denoting where to write data into the cache:

Argument Description
index Index of PAL_CACHE_WRITE within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to write the data.
address 64-bit 8-byte aligned physical address at which the data should be written. The address must

be an implemented physical address on the processor model with bit 63 set to 0.
data unsigned 64-bit integer value to write into the specified part of the cache.

Return Value Description
status Return status of the PAL_CACHE_WRITE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error.

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-7 The operation requested is not supported for this cache_type and level.

Figure 11-11. Layout of line_id Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

part way level cache_type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

trigger length start mesi

2:386 Volume 2, Part 1: Processor Abstraction Layer

PAL_CACHE_WRITE

All other values of part are reserved.

• mesi – Unsigned 8-bit integer denoting whether the line should be written as clean
or dirty, shared or exclusive. Though there may be multiple calls to
PAL_CACHE_WRITE to the same cache line, the last call’s mesi will be in effect.
Values are defined as follows:

All other values of mesi are reserved.

• start – Unsigned 8-bit integer denoting the least-significant bit of the field in data to
invert. If length is 0 or part is not 0 or 1, this field is ignored.

• length – Unsigned 8-bit integer denoting the number of bits to invert. If length is 0,
no bits are inverted and start is ignored. If part is not 0 or 1, this field is ignored.

• trigger – Unsigned 8-bit integer denoting whether to trigger the error while in
procedure. If trigger is 0, the procedure writes data and returns. If trigger is 1 and
cache_type is data/unified, the procedure writes data and executes a 64-bit load
from address before returning. If trigger is 1 and cache_type is set to instruction,
the procedure writes data and branches to the address. All other values are
reserved.

The data argument contains the value to write into the cache. Its contents are
interpreted based on the part field as follows:

Table 11-77. part Input Values

Value Description

0 data

1 tag

2 data protection

3 tag protection

4 combined data and tag protection

Table 11-78. mesi Return Values

Value Description

0 invalid

1 shared

2 exclusive

3 modified

Table 11-79. Interpretation of data Input Field

Part Data

0 64-bit data to write to the specified line (with optional bit field inversion).

1 right-justified tag to write into the specified line (with optional bit field inversion).

2 right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses less
than 64-bits of data to generate protection, data will contain more than one value. For example if a
cache generates parity for every 8-bits of data, this return value would contain 8 parity values. The
PAL_CACHE_PROT_INFO call returns information on how a cache generates protection
information in order to decode this return value. If a cache uses greater than 64-bits of data to
generate protection, data will contain the value to use for the portion of the cache line indicated by
address.

3 right-justified protection bits for the cache line tag.

4 right-justified protection bits for the cache line tag and 64 bits of data at address.

Volume 2, Part 1: Processor Abstraction Layer 2:387

PAL_CACHE_WRITE

To guarantee correct behavior for this procedure, it is required that there shall be no
RSE activity that may cause cache side effects.

2:388 Volume 2, Part 1: Processor Abstraction Layer

PAL_COPY_INFO

PAL_COPY_INFO – Return Parameters to Copy PAL Code to Memory
(30)

Purpose: Returns the parameters needed to copy relocatable PAL code from the firmware
address space to memory.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to obtain the information needed to relocate runtime PAL
procedures and PAL PMI code from the firmware address space to memory. The
information returned in this call is used by SAL to allocate a memory region on the
required alignment, and call PAL_COPY_PAL to copy the relocatable PAL code.

The copy_type input argument indicates which type of procedure for which copying
information is requested. A value of 0 denotes procedures required for SAL, PMI, and
Itanium architecture-based operating systems. All other values are reserved. If the
copy_type is 0, then SAL shall call PAL_COPY_PAL call subsequently to copy the PAL
procedures and PAL PMI code to the allocated memory region.

The buffer_align return value must be a power of two between 4 KB and 1 MB.

Argument Description
index Index of PAL_COPY_INFO within the list of PAL procedures.
copy_type Unsigned integer denoting type of procedures for which copy information is requested.
Reserved 0
mca_proc_state_i
nfo

Unsigned integer denoting the number of bytes that SAL needs for the min-state save area
for each processor.

Return Value Description
status Return status of the PAL_COPY_INFO procedure.
buffer_size Unsigned integer denoting the number of bytes of PAL information that must be copied to

main memory.
buffer_align Unsigned integer denoting the starting alignment of the data to be copied.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:389

PAL_COPY_PAL

PAL_COPY_PAL – Copy PAL Code to Memory (256)

Purpose: Copy relocatable PAL code from the firmware address space to memory.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to relocate runtime PAL procedures and PAL PMI code from the
firmware address space to main memory. A value of 0 for the copy_option indicates that
the relocation should be performed; a value of 1 indicates that the relocation should not
be performed. This procedure also updates the PALE_PMI entrypoint in hardware. All
other values are reserved.

PAL_COPY_INFO should be called first to determine the size and alignment
requirements of the memory buffer to which the PAL code will be copied. Bit 63 of
target_addr must be set consistently with the cacheability attribute of the memory
buffer being copied to. It is PAL's responsibility to ensure that the firmware address
space contents that are being copied from, are not in any processor caches. It is the
caller’s responsibility to ensure that the contents of the memory buffer copied to, are
flushed out of the internal processor's data caches if target_addr has a cacheable
memory attribute.

If a PAL procedure makes calls to internal PAL functions that execute only out of the
firmware address space, that portion of code will continue to execute out of the
firmware address space, even though the main procedure has been copied to RAM. This
is true only for some PAL procedures that can be called only in physical mode.

PAL_COPY_PAL call is mandatory as part of the system boot process. Higher level
firmware should guarantee that PAL_COPY_PAL is called on all processors before OS
launch. This is to guarantee that full processor functionality is available. This procedure
can be called more than once.

Argument Description
index Index of PAL_COPY_PAL within the list of PAL procedures.
target_addr Physical address of a memory buffer to copy relocatable PAL procedures and PAL PMI code.
alloc_size Unsigned integer denoting the size of the buffer passed by SAL for the copy operation.
copy_option Unsigned integer indicating whether relocatable PAL code and PAL PMI code should be

copied from firmware address space to main memory.

Return Value Description
status Return status of the PAL_COPY_PAL procedure.
proc_offset Unsigned integer denoting the offset of PAL_PROC in the relocatable segment copied.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:390 Volume 2, Part 1: Processor Abstraction Layer

PAL_DEBUG_INFO

PAL_DEBUG_INFO – Get Debug Registers Information (11)

Purpose: Returns the number of instruction and data debug register pairs.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call returns the number of pairs of registers. Even numbered registers contain
breakpoint addresses and odd numbered registers contain breakpoint mask conditions.
For example if i_regs is 4, there are 8 instruction debug registers of which 4 are
breakpoint address registers (IBR0,2,4,6) and 4 are breakpoint mask registers
(IBR1,3,5,7). The minimum value for both i_regs and d_regs is 4.

On some implementations, a hardware debugger may use two or more debug register
pairs for its own use. When a hardware debugger is attached, PAL_DEBUG_INFO may
return a value for i_regs and/or d_regs less than the implemented number of debug
registers. When a hardware debugger is attached, PAL_DEBUG_INFO may return a
minimum value of 2 for d_regs and a minimum of 2 for i_regs.

Argument Description
index Index of PAL_DEBUG_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_DEBUG_INFO procedure.
i_regs Unsigned 64-bit integer denoting the number of pairs of instruction debug registers

implemented by the processor.
d_regs Unsigned 64-bit integer denoting the number of pairs of data debug registers implemented

by the processor.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:391

PAL_FIXED_ADDR

PAL_FIXED_ADDR – Get Fixed Geographical Address of Processor
(12)

Purpose: Returns a unique geographical address of this processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The address return value will contain a unique unsigned integer denoting the position of
this processor on its system interconnect. This is an arbitrary number which is expected
to have geographical significance and is unique for the system interconnect to which
the processor is connected. If the processor is connected to multiple system
interconnects, the address return value must be unique among all such interconnects.
The maximum size of the address returned corresponds to the size of the fields (id and
eid) in the LID register (CR64).

Argument Description
index Index of PAL_FIXED_ADDR call within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FIXED_ADDR procedure.
address Fixed geographical address of this processor.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:392 Volume 2, Part 1: Processor Abstraction Layer

PAL_FREQ_BASE

PAL_FREQ_BASE – Get Processor Base Frequency (13)

Purpose: Returns the frequency of the output clock for use by the platform is generated by the
processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: If the processor outputs a clock for use by the platform, the base_freq return
parameter will be the frequency of this output clock in ticks per second. If the processor
does not generate an output clock for use by the platform, this procedure will return
with a status of -1.

Argument Description
index Index of PAL_FREQ_BASE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FREQ_BASE procedure.
base_freq Base frequency of the platform if generated by the processor chip.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Can not complete call without error

Volume 2, Part 1: Processor Abstraction Layer 2:393

PAL_FREQ_RATIOS

PAL_FREQ_RATIOS – Get Processor Frequency Ratios (14)

Purpose: Returns the ratios of the processor frequency, bus frequency, and interval timer to the
input clock of the processor, if the platform clock is generated externally or to the
output clock to the platform, if the platform clock is generated by the processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Each of the ratios returned is an unsigned 64-bit value, where the upper unsigned 32
bits contain the numerator and the lower unsigned 32 bits contain the denominator of
the ratio, as depicted in Figure 11-12. Each ratio is given by dividing the numerator by
the denominator.

• denominator – Unsigned 32-bit integer

• numerator – Unsigned 32-bit integer

Argument Description
index Index of PAL_FREQ_RATIOS within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FREQ_RATIOS procedure.
proc_ratio Ratio of the processor frequency to the input clock of the processor, if the platform clock is

generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

bus_ratio Ratio of the bus frequency to the input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

itc_ratio Ratio of the interval timer counter rate to input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error

Figure 11-12. Return values

31 0

denominator

63 32

numerator

2:394 Volume 2, Part 1: Processor Abstraction Layer

PAL_GET_HW_POLICY

PAL_GET_HW_POLICY – Retrieve Current Hardware Resource
Sharing Policy (48)

Purpose: Returns the current hardware resource sharing policy of the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure is used to return information on the current hardware resource sharing
policy. This procedure can also be used to identify which logical processors (see
“PAL_LOGICAL_TO_PHYSICAL – Get Information on Logical to Physical Processor
Mappings (42)” on page 2:404 for a definition of a logical processor) are impacted by
the various hardware sharing policies supported on the processor.

The procedure returns information about the current hardware sharing policy, the total
number of logical processors impacted by hardware sharing policies and the logical
address of one of the processors impacted by the hardware sharing policy.

The definition of the hardware sharing policies that can be returned in the cur_policy
value are defined in Table 11-80.

Argument Description
index Index of PAL_GET_HW_POLICY within the list of PAL procedures.
proc_num Unsigned 64-bit integer that specifies for which logical processor information is being

requested. This input argument must be zero for the first call to this procedure and can be a
maximum value of one less than the number of logical processors impacted by the hardware
resource sharing policy, which is returned by the num_impacted return value.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_GET_HW_POLICY procedure.
cur_policy Unsigned 64-bit integer representing the current hardware resource sharing policy.
num_impacted Unsigned 64-bit integer that returns the number of logical processors impacted by the

policy input argument.
la Unsigned 64-bit integer containing the logical address of one of the logical processors

impacted by policy modification.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Volume 2, Part 1: Processor Abstraction Layer 2:395

PAL_GET_HW_POLICY

The return value num_impacted specifies the number of logical processors impacted by
the hardware sharing policy. The return value la returns the logical address of one of
the logical processors impacted by the hardware sharing policy. The return value la is
the same value and format of that is returned by the PAL_FIXED_ADDR procedure, see
“PAL_FIXED_ADDR – Get Fixed Geographical Address of Processor (12)” on page 2:391
for details.

If the caller is interested in identifying all the logical processors impacted by the
hardware sharing policy, this procedure will need to be called a number of times equal
to the value returned in num_impacted return value. For each subsequent call it needs to
increment the 'proc_num' input argument.

The logical processor this procedure is made on can only return information about how
the hardware sharing policy impacts logical processors it is sharing hardware resources
with. For example a physical processor package may contain two multi-threaded cores.
On this example implementation the hardware sharing policy only impacts the two
threads on the core and this procedure would only return the two la's of the threads on
that core, but would not return the la's of the threads on the other core. When this
procedure was made on the other core, then that procedure call would return the la's of
the two threads on that core.

This procedure is only supported on processors that have multiple logical processors
sharing hardware resources that can be configured. On all other processor
implementations, this procedure will return the Unimplemented procedure return
status.

Table 11-80. Hardware policies returned in cur_policy

Value Name Description

0 Performance The processor has its hardware resources configured to achieve
maximum performance across all logical processors that share
hardware with the logical processor the procedure was made on.

1 Fairness The processor has its hardware resources configured to
approximately achieve equal sharing of competing hardware
resources among all the logical processors that share hardware
with the logical processor the procedure was made on.

2 High-priority The processor has its hardware resources configured such that the
logical processor this procedure was called on has a greater share
of the competing hardware resources.

3 Exclusive High-priority The processor has its hardware resources configured such that the
logical processor this procedure was called on has a greater share
of the competing hardware resources. See
“PAL_SET_HW_POLICY – Set Current Hardware Resource
Sharing Policy (49)” on page 2:456 for differences between
high-priority and exclusive high priority.

4 Low-priority The processor has its hardware resources configured such that the
logical processor this procedure was called on has a smaller share
of the competing hardware resources. This occurs when a
competing logical processor has itself set as high priority or
exclusive high priority.

All Other Values Reserved

2:396 Volume 2, Part 1: Processor Abstraction Layer

PAL_GET_PSTATE

PAL_GET_PSTATE – Return Information on the Performance Index
of the Processor (262)

Purpose: Returns the performance index of the processor.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure returns a performance index of the processor, and is relative to the
highest available P-state, P0. A value of 100 represents the minimum processor
performance in the P0 state. For processors that support variable P-state performance,
it is possible for a processor to report a number greater than 100, representing that the
processor is running at a performance level greater than the minimum P0 performance.
The PAL procedure “PAL_PROC_GET_FEATURES – Get Processor Dependent Features
(17)” on page 2:446 indicates whether the processor supports variable P-state
performance.

The type argument allows the caller to select the performance_index value that will be
returned. See Table 11-81 below for details.

Argument Description
index Index of PAL_GET_PSTATE within the list of PAL procedures.
type Type of performance_index value to be returned by this procedure.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_GET_PSTATE procedure.
performance_index Unsigned integer denoting the processor performance for the time duration since the

last PAL_GET_PSTATE procedure call was made. The value returned is relative to the
performance index of the highest available P-state.

Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but accuracy of performance index has been impacted by a

thermal throttling event, or a hardware-initiated event.
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Volume 2, Part 1: Processor Abstraction Layer 2:397

PAL_GET_PSTATE

For SCDD logical processors, or HIDD logical processors that do not support platform
power-caps, note that the performance_index returned for type=0 and type=3 will have
identical values. This is because the most recent PAL_SET_PSTATE procedure call that
returned a status of 0 will always succeed in transitioning to the requested performance
state for these coordination domains (see PAL_SET_PSTATE procedure description for
additional details).

For SCDD logical processors, the PAL_GET_PSTATE procedure should always be called
with type argument value of 0 or 3. On such processors, calling PAL_GET_PSTATE with
type argument value of 1 or 2 is undefined.

For HIDD logical processors, the type argument values of 1 and 2 are supported, since
such processors can also support platform power-caps, which affect the
weighted-average performance index.

If there was a thermal-throttling or hardware-initiated event (other than a platform
power-cap) which affected the processor power/performance for the current time
period, and the accuracy of the performance_index value has been impacted by the
event, then the procedure will return with status=1. The performance_index returned in
this case will still have a value that falls within the range of possible performance_index
values for this processor implementation (i.e., 0 up to the highest variable p-state
performance_index value).

The procedure, when called with type=1 or type=2, returns a fixed performance_index
value of 100 until the procedure has been called with type=1 to reset computation of
the weighted-average performance_index. For subsequent invocations with type=1 or

Table 11-81. PAL_GET_PSTATE type Argument

type Description

0 The performance_index returned will correspond to the target P-state requested by software.

• For SCDD (software-coordinated dependency domain) logical processors, this is the
P-state requested by the most recent PAL_SET_PSTATE procedure call made by any
logical processor in the domain.

• For HCDD (hardware-coordinated dependency domain) or HIDD (hardware-independent
dependency domain) logical processors, this is simply the P-state requested by the most
recent PAL_SET_PSTATE procedure call on this logical processor.

The value returned is not affected by platform power-caps.

1 The performance_index is a weighted-average value of the different P-states that the
processor was operating in for the time duration between the current PAL_GET_PSTATE
procedure call, and the previous invocation of PAL_GET_PSTATE with type=1. This allows
the caller to establish a new starting point for subsequent computation of the
weighted-average performance_index. See Section 11.6.1, “Power/Performance States
(P-states)” on page 2:315 for more details on how the weighted average value is derived.

2 The performance_index is a weighted-average value of the different P-states that the
processor was operating in for the time duration between the current PAL_GET_PSTATE
procedure call, and the previous invocation of PAL_GET_PSTATE with type=1. This allows
the caller to sample the current value of the performance_index, without affecting the starting
point used for computing the weighted-average performance_index.

3 The performance_index returned will correspond to the current instantaneous P-state of the
dependency domain containing the logical processor, at the time of the procedure call. The
value returned is not affected by platform power-caps. When variable P-states performance
is supported, the performance_index may be higher than the P-state requested. Please see
Section 11.6.1.4, “Variable P-state Performance” on page 2:322 for more information about
variable P-state performance.

All Other Values Reserved

2:398 Volume 2, Part 1: Processor Abstraction Layer

PAL_GET_PSTATE

type=2, the procedure will return the performance_index value corresponding to the
processor performance in the time duration between the previous call to
PAL_GET_PSTATE with type=1 and the current call.

If the processor had transitioned to a HALT state (see Section 11.6.1,
“Power/Performance States (P-states)” on page 2:315) in between successive
invocations to the PAL_GET_PSTATE procedure, the performance index computation
returned will not take into account the performance of the processor during the time
spent in HALT state (see Section 11.6.1.5, “Interaction of P-states with HALT State” on
page 2:323 for details).

Volume 2, Part 1: Processor Abstraction Layer 2:399

PAL_HALT

PAL_HALT – Halt Processor (28)

Purpose: Causes the processor to enter the HALT state, or one of the implementation-dependent
low-power states.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call places the processor in a low power state designated by halt_state. This
procedure can optionally let the platform know it is about to enter the low power state
via an I/O transaction.

halt_state is an unsigned 64-bit integer denoting the low power state requested. The
value passed must be a valid halt state in the range from 1 to 7, for which information
is returned by PAL_HALT_INFO. All other values are reserved.

The processor informs the platform that it has entered the requested low-power state in
an implementation-specific manner.

The layout of the information pointed to by the io_detail_ptr is shown Table 11-82.

• I/O size and type information has the format shown in Figure 11-13.

Argument Description
index Index of PAL_HALT within the list of PAL procedures.
halt_state Unsigned 64-bit integer denoting low power state requested.
io_detail_ptr 8-byte aligned physical address pointer to information on the type of I/O (load/store)

requested.
Reserved 0

Return Value Description
status Return status of the PAL_HALT procedure.
load_return Value returned if a load instruction is requested in the io_detail_ptr
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Table 11-82. I/O Detail Pointer Description

Offset Description

0x0 I/O size and type information

0x8 Address for I/O

0x10 Data value to store

Figure 11-13. I/O Size and Type Information Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved I/O size I/O type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

2:400 Volume 2, Part 1: Processor Abstraction Layer

PAL_HALT

• I/O type is an unsigned 8-bit integer denoting the type of I/O transaction to
complete.

All other values for I/O type are reserved.

• I/O size is an unsigned 8-bit integer denoting the size of the I/O transaction to
complete.

All other values for I/O size are reserved.

• Address for the I/O transaction is a physical pointer for the load or store. The
address passed should be aligned according to the size of the I/O transaction
requested. The most significant bit (63) of the physical address should be set
according to the cacheability attribute wanted for the I/O transaction.

• The data value to store is the value that will be stored out if the io_type is 2. If
io_type is not equal to a 2, then this value is a don’t care.

If an I/O transaction is requested by the caller, the processor will wait until this
transaction has been received by the platform before entering the low power state.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt
(including NMI), PAL transitions the processor to the normal state. An unmasked
external interrupt is defined to be an interrupt that is permitted to interrupt the
processor based on the current setting of the TPR.mic and TPR.mmi fields in the TPR
control register. PAL sets the value in the load_return return parameter if the io_type is
1, otherwise this value is set to zero.

If the processor transitions to normal state via an unmasked external interrupt,
execution resumes to the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if
PMIs are masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution
resumes to the caller if machine checks and INITs are masked, otherwise execution will
resume to the corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will
reset itself and start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6, “Power
Management” on page 2:313.

Table 11-83. I/O Type Definition

Value Description

0 No transaction

1 Perform a load

2 Perform a store

Table 11-84. I/O Size Definition

Value Description

0 No transaction

1 1 byte size

2 2 byte size

4 4 byte size

8 8 byte size

Volume 2, Part 1: Processor Abstraction Layer 2:401

PAL_HALT_INFO

PAL_HALT_INFO – Get Halt State Information for Power
Management (257)

Purpose: Returns information about the processor’s power management capabilities.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The power information requested is returned in the data buffer referenced by
power_buffer. Power information is returned about the 8 power states. The low power
states are LIGHT_HALT, HALT, plus 6 other low power states. The LIGHT_HALT state is
index 0 in the buffer, and the HALT state is index 1. All 8 low power states need not be
implemented

The information returned is in the format of Figure 11-14. The information about the
HALT states will be in ascending order of the index values.

• exit latency – 16-bit unsigned integer denoting the minimum number of processor
cycles to transition to the NORMAL state.

• entry_latency – 16-bit unsigned integer denoting the minimum number of
processor cycles to transition from the NORMAL state.

• power_consumption – 28-bit unsigned integer denoting the typical power
consumption of the state, measured in milliwatts.

• im – 1-bit field denoting whether this low power state is implemented or not. A
value of 1 indicates that the low power state is implemented, a value of 0 indicates
that it is not implemented. If this value is 0 then all other fields are invalid.

• co – 1-bit field denoting if the low power state maintains cache and TLB coherency.
A value of 1 indicates that the low power state keeps the caches and TLBs coherent,
a value of 0 indicates that it does not.

Argument Description
index Index of PAL_HALT_INFO within the list of PAL procedures.
power_buffer 64-bit pointer to a 64-byte buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_HALT_INFO procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-14. Layout of power_buffer Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

entry_latency exit_latency

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv co im power_consumption

2:402 Volume 2, Part 1: Processor Abstraction Layer

PAL_HALT_INFO

The latency numbers given are the minimum number of processor cycles that will be
required to transition the states. The maximum or average cannot be determined by
PAL due to its dependency on outstanding bus transactions.

For more information on power management, please refer to Section 11.6, “Power
Management” on page 2:313.

Volume 2, Part 1: Processor Abstraction Layer 2:403

PAL_HALT_LIGHT

PAL_HALT_LIGHT – Cause Processor to Enter Coherent Halt State
(29)

Purpose: Causes the processor to enter the LIGHT HALT state, where prefetching and execution
are suspended, but cache and TLB coherency is maintained.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call places the processor in the LIGHT HALT state in an implementation-dependent
fashion where cache and TLB coherency is maintained, but power consumption is
minimized.

The processor acknowledges to the platform that it has entered the LIGHT HALT
low-power state in an implementation-specific manner.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt
(including NMI), PAL transitions the processor to the normal state. An unmasked
external interrupt is defined to be an interrupt that is permitted to interrupt the
processor based on the current setting of the TPR.mic and TPR.mmi fields in the TPR
control register.

If the processor transitions to normal state via an unmasked external interrupt,
execution resumes to the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if
PMIs are masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution
resumes to the caller if machine checks and INITs are masked, otherwise execution will
resume to the corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will
reset itself and start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6, “Power
Management” on page 2:313.

Argument Description
index Index of PAL_HALT_LIGHT within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_HALT_LIGHT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:404 Volume 2, Part 1: Processor Abstraction Layer

PAL_LOGICAL_TO_PHYSICAL

PAL_LOGICAL_TO_PHYSICAL – Get Information on Logical to
Physical Processor Mappings (42)

Purpose: Returns information on the logical to physical processor mapping.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure will return information about the logical processors contained on the
physical processor package that the procedure call is made on. A physical processor
package can contain one or more logical processors, organized into threads and cores.
A logical processor is a compute-capability-centric view of the CPU that allows the
physical processor package to execute from more than one instruction stream. A
physical processor package that can execute from n instruction streams has n logical
processors. Threads are logical processors that share core pipeline execution resources.
Cores are defined as a collection of hardware that implements the main execution
pipeline of the processor. Multiple cores on a physical processor package do not share
core pipeline resources but may share caches and bus interfaces. A core may support
multiple threads of execution.

The log_overview return value provides an overview of the logical processors on the
physical processor package this procedure call was made on. The format of the
log_overview return argument is shown in Figure 11-15.

Argument Description
index Index of PAL_LOGICAL_TO_PHYSICAL within the list of PAL procedures.
proc_number Signed 64-bit integer that specifies for which logical processor information is being

requested. When this input argument is -1, information is returned about the logical
processor on which the procedure call is made. This input argument must be in the range of
-1 up to one less than the number of logical processors returned by num_log in the
log_overview return value.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_LOGICAL_TO_PHYSICAL procedure.
log_overview The format of log_overview is shown in Figure 11-15.
proc_n_log_info1 The format of proc_n_log_info1 is shown in Figure 11-16.
proc_n_log_info2 The format of proc_n_log_info2 is shown in Figure 11-17.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:405

PAL_LOGICAL_TO_PHYSICAL

• num_log – Total number of logical processors on this physical processor package
that are enabled.

• tpc – Threads per core. Number of threads per core.

• rv – Reserved

• cpp – Cores per processor. Total number of cores on this physical processor
package.

• rv – Reserved

• ppid – Physical processor package ID. Physical processor package identifier which
was assigned at reset by the platform or bus controller. This value may or may not
be unique across the entire platform since it depends on the platform vendor's
policy.

• rv – Reserved

It is not ensured that num_log will always be equal to cpp multiplied by tpc. This is
possible if some logical processors are disabled through implementation specific means.

The caller uses the value returned in num_log to gather additional information about
the other logical processors on the same physical processor package. This procedure
will need to be called multiple times (equal to the number of logical processors returned
in num_log) to gather all additional information about the logical processors on the
physical processor package this procedure call was made on. This procedure may be
called from any logical processor on the physical processor package to gather
information about all the logical processors. It may also be called to get information
about the logical processor on which the procedure is running. Information about the
logical processors is in the return values proc_n_log_info1 and proc_n_log_info2. The
format of these return values is shown in Figure 11-16 and Figure 11-17.

• tid – Thread id: The thread identifier of the logical processor for which information
is being returned. This value will be unique on a per core basis.

• rv – Reserved

• cid – Core id: The core identifier of the logical processor for which information is
being returned. This value will be unique on a per physical processor package basis.

• rv – Reserved

There is no guarantee that the core id's and thread id's will be contiguous on a given
physical processor package.

Figure 11-15. Layout of log_overview Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tpc num_log

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv ppid rv cpp

Figure 11-16. Layout of proc_n_log_info1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv cid

2:406 Volume 2, Part 1: Processor Abstraction Layer

PAL_LOGICAL_TO_PHYSICAL

• la – Logical address: geographical address of the logical processor for which
information is being returned. This is the same value that is returned by the
PAL_FIXED_ADDR procedure when it is called on the logical processor.

• rv – Reserved

This procedure must be supported on all implementations that contain more than one
logical processor on a physical processor package and returns an unimplemented
procedure error code otherwise.

Figure 11-17. Layout of proc_n_log_info2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv la

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv

Volume 2, Part 1: Processor Abstraction Layer 2:407

PAL_MC_CLEAR_LOG

PAL_MC_CLEAR_LOG – Clear Processor Error Logging Registers
(21)

Purpose: Clears all processor error logging registers and resets the indicator that allows the error
logging registers to be written. This procedure also checks the pending machine check
bit and pending INIT bit and reports their states.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to clear processor error logging registers after all error
information has been obtained. This procedures re-enables the logging registers in the
case of a subsequent error. It clears any information that would be returned by either
the PAL_MC_ERROR_INFO or PAL_MC_DYNAMIC_STATE procedures.

This procedure does not clear any pending machine checks. The pending return
parameter returns a value of 0 if no subsequent event is pending, a 1 in bit position 0,
if a machine check is pending, and/or a 1 in bit position 1 if an INIT is pending. All other
values are reserved.

Argument Description
index Index of PAL_MC_CLEAR_LOG within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_CLEAR_LOG procedure.
pending 64-bit vector denoting whether an event is pending.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-18. Pending Return Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved in mc

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-85. Pending Return Parameter Fields

Field Description

mc Pending machine check

in Pending initialization event

2:408 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_DRAIN

PAL_MC_DRAIN – Complete Outstanding Transactions (22)

Purpose: Ensures that all outstanding transactions in a processor are completed or that any MCA
due to these outstanding transactions is taken.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call causes all outstanding transactions in the processor to be completed. For
example:

• Flushes (fc) invalidate the cache, lines that have been modified are written back
(issued to the fabric) to memory before invalidation.

• Instruction cache coherence flushes (fc.i) invalidate lines and/or write them back
to main memory, if this is required to make the instruction caches coherent with the
data caches.

• Loads get their data returned.

• Stores either update the cache or issue transactions to the system fabric.

• Prefetches are either completed or cancelled,

As a result of completing these outstanding transactions Machine Check Aborts (MCAs)
may be taken. This call is typically issued by code that needs to guarantee that no
MCAs due to outstanding transactions will occur after a given point.

Argument Description
index Index of PAL_MC_DRAIN within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_DRAIN procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:409

PAL_MC_DYNAMIC_STATE

PAL_MC_DYNAMIC_STATE – Returns Dynamic Processor State (24)

Purpose: Returns the Machine Check Dynamic Processor State.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The info_type input argument designates the type of information the procedure will
return. When info_type is 0, the procedure returns the maximum size (in bytes) of
processor dynamic state that can be returned for this processor family in the max_size
return value.

When info_type is 1, the procedure will copy processor dynamic state into memory
pointed to by the input argument dy_buffer. This copy will occur using the addressing
attributes used to make the procedure call (physical or virtual) and the caller needs to
ensure the dy_buffer input pointer matches this addressing attribute.

The amount of data returned can vary depending on the state of the machine at the
time the procedure is called, and may not always return the maximum size for every
call. The amount of data returned is provided in the processor state parameter field
dsize. Please see Table 11-7 for more information on the processor state parameter. The
caller of the procedure needs to ensure that the buffer is large enough to handle the
max_size that is returned by this procedure.

The contents of the processor dynamic state is implementation dependent. Portions of
this information may be cleared by the PAL_MC_CLEAR_LOG procedure. This procedure
should be invoked before PAL_MC_CLEAR_LOG to ensure all the data is captured.

Argument Description
index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.
info_type Unsigned 64-bit value indicating the type of information to return
dy_buffer 64-bit pointer to a buffer aligned on an 8-byte boundary
Reserved 0

Return Value Description
status Return status of the PAL_MC_DYNAMIC_STATE procedure.
max_size Maximum size (in bytes) of the data that can be returned by this procedure for this processor

family.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

2:410 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INFO

PAL_MC_ERROR_INFO – Get Processor Error Information (25)

Purpose: Returns the Processor Machine Check Information

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure returns error information for machine checks as specified by info_index,
level_index and err_type_index. Higher level software is informed that additional
machine check information is available when the processor state parameter mi bit is set
to one. See Table 11-7, “Processor State Parameter Fields,” on page 2:299 for more
information on the processor state parameter and the mi bit description.

The info_index argument specifies which error information is being requested. See
Table 11-86 for the definition of the info_index values.

Argument Description
index Index of PAL_MC_ERROR_INFO within the list of PAL procedures.
info_index Unsigned 64-bit integer identifying the error information that is being requested. (See

Table 11-86).
level_index 8-byte formatted value identifying the structure to return error information on.(See

Figure 11-19).
err_type_index Unsigned 64-bit integer denoting the type of error information that is being requested for the

structure identified in level_index.

Return Value Description
status Return status of the PAL_MC_ERROR_INFO procedure.
error_info Error information returned. The format of this value is dependant on the input values passed.
inc_err_type If this value is zero, all the error information specified by err_type_index has been returned. If

this value is one, more structure-specific error information is available and the caller needs to
make this procedure call again with level_index unchanged and err_type_index,
incremented.

Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-6 Argument was valid, but no error information was available

Volume 2, Part 1: Processor Abstraction Layer 2:411

PAL_MC_ERROR_INFO

All other values of info_index are reserved. When info_index is equal to 0 or 1, the
level_index and err_type_index input values are ignored. When info_index is equal to
2, the level_index and err_type_index define the format of the error_info return value.

The caller is expected to first make this procedure call with info_index equal to zero to
obtain the processor error map. This error map informs the caller about the processor
core identification, the processor thread identification and indicates which structure(s)
caused the machine check. If more than one structure generated a machine check,
multiple structure bits will be set. The caller then uses this information to make
sub-sequent calls to this procedure for each structure identified in the processor error
map to obtain detailed error information.

The level_index input argument specifies which processor core, processor thread and
structure for which information is being requested. See Table 11-87 on page 2:412 for
the definition of the level_index fields. This procedure call can only return information
about one processor structure at a time. The caller is responsible for ensuring that only
one structure bit in the level_index input argument is set at a time when retrieving
information, otherwise the call will return that an invalid argument was passed.

Table 11-86. info_index Values

info_index Error Information Type Description

0 Processor Error Map This info_index value will return the processor
error map. This return value specifies the
processor core identification, the processor
thread identification, and a bit-map indicating
which structure(s) of the processor generated the
machine check. This bit-map has the same layout
as the level_index. A one in the structure bit-map
indicates that there is error information available
for the structure. The layout of the level_index is
described in Figure 11-19, “level_index Layout”
on page 2:411.

1 Processor State Parameter This info_index value will return the same
processor state parameter that is passed at the
PALE_CHECK exit state for a machine check
event (provided a valid min-state save area has
been registered) or will construct a processor
state parameter for a corrected machine check
events. This parameter describes the severity of
the error and the validity of the processor state
when the machine check or CMCI occurred. This
procedure will not return a valid PSP for INIT
events. The Processor State Parameter is
described in Figure 11-11, “Processor State
Parameter,” on page 2:299.

2 Structure-specific Error Information This info_index value will return error information
specific to a processor structure. The structure is
specified by the caller using the level_index and
err_type_index input parameters. The value
returned in error_info is specific to the structure
and type of information requested.

Figure 11-19. level_index Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

erf ebh edt eit edc eic tid cid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

2:412 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INFO

The convention for levels and hierarchy in the level_index field is such that the least
significant bit in the error information bit-fields represent the lowest level of the
structures hierarchy. For example bit 8 if the eic field represents the first level
instruction cache.

The erf field is 4-bits wide to allow reporting of 4 concurrent register related machine
checks at one time. One bit would be set for each error. The ems field is 16-bits wide to
allow reporting of 16-concurrent micro-architectural structures at one time. There is no
significance in the order of these bits. If only one register file related error occurred, it
could be reported in any one of the 4-bits.

The err_type_index specifies the type of information will be returned in error_info for a
particular structure. See Table 11-88 for the values of err_type_index

rsvd ems

Table 11-87. level_index Fields

Field Bits Description

cid 3:0 Processor core ID (default is 0 for processors with a single core)

tid 7:4 Logical thread ID (default is 0 for processors that execute a single thread)

eic 11:8 Error information is available for 1st, 2nd, 3rd, and 4th level instruction caches

edc 15:12 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified caches

eit 19:16 Error information is available for 1st, 2nd, 3rd, and 4th level instruction TLB

edt 23:20 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified TLB

ebh 27:24 Error information is available for the 1st, 2nd, 3rd, and 4th level processor bus
hierarchy

erf 31:28 Error information is available on register file structures

ems 47:32 Error information is available on micro-architectural structures

rsvd 63:48 Reserved

Table 11-88. err_type_index Values

err_type_index
value mod 8

Return Value Description

0 Structure-specific error information
specified by level_index

The information returned in error_info is dependant
on the structure specified in level_index. See
Table 11-89 for the error_info return formats.

1 Target address The target address is a 64-bit integer containing the
physical address where the data was to be
delivered or obtained. The target address also can
return the incoming address for external snoops
and TLB shoot-downs that generated a machine
check. The structure-specific error information
informs the caller if there is a valid target address to
be returned for the requested structure.

2 Requester identifier The requester identifier is a 64-bit integer that
specifies the bus agent that generated the
transaction responsible for generating the machine
check. The structure-specific error information
informs the caller if there is a valid requester
identifier.

Figure 11-19. level_index Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Volume 2, Part 1: Processor Abstraction Layer 2:413

PAL_MC_ERROR_INFO

See Table 11-89 for the format of error_info when structure-specific information is
requested.

The structure specified by the level_index may have the ability to log distinct multiple
errors. This can occur if the structure is accessed at the same time by more than one
instruction and the processor can log machine check information for each access. To
inform the caller of this occurrence, this procedure will return a value of one in the
inc_err_type return value.

It is important to note, that when the caller sees that the inc_err_type return value is
one, it should make a sub-sequent call with the err_type_index value incremented by
8. If the structure-specific error information returns that there is a valid target address,
requester identifier, responder identifier or precise instruction pointer these can be
returned as well by incrementing the err_type_index value in the same manner. Refer
to the following example for more information.

For example, to gather information on the first error of a structure that can log multiple
errors, err_type_index would be called with the value of 0 first. The caller examines the
information returned in error_info to know if there is a valid target address, requester
identifier, responder identifier, or precise instruction pointer available for logging. If
there is, it makes sub-sequent calls with err_type_index equal to 1, 2, 3 and/or 4
depending on which valid bits are set. Additionally if the inc_err_type return value was
set to one, the caller knows that this structure logged multiple errors. To get the second
error of the structure it sets the err_type_index = 8 and the structure-specific
information is returned in error_info. The caller examines this error_info to know if
there is a valid target address, requester identifier, responder identifier, or precise

3 Responder identifier The responder identifier is a 64-bit integer that
specifies the bus agent that responded to a
transaction that was responsible for generating the
machine check. The structure-specific error
information informs the caller if there is a valid
responder identifier.

4 Precise instruction pointer The precise instruction pointer is a 64-bit virtual
address that points to the bundle that contained the
instruction responsible for the machine check. The
structure-specific error information informs the
caller if there is a valid precise instruction pointer.

5-7 Reserved Reserved

Table 11-89. error_info Return Format when info_index = 2 and
err_type_index = 0

level_index
Field Input

error_info Return Format

eic cache_check return format

edc cache_check return format

eit tlb_check return format

edt tlb_check return format

ebh bus_check return format

erf reg_file_check return format

ems uarch_check return format

Table 11-88. err_type_index Values (Continued)

err_type_index
value mod 8

Return Value Description

2:414 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INFO

instruction pointer available for logging on the second error. If there is, it makes
sub-sequent calls with err_type_index equal to 9, 10, 11, and/or 12 depending on
which valid bits are set. The caller continues incrementing the err_type_index value in
this fashion until the inc_err_type return value is zero.

As shown in Table 11-89, the information returned in error_info varies based on which
structure information is being requested on. The next sections describe the error_info
return format for the different structures.

Cache_Check Return Format: The cache check return format is returned in
error_info when the user requests information on any instruction or data/unified caches
in the level_index input argument. The cache_check return format must be used to
report errors in cacheable transactions. These errors may also be reported using the
bus_check return format if the bus structures can detect these errors. The cache_check
return format is a bit-field that is described in Figure 11-20 and Table 11-90.

Figure 11-20. cache_check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hlth rsvd dp rv wiv way mv mesi ic dc tl dl rsvd level op

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is rsvd index

Table 11-90. cache_check Fields

Field Bits Description

op 3:0 Type of cache operation that caused the machine check:
0 – unknown or internal error
1 – load
2 – store
3 – instruction fetch or instruction prefetch
4 – data prefetch (both hardware and software)
5 – snoop (coherency check)
6 – cast out (explicit or implicit write-back of a cache line)
7 – move in (cache line fill)
All other values are reserved.

level 5:4 Level of cache where the error occurred. A value of 0 indicates the first level of cache.

rsvd 7:6 Reserved

dl 8 Failure located in the data part of the cache line.

tl 9 Failure located in the tag part of the cache line.

dc 10 Failure located in the data cache

ic 11 Failure located in the instruction cache

mesi 14:12 0 – cache line is invalid.
1 – cache line is held shared.
2 – cache line is held exclusive.
3 – cache line is modified.
All other values are reserved.

mv 15 The mesi field in the cache_check parameter is valid.

way 20:16 Failure located in the way of the cache indicated by this value.

wiv 21 The way and index field in the cache_check parameter is valid.

rsvd 22 Reserved

dp 23 An uncorrectable (typically multiple-bit) error was detected and data was poisoned for the
corresponding cache line, without any corrupted data being consumed (i.e., no corrupted
data has been copied to processor registers).

Volume 2, Part 1: Processor Abstraction Layer 2:415

PAL_MC_ERROR_INFO

TLB_Check Return Format: The tlb_check return format is returned in error_info
when the user requests information on any instruction or data/unified TLB in the
level_index input argument. The tlb_check return format is a bit-field that is described
in Figure 11-21 and Table 11-91.

rsvd 29:24 Reserved

hlth 31:30 Health indicator. This field will report if the cache type and level reporting this error
supports hardware status tracking and the current status of this cache.
00 – No hardware status tracking is provided for the cache type and level reporting this
event.
01 – Status tracking is provided for this cache type and level and the current status is
normal status.a

10 – Status tracking is provided for the cache type and level and the current status is
cautionary.a When a cache reports a cautionary status the "hardware damage" bit of the
PSP (see Figure 11-11, “Processor State Parameter,” on page 2:299) will be set as well.
11 – Reserved

index 51:32 Index of the cache line where the error occurred.

rsvd 53:52 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

a. Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at or
below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries exceeds
a pre-defined threshold.

Figure 11-21. tlb_check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hlth reserved op itc dtc itr dtr reserved level rv trv tr_slot

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-91. tlb_check Fields

Field Bits Description

tr_slot 7:0 Slot number of the translation register where the failure occurred.

trv 8 The tr_slot field in the TLB_check parameter is valid.

Table 11-90. cache_check Fields (Continued)

Field Bits Description

2:416 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INFO

rv 9 Reserved

level 11:10 The level of the TLB where the error occurred. A value of 0 indicates the first level of TLB

reserved 15:12 Reserved

dtr 16 Error occurred in the data translation registers

itr 17 Error occurred in the instruction translation registers

dtc 18 Error occurred in data translation cache

itc 19 Error occurred in the instruction translation cache

op 23:20 Type of cache operation that caused the machine check:
0 – unknown
1 – TLB access due to load instruction
2 – TLB access due to store instruction
3 – TLB access due to instruction fetch or instruction prefetch
4 – TLB access due to data prefetch (both hardware and software)
5 – TLB shoot down access
6 – TLB probe instruction (probe, tpa)
7 – move in (VHPT fill)
8 – purge (insert operation that purges entries or a TLB purge instruction)
All other values are reserved.

reserved 29:24 Reserved

hlth 31:30 Health indicator. This field will report if the tlb type and level reporting this error supports
hardware status tracking and the current status of this tlb.
00 – No hardware status tracking is provided for the tlb type and level reporting this
event.
01 – Status tracking is provided for this tlb type and level and the current status is
normal.a

10 – Status tracking is provided for the tlb type and level and the current status is
cautionary.a When a tlb reports a cautionary status the "hardware damage" bit of the
PSP (see Figure 11-11, “Processor State Parameter,” on page 2:299) will be set as well.
11 – Reserved

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the TLB_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the TLB_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

a. Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at or
below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries exceeds
a pre-defined threshold.

Table 11-91. tlb_check Fields (Continued)

Field Bits Description

Volume 2, Part 1: Processor Abstraction Layer 2:417

PAL_MC_ERROR_INFO

Bus_Check Return Format: The bus_check return format is returned in error_info
when the user requests information on any level of hierarchy of the processor bus
structures as specified in the level_index input argument. The bus_check return format
must be used to report errors in uncacheable transactions. These errors must not be
reported using the cache_check return format. The bus_check return format is a
bit-field that is described in Figure 11-22 and Table 11-92.

Figure 11-22. bus_check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bsi dp hier sev type cc eb ib size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-92. bus_check Fields

Field Bits Description

size 4:0 Size in bytes of the transaction that caused the machine check abort.

ib 5 Internal bus error

eb 6 External bus error

cc 7 Error occurred during a cache to cache transfer.

type 15:8 Type of transaction that caused the machine check abort.
0 – unknown
1 – partial read
2 – partial write
3 – full line read
4 – full line write
5 – implicit or explicit write-back operation
6 – snoop probe
7 – incoming or outgoing ptc.g
8 – write coalescing transactions
9 – I/O space read
10 – I/O space write
11 – inter-processor interrupt message (IPI)
12 – interrupt acknowledge or external task priority cycle
All other values are reserved

sev 20:16 Bus error severity. The encodings of error severity are platform specific.

hier 22:21 This value indicates which level or bus hierarchy the error occurred in. A value of 0
indicates the first level of hierarchy.

dp 23 A multiple-bit error was detected, and data was poisoned for the incoming cache line.

bsi 31:24 Bus error status information. It describes the type of bus error. This field is processor bus
specific.

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

2:418 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INFO

Reg_File_Check Return Format: The reg_file_check return format is returned in
error_info when the user requests information on any of the registers as specified in the
level_index input argument. The reg_file_check return format is a bit-field that is
described in Figure 11-23 and Table 11-93. When the reg_file_check return format is
returned, the target address, the requester identifier and the responder identifier will
always be invalid.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Figure 11-23. reg_file_check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved rnv reg_num op id

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rsvd mcc pv pl iv is reserved

Table 11-93. reg_file_check Fields

Field Bits Description

id 3:0 Register file identifier:
0 – unknown/unclassified
1 – General register (bank1)
2 – General register (bank 0)
3 – Floating-point register
4 – Branch register
5 – Predicate register
6 – Application register
7 – Control register
8 – Region register
9 – Protection key register
10 – Data breakpoint register
11 – Instruction breakpoint register
12 – Performance monitor control register
13 – Performance monitor data register
All other values are reserved

op 7:4 Identifies the operation that caused the machine check
0 – unknown
1 – read
2 – write
All other values are processor specific

reg_num 14:8 Identifies the register number that was responsible for generating the machine check

rnv 15 Specifies if the reg_num field is valid

reserved 53:16 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the reg_file_check parameter is valid.

Table 11-92. bus_check Fields (Continued)

Field Bits Description

Volume 2, Part 1: Processor Abstraction Layer 2:419

PAL_MC_ERROR_INFO

Uarch_Check Return Format: The uarch_check return format is returned in
error_info when the user requests information on any of the micro-architectural
structures as specified in the level_index input argument. The uarch_check return
format is a bit-field that is described in Figure 11-24 and Table 11-94.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the reg_file_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

reserved 62:60 Reserved

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.

Table 11-93. reg_file_check Fields

Field Bits Description

2:420 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INFO

Figure 11-24. uarch_check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved xv wv way op array_id level sid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved index

Table 11-94. uarch_check Fields

Field Bits Description

sid 4:0 Structure identification. These bits identify the micro-architectural structure where the
error occurred. The definition of these bits are implementation specific.

level 7:5 Level of the micro-architectural structure where the error was generated. A value of 0
indicates the first level.

array_id 11:8 Identification of the array in the micro architectural structure where the error was
generated.
0 – unknown/unclassified
All other values are implementation specific

op 15:12 Type of operation that caused the error
0 – unknown
1 – read or load
2 – write or store
All other values are implementation specific

way 21:16 Way of the micro-architectural structure where the error was located.

wv 22 The way field in the uarch_check parameter is valid.

xv 23 The index field in the uarch_check parameter is valid.

reserved 31:24 Reserved

index 39:32 Index or set of the micro-architectural structure where the error was located.

reserved 53:40 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier
has been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier
has been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.

Volume 2, Part 1: Processor Abstraction Layer 2:421

PAL_MC_ERROR_INJECT

PAL_MC_ERROR_INJECT – Inject Processor Error (276)

Purpose: Injects the requested processor error or returns information on the supported injection
capabilities for this particular processor implementation.

Calling Conv: Stacked

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure enables error injection into processor structures based on information
specified by err_type_info, err_struct_info and err_data_buffer. Each invocation of the
procedure enables a single error to be injected. The procedure supports error injection
for at least one error of each severity type (correctable, recoverable, fatal).

The err_type_info argument specifies details of the error injection operation that is being
requested (see Figure 11-25). The err_struct_info and err_data_buffer specify additional
optional information. The format of err_struct_info is specified for each supported
structure type indicated by the err_struct field in err_type_info. err_data_buffer is optional,
depending on the structure type and whether trigger functionality is used. If
err_data_buffer is not required for the error injection, PAL will not attempt to access the
memory location specified in this parameter.

Argument Description
index Index of PAL_MC_ERROR_INJECT within the list of PAL procedures.
err_type_info Unsigned 64-bit integer specifying the first level error information which identifies the error

structure and corresponding structure hierarchy, and the error severity.
err_struct_info Unsigned 64-bit integer identifying the optional structure specific information that provides

the second level details for the requested error.
err_data_buffer Unsigned 64-bit integer specifying the address of the buffer providing additional parameters

for the requested error. The address of this buffer must be 8-byte aligned.

Return Value Description
status Return status of the PAL_MC_ERROR_INJECT procedure.
capabilities 64-bit vector specifying the supported error injection capabilities for the input argument

combination of struct_hier, err_struct and err_sev fields in err_type_info.
resources 64-bit vector specifying the architectural resources that are used by the procedure.
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-4 Call completed with error; the requested error could not be injected due to failure in locating

the target location in the specified structure.
-5 Argument was valid, but requested error injection capability is not supported.
-9 Call requires PAL memory buffer

Figure 11-25. err_type_info

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved struct_hier err_struct err_sev err_inj mode

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Impl_Spec Reserved

2:422 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INJECT

If query mode is selected through the mode bit in the err_type_info parameter, the
return value in the capabilities vector indicates which error injection types are
individually supported on the underlying implementation for the corresponding values
of err_struct, struct_hier and err_sev fields in err_type_info. The caller is expected to iterate
through all combinations of err_inj, err_sev, err_struct, and struct_hier to determine the full
extent of individual error injection types supported by the underlying implementation.

The capabilities vector does not indicate which combinations of error injection inputs
from err_struct_info are supported by the implementation. For example, if an
implementation supports tag error injection only for instruction caches and data error
injection only for data caches, this cannot be determined by the capabilities vector. In
this instance, the capabilities vector will report i=1, d=1, tag=1, data=1, indicating that
the error injection is supported individually for instruction and data caches, and for tag
and data fields, but not indicating which combinations of i, d, tag, and data are

Table 11-95. err_type_info

Field Bits Description

mode 2:0 Indicates the mode of operation for this procedure:
0 – Query mode
1 – Error inject mode (err_inj should also be specified)
2 – Cancel outstanding trigger. All other fields in err_type_info, err_struct_info and
err_data_buffer are ignored.
All other values are reserved.

err_inj 5:3 Indicates the mode of error injection:
0 – Error inject only (no error consumption)
1 – Error inject and consume
All other values are reserved.

err_sev 7:6 Indicates the severity desired for error injection/query. Definitions of the different error
severity types is given in Section 11.8, “PAL Glossary” on page 2:350.
0 – Corrected error
1 – Recoverable error
2 – Fatal error
3 – Reserved

err_struct 12:8 Indicates the structure identification for error injection/query:
0 - Any structure (cannot be used during query mode). When selected, the structure type
used for error injection is determined by PAL.
1 – Cache
2 – TLB
3 – Register file
4 – Bus/System interconnect
5-15 – Reserved
16-31 – Processor specific error injection capabilities. err_data_buffer is used to specify
error types. Please refer to the processor specific documentation for additional details.

struct_hier 15:13 Indicates the structure hierarchy for error injection/query:
0 - Any level of hierarchy (cannot be used during query mode). When selected, the
structure hierarchy used for error injection is determined by PAL.
1 – Error structure hierarchy level-1
2 – Error structure hierarchy level-2
3 – Error structure hierarchy level-3
4 – Error structure hierarchy level-4
All other values are reserved.

Reserved 47:16 Reserved

Impl_Spec 63:48 Processor specific error injection capabilities. Please refer to processor specific
documentation for additional details.

Volume 2, Part 1: Processor Abstraction Layer 2:423

PAL_MC_ERROR_INJECT

supported for error injection. The caller is required to use the query mode with
appropriate inputs in err_struct_info to determine which combinations of error injection
types are supported. If a given combination is not supported, the procedure returns
with status -5.

The procedure supports both an Error inject and Error inject and consume mode
(selectable through the err_inj field in err_type_info). In the former mode, the procedure
performs the requested error injection in the specified structure, but does not perform
any additional actions that can lead to consumption of the error and generation of the
subsequent machine check. In Error inject and consume mode, the procedure will inject
the error in the specified structure, and will perform additional operations to ensure
that the error condition is encountered resulting in a machine check. Note that in this
case, the machine check will be generated within the context of this procedure.

The procedure also provides the ability to set an error injection trigger. In this case, the
error injection is delayed until the operation specified by the trigger is encountered and
the executing context has the specified privilege level. In the absence of a trigger, the
error injection is performed at the time of procedure execution. If an error injection
trigger is specified, the mode field in err_type_info determines whether the error is
injected, or injected and consumed when the trigger operation is encountered. There
can be only one outstanding trigger programmed at a time. Subsequent procedure calls
that use the trigger functionality will overwrite the previous trigger parameters. Once a
trigger is programmed it remains active until either the trigger operation is encountered
or software cancels the outstanding trigger via this call. Software can cancel
outstanding triggers by specifying Cancel outstanding trigger via the mode bit in
err_type_info. The resources value returned is all zeroes, indicating that the procedure is
no longer using any architectural resources (specified in resources) for triggering
purposes. When using this mode, it is possible that the procedure execution may itself
satisfy the trigger conditions while in the process of cancelling the last programmed
trigger.

To support triggers, PAL may use existing architectural resources. The resources return
value defines the list of resources that are being used by PAL (see Figure 11-26).

In order for triggering to work when PAL is using the IBR or DBR registers, certain PSR
bits are required to be set. Software needs to ensure that the PSR.db and the PSR.ic
bits are set to one when executing the code that it is targeting with the trigger. If either
one of these bits are not set, then triggers will not work as defined.

Procedure operation is undefined if software overwrites or modifies the IBR/DBR
resources that PAL indicates it is using for a trigger. The IBR/DBR resources that PAL is
not using are available for software to program for their own use.

Figure 11-26. resources Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved dbr6 dbr4 dbr2 dbr0 ibr6 ibr4 ibr2 ibr0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

2:424 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INJECT

Multiprocessor coherency is not guaranteed when error injection is performed using this
procedure. Please refer to the processor-specific documentation for further details
regarding possible scenarios which can result in loss of coherency.

In cases where an error cannot be injected due to failure in locating the specified target
location (cache line, TC, TR, register number) for the given set of input arguments, the
procedure will return with status -4. For example, if the caller requests an error
injection in the cache and specifies cl_id=1 (virtual address provided), then PAL will
attempt to locate the cache line as indicated by the input virtual address. If the
corresponding cache line cannot be found (the cache line could have been evicted from
the cache in the time interval between the procedure call and the search process, or the
cache line may be in invalid state), then the procedure returns with a status value of -4.

The procedure does not check the settings of the error promotion bits (bit 53 and bit 60
in PAL_PROC_GET_FEATURES) before injecting an error in the specified structure.
Based on the configuration of these bits, the severity of the error reported may vary.

The detailed descriptions of err_struct_info and err_data_buffer are shown below.

Table 11-96. resources Return Value

Field Bits Description

ibr0 0 When 1, indicates that IBR0,1 are being used by the procedure for trigger functionality.

ibr2 1 When 1, indicates that IBR2,3 are being used by the procedure for trigger functionality.

ibr4 2 When 1, indicates that IBR4,5 are being used by the procedure for trigger functionality.

ibr6 3 When 1, indicates that IBR6,7 are being used by the procedure for trigger functionality.

dbr0 4 When 1, indicates that DBR0,1 are being used by the procedure for trigger functionality.

dbr2 5 When 1, indicates that DBR2,3 are being used by the procedure for trigger functionality.

dbr4 6 When 1, indicates that DBR4,5 are being used by the procedure for trigger functionality.

dbr6 7 When 1, indicates that DBR6,7 are being used by the procedure for trigger functionality.

Figure 11-27. err_struct_info – Cache

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved cl_dp cl_id cl_p c_t siv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger tiv

Table 11-97. err_struct_info – Cache

Field Bits Description

siv 0 When 1, indicates that the structure information fields (c_t,cl_p,cl_id) are valid and
should be used for error injection. When 0, the structure information fields are ignored,
and the values of these fields used for error injection are implementation-specific.

c_t 2:1 Indicates which cache should be used for error injection:
0 – Reserved
1 – Instruction cache
2 – Data or unified cache
3 – Reserved

cl_p 5:3 Indicates the portion of the cache line where the error should be injected:
0 – Reserved
1 – Tag
2 – Data
3 – mesi
All other values are reserved.

Volume 2, Part 1: Processor Abstraction Layer 2:425

PAL_MC_ERROR_INJECT

cl_id 8:6 Indicates which mechanism is used to identify the cache line to be used for error
injection:
0 – Reserved
1 – Virtual address provided in the inj_addr field of the buffer pointed to by
err_data_buffer should be used to identify the cache line for error injection.
2 – Physical address provided in the inj_addr field of the buffer pointed to by
err_data_buffershould be used to identify the cache line for error injection.
3 – way and index fields provided in err_data_buffer should be used to identify the cache
line for error injection.
All other values are reserved.

cl_dp 9 When 1, indicates that a multiple bit, non-correctable error should be injected in the
cache line specified by cl_id. If this injected error is not consumed, it may eventually
cause a data-poisoning event resulting in a corrected error signal, when the associated
cache line is cast out (implicit or explicit write-back of the cache line). The error severity
specified by err_sev in err_type_info must be set to 0 (corrected error) when this bit is
set.

Reserved 31:10 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and
should be used for error injection. When 0, the trigger information fields are ignored and
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The address
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to
by err_data_buffer:
0 – Instruction memory access. The trigger match conditions for this operation type are
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2,
“Debug Address Breakpoint Match Conditions” on page 2:154.
1 – Data memory access. The trigger match conditions for this operation type are similar
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug
Address Breakpoint Match Conditions” on page 2:154.
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected:
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at
any privilege level.

Reserved 63:40 Reserved

Figure 11-28. capabilities vector for cache

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved wi va pa Reserved dp mesi data tag rv d i

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger

Table 11-98. capabilities vector for cache

Field Bits Description

i 0 Error injection for instruction caches is supported

d 1 Error injection for data caches is supported

rv 2 Reserved

Table 11-97. err_struct_info – Cache (Continued)

Field Bits Description

2:426 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INJECT

err_data_buffer needs to be specified for cache only if siv is 1 or tiv is 1, in err_struct_info.

tag 3 Error injection in tag portion of cache line is supported

data 4 Error injection in data portion of cache line is supported

mesi 5 Error injection in mesi portion of cache line is supported

dp 6 Error injection that results in data poisoning events is supported

Reserved 9:6 Reserved

pa 10 Error injection with physical address input is supported

va 11 Error injection with virtual address input is supported

wi 12 Error injection with way and index input is supported

Reserved 31:13 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-29. Buffer pointed to by err_data_buffer – Cache

63 0

trigger_addr

127 64

inj_addr

191 153152 133132 128

Reserved index way

Table 11-99. Buffer pointed to by err_data_buffer – Cache

Field Bits Description

trigger_addr 63:0 64-bit virtual address to be used by the trigger in the err_struct_info input argument.
This field is ignored if tiv in err_struct_info is 0. The field is defined similar to the addr
field in the debug breakpoint registers, as specified in Table 7-1, “Debug Breakpoint
Register Fields (DBR/IBR)” on page 2:153.

inj_addr 127:64 64-bit virtual or physical address used to identify the cache line to be used for error
injection. This field is valid only if cl_id in err_struct_info corresponds to either va or pa
(value 1 or 2).

way 132:128 Indicates the way information for error injection. This is used in combination with the
index field to identify the cache line for error injection. This field is valid only if cl_id in
err_struct_info is 3, else it is ignored.

index 152:133 Indicates the index information for error injection. This is used in combination with the
way field to identify the cache line for error injection. This field is valid only if cl_id in
err_struct_info is 3, else it is ignored.

Reserved 191:153 Reserved

Table 11-98. capabilities vector for cache (Continued)

Field Bits Description

Volume 2, Part 1: Processor Abstraction Layer 2:427

PAL_MC_ERROR_INJECT

Figure 11-30. err_struct_info – TLB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved tr_slot tc_tr tt siv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger tiv

Table 11-100. err_struct_info – TLB

Field Bits Description

siv 0 When 1, indicates that the structure information fields (tt, tc_tr, tr_slot) are valid and
should be used for error injection. When 0, the structure information fields are ignored,
and the values of these fields used for error injection are implementation-specific.

tt 2:1 Indicates which TLB should be used for error injection:
0 – Reserved
1 – Instruction TLB
2 – Data TLB
3 – Reserved

tc_tr 4:3 Indicates which portion of TLB should be used for error injection:
0 – Reserved
1 – tc: error should in injected in a Translation Cache (TC) entry. For TC insertion, the
entry is identified by the vpn and rid fields in err_data_buffer
2 – tr: error should in injected in a Translation Register (TR) entry. For TR insertion, the
slot number is specified by the tr_slot field.
3 – Reserved

tr_slot 12:5 Indicates the Translation Register (TR) slot number where the error should be injected.
This field is valid only when tc_tr is 2, else it is ignored.

Reserved 31:13 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and
should be used for error injection. When 0, the trigger information fields are ignored and
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The virtual address
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to
by err_data_buffer:
0 – Instruction memory access. The trigger match conditions for this operation type are
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2,
“Debug Address Breakpoint Match Conditions” on page 2:154.
1 – Data memory access. The trigger match conditions for this operation type are similar
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug
Address Breakpoint Match Conditions” on page 2:154.
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at
any privilege level.

Reserved 63:40 Reserved

2:428 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INJECT

err_data_buffer needs to be specified for TLB only if tiv is 1 or if tc_tr value corresponds
to tc, in err_struct_info.

Figure 11-31. capabilities vector for TLB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved tr tc rv i d

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger

Table 11-101. capabilities vector for TLB

Field Bits Description

d 0 Error injection for data TLB is supported

i 1 Error injection for instruction TLB is supported

rv 2 Reserved

tc 3 Error injection in TC entries is supported

tr 4 Error injection in TR entries is supported

Reserved 31:5 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-32. Buffer pointed to by err_data_buffer – TLB

63 0

trigger_addr

127 115 64

Reserved vpn

191 152151 133132 128

Reserved rid

Table 11-102. Buffer pointed to by err_data_buffer – TLB

Field Bits Description

trigger_addr 63:0 64-bit virtual address to be used by the trigger in the err_struct_info input argument.
The field is defined similar to the addr field in debug breakpoint registers, as specified
in Table 7-1, “Debug Breakpoint Register Fields (DBR/IBR)” on page 2:153.

vpn 115:64 Indicates the Virtual page number. This field is valid only when tc_tr in err_struct_info
is 1. vpn used in combination with rid to identify the TC entry for error injection.

Reserved 127:116 Reserved

rid 151:128 Indicates the region identifier. This field is valid only when tc_tr in err_struct_info is 1.
rid is used in combination with vpn to identify the TC entry for error injection.

Reserved 191:152 Reserved

Figure 11-33. err_struct_info – Register File

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved reg_num regfile_id siv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger tiv

Volume 2, Part 1: Processor Abstraction Layer 2:429

PAL_MC_ERROR_INJECT

Table 11-103. err_struct_info – Register File

Field Bits Description

siv 0 When 1, indicates that the structure information fields (regfile_id, reg_num) are valid and
should be used for error injection. When 0, the structure information fields are ignored,
and the values of these fields used for error injection are implementation-specific.

regfile_id 4:1 Identifies the register file where the error should be injected:
0 – Any register file type. When selected, the register file used for error injection is
determined by PAL.
1 – General register (bank0)(GR16-31)
2 – General register (bank1)(GR0-127)
3 – Floating point register
4 – Branch register
5 – Predicate register
6 – Application register
7 – Control register
8 – Region register
9 – Protection key register
10 – Data breakpoint register
11 – Instruction breakpoint register
12 – Performance monitor control register
13 – Performance monitor data register
All other values are reserved.

reg_num 12:5 Indicates the register number where the error should be injected. Procedure operation is
undefined if there is a conflict between the register number chosen for error injection,
and the registers being used by the procedure for code execution (see PAL calling
conventions, Section 11.9.2).
0-127: Specific register number corresponding to regfile_id
128-254: Reserved for future use
255: Any register number. When selected, the actual register number used for error
injection is determined by PAL.

Reserved 31:13 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and
should be used for error injection. When 0, the trigger information fields are ignored and
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The address
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to
by err_data_buffer.
0 – Instruction memory access. The trigger match conditions for this operation type are
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2,
“Debug Address Breakpoint Match Conditions” on page 2:154
1 – Data memory access. The trigger match conditions for this operation type are similar
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug
Address Breakpoint Match Conditions” on page 2:154.
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected:
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at
any privilege level.

Reserved 63:40 Reserved

2:430 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_ERROR_INJECT

err_data_buffer needs to be specified for register file only if tiv in err_struct_info is 1.

Figure 11-34. capabilities Vector for Register File

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved regnum rsvd pmd pmc ibr dbr pkr rr cr ar pr br fr gr_b1 gr_b0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger

Table 11-104. capabilities Vector for Register File

Field Bits Description

gr_b0 0 Error injection for General register (bank0) is supported

gr_b1 1 Error injection for General register (bank1) is supported

fr 2 Error injection for Floating point register is supported

br 3 Error injection for Branch register is supported

pr 4 Error injection for Predicate register is supported

ar 5 Error injection for Application register is supported

cr 6 Error injection for Control register is supported

rr 7 Error injection for Region register is supported

pkr 8 Error injection for Protection key register is supported

dbr 9 Error injection for Data breakpoint register is supported

ibr 10 Error injection for Instruction breakpoint register is supported

pmc 11 Error injection for Performance monitor control register is supported

pmd 12 Error injection for Performance monitor data register is supported

Reserved 15:13 Reserved

regnum 16 Error injection with register number input is supported

Reserved 31:17 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-35. Buffer pointed to by err_data_buffer – Register File

63 0

trigger_addr

Table 11-105. Buffer pointed to by err_data_buffer – Register File

Field Bits Description

trigger_addr 63:0 64-bit address to be used by the trigger in the err_struct_info input argument. The field is
defined similar to the addr field in the debug breakpoint registers, as specified in
Table 7-1, “Debug Breakpoint Register Fields (DBR/IBR)” on page 2:153.

Volume 2, Part 1: Processor Abstraction Layer 2:431

PAL_MC_ERROR_INJECT

err_data_buffer does not need to be specified for bus/system interconnect.

Figure 11-36. err_struct_info – Bus/Processor Interconnect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-106. err_struct_info – Bus/Processor Interconnect

Field Bits Description

Reserved 63:0 Reserved

Figure 11-37. capabilities vector for Bus/Processor Interconnect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-107. capabilities vector for Bus/Processor Interconnect

Field Bits Description

Reserved 63:0 Reserved

2:432 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_HW_TRACKING

PAL_MC_HW_TRACKING – Query which hardware structures are
performing hardware status tracking (51)

Purpose: Provide a way to query which hardware structures are performing hardware status
tracking for corrected machine check events.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure will return information about which hardware structures are providing
hardware status tracking for corrected machine check events. This information is also
returned in the error logs for corrected machine check events.

The layout of the tracked return value is shown in Figure 11-38.

Argument Description
index Index of PAL_MC_HW_TRACKING within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_HW_TRACKING procedure.
hw_track 64-bit vector denoting which hardware structures are providing hardware status tracking.

See Figure 11-38.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Figure 11-38. Layout of hw_track Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DTT ITT DCT ICT

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-108. hw_check Fields

Field Bits Description

ICT 3:0 Instruction cache tracking. This is a 4-bit vector denoting which levels of instruction
cache provide hardware tracking.

DCT 7:4 Data cache tracking. This is a 4-bit vector denoting which levels of data/unified caches
provide hardware tracking.

ITT 11:8 Instruction TLB tracking. This is a 4-bit vector denoting which levels of the instruction
TLB provide hardware tracking.

DTT 15:12 Data TLB tracking. This is a 4-bit vector denoting which levels of data/unified TLB
provide hardware tracking.

Reserved 63:16 Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:433

PAL_MC_HW_TRACKING

The convention for the levels in the hw_track field is such that the least significant bit in
the field represents the lowest level of the structures hierarchy. For example, bit 0 of
the ICT field represents the first level instruction cache.

2:434 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_EXPECTED

PAL_MC_EXPECTED – Set/Reset Expected Machine Check Indicator
(23)

Purpose: Informs PALE_CHECK whether a machine check is expected so that PALE_CHECK will
not attempt to correct any expected machine checks.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: If the argument expected contains a value of 1, an implementation-dependent
hardware resource is set to inform PALE_CHECK to expect a machine check. If the
argument expected is 0, the resource is reset, so that PALE_CHECK does not expect
any following machine checks. All other values of expected are reserved.

The implementation-dependent hardware resource should be, by default, in the “not
expected” state. Software or firmware should only call PAL_MC_EXPECTED immediately
prior to issuing an instruction which might generated an expected machine check. It
should then immediately reset the bit to the “not expected” state after checking the
results of the operation.

The previous return parameter indicates the previous state of the hardware resource to
inform PALE_CHECK of an expected machine check. A value of 0 indicates that a
machine check was not expected. A value of 1 indicated that a machine check was
expected. All other values of previous are reserved.

Argument Description
index Index of PAL_MC_EXPECTED within the list of PAL procedures.
expected Unsigned integer with a value of 0 or 1 to set or reset the hardware resource PALE_CHECK

examines for expected machine checks.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_EXPECTED procedure.
previous Unsigned integer denoting whether a machine check was previously expected.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:435

PAL_MC_REGISTER_MEM

PAL_MC_REGISTER_MEM – Register Memory with PAL for Machine
Check and Init (27)

Purpose: Registers a platform dependent location with PAL to which it can save minimal
processor state in the event of a machine check or initialization event.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is used to register with PAL an uncacheable min-state save area
memory buffer that is used for machine check and initialization event handling. The size
of the min-state save area is either 4KB or a larger size that is indicated in the reset
hand-off state described in Section 11.2.2.1, “Definition of SALE_ENTRY State
Parameter” on page 2:291. The input argument size indicates the size of the min-state
save buffer in kilobytes (KB) when it is greater than 4KB. If the size input argument
does not match the required size, the procedure returns an invalid argument return
status and a min-state area is not registered. The procedure will also return the
required size of the min-state save area in the req_size return value.

The layout of the min-state save area is defined in Section 11.3.2.4, “Processor
Min-state Save Area Layout” on page 2:302. The address passed has a minimum
alignment requirement of 512-bytes.

Argument Description
index Index of PAL_MC_REGISTER_MEM within the list of PAL procedures.
address Physical address of the buffer to be registered with PAL.
size Unsigned integer indicating the size in kilobytes (KB) of the buffer passed. This input

argument is only required when passing in a size greater than 4KB. The implementation
indicates when a size greater than 4KB is required at the reset hand-off. Refer to
Section 11.2.2.1, “Definition of SALE_ENTRY State Parameter” on page 2:291 for more
information.

Reserved 0

Return Value Description
status Return status of the PAL_MC_REGISTER_MEM procedure.
req_size Returns the required size of the min-state save area in kilobytes (KB) if the size input

argument did not match the required size for this implementation.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:436 Volume 2, Part 1: Processor Abstraction Layer

PAL_MC_RESUME

PAL_MC_RESUME – Restore Minimal Architected State and Return
(26)

Purpose: Restores the minimal architectural processor state, sets the CMC interrupt if necessary,
and resumes execution.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure will restore the processor minimal architected state and optionally set
the CMC interrupt.

If the set_cmci argument is set to one, this procedure will set the CMC interrupt and
return to the interrupted context. The CMC interrupt handler will be invoked sometime
after returning to the interrupted context.

The save_ptr argument specifies the processor min-state save area buffer from which
the processor state will be restored. This pointer has the same alignment and size
restrictions as the address passed to PAL_MC_REGISTER_MEM procedure on
page 2:435.

This procedure is used to resume execution of the interrupted context for both machine
check and initialization events. This procedure can resume execution to the same
context or a new context. If software attempts to resume execution for these events
without using this call, processor behavior is undefined.

If the caller is resuming to the same context, the new_context argument must be set to
0 and the save_ptr argument has to point to a copy of the min-state save area written
by PAL when the event occurred.

If the caller is resuming to a new context, the new_context argument must be set to 1
and the save_ptr argument must point to a new min-state save area set up by the
caller.

Please see Section 11.3.3, “Returning to the Interrupted Process” on page 2:305 3for
more information on resuming to the interrupted context.

Argument Description
index Index of PAL_MC_RESUME within the list of PAL procedures.
set_cmci Unsigned 64 bit integer denoting whether to set the CMC interrupt. A value of 0 indicates not

to set the interrupt, a value of 1 indicated to set the interrupt, and all other values are
reserved.

save_ptr Physical address of min-state save area used to used to restore processor state.
new_context Unsigned 64-bit integer denoting whether the caller is returning to a new context. A value of

0 indicates the caller is returning to the interrupted context, a value of 1 indicates that the
caller is returning to a new context.

Return Value Description
status Return status of the PAL_MC_RESUME procedurea.

a. This procedure returns to the caller only in an error situation.

Reserved 0
Reserved 0
Reserved 0

Status Value Description
-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:437

PAL_MEM_ATTRIB

PAL_MEM_ATTRIB – Get Memory Attributes (5)

Purpose: Returns the memory attributes implemented by processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Returns a 8-bit vector in the low order 8 bits of the return register that specifies the set
of memory attributes implemented by the processor. The return register is formatted as
follows:

Each bit in the bit field ma represents one of the eight possible memory attributes
implemented by the processor. The bit field position corresponds to the numeric
memory attribute encoding defined in Section 4.4, “Memory Attributes” on page 2:75.

Argument Description
index Index of PAL_MEM_ATTRIB within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MEM_ATTRIB procedure.
attrib 8-bit vector of memory attributes implemented by processor.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-39. Layout of attrib Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ma

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

2:438 Volume 2, Part 1: Processor Abstraction Layer

PAL_MEMORY_BUFFER

PAL_MEMORY_BUFFER – Allocate a cacheable memory buffer for
exclusive PAL usage (277)

Purpose: Provides cacheable memory to PAL for exclusive use during runtime.

Calling Conv: Stacked

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is used to provide PAL firmware a cacheable memory buffer for its
exclusive use as well as the ability to relocate this buffer at a later point in time if
necessary. PAL provides information at reset hand-off about the minimum buffer size
required by this procedure, and also indicates if this procedure is required to be called
for correct functionality of the processor. See Section 11.2.2, “PALE_RESET Exit State”
on page 2:289 for additional information on the reset hand-off state.

The base_address input argument specifies the beginning address for the memory
buffer. The alloc_size input argument specifies the size of the memory buffer allocated
for PAL use. The minimum alignment requirement for this buffer is 4K. If the
base_address is not at least 4K aligned, the procedure will return an invalid argument. If
the alloc_size input argument is smaller than the minimum size passed at PAL reset
handoff state, the procedure will return an invalid argument and provide the minimum
size required in the min_size return argument.

The control_word input argument specifies if this procedure is being used to register the
memory buffer or if it is being used to relocate the memory buffer. The format of the
control_word is shown in Table 11-109.

Argument Description
index Index of PAL_MEMORY_BUFFER within the list of PAL procedures.
base_address Physical address of the memory buffer allocated for PAL use.
alloc_size Unsigned integer denoting the size of the memory buffer.
control_word Formatted bit vector that provides control options for this procedure. See Table 11-109.

Return Value Description
status Return status of the PAL_MEMORY_BUFFER procedure.
min_size Returns the minimum size of the memory buffer required if the alloc_size input argument was

not large enough.
Reserved 0
Reserved 0

Status Value Description
1 Call has not completed a buffer relocation due to a pending interrupt
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Table 11-109. control_word Layout

Field Bits Description

reg 0 Value of 0 indicates registration for the first time of the buffer. A value of 1
indicates a relocation of the buffer.

int 1 Value of 1 indicates that the procedure should periodically poll for pending
external interrupts. If this value is 0, interrupts will be masked during the
execution of the entire procedure.

Reserved 63:2 Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:439

PAL_MEMORY_BUFFER

A memory buffer must be allocated for each physical package, and is shared by all
logical processors on that package. Software is required to call this procedure on all
logical processors on a given package with the same input values. If not, processor
operation is undefined.

If the PAL reset hand-off state indicates that the memory buffer is required but no call
is made to allocate the memory buffer for a given physical package before calling
buffer-dependent PAL procedures on a logical processor on that package, those
procedures return an error.

If software would like to relocate this memory buffer at a later point in time, it can do
so by setting the value of reg field in control_word to one. PAL will copy the contents of
the existing buffer to a new buffer. Software is still required to make this call on all
logical processors with the same input arguments when relocating the buffer. Once the
call has been made on all logical processors in the physical package, the old memory
can be reclaimed.

Software can choose if it wants this procedure to periodically poll for interrupts during
the execution of the procedure. If an interrupt is seen, the procedure will return a value
of 1 and software must re-call this procedure again on the same logical processor, with
the same input arguments, until the copy is completed. If this procedure returns with a
value of 1, both the old memory buffer and the new memory buffer will be in use by
PAL until PAL returns that the procedure has completed execution successfully by
setting the return value to 0.

An error will be returned if software calls this procedure with the reg value set to one to
re-register a buffer and a call has never been made to register the buffer.

It is required that PAL firmware only perform cacheable memory accesses to this buffer.

2:440 Volume 2, Part 1: Processor Abstraction Layer

PAL_PERF_MON_INFO

PAL_PERF_MON_INFO – Get Processor Performance Monitor
Information (15)

Purpose: Returns Performance Monitor information about what can be counted and how to
configure the monitors to count the desired events.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PERF_MON_INFO is called to determine the number of performance monitors and
the events which can be counted on the performance monitors. For more information
on performance monitoring, see Section 7.2, “Performance Monitoring” on page 2:155.
pm_info is a formatted 64-bit return register, as shown in Figure 11-40.

.

The pm_buffer argument points to a 128-byte memory area where mask information is
returned. The layout of pm_buffer is shown in Table 11-111.

Argument Description
index Index of PAL_PERF_MON_INFO within the list of PAL procedures.
pm_buffer An address to an 8-byte aligned 128-byte memory buffer.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PERF_MON_INFO procedure.
pm_info Information about the performance monitors implemented.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-40. Layout of pm_info Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

retired cycles width generic

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-110. pm_info Fields

Field Description

generic Unsigned 8-bit number defining the number of generic PMC/PMD pairs.

width Unsigned 8-bit number in the range 0:60 defining the number of implemented counter bits.

cycles Unsigned 8-bit number defining the event type for counting processor cycles.

retired Unsigned 8-bit number defining the event type for retired instruction bundles.

Table 11-111. pm_buffer Layout

Offset Description

0x0 256-bit mask defining which PMC registers are implemented.

0x20 256-bit mask defining which PMD registers are implemented.

Volume 2, Part 1: Processor Abstraction Layer 2:441

PAL_PERF_MON_INFO

0x40 256-bit mask defining which registers can count cycles.

0x60 256-bit mask defining which registers can count retired bundles.

Table 11-111. pm_buffer Layout (Continued)

Offset Description

2:442 Volume 2, Part 1: Processor Abstraction Layer

PAL_PLATFORM_ADDR

PAL_PLATFORM_ADDR – Set Processor Interrupt Block Address and
I/O Port Space Address (16)

Purpose: Specifies the physical address of the processor Interrupt Block and I/O Port Space.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PLATFORM_ADDR specifies the physical address that the processor shall interpret
as accesses to the SAPIC memory or the I/O Port space areas.

The default value for the Interrupt block pointer is 0x00000000 FEE00000. If an
alternate address is selected by this call, it must be aligned on a 2 MB boundary, else
the procedure will return an error status. The address specified must also not overlay
any firmware addresses in the 16 MB region immediately below the 4GB physical
address boundary.

The default value for the I/O block pointer is to the beginning of the 64 MB block at the
highest physical address supported by the processor. Therefore, its physical address is
implementation dependent. If an alternate address is selected by this call, it must be
aligned on a 64MB boundary, else the procedure will return an error status. The address
specified must also not overlay any firmware addresses in the 16 MB region
immediately below the 4GB physical address boundary.

The Interrupt and I/O Block pointers should be initialized by firmware before any
Inter-Processor Interrupt messages or I/O Port accesses. Otherwise the default block
pointer values will be used.

Some processor implementations may not support relocation of the interrupt and I/O
block pointers and an unimplemented procedure return status will be returned. In these
cases the default address spaces will be used.

Argument Description
index Index of PAL_PLATFORM_ADDR within the list of PAL procedures.
type Unsigned 64-bit integer specifying the type of block. 0 indicates that the processor interrupt

block pointer should be initialized. 1 indicates that the processor I/O block pointer should be
initialized.

address Unsigned 64-bit integer specifying the address to which the processor I/O block or interrupt
block shall be set. The address must specify an implemented physical address on the
processor model, bit 63 is ignored.

Reserved 0

Return Value Description
status Return status of the PAL_PLATFORM_ADDR procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:443

PAL_PMI_ENTRYPOINT

PAL_PMI_ENTRYPOINT – Setup SAL PMI Entrypoint in Memory (32)

Purpose: Sets the SAL PMI entrypoint in memory.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure is called to set the SAL PMI entrypoint so that the SAL PMI code shall be
executed out of main memory instead of the firmware address space. Some processor
implementations will allow initialization of the PMI entrypoint only once. Under those
situations, this procedure may be called only once after a boot to initialize the PMI
entrypoint register. Subsequent calls will return a status of -3. This call must be made
before PMI is enabled by SAL.

Argument Description
index Index of PAL_PMI_ENTRYPOINT within the list of PAL procedures.
SAL_PMI_entry 256-byte aligned physical address of SAL PMI entrypoint in memory.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PMI_ENTRYPOINT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:444 Volume 2, Part 1: Processor Abstraction Layer

PAL_PREFETCH_VISIBILITY

PAL_PREFETCH_VISIBILITY – Make Processor Prefetches Visible
(41)

Purpose: Used in the architected sequences for memory attribute transitions described in
Section 4.4.11, “Memory Attribute Transition” on page 2:88 to transition a page (or set
of pages) from a one memory attribute to another.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This call is intended to be used only in the architected sequences described in
Section 4.4.11, “Memory Attribute Transition” on page 2:88.

The trans_type input indicates the type of memory attribute transition the user is
making. An input value of 0 is used when transition virtual memory attributes only. A
value of 1 is used when transitioning physical memory attributes only, or when
transitioning memory that may have a combination of virtual and physical memory
attributes. All other values are reserved.

This procedure, when used for transitioning virtual memory attributes, will ensure that
all prefetches that were initiated by the processor to the cacheable, speculative
memory prior to the call, will either not be cached; have been aborted; or are visible to
subsequent fc instructions. (from both the local processor and from remote
processors).

This procedure when used for transitioning physical memory attributes will ensure that
all prefetches that were initiated by the processor to the cacheable, limited speculative
memory prior to the call, will either not be cached; have been aborted; or are visible to
subsequent fc instructions (from both the local processor and from remote
processors). It will also terminate the ability for the processor to make speculative
references to any limited speculation pages. For the processor to make any speculative
reference to a limited speculation page after this call, there must be a verified reference
made to that page after this call. See the discussion on limited speculation in
Section 4.4.6.1, “Limited Speculation and the WBL Physical Addressing Attribute” on
page 2:81.

Argument Description
index Index of PAL_PREFETCH_VISIBILITY within the list of PAL procedures.
trans_type Unsigned integer specifying the type of memory attribute transition that is being performed
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PREFETCH_VISIBILITY procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error; this call is not necessary on remote processors
0 Call completed without error; this call must also be performed on all remote processors in the

coherence domain
-2 Invalid argument
-3 Call completed with error

Volume 2, Part 1: Processor Abstraction Layer 2:445

PAL_PREFETCH_VISIBILITY

This procedure, when used to delete a memory range on-line, will ensure that all of the
conditions described in both of the preceding paragraphs regarding transition of virtual
memory attributes and physical memory attributes are met.

If the processor implementation does not require this procedure call to be made on
remote processors in the sequences, this procedure will return a 1 upon successful
completion.

A return value of 0 upon successful completion of this procedure is an indication to
software that the processor implementation requires that this call be performed on all
processors in the coherence domain to make prefetches visible in the sequences.

These return code can be used to tune the architected sequence to the particular
system on which is running; see Section 4.4.11, “Memory Attribute Transition” for
details.

2:446 Volume 2, Part 1: Processor Abstraction Layer

PAL_PROC_GET_FEATURES

PAL_PROC_GET_FEATURES – Get Processor Dependent Features
(17)

Purpose: Provides information about configurable processor features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES procedure calls are used
together to describe current settings of processor features and to allow modification of
some of these processor features.

The feature_set input argument for PAL_PROC_GET_FEATURES describes which
processor feature_set information is being requested. Table 11-112 describes processor
feature_set zero. The feature_set values are split into two categories: architected and
implementation-specific. The architected feature sets have values from 0-15. The
implementation-specific feature sets are values 16 and above. The architected feature
sets are described in this document. The implementation-specific feature sets are
described in processor-specific documentation.

This procedure will return an invalid argument if an unsupported architectural
feature_set is passed as an input. Implementation-specific feature sets will start at 16
and will expand in an ascending order as new implementation-specific feature sets are
added. The return status is used by the caller to know which implementation-specific
feature sets are currently supported on a particular processor.

For each valid feature_set, this procedure returns which processor features are
implemented in the features_avail return argument, the current feature setting is in
feature_status return argument, and the feature controllability in the feature_control
return argument. Only the processor features which are implemented and controllable
can be changed via PAL_PROC_SET_FEATURES. Features for which features_avail are 0
(unimplemented features) also have features_status and features_control of 0.

In Table 11-112, the class field indicates whether a feature is required to be available
(Req.) or is optional (Opt.). The control field indicates which features are required to be
controllable. Req. indicates that the feature must be controllable, Opt. indicates that

Argument Description
index Index of PAL_PROC_GET_FEATURES within the list of PAL procedures.
Reserved 0
feature_set Feature set information is being requested for.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-112.
feature_status 64-bit vector of current feature settings. See Table 11-112.
feature_control 64-bit vector of features controllable by software.

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported

Volume 2, Part 1: Processor Abstraction Layer 2:447

PAL_PROC_GET_FEATURES

the feature may optionally be controllable, and No indicates that the feature cannot be
controllable. The control field applies only when the feature is available. The sense of
the bits is chosen so that for features which are controllable, the default hand-off value
at exit from PALE_RESET should be 0. PALE_CHECK and PALE_INIT will not modify
these features.

Table 11-112. Processor Features

Bit Class Control Scope Description

63 Opt. Req. Maya Enable BERR promotion. When 1, the Bus Error (BERR) signal is promoted
to the Bus Initialization (BINIT) signal, and the BINIT pin is asserted on the
occurrence of each Bus Error. Setting this bit has no effect if BINIT signalling
is disabled. (See PAL_BUS_GET/SET_FEATURES)

62 Opt. Req. May Enable MCA promotion. When 1, machine check aborts (MCAs) are
promoted to the Bus Error signal, and the BERR pin is assert on each
occurrence of an MCA. Setting this bit has no effect if BERR signalling is
disabled. (See PAL_BUS_GET/SET_FEATURES)

61 Opt. Req. May Enable MCA to BINIT promotion. When 1, machine check aborts (MCAs)
are promoted to the Bus Initialization signal, and the BINIT pin is assert on
each occurrence of an MCA. Setting this bit has no effect if BINIT signalling
is disabled. (See PAL_BUS_GET/SET_FEATURES)

60 Opt. Req. Nob Enable CMCI promotion When 1, Corrected Machine Check Interrupts
(CMCI) are promoted to MCAs. They are also further promoted to BERR if
bit 39, Enable MCA promotion, is also set and they are promoted to BINIT if
bit 38, Enable MCA to BINIT promotion, is also set. This bit has no effect if
MCA signalling is disabled (see PAL_BUS_GET/SET_FEATURES)

59 Opt. Req. May Disable Cache. When 0, the processor performs cast outs on cacheable
pages and issues and responds to coherency requests normally. When 1,
the processor performs a memory access for each reference regardless of
cache contents and issues no coherence requests and responds as if the
line were not present. Cache contents cannot be relied upon when the cache
is disabled.
WARNING: Semaphore instructions may not be atomic or may cause
Unsupported Data Reference faults if caches are disabled.

58 Opt. Req. May Disable Coherency. When 0, the processor uses normal coherency requests
and responses. When 1, the processor answers all requests as if the line
were not present.

57 Opt. Req. May Disable Dynamic Power Management (DPM). When 0, the hardware may
reduce power consumption by removing the clock input from idle functional
units. When 1, all functional units will receive clock input, even when idle.

56 Opt. Req. May Disable a BINIT on internal processor time-out. When 0, the processor may
generate a BINIT on an internal processor time-out. When 1, the processor
will not generate a BINIT on an internal processor time-out. The event is
silently ignored.

55 Opt. Req. May Enable external notification when the processor detects hardware errors
caused by environmental factors that could cause loss of deterministic
behavior of the processor. When 1, this bit will enable external notification,
when 0 external notification is not provided. The type of external notification
of these errors is processor-dependent. A loss of processor deterministic
behavior is considered to have occurred if these environmentally induced
errors cause the processor to deviate from its normal execution and
eventually causes different behavior which can be observed at the processor
bus pins. Processor errors that do not have this effects (i.e., software
induced machine checks) may or may not be promoted depending on the
processor implementation.

2:448 Volume 2, Part 1: Processor Abstraction Layer

PAL_PROC_GET_FEATURES

54 Opt. Req. No Enable the use of the vmsw instruction. When 0, the vmsw instruction
causes a Virtualization fault when executed at the most privileged level.
When 1, this bit will enable normal operation of the vmsw instruction. This bit
has no effect if virtual machine features are disabled (see bit 40).

53 Opt. Req. May Enable MCA signaling on unconsumed data-poisoning event detection.
When 0, a CMCI will be signaled on error detection. When 1, an MCA will be
signaled on error detection. Note that the reported error severity depends on
which method is chosen for signaling; see Section 11.3.2.3, “Unconsumed
Data-Poisoning Event Handling” for details.If this feature is not supported,
then the corresponding argument is ignored when calling
PAL_PROC_SET_FEATURES. Note that the functionality of this bit is
independent of the setting in bit 60 (Enable CMCI promotion), and that the
bit 60 setting does not affect CMCI signaling for data-poisoning related
events.

52 Opt. Req. May Disable P-states. Provides the ability to disable p-states when they are
implemented by the processor. When the feature is available and status is 1
or when the feature is not available, the PAL P-state procedures
(PAL_PSTATE_INFO, PAL_SET_PSTATE, PAL_GET_PSTATE) will return
with a status of -1 (Unimplemented procedure). When the feature is
available and the status is 0, the PAL P-state procedures will operate
normally.

51:48 N/A N/A N/A Reserved

47 Opt. Opt. May Disable Dynamic branch prediction. When 0, the processor may predict
branch targets and speculatively execute, but may not commit results. When
1, the processor must wait until branch targets are known to execute.

46 Opt Opt. May Disable Dynamic Instruction Cache Prefetch. When 0, the processor may
prefetch into the caches any instruction which has not been executed, but
whose execution is likely. When 1, instructions may not be fetched until
needed or hinted for execution. (Prefetch for a hinted branch is allowed even
when dynamic instruction cache prefetch is disabled.)

45 Opt. Opt. May Disable Dynamic Data Cache Prefetch. When 0, the processor may prefetch
into the caches any data which has not been accessed by instruction
execution, but which is likely to be accessed. When 1, no data may be
fetched until it is needed for instruction execution or is fetched by an lfetch
instruction.

44 Opt. Req. No Disable Spontaneous Deferral. When 1, the processor may optionally defer
speculative loads that do not encounter any exception conditions, but that
trigger other implementation-dependent conditions (e.g., cache miss). This
behavior is gated by the programming model described in Section 5.5.5,
“Deferral of Speculative Load Faults” on page 2:105. When 0, spontaneous
deferral is disabled.

43 Opt. Opt. No Disable Dynamic Predicate Prediction. When 0, the processor may predict
predicate results and execute speculatively, but may not commit results until
the actual predicates are known. When 1, the processor shall not execute
predicated instructions until the actual predicates are known.

42 Opt. No ROc XR1 through XR3 implemented. Denotes whether XR1 - XR3 are
implemented for machine check recovery. This feature may only be
interrogated by PAL_PROC_GET_FEATURES. It may not be enabled or
disabled by PAL_PROC_SET_FEATURES. The corresponding argument is
ignored.

41 Opt. No RO XIP, XPSR, and XFS implemented. Denotes whether XIP, XPSR, and XFS
are implemented for machine check recovery. This feature may only be
interrogated by PAL_PROC_GET_FEATURES. It may not be enabled or
disabled by PAL_PROC_SET_FEATURES. The corresponding argument is
ignored.

Table 11-112. Processor Features (Continued)

Bit Class Control Scope Description

Volume 2, Part 1: Processor Abstraction Layer 2:449

PAL_PROC_GET_FEATURES

40 Opt. Opt. No Virtual Machine features implemented and enabled. When 1, PSR.vm is
implemented and virtual machines features are not disabled. When 0
(features_status) and when the corresponding features_avail bit is 1, virtual
machines features are implemented but are disabled. When both the
features_avail and features_status bits are 0, virtual machine features are
not implemented.
If implemented and controllable, virtual machine features may be disabled
by writing this bit to 0 with PAL_PROC_SET_FEATURES. However, virtual
machine features cannot be re-enabled except via a power-on; hence, if
virtual machine features are disabled, this bit reads as 0 for both
features_status and features_control (but still 1 for features_avail).

39 Opt. Req. May Variable P-state performance: A value of 1 indicates that the processor is
optimizing performance for the given P-state power budget by dynamically
varying the frequency, such that maximum performance is achieved for the
power budget. A value of 0 indicates that P-states have no frequency
variation or very small frequency variations for their given power budget.

38 Opt. No RO Simple implementation of unimplemented instruction addresses. Denotes
how an unimplemented instruction address is recorded in IIP on an
Unimplemented Instruction Address trap or fault. When 1, the full
unimplemented address is recorded in IIP; when 0, the address is sign
extended (virtual addresses) or zero extended (physical addresses). See
Section 3.3.5.3, “Interruption Instruction Bundle Pointer (IIP – CR19)” for
details. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

37 Opt. No RO INIT, PMI, and LINT pins present. Denotes the absence of INIT, PMI, LINT0
and LINT1 pins on the processor. When 1, the pins are absent. When 0, the
pins are present. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

36 Opt. No RO Unimplemented instruction address reported as fault. Denotes how the
processor reports the detection of unimplemented instruction addresses.
When 1, the processor reports an Unimplemented Instruction Address fault
on the unimplemented address; when 0, it reports an Unimplemented
Instruction Address trap on the previous instruction in program order. This
feature may only be interrogated by PAL_PROC_GET_FEATURES. It may
not be enabled or disabled by PAL_PROC_SET_FEATURES. The
corresponding argument is ignored.

35 Opt. Req. May Disable data speculation and the ALAT. When 1, data speculation checks
(chk.a) always fail (i.e., always branch to the target address), thus
triggering recovery code; check loads (ld.c) always re-load the target
register. When 0, data speculation works as normal.

34 Opt. No RO Interruption Instruction Bundle interruption registers (IIB0, IIB1)
implemented. Denotes whether IIB registers are implemented. This feature
may only be interrogated by PAL_PROC_GET_FEATURES. It may not be
enabled or disabled by PAL_PROC_SET_FEATURES. The corresponding
argument is ignored.

33 Opt. No RO Interval Timer Offset register (ITO) implemented. Denotes whether ITO
register is implemented. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

32:0 N/A N/A N/A Reserved

a. May-span-multiple-logical-processors. Readers should refer to implementation-specific document for details.
b. Setting this bit affect logical-processor only.
c. Read-only bit.

Table 11-112. Processor Features (Continued)

Bit Class Control Scope Description

2:450 Volume 2, Part 1: Processor Abstraction Layer

PAL_PROC_SET_FEATURES

PAL_PROC_SET_FEATURES – Set Processor Dependent Features
(18)

Purpose: Enables/disables specific processor features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES should be called to ascertain the implemented processor
features and their current setting before calling PAL_PROC_SET_FEATURES. The list of
possible processor features is defined in Table 11-112. Any attempt to set processor
features which cannot be set will be ignored.

Argument Description
index Index of PAL_PROC_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
feature_set Feature set to apply changes to. See PAL_PROC_GET_FEATURES for more information on

feature sets.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported

Volume 2, Part 1: Processor Abstraction Layer 2:451

PAL_PSTATE_INFO

PAL_PSTATE_INFO – Get Information for Power/Performance
States (44)

Purpose: Returns information about the P-states supported by the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Information about available P-states is returned in the data buffer referenced by
pstate_buffer. Entries in the buffer are organized in an ascending order. For example, P0
(the highest performance P-state) state information is index 0 in the buffer, P1 state is
index 1 in the buffer, and so on. The return argument pstate_num indicates the number
of P-states supported on the given implementation. For example, if pstate_num is 4, it
indicates that P-states P0-P3 are available for that implementation. Information in
pstate_buffer is returned only for entries corresponding to the available P-states. Entries
corresponding to unimplemented P-states must be ignored. Figure 11-41 illustrates the
format of the pstate_buffer.

• typical_power_dissipation is a 20-bit field denoting the typical processor package
power dissipation if all logical processors on the package are placed in this P-state,
measured in milliwatts.

• perf_index is a 7-bit field denoting the performance index of this P-state, relative to
the highest available P-state (P0). This field is enumerated relative to the index of
the highest-performing P-state. A value of 100 represents the minimum processor

Argument Description
index Index of PAL_PSTATE_INFO within the list of PAL procedures.
pstate_buffer 64-bit pointer to a 256-byte buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PSTATE_INFO procedure.
pstate_num Unsigned integer denoting the number of P-states supported. The maximum value of this

field is 16.
dd_info Dependency domain information
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Figure 11-41. Layout of pstate_buffer Entry

offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 typical_power_dissipation reserved perf_index

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+4 transition_latency_1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+8 transition_latency_2

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+12 reserved

64

2:452 Volume 2, Part 1: Processor Abstraction Layer

PAL_PSTATE_INFO

performance in the P0 state. For example, if the P1-state has a value of 75, and the
next P-state (P2) has a value of 50, it implies that P1 performance is 25% lower
than P0 performance, and P2 performance is 50% lower than P0 performance.

• transition_latency_1 is a 32-bit field indicating the minimum number of processor
cycles required to initiate a transition to this P-state from any other P-state.

• transition_latency_2 is a 32-bit field indicating the minimum recommended number of
processor cycles that the caller should wait, before initiating a new P-state
transition with a reasonable chance of acceptance. This field is intended to give the
caller an estimation of the frequency with which PAL_SET_PSTATE procedure calls
should be made, without having the transition request be not accepted.

Dependency domain details for the logical processor are returned in dd_info. See
Figure 11-42 for dd_info layout.

• ddt (Dependency Domain Type) is a 3-bit unsigned integer denoting the type of
dependency domains that exist on the processor package. The possible values are
shown in Table 11-113. See Section 11.6.1, “Power/Performance States (P-states)”
on page 2:315 for details of the values in this field.

• ddid (Dependency Domain Identifier) is a 6-bit unsigned integer denoting this
logical processor's dependency domain. The ddid values are unique only for a given
processor package. Software can use the ddid field to determine which logical
processors belong to the same dependency domain within the package.

For more information on performance states and power management, refer to
Section 11.6.1, “Power/Performance States (P-states)” on page 2:315.

Figure 11-42. Layout of dd_info Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ddid rv ddt

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-113. Values for ddt Field

Value Description

0 Hardware independent (HIDD)

1 Hardware coordinated (HCDD)

2 Software coordinated (SCDD)

3-7 Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:453

PAL_PTCE_INFO

PAL_PTCE_INFO – Get PTCE Purge Loop Information (6)

Purpose: Returns information required for the architected loop used to purge (initialize) the
entire TC.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: No explicit hardware support is required by this call. See the purge loop example in the
description of the ptc.e instruction in Chapter 2, “Instruction Reference” in Volume 3.

Argument Description
index Index of PAL_PTCE_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PTCE_INFO procedure.
tc_base Unsigned 64-bit integer denoting the beginning address to be used by the first PTCE

instruction in the purge loop.
tc_counts Two unsigned 32-bit integers denoting the loop counts of the outer (loop 1) and inner (loop 2)

purge loops. count1 (loop 1) is contained in bits 63:32 of the parameter, and count2 (loop 2)
is contained in bits 31:0 of the parameter.

tc_strides Two unsigned 32-bit integers denoting the loop strides of the outer (loop 1) and inner (loop 2)
purge loops. stride1 (loop 1) is contained in bits 63:32 of the parameter, and stride2 (loop 2)
is contained in bits 31:0 of the parameter.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:454 Volume 2, Part 1: Processor Abstraction Layer

PAL_REGISTER_INFO

PAL_REGISTER_INFO – Return Information about Implemented
Processor Registers (39)

Purpose: Returns information about implemented Application and Control Registers.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

This procedure is called to obtain information about the implementation of Application
Registers and Control Registers. Table 11-114 shows the information that is returned
for each request.

Argument Description
index Index of PAL_REGISTER_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer denoting what register information is requested.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_REGISTER_INFO procedure.
reg_info_1 64-bit vector denoting information for registers 0-63. Bit 0 is register 0, bit 63 is register 63.
reg_info_2 64-bit vector denoting information for registers 64-127. Bit 0 is register 64, bit 63 is register

127.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Table 11-114. info_request Return Value

info_request Meaning of Return Bit Vector

0 A 0-bit in the return vector indicates that the corresponding Application Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Application
Register is implemented.

1 A 0-bit in the return vector indicated that the corresponding Application Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Application
registers may cause side effects when read.

2 A 0-bit in the return vector indicates that the corresponding Control Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Control Register is
implemented.

3 A 0-bit in the return vector indicated that the corresponding Control Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Control
Register may cause side effects when read.

All others Reserved.

Volume 2, Part 1: Processor Abstraction Layer 2:455

PAL_RSE_INFO

PAL_RSE_INFO – Get RSE Information (19)

Purpose: Returns information about the register stack and RSE for this processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The return parameter phys_stacked contains a 64-bit unsigned integer that specifies
the number of physical registers implemented by the processor for the stacked general
registers, r32-r127. phys_stacked will be an integer multiple of 16 greater than or
equal to 96.

The return parameter hints contains a 2-bit field that specifies which RSE load/store
hints are implemented.

A bit field value of 1 specifies that the corresponding mode is implemented; a value of 0
specifies that the mode is not implemented. The bit field encodings are:

“Lazy” is the default RSE mode and must be implemented. Hardware is not required to
implement any of the other modes.

Argument Description
index Index of PAL_RSE_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_RSE_INFO procedure.
phys_stacked Number of physical stacked general registers.
hints RSE hints supported by processor.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-43. Layout of hints Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved li si

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-115. RSE Hints Implemented

li si RSE Hints Class

0 0 enforced lazy Required

0 1 eager stores Optional

1 0 eager loads Optional

1 1 eager stores and loads Optional

2:456 Volume 2, Part 1: Processor Abstraction Layer

PAL_SET_HW_POLICY

PAL_SET_HW_POLICY – Set Current Hardware Resource Sharing
Policy (49)

Purpose: Sets the current hardware resource sharing policy of the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure is used to set the hardware resource sharing policy on the logical
processor it is called on. The setting of this policy will impact other logical processors on
the physical processor package. The logical processors impacted is returned by the
PAL_GET_HW_POLICY procedure, see “PAL_GET_HW_POLICY – Retrieve Current
Hardware Resource Sharing Policy (48)” on page 2:394 for details.

The input argument policy selects the hardware policy the caller would like to set. The
supported hardware policies are listed in Table 11-116 below. By default the hardware
always sets the processor in the performance policy at reset.

Argument Description
index Index of PAL_SET_HW_POLICY within the list of PAL procedures.
policy Unsigned 64-bit integer specifying the hardware resource sharing policy the caller is setting.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_SET_HW_POLICY procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed successfully but could not change the hardware policy since a competing

logical processor is set in exclusive high priority
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Table 11-116. Processor Hardware Sharing Policies

Value Name Description

0 Performance The processor has its hardware resources configured to achieve
maximum performance across all logical processors.

1 Fairness The processor configures hardware resources to approximately
achieve equal sharing of competing hardware resources among all
impacted logical processors.

Volume 2, Part 1: Processor Abstraction Layer 2:457

PAL_SET_HW_POLICY

The caller must be aware of which logical processors are impacted by hardware policy
changes, since making a call on one of the logical processors will impact all logical
processors that share the same hardware resources. For example if the caller selects
the high-priority policy on one logical processor A and then later in time selects fairness
policy on one of the competing logical processors B, the procedure will take away
high-priority status from logical processor A and change all impacted logical processors
to the fairness policy without an error.

If a caller wants to ensure that high-priority will not be taken away from a logical
processor, it can use the exclusive high-priority policy. This policy will return an error if
any competing logical processor tries to change the hardware policy. This ensures that
the caller can ensure a certain logical processor will retain high-priority status until that
status is explicitly released by that logical processor.

This procedure is only supported on processors that have multiple logical processors
sharing hardware resources that can be configured. On all other processor
implementations, this procedure will return the Unimplemented procedure return
status.

2 High-priority The processor configures hardware resources to provide the logical
processor this procedure was called on a greater share of the
competing hardware resources. All competing logical processors
will get a smaller share of the competing hardware resources.

3 Exclusive High-priority The processor configures hardware resources such that the logical
processor this procedure was called on has a greater share of the
competing hardware resources. All competing logical processors
will get a smaller share of the competing hardware resources. This
policy also ensures that no other competing logical processor can
modify the hardware sharing policy until the logical processor that is
in exclusive high priority releases exclusive high-priority by
selecting a different policy.

All Other Values Reserved

Table 11-116. Processor Hardware Sharing Policies (Continued)

Value Name Description

2:458 Volume 2, Part 1: Processor Abstraction Layer

PAL_SET_PSTATE

PAL_SET_PSTATE – Request Processor to Enter Power/Performance
State (263)

Purpose: To request a processor transition to a given P-state.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_SET_PSTATE is used to request the transition of the processor to the P-state
specified by the p_state input parameter. The PAL_SET_PSTATE procedure does not wait
for the transition to complete before returning back to the caller. The request may
either be accepted (status = 0) or not accepted (status = 1), depending on hardware
capabilities and implementation-specific event conditions. The presence of a platform
power-cap does not prevent the request from being accepted. (See Section 11.6.1,
“Power/Performance States (P-states)” on page 2:315 for details.) If the request is not
accepted, then no transition is performed, and it is up to the caller to make another
PAL_SET_PSTATE procedure call to transition to the desired P-state. When the request
is accepted, the processor will attempt to initiate a transition to the requested
performance state. For SCDD or HIDD logical processors, the procedure will always
succeed in transitioning to the requested performance state. For HCDD logical
processors, the procedure will make a best-case attempt at fulfilling the transition
request, based on the nature of the dependencies that exist between the logical
processors in the domain. In such circumstances, the procedure may initiate no
transition, partial transition or full transition to the requested P-state.

The force_pstate argument may be used for a HCDD when it is necessary to get a
deterministic response for the P-state transition at the expense of compromising the
power/performance of other logical processors in the same domain. If the force_pstate
argument is non-zero, and if the request is accepted, the procedure will initiate the
P-state transition on the logical processor regardless of any dependencies that exist in
the dependency domain at the time the procedure is called. Forcing the P-state does
not change the P-states requested by other logical processors in the dependency
domain, nor the value seen on other logical processors when they do a
PAL_GET_PSTATE with type=0; rather, forcing the P-state effectively suspends hardware

Argument Description
index Index of PAL_SET_PSTATE within the list of PAL procedures.
p_state Unsigned integer denoting the processor P-state being requested.
force_pstate Unsigned integer denoting whether the P-state change should be forced for the logical

processor.
Reserved 0

Return Value Description
status Return status of the PAL_SET_PSTATE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but transition request was not accepted
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Volume 2, Part 1: Processor Abstraction Layer 2:459

PAL_SET_PSTATE

coordination. A subsequent call to PAL_SET_PSTATE on any logical processor in the
dependency domain (with a force_pstate argument of zero) reinstates hardware
coordination. The force_pstate argument is ignored on SCDD and HIDD logical
processors.

Calling this procedure on some processor implementations may affect P-states of other
processors in the same dependency domain. Please refer to Section 11.6.1,
“Power/Performance States (P-states)” on page 2:315 and implementation-specific
reference manuals for details.

2:460 Volume 2, Part 1: Processor Abstraction Layer

PAL_SHUTDOWN

PAL_SHUTDOWN – Shutdown the Processor (45)

Purpose: Put the logical processor into a low power state which can be exited only by a reset
event.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This call places the logical processor in a low power state which can be exited only by
asserting a reset. This procedure can optionally let the platform know that it is about to
shutdown by performing a store operation as specified in the notify_platform input
argument.

If the notify_platform input argument is zero, no store operation will be performed. If the
notify_platform input argument is non-zero, the layout for this argument is shown in
Table 11-117.

If the address value is not naturally aligned to the size selected, this procedure will
return an error.

The logical processor will wait until this transaction has been received by the platform
before entering the shutdown state.

On receipt of a reset event, the logical processor will reset itself and start execution at
the PAL reset address. All other events will are ignored by the logical processor when in
shutdown state.

Argument Description
index Index of PAL_SHUTDOWN within the list of PAL procedures.
notify_platform 8-byte aligned physical address pointer providing details on how to optionally notify the

platform that the processor is entering a shutdown state.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_SHUTDOWN procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Table 11-117. notify_platform Layout

Offset Description

0x0 Size of the store operation to perform (1, 2, 4 or 8 are the only valid values for this field).

0x8 Aligned physical address of the store operation. The most significant bit (63) of the physical
address should be set according to the cacheability attribute wanted for the store transaction.

0x10 Data value for the store operation.

All others Reserved.

Volume 2, Part 1: Processor Abstraction Layer 2:461

PAL_TEST_INFO

PAL_TEST_INFO – Information for Processor Self-test (37)

Purpose: Returns the alignment and size requirements needed for the memory buffer passed to
the PAL_TEST_PROC procedure as well as information on self-test control words for the
processor self-tests.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_TEST_INFO returns the size and alignment requirements for the memory buffer
that is passed to the PAL_TEST_PROC procedure and returns information on the
implementation of the self-test control word based on the test_phase input argument.
Please see Section 11.2.3, “PAL Self-test Control Word” on page 2:295 for more
information on the self-test control word.

When test_phase is equal to zero, information is returned about phase two of the
processor self-test. These are the tests that require external memory to execute
properly. When test_phase is equal to one, information is returned about phase one of
the processor self-test. These are the tests that are normally run during PALE_RESET
and do not require external memory to properly execute. When information is
requested about phase one of the processor self-test a memory buffer and alignment
argument will be returned as well since these tests may need to save and restore
processor state to this memory buffer if executed from the PAL_TEST_PROC procedure.

Argument Description
index Index of PAL_TEST_INFO within the list of PAL procedures.
test_phase Unsigned integer that specifies which phase of the processor self-test information is being

requested on. A value of 0 indicates the phase two of the processor self-test and a value of 1
indicates phase one of the processor self-test. All other values are reserved.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_TEST_INFO procedure.
bytes_needed Unsigned 64-bit integer denoting the number of bytes of main memory needed to perform

the second phase of processor self-test.
alignment Unsigned 64-bit integer denoting the alignment required for the memory buffer.
st_control 48-bit wide bit-field indicating if control of the processor self-tests is supported and which bits

of the test_control field are defined for use.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

2:462 Volume 2, Part 1: Processor Abstraction Layer

PAL_TEST_PROC

PAL_TEST_PROC – Perform a Processor Self-test (258)

Purpose: Performs the second phase of processor self test.

Calling Conv: Stacked Registers

PAL_TEST_PROC may modify some registers marked unchanged in the Stacked
Register calling convention. See additional description below.

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_TEST_PROC procedure will perform a phase of the processor self-tests as
directed by the test_info and the test_control input parameters.

test_address points to a contiguous memory region to be used by PAL_TEST_PROC.
This memory region must be aligned as specified by the alignment return value from
PAL_TEST_INFO, otherwise this procedure will return with an invalid argument return
value. The PAL_TEST_PROC routine requires that the memory has been initialized and
that there are no known uncorrected errors in the allocated memory.

The test_info input parameter specifies the size of the memory buffer passed to the
procedure and which phase of the processor self-test is requested to be run (either
phase one or phase two).

• buffer_size indicates the size in bytes of the memory buffer that is passed to this
procedure. buffer_size must be greater than or equal in size to the bytes_needed
return value from PAL_TEST_INFO, otherwise this procedure will return with an
invalid argument return value.

Argument Description
index Index of PAL_TEST_PROC within the list of PAL procedures.
test_address 64-bit physical address of main memory area to be used by processor self-test. The memory

region passed must be cacheable, bit 63 must be zero.
test_info Input argument specifying the size of the memory buffer passed and the phase of the

processor self-test that should be run. See Figure 11-44.
test_params Input argument specifying the self-test control word and the allowable memory attributes that

can be used with the memory buffer. See Figure 11-45.

Return Value Description
status Return status of the PAL_TEST_PROC procedure.
self-test_state Formatted 8-byte value denoting the state of the processor after self-test. The format is

described in Section 11.2.2.3, “Definition of Self Test State Parameter” on page 2:293.
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but hardware failures occurred during self-test
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Figure 11-44. Layout of test_info Argument

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

buffer_size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_phase buffer_size

Volume 2, Part 1: Processor Abstraction Layer 2:463

PAL_TEST_PROC

• test_phase defines which phase of the processor self-tests are requested to be run.
A value of zero indicates to run phase two of the processor self-tests. Phase two of
the processor self-tests are ones that require external memory to execute correctly.
A value of one indicates to run phase one of the processor self-tests. Phase one of
the processor self-tests are tests run during PALE_RESET and do not depend on
external memory to run correctly. When the caller requests to have phase one of
the processor self-test run via this procedure call, a memory buffer may be needed
to save and restore state as required by the PAL calling conventions. The procedure
PAL_TEST_INFO informs the caller about the requirements of the memory buffer.

The test_params input argument specifies which memory attributes are allowed to be
used with the memory buffer passed to this procedure as well as the self-test control
word. The self-test control word test_control controls the runtime and coverage of the
processor self-test phase specified in the test_phase parameter.

• attributes specifies the memory attributes that are allowed to be used with the
memory buffer passed to this procedure. The attributes parameter is a vector
where each bit represents one of the virtual memory attributes defined by the
architecture. The bit field position corresponds to the numeric memory attribute
encoding defined in Section 4.4, “Memory Attributes” on page 2:75. The caller is
required to support the cacheable attribute for the memory buffer, otherwise an
invalid argument will be returned.

• test_control is the self-test control word corresponding to the test_phase passed.
This test_control directs the coverage and runtime of the processor self-tests
specified by the test_phase input argument. Information about the self-test control
word can be found in Section 11.2.3, “PAL Self-test Control Word” on page 2:295
and information on if this feature is implemented and the number of bits supported
can be obtained by the PAL_TEST_INFO procedure call. If this feature is
implemented by the processor, the caller can selectively skip parts of the processor
self-test by setting test_control bits to a one. If a bit has a zero, this test will be
run. The values in the unimplemented bits are ignored. If PAL_TEST_INFO indicated
that the self-test control word is not implemented, this procedure will return with
an invalid argument status if the caller sets any of the test_control bits.

PAL_TEST_PROC will classify the processor after the self-test in one of four states:
CATASTROPHIC FAILURE, FUNCTIONALLY RESTRICTED, PERFORMANCE RESTRICTED,
or HEALTHY. These processor self-test states are described in Figure 11-9 on
page 2:293. If PAL_TEST_PROC returns in the FUNCTIONALLY RESTRICTED or
PERFORMANCE RESTRICTED states the self-test_status return value can provide
additional information regarding the nature of the failure. In the case of a
CATASTROPHIC FAILURE, the procedure does not return.

The procedure will only perform memory accesses to the buffer passed to it using the
memory attributes indicated in the attributes bit-field. The caller must ensure that the
memory region passed to the procedure is in a coherent state.

PAL_TEST_PROC may modify PSR bits or system registers as necessary to test the
processor. These bits or registers must be restored upon exit from PAL_TEST_PROC

Figure 11-45. Layout of test_param Argument

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

test_control reserved attributes

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_control

2:464 Volume 2, Part 1: Processor Abstraction Layer

PAL_TEST_PROC

with the exception of the translation caches, which are evicted as a result of testing.
PAL_TEST_PROC is free to invalidate all cache contents. If the caller depends on the
contents of the cache, they should be flushed before making this call. PAL_TEST_PROC
requires that the RSE is set up properly to handle spills and fills to a valid memory
location if the contents of the register stack are needed. PAL_TEST_PROC requires that
the memory buffer passed to it is not shared with other processors running this
procedure in the system at the same time. PAL_TEST_PROC will use this memory
region in a non-coherent manner. PAL_TEST_PROC may overwrite floating point
registers 32-127 without restoring their values upon exit.

Volume 2, Part 1: Processor Abstraction Layer 2:465

PAL_VERSION

PAL_VERSION – Get PAL Version Number Information (20)

Purpose: Returns PAL version information.

Calling Conv: Static registers only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_VERSION provides the caller the minimum PAL version needed for proper
operation of the processor as well as the current PAL version running on the processor.

The min_pal_ver and current_pal_ver return values are 8-byte values in the following
format:

• PAL_B_version is a 16-bit binary coded decimal (BCD) number that provides
identification information about the PAL_B firmware.

• PAL_vendor is an unsigned 8-bit integer indicating the vendor of the PAL code.

• PAL_A_version is a 16-bit binary coded decimal (BCD) number that provides
identification information about the PAL_A firmware. In the split PAL_A model, this
return value is the version number of the processor-specific PAL_A. The generic
PAL_A version is not returned by this procedure in the split PAL_A model.

The version numbers selected for the PAL_A and PAL_B firmware is specific to the
PAL_vendor. The version numbers selected will always have the property that later
versions of firmware will have a higher number than earlier versions of firmware.

Argument Description
index Index of PAL_VERSION within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VERSION procedure.
min_pal_ver 8-byte formatted value returning the minimum PAL version needed for proper operation of

the processor. See Figure 11-46.
current_pal_ver 8-byte formatted value returning the current PAL version running on the processor. See

Figure 11-46.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-46. Layout of min_pal_ver and current_pal_ver Return Values

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAL_vendor Reserved PAL_B_version

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved PAL_A_version

2:466 Volume 2, Part 1: Processor Abstraction Layer

PAL_VM_INFO

PAL_VM_INFO – Get Virtual Memory Information (7)

Purpose: Return information about the virtual memory characteristics of the processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The tc_info return is an 8-byte quantity in the following format:

• num_sets – Unsigned 8-bit integer denoting the number of hash sets for the
specified level (1=fully associative)

• num_ways – Unsigned 8-bit integer denoting the associativity of the specified level
(1=direct).

• num_entries – Unsigned 16-bit integer denoting the number of entries in the
specified TC.

• pf – Flag denoting whether the specified level is optimized for the region’s preferred
page size (1=optimized). tc_pages indicates which page sizes are usable by this
translation cache.

• ut – Flag denoting whether the specified TC is unified (1=unified).

• tr – Flag denoting whether installed translation registers will reduce the number of
entries within the specified TC.

The num_entries will always equal num_ways * num_sets. For a direct mapped TC,
num_ways = 1 and num_sets = num_entries. For a fully associative TC, num_sets = 1
and num_ways = num_entries.

Argument Description
index Index of PAL_VM_INFO within the list of PAL procedures.
tc_level Unsigned 64-bit integer specifying the level in the TLB hierarchy for which information is

required. This value must be between 0 and one less than the value returned in the
vm_info_1.num_tc_levels return value from PAL_VM_SUMMARY.

tc_type Unsigned 64-bit integer with a value of 1 for instruction translation cache and 2 for data or
unified translation cache. All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_VM_INFO procedure.
tc_info 8-byte formatted value returning information about the specified TC.
tc_pages 64-bit vector containing a bit for each page size supported in the specified TC, where bit

position n indicates a page size of 2**n.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument.
-3 Call completed with error.

Figure 11-47. Layout of tc_info Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

num_entries num_ways num_sets

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved tr ut pf

Volume 2, Part 1: Processor Abstraction Layer 2:467

PAL_VM_PAGE_SIZE

PAL_VM_PAGE_SIZE – Get Virtual Memory Page Size Information
(34)

Purpose: Returns page size information about the virtual memory characteristics of the processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The values returned from this call are all 64-bit bitmaps. One bit is set for each page
size implemented by the processor where bit n represents a page size of 2**n. Please
refer to Table 4-5 on page 2:58 for the minimum page sizes that are supported.

The insertable_pages returns the page sizes that are supported for TLB insertions and
region registers.

The purge_pages returns the page sizes that are supported for the TLB purge
operations.

Argument Description
index Index of PAL_VM_PAGE_SIZE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VM_PAGE_SIZE procedure.
insertable_pages 64-bit vector containing a bit for each architected page size that is supported for TLB

insertions and region registers.
purge_pages 64-bit vector containing a bit for each architected page size supported for TLB purge

operations.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

2:468 Volume 2, Part 1: Processor Abstraction Layer

PAL_VM_SUMMARY

PAL_VM_SUMMARY – Get Virtual Memory Summary Information (8)

Purpose: Returns summary information about the virtual memory characteristics of the processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The vm_info_1 return is an 8-byte quantity in the following format:

• vw – 1-bit flag indicating whether a hardware TLB walker is implemented (1 =
walker present).

• phys_add_size – Unsigned 7-bit integer denoting the number of bits of physical
address implemented.

• key_size – Unsigned 8-bit integer denoting the number of bits implemented in the
PKR.key field.

• max_pkr – Unsigned 8-bit integer denoting the maximum PKR index (number of
PKRs-1).

• hash_tag_id – Unsigned 8-bit integer which uniquely identifies the processor hash
and tag algorithm.

• max_dtr_entry – Unsigned 8 bit integer denoting the maximum data translation
register index (number of dtr entries - 1).

• max_itr_entry – Unsigned 8 bit integer denoting the maximum instruction
translation register index (number of itr entries - 1).

• num_unique_tcs – Unsigned 8-bit integer denoting the number of unique TCs
implemented. This is a maximum of 2*num_tc_levels.

• num_tc_levels – Unsigned 8-bit integer denoting the number of TC levels.

The vm_info_2 return is an 8-byte quantity in the following format:

Argument Description
index Index of PAL_VM_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VM_SUMMARY procedure.
vm_info_1 8-byte formatted value returning global virtual memory information.
vm_info_2 8-byte formatted value returning global virtual memory information.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

Figure 11-48. Layout of vm_info_1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hash_tag_id max_pkr key_size phys_add_size vw

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

num_tc_levels num_unique_tcs max_itr_entry max_dtr_entry

Volume 2, Part 1: Processor Abstraction Layer 2:469

PAL_VM_SUMMARY

• impl_va_msb – Unsigned 8-bit integer denoting the bit number of the most
significant virtual address bit. This is the total number of virtual address bits - 1.

• rid_size – Unsigned 8-bit integer denoting the number of bits implemented in the
RR.rid field.

• max_purges – Unsigned 16 bit integer denoting the maximum number of
concurrent outstanding TLB purges allowed by the processor. A value of 0 indicates
one outstanding purge allowed. A value of 216-1 indicates no limit on outstanding
purges. All other values indicate the actual number of concurrent outstanding
purges allowed.

Figure 11-49. Layout of vm_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

max_purges rid_size impl_va_msb

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

2:470 Volume 2, Part 1: Processor Abstraction Layer

PAL_VM_TR_READ

PAL_VM_TR_READ – Read a Translation Register (261)

Purpose: Reads a translation register.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure reads the specified translation register and returns its data in the buffer
starting at tr_buffer. The format of the data is returned in Translation Insertion Format,
as described in Figure 4-5, “Translation Insertion Format,” on page 2:54. In addition,
bit 0 of the IFA in Figure 4-5 (an ignored field in the figure) will return whether the
translation is valid. If bit 0 is 1, the translation is valid.

Some fields of the translation register returned may be invalid. The validity of these
fields is indicated by the return argument TR_valid. If these fields are not valid, the
caller should ignore the indicated fields when reading the translation register returned
in tr_buffer.

• av – denotes that the access rights field is valid

• pv – denotes that the privilege level field is valid

• dv – denotes that the dirty bit is valid

• mv – denotes that the memory attributes are valid.

A value of 1 denotes a valid field. A value of 0 denotes an invalid field. Any value
returned in an invalid field must be ignored.

The tr_buffer parameter should be aligned on an 8 byte boundary.

Note: This procedure may have the side effect of flushing all the translation cache
entries depending on the implementation.

Argument Description
index Index of PAL_VM_TR_READ within the list of PAL procedures.
reg_num Unsigned 64-bit number denoting which TR to read.
tr_type Unsigned 64-bit number denoting whether to read an ITR (0) or DTR (1). All other values are

reserved.
tr_buffer 64-bit pointer to the 32-byte memory buffer in which translation data is returned.

Return Value Description
status Return status of the PAL_VM_TR_READ procedure.
TR_valid Formatted bit vector denoting which fields are valid. See Figure 11-50.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

Figure 11-50. Layout of TR_valid Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved mv dv pv av

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:471

PAL_VP_CREATE

PAL_VP_CREATE – PAL Create New Virtual Processor (265)

Purpose: Initializes a new vpd for the operation of a new virtual processor in the virtual
environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: Initializes a new vpd for the operation of a new virtual processor within the virtual
environment.

The caller must pass a pointer to the new Virtual Processor Descriptor (vpd) as
argument. The host virtual to host physical translation of the 64K region specified by
vpd must be mapped with either a DTR or DTC. See Section 11.10.2.1.3, “Making PAL
Procedure Calls in Physical or Virtual Mode” on page 2:359 for details on data
translation requirements of memory buffer pointers passed as arguments to PAL
procedures. The vac, vdc and virt_env_vaddr parameters in the VPD must already be
initialized before calling this procedure. Invalid argument is returned on unsupported
vac/vdc combinations. See Section 11.7.4.4, “Virtualization Optimization Combinations”
on page 2:349 for details.

The host_iva parameter specifies the host IVT to handle IVA-based interruptions when
this virtual processor is running. The VMM can use the same or different host_iva for
each virtual processor. The opt_handler specifies an optional virtualization intercept
handler. If a non-zero value is specified, all virtualization intercepts are delivered to this
handler. If a zero value is specified, all virtualization intercepts are delivered to the
Virtualization vector in the host IVT. If the VMM relocates the IVT specified by the
host_iva parameter and/or the virtualization intercept handler specified by the
opt_handler parameter after this procedure, PAL_VP_REGISTER must be called to
register the new host IVT and virtualization intercept handler before resuming virtual
processor execution or allowing any IVA-based interruptions to occur; otherwise
processor operation is undefined.

Upon return, the VMM is responsible for setting up the rest of the VMD state before the
new virtual processor is launched (via PAL_VPS_RESUME_NORMAL or
PAL_VPS_RESUME_HANDLER).

Argument Description
index Index of PAL_VP_CREATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
host_iva 64-bit host virtual pointer to the host IVT for the virtual processor
opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See

Section 11.7.3, “PAL Intercepts in Virtual Environment” on page 2:332 for details.

Return Value Description
status Return status of the PAL_VP_CREATE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

2:472 Volume 2, Part 1: Processor Abstraction Layer

PAL_VP_CREATE

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Volume 2, Part 1: Processor Abstraction Layer 2:473

PAL_VP_ENV_INFO

PAL_VP_ENV_INFO – PAL Virtual Environment Information (266)

Purpose: Returns the parameters needed to enter a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure returns the configuration options and the PAL virtual environment buffer
size required by PAL_VP_INIT_ENV. This procedure is used by the VMM to setup a
virtual environment and determine the amount of memory / resources required. The
VMM can then allocate the required amount of physical memory, set up the virtual to
physical instruction and data translations that cover the PAL virtual environment buffer
in TRs and call PAL_VP_INIT_ENV. The buffer allocated must be at least 4K aligned.

On a multiprocessor system, this procedure need only be invoked once (on any one
logical processor) to obtain virtual environment information.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Argument Description
index Index of PAL_VP_ENV_INFO within the list of PAL procedures
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_ENV_INFO procedure
buffer_size Unsigned integer denoting the number of bytes required by the PAL virtual environment

buffer during PAL_VP_INIT_ENV
vp_env_info 64-bit vector of virtual environment information. See Table 11-118. for details
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Table 11-118. vp_env_info – Virtual Environment Information Parameter

Field Bit Description

Reserved 7:0 Reserved

opcode 8 If 1, hardware support to provide opcode information during PAL intercepts is available.
The opcode (and the decoding of cause) passed as parameters to the VMM on inter-
cept will represent the instruction that triggered the intercept.
If 0, opcode information during PAL intercepts is provided by PAL. The opcode (and the
decoding of cause) passed as parameters to the VMM on intercept will not necessarily
represent the instruction that triggered the intercept, but may represent some value
that was written to memory between the time the instruction that triggered the intercept
was fetched, and when the intercept was triggered.

Reserved 9 Reserved

gitc 10 If 1, guest MOV-from-AR.ITC optimization is supported.a

If 0, guest MOV-from-AR.ITC optimization is not supported.

2:474 Volume 2, Part 1: Processor Abstraction Layer

PAL_VP_ENV_INFO

Reserved 31:11 Reserved

probe 32 If 1, processor supports interception of probe instructions. See Section 11.7.4.2.8,
“Probe Instruction Virtualization” on page 2:344 for details on the usage of this control.
If 0, intercept of probe instructions is not supported.

tf 33 If 1, guest test feature optimization is supported. If 0, this optimization is not supported.
See Section 11.7.4.2.9, “Test Feature Optimization” on page 2:345 for details.

ic_um 34 If 1, guest interruption collection and user mask optimization is supported. If 0, this
optimization is not supported. See Section 11.7.4.2.10, “Interruption Collection and
User Mask Optimization” on page 2:345 for details.

Reserved 63:35 Reserved

a. Architecturally, an implementation which supports guest MOV-from-AR.ITC will also support the interval timer
offset (ITO) register.

Table 11-118. vp_env_info – Virtual Environment Information Parameter

Field Bit Description

Volume 2, Part 1: Processor Abstraction Layer 2:475

PAL_VP_EXIT_ENV

PAL_VP_EXIT_ENV – PAL Exit Virtual Environment (267)

Purpose: Allows a logical processor to exit a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure allows a logical processor to exit a virtual environment.

Upon successful execution of the PAL_VP_EXIT_ENV procedure and if the iva parameter
is non-zero, the IVA control register will contain the value from the iva parameter.

On a multiprocessor system, the VMM must allow the last logical processor in this
environment to complete the procedure before freeing the memory resource allocated
to the virtual environment.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Argument Description
index Index of PAL_VP_EXIT_ENV within the list of PAL procedures
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_EXIT_ENV procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

2:476 Volume 2, Part 1: Processor Abstraction Layer

PAL_VP_INFO

PAL_VP_INFO – PAL Virtual Processor Information (50)

Purpose: Returns information about virtual processor features.

Calling Conv: Static

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_VP_INFO procedure call is used to describe virtual processor features.

The feature_set input argument for PAL_VP_INFO describes which virtual-processor
feature_set information is being requested, and is composed of two fields as shown:

A vmm_id of 0 indicates architected feature sets, while others are
implementation-specific feature sets. Implementation-specific feature sets are
described in VMM-specific documentation.

This procedure will return a -8 if an unsupported feature_set argument is passed as an
input. The return status is used by the caller to know which feature sets are currently
supported on a particular VMM. This procedure always returns unimplemented (-1)
when called on physical processors.

For each valid feature_set, this procedure returns information about the virtual processor
in vp_info. Additional information may be returned in the memory buffer pointed to by
vp_buffer, as needed. Details, for a given implementation-specific feature_set, of whether
information is returned in the buffer, the size of the buffer, and the representation of
this information in the buffer and in vp_info are described in VMM-specific
documentation.

Architected feature_set 0 (vmm_id 0, index 0) is defined and required to be implemented
(if this procedure is implemented), but there are no architected features defined in it
yet, and so all bits in vp_info are reserved for architected feature_set 0. Other architected
feature sets (vmm_id 0, index>0) are undefined, and return -8 (Specified feature_set is
not implemented). Software can call PAL_VP_INFO with a feature_set argument of 0 to

Argument Description
index Index of PAL_VP_INFO within the list of PAL procedures
feature_set Feature set information is being requested for.
vp_buffer An address to an 8-byte aligned memory buffer (if used).
Reserved 0

Return Value Description
status Return status of the PAL_VP_INFO procedure
vp_info Information about the virtual processor.
vmm_id Unique identifier for the VMM.
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-8 Specified feature_set is not implemented

63 48 47 0

vmm_id index

16 48

Volume 2, Part 1: Processor Abstraction Layer 2:477

PAL_VP_INFO

get the vmm_id, although vmm_id is also returned for any other implemented feature
sets as well. For feature_set 0, the vp_buffer argument is ignored.

2:478 Volume 2, Part 1: Processor Abstraction Layer

PAL_VP_INIT_ENV

PAL_VP_INIT_ENV – PAL Initialize Virtual Environment (268)

Purpose: Allows a logical processor to enter a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure allows a logical processor to enter a virtual environment. This call must
be made after calling PAL_VP_ENV_INFO and before calling other PAL virtualization
procedures and services. All of the logical processors in a virtual environment share the
same PAL virtual environment buffer. The buffer must be 4K aligned. The first
logical processor entering the virtual environment initializes the buffer provided by the
VMM. Subsequent processors can enter the virtual environment at any time and will not
perform initialization to the buffer.

PAL_VP_ENV_INFO must be called before this procedure to determine the configuration
options and size requirements for the virtual environment. The VMM is required to
maintain the ITR and DTR translations of the PAL virtual environment buffer throughout
this procedure. See “PAL_VP_ENV_INFO – PAL Virtual Environment Information (266)”
on page 2:473 for more information on PAL_VP_ENV_INFO.

After this procedure, it is optional for the VMM to maintain the TR mapping for the PAL
virtual environment buffer. If the TR translations for the buffer are not installed, the
VMM must not make any PAL virtualization service calls; and the VMM must be
prepared to handle DTLB faults during any PAL virtualization procedure calls.

Table 11-119 shows the layout of the config_options parameter. The config_options
parameter configures the global configuration options and global virtualization
optimizations for all the logical processors in the virtual environment. All logical

Argument Description
index Index of PAL_VP_INIT_ENV within the list of PAL procedures
config_options 64-bit vector of global configuration settings – See Table 11-119. for details
pbase_addr Host physical base address of a block of contiguous physical memory for the PAL virtual

environment buffer – This memory area must be allocated by the VMM and be 4K aligned.
The first logical processor to enter the environment will initialize the physical block for
virtualization operations.

vbase_addr Host virtual base address of the corresponding physical memory block for the PAL virtual
environment buffer – The VMM must maintain the host virtual to host physical data and
instruction translations in TRs for addresses within the allocated address space. Logical
processors in this virtual environment will use this address when transitioning to virtual mode
operations.

Return Value Description
status Return status of the PAL_VP_INIT_ENV procedure
vsa_base Virtualization Service Address – VSA specifies the virtual base address of the PAL

virtualization services in this virtual environment.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Volume 2, Part 1: Processor Abstraction Layer 2:479

PAL_VP_INIT_ENV

processors in the virtual environment must specify the same value in the config_options
parameter during PAL_VP_INIT_ENV, otherwise processor operation is undefined.

Table 11-119. config_options – Global Configuration Options

Field Bit Description

Global
Configuration
Options

initialize 0 If 1, this procedure will initialize the PAL virtual environment buffer for
this virtual environment. If 0, this procedure will not initialize the PAL
virtual environment buffer. On a multiprocessor system, the VMM must
wait until this procedure completes on the first logical processor before
calling this procedure on additional logical processors; otherwise pro-
cessor operation is undefined.

fr_pmc 1 If 1, for virtualization intercepts the performance counters are disabled
by setting PSR.up and pp to 0, see Section 11.7.3.1, “PAL Virtualiza-
tion Intercept Handoff State” on page 2:333 for details on PSR settings
at virtualization intercepts; for all other IVA-based interruptions PSR.pp
and up are set according to Interruption State column described in Pro-
cessor Status Field table described in Table 3-2, “Processor Status
Register Fields” on page 2:24. The VMM must have DCR.pp equal to 0
when the fr_pmc option is 1, whenever the IVA control register on the
logical processor is set to point to the per-virtual-processor host IVT.
See Section 11.7.2, “Interruption Handling in a Virtual Environment” on
page 2:331 and Table 11-21, “IVA Settings after PAL Virtualiza-
tion-related Procedures and Services” on page 2:332 for details on
per-virtual-processor host IVT.
If 0, PSR.pp and up are set according to Interruption State column
described in Processor Status Field table described in Table 3-2, “Pro-
cessor Status Register Fields” on page 2:24

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in
the VPD are stored in big-endian format and the PAL services calls are
made with PSR.be bit equal to 1. If 0, the values in the VPD are stored
in little-endian format and the PAL services calls are made with PSR.be
bit equal to 0. The VMM must match DCR.be with the value set in this
field when the IVA control register on the logical processor is set to
point to the per-virtual-processor host IVT. See Section 11.7.2, “Inter-
ruption Handling in a Virtual Environment” on page 2:331 and
Table 11-21, “IVA Settings after PAL Virtualization-related Procedures
and Services” on page 2:332 for details on per-virtual-processor host
IVT.

Reserved 7:3 Reserved.

2:480 Volume 2, Part 1: Processor Abstraction Layer

PAL_VP_INIT_ENV

The fr_pmc bit in the global config_options parameter specifies whether the performance
counters will be frozen when the Virtualization optimizations specified in the
Virtualization Acceleration Control (vac) and Virtualization Disable Control (vdc) are
running. When a virtual processor is running, the vac field in the corresponding VPD
specifies whether a certain virtualization accelerations are enabled. If the fr_pmc in the
virtual environment was also enabled, the performance counters will be frozen when
the enabled virtualization optimizations are running. See Section 11.7.4, “Virtualization
Optimizations” on page 2:335 for details on Virtualization Acceleration Control (vac)
and Virtualization Disable Control (vdc).

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Global
Virtualization
Optimizations

opcode 8 This bit must be set to 1 – opcode information will be provided to the
VMM during PAL intercepts within the virtual environment. This opcode
may or may not be guaranteed to be the opcode that triggered the
intercept. See Table 11-118, “vp_env_info – Virtual Environment Infor-
mation Parameter” on page 2:473 for details. This procedure returns
an error if this bit is not set to 1.

cause 9 If 1, the causes of virtualization intercepts will be provided to the VMM
during PAL intercept handoffs within the virtual environment. No infor-
mation will be provided if 0. See Section 11.7.3.1, “PAL Virtualization
Intercept Handoff State” on page 2:333 for details of virtualization inter-
cept handoffs.

gitc 10 If 1, enables guest MOV-from-AR.ITC optimization. For details see
Section 11.7.4.1.3, “Guest MOV-from-AR.ITC Optimization” on
page 2:337 and Section 3.3.4.4, “Interval Timer Offset (ITO – CR4)” on
page 2:34. This bit is reserved if guest MOV-from-AR.ITC optimization
is not supported.

Reserved 62:11 Reserved.

impl 63 Implementation-specific configuration option. This field is ignored if not
implemented. Please refer to processor-specific documentation for
details.

Table 11-119. config_options – Global Configuration Options (Continued)

Field Bit Description

Volume 2, Part 1: Processor Abstraction Layer 2:481

PAL_VP_REGISTER

PAL_VP_REGISTER – PAL Register Virtual Processor (269)

Purpose: Register a different host IVT and/or a different optional virtualization intercept handler
for the virtual processor specified by vpd.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_REGISTER registers a different host IVT and/or a different optional
virtualization intercept handler specific to the virtual processor specified by vpd. On
creation of a virtual processor by PAL_VP_CREATE, the VMM specifies a host IVT specific
to the virtual processor. This procedure allows the VMM to specify a host IVT different
from the one specified during PAL_VP_CREATE.

The host virtual to host physical translation of the 64K region specified by vpd must be
mapped with either a DTR or DTC. See Section 11.10.2.1.3, “Making PAL Procedure
Calls in Physical or Virtual Mode” on page 2:359 for details on data translation
requirements of memory buffer pointers passed as arguments to PAL procedures. The
virt_env_vaddr parameter in the VPD must be setup with the host virtual address of the
PAL virtual environment buffer before calling this procedure.

The host_iva parameter specifies the host IVT to handle IVA-based interruptions when
this virtual processor is running. The VMM can use the same or different host_iva for
each virtual processor. The opt_handler specifies an optional virtualization intercept
handler. If a non-zero value is specified, all virtualization intercepts are delivered to this
handler. If a zero value is specified, all virtualization intercepts are delivered to the
Virtualization vector in the host IVT. Upon completion of this procedure, the VMM must
not relocate the IVT specified by the host_iva parameter and/or the virtualization
intercept handler specified by the opt_handler parameter. The VMM can call this
procedure again in case it wishes to associate a different host IVT and/or virtualization
intercept handler with the virtual processor.

PAL_VP_REGISTER returns invalid argument on unsupported virtualization optimization
combinations in vpd. See Section 11.7.4.4, “Virtualization Optimization Combinations”
on page 2:349 for details.

This procedure can be used by the VMM to:

Argument Description
index Index of PAL_VP_REGISTER within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
host_iva 64-bit host virtual pointer to the host IVT for the virtual processor
opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See

Section 11.7.3, “PAL Intercepts in Virtual Environment” on page 2:332 for details.

Return Value Description
status Return status of the PAL_VP_REGISTER procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

2:482 Volume 2, Part 1: Processor Abstraction Layer

PAL_VP_REGISTER

• Relocate the host IVT associated with the virtual processor.

• Specify a different optional virtualization intercept handler for the virtual processor.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Volume 2, Part 1: Processor Abstraction Layer 2:483

PAL_VP_RESTORE

PAL_VP_RESTORE – PAL Restore Virtual Processor (270)

Purpose: Restores virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_RESTORE performs an implementation-specific restore operation of the virtual
processor specified by the vpd parameter on the logical processor. The host virtual to
host physical translation of the 64K region specified by vpd and the PAL virtual
environment buffer must be mapped by instruction and data translation registers (TR).
The instruction and data translation must be maintained until after the next invocation
of PAL_VP_SAVE or PAL_VPS_SAVE and a different host IVT is set up by the VMM by
writing to the IVA control register. PAL_VP_RESTORE configures the logical processor to
run the specified virtual processor by loading implementation-specific virtual processor
context from the VPD, and returns control back to the VMM.

This procedure performs an implicit PAL_VPS_SYNC_WRITE; there is no need for the
VMM to invoke PAL_VPS_SYNC_WRITE unless the VPD values are modified before
resuming the virtual processor. After the procedure, the caller is responsible for
restoring all of the architectural state before resuming to the new virtual processor
through PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER.

Upon completion of this procedure, the IVA-based interruptions will be delivered to the
host IVT associated with this virtual processor.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Argument Description
index Index of PAL_VP_RESTORE within the list of PAL procedures.
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_RESTORE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

2:484 Volume 2, Part 1: Processor Abstraction Layer

PAL_VP_SAVE

PAL_VP_SAVE – PAL Save Virtual Processor (271)

Purpose: Saves virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_SAVE performs an implementation-specific save operation of the virtual
processor specified by the vpd parameter on the logical processor. The host virtual to
host physical translation of the 64K region specified by vpd must be mapped by
instruction and data translation registers (TR).

This procedure performs an implicit PAL_VPS_SYNC_READ; there is no need for the
VMM to invoke PAL_VPS_SYNC_READ to synchronize the implementation-specific
control resources before this procedure.

Upon completion of this procedure, the IVA-based interruptions will continue to be
delivered to the host IVT associated with this virtual processor. After this procedure, the
VMM can setup the IVA control register to use a different host IVT.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Argument Description
index Index of PAL_VP_SAVE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_SAVE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Volume 2, Part 1: Processor Abstraction Layer 2:485

PAL_VP_TERMINATE

PAL_VP_TERMINATE – PAL Terminate Virtual Processor (272)

Purpose: Terminates operation for the specified virtual processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: Terminates operation of the virtual processor specified by vpd on the logical processor.
The host virtual to host physical translation of the 64K region specified by vpd must be
mapped by instruction and data translation registers (TR). See Section 11.10.2.1.3,
“Making PAL Procedure Calls in Physical or Virtual Mode” on page 2:359 for details on
data translation requirements of memory buffer pointers passed as arguments to PAL
procedures. All resources allocated for the execution of the virtual machine are freed.

Upon successful execution of PAL_VP_TERMINATE procedure and if the iva parameter is
non-zero, the IVA control register will contain the value from the iva parameter.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:446
for details.

Argument Description
index Index of PAL_VP_TERMINATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0

Return Value Description
status Return status of the PAL_VP_TERMINATE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

2:486 Volume 2, Part 1: Processor Abstraction Layer

11.11 PAL Virtualization Services

In order to support efficient handling of interruptions when PSR.vm was 1, a set of PAL
virtualization services is defined to allow certain high-frequency PAL functions to be
performed in a low-latency and low-overhead manner.

Upon successful completion of PAL_VP_INIT_ENV, the virtual base address of the PAL
virtualization services (VSA) is returned to the VMM. VMM can invoke PAL services by
branching to the defined offsets from the virtual base address. See Table 11-120 for the
defined services. See Section 11.11, “PAL Virtualization Services” on page 2:486 for
details on PAL virtualization services.

These PAL virtualization services will only make references to the PAL virtual
environment buffer. The VMM is required to maintain the ITR and DTR translations of
the PAL virtual environment buffer during any PAL virtualization service calls.

11.11.1 PAL Virtualization Service Invocation Convention

This section describes the required parameters applicable to all PAL Virtualization
Services. Additional parameters are listed in the description section of specific PAL
Virtualization Services. Architectural state not listed in this section is managed by the
VMM and can contain both VMM and/or virtual processor state. The architectural state
not listed is unchanged by PAL virtualization services.

The state of the processor on handing off to any PAL Virtualization Service is:

• GR24-31: Parameters for PAL virtualization services.

• BRs:

• BR0: Scratch, the VMM will use BR0 to specify the 64-bit host virtual address of
the PAL Virtualization Service being invoked.

• Predicates: The predicates are preserved by the PAL virtualization services.

• PSR State (see Table 11-121 for details):

• PSR.be, i, cpl, is, ss, db, tb, vm must be 0.

• PSR.dt, rt and it must be 1.

• All other values are don’t cares.

Table 11-120. PAL Virtualization Services

Offset PAL Service

0x0000 PAL_VPS_RESUME_NORMAL

0x0400 PAL_VPS_RESUME_HANDLER

0x0800 PAL_VPS_SYNC_READ

0x0c00 PAL_VPS_SYNC_WRITE

0x1000 PAL_VPS_SET_PENDING_INTERRUPT

0x1400 PAL_VPS_THASH

0x1800 PAL_VPS_TTAG

0x1c00 PAL_VPS_RESTORE

0x2000 PAL_VPS_SAVE

All other
offsets

Reserved

Volume 2, Part 1: Processor Abstraction Layer 2:487

Table 11-121. State Requirements for PSR for PAL Virtualization Services

PSR Bit Description Value

be big-endian memory access enable -a

a. PAL services can be called with PSR.be bit equal to 0 or 1. The behavior is undefined if PSR.be setting does
not match the be parameter during PAL_VP_INIT_ENV. See “PAL_VP_INIT_ENV – PAL Initialize Virtual
Environment (268)” on page 2:478 for details.

up user performance monitor enable -

ac alignment check -

mfl floating-point registers f2-f31 written -

mfh floating-point registers f32-f127 written -

ic interruption state collection enable 0b

b. Most PAL services are invoked with PSR.ic equal to 0.

-c

i interrupt enable 0

pk protection key validation enable -

dt data address translation enable 1

dfl disabled FP register f2 to f31 -

dfh disabled FP register f32 to f127 -

sp secure performance monitors -

pp privileged performance monitor enable -

di disable ISA transition -

si secure interval timer -

db debug breakpoint fault enable 0

lp lower-privilege transfer trap enable -

tb taken branch trap enable 0

rt register stack translation enable 1

cpl current privilege level 0

is instruction set 0

mc machine check abort mask -

it instruction address translation enable 1

id instruction debug fault disable -

da data access and dirty-bit fault disable -

dd data debug fault disable -

ss single step trap enable 0

ri restart instruction -

ed exception deferral -

bn register bank -d

0e

ia instruction access-bit fault disable -

vm processor virtualization 0

2:488 Volume 2, Part 1: Processor Abstraction Layer

11.11.2 PAL Virtualization Service Specifications

The following pages provide detailed interface specifications for each of the PAL
Virtualization Services.

c. Specific PAL services can be invoked with PSR.ic equal to 1 or 0. See the description of specific PAL services
for details.

d. Most PAL services can be invoked with PSR.bn equal to 1 or 0.
e. Specific PAL services must be invoked with PSR.bn equal to 0. See the description of specific PAL services

for details.

Volume 2, Part 1: Processor Abstraction Layer 2:489

PAL_VPS_RESUME_NORMAL

PAL_VPS_RESUME_NORMAL – Resume Virtual Processor Normal
(0x0000)

Purpose: Resumes the current virtual processor. This service is used when vpsr.ic is 1. This
service can also be used independent of the state of vpsr.ic if all virtualization
accelerations and disables are disabled.

Arguments:

Returns: PAL_VPS_RESUME_NORMAL does not return to the VMM.

Description: On interruptions or intercepts, PAL_VPS_RESUME_NORMAL allows the VMM to resume
the same virtual processor where the vpsr.ic is 1. PAL_VP_RESTORE can be used to
restore the state of a different virtual processor.

The VMM specifies the VBR0 of the virtual processor in GR24 and the 64-bit virtual
pointer to the VPD in GR25.

The VMM is responsible for setting up all the required virtual processor state in the
architectural registers as well as in the VPD prior to invoking this service. See
Table 11-122, “Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on page 2:489 for
details.

PAL_VPS_RESUME_NORMAL must be called with PSR.bn equal to 0.

If all virtualization accelerations and disables are disabled, PAL_VPS_RESUME_NORMAL
can also be used to resume to the guest independent on the state of vpsr.ic.

Argument Description
GR24 VBR0
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Table 11-122. Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER

Resource Description

Bank 1 GRs Contains state of bank 0/1 GRs of the virtual processor (depends on
vpsr.bn.)

FRs Contains floating-point register state of the virtual processor.

Predicate Register Contains the predicates of the virtual processor.

Branch Registers BR1-BR7 contains the state of the virtual processor. BR0 of the virtual
processor resides in bank 0 GR24.

Application Registers Contains application register state of the virtual processor.

Interval Timer Offset Registera If guest MOV-from-AR.ITC optimization is enabled, this register contains
an offset, programmed by the VMM, to ensure that guest reads of ITC get
the proper value.

Interruption Control Registers IIP, IPSR and IFS contains the IP, PSR and CFM of the virtual processor.
See Table 11-123 for the PSR settings for the execution of the virtual
processor. The rest of the interruption control registers are don’t cares. For
PAL_VPS_RESUME_HANDLER, the virtual interruption control registers
are specified in the VPD. See Section 11.7.4, “Virtualization Optimizations”
on page 2:335 for synchronization of VPD resources before resuming the
virtual processor.

2:490 Volume 2, Part 1: Processor Abstraction Layer

PAL_VPS_RESUME_NORMAL

External Interrupt Control
Registers

The external interrupt control registers contain the state of the virtual
processor if d_extint in Virtualization Disable Control (vdc) is 1. Otherwise
the external interrupt control registers are virtualized by the VMM and
contain VMM state.

Data/Instruction Breakpoint
Registers

The data/instruction breakpoint registers contain the state of the virtual
processor if d_ibr_dbr in Virtualization Disable Control (vdc) is 1.
Otherwise the data/instruction breakpoint registers are virtualized by the
VMM and contain VMM state.

Performance Monitor
Configuration Registers

The performance monitor configuration registers contain the state of the
virtual processor if d_pmc in Virtualization Disable Control (vdc) is 1.
Otherwise the performance monitor configuration registers are virtualized
by the VMM and contain VMM state.

Performance Monitor Data
Registers

Contain the state of the virtual processor.

a. Interval Timer Offset register is not supported on all processor implementations. See Section 3.3.4.4, “Interval
Timer Offset (ITO – CR4)” on page 2:34 for details.

Table 11-123. Processor Status Register Settings for Virtual Processor
Execution

Field Bits Description

User Mask = PSR{5:0}

rv 0 Reserved

be 1

Contain user mask of the virtual processor.

up 2

ac 3

mfl 4

mfh 5

System Mask = PSR{23:0}

ic 13 Must be 1.

i 14
VMM-specific.

pk 15

rv 12:6,
16

Reserved

dt 17 Must be 1.

dfl 18

VMM-specific.

dfh 19

sp 20

pp 21

di 22

si 23

PSR.l = PSR{31:0}

db 24 VMM-specific.

lp 25 Contains the lp bit of the virtual processor.

tb 26 Contains the tb bit of the virtual processor.

rt 27 Must be 1.

rv 31:28 Reserved

PSR{63:0}

Table 11-122. Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER

Resource Description

Volume 2, Part 1: Processor Abstraction Layer 2:491

PAL_VPS_RESUME_NORMAL

PAL_VPS_RESUME_NORMAL performs the following actions:

• Perform any implementation-specific setup to run a virtual processor.

• Re-enable performance counters if the value of the fr_pmc field in the config_options
parameter passed to PAL_VP_INIT_ENV was 1.

• Resume the virtual processor.

cpl 33:32 Contains the cpl field of the virtual processor.

is 34 VMM-specific.

mc 35 VMM-specific.

it 36 Must be 1.

id 37 VMM-specific.

da 38 VMM-specific.

dd 39 VMM-specific.

ss 40 VMM-specific.

ri 42:41 Contains the ri field of the virtual processor.

ed 43 Contains the ed bit of the virtual processor.

bn 44 Must be 1.

ia 45 VMM-specific.

vm 46 Must be 1.

rv 63:47 Reserved

Table 11-123. Processor Status Register Settings for Virtual Processor
Execution (Continued)

Field Bits Description

2:492 Volume 2, Part 1: Processor Abstraction Layer

PAL_VPS_RESUME_HANDLER

PAL_VPS_RESUME_HANDLER – Resume Virtual Processor Handler
(0x0400)

Purpose: Resumes the current virtual processor. This service is used when vpsr.ic is 0.

Arguments:

Returns: PAL_VPS_RESUME_HANDLER does not return to the VMM.

Description: On interruptions or intercepts, PAL_VPS_RESUME_HANDLER allows the VMM to resume
to the same virtual processor where the vpsr.ic is 01.

GR24 specifies the BR0 of the virtual processor; GR25 specifies the 64-bit virtual
pointer to the VPD; GR26 specifies the vac field of the VPD argument specified in GR25;
bit 63 of GR26 specifies the value of CFLE setting at the target instruction. Behavior is
undefined if the vac in GR26 does not match the vac field in the VPD argument specified
in GR25.

The VMM is responsible for setting up all the required virtual processor state in the
architectural registers as well as in the VPD prior to invoking this service. See
Table 11-122, “Virtual Processor Settings in Architectural Resources for
PAL_VPS_RESUME_NORMAL and PAL_VPS_RESUME_HANDLER” on page 2:489 for
details.

PAL_VPS_RESUME_HANDLER must be called with PSR.bn equal to 0.

PAL_VPS_RESUME_HANDLER performs the following actions:

• Perform any implementation-specific setup to run a virtual processor.

• Re-enable performance counters if the value of the fr_pmc field in the config_options
parameter passed to PAL_VP_INIT_ENV was 1.

• Resume the virtual processor.

Argument Description
GR24 VBR0
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Virtualization Acceleration Control (vac) field from the VPD specified in GR25 and CFLE

setting at the target instruction.
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

1. PAL_VP_RESTORE can be used to restore the state of a different virtual processor.

Volume 2, Part 1: Processor Abstraction Layer 2:493

PAL_VPS_SYNC_READ

PAL_VPS_SYNC_READ – Synchronize VPD State for Reads (0x0800)

Purpose: Synchronize VPD with the latest implementation-specific virtual architectural state.

Arguments:

Returns:

Description: On processor implementations that support virtualization accelerations,
implementation-specific control resources can be provided to enhance performance of
virtual processors. When a specific acceleration is enabled, after interruptions and
intercepts which occur when PSR.vm was 1, the VMM must invoke this service to
synchronize the related resources before reading the value from the VPD. For the
accelerations that are disabled, the corresponding resources in the VPD are unchanged.

The synchronization requirements of the related resources for each acceleration are
described in the corresponding sections for each acceleration in Section 11.7.4.2,
“Virtualization Accelerations” on page 2:337.

PAL_VPS_SYNC_READ performs the following actions:

• Copy implementation-specific control resources of the enabled accelerations into VPD.

• Return to VMM by an indirect branch specified in the GR24 parameter.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

2:494 Volume 2, Part 1: Processor Abstraction Layer

PAL_VPS_SYNC_WRITE

PAL_VPS_SYNC_WRITE – Synchronize VPD State for Writes
(0x0c00)

Purpose: Synchronize the implementation-specific virtual architectural state with VPD.

Arguments:

Returns:

Description: On processor implementations that support virtualization accelerations,
implementation-specific control resources can be provided to enhance performance of
virtual processors. When a specific acceleration is enabled, the VMM must invoke this
service to synchronize the related resources after modifying the value in the VPD and
before resuming the virtual processor. For the accelerations that are disabled, the
corresponding resources in the VPD are ignored.

The synchronization requirements of the related resources for each acceleration are
described in the corresponding sections for each acceleration in Section 11.7.4.2,
“Virtualization Accelerations” on page 2:337.

PAL_VPS_SYNC_WRITE performs the following actions:

• Copy values of the enabled accelerations in the VPD into implementation-specific
control resources.

• Return to VMM by an indirect branch specified in the GR24 parameter.

Argument Description
GR24 64-bit host virtual return address.
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD.)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

Volume 2, Part 1: Processor Abstraction Layer 2:495

PAL_VPS_SET_PENDING_INTERRUPT

PAL_VPS_SET_PENDING_INTERRUPT – Register Highest Priority
Pending Interrupt (0x1000)

Purpose: Register highest priority pending interrupt of the running virtual processor.

Arguments:

Returns:

Description: PAL_VPS_SET_PENDING_INTERRUPT allows the VMM to register the highest priority
pending interrupt for the virtual processor. The virtual highest priority pending interrupt
is specified in the vhpi field in the VPD. See Table 11-124, “vhpi – Virtual Highest
Priority Pending Interrupt” on page 2:495 for details.

PAL_VPS_SET_PENDING_INTERRUPT can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Reserved
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

Table 11-124. vhpi – Virtual Highest Priority Pending Interrupt

Value Description

0 Nothing pending.

1 Class 1 interrupt pending.

2 Class 2 interrupt pending.

3 Class 3 interrupt pending.

4 Class 4 interrupt pending.

5 Class 5 interrupt pending.

6 Class 6 interrupt pending.

7 Class 7 interrupt pending.

8 Class 8 interrupt pending.

9 Class 9 interrupt pending.

10 Class 10 interrupt pending.

11 Class 11 interrupt pending.

12 Class 12 interrupt pending.

13 Class 13 interrupt pending.

14 Class 14 interrupt pending.

15 Class 15 interrupt pending.

16 ExtINT pending.

17-31 Reserved.

32 NMI pending.

33+ Reserved.

2:496 Volume 2, Part 1: Processor Abstraction Layer

PAL_VPS_SET_PENDING_INTERRUPT

PAL_VPS_SET_PENDING_INTERRUPT performs the following actions:

• Copy the virtual highest priority pending interrupt from the VPD into
implementation-specific resources.

• Return to VMM by an indirect branch specified in the GR24 parameter.

Volume 2, Part 1: Processor Abstraction Layer 2:497

PAL_VPS_THASH

PAL_VPS_THASH – Compute Long Format VHPT Entry Address
(0x1400)

Purpose: Compute a long format VHPT entry address.

Arguments:

Returns:

Description: PAL_VPS_THASH computes a long format Virtual Hashed Page Table (VHPT) entry
address based on the input arguments and the result is returned in GR31. The format
of the region register parameter (GR26) is defined in Section 4.1.2, “Region Registers
(RR)” on page 2:58, the ve field is ignored by the service. The format of the Virtual PTA
parameter (GR27) is defined in Section 3.3.4.6, “Page Table Address (PTA – CR8)” on
page 2:35, the vf field is ignored by the service.

PAL_VPS_THASH returns the same long format VHPT entry address given the same
input arguments across different implementations. The long format VHPT entry address
returned may not be the same as the long format VHPT entry address generated by the
thash instruction of the processor.

PAL_VPS_THASH can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit virtual address used to compute the hash entry address
GR26 Region register value used to compute the hash entry address
GR27 Virtual PTA
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 64-bit VHPT entry address

2:498 Volume 2, Part 1: Processor Abstraction Layer

PAL_VPS_TTAG

PAL_VPS_TTAG – Compute Translated Hashed Entry Tag (0x1800)

Purpose: Compute the long format translated hashed entry tag.

Arguments:

Returns:

Description: PAL_VPS_TTAG computes the tag value of the long format Virtual Hashed Page Table
(VHPT) based on the input arguments and the result is returned in GR31. The format of
the region register parameter (GR26) is defined in Section 4.1.2, “Region Registers
(RR)” on page 2:58, the ve field is ignored by the service.

PAL_VPS_TTAG returns the same tag value given the same input arguments across
different implementations. The tag value returned may not be the same as the tag
value generated by the ttag instruction of the processor.

PAL_VPS_TTAG can be called with PSR.ic equal to 1 or 0.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit virtual address used to compute the hash entry tag
GR26 Region register value used to compute the hash entry tag
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 64-bit VHPT entry tag

Volume 2, Part 1: Processor Abstraction Layer 2:499

PAL_VPS_RESTORE

PAL_VPS_RESTORE – Fast Restore Virtual Processor State (0x1c00)

Purpose: Performs an implementation-specific light-weight restore operation for the specified
VPD on the logical processor.

Arguments:

Returns:

Description: PAL_VPS_RESTORE performs an implementation-specific light-weight restore operation
of the virtual processor specified by the VPD parameter (GR25) on the logical processor.
The host virtual to host physical translation of the 64K region specified by the VPD
parameter (GR25) and the PAL virtual environment buffer must be mapped by
instruction and data translation registers (TR). The instruction and data translation
must be maintained until after the next invocation of PAL_VP_SAVE or PAL_VPS_SAVE
and a different host IVT is set up by the VMM by writing to the IVA control register.
PAL_VPS_RESTORE configures the logical processor to run the specified virtual
processor by loading the minimal implementation-specific virtual processor context
from the VPD, and returns control back to the VMM.

If GR26 is zero, this service performs an implicit PAL_VPS_SYNC_WRITE; there is no
need for the VMM to invoke PAL_VPS_SYNC_WRITE to synchronize the
implementation-specific control resources before this service. If GR26 is one (0x1), no
implicit synchronization will be performed by this service.

Upon completion of this service, the IVA-based interruptions will be delivered to the
host IVT associated with this virtual processor.

This service does not restore any PAL procedure implementation-specific state1. The
caller of this service is responsible to manage the difference in settings for the PAL
procedures between the VMM and virtual processors.

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Skip implicit synchronization
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

1. PAL_VP_RESTORE can be used to restore PAL procedure implementation-specific state. See
“PAL_VP_RESTORE – PAL Restore Virtual Processor (270)” on page 2:483 for details.

2:500 Volume 2, Part 1: Processor Abstraction Layer

PAL_VPS_SAVE

PAL_VPS_SAVE – Fast Save Virtual Processor State (0x2000)

Purpose: Performs an implementation-specific light-weight save operation for the specified VPD
on the logical processor.

Arguments:

Returns:

Description: PAL_VPS_SAVE performs an implementation-specific light-weight save operation of the
virtual processor specified by the VPD parameter (GR25) on the logical processor. The
host virtual to host physical translation of the 64K region specified by the VPD
parameter (GR25) must be mapped by instruction and data translation registers (TR).

If GR26 is zero, this service performs an implicit PAL_VPS_SYNC_READ; there is no
need for the VMM to invoke PAL_VPS_SYNC_READ to synchronize the
implementation-specific control resources before this service. If GR26 is one (0x1), no
implicit synchronization will be performed by this service.

Upon completion of this service, the IVA-based interruptions will continue to be
delivered to the host IVT associated with this virtual processor. After this service, the
VMM can setup the IVA control register to use a different host IVT.

This service does not save any PAL procedure implementation-specific state1. The caller
of this service is responsible to manage the difference in settings for the PAL
procedures between the VMM and virtual processors.

§

Argument Description
GR24 64-bit host virtual return address
GR25 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
GR26 Skip implicit synchronization
GR27 Reserved
GR28 Reserved
GR29 Reserved
GR30 Reserved
GR31 Reserved

Return Value Description
GR24 Scratch
GR25 Scratch
GR26 Scratch
GR27 Scratch
GR28 Scratch
GR29 Scratch
GR30 Scratch
GR31 Scratch

1. PAL_VP_SAVE can be used to save PAL procedure implementation-specific state. See “PAL_VP_SAVE
– PAL Save Virtual Processor (271)” on page 2:484 for details.

2:501 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Part II: System Programmer’s Guide

2:502 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Volume 2, Part 2: About the System Programmer’s Guide 2:503

About the System Programmer’s Guide 1

Part II: System Programmer’s Guide is intended as a companion section to the
information presented in Part I:, “System Architecture Guide”. While Part I provides a
crisp and concise architectural definition of the Itanium instruction set, Part II provides
insight into programming and usage models of the Itanium system architecture. This
section emphasizes how the various architecture features fit together and explains how
they contribute to high performance system software.

The intended audience for this section is system programmers who would like to better
understand the Itanium system architecture. The goal of this document is to:

• Familiarize system programmers with Itanium system architecture principles and
usage models.

• Provide recommendations, code examples, and performance guidelines.

This section does not re-define the Itanium instruction set. Please refer to Part
I:, “System Architecture Guide” as the authoritative definition of the system
architecture.

The reader is expected to be familiar with the contents of Part I and is expected to be
familiar with modern virtual memory and multiprocessing concepts. Furthermore, this
document is platform architecture neutral (i.e. no assumptions are made about
platform architecture capabilities, such as busses, chipsets, or I/O devices).

1.1 Overview of the System Programmer’s Guide

The Itanium architecture provides numerous performance enhancing features of
interest to the system programmer. Many of these instruction set features focus on
reducing overhead in common situations. The chapters outlined below discuss different
aspects of the Itanium system architecture.

Chapter 2, “MP Coherence and Synchronization” describes Itanium architecture-based
multiprocessing synchronization primitives and the Itanium memory ordering model.
This chapter also discusses programming rules for self- and cross-modifying code. This
chapter is useful for application and system programmers who write multi-threaded
code.

Chapter 3, “Interruptions and Serialization” discusses how the Itanium architecture,
despite its explicitly parallel instruction execution semantics, provides the system
programmer with a precise interruption model. This chapter describes how the
processor serializes execution around interruptions and what state is preserved and
made available to low-level system code when interruptions are taken. This chapter
introduces the interrupt vector table and describes how low-level kernel code is
expected to transfer control to higher level operating system code written in a
high-level programming language. This chapter is useful for operating system and
firmware programmers.

2:504 Volume 2, Part 2: About the System Programmer’s Guide

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents. In addition to spilling and filling a register’s data value, the
Itanium architecture also requires software to preserve control and data speculative
state associated with that register, i.e. its NaT bit and ALAT state. This chapter also
discusses system architecture mechanisms that allow an operating system to
significantly reduce the number of registers that need to be spilled/filled on
interruptions, system calls, and context switches. These optimizations improve the
performance of an Itanium architecture-based operating system by reducing the
amount of required memory traffic. This chapter is useful for operating system
programmers.

Chapter 5, “Memory Management” introduces various memory management strategies
in the Itanium architecture: region register model, protection keys, and the virtual hash
page table usage models are described. This chapter is of interest to virtual memory
management software developers.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation. This chapter describes
various speculation software models and their associated operating system
implications. This chapter is of interest to operating system developers and compiler
writers.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support. This chapter is useful for operating system developers.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the Itanium
architecture-based software stack provides complete IEEE-754 compliance. This
includes a discussion of the floating-point software assist firmware, the FP SWA EFI
driver. This chapter also describes how Itanium architecture-based operating systems
are expected to support IEEE floating-point exception filters. This chapter is useful for
operating system developers and floating-point numerics experts.

Chapter 9, “IA-32 Application Support” outlines how software needs to perform
instruction set transitions, and what low-level kernel handlers are required in an
Itanium architecture-based operating system to support IA-32 applications. This
chapter is useful for operating system developers.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software. Basic interrupt prioritization, masking, and harvesting
capabilities are discussed in this chapter. This chapter is of interest to operating system
developers and to device driver writers.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
considerations and support for the existing IA-32 I/O port space platform
infrastructure. This chapter is of interest to operating system developers and to device
driver writers.

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of operating system support is needed from
Itanium architecture-based operating systems. This chapter is of interest to operating
system and performance tool developers.

Volume 2, Part 2: About the System Programmer’s Guide 2:505

Chapter 13, “Firmware Overview” introduces the firmware model and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization and operating system boot. This chapter also discusses how firmware
layers and the operating system work together to provide error detection, error
logging, as well as fault containment capabilities. This chapter is of interest to platform
firmware and operating system developers.

1.2 Related Documents

The following documents are referred to fairly often in this document. For more details
on software conventions and platform firmware, please consult these manuals
(available at http://developer.intel.com).

[SWC] Intel® Itanium® Software Conventions and Runtime Architecture Guide

[UEFI] Unified Extensible Firmware Interface Specification

[SAL] Intel® Itanium® Processor Family System Abstraction Layer
Specification

§

2:506 Volume 2, Part 2: About the System Programmer’s Guide

Volume 2, Part 2: MP Coherence and Synchronization 2:507

MP Coherence and Synchronization 2

This chapter describes how to enforce an ordering of memory operations, how to
update code images, and presents examples of several simple multiprocessor
synchronization primitives on a processor based on the Itanium architecture. These
topics are relevant to anyone who writes either user- or system-level software for
multiprocessor systems based on the Itanium architecture.

The chapter begins with a brief overview of Itanium memory access instructions
intended to summarize the behaviors that are relevant to later discussions in the
chapter. Next, this chapter presents the Itanium memory ordering model and compares
it to a sequentially-consistent ordering model. It then explores versions of several
common synchronization primitives. This chapter closes by describing how to correctly
update code images to implement self-modifying code, cross-modifying code, and
paging of code using programmed I/O.

2.1 An Overview of Intel® Itanium® Memory Access
Instructions

The Itanium architecture provides load, store, and semaphore instructions to access
memory. In addition, it also provides a memory fence instruction to enforce further
ordering relationships between memory accesses. As Section 4.4.7, “Memory Access
Ordering” on page 1:73 describes, memory operations in the Itanium architecture
come with one of four semantics: unordered, acquire, release, or fence. Section 2.2 on
page 2:510 describes how the memory ordering model uses these semantics to
indicate how memory operations can be ordered with respect to each other.

Section 2.1.1 defines the four memory operation semantics. Section 2.2, Section 2.3,
and Section 2.4 present brief outlines of load and store, semaphore, and memory fence
instructions in the Itanium architecture. Refer to Chapter 2, “Instruction Reference” for
more information on the behavior and capabilities of these instructions.

2.1.1 Memory Ordering of Cacheable Memory References

The Itanium architecture has a relaxed memory ordering model which provides
unordered memory opcodes, explicitly ordered memory opcodes, and a fencing
operation that software can use to implement stronger ordering. Each memory
operation establishes an ordering relationship with other operations through one of four
semantics:

• Unordered semantics imply that the instruction is made visible in any order with
respect to other orderable instructions.

• Acquire semantics imply that the instruction is made visible prior to all subsequent
orderable instructions.

• Release semantics imply that the instruction is made visible after all prior orderable
instructions.

2:508 Volume 2, Part 2: MP Coherence and Synchronization

• Fence semantics combine acquire and release semantics (i.e. the instruction is
made visible after all prior orderable instructions and before all subsequent
orderable instructions).

In the above definitions “prior” and “subsequent” refer to the program-specified order.
An “orderable instruction” is an instruction that the memory ordering model can use to
establish ordering relationships1. The term “visible” refers to all architecturally-visible
(from the standpoint of multiprocessor coherency) effects of performing an instruction.
Specifically,

• Accesses to uncacheable or write-coalescing memory regions are visible when they
reach the processor bus.

• Loads from cacheable memory regions are visible when they hit a
non-programmer-visible structure such as a cache or store buffer.

• Stores to cacheable memory regions are visible when they enter a snooped (in a
multiprocessor coherency sense) structure.

Memory access instructions typically have an ordered and an unordered form (i.e. a
form with unordered semantics and a form with either acquire, release, or fence
semantics). The Itanium architecture does not provide all possible combinations of
instructions and ordering semantics. For example, the Itanium instruction set does not
contain a store with fence semantics.

Section 4.4.7, “Memory Access Ordering” on page 1:73 and Section 4.4.7,
“Sequentiality Attribute and Ordering” on page 2:82 discuss ordering, orderable
instructions, and visibility in greater depth.

Section 2.2 on page 2:510 describes how the ordering semantics affect the Itanium
memory ordering model.

2.1.2 Loads and Stores

In the Itanium architecture, a load instruction has either unordered or acquire
semantics while a store instruction has either unordered or release semantics. By using
acquire loads (ld.acq) and release stores (st.rel), the memory reference stream of
an Itanium architecture-based program can be made to operate according to the IA-32
ordering model. The Itanium architecture uses this behavior to provide IA-32
compatibility. That is, an Itanium acquire load is equivalent to an IA-32 load and an
Itanium release store is equivalent to an IA-32 store, from a memory ordering
perspective.

Loads can be either speculative or non-speculative. The speculative forms (ld.s,
ld.sa, and ld.a) support control and data speculation.

2.1.3 Semaphores

The Itanium architecture provides a set of three semaphore instructions: exchange
(xchg), compare and exchange (cmpxchg), and fetch and add (fetchadd). Both
cmpxchg and fetchadd may have either acquire or release semantics depending on the

1. The ordering semantics of an instruction do not imply the orderability of the instruction. Specifically,
unordered ordering semantics alone do not make an instruction unorderable; there are orderable
instructions with each of the four ordering semantics.

Volume 2, Part 2: MP Coherence and Synchronization 2:509

specific opcode chosen. The xchg instruction always has acquire semantics. These
instructions read a value from memory, modify this value using an instruction-specific
operation, and then write the modified value back to memory. The read-modify-write
sequence is atomic by definition.

2.1.3.1 Considerations for using Semaphores

The memory location on which a semaphore instruction operates on must obey two
constraints. First, the location must be cacheable (the fetchadd instruction is an
exception to this rule; it may also operate on exported uncacheable locations, UCE).
Thus, with the exception of fetchadd to UCE locations, the Itanium architecture does
not support semaphores in uncacheable memory. Second, the location must be
naturally-aligned to the size of the semaphore access. If either of these two constraints
are not met, the processor generates a fault.

The exported uncacheable memory attribute, UCE, allows a processor based on the
Itanium architecture to export fetch and add operations to the platform. A processor
that does not support exported fetchadd will fault when executing a fetchadd to a UCE
memory location. If the processor supports exported fetchadd but the platform does
not, the behavior is undefined when executing a fetchadd to a UCE memory location.

Sharing locks between IA-32 and Itanium architecture-based code does work with the
following restrictions:

• Itanium architecture-based code can only manipulate an IA-32 semaphore if the
IA-32 semaphore is aligned.

• Itanium architecture-based code can only manipulate an IA-32 semaphore if the
IA-32 semaphore is allocated in write-back cacheable memory.

An Itanium architecture-based operating system can emulate IA-32 uncacheable or
misaligned semaphores by using the technique described in the next section.

2.1.3.2 Behavior of Uncacheable and Misaligned Semaphores

A processor based on the Itanium architecture raises an Unsupported Data Reference
fault if it executes a semaphore that accesses a location with a memory attribute that
the semaphore does not support.

If the alignment requirement for Itanium architecture-based semaphores is not met, a
processor based on the Itanium architecture raises an Unaligned Data Reference fault.
This fault is taken regardless of the setting of the user mask alignment checking bit,
UM.ac.

The DCR.lc bit controls how the processor behaves when executing an atomic IA-32
memory reference under an external bus lock. When the DCR.lc bit (see Section
3.3.4.1, “Default Control Register (DCR – CR0)”) is 1 and an IA-32 atomic memory
reference requires a non-cacheable or misaligned read-modify-write operation, an
IA_32_Intercept(Lock) fault is raised. Such memory references require an external bus
lock to execute correctly. To preserve LOCK pin functionality, an Itanium
architecture-based operating system can virtualize the bus lock by implementing a
shared cacheable global LOCK variable.

2:510 Volume 2, Part 2: MP Coherence and Synchronization

To support existing IA-32 atomic read-modify-write operations that require the LOCK
pin, an Itanium architecture-based operating system can use the DCR.lc bit to intercept
all external IA-32 read-modify-write operations. Then, the IA_32_Intercept(Lock)
handler can emulate these operations by first acquiring a cacheable virtualized LOCK
variable, then performing the required memory operations non-atomically, and then
releasing the virtualized LOCK variable. This emulation allows the read-modify-write
sequence to appear atomic to other processors that use the semaphore.

2.1.4 Memory Fences

The memory fence instruction (mf) is the only instruction in the Itanium instruction set
with fence semantics. This instruction serializes the set of memory accesses before the
memory fence in program order with respect to the set of memory accesses that follow
the fence in program order.

2.2 Memory Ordering in the Intel® Itanium®
Architecture

Understanding a system’s memory ordering model is key to writing either user- or
system-level multiprocessor software that uses shared memory to communicate
between processes and also that executes correctly on a shared-memory
multiprocessor system. For a general introduction to memory ordering models, see
Adve and Gharachorloo [AG95].

Four factors determine how a processor or system based on the Itanium architecture
orders a group of memory operations with respect to each other:

• Data dependencies define the relationship between operations from the same
processor that have register or memory dependencies on the same address1. This
relationship need only be honored by the local processor (i.e. the processor that
executes the operations).

• The memory ordering semantics define the relationship between memory
operations from a particular processor that reference different addresses. For
cacheable references, this relationship is honored by all observers in the coherence
domain.

• Aligned release stores and semaphore operations (both require and release forms)
become visible to all observers in the coherence domain in a single total order
except each processor may observe its own release stores (via loads or acquire
loads) prior to their being observed globally2.

• Non-programmer-visible state, such as store buffers, processor caches, or any
logically-equivalent structure, may satisfy read requests from loads or acquire loads
on the local processor before the data in the structure is made globally visible to
other observers.

1. That is, A precedes B in program order and A produces a value that B consumes. This relationship is
transitive.

2. Consequently, each such operation appears to become visible to each observer in the coherence
domain at the same time, with the exception that a release store can become visible to the storing
processor before others.

Volume 2, Part 2: MP Coherence and Synchronization 2:511

In the Itanium architecture, dependencies between operations by a processor have
implications for the ordering of those operations at that processor. The discussion in
Section 2.2.1.6 on page 2:515 and Section 2.2.1.7 on page 2:516 explores this issue in
greater depth.

The following sections examine the Itanium ordering model in detail. Section 2.2.1
presents several memory ordering executions to illustrate important behaviors of the
model. Section 2.2.2 discusses how memory attributes and the ordering model
interact. Finally, Section 2.2.3 describes how the Itanium memory ordering model
compares with other memory ordering models.

2.2.1 Memory Ordering Executions

Multiprocessor software that uses shared memory to communicate between processes
often makes assumptions about the order in which other agents in the system will
observe memory accesses. As Section 2.1.1 on page 2:507 describes, the Itanium
architecture provides a rich set of ordering semantics that allows software to express
different ordering constraints on a memory operation, such as a load. Writing correct
multiprocessor software requires that the programmer (or compiler) select the ordering
semantic appropriate to enforce the expected behavior.

For example, an algorithm that requires two store operations A and B become visible to
other processors in the order {A, B} will use stores with different ordering semantics
than an algorithm that does not require any particular ordering of A and B. Although it
is always safe to enforce stricter ordering constraints than an algorithm requires, doing
so may lead to lower performance. If the ordering of memory operations is not
important, software should use unordered ordering semantics whenever possible for
best possible performance.

This section presents multiprocessor executions to demonstrate the ordering behaviors
that the Itanium architecture allows and to contrast the Itanium ordering model with
other ordering models. The executions consist of sequences of memory accesses that
execute on two or more processors and highlight outcomes that the Itanium memory
ordering model either allows or disallows once all accesses on all processors complete.
A programmer can use these executions as a guide to determine which Itanium
memory ordering semantics are appropriate to ensure a particular visibility order of
memory accesses.

Section 2.2.1.1 presents the assumptions and notational conventions that the
upcoming discussions use to examine the executions. The remaining eleven sections
each explore a different facet of the Itanium ordering model:

• Relaxed ordering of unordered memory operations (Section 2.2.1.2).

• Using acquire and release semantics to order operations (Section 2.2.1.3).

• Loads may pass stores (Section 2.2.1.4) and how to prevent this behavior
(Section 2.2.1.5).

• When dependencies do or do not establish memory ordering (Section 2.2.1.6 and
Section 2.2.1.7).

• Satisfying loads from store buffers (Section 2.2.1.8) and how to prevent this
behavior (Section 2.2.1.9).

• Semaphore operations and local bypass (Section 2.2.1.10).

2:512 Volume 2, Part 2: MP Coherence and Synchronization

• Global visibility order of memory operations (Section 2.2.1.11 and
Section 2.2.1.12).

This presentation is organized to begin with simple behaviors and move to increasingly
complex behaviors.

2.2.1.1 Assumptions and Notation

The discussions of the multiprocessor executions in the upcoming sections adopt two
main notational conventions.

First, the memory accesses in the executions in this document are written using a
pseudo-Itanium architecture-based assembly language that allows a store to write an
immediate operand to memory. All memory locations are cacheable and aligned. Unless
stated otherwise, memory locations do not overlap. Initially, all registers and memory
locations contain zero.

Second, given two different memory operations X and Y, specifies that X precedes
Y in program order and indicates that X is visible if Y is visible (i.e. X becomes
visible before Y).

Using this notation, Figure 2-1 expresses the Itanium ordering semantics from
Section 2.1.1, “Memory Ordering of Cacheable Memory References” on page 2:507 and
also Section 4.4.7, “Memory Access Ordering” on page 1:73. There are no implications
regarding the ordering of the visibility for the following pairs of operations: a release
followed by an unordered operation; a release followed by an acquire; an unordered
operation followed by another; or an unordered operation followed by an acquire.

In Figure 2-1, “Acquire”, “Release”, and “Fence” represent an orderable instruction with
the corresponding memory ordering semantics whereas “X” and “Y” indicate any
orderable instruction.

2.2.1.2 The Intel® Itanium® Architecture Provides a Relaxed Ordering Model

The Itanium memory ordering model is a relaxed model. As a result, the Itanium
architecture permits any outcome when executing the code shown in Table 2-1.

Figure 2-1. Intel® Itanium® Ordering Semantics

Table 2-1. Intel® Itanium® Architecture Provides a Relaxed Ordering
Model

Processor #0 Processor #1

st [x] = 1 // M1
st [y] = 1 // M2

ld r1 = [y] // M3
ld r2 = [x] // M4

Outcomes: all are allowed

X Y»
X Y

Acquire X Acquire X»

X Release X Release»

X Fence X Fence»

Fence Y Fence Y»

Volume 2, Part 2: MP Coherence and Synchronization 2:513

Because all of the operations in Table 2-1 are unordered, the Itanium memory ordering
model does not place any constraints on the order in which a processor based on the
Itanium architecture makes the operations visible.

Observing a particular value in r2, for example, does not allow any inferences to be
made about the value of r1 because the pair of stores on Processor #0 may become
visible in any order. Therefore, all outcomes are possible as the system may interleave
M1, M2, M3, and M4 in any order without violating the memory ordering constraints.

2.2.1.3 Enforcing Basic Ordering

Using acquire and release ordering semantics enforces an ordering between both the
Processor #0 operations M1 and M2 and the Processor #1 operations M3 and M4 from
the Table 2-1 execution as shown in Table 2-1.

The Itanium ordering model only disallows the outcome r1 = 1 and r2 = 0 in this
execution. The release semantics on M2 and acquire semantics on M3 affect the
following ordering constraints:

Given the code in Table 2-2, these two ordering constraints along with the assumption
that the outcome is r1 = 1 and r2 = 0 together imply that:

This contradicts the postulated outcome r1 = 1 and r2 = 0 and thus the Itanium
ordering model disallows the r1 = 1 and r2 = 0 outcome.

In operational terms, if Processor #1 observes M2, the release store to y (i.e. r1 is 1), it
must have also observed M1, the unordered store to x (i.e. r2 is 1 as well), given the
ordering constraints. Therefore, the Itanium ordering model must disallow the outcome
r1 = 1 and r2 = 0 in this execution as this outcome violates these constraints.

Stronger ordering models that do not relax load-to-load and store-to-store ordering,
such as sequential consistency, impose these same ordering constraints on M1, M2, M3,
and M4 and therefore also do not allow the outcome r1 = 1 and r2 = 0.

2.2.1.4 Allow Loads to Pass Stores to Different Locations

The Itanium memory ordering model allows loads to pass stores as shown in the
execution sequence in Table 2-3. Permitting this behavior can improve performance by
allowing the processor to complete loads that follow a store that misses the cache.

Table 2-2. Acquire and Release Semantics Order Intel® Itanium® Memory
Operations

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = 1 // M2

ld.acq r1 = [y] // M3
ld r2 = [x] // M4

Outcome: only r1 = 1 and r2 = 0 is not allowed

M1 M2
M3 M4

r1 = 1 M2 M3 M1 M4 (because M1 M2 and M3 M4) r2 = 1

2:514 Volume 2, Part 2: MP Coherence and Synchronization

The Itanium ordering semantics always allow a processor to make operations that
follow a release visible before the release and to make operations that precede an
acquire visible after the acquire.

Like the execution shown in Table 2-1, the Itanium memory ordering model does not
place any constraints on the ordering of the operations on each processor in this
execution either.

Therefore, for reasons similar to those given in Section 2.2.1.2 for the execution shown
in Table 2-1, the Itanium memory ordering model allows any outcome in this execution
as well. Further, the Itanium memory ordering model also allows all outcomes in similar
executions that differ only in the ordering semantics of the load and store operations
(e.g. those that replace M1 with an unordered store, etc.). There is no combination of
legal ordering semantics on these operations (recall that the Itanium instruction set
does not provide stores with acquire or fence semantics) that enforce either or

2.2.1.5 Preventing Loads from Passing Stores to Different Locations

The only way to prevent the loads from moving ahead of the stores in the Table 2-3
execution is to separate them with a memory fence as the execution in Table 2-4
illustrates.

The Itanium memory ordering model only disallows the outcome r1 = 0 and r2 = 0 in
this execution. The memory fences on Processor #0 and Processor #1 (operations M2
and M5) force the load and store memory accesses to be made visible in program
order; no re-ordering is permitted across the fence. Thus, the following ordering
constraints must be met:

Given the code in Table 2-4, these two constraints along with the assumption that the
outcome is r1 = 0 and r2 = 0 together imply that

Table 2-3. Loads May Pass Stores to Different Locations

Processor #0 Processor #1

st.rel [x] = 1 // M1
ld.acq r1 = [y] // M2

st.rel [y] = 1 // M3
ld.acq r2 = [x] // M4

Outcomes: all are allowed

Table 2-4. Loads May Not Pass Stores in the Presence of a Memory Fence

Processor #0 Processor #1

st [x] = 1 // M1
mf // M2
ld r1 = [y] // M3

st [y] = 1 // M4
mf // M5
ld r2 = [x] // M6

Outcome: only r1 = 0 and r2 = 0 is not allowed

M1 M2
M3 M4.

M1 M2 M3
M4 M5 M6

r1 = 0 M3 M4 M3 M6 because M4 M5 M6
r1= 0 M1 M3 because M1 M2 M3

M1 M3 and M3 M6 M1 M6 r2 = 1

Volume 2, Part 2: MP Coherence and Synchronization 2:515

This contradicts the postulated outcome r1 = 0 and r2 = 0 and thus the Itanium
memory ordering model disallows the r1 = 1 and r2 = 0 outcome. Specifically, if M3
reads 0, then M4, M5, and M6 may not yet be visible but M1 and M2 must be visible.
Thus, when M6 becomes visible it must observe x = 1 because M1 is already visible.

2.2.1.6 Data Dependency Does Not Establish MP Ordering

The dependency rules define the relationship between memory operations that access
the same address. Specifically, the Itanium architecture resolves read-after-write
(RAW), write-after-read (WAR), and write-after-write (WAW) dependencies through
memory in program order on the local processor. As Section 2.2 discusses,
dependencies are fundamentally different from the ordering semantics even though
both affect ordering relationships between groups of memory accesses.

The execution shown in Table 2-5 illustrates this difference.

The following discussion focuses on the outcome r1 = 1, r2 = 1, and r3 = 0. This
outcome is allowed only because the Itanium architecture treats data dependencies and
the ordering semantics differently.

The ordering semantics require , but do not place any constraints on the
relative order of operations M1, M2, or M3. Due to the register and memory
dependencies between the instructions on Processor #0, these operations complete in
program order on Processor #0 and also become locally visible in this order. However,
the operations need not be made visible to remote processors in program order. In this
outcome it appears to Processor #0 as if while to Processor #1 it appears that

 There are two things to note here. First, the behavior is another example of
the local bypass behavior that Section 2.2.1.8 presents on page 2:518. Second, there
are no dependencies directly between M1 and M3 that requires them to become
globally visible in program order.

Note: All processors will observe the order established by a particular processor in
case of a WAW memory dependency to the same location. For example, all pro-
cessors in the coherence domain eventually see a value of 1 in location x in the
following code:

st [x] = 0 // M1: set [x] to 0
st [x] = 1 // M2: set [x] to 1,

// cannot move above M1 due to WAW

because there is a WAW memory dependency between from M2 to M1
and the Itanium architecture requires that the local processor resolves
RAW, WAR, and WAW dependencies between its memory accesses in
program order. Thus, even though the ordering semantics do
not place any constraints on the relative ordering of M1 and M2.

Table 2-5. Dependencies Do Not Establish MP Ordering (1)

Processor #0 Processor #1

st [x] = 1 ;; // M1
ld r1 = [x] ;; // M2
st [y] = r1 ;; // M3

ld.acq r2 = [y] // M4
ld r3 = [x] // M5

Outcomes: r1 = 1, r2 = 1, and r3 = 0 is allowed

M4 M5

M1 M3
M3 M1.

M1 M2

2:516 Volume 2, Part 2: MP Coherence and Synchronization

2.2.1.7 Data Dependency Establishes Local Ordering

In the Itanium architecture, a dependency (e.g., a later operation reading the value
written by an earlier operation) can imply a local ordering relationship between the two
operations. This section focuses on dependencies through registers only.
Section 2.2.1.6 discusses dependencies and MP ordering.

The execution shown in Table 2-6 illustrates how data dependency and memory
ordering interact in a simple “pointer chase.”

In this example, Processor #0 could be executing code that updates a shared object
with M1 and then publishes a pointer to the object with M2. Processor #1 then loads
the pointer and dereferences it to read the contents of the shared object. The outcome
r1 = x and r2 = 0 implies that Processor #1 observes the new value of the object
pointer, y, but the old value of the data field, x.

The ordering semantics require but place no requirements on the relative
ordering of M3 and M4.

Thus, the memory semantics alone would allow the outcome r1 = x and r2 = 0 in the
absence of other constraints. Using an acquire load for M3 can avoid this outcome as
doing so forces and thus prevents the outcome. However, this use of acquire
is non-intuitive given the RAW dependency through register r1 between M3 and M4.
That is, M3 produces a value that M4 requires in order to execute so how should it be
possible for them to go out of order? Further, using an acquire in this case prevents any
memory operation following M3 from moving above M3, even if they are completely
independent of M3.

To avoid this potential confusion and performance issue, the Itanium architecture treats
data dependency and memory ordering in the same fashion on the local processor. That
is, if and A produces a value that B consumes, then on the local processor.
This relationship is also transitive as the execution in Table 2-7 illustrates.

The Processor #0 code is the same as in Table 2-6. The Processor #1 now performs the
following operation: if the pointer value y is equal to x, load a value from x.

Table 2-6. Memory Ordering and Data Dependency

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y] ;; // M3
ld r2 = [r1] // M4

Outcome: r1 = x and r2 = 0 is not allowed

Table 2-7. Memory Ordering and Data Dependency Through a Predicate
Register

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y] // M3
cmp.eq p1, p2 = r1, x ;; // C1

(p1)ld r2 = [x] // M4

Outcome: r1 = x and r2 = 0 is not allowed

M1 M2

M3 M4

A B» A B

Volume 2, Part 2: MP Coherence and Synchronization 2:517

The Itanium architecture does not allow the outcome r1 = x and r2 = 0 in this
execution either. Unlike the execution in Table 2-6, there is no direct dependency
between the values that M3 produces and the values that M4 consumes. However, there
is a RAW through register r1 from M3 to C1 and a RAW through register p1 from C1 to
M4. Thus, by transitivity, .

The execution in Table 2-8 illustrates a similar construct but introduces a control
dependency.

This execution is semantically the same as the execution in Table 2-7; however, this
execution uses a control dependency rather than predication to conditionally execute
M4. As a result, the outcome r1 = x and r2 = 0 is not allowed in the Table 2-8
execution.

The execution of the load M4 is data-dependent on the value of p2 that the branch B1
uses to resolve. Further, p2 is dependent on the value of r1 that the load M3 produces
through the compare C1. Thus, .

The execution in Table 2-9 is a variation on the execution from Table 2-8 where the
loads are truly independent.

In this execution, there is no dependency between M3 and M4, and thus, there are no
constraints on the relative ordering of M3 and M4. Like the execution in Table 2-8, M4 is
data-dependent on the value of p2 that the branch B1 uses to resolve. However, p2 is
independent of the value that the load M3 produces (specifically, because the compare
does not use the value of register r1 that the load produces). Thus, there is no chain of
dependencies between M3 and M4 and therefore there are no constraints on the
relative ordering of M3 and M4. As a result, all outcomes are allowed in this execution.

Table 2-8. Memory Ordering and Data and Control Dependencies

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y];; // M3
cmp.eq p1, p2 = r1, x // C1

(p2)br t // B1
ld r2 = [x] // M4

t:

Outcome: r1 = x and r2 = 0 is not allowed

Table 2-9. Memory Ordering and Control Dependency

Processor #0 Processor #1

st [x] = 1 // M1
st.rel [y] = x // M2

ld r1 = [y] // M3
cmp p1, p2 = r3, x // C1

(p2) br t // B1
ld r2 = [x] // M4

t:

Outcome: all are allowed

M3 M4

M3 M4

2:518 Volume 2, Part 2: MP Coherence and Synchronization

2.2.1.8 Store Buffers May Satisfy Local Loads

In the Itanium memory ordering model, store buffers (or other logically-equivalent
structures) may satisfy local read requests from loads or acquire loads even if the
stored data is not yet visible to other agents in the coherence domain. Such bypassing
must honor any ordering semantics in the memory reference stream. Table 2-10 and
Table 2-11 that Section 2.2.1.9 presents illustrate this behavior.

.

In this sequence, each processor bypasses its locally-written value from a store buffer
before the value becomes visible to the other processor. This behavior may make
accesses of different sizes that have overlapping memory addresses appear to complete
non-atomically.

The following discussion focuses on the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0
because this outcome is allowed if and only if store buffers can satisfy local loads (other
outcomes are allowed but do not depend on being able to satisfy local loads from a
store buffer).

The Itanium memory ordering semantics only require that and .
There are no constraints on the relative ordering of M1 and M2 or M3 nor on the relative
ordering of M4 and M5 or M6.

Remember that both dependencies and the memory ordering model place requirements
on the manner in which a processor based on the Itanium architecture may re-order
accesses. Even though the Itanium memory ordering model allows loads to pass stores,
a processor based on the Itanium architecture cannot re-order the following sequence:

st.rel [x] = r0 // M1: store 0 to [x]
ld.acq r1 = [x] // M2: cannot move above st.rel due to RAW

This is because there is a RAW dependency through memory between M1 and M2 and
the Itanium memory ordering model requires that the local processor resolve RAW,
WAR, and WAW dependencies between its memory accesses in program order. Thus,

 even though the ordering semantics place no constraints on the relative
ordering of M1 and M2.

Because there is a RAW dependency through memory between M1 and M2 and between
M4 and M5, the ordering constraints effectively become:1

Table 2-10. Store Buffers May Satisfy Loads if the Stored Data is Not Yet
Globally Visible

Processor #0 Processor #1

st.rel [x] = 1 // M1
ld.acq r1 = [x] // M2
ld r2 = [y] // M3

st.rel [y] = 1 // M4
ld.acq r3 = [y] // M5
ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is allowed

1. That is, the store operations must become visible to the local processors before their loads that read
the stored value.

M2 M3 M5 M6

M1 M2

M1 M2 M3
M4 M5 M6

Volume 2, Part 2: MP Coherence and Synchronization 2:519

to account for both the memory ordering semantics and dependencies. It is important
to keep in mind that the observance of a dependency between two operations does not
imply an ordering relationship (from the standpoint of the memory ordering model)
between the operations as Section 2.2.1.6 describes.

Assuming that a processor can bypass locally-written values before they are made
globally-visible implies that there is a local and a global visibility points for a memory
operation where a value always becomes locally visible before it becomes globally
visible. Since M1 and M4 can have local visibility with respect to M2 and M5 as well as
global visibility,

where m1 and M1 represent local and global visibility of memory operation 1,
respectively. There are two things to note. First, the ordering of the local visibilities of
operations M1 and M4 (m1 and m4, respectively) allow each processor to honor its data
dependencies. That is, Processor #2 honors the RAW dependency through memory
between M1 and M2 by requiring m1 to become visible before M2. Second, that these
requirements do not place any constraints on the relative ordering perceived by a
remote observer of operation M1 with M2 and M3 or of operation M4 with M5 and M6
(as the local visibilities meet the local ordering constraints that the dependencies
impose).

The code in Table 2-10 and these constraints together imply that

Thus, the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is allowed because these
statements are consistent with our definition of local and global visibility. Specifically, a
value becomes locally visible before it becomes globally visible. Similar reasoning can
show that the constraints also imply that

2.2.1.9 Preventing Store Buffers from Satisfying Local Loads

In the code shown in Table 2-10 from Section 2.2.1.8, there are no ordering constraints
between the store and acquire load from the standpoint of memory ordering semantics
(however, there is a RAW dependency through memory that forces the acquire load to
follow the store). Bypassing may not occur if doing so violates the memory ordering
constraints of memory operations between the store and the bypassing read.
Table 2-11 presents a variation on the execution in Table 2-10 from Section 2.2.1.8
that illustrates this behavior.

Table 2-11. Preventing Store Buffers from Satisfying Local Loads

Processor #0 Processor #1

st [x] = 1 // M1
mf // M2
ld.acq r1 = [x] // M3
ld r2 = [y] // M4

st [y] = 1 // M5
mf // M6
ld.acq r3 = [y] // M7
ld r4 = [x] // M8

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed

m1 M2 M3; m1 M1
m4 M5 M6; m4 M4

r1 = 1 m1 M2
r3 = 1 m4 M5

r2 = 0 M3 M4 m1 M6 because m1 M3 and M3 M4 and M4 M6
r4 = 0 M6 M1

m1 M6 and M6 M1 m1 M1

m4 M4.

2:520 Volume 2, Part 2: MP Coherence and Synchronization

Like Section 2.2.1.8, the discussion in this section focuses on the outcome r1 = 1, r3 =
1, r2 = 0, and r4 = 0 because it is allowed if and only if store buffers can satisfy local
loads. The line of reasoning to show that the outcome r1 = 1, r3 = 1, r2 = 0, and r4 =
0 is not allowed in Table 2-11 is similar to the reasoning used to show that this outcome
is allowed in the Table 2-10 execution from Section 2.2.1.8 on page 2:518.

By the definition of the Itanium memory ordering semantics,

By allowing local and global visibility of operations M1 and M5 (similar to the discussion
in Section 2.2.1.8), this assumption, along with the above constraints, together imply
that,

Consider these constraints on the Processor #0 operations m1, M1, M2, M3, and M4.
Making m1 visible before M2, M3, and M4 correctly honors the data dependency
through memory on Processor #0. However, unless it constrains the global visibility of
M1 to occur before M2, M3, and M4, Processor #0 violates the Itanium ordering
semantics. Specifically, the memory fence M2 must always be made visible after the
store M1. Allowing global and local visibilities of M1 in this case violates this constraint,
and thus, is not allowed. Essentially, by allowing M1 to become locally visible early, M3
would see M1 before the fence semantics for M2 were met (namely, that M1 be visible
before M2 and thus M3). Without local and global visibility of M1 and M5, the ordering
constraints are as this example originally postulated.

The code in Table 2-11 and these constraints together imply that

This contradicts the r1 = 1, r3 = 1, r2 = 0, and r4 = 0 outcome. The visibility of the
memory fence, M2, implies that all prior operations including the store to x, M1, are
globally visible. Thus, the load from x on Processor #1, M8, must observe the new
value of x and but the outcome requires

2.2.1.10 Semaphores Do Not Locally Bypass

As Section 2.2.1.8 and Section 2.2.1.9 discuss, loads and acquire loads may be
satisfied with values placed in local store buffers (or other logically-equivalent
structures) by stores or release stores before the stored data becomes visible to other
agents in the coherence domain. The Itanium architecture explicitly prohibits such local
bypass either to or from semaphore operations. That is, semaphore operations cannot
be satisfied in this way nor can the data they store be used to satisfy loads or acquire
loads in this way.

The execution in Table 2-12 illustrates a variation on the execution in Table 2-10 where
the acquire loads have been replaced with exchange semaphore operations (which also
have acquire semantics).

M1 M2 M3 M4
M5 M6 M7 M8

m1 M1 m1 M2 M3 M4
m5 M5 m5 M6 M7 M8

r2 = 0 M4 M5 M1 M8 because M1 M4 and M4 M5 and M5 M8 r4 = 1

M1 M8 M8 M1.

Volume 2, Part 2: MP Coherence and Synchronization 2:521

Although each semaphore operation can be decomposed into a read access followed by
a write access, the Itanium architecture does not allow a read request by a semaphore
to be satisfied from a store buffer (or other logically-equivalent structure). As a result,
the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed. The reasoning is similar
to that presented in Section 2.2.1.9.

Specifically, by the definition of the Itanium memory ordering semantics, and
. The relative ordering between operation M1 and operations M2 or M3 is not

constrained. Likewise, the relative ordering between operation M4 and operations M5
and M6.

Now, assume the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0. Given that r1 = 1, r3 =
1, and r2 = 0, we observe the following:

This conclusion contradicts the assumed outcome where r4 = 0 and thus the outcome
r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed. Because M1 and M4 cannot become
locally-visible to M2 and M5 before they become globally-visible to M6 and M3 (as read
accesses from semaphores may not bypass from store buffers or other
logically-equivalent structures), it is not possible to avoid this contradiction.

The Itanium architecture also prohibits local bypass from a semaphore operation to a
local read access from a load or acquire load as shown in the execution in Table 2-13.

Table 2-12. Bypassing to a Semaphore Operation

Processor #0 Processor #1

mov r5 = 2
st.rel [x] = 1 // M1
xchg r1 = [x], r5 // M2
ld r2 = [y] // M3

mov r6 = 2
st.rel [y] = 1 // M4
xchg r3 = [y], r6 // M5
ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed

Table 2-13. Bypassing from a Semaphore Operation

Processor #0 Processor #1

fetchadd.rel r5 = [x], 1 // M1
ld.acq r1 = [x] // M2
ld r2 = [y] // M3

fetchadd.rel r6 = [y], 1 // M4
ld.acq r3 = [y] // M5
ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, r4 = 0, r5 = 0, and r6 = 0 is not allowed

M2 M3
M5 M6

r1 = 1 M1 M2
r3 = 1 M4 M5
r2 = 0 M3 M4

M3 M4 M1 M6 because M1 M3 M4 M6
M1 M6 r4 = 2

2:522 Volume 2, Part 2: MP Coherence and Synchronization

A store buffer may not provide a local read operation early access to a value written by
a semaphore operation. Therefore, the outcome r1 = 1, r3 = 1, r2 = 0, r4 = 0, r5 = 0,
and r6 = 0 in the Table 2-13 execution is not allowed. The reasoning is similar to that
used in the previous execution.

2.2.1.11 Ordered Cacheable Operations are Seen in the Same Order by All
Observers

The Itanium memory ordering model requires that release stores and semaphore
operations (both acquire and release forms) become visible to all observers in the
coherence domain in a single total order with the exception that each processor may
observe (via loads or acquire loads) its own update early. Thus, each observer in the
coherence domain sees the same interleaving of release stores and semaphores (both
acquire and release forms) from the other processors in the coherence domain except
that each processor may observe its own release stores (via loads or acquire loads)
prior to their being observed globally. Table 2-14 illustrates this behavior.

The Itanium memory ordering model only disallows the outcome r1 = 1, r3 = 1, r2 = 0,
and r4 = 0 in this execution. By the definition of the Itanium memory ordering
semantics,

The Itanium memory ordering model does not permit the r1 = 1, r3 = 1, r2 = 0, and r4
= 0 outcome as this would require that Processors #1 and #3 observe the release
stores to x and y in different orders. Specifically, assuming that the outcome is r1 = 1,
r3 = 1, r2 = 0, and r4 = 0:

The final two statements are inconsistent since both and cannot be
true unless Processors #1 and #3 are allowed to see the release stores to x and y in
different orders.

The Itanium memory ordering model allows the r1 = 1, r3 = 1, r2 = 0, and r4 = 0
outcome if either one or both of the release stores M1 and M4 are unordered since
unordered operations need not be seen in the same total order by all observers in the
coherence domain. Thus, in a version of the execution shown in Table 2-14 with
unordered stores, Processor #2 observes while Processor #4 observes

.

Table 2-14. Enforcing the Same Visibility Order to All Observers in a
Coherence Domain

Processor #0 Processor #1 Processor #2 Processor #3

st.rel [x] = 1// M1 ld.acq r1 = [x]//M2
ld r2 = [y]//M3

st.rel [y] = 1// M4 ld.acq r3 = [y]//M5
ld r4 = [x]//M6

Outcome: only r1 = 1, r3 = 1, r2 = 0, and r4 =0 is not allowed

M2 M3
M5 M6

r1 = 1 M1 M2
r3 = 1 M4 M5

r2 = 0 M3 M4 M1 M4 because M1 M2, M2 M3, and M3 M4
r4 = 0 M6 M1 M4 M1 because M4 M5, M5 M6, and M6 M1

M1 M4 M4 M1

M1 M4
M4 M1

Volume 2, Part 2: MP Coherence and Synchronization 2:523

The Itanium memory ordering model also allows this outcome if the release stores M1
and M4 are replaced with a memory fence followed by an unordered store. From the
standpoint of a single processor, a release store has equivalent ordering semantics on
the local processor to a memory fence followed by an unordered store. However,
because the store in the memory fence/unordered store pair is unordered, it does not
have any ordering requirements with respect to a remote processor. Even when
processors are allowed to construct different interleavings, the ordering of an individual
processor’s memory references within the interleaving must always respect the
ordering constraints placed on those references.

2.2.1.12 Obeying Causality

As noted in Section 2.2.1.11, the Itanium memory ordering model requires that release
stores and semaphore operations (both acquire and release forms) become visible to all
observers in the coherence domain in a single total order with the exception that each
processor may observe (via loads or acquire loads) its own update early. Thus, each
observer in the coherence domain sees the same interleaving of release stores, and
semaphores operations from the other processors in the coherence domain.

A consequence of this is the fact that the Itanium memory ordering model respects
causality in a certain way. Specifically, if a release store or semaphore operation
causally precedes any store or semaphore operation, then the two operations will
become visible to all processors in the causality order. Table 2-1 illustrates this
behavior. Suppose that M2 reads the value written by M1. In this case, there is a causal
relationship from M1 to M3 (a control dependency could also establish such a
relationship). The fact that the store to x is a release store implies that, since there is a
causal relationship from M1 to M3, M1 must become visible to processor #2 before M3.

The Itanium memory ordering model disallows the outcome r1 = 1, r2 = 1, and r3 = 0
in this execution (all other outcomes are allowed). To see this, we note the following. If
r1 = 1, then at Processor #1. Because M2 is an acquire load and ,

, where m3 represents the local visibility of memory operation 1 (see
Section 2.2.1.8). Thus, . Since M1 is a release store, it appears to become
visible to all processors at the same time. This fact and together imply

.

If r2 = 1, . Because M4 is an acquire load, . If r3 = 0, then .
Together, these imply , which contradicts the observation from the previous
paragraph. Thus, the outcome r1 = 1, r2 = 1, and r3 = 0 is disallowed.

The indicated outcome would also be disallowed if M1 were a semaphore operation
because, like release stores, each semaphore must appear to become visible at all
processors at the same time. The indicated outcome would be allowed if M1 were a
weak store, as a weak store may appear to become visible at different times to
different processors.

Table 2-15. Intel® Itanium® Architecture Obeys Causality

Processor #0 Processor #1 Processor #2

st.rel [x] = 1 // M1 ld.acq r1 = [x]// M2
st [y] = 1 // M3

ld.acq r2 = [y] // M4
ld r3 = [x] // M5

Outcome: only r1 = 1, r2 = 1, and r3 = 0 is not allowed

M1 M2 M2 M3»
M2 m3

M1 m3
m3 M3

M1 M3

M3 M4 M4 M5 M5 M1
M3 M1

2:524 Volume 2, Part 2: MP Coherence and Synchronization

2.2.2 Memory Attributes

In addition to the ordering semantics and data dependencies, the memory attributes of
the page that is being referenced also influence access ordering and visibility. Using
memory attributes allows the Itanium architecture to match the performance and the
usage model to the type of device (e.g. main memory, memory-mapped I/O device,
frame buffer, locations with side-effects, etc.) that backs a page of memory. Typically,
memory with side-effects is mapped uncacheable while memory without side-effects is
mapped as write-back cacheable.

Section 4.4, “Memory Attributes” describes memory attributes in the Itanium
architecture in greater depth.

Memory with the uncacheable UC or UCE attributes is sequential by definition. A
processor based on the Itanium architecture ensures that accesses to sequential
memory locations reach a peripheral domain (a platform-specific collection of
uncacheable locations, colloquially known as “a device”) in program order with respect
to all other accesses to sequential locations in the same peripheral domain. The
sequential behavior of UC or UCE memory is independent of the ordering semantics
(i.e. acquire, release, fence, or unordered) attached to the accesses.

Other observers (e.g. processors or other peripheral domains) need not see references
to UC or UCE memory in sequential order if at all. When multiple agents are writing to
the same device, it is up to software to synchronize the accesses to the device to
ensure the proper interleaving.

The ordering semantics of an access to sequential memory determines how the access
becomes visible to the peripheral domain with respect to other operations. For
example, consider the code sequence shown in Figure 2-2.

In this code, assume that data_0 and data_1 are cacheable locations and start and
ready are an uncacheable UC or UCE locations.

Sequentiality ensures that M3 and M4 reach the peripheral domain in program order
(i.e. M3 before M4). Further, the release semantics on M3 ensures that it is not made
visible to the peripheral domain until after M1 and M2 are made visible to the coherence
domain. The M1 and M2 accesses may become visible to the coherence domains in any
order as they both have unordered semantics. Even though the memory ordering
semantics allow M4 to become visible before M3, the processor must make M3 visible
before M4 because both ready and start are sequential locations.

Figure 2-2. Interaction of Ordering and Accesses to Sequential Locations

sequential_example:
st [data_0] = 0 // M1: put data in cacheable mem
st [data_1] = 0 // M2: put data in cacheable mem
st.rel [ready] = 1 // M3: tell device to get ready
st [start] = 1 // M4: tell device to start

Volume 2, Part 2: MP Coherence and Synchronization 2:525

2.2.3 Understanding Other Ordering Models: Sequential
Consistency and IA-32

To provide a point of reference, it is helpful to understand other memory ordering
models. These ordering models affect not only the programmer’s view of the system,
but also the overall system performance and design. Processors with relaxed memory
ordering models may achieve higher performance than those with strict ordering
models.

The most intuitive memory ordering model is “sequential consistency” (SC) which
Lamport formally defines in [L79]. In sequential consistency, all processors see the
memory references from a given processor in program order, and, in addition, all
processors see the same system-wide interleaving of memory references from each
processor.

The SC model precludes many common optimizations made in modern microprocessors
to enhance performance. For example, in an SC system, a load may not pass a prior
store until that store becomes globally visible (because all memory operations must
become visible in program order). This requirement prevents the SC system from using
a store buffer to hide the latency of store traffic by allowing loads that hit the cache to
be serviced under a prior store that miss the cache.

To address such performance issues, many memory ordering models have been
developed that relax the constraints of sequential consistency. Adve categorizes these
memory models by noting how they relax the ordering requirements between reads
and writes and if they allow writes to be read early [AG95]. The Itanium architecture
allows for relaxed ordering between reads and writes and also allows writes to be read
early under certain circumstances.

Aside from disallowing any relaxation of memory references, sequential consistency has
two other subtle differences from the Itanium memory ordering model. First, it requires
a total order of operations whereas the Itanium memory ordering model only requires a
total order for release stores and semaphores. Second, remote processors must always
honor data dependencies since the local processor does not have the option of
re-ordering such accesses as can occur.

The IA-32 memory ordering relaxes write to read ordering and allows a processor to
read its own writes before they are globally visible. Further, IA-32 allows each
processor in the coherence domain to interleave the reference streams from other
processors in the coherence domain in a different order. The per-processor orders must
meet some additional constraints to ensure they are consistent with each other
(enumerating and explaining these constraints is beyond the scope of this document).
For more information on the IA-32 ordering model see Section 6.2.3.2, “IA-32
Segmentation” on page 1:131.

2:526 Volume 2, Part 2: MP Coherence and Synchronization

2.3 Where the Intel® Itanium® Architecture Requires
Explicit Synchronization

The Itanium architecture requires a memory synchronization (sync.i) and a memory
fence (mf) during a context switch to ensure that all memory operations prior to the
context switch are made visible before the context changes. Without this requirement,
the ordering constraints may be violated if the process migrates to a different
processor. For example, consider the example shown in Figure 2-3.

.

In this example, Processor #1 may make the unordered store visible to the coherence
domain before Processor #0 makes the acquire load visible. This violates the ordering
constraints. Executing a memory fence during the context switch handler ensures that
this violation can not occur.

See Section 4.5, “Context Switching” on page 2:557 on context management in a
processor based on the Itanium architecture.

Interruptions do not affect memory ordering. On entry to an interrupt handler, memory
operations from the interrupted program may still be in-flight and not yet visible to
other processors in the coherence domain. A handler that expects that all memory
operations that precede the interruption to be visible must enforce this requirement by
executing a memory fence at the beginning of the handler.

2.4 Synchronization Code Examples

There are many synchronization primitives that software uses in multiprocessor or
multi-threaded environments to coordinate the activities of different code streams. In
this section, we present several typical examples to illustrate how some common
constructs translate to the Itanium instruction set. In addition, the discussions identify
special considerations with various implementations.

The examples use the syntax “[foo]” to indicate the memory location that holds the
variable foo. Actual Itanium architecture-based assembly language would first move
the address of foo into a register and then use this register as an operand to a memory
access instruction. The alternate syntax is chosen to simplify and clarify the examples.

Figure 2-3. Why a Fence During Context Switches is Required in the Intel®
Itanium® Architecture

// Process A begins executing on Processor #0...

ld.acq r1 = [x] // load executes on processor #0

// 1) Context switch occurs
// 2) O/S migrates Process A from Processor #0 to Processor #1
// 3) Process A resumes at the instruction following the ld.acq

st [y] = r2 // store executes on processor #1

Volume 2, Part 2: MP Coherence and Synchronization 2:527

2.4.1 Spin Lock

Software commonly uses spin locks to guard access to a critical region of code. In these
locks, the software “spins” while waiting for a shared lock variable to indicate that the
critical region can be safely accessed. Typically, the lock code uses atomic operations
such as compare and exchange or fetch and add to update the shared lock variable.
Figure 2-4 shows a spin lock based on the cmpxchg instruction.

The spin lock code first initializes ar.ccv and a register with the values that indicate
that the lock is available and held, respectively. A compare and exchange obtains the
lock by exchanging lock with 1 if it currently holds 0. Next, the first loop ensures that
the code spins in cache while the lock is held by someone else. Once this loop finds that
the lock is available, a compare and exchange instruction attempts to obtain the lock. If
this instruction fails (e.g. because someone else obtained the lock in the meantime),
the code resumes spinning in the first loop.

Spinning using only the cmpxchg/cmp/br loop may generate excessive coherency traffic.
For example, if the cmpxchg always stores to memory (even if the comparison fails) and
the lock is highly-contested, the platform may have to generate a number of read for
ownership transactions causing lock to move around the system. Using the first
ld8/cmp/br loop avoids this problem by obtaining lock in a shared state. In the worst
case, when lock is not contested, this loop adds only the overhead of the additional
compare and branch.

The initial ld8 need not be an acquire load because of the control-flow in the spin loop:
this load must become visible before the cmpxchg8 because the load must return data
in order for the compare and branch to resolve. Further, the store that relinquishes the
lock after the critical section uses release semantics to prevent memory references
from the critical from moving after the reference that releases the lock. Finally, the
branches use “static predict not taken” hints to optimize for the case where the lock is
not highly contested.

Figure 2-4. Spin Lock Code

// available. If it is 1, another process is in the critical section.
//
spin_lock:

mov ar.ccv = 0 // cmpxchg looks for avail (0)
mov r2 = 1 // cmpxchg sets to held (1)

spin:
ld8 r1 = [lock] ;; // get lock in shared state
cmp.ne p1, p0 = r1, r2 // is lock held (ie, lock == 1)?

(p1) br.cond.spnt spin ;; // yes, continue spinning

cmpxchg8.acq r1 = [lock], r2, ar.ccv ;;// attempt to grab lock
cmp.ne p1, p0 = r1, r2 // was lock empty?

(p1) br.cond.spnt spin ;; // bummer, continue spinning

cs_begin:
// critical section code goes here...

cs_end:

st8.rel [lock] = r0 ;; // release the lock

2:528 Volume 2, Part 2: MP Coherence and Synchronization

2.4.2 Simple Barrier Synchronization

A barrier is a common synchronization primitive used to hold a set of processes at a
particular point in the program (the barrier) until all processors reach the location.
Once all processes arrive at the barrier, they may all continue to execute. Figure 2-5
shows a sense-reversing barrier synchronization based on the fetchadd instruction
from Hennessy and Patterson [HP96].

This type of barrier prevents a process that races ahead to the next instance of the
barrier from trapping other (slow) processors that are in the process of leaving the
barrier.

The barrier code begins by atomically updating the number of processors that are
waiting at the barrier, count, using a fetchadd instruction. For the last processor that
reaches the barrier, the fetchadd instruction returns the same value as the total
shared variable, which is one less than the number of processors that wait at the
barrier. Other processors each get a unique value on the interval [0, total) based on
the order in which they arrive at the barrier.

All processors except the last processor wait in the wait_on_others loop for the signal
that all have arrived at the barrier. The last processor to arrive at the barrier provides
this signal.

The signal to leave the barrier is deduced from the value of the release shared variable
and the local_sense local variable. Upon entering the barrier, each processor
complements the value in its private local_sense variable. Once in the barrier, all
processors always have the same value in their local_sense variables. This variable

Figure 2-5. Sense-reversing Barrier Synchronization Code

// The total shared variable is one less than the number of processors
// that wait at the barrier.
// The release shared variable indicates if the processor must wait at
// the barrier (initially, this variable is 0).
// local_sense is a per-processor local variable that indicates the
// "sense" of the barrier (initially, this variable is 0).

sr_barrier:
fetchadd8.acq r1 = [count], 1 // update counter
ld8 r2 = [total] // get number of procs - 1
ld8 r3 = [local_sense] ;; // get local “sense” variable
xor r3 = 1, r3 // local_sense =! local_sense
cmp.eq p1, p2 = r1, r2;; // p1 => last proc to arrive
st8 [local_sense] = r3 // save new value of local_sense

(p1) st8 [count] = r0 // last resets count to 0
(p1) st8.rel [release] = r3 ;; // last allows other to leave

wait_on_others:
(p2) ld8 r1 = [release] ;; // p2 => more procs to come
(p2) cmp.ne.and p0, p2 = r1, r3 // have all arrived yet?
(p2) br.cond.sptk wait_on_others ;; // nope, continue waiting

// This mf prevents memory operations that follow the barrier code
// from moving ahead of memory operations that precede the barrier
// code
mf ;;

Volume 2, Part 2: MP Coherence and Synchronization 2:529

indicates the value that release must have before the processor can leave the barrier.
The last processor to arrive at the barrier releases the other processors by setting
release to the new local_sense value.

The mf instruction in Figure 2-5 is necessary only if the programmer wishes to ensure
that memory operations performed before the barrier code are visible to memory
operations performed by any processor after the barrier code.

2.4.3 Dekker’s Algorithm

Dekker’s algorithm [D65] is a common synchronization construct that arbitrates for a
resource through the use of several shared variables that indicate which processor is
using the resource. Each processor has its own flag variable that it shares with all other
processors in the system. When a processor attempts to enter the critical section, it
sets its flag to one and checks to make sure the flags for the other processors are all
zero.

The code in Figure 2-6 illustrates the core of this algorithm for a two-way
multiprocessor system. In this example, a processor makes a single attempt to acquire
the resource; typically, this code would appear in a loop. Although there is an array of
per-processor flag variables, the code uses flag_me and flag_you to indicate to the
flag variables for the processor attempting to obtain the resource and the other remote
processor, respectively.

Dekker’s algorithm assumes a sequential consistency ordering model. Specifically, it
assumes that loading zero from flag_you implies that a processor’s load and stores to
the flag variables occur before the other processor’s load and store to the flag variables.
If this is not the case, both processors can enter the critical section at the same time.

Using unordered loads or stores to access the flag_me and flag_you variables does not
guarantee correct behavior as the processor may re-order the accesses as it sees fit.
Using an acquire load and release store is also not sufficient to ensure correct behavior
because the ordering semantics always allow acquire loads to move earlier and release
stores to move later. In the absence of the mf, it is possible for the load from flag_you
to occur before the store to flag_me; even with acquire and release operations.

The first ld8 need not be an acquire load because of the control-flow that skips the
critical section: this load must become visible before any memory operations in the
critical section because the load must return data in order for the compare and branch
to resolve.

2:530 Volume 2, Part 2: MP Coherence and Synchronization

2.4.4 Lamport’s Algorithm

Like Dekker’s algorithm, Lamport’s algorithm [L85] also provides mutual exclusion for
critical sections of code. Lamport’s algorithm is very simple and, in the case of
non-contested locks, only requires two read and two write memory accesses to enter
the critical section. The algorithm uses two shared variables, x and y, and a shared
array, b, that identify the process entering and using the critical section. Figure 2-7
presents Lamport’s algorithm 2 [L85].

Lamport’s algorithm expects that a processor that enters the critical section performs
the set of operations: S = {store x, load y, store y, load x}1. To enforce this ordering,
the Itanium architecture requires a memory fence in the middle of the {store x, load y}
sequence and the {store y, load x} sequence. No combination of ordered semantics on
the operations in each of these sequences will guarantee the correct ordering.

It is not possible for the store y in the second sequence to pass the load y in the first
sequence because of the data dependency from the load y to the compare and branch.
If the processor reaches the store y in the second sequence, the load of y from the first
sequence must be visible. Likewise, it is not possible for memory operations in the
critical section to move ahead of the final load x because of the data dependency
between this load and the compare and branch that guards the critical section.

The accesses to the b array allow the algorithm to correctly handle contention for the
lock. In such cases, the algorithm backs off and re-trys.

Figure 2-6. Dekker’s Algorithm in a 2-way System

// The flag_me variable is zero if we are not in the
// synchronization and critical section code and non-zero
// otherwise; flag_you is similarly set for the other processor.
// This algorithm does not retry access to the
// resource if there is contention.
//
dekker:

mov r1 = 1 ;; // my flag = 1 (i want access!)
st8 [flag_me] = r1
mf ;; // make st visible first
ld8 r2 = [flag_you] ;; // is other’s flag 0?
cmp.ne p1, p0 = 0, r2

(p1) br.cond.spnt cs_skip ;; // if not, resource in use

cs_begin:
// critical section code goes here...

cs_end:

cs_skip:
st8.rel [flag_me] = r0 ;; // release lock

1. There are some additional operations on the b array that are interposed in this sequence when con-
tention for the resource occurs.

Volume 2, Part 2: MP Coherence and Synchronization 2:531

2.5 Updating Code Images

There are four general techniques for updating code images in order to modify the code
stream of a local or remote processor.

• Self-modifying code or code that modifies its own image.

• Cross-modifying code or code that modifies the image of code running concurrently
on another processor.

Figure 2-7. Lamport’s Algorithm

// The proc_id variable holds a unique, non-zero id for the process that
// attempts access to the critical section. x and y are the synchronization
// variables that indicate who is in the critical section and who is
// attempting entry. ptr_b_1 and ptr_b_id point at the 1’st and id’th
// element of b[].
//
lamport:

ld8 r1 = [proc_id] ;; // r1 = unique process id
start:

st8 [ptr_b_id] = r1 // b[id] = “true”
st8 [x] = r1 // x = process id
mf // MUST fence here!
ld8 r2 = [y] ;;
cmp.ne p1, p0 = 0, r2;; // if (y != 0) then...

(p1) st8 [ptr_b_id] = r0 // ... b[id] = “false”
(p1) br.cond.sptk wait_y // ... wait until y == 0

st8 [y] = r1 // y = process id
mf // MUST fence here!
ld8 r3 = [x] ;;
cmp.eq p1, p0 = r1, r3 ;; // if (x == id) then...

(p1) br.cond.sptk cs_begin // ... enter critical section

st8 [ptr_b_id] = r0 // b[id] = “false”
ld8 r3 = [ptr_b_1] // r3 = &b[1]
mov ar.lc = N-1 ;; // lc = number of processors - 1

wait_b:
ld8 r2 = [r3] ;;
cmp.ne p1, p0 = r1, r2 // if (b[j] != 0) then...

(p1) br.cond.spnt wait_b ;; // ... wait until b[j] == 0
add r3 = 8, r3 // r3 = &b[j+1]
br.cloop.sptk wait_b ;; // loop over b[j] for each j

ld8 r2 = [y] ;;
cmp.ne p1, p0 = r2, r1 ;; // if (y != id) then...

(p1) br.cond.sptk cs_begin // ... enter critical section
wait_y:

ld8 r2 = [y] ;; // wait until y == 0
cmp.ne p1, p2 = 0, r2

(p1) br.cond.spnt wait_y
br start // back to start to try again

cs_begin:
// critical section code goes here...

cs_end:

st8 [y] = r0 // release the lock
st8.rel [ptr_b_id] = r0;; // b[id] = “false”

2:532 Volume 2, Part 2: MP Coherence and Synchronization

• Programmed I/O for paging of code pages.

• DMA for paging of code pages.

The next four sections discuss these techniques in greater depth.

To illustrate the code sequences for self- and cross-modifying code, the examples in
this section use the syntax “st [foo] = new” to represent a group of aligned stores that
change the instruction at address foo to the instruction “new”. The Itanium architecture
requires that the instruction stream see aligned stores atomically. In addition, the
syntax “fc.i foo” represents a group of flush cache instructions that ensures the cache
line addressed by foo is coherent with all the instruction caches. Updating more than
one instruction simply requires the appropriate store/flush “pair” for each updated
instruction1.

2.5.1 Self-modifying Code

Figure 2-8 presents the Itanium instruction sequence necessary to update a code
image location on the local processor only.

This code fragment changes the instruction at the address code to the new instruction
new_inst. After executing this code, the change is visible to both the local processor’s
caches and its pipeline.

The st instruction updates the code image and the fc.i instruction ensures the value
stored is coherent with the instruction cache. The fc.i is necessary because the
Itanium architecture does not require instruction caches to be coherent with data stores
for Itanium architecture-based code. Next, the sync.i ensures that the code update is
visible to the instruction stream of the local processor and orders the cache flush with
respect to subsequent operations by waiting for the prior fc.i instructions to be made
visible. Finally, the srlz.i instruction forces the pipeline to re-initiate any instruction
group fetches it performed after the srlz.i and also waits for the sync.i to complete;
effectively making the pipeline coherent with the updated code image.

The serialization instruction is not necessary if software can guarantee that the
processor encounters an event that re-initiates code fetches performed after the
sync.i, such as an interruption or an rfi, before executing the new code. Events such
as an interrupt or rfi both perform an instruction serialization which in this example
waits for the sync.i to complete and then re-initiates code fetches.

1. This description hides some of the complexity involved. Specifically, the flush and store operations
have different sizes. Whereas multiple store instructions are necessary to update a 16 byte instruc-
tion, a single cache line flush invalidates at least two 16 byte instructions.

Figure 2-8. Updating a Code Image on the Local Processor

patch_local:
st [code] = new_inst // write new instruction
fc.i code ;; // flush new instruction
sync.i ;; // sync i stream with store
srlz.i ;; // serialize

// Local caches and pipeline are now coherent with new_inst...

Volume 2, Part 2: MP Coherence and Synchronization 2:533

2.5.2 Cross-modifying Code

Consider a multi-threaded program for a multiprocessor system that dynamically
updates some procedure that any processor in the system may execute. The program
maintains several disjoint buffers to hold the new code and requires a processor to
execute an IP-relative branch instruction at some address x to reach the code. In this
scenario, the program updates the procedure by emitting the new code into a different
buffer and then patching the branch at address x to target this new buffer. By carefully
writing the update code, software can ensure that any processor in the system sees
either:

• The original branch at address x that targets the original code in the old buffer
along with the original code, or

• The new branch at address x that targets the new code in the new buffer along with
the new code.

The code in Figure 2-9 illustrates an optimized Itanium architecture-based code
sequence that implements the cross-modifying code for this example.

To reach the new code at new_code, the processor executes the branch instruction at x.
Initially, this branch jumps to an address other than new_code.

Note: The programmer needs to ensure that the branch to new_code is updated atom-
ically. If an 8-byte store is used to update the branch, then the programmer
needs to ensure that the branch to new_code is either in the first or last slot of
the bundle.

The release store ensures a processor cannot see the new branch at address x and the
original code at address new_code. That is, if a processor encounters “branch
<new_code>” at address x, then the processor’s instruction cache must be coherent
with the code image updates applied before the release store that updates the branch.

If remote processors may see either the old or new code sequence, the final three
instructions in Figure 2-9 are not necessary. In this case, the remote processors see the
code image updates at some point in the future. In the meantime, they continue to
execute the old code.

Figure 2-9. Supporting Cross-modifying Code without Explicit Serialization

patch:
st [new_code] = new_inst // write new instruction
fc.i new_code ;; // flush new instruction
sync.i ;; // sync i stream with store

// Update the target of the branch that jumps to the updated code.
// This branch MUST be ip-relative. Before executing the following
// store, the branch jumps to somewhere other than “new_code”.
//

st.rel [x] = “branch <new_code>”

// If it is desired to propagate “branch <new_code>” to both
// the local processor and remote processor now, the following
// code is also necessary:
//

fc.i x ;; // flush branch
sync.i ;; // sync i stream with store
mf ;; // fence

2:534 Volume 2, Part 2: MP Coherence and Synchronization

The release store ensures that the code image updates are made visible to the remote
processors in the proper order (i.e. new_code is updated before the branch at address x
is updated). Using the final three instructions ensures that the remote processors will
see the new code the next time they execute the branch at address x.

On the local processor, the branch at address x also serves to force the pipeline to be
coherent with the code image update the machine without requiring an interrupt, rfi
instruction, or srlz.i instruction. Table 2-16 enumerates the potential pipeline
behaviors to illustrate this point.

In the first and fourth scenarios, the pipeline fetches and executes either the old branch
and old target instruction or the new branch and new target instruction. Note that if the
pipeline sees the new branch, it must also see the new target instruction by virtue of
the way the code in Figure 2-9 is written. Either of these behaviors is consistent.

In the second and third scenarios, the pipeline obtains a mix of the old or new branch
and the old or new target instruction. In these cases, the pipeline must flush because
the predicted target will not agree with the branch instruction.

This behavior is not guaranteed unless the branch at address x is IP-relative and taken.
The branch must be IP-relative to ensure that both the instruction and target address
can be atomically updated (this is only possible with an IP-relative branch because in
this type of branch, the target address is part of the instruction).

2.5.3 Programmed I/O

Programmed I/O requires that the CPU copy data from the device controller to main
memory using load instructions to read from the device and store instructions to write
data into cacheable memory (page-in).

To ensure correct operation, Itanium architecture-based software must exercise care in
the presence of Programmed I/O due to two features of the architecture. First, the
Itanium architecture does not require an implementation to maintain coherency
between local instruction and data caches for Itanium architecture-based code. Second,
the Itanium architecture allows aggressive instruction prefetching. Specifically, an
implementation can move any location from a cacheable page into its instruction
cache(s) any time a translation for the location indicates that the page is present (i.e.
the p bit of the translation is set).

A system that performs Programmed I/O can use a sequence similar to that shown in
Figure 2-8 to perform the data movement. Figure 2-10 presents a code sequence that
updates a code image on both the local and remote processors.

Table 2-16. Potential Pipeline Behaviors of the Branch at x from Figure 2-9

Pipeline Operation Scenario #1 Scenario #2 Scenario #3 Scenario #4

Fetch branch at x Old branch Old branch New branch New branch

Predict branch at x Old target New target Old target New target

Code at target Old instruction “New” instruction
(but could be stale)

Old instruction New instruction

Retire branch at x Old retires Must flush due to
misprediction

Must flush due
to misprediction

New retires

Volume 2, Part 2: MP Coherence and Synchronization 2:535

This code fragment changes the instruction at the address code to the new instruction
new_inst. After executing this code, the change is visible to the local and remote
processor’s caches and to the local processor’s pipeline, but may not be visible to
remote processor’s pipelines.

The sequence in Figure 2-10 is similar to the code from Figure 2-8 except an mf
instruction occurs between the sync.i and srlz.i instructions. The fence is necessary
if software must ensure that the code image update is made visible to all remote
processors before any subsequent memory operations from the local processor.
Although the sync.i, which orders the st/fc.i pair, has unordered semantics, it is an
orderable operation and thus obeys the release or fence semantics of subsequent
instructions (unlike an fc.i instruction; see Section 4.4.7, “Sequentiality Attribute and
Ordering” for more information).

Because the pipeline is not snooped, the code in Figure 2-10 cannot ensure that a
remote processor’s pipeline is coherent with the code image update. In the local case
shown in Figure 2-8, the srlz.i instruction enforces this coherency. As a result, the
remote processor must serialize its instruction stream before it executes the updated
code in order to ensure that a stale copy of some of the updated code is not present in
the pipeline. This can be accomplished by explicitly executing a srlz.i before
executing the updated code or by forcing an event that re-initiates any code fetches
performed after the fc.i is observed to occur, such as an interruption or rfi.

Several optimizations to this code are possible depending on how software uses the
updated code. Specifically, the mf and srlz.i can be eliminated under certain
circumstances.

The srlz.i is not necessary if the local processor that updates the code image does not
ever execute the new code. In this case, the local processor does not require its
pipeline to be coherent with the changes to the code image. The fence is not necessary
if the code image update can be made visible to remote processors in any relationship
with subsequent memory operations from the local processor.

Figure 2-10. Updating a Code Image on a Remote Processor

patch_l_and_r:
st [code] = new_inst // write new instruction
fc.i code ;; // flush new instruction
sync.i ;; // sync i stream with store

// If the local processor must ensure that remote processors see
// the preceding memory updates before any subsequent memory
// operations, the following code is also necessary.
//

mf ;; // make store visible to others

// If the local processor is going to execute the code and cannot
// cannot ensure instruction stream serialization, the following
// code is also necessary,
//

srlz.i ;; // serialize my pipeline

// Local caches and pipeline are now coherent with new_inst, remote
// caches are now coherent with new_inst...

2:536 Volume 2, Part 2: MP Coherence and Synchronization

Finally, software may also eliminate the mf or srlz.i instructions if it guarantees that
these operations will take place elsewhere (e.g. in the operating system) before the
processor attempts to execute the updated code. For example, context switch routines
must contain a memory fence (see Section 2.3 on page page 2:526). Thus, the fence is
not required if a context switch always occurs before any program can use the updated
code.

2.5.4 DMA

Unlike Programmed I/O, which requires intervention from the CPU to move data from
the device to main memory, data movement in DMA occurs without help from the CPU.
A processor based on the Itanium architecture expects the platform to maintain
coherency for DMA traffic. That is, the platform issues snoop cycles on the bus to
invalidate cacheable pages that a DMA access modifies. These snoop cycles invalidate
the appropriate lines in both instruction and data caches and thus maintain coherency.
This behavior allows an operating system to page code pages without taking explicit
actions to ensure coherency.

Software must maintain coherency for DMA traffic through explicit action if the platform
does not maintain coherency for this traffic. Software can provide coherency by using
the flush cache instruction, fc, to invalidate the instruction and data cache lines that a
DMA transfer modifies. Code such as that shown in Figure 2-8 on page 2:532 and
Figure 2-10 on page 2:535 accomplish this task.

2.6 References

[AG95] S. V. Adve and K. Gharachorloo. “Shared memory consistency models: A
Tutorial,” Rice University ECE Technical Report 9512, September 1995.

[L79] L. Lamport. “How to make a multiprocessor computer that correctly executes
multiprocess programs,” IEEE Transactions on Computers, C-28(9):690-691,
September 1979.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, second edition, Morgan-Kaufmann, 1996.

[D65] E. W. Dijkstra. “Cooperating sequential processes,” Eindhoven, the Netherlands,
Technological University Technical Report EWD-123, 1965.

[L85] L. Lamport. “A Fast Mutual Exclusion Algorithm,” Compaq Systems Research
Center Technical Report 7, November 1985.

§

Volume 2, Part 2: Interruptions and Serialization 2:537

Interruptions and Serialization 3

This chapter discusses the interruption and serialization model. Although the Itanium
architecture is an explicitly parallel architecture, faults and traps are delivered in
program order based on IP, and from left-to-right in each instruction group. In other
words, faults and traps are reported precisely on the instruction that caused them.

3.1 Terminology

In the Itanium architecture, an interruption is an event which causes the hardware
automatically to stop execution of the current instruction stream, and start execution at
the instruction address corresponding to the interruption handler for that
interruption. When this happens, we say that an interruption has been delivered to the
processor core.

There are two classes of interruptions in the Itanium architecture. IVA-based
interruptions are handled by the operating system (OS), at an address determined by
the location of the interrupt vector table (IVT) and the particular interruption that has
occurred. PAL-based interruptions are handled by the processor firmware.
PAL-based interruptions are not visible to the OS, though PAL may notify the OS that a
PAL-based interruption has occurred; see Section 13.3, “Event Handling in Firmware”
on page 2:632.

The architecture supports several different types of interruptions. These are defined
below:

• A fault occurs when OS intervention is required before the current instruction can
be executed. For example, if the current instruction misses the TLBs on a data
reference, a Data TLB Miss fault may be delivered by the processor. Faults are
delivered precisely on the instruction that caused the fault. The faulting instruction
and all subsequent instructions do not update any architectural state (with the
possible exception of subsequent instructions which violate a resource
dependency1). All instructions executed prior to the faulting instruction update all
their architectural state before the fault handler begins execution.

• A trap occurs when OS intervention is required after the current instruction has
completed. For example, if the last instruction executed was a branch and PSR.tb is
1, a Taken Branch trap will be delivered after the instruction completes. Traps are
delivered precisely on the instruction following the trapping instruction. The
trapping instruction and all prior instructions update all their architectural state
before the trap handler begins execution. All instructions subsequent to the
trapping instruction do not update any architectural state.1

1. When an interruption is delivered on an instruction whose instruction group contains one or more
illegal dependency violations, instructions which follow the interrupted instruction in program order
and which violate the resource dependency may appear to complete before the interruption handler
begins execution. Software cannot rely upon the value(s) written to the resource(s) whose depen-
dencies have been violated; the value(s) are undefined. For details refer to Section 3.4, “Instruction
Sequencing Considerations” on page 1:39.

2:538 Volume 2, Part 2: Interruptions and Serialization

• When an external or independent agent (I/O device, timer, another processor)
requires attention from the processor, an interrupt occurs. There are several types
of interrupts. An initialization interrupt occurs when the processor has received an
initialization request. A Platform Management Interrupt (PMI) can be generated
by the platform to request features such as power management. Initialization
interrupts and PMIs are PAL-based interruptions. An external interrupt occurs
when an agent in the system requires the OS to perform some service on its behalf.
External interrupts are IVA-based interruptions. Interrupts are delivered
asynchronously with respect to program execution. The instruction upon which an
interrupt is delivered may or may not be related to the interrupt itself.

• An abort is generated by the processor when a malfunction (Machine Check) is
detected, or when a processor reset occurs. Aborts are asynchronous with respect
to program execution. If caused by a particular instruction, an abort may be
delivered sometime after that instruction completes. Aborts are PAL-based
interruptions.

An interruption handler returns from interruption when it executes an rfi instruction.
The rfi instruction copies state from specific control registers known as interruption
registers into their corresponding architectural state (e.g. IIP is copied into IP and
execution begins at that instruction address). Whether or not the state that is restored
by the rfi is the same state that was captured when the interruption occurred is up to
the operating system.

3.2 Interruption Vector Table

The Interruption Vector Address (IVA) control register defines the base address of the
interruption vector table (IVT). Each IVA-based interruption has its own architected
offset into this table as defined in Section 5.7, “IVA-based Interruption Vectors” on
page 2:113. For the remainder of this section, “interruption” refers to an IVA-based
interruption, unless otherwise noted.

When an interruption occurs, the processor stops execution at the current IP, sets the
current privilege level to 0, and begins fetching instructions from the address of the
entry point to the interruption handler for the particular interruption that occurred. The
address of this entry point is defined by the base address of the IVT contained in the
IVA register and the architected offset into the table according to the interruption that
occurred.

The IVT is 32Kbytes long and contains the code for the interruption handlers. Execution
of the interruption handler begins at the entry point. The interruption handler may be
contained entirely in the IVT, or the handler may branch to code outside the IVT if more
space is needed.

When an interruption occurs, if the processor is operating with instruction address
translation enabled (PSR.it is 1), then the address in IVA is treated as a virtual address;
otherwise, it is treated as a physical address. Whenever an interruption may occur (i.e.
whenever external interrupts are not masked or disabled, or whenever an instruction
may raise a fault or trap), the software must ensure that the processor can safely
reference the IVT. As a result, the IVT must be permanently resident in physical
memory. If instruction address translation is enabled, the IVT must be mapped by an
instruction translation register and must point at a valid physical page frame. When

Volume 2, Part 2: Interruptions and Serialization 2:539

instruction address translation is disabled, the IVA register should contain the physical
address of the base of the IVT. Software must further ensure that instruction and
memory references from low-level interruption handlers do not generate additional
interruptions until enough state has been saved and interruption collection can be
re-enabled.

There are many more interruptions than there are interruption vectors in the IVT. As
specified in Section 5.6, “Interruption Priorities” there is a many-to-one relationship
between interruptions and interruption vectors. The interruptions that share a common
interruption vector (and hence, the code for an interruption handler) can determine
which interruption occurred by reading the Interruption Status Register (ISR) control
register. See Chapter 8, “Interruption Vector Descriptions” and Chapter 9, “IA-32
Interruption Vector Descriptions” for details of the specific ISR settings for each unique
interruption.

3.3 Interruption Handlers

3.3.1 Execution Environment

As defined in Section 5.5, “IVA-based Interruption Handling” on page 2:101, the
processor automatically clears the PSR.i and PSR.ic bits when an interruption is
delivered. This disables external interrupts and interrupt state collection, respectively.
PMI delivery is also disabled while PSR.ic is 0; other PAL-based interruptions can be
delivered at any point during the execution of the interruption handler, regardless of the
state of PSR.i and PSR.ic.

In addition to clearing the PSR.i and PSR.ic bits, the processor also automatically clears
the PSR.bn bit when an interruption is delivered, switching to bank 0 of general
registers GR16 - GR31. This provides the interruption handler with its own set of
registers which can be used without spilling any of the interrupted context’s register
state, effectively saving GR16 - GR31 of the interrupted context. (This assumes PSR.bn
is 1 at the time of interruption; see Section 3.4.3, “Nested Interruptions” on
page 2:546 for how to deal with the case where PSR.bn is 0 at the time of interruption.)

As specified in Section 3.3.7, “Banked General Registers” on page 2:42, GR24 - GR31
of bank 0 should not be used while PSR.ic is 1. By firmware convention, PAL-based
interruption handlers may use these registers without preserving their values when
PSR.ic is 1. When PSR.ic is 0, software may safely use GR24 - GR31 of bank 0 as
scratch register.

Several other PSR bits and the RSE.CFLE are modified by the hardware when an
interruption is delivered. Table 3-1 summarizes the execution environment that
interruption handlers operate in, and what each PSR bit and the RSE.CFLE values mean
for the interruption handler.

2:540 Volume 2, Part 2: Interruptions and Serialization

3.3.2 Interruption Register State

The Itanium architecture provides a set of hardware registers which, if interruption
collection is enabled, capture relevant interruption state when an interruption occurs.
The state of the PSR.ic bit at the time of an interruption controls whether collection is
enabled. In this section, it is assumed that interruption collection is enabled (PSR.ic is
1); see Section 3.4.3, “Nested Interruptions” on page 2:546 for details on handling
interruptions when collection is disabled (PSR.ic is 0). For details on collection of
interruption resources for each interruption vector refer to Chapter 8, “Interruption
Vector Descriptions” and Chapter 9, “IA-32 Interruption Vector Descriptions.”

Table 3-1. Interruption Handler Execution Environment (PSR and RSE.CFLE
Settings)

PSR Bit New Value Effect on Low-level Interruption Handler

be DCR.be Byte order used by handler is determined by be-bit in DCR register.

ic & i 0 Disables interruption collection and external interrupts. Bank 0 is
made active bank. This is discussed above

bn 0

dt, rt, it, pk unchanged Instruction/Data/RSE address translation and protection key setting
remain unchanged.

dfl & dfh 0 Floating-point registers are made accessible. This allows handlers
to spill FP registers without having to toggle FP disable bits first.
Modified bits indicate which registers were touched. See
Section 4.2.2, “Preservation of Floating-point State in the OS” on
page 2:553 for details.

mfl, mfh unchanged

pp DCR.pp Privileged Monitoring is determined by pp-bit in DCR register. By
default, user counters are enabled and performance monitors are
unsecured in handlers. See Chapter 12, “Performance Monitoring
Support” for details.

up unchanged

sp 0

di 0 Instruction set transitions are not intercepted.

si 0 Interval timer is unsecured.

ac 0 No alignment checks are performed.

db, lp, tb, ss 0 Debug breakpoints, lower-privilege interception, taken branch and
single step trapping are disabled.

cpl 0 Current privilege level becomes most privileged.

is 0 Intel Itanium Instruction set. Handlers execute Intel Itanium
instructions.

id, da, ia, dd, ed 0 Instruction/data debug, access bit and speculation deferral bits are
disabled. For details, refer to Section 5.5.4, “Single Instruction Fault
Suppression” on page 2:104 and Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:105.

ri 0 Interrupt handler starts at first instruction is bundle.

mc unchanged Software can mask delivery of some machine check conditions by
setting PSR.mc to 1, but the processor hardware does not set this
bit upon delivery of an IVA-based interruption. Delivery of resets
and BINITs cannot be masked.

RSE.CFLE
(not a PSR bit)

0 Allows interruption handler to service faults in presence of an
incomplete current register stack frame. This can happen when a
mandatory RSE load takes an exception during when RSE is
servicing a register stack underflow. For details refer to Section 6.6,
“RSE Interruptions” on page 2:144.

Volume 2, Part 2: Interruptions and Serialization 2:541

A processor based on the Itanium architecture provides the following interruption
registers for collecting information about the latest interruption or the state of the
machine at the time of the interruption:

• IPSR – A copy of the processor status register (PSR) at the moment the
interruption occurred. The OS can use the IPSR to determine the value of any PSR
bit when the interruption occurred. The contents of IPSR are restored into the PSR
when the OS executes an rfi instruction. If the OS wishes to change the PSR state
of the interrupted process (e.g. to step over an instruction debug fault), it can do so
by modifying the IPSR contents before executing the rfi. When an interruption
occurs, the processor sets IPSR.ri to the slot number (0, 1, or 2) of the instruction
that was interrupted.

• IIP – A copy of the instruction pointer (IP) where the interruption occurred. The
instruction bundle address contained in IIP, along with the IPSR.ri field, defines the
instruction whose execution was interrupted. This instruction has not completed
(i.e. it has not retired), so when the OS returns to the interrupted context, typically
this is the instruction at which execution of the interrupted context resumes1. When
the OS executes an rfi instruction, the contents of IIP are copied into the IP
register and the processor begins fetching instructions from this address.

• ISR – Contains extra information about the specific interruption that occurred. This
register is useful for determining exactly which interruption occurred for
interruptions which share the same IVT vector.

• IFA – Faults related to addressing (e.g. Data TLB fault) materialize the faulting
address in this register.

• ITIR – Faults related to addressing materialize the default page size and permission
key for the region to which the faulting address belongs in this register.

• IIPA – Contains the instruction bundle address of the last instruction to retire
successfully while PSR.ic was 1. In conjunction with ISR.ei, IIPA can be used by
software to locate the instruction that caused a trap or that was executed
successfully prior to a fault or interrupt.

• IIM – Instructions that take a Speculation fault (e.g. chk) or a Break Instruction
fault (e.g. break.i) write this register with their immediate field when taking these
faults. For these cases, the IIM register can be used to emulate the instruction, or
to pass information to the fault handler; for example, software can use a particular
immediate field value in a break instruction to indicate to the operating system that
a system call is being performed.

• IHA – Faults related to the VHPT place the VHPT hash address in this register. See
Section 5.3, “Virtual Hash Page Table” on page 2:571 for details.

• IFS – This register can be used by software to save a copy of the interrupted
context’s PFS register, but an interruption handler must do this explicitly; hardware
only clears the valid bit (IFS.v) upon interruption. See below for details.

• IIB0, IIB1 – Contain the 16-byte instruction bundle related to the interruption. Note
that the IIB registers do not provide bundle information for all interruptions and are
not supported on all processor implementations; please refer to Chapter 8,

1. When an instruction faults because it requires emulation by the OS, the OS will normally skip the
emulated instruction by returning to the instruction bundle address and slot number that follows IIP
in program order. It does so by writing the next in-order bundle address and slot number into IIP and
IPSR.ri, respectively, before executing an rfi instruction. Details on emulation handlers is in
Chapter 7, “Instruction Emulation and Other Fault Handlers.”

2:542 Volume 2, Part 2: Interruptions and Serialization

“Interruption Vector Descriptions” for details. Software can use the instruction
bundle information for debug and emulation purposes.

No other architectural state is modified when an interruption occurs. Note that only IIP,
IPSR, ISR, and IFS are written by all interruptions (assuming PSR.ic is 1 at the time of
interruption); the other interruption control registers are only written by certain
interruptions, and their values are undefined otherwise. For details on which faults
update which interruption resources refer to Chapter 8, “Interruption Vector
Descriptions” and Chapter 9, “IA-32 Interruption Vector Descriptions.”

3.3.3 Resource Serialization of Interrupted State

As defined in Section 3.2, “Serialization” on page 2:17, Itanium control register
updates do not take effect until software explicitly serializes the processor’s data or
instruction stream with a srlz.d or a srlz.i instruction, respectively. Control register
updates that change a control register’s value and that have not yet been serialized are
termed “in-flight.” Refer to Section 3.2.3, “Definition of In-flight Resources” on
page 2:19 for a precise definition.

When an interruption is delivered and before execution begins in the interruption
handler, the processor hardware automatically performs an instruction and data
serialization on all "in-flight" resources. As described in Section 3.3.1 and Section 3.3.2
above, the following resources determine the execution environment of the interruption
handler:

• CR[IVA] – determines new IP

• CR[DCR].be – determines new value of PSR.be

• CR[DCR].pp – determines new value of PSR.pp

• PSR.ic – determines whether interruption collection is enabled

• RR[7:0] – determines new value of CR[ITIR] and CR[IHA]

• CR[PTA] – determines new value of CR[IHA]

Although these resources are guaranteed to be serialized prior to interruption handler
execution, there is no guarantee that they will be serialized prior to the determination
of the handler's execution environment. If there is a value in-flight for any of these
resources at the time of interruption delivery, either the old or new value may be used
to generate the values of IP, PSR, CR[ITIR] and CR[IHA] seen by the handler.

As a result, if the handler requires the latest value of the listed resources to determine
its execution environment, software must ensure that external interrupts are disabled
and that no instruction or data references will take an exception until the resource
updates have been appropriately serialized. Typically, the code toggling these resources
is mapped by an instruction translation register to avoid TLB related faults.

Note that CR[IPSR] is guaranteed to get the latest value of the PSR on an interruption,
even if there are PSR updates in-flight that have not been previously serialized by
software.

Volume 2, Part 2: Interruptions and Serialization 2:543

For example, assume that GR2 contains the new value for IVA and that PSR.i is 1. To
modify the IVA register, software would perform the following code sequence, where
the code page is mapped by an instruction translation register or instruction translation
is disabled:

rsm psr.i // external interrupts disabled upon next instruction
mov cr[iva] = r2
;;
srlz.i // writing IVA requires instruction serialization
;;
ssm psr.i // external interrupts will be re-enabled after next srlz

3.3.4 Resource Serialization upon rfi

An rfi instruction also performs an instruction and a data serialization operation when
it is executed. Any values that were written to processor register resources by
instructions in an earlier instruction group than the rfi will be observed by the
returned-to instruction, except for those register resources which are also written by
the rfi itself, in which case the value written by the rfi will be observed. This makes
the interruption handler more efficient by avoiding additional data and instruction
serialization operations before returning to the interrupted context.

3.4 Interruption Handling

The Itanium architecture-based operating systems need to distinguish the following
interruption handler types:

• Lightweight interruptions: Lightweight interruption handlers are allocated 1024
bytes (192 instructions) per handler in the IVT. These are discussed in
Section 3.4.1.

• Heavyweight interruptions: Heavyweight interruption handlers are allocated only
256 bytes (48 instructions) per handler in the IVT. These are discussed in
Section 3.4.2.

• Nested interruptions: If an interruption is taken when PSR.ic was 0 or was in-flight,
a nested interruption occurs. Nested interruptions are discussed in Section 3.4.3.

3.4.1 Lightweight Interruptions

Lightweight interruption handlers are allocated 1024 bytes (192 instructions) per
handler in the IVT. Typically, lightweight handlers are written in Itanium
architecture-based assembly code, and run in their entirety with interruption collection
turned off (PSR.ic = 0) and external interrupts disabled (PSR.i = 0). Because these
lightweight handlers are usually very short and performance-critical, they are intended
to fit entirely in the space allocated to them in the IVT. An example of a lightweight
interruption handler is the Data TLB vector (offset 0x0800). The first 20 vectors in the
IVT, offsets 0x0000 (VHPT Translation vector) through 0x4c00 (reserved), are
lightweight vectors. Typical lightweight handlers deal with instruction, data or VHPT TLB
Misses, protection key miss handling, and page table dirty or access bit updates.

2:544 Volume 2, Part 2: Interruptions and Serialization

A typical lightweight interruption handler can operate completely out of register bank 0.
If the bank 0 registers provide sufficient storage for the handler, none of the interrupted
context’s register state need be saved to memory, and the handler does not need to
use stacked registers. Assuming no stacked registers are needed, the lightweight
interruption handler can operate with an incomplete current register stack frame,
obviating the need for cover and alloc instructions in the handler. This also allows the
TLB related handlers to service TLB misses that result from mandatory RSE loads to the
current frame.

3.4.2 Heavyweight Interruptions

Heavyweight interruption handlers are allocated only 256 bytes (48 instructions) per
handler in the IVT. This stub provides enough space to save minimal processor state,
re-enable interruption collection and external interrupts, and branch to another routine
to handle the interruption. Unlike a lightweight interruption handlers described above,
heavyweight interruption handlers use general register bank 0 only until they can
establish a safe memory context for spilling the interrupted context’s state. This allows
heavyweight handlers to be interruptible and to take exceptions.

A heavyweight handler stub (i.e. the portion of the handler that is located in the IVT)
should determine exactly which type of interruption has occurred based on its offset in
the IVT and the contents of the ISR control register. It can then branch out of the IVT to
the actual interruption handler. For some heavyweight interruptions (e.g. Data Debug
fault), these handlers are typically written in a high-level programming language; for
others (e.g. emulation handlers) the interruption can be handled efficiently in Itanium
architecture-based assembly code.

The sequence given below illustrates the steps that an Itanium architecture-based
heavyweight handler needs to perform to save the interrupted context’s state to
memory and to create an interruptible execution environment. These steps assume
that the low-level kernel code, the kernel backing store, and the kernel memory stack
are pinned in the TLB (using a translation register), so that no TLB misses arise from
referencing those memory pages. The ordering of the steps below is approximate and
other operating system strategies are possible.

1. Copy the interruption resources (IIP, IPSR, IIPA, ISR, IFA, IIB0-1) into bank 0 of
the banked registers. To avoid conflicts with processor firmware, use registers
GR24-31 for this purpose. Both register bank 0 and the interruption control
registers are accessible, since, as described in Section 3.3.1, the processor
hardware, upon an interruption always switches to register bank 0, and clears
PSR.ic and PSR.i.

2. Preserve the interrupted the predicate registers into bank 0 of the banked
registers.

3. Determine whether interruption occurred in the operating system kernel or in
user space by inspecting both IPSR.cpl and the memory stack pointer (GR12).

a. If IPSR.cpl is zero and the interrupted context was already executing on a
kernel stack, then no memory stack switch is required.

b. Otherwise, software needs to switch to a kernel memory stack by preserving
the interrupted memory stack pointer to a banked register in bank 0, and
setting up a new kernel memory stack pointer in GR12.

Volume 2, Part 2: Interruptions and Serialization 2:545

4. Allocate a “trap frame” to store the interrupted context’s state on the kernel
memory stack, and move the interruption state (IIP, IPSR, IIPA, ISR, IFA, IFS,
IIB0-1), the interrupted memory stack pointer and the interrupted predicate
registers from the banked registers to the trap frame.

5. Save register stack and RSE state by following the steps outlined in
Section 6.11.1, “Switch from Interrupted Context” on page 2:148.

a. If IPSR.cpl is zero and the interrupted context was not executing on a kernel
backing store (determined by inspecting BSPSTORE), then the new kernel
BSPSTORE needs to be allocated such that enough space is provided for the
RSE to spill all stacked registers. The architectural required maximum RSE
spill area is 16KBytes. As a result, BSPSTORE should be offset from the base
of the kernel backing store base by at least 16KBytes. This offset can be
reduced if the kernel queries PAL for the actual implementation-specific
number of stacked physical registers (RSE.N_STACK_PHYS). Based on
RSE.N_STACK_PHYS, the required minimum offset in bytes is:

8 * (RSE.N_STACK_PHYS + 1 + truncate((RSE.N_STACK_PHYS + 62)/63))

Otherwise, the interrupted context was already executing on the kernel backing
store. In this case, no new BSPSTORE pointer needs to be setup. The sequence in
Section 6.11.1, “Switch from Interrupted Context” on page 2:148, is still
required, however, step 6 in that sequence can be omitted.

In either case, the interrupted register stack and RSE state (RSC, PFS, IFS,
BSPSTORE, RNAT, and BSP) needs to be preserved, and should be saved either to
the trap frame on the kernel memory stack, or to a newly allocated register stack
frame.

6. Switch banked register to bank one and re-enable interruption collection as
follows:

ssm 0x2000 // Set PSR.ic
bsw.1;; // Switch to register bank 1
srlz.d // Serialize PSR.ic update

With interruptions collection re-enabled, the kernel may now branch to paged
code and may reference paged data structures.

7. Preserve branch register and application register state according to operating
system conventions.

8. Preserve general and floating-point register state. If this is an involuntary
interruption, e.g. an external interrupt or an exception, then software must save
the interrupted context’s volatile general register state (scratch registers) to the
“trap frame” on the kernel memory stack, or to the newly allocated register stack
frame. If this is a voluntary system call then there is no volatile register state.
Preserved registers may or may not be spilled depending on operating system
conventions. Additionally, the Itanium architecture provides mechanisms to
reduce the amount of floating-point register spills and fills. More details on
preservation of register context are given in Section 4.2, “Preserving Register
State in the OS” on page 2:551.

9. At this point enough context has been saved to allow complete restoration of the
interrupted context. Re-enable taking of external interrupts using the ssm
instruction as follows:

2:546 Volume 2, Part 2: Interruptions and Serialization

ssm 0x4000 ;; // Set PSR.i

There is no need to explicitly serialize the PSR.i update, unless there is a
requirement to force sampling of external interrupts right away. Without the
serialization, the PSR.i update will occur at the very latest when the next
exception causes an implicit instruction serialization to occur.

10. Dispatch interruption service routine (can be high-level programming language
routine).

11. Return from interruption service routine.

12. Disable external interrupts as follows:

rsm 0x4000 ;; // Clear PSR.i

There is no need to explicitly serialize the PSR.i update, since clearing of the PSR.i
bit with the rsm instruction takes effect at the next instruction group. For details
refer to the rsm instruction page in Chapter 2, “Instruction Reference” in Volume
3.

13. Restore general and floating-point register state saved in step 8 above.

14. Restore branch register and application register state saved in step 7 above.

15. Disable collection of interruption resources and switch banked register to bank
zero as follows:

rsm 0x2000 // Clear PSR.ic
bsw.0;; // Switch to register bank 0
srlz.d // Serialize PSR update

16. Restore register stack and RSE state by following the steps outlined in
Section 6.11.2, “Return to Interrupted Context” on page 2:148.

17. Restore interrupted context’s interruption state (e.g., IIP, IPSR, IFS) from the
“trap frame” on the kernel memory stack.

18. Restore interrupted context’s memory stack pointer and predicate registers from
the trap frame on the kernel memory stack. This step essentially deallocates the
trap frame from the kernel memory stack.

19. Return from interruption using the rfi instruction.

Many of the steps shown above are identical for different heavyweight interruptions, so
unless there is a specific need to create a different handler for a particular interruption,
a common handler can be used. Because external interrupt handlers use the Itanium
external interrupt control registers to determine the specific external interrupt vector
that needs servicing and to mask off other external interrupt vectors, an external
interrupt handler looks somewhat different. Refer to Section 10.4, “External Interrupt
Delivery” on page 2:606 for details on writing external interrupt handlers.

3.4.3 Nested Interruptions

The Itanium architecture provides a single set of interruption registers whose updates
are controlled by PSR.ic. When an IVA-based interruption is delivered and PSR.ic is 0 or
in-flight (e.g. during a lightweight interruption handler, or at the beginning of a

Volume 2, Part 2: Interruptions and Serialization 2:547

heavyweight interruption handler), we say that a nested interruption has occurred. On
a nested interruption (other than a Data Nested TLB fault) only ISR is updated by the
hardware. All other interruption registers preserve their pre-interruption contents.

With the exception of the Data Nested TLB fault, the Itanium architecture does not
support nested interruptions. Data Nested TLB faults are special and are discussed in
Section 5.4.4, “Data Nested TLB Vector” on page 2:576. The remainder of this section
does not apply to Data Nested TLB faults.

When a nested interruption occurs, the processor will update ISR as defined in
Chapter 8, “Interruption Vector Descriptions” and it will set the ISR.ni bit to 1. A value
of 1 in ISR.ni is the only indication to an interruption handler that a nested interruption
has occurred. Since all other interruption registers are not updated, there is generally
no way for the OS to recover from nested interruptions; the handler for the nested
interruption has no context other than ISR for handling the nested interruption. If a
nested interruption is detected, it is often useful for the handler to call some function in
the OS that logs the state of ISR, IIP, and any other relevant register state to aid in
debugging the problem.

§

2:548 Volume 2, Part 2: Interruptions and Serialization

Volume 2, Part 2: Context Management 2:549

Context Management 4

This chapter discusses specific context management considerations in the Itanium
architecture. With 128 general registers and 128 floating-point registers, the
architecture provides a comparatively large amount of state. This chapter discusses
various context management and state preservation rules. This chapter introduces
some architectural features that help an operating system limit the amount of register
spill/fill and gives recommendations to system programmers as to how to use some of
the instruction set features.

4.1 Preserving Register State across Procedure Calls

The Itanium Software and Runtime Architecture Conventions [SWC] define a contract
on register preservation between procedures as follows:

• Scratch Registers (Caller Saves): GR2-3, GR8-11, GR14-GR15, and GR16-31 in
register bank 1, FR6-15, and FR32-127. Code that expects scratch registers to hold
their value across procedure calls is required to save and restore them.

• Preserved Registers (Callee Saves): GR4-7, FR2-5, and FR16-31. Procedures using
these registers are required to preserve them for their callers.

• Stacked Registers: GR32-127, when allocated, are preserved by the RSE.

• Constant Register: GR0 is always 0. FR0 is always +0.0. FR1 is always +1.0.

• Special Use Registers: GR1, GR12, and GR13 have special uses.

Additional architectural register usage conventions apply to GR16-31 in register bank 0
which are used by low-level interrupt handlers and by processor firmware. For details
refer to Section 3.3.1.

Itanium general registers and floating-point registers contain three state components:
their register value, their control speculative (NaT/NaTVal) state, and their data
speculative (ALAT) state. When software saves and restores these registers, all three
state components need to be preserved. As described in Table 4-1, software is required
to use different state preservation methods depending on the type of register. More
details on register preservation are provided in the next two sections.

Table 4-1. Preserving Intel® Itanium® General and Floating-point
Registers

State Components General Registers Floating-point
Registers

GR1-31 (static) GR32-127 (stacked) FR2-127

Register Value st8.spill & ld8.fill
preserve register value.

RSE automatically
preserves register value.

stf.spill & ldf.fill
preserve register value.

Control Speculative
State (NaT/NaTVal)

st8.spill & ld8.fill
preserve register NaT.

RSE automatically
preserves register NaT.

stf.spill & ldf.fill
preserve NaTVal.

Data Speculative
State (ALAT)

Software must invala.e
a register’s ALAT state
when restoring the register.

RSE and ALAT manage
stacked register’s ALAT
state automatically.

Software must invala.e
a register’s ALAT state
when restoring the register.

2:550 Volume 2, Part 2: Context Management

4.1.1 Preserving General Registers

The Itanium general register file is partitioned into two register sets: GR0-31 are
termed the static general registers and GR32-127 are termed the stacked general
registers. Typically, st8.spill and ld8.fill instructions are used to preserve the
static GRs, and the processor’s register stack engine (RSE) automatically preserves the
stacked GRs.

Using the st8.spill and ld8.fill instructions, the general register value and its NaT
bit are always preserved and restored in unison. However, these instructions do not
save and restore a register’s data speculative state in the Advanced Load Address Table
(ALAT). To maintain the correct ALAT state, software is therefore required to explicitly
invalidate a register’s ALAT entry using the invala.e instruction when restoring a
general register. The Itanium calling conventions avoid such explicit ALAT invalidations
by disallowing data speculation to preserved registers (GR4-7) across procedure calls.

Spills and fills of general registers using st8.spill and ld8.fill cause implicit
collection and restoration of the accompanying NaT bits to/from the User NaT collection
application register (UNAT). The UNAT register needs to be preserved by software
explicitly. The spill and fill instructions derive the UNAT bit index of a spilled/filled NaT
bit from the spill/fill memory address and not from the spilled/filled register index. As a
result, software needs to ensure that the 512-byte alignment offset1 of the spill/fill
memory address is preserved when a general register is restored. This can be an issue
particularly for user context data structures that may be moved around in memory
(e.g. a setjmp() jump buffer).

Unlike the st8.spill and ld8.fill instructions, the register stack engine (RSE)
preserves not only register values and register NaT bits, but it also manages the
stacked register’s ALAT state by invalidating ALAT that could be reused by software
when the physical register stack wraps. This automatic management of ALAT state
across procedure calls permits compilers to use speculative advanced loads (ld.sa) to
perform cross-procedure call control and data speculation in stacked general registers
(GR32-127). Whenever software changes the virtual to physical register mapping of the
stacked registers, the ALAT needs to be invalidated explicitly using the invala
instruction. Typically this happens during process/thread context switches or in
longjmp() when the register stack is reloaded with a new BSPSTORE. Refer to
Section 4.5.1.1, “Non-local Control Transfers (setjmp/longjmp)” on page 2:557.

The RSE collects the NaT bits of the stacked general registers within the RNAT
application register and automatically saves and restores accumulated RNAT collections
to/from fixed locations within the register stack backing store. RNAT collections are
placed on the backing store whenever BSPSTORE bits{8:3} are all one, which results in
one RNAT collection for every 63 registers. When software copies a backing store to a
new location, it is required to maintain the backing store’s 512-byte alignment offset2
to ensure that the RNAT collections get placed at the proper offset.

1. The specific requirement is that (fill_address mod 512) must be equal to (spill_address mod 512).
2. The specific requirement is that (old_bspstore mod 512) must be equal to (new_bspstore mod 512).

Volume 2, Part 2: Context Management 2:551

4.1.2 Preserving Floating-point Registers

The Itanium architecture encodes a floating-point register’s control speculative state as
a special unnormalized floating-point number called NaTVal. As a result, Itanium
floating-point registers do not have a NaT bit. The architecture provides the stf.spill
and ldf.fill instructions to save and restore floating-point register values and control
speculative state. These instructions always generate a 16-byte memory image
regardless of the precision of the floating-point number contained in the register.

Preservation of data speculative state associated with floating-point registers needs to
be managed by software. As with the general registers, software is required to explicitly
invalidate a register’s ALAT entry using the invala.e instruction when restoring a
floating-point register. The Itanium calling conventions avoid such explicit ALAT
invalidations by disallowing data speculation to preserved floating-point registers
(FR2-5, FR16-31) across procedure calls.

4.2 Preserving Register State in the OS

The software calling conventions described in the previous section apply to state
preservation across procedure call boundaries. When entering the operating system
kernel either voluntarily (for a system call) or involuntarily (for handling an exception or
an external interrupt) additional concerns arise because the interrupted user’s context
needs to be preserved in its entirety.

The Itanium architecture defines a large register set: 128 general registers and 128
floating-point registers account for approximately 1 KByte and 2 KBytes of state,
respectively. The architecture provides a variety of mechanisms to reduce the amount
of state preservation that is needed on commonly executed code paths such as system
calls and high frequency exceptions such as TLB miss handlers.

Additionally, Itanium architecture-based operating systems have opportunities to
reduce the amount of context they need to save by distinguishing various kernel entry
and exit points. For instance, when entering the kernel on behalf of a voluntary system
call, the kernel need only preserve registers as outlined by the calling conventions.
Furthermore, the operating system can be sensitive to whether the preserved context is
coming from the IA-32 or Itanium instruction set, especially since the IA-32 register
context is substantially smaller than the full Itanium register set. Ideally, an Itanium
architecture-based operating system should use a single state storage structure which
contains a field that indicates the amount of populated state.

Table 4-2 summarizes several key operating system points at which state preservation
is needed.

Scratch GRs and FRs, the bulk of all state, only need to be preserved at involuntary
interruptions resulting from unexpected external interrupts or from exceptions that
need to call code written in a high-level programming language. The demarcation of
floating-point registers FR32-127 as “scratch” along with architectural support for lazy
state save/restore of the floating-point register file allows software to substantially
reduce the overhead of preserving the scratch FRs. See Section 4.2.2 for details.

2:552 Volume 2, Part 2: Context Management

In principal, preserved GRs and FRs need not be spilled/filled when entering the kernel.
Whatever function is called from the low-level interruption handler or the system call
entry point will itself observe the calling conventions and preserve the registers. The
only occasion when preserved registers need to be spilled/filled is on a process or
thread context switch. However, many operating systems provide get_context()
functions that provide user context upon demand. Although such functions are called
infrequently, many operating systems prefer to pay the penalty of spilling preserved
registers at system call and at interruption entry points to avoid the complexity of
piecing together user state from various potentially unknown kernel stack locations on
demand. Fortunately, the amount of preserved Itanium general register state is
relatively small, and the Itanium architecture provides additional mechanisms for lazy
floating-point state management. See Section 4.2.2 for details.

Stacked GRs are managed by the register stack engine (RSE). On process/thread
context switches the operating system is required to completely flush the register stack
to its backing store in memory (using the flushrs instruction). In cases where the
operating system knows that it will return to the user process along the same path, e.g.
in system calls and exception handling code, the Itanium architecture allows operating
systems to switch the register stack backing store without having to flush all stacked
registers to memory. This allows such kernel entry points to switch from the user’s to
the kernel’s backing store without causing any memory traffic, as described in the next
section.

4.2.1 Preservation of Stacked Registers in the OS

A switch from a thread of execution into the operating system kernel, whether on
behalf of an involuntary interruption or a voluntary system call, requires preservation of
the stacked registers. Instead of flushing all dirty stacked register’s to memory, the RSE
can be used to automatically preserve the stacked registers of the interrupted context.

Table 4-2. Register State Preservation at Different Points in the OS

Register Type Number of
Registers

System Call
(Voluntary)

Lightweight
Interrup-

tionsa

(Involuntary)

a. For details on lightweight interruption handlers refer to Section 3.4.1, “Lightweight Interruptions” on
page 2:543.

Heavyweight
Interrup-

tionsb

(Involuntary)

b. For details on heavyweight interruption handlers refer to Section 3.4.2, “Heavyweight Interruptions” on
page 2:544.

Process/Thread
Context Switch

(Voluntary)

Scratch GRs 23 no spill/fill
required

Untouched
(use banked

registers)

spill/fill
required

no spill/fill required
(done at interruption)

Preserved GRs 4 no spill/fill
required

Untouched
(use banked

registers)

no spill/fill
required

spill/fill
required

Stacked GRs 96 Backing Store
Switch

Untouched Backing Store
Switch

 Synchronous
Backing Store Switch

using flushrsc

c. Refer to Section 6.11.3, “Synchronous Backing Store Switch” for details.

Scratch FRs 106 no spill/fill
required

Untouched spill/fill
required

no spill/fill required
(done at interruption)

Preserved FRs 20 no spill/fill
required

Untouched no spill/fill
required

spill/fill
required

Volume 2, Part 2: Context Management 2:553

Automatic preservation offers performance benefits: the register stack may contain
only a handful of dirty registers, system call parameters can be passed on the register
stack, and, upon return to the interrupted context the loadrs instruction only needs to
restore registers that were actually spilled to memory. Since system call rates scale
with processor performance, the RSE offers a key method for reducing the kernel’s
execution time of a system call.

To ensure operating system integrity the RSE requires a valid backing store (i.e. one
with a valid page mapping). The validity of the current backing store depends on the
interrupted context. If the interrupted context is itself a kernel thread, then its backing
store is in a known state, and no backing store switch is required (assuming that kernel
interruptions are nested). If the interrupted context is a user process, then the backing
store could be pointing at an invalid region of memory, and software is required to
redirect the RSE at a kernel backing store. Section 6.11.1, “Switch from Interrupted
Context” on page 2:148 describes the code sequence to switch the RSE backing store
without causing memory traffic.

If the kernel redirects the backing store to a kernel memory region, then the kernel
must restore the backing store of the interrupted context prior to resumption of the
interrupted context. The kernel must also restore the register stack to its interrupted
state by manually pulling the spilled registers from the backing store. The kernel uses
the loadrs instruction to restore stacked registers from the backing store. The loadrs
instruction requires the backing store pointer to align with any registers spilled from the
interrupted context. Thus the kernel should have paired all function calls (br.call
instructions) with function returns (br.ret instructions), or manually manipulated the
kernel backing store pointer, so that all kernel contents have been removed from the
kernel backing store prior to the loadrs. After loading the stacked registers, the kernel
can switch to the backing store of the interrupted frame. This code sequence is
described in Section 6.11.1, “Switch from Interrupted Context” on page 2:148.

The kernel may occasionally gather the complete interrupted user context, such as to
satisfy a debugger request or to provide extended information to a user signal handler.
To provide the preserved register stack contents, including NaT values, the kernel must
extract the user context values from its backing store.

4.2.2 Preservation of Floating-point State in the OS

A full preservation of Itanium floating-point register file requires approximately 2
KBytes of memory. To reduce the frequency of such large register spills and fills, the
Itanium architecture offers additional mechanisms for lazy floating-point state
management. These features allow the system programmer to eliminate many
unnecessary floating-point state spills and fills especially around voluntary and
involuntary entries into the kernel, e.g. around system calls, external interrupts and
exceptions. Lazy state preservation can provide a significant reduction of memory
traffic and hence faster interrupt handlers and system calls, especially since most
interrupt handlers and much system code rarely perform floating-point computations.

The 126 non-constant floating-point registers are architecturally divided into the lower
set (FR2-31) and the higher set (FR32-127). The Itanium architecture provides two
floating-point register set “modified” bits, PSR.mfl and PSR.mfh, which are set by
hardware upon a write to any register in the lower and higher sets, respectively. The
“modified” bits are accessible to a user process through the user mask. Additionally,

2:554 Volume 2, Part 2: Context Management

two “disabled” bits, PSR.dfl and PSR.dfh, are accessible to the privileged software
alone. Setting a “disabled” bit causes a fault into the disabled-fp vector upon first use
(read or write) of the corresponding register set.

As mentioned earlier, an involuntary kernel entry (e.g. interruption) needs to preserve
all scratch floating-point registers. Instead of blindly always spilling all registers, state
spills can be conditionalized upon the “modified” bits in the PSR. Additionally, the
“disabled” bits allow a deferred, or lazy, approach to both spills and fills. This is
particularly useful for “on demand” state motion in an involuntary interruption handler
that does not use many floating-point registers. To perform deferred spills on the high
set, the handler sets PSR.dfh immediately upon entry. Any reference to a floating-point
register in the high set will then fault into the disabled-fp vector which spills the
corresponding state to a prearranged store before allowing use within the handler. Lazy
state restoration is performed in a similar manner: the handler sets the “disabled” bit
just before exit, causing the first reference by the interrupted context to the disabled
set to fault into the kernel’s disabled floating-point vector which can then restore the
appropriate state. Note the importance of agreeing upon prearranged stores for
deferred spill/fill policies and the need for a mechanism to communicate a past fill or
spill.

At process or thread context switches all preserved floating-point registers need to be
context switched. The higher (scratch) set is also managed here if the context-switch
was occasioned by an involuntary interruption (e.g. timer interrupt) which did not
already spill the higher set. Use of the “modified” bits by the OS to determine if the
appropriate register set is “dirty” with previously unsaved data can help avoid needless
spills and fills.

The “modified” bits are intentionally accessible through the user mask so that a user
process can provide hints to the OS code about its register liveness requirements.
Clearing PSR.mfh, for instance, suggests that the user process does not see the higher
register set as containing useful data anymore.

4.3 Preserving ALAT Coherency

As described in Section 4.4.5.3, “Detailed Functionality of the ALAT and Related
Instructions” on page 1:65, software is required to explicitly invalidate the entire ALAT
using the invala instruction whenever the virtual to physical register mapping is
changed. Typically this occurs when the clrrb instruction is used, when a synchronous
backing store switch is performed (e.g. in a user-level or kernel thread context switch),
or when software “discontinuously” remaps the register to backing store mapping by
resetting BSPSTORE (e.g. by calling longjmp()).

When returning to a user-process after servicing an involuntary interruptions, an
Itanium architecture-based operating system is required to invalidate the entire ALAT
using the invala instruction. This is required because the operating system may have
targeted advanced loads at scratch registers, and thereby altered the user-visible ALAT
state.

When returning from a system call, however, full ALAT invalidations can be avoided by
using invala.e instructions to selectively invalidate ALAT entries of all preserved
registers (GR4-7, FR2-5, and FR16-31), or by ensuring that these registers where

Volume 2, Part 2: Context Management 2:555

never accessible to software during the system call (see Section 4.2.2 for details). This
works, because at the system call entry user-code may not have any dependencies on
the state of the scratch registers.

4.4 System Calls

Reducing the overhead associated with system calls becomes more important as
processor efficiency increases. As processor frequencies and pipeline lengths increase,
the typical overhead associated with flushing the processor pipeline to effect privilege
domain crossings is increased. To reduce system call overhead, the Itanium
architecture provides an efficient “enter privileged code” (epc) instruction (page 3:53)
that can be paired with the demoting branch return. Additionally, the Itanium
architecture provides the traditional break instruction (page 3:29) to enter privileged
mode, that is typically paired with the rfi instruction (page 3:236) to return to user
mode.

The epc instruction offers higher efficiency than the break instruction for invoking a
kernel system call. Whereas a break instruction will always cause a pipeline flush to
change privilege level, the epc is designed not to. The break instruction also passes the
system call number as a parameter, and requires a table lookup with an indirect branch
to the system call. With the epc instruction, the user application can directly branch to
the system call code.

More information about epc-based system calls is provided in Section 4.4.1. More
information about break-based system calls is provided in Section 4.4.2. Regardless of
whether the epc or break instruction are used, an Itanium architecture-based
operating system needs to check the integrity of system call parameters. In addition to
traditional integrity checking of the passed parameter values, the system call handler
should inspect system call parameters for set NaT bits as described in Section 4.4.3.

4.4.1 epc/Demoting Branch Return

To execute a system call with epc, a user system call stub branches to an execute-only
kernel page containing the system call, using the br.call instruction. The kernel page
executes an epc to raise the privilege level. The privilege level is raised to the privilege
level of the page mapping corresponding to the instruction address of the epc
instruction. The page mapping must be execute-only (see Section 4.1.1.6, “Page
Access Rights” for details).

After the kernel completes its system call, it returns to the user system call stub with a
br.ret instruction. The br.ret demotes the privilege level, by restoring the privilege
level contained within the PFS application register (PFS.ppl). To ensure operating
system integrity epc checks that the PFS.ppl field is no greater than the PSR.cpl at the
time the epc is executed.

As described in Section 4.2.1, interruptions and system calls in a typical Itanium
architecture-based operating system need to switch to the kernel register stack backing
store upon kernel entry. The epc instruction does not disable interrupts nor does it
switch the processor to the kernel backing store. As a result, code directly following the
epc instruction that runs at increased privilege level is still running on the caller’s
backing store. It is recommended that software disable external interrupts right after

2:556 Volume 2, Part 2: Context Management

the epc until the switch to the kernel backing store has been completed. Additionally,
low-level operating system handlers should not only use IPSR.cpl, but should also
check BSPSTORE, to determine whether they are running on the kernel backing store
(imagine an external interrupt being delivered on the first instruction after the epc).

4.4.2 break/rfi

The break instruction, when issued in the i, f, and m syllables, specifies an arbitrary
21-bit immediate value. The kernel can choose a specific break immediate value to
differentiate system calls from other usage of the break instruction (such as debug).
The break instruction jumps to the break fault handler, which should be a valid address
mapping for each user application, and raises the privilege mode to the most privileged
level.

The system call number is an additional parameter passed to the kernel when invoking
a system call via the break instruction. The system call number must reside in a fixed
location. If stored within GR32, then the system call stub must rearrange its input
parameters to map to the register stack starting at GR33. This register jostling can be
avoided by passing the system call number through a scratch static general register or
by using the break immediate itself. Additionally, the system call can utilize all eight
input registers of the register stack for system call parameters.

4.4.3 NaT Checking for NaTs in System Calls

In addition to regular range/value checking on system call arguments, Itanium
architecture-based operating systems need to additionally ensure that system call
arguments passed in by a user application do not have any NaT bits set. The following
code fragment can be used:

mov mask = 0xff
clrrrb
;;

// create register stack frame with only output registers for system call args
alloc tmp = ar.pfs, 0, 0, 8, 0
shl mask = mask, syscall_arg_count
;;
mov pr = mask, 0xff00 // define p8 .. p15
;;
cmp.eq p7 = r0, r0 // set p7 to true
;;

// test for NaT bits in the input arguments
(p8) cmp.eq.and p7 = r32, r32 // and type compare clears p7 if r32 is NaT
(p9) cmp.eq.and p7 = r33, r33
(p10) cmp.eq.and p7 = r34, r34
(p11) cmp.eq.and p7 = r35, r35
(p12) cmp.eq.and p7 = r36, r36
(p13) cmp.eq.and p7 = r37, r37
(p14) cmp.eq.and p7 = r38, r38
(p15) cmp.eq.and p7 = r39, r39
(p7) br.cond.sptk ok_arguments // No NaTs found
;;
// p7 was cleared by at least one NaT argument

Volume 2, Part 2: Context Management 2:557

4.5 Context Switching

This section discusses context switching at the user and kernel levels.

4.5.1 User-level Context Switching

4.5.1.1 Non-local Control Transfers (setjmp/longjmp)

A non-local control transfer such as the C language setjmp()/longjmp() pair requires
software to correctly handle the register stack and the RSE. The register stack provides
the BSP application register which always contains the backing store address of the
current GR32. This permits execution of a setjmp() without having to manipulate any
register stack or RSE state. All register stack and RSE manipulation is postponed to the
much less frequent longjmp().

In setjmp() only the RSC, PFS and BSP application registers have to be preserved. This
can be accomplished by reading these registers, and without having to disable the RSE.
The preserved values will be referred to as setjmp_rsc, setjmp_pfs, and setjmp_bsp
further on.

In longjmp() restoration of the appropriate register stack and RSE state is more
involved, and software needs to take the following steps:

1. Stop RSE by setting RSC.mode bits to zero.

2. Read current BSPSTORE (referred to as current_bspstore further down).

3. Find setjmp()’s RNAT collection (rnat_value).

a. Compute the backing store location of setjmp()’s RNAT collection as follows:

rnat_collection_address{63:0} = setjmp_bsp{63:0} | 0x1F8

The RNAT location is computed by setting bits{8:3} of setjmp()’s BSP to all
ones. This is where setjmp()’s RNAT collection will have been spilled to
memory.

b. If (current_bspstore > rnat_collection_address), then the required
RNAT collection has already been spilled to the backing store.

c. Otherwise if (current_bspstore <= rnat_collection_address), the
required RNAT collection is incomplete and is still contained in the register
stack. To materialize the complete RNAT collection, flush the register stack to
the backing store using a flushrs instruction.

d. Finally, load rnat_value from rnat_collection_address in memory.

4. Invalidate the contents of the register stack as follows:

a. Allocate a zero size register stack frame using the alloc instruction.

b. Write RSC.loadrs field with all zeros and execute a loadrs instruction.

c. Invalidate the ALAT using the invala instruction.

5. Restore setjmp()’s register stack and RSE state as follows:

a. Write BSPSTORE with setjmp_bsp.

b. Write RNAT with rnat_value.

2:558 Volume 2, Part 2: Context Management

c. Write RSC with setjmp_rsc.

d. Write PFS with setjmp_bsp.

6. Restore setjmp()’s return IP into BR7.

7. Return from longjmp() into setjmp()’s caller using br.ret instruction.

4.5.1.2 User-level Co-routines

The following steps need to be taken to execute a voluntary user-level thread switch.

1. Save all preserved register state of outgoing thread to memory stack. Refer to
Section 4.1 for details on preservation of general and floating-point registers.

2. Preserve predicate, branch, and application registers.

3. Flush outgoing register stack to backing store, and switch to incoming thread’s
backing store as described in Section 6.11.3, “Synchronous Backing Store
Switch” on page 2:148. This code sequence includes ALAT invalidation.

4. Switch thread memory stack pointers.

5. Restore incoming thread’s predicate, branch, and application registers.

6. Restore incoming thread’s preserved register state.

4.5.2 Context Switching in an Operating System Kernel

4.5.2.1 Thread Switch within the Same Address Space

To switch between different threads in the same address space the following steps are
required:

1. Application architecture state associated with each thread (GRs, FRs, PRs, BRs,
ARs) are saved and restores as if this were a user-level coroutine. This is
described in Section 4.5.1.2.

2. Memory Ordering: to preserve correct memory ordering semantics the context
switch routine needs to fence all memory references and flush cache (fc, fc.i)
operations by executing a sync.i and mf instruction. More details on memory
ordering are given in Section 2.3.

4.5.2.2 Address Space Switching

When an operating system switches address spaces it needs to perform the same steps
as a same address space thread switch (described in the previous section). Additionally,
however between the saves of the outgoing and the restores of the incoming process,
the operating system context switch handler is required to:

1. Save the contents of the protection key registers associated with the outbound
context, and then invalidate the protection key registers.

2. Save the default control register (DCR) of the outbound context (if the DCR is
maintained on a per-process basis).

3. Save the region registers of the outbound address space.

4. Restore the region registers of the inbound address space.

Volume 2, Part 2: Context Management 2:559

5. Restore the default control register (DCR) of the inbound context (if the DCR is
maintained on a per-process basis).

6. Restore the contents of the protection key registers associated with the inbound
context.

§

2:560 Volume 2, Part 2: Context Management

Volume 2, Part 2: Memory Management 2:561

Memory Management 5

This chapter introduces various memory management mechanisms of the Itanium
architecture: region register model, protection keys, and the virtual hash page table
usage models are described. This chapter also discusses usage of the architecture
translation registers and translation caches. Outlines are provided for common TLB and
VHPT miss handlers.

5.1 Address Space Model

The Itanium architecture provides a byte-addressable 64-bit virtual address space. The
address space is divided into 8 equally-sized sections called regions. Each region is 261
bytes in size and is tagged with a unique region identifier (RID). As a result, the
processor TLBs can hold translations from many different address spaces concurrently,
and need not be flushed on address space switches. The regions provide the basic
virtual memory architecture to support multiple address space (MAS) operating
systems.

Additionally, each translation in the TLB contains a protection key that is matched
against a set of software maintained protection key registers. The protection keys are
orthogonal to the region model and allow efficient object sharing between different
address spaces. The protection key registers provide the basic virtual memory
architecture to support single address space (SAS) operating systems.

5.1.1 Regions

For each of the eight regions, there is a corresponding region register (RR), which
contains a RID for that region. The operating system is responsible for managing the
contents of the region registers. RIDs are between 18 and 24 bits wide, depending on
the processor implementation. This allows an Itanium architecture-based operating
system to uniquely address up to 224 address spaces each of which can be up to 261
bytes in virtual size. An address space is made accessible to software by loading its RID
into one of the eight region registers.

Address Translation: The upper 3 bits of a 64-bit virtual address (bits 63:61) identify
the region to which the address belongs; these are called the virtual region number
(VRN) bits. When a virtual address is translated to a physical address, the VRN bits
select a region register which provides the RID used for this translation. Each TLB entry
contains the RID tag bits for the translation it maps; these are matched against the RID
bits from the selected region register when the TLB is looked up during address
translation. Address translation only succeeds if the RID and VPN bits from the virtual
address match the RID and VPN bits from the TLB entry. Note that the VRN bits are
used only to select the region register, are not matched against the TLB entries.

Inserting/Purging of Translations: When a translation is inserted into the processor
TLBs (either by software, or by the processor's hardware page walker), the VRN bits of
the virtual address translation being inserted are used only to index the corresponding

2:562 Volume 2, Part 2: Memory Management

region register; they are not inserted into the TLB. Likewise, when software purges a
translation from the processor's TLBs, the VRN bits of the address used for the purge
are used only to index the corresponding region register and are not used to find a
matching translation. Only the RID and VPN bits are used to find overlapping
translations in the TLBs.

The fact that the VRN bits are not contained in the processor TLB allows the same
address space (identified by a RID) to be referenced through any of the eight region
registers. In other words, the combination of RID and VPN establishes a unique 85-bit
virtual address, regardless of which VRN (and region register) was used to form the
pair. Independence of VRN allows easy creation of temporary virtual mappings of an
address space and can accelerate cross-address space copying as described in
Section 5.1.1.3.

5.1.1.1 RID Management

Before a RID that has been used for one address space can be reused for another
address space, all TLB entries relating to the first address space have to be purged. In
general, this will require a complete flush of the TLBs of all processors in the system.
This can be accomplished by performing an IPI to all processors and executing the ptc.e
loop described in Section 5.2.2.2.2 on each processor in the TLB coherence domain.

A more efficient alternative, depending on the size of the defunct address space, might
be to perform a series of ptc.ga operations on one processor to tear down just the
translations used by the recycled RID. Some processor implementations support an
efficient region-wide purge page size such that this can be accomplished with a single
ptc.ga operation.

The frequency of these global TLB flushes can be reduced by using a RID allocation
strategy that maximizes the time between use and reuse of a RID. For example, RIDs
could be assigned by using a counter that is as wide as the number of implemented RID
bits and that is incremented after every assignment. Only when the RID counter wraps
around it is necessary to do a global TLB flush. After the flush the operating system can
either remember the in-use RIDs or it can re-assign new RIDs to all currently active
address spaces.

5.1.1.2 Multiple Address Space Operating Systems

Multiple address space (MAS) operating systems provide a separate address space for
each process. Typically, only when a process is running is its address space visible to
software.

The application view of the virtual address space in the MAS OS model is a contiguous
64-bit address space, though normally not all of this virtual address space is accessible
by the application. At least one of the 8 regions must be used to map the OS itself so
that the OS can handle interruptions and system services invoked by the application.

The OS chooses a region ID and a region (e.g. region 7) into which to map itself during
the boot process and usually does not change this mapping after enabling address
translation. The other seven regions may be used to map process-private code and
data; code and data that are shared amongst multiple processes; to map large files;
temporary mappings to allow efficient cross-address space copies (see
Section 5.1.1.3); and, for operating systems which use it, the long format VHPT.

Volume 2, Part 2: Memory Management 2:563

In a MAS OS, the RID bits act as an address space identifier or tag. For each
process-private region, a unique RID is assigned to that process by the OS. If a process
needs multiple process-private regions (e.g. the process requires a private 64-bit
address space), the OS assigns multiple unique RIDs for each such region. Because
each translation in the processor's TLBs is tagged with its RID, the TLBs may contain
translations from many different address spaces (RIDs) concurrently. This obviates the
need for the OS to purge the processor's TLBs upon an address space switch. When the
OS performs a context switch from process A to process B, the OS need only remove
process A's private RIDs from the CPU's region registers and replace them with process
B's private RIDs.

5.1.1.3 Cross-address Space Copies in a MAS OS

The use of regions, region registers, and RIDs provides a mechanism for efficient
address space-to-address space copies. Because translations are tied to RIDs and not
to a particular static region, a MAS OS can easily copy a memory range from one
address space to another by temporarily remapping the target memory location to
another region. This remapping is accomplished simply by placing the RID to which the
target location belongs into a different region register and then performing the copy
from source to target directly.

For example, assume a MAS OS wishes to copy and 8-byte buffer from virtual address
0x0000000000A00000 of the currently executing process (process A) to virtual address
0x0000000000A00000 of another process (process B):

movl r2 = (2 << 61)
mov r3 = process_b_rid
movl r4 = 0x0000000000A00000
movl r5 = 0x4000000000A00000;;; // reference process B through RR[2]
mov rr[r2] = r3 ;; // put process B RID into RR[2]
srlz.d // serialize RR write

copyloop:
ld8 r6 = [r4] ;; // read buffer from process A addr space
st8 [r5] = r6 // store buffer into process B addr

space
(p4)br copyloop // loop until done

mov r3 = original_rr2_rid ;;
mov rr[r2] = r3 ;; // restore RR[2] RID
srlz.d // serialize RR write

When the OS switches to process B and places process B’s RID into RR[0] and resumes
execution of process B, the process can reference the message via virtual address
0x0000000000A00000. Note that no new translations need to be created to make the
sequence shown above work; because translations are tagged by RID and not by
region, all existing translations for process B’s address space are visible regardless of
which region the reference is made to, as long as the region register for that region
contains the correct process B RID. Note that the sequence shown above is intended for
illustrative purposes only; the OS may need to perform other steps as well to perform a
cross-address space copy.

2:564 Volume 2, Part 2: Memory Management

5.1.2 Protection Keys

The Itanium architecture provides two mechanisms for applying protection to pages.
The first mechanism is the access rights bits associated with each translation. These
bits provide privilege level-granular access to a page. The second mechanism is the
protection keys. Protection keys permit domain-granular access to a page. These are
especially useful for mapping shared code and data segments in a globally shared
region, and for implementing domains in a single address space (SAS) operating
system.

Protection key checking is enabled via the PSR.pk bit. When PSR.pk is 1, instruction,
data, and RSE references go through protection key access checks during the
virtual-to-physical address translation process.

All processors based on the Itanium architecture implement at least 16 protection key
registers (PKRs) in a protection key register cache. The OS is responsible for
maintaining this cache and keeping track of which protection keys are present in the
cache at any given time.

Each protection key register contains the following fields:

• v – valid bit. When 1, this register contains a valid key, and is checked during
address translation whenever protection keys are enabled (PSR.pk is 1).

• wd – write disable. When 1, write permission is denied to translations which match
this protection key, even if the data TLB access rights permit the write.

• rd – read disable. When 1, read permission is denied to translations which match
this protection key, even if the data TLB access rights permit the read.

• xd – execute disable. When 1, execute permission is denied to translations which
match this protection key, even if the instruction TLB access rights give execute
permission.

• key – protection key. An 18- to 24-bit (depending on the processor
implementation) unique key which tags a translation to a particular protection
domain.

When protection key checking is enabled, the protection key tagged to a referenced
translation is checked against all protection keys found in the protection key register
cache. If a match is found, the protection rights specified by that key are applied to the
translation. If the access being performed is allowed by the matching key, the access
succeeds. If the access being performed is not allowed by the matching key (e.g.
instruction fetch to a translation tagged with a key marked ‘xd’), a Protection Key
Permission fault is raised by the processor. The OS may then decide whether to
terminate the offending program or grant it the requested access.

If no match is found, a Protection Key Miss fault is raised by the processor, and the OS
must insert the correct protection key into the PKRs and retry the access.

Protection keys can be used to provide different access rights to shared translations to
each process. For example, assume a shared data page is tagged with a protection key
number of 0xA. Two processes share this data page: one is the producer of the data on
this page, and the other is only a consumer. When the producer process is running, the
OS will insert a valid PKR with the protection key 0xA and the ‘wd’ and ‘rd’ bits cleared,
to allow this process to both read and write this page. When the consumer process is

Volume 2, Part 2: Memory Management 2:565

running, the OS will insert a valid PKR with the protection key 0xA and the ‘rd’ bit
cleared, to allow this process to read from the page. However, the ‘wd’ bit for this PKR
will be set when the consumer process is running to prevent it from writing the page.

The processor hardware has no notion of which protection keys belong to which
process. The only check the hardware performs is to compare the protection key from
the translation to any valid protection keys in the PKR cache. On a context switch, the
OS must purge any valid protection keys from the PKRs which would provide access
rights to the switched-to context that are not allowed. The OS may purge an existing
PKR by performing a move to PKR instruction with the same key as the existing PKR,
but with the PKR valid bit set to 0.

Protection keys can be read from the processor’s data TLBs via the tak instruction.
However, instruction TLB key values cannot be read directly. Software must keep track
of these values in its own data structures.

5.1.2.1 Single Address Space Operating Systems

Processes in a single address space (SAS) OS all cohabit a global address space. SAS
operating systems running on a processor based on the Itanium architecture can view
the RID bits as effectively extending the single virtual address space to between 79 and
85 bits (depending on the number of RID bits implemented by the processor). This
address space is then divided into between 218 and 224 61-bit regions, up to eight of
which may be accessed concurrently.

Note that there is no “SAS OS” or “MAS OS” mode in the Itanium architecture. The
processor behavior is the same, regardless of the address space model used by the OS.
The difference between a SAS OS and a MAS OS is one of OS policy: specifically how
the RIDs and protection keys are managed by the OS, and whether different processes
are permitted to share RIDs for their private code and data. Multiple, unrelated
processes in a SAS OS may share the same RID for their private pages; it is the
responsibility of the OS to use protection keys and the protection key registers (PKRs)
to enforce protection. In a MAS OS, the unique per-process RIDs enforce this
protection.

Hybrid SAS/MAS models that combine unique RIDs for process-private regions and
shared RIDs with protection keys for per-page memory protection in shared regions are
also possible.

5.2 Translation Lookaside Buffers (TLBs)

All processors based on the Itanium architecture implement one or more translation
lookaside buffers (TLBs) for fast virtual-to-physical address translation. The
architecture provides instructions for managing instruction and data TLBs as separate
structures.

Both the instruction and data TLBs are further divided into a set of translation registers
(TRs), which are managed exclusively by software and are “locked down” to pin critical
address translations (e.g. kernel memory); and a set of translation cache entries (TCs),
which can be managed by both software and the processor hardware. The TRs are
divided into slots, each of which are individually addressable on insertion by software.

2:566 Volume 2, Part 2: Memory Management

The TCs are treated as a set associative cache and are not addressable by software.
The TC replacement policy is determined by software. All processor models implement
at least 8 instruction and 8 data TRs, and at least 1 instruction and 1 data TC entry.

Software inserts translations into the TLBs via insertion instructions. There are four
variants of insertion instructions. itr.i and itr.d insert a translation into the
specified instruction or data TR slot, respectively. itc.i and itc.d insert a translation
into a hardware-selected instruction or data TC entry, respectively.

Software TR purge instructions also distinguish between the instruction and data TRs
(ptr.i, ptr.d). TC purge instructions do not.

5.2.1 Translation Registers (TRs)

Once a translation is inserted by software into a TR, it remains in that TR until either
the translation is overwritten by software, or the translation is purged. TRs are used by
the OS to pin critical address translations; all memory references made to a TR
translation will always hit the TLB and will never cause the processor's hardware page
walker to walk the VHPT or raise a fault. Examples of memory areas that the OS might
cover with one or more TRs are the Interruption Vector Table, critical interruption
handlers not contained completely in the Interruption Vector Table, the root-level page
table entries, the long format VHPT, and any other non-pageable kernel memory areas.

Two address translations are said to overlap when one or more virtual addresses are
mapped by both translations. Software must ensure that translations in an instruction
TR never overlap other instruction TR or TC translations; likewise, software must
ensure that translations in a data TR never overlap other data TR or TC translations. If
an overlap is created, the processor will raise a Machine Check Abort.

The processor hardware will never overwrite or purge a valid TR. TRs that are currently
unused may be used by the processor hardware as extra TC entries, but if software
subsequently inserts a translation into an unused a TR, the TC translation will be
purged when the insertion is executed.

5.2.1.1 TR Insertion

To insert a translation into a TR, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of
PSR.ic is observed.

2. Place the base virtual address of the translation into the IFA control register.1

3. Place the page size of the translation into the ps field of the ITIR control register.
If protection key checking is enabled, also place the appropriate translation key
into the key field of the ITIR control register. See below for an explanation of
protection keys.

4. Place the slot number of the instruction or data TR into which the translation is be
inserted into a general register.

5. Place the base physical address of the translation into another general register.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along
with the rest of the translation. See Section 5.1.1 for details.

Volume 2, Part 2: Memory Management 2:567

6. Using the general registers from steps 4 and 5, execute the itr.i or itr.d
instruction.

A data or instruction serialization operation must be performed after the insert (for
itr.d or itr.i, respectively) before the inserted translation can be referenced.

Software may insert a new translation into a TR slot already occupied by another valid
translation. However, software must perform a TR purge to ensure that the overwritten
translation is no longer present in any of the processor's TLB structures.

Instruction TR inserts will purge any instruction TC entries which overlap the inserted
translation, and may purge any data TC entries which overlap it. Data TR inserts will
purge any data TC entries which overlap the inserted translation and may purge any
instruction TC entries which overlap it.

Software may insert the same (or overlapping) translation into both the instruction TRs
and the data TRs. This may be desirable for locked pages which contain both code and
data, for example.

5.2.1.2 TR Purge

To purge a TR from the TLBs, software performs the following steps:

1. Place the base virtual address of the translation to be purged into a general
register.1

2. Place the address range in bytes of the purge into bits {7:2} of a second general
register.

3. Using these two GRs, execute the ptr.d or ptr.i instruction.

A data or instruction serialization operation must be performed after the purge (for
ptr.d or ptr.i, respectively) before the translation is guaranteed to be purged from
the processor's TLBs.

Note: The TR purge instruction operates independently of the slot into which the
translation was originally inserted.

A ptr.d instruction will never purge an overlapping translation in an instruction TR, but
may purge an overlapping translation in an instruction TC; likewise, a ptr.i instruction
will never purge an overlapping translation in a data TR, but may purge an overlapping
translation in a data TC.

A TR purge does not modify the page tables nor any other memory location, nor does it
affect the TLB state of any processor other than the one on which it is executed.

5.2.2 Translation Caches (TCs)

The TC array acts as a cache of the dynamic working set for data and instruction
translations. It is managed by software (via itc and ptc instructions) and, optionally
by hardware, if the processor provides a hardware page walker (HPW) and the walker is
enabled. See Section 5.3 below.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are used as part of
the translation to be purged. See Section 5.1.1 for details.

2:568 Volume 2, Part 2: Memory Management

The size, associativity, and replacement policy of the TC array are
implementation-dependent. With the exception of the forward progress rules defined in
Section 4.1.1.2, “Translation Cache (TC)” on page 2:49, software cannot depend on the
existence or life-span of a TC translation, as a TC entry may be replaced or invalidated
by the hardware at any time.

5.2.2.1 TC Insertion

To insert a TC entry, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of
PSR.ic is observed.

2. Place the base virtual address of the translation into the IFA control register.1

3. Place the page size of the translation into the ps field of the ITIR control register.
If protection key checking is enabled, also place the appropriate translation key
into the key field of the ITIR control register. See below for an explanation of
protection keys.

4. Place the base physical address of the translation into a general register.

5. Using the general register from step 4, execute the itc.i or itc.d instruction.

A data or instruction serialization operation must be performed after the insert (for
itc.d or itc.i, respectively) before the inserted translation can be referenced.

Instruction TC inserts always purge overlapping instruction TCs and may purge
overlapping data TCs. Likewise, data TC inserts always purge overlapping data TCs and
may purge overlapping instruction TCs.

5.2.2.2 TC Purge

There are several types of TC purge instructions. Unlike the other TLB management
instructions, the TC purge instructions do not distinguish between instruction and data
translations; they will purge any matching translations in either the data or instruction
TC arrays.

5.2.2.2.1 ptc.l

The most basic TC purge is the local TC purge instruction (ptc.l). To purge a TC from
the local processor TLBs, software performs the following steps:

1. Place the base virtual address of the translation to be purged into a general
register.2

2. Place the address range in bytes of the purge into bits {7:2} of a second general
register.

3. Using these two GRs, execute the ptc.l instruction.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along
with the rest of the translation. See Section 5.1.1 for details.

2. The upper 3 bits (VRN) of this address specify a region register whose contents are used as part of
the translation to be purged. See Section 5.1.1 for details.

Volume 2, Part 2: Memory Management 2:569

A data or instruction serialization operation must be performed after the ptc.l before
the translation is guaranteed to be no longer visible to the local data or instruction
stream, respectively.

The ptc.l instruction does not modify the page tables nor any other memory location,
nor does it affect the TLB state of any processor other than the one on which it is
executed.

The ptc.l instruction ensures that all prior stores are made locally visible before the
actual purge operation is performed. Consider the following code sequence:

st8 [VHPT] = <new_translation>
ptc.l <old_translation>
srlz.i

The ptc.l instruction will purge the translation only after the local store update is seen.
If there was a hardware-initiated VHPT walk for the same translation, it would either
insert the old_translation in the TLB before the ptc.l executes and then get purged by
the ptc.l, or insert the new_translation after both the local store update and ptc.l
purge are complete.

5.2.2.2.2 ptc.e

To purge all TC entries from the local processor’s TLBs, software uses a series of ptc.e
instructions. Software must call the PAL_PTCE_INFO PAL routine at boot time to
determine the parameters needed to use the ptc.e instruction. Specifically,
PAL_PTCE_INFO returns:

• tc_base – an unsigned 64-bit integer denoting the beginning address to be used by
the first ptc.e instruction in the purge loop.

• tc_counts – two unsigned 32-bit integers packed into a 64-bit parameter denoting
the loop counts of the outer and inner purge loops. count1 (outer loop) is contained
in bits {63:32} of the parameter, and count2 (inner loop) is contained in bits
{31:0} of the parameter.

• tc_strides – two unsigned 32-bit integers packed into a 64-bit parameter denoting
the loop stride of the outer and inner purge loops. stride1 (outer loop) is contained
in bits {63:32} of the parameter, and stride2 (inner loop) is contained in bits
{31:0} of the parameter.

Software then executes the following sequence:
disable_interrupts();
addr = tc_base;
for (i = 0; i < count1; i++) {

for (j = 0; j < count2; j++) {
ptc.e addr;
addr += stride2;

}
addr += stride1;

}
enable_interrupts();

A data or instruction serialization operation must be performed after the sequence
shown above before the translations are guaranteed to be no longer visible to the local
data or instruction stream, respectively.

The ptc.e instruction does not modify the page tables nor any other memory location,
nor does it affect the TLB state of any processor other than the one on which it is
executed.

2:570 Volume 2, Part 2: Memory Management

5.2.2.2.3 ptc.g, ptc.ga

The Itanium architecture supports efficient global TLB shootdowns via the ptc.g and
ptc.ga instructions. These instructions obviate the need for performing inter-processor
interrupts to maintain TLB coherence in a multiprocessor system. A TLB coherence
domain is defined as a group of processors in a multiprocessor system which maintain
TLB coherence via hardware.

For the remainder of this section, ptc.g refers to both the ptc.g and ptc.ga
instructions, except where otherwise noted.

The number of ptc.g operations that can be in progress at any time is implementation
dependent, and can be determined from the max_purges return parameter of
PAL_VM_SUMMARY. Attempting to execute more than the maximum allowed number of
simultaneous ptc.g purges will have undefined effects, including possibly raising a
Machine Check Abort on one or more processors. Software should implement some
semaphoring mechanism to ensure that not more than the maximum ptc.g purges
allowed are in flight at any one time.

A ptc.g instruction is a release operation; all memory references that precede a ptc.g
in program order are made visible to all other processors before the ptc.g is made
visible. To guarantee visibility of the ptc.g prior to a particular point in program
execution, software must use another release operation or a memory fence.

To purge a translation from all TLBs in the coherence domain, software performs the
following steps:

1. Acquire the semaphore.

2. Place the base virtual address of the translation to be purged into a general
register.

3. Place the address range in bytes of the purge into bits {7:2} of a second general
register.

4. Using these two GRs, execute the ptc.g instruction. Note that the ptc.g
instruction must be followed by a stop.

5. Release the semaphore.

Global purges can be batched together by performing multiple ptc.g instructions prior
to releasing the lock.

A data or instruction serialization operation must be performed after the sequence
shown above before the translations are guaranteed to be no longer visible to the local
data or instruction stream, respectively. To guarantee the translations are no longer
visible on remote processors, a release operation or memory fence instruction is
required after the ptc.g instruction.

The ptc.g instruction does not modify the page tables nor any other memory location.
It affects both the local and all remote TC entries in the TLB coherence domain. It does
not remove translations from either local or remote TR entries. If a ptc.g overlaps a
translation contained in a TR on the local processor, the local processor will raise a
Machine Check Abort; if the ptc.g overlaps a translation contained in a TR on any
remote processor in the coherence domain, no Machine Check Abort is raised.

Volume 2, Part 2: Memory Management 2:571

The ptc.ga variant of the global purge instruction behaves just like the ptc.g variant,
but it also removes any ALAT entries which fall into the address range specified by the
global shootdown from all remote processors’ ALATs. The ptc.ga variant is intended to
be used whenever a translation is remapped to a different physical address to ensure
that any stale ALAT entries are invalidated. Note that the ptc.ga is not guaranteed to
affect the issuing processor's ALAT; processor implementations may optionally remove
matching entries from the local ALAT, therefore software must perform a local ALAT
invalidation via the invala instruction on the processor issuing the ptc.ga to ensure
the local ALAT is coherent.

Note that processors based on the Itanium architecture may support one or more
implementation-dependent purge sizes; some implementations may include a
region-wide purge. The PAL_VM_PAGE_SIZE firmware call returns the supported page
sizes for purges for a particular processor implementation. Refer to Section 11.10.1,
“PAL Procedure Summary” for details. When software wishes to purge an address range
that is much larger than the largest supported purge size from all TCs in the coherence
domain, performance may be enhanced by issuing inter-processor interrupts to all
processors and using the ptc.e loop described in Section 5.2.2.2.2 on each processor,
instead of issuing many ptc.g instructions from one processor.

ptc.g instructions do not apply to processors outside the coherence domain of the
processor issuing the ptc.g instruction. Systems with multiple coherence domains must
use a platform-specific method for maintaining TLB coherence across coherence
domains.

5.3 Virtual Hash Page Table

The Itanium architecture defines a data structure that allows for the insertion of TLB
entries by a hardware mechanism. The data structure is called the “virtual hash page
table” (VHPT) and the hardware mechanism is called the VHPT walker.

Unlike the IA-32 page tables, the Itanium VHPT itself is virtually mapped, i.e. VHPT
walker references can take TLB faults themselves. Virtual mapping of the page tables is
needed because the page tables for 264 address space are quite large and typically do
not fit into physical memory.

The Itanium architecture prescribes the format of a leaf-node page table entry (PTE)
seen by the VHPT walker, but does not impose an OS page table data structure itself. As
summarized in Table 5-1, the architecture support two different VHPT formats:

• Short format uses 8-byte PTEs, and is a linear page table. The short format VHPT
does not contain protection key information (there are not enough PTE bits for
that). Short format is a per-region linear page table, i.e. the PTEs and hash function
are independent of the RID. The short format prefers use of a self-mapped page
table. The short format VHPT is an efficient representation for address spaces that
contain only a few large clusters of pages, like the text, data, and stack segments
of applications running on a MAS operating system.

• Long format uses 32-byte PTEs, and is a hashed page table. The hash function
embedded in hardware. The long format supports protection keys and the use of
multiple page sizes in a region. The long format hash and tag functions incorporate
the RID, and allows multiple address space translations to be present in the same
VHPT. The long format is expected to be used either as a cache of the real OS page

2:572 Volume 2, Part 2: Memory Management

tables, or as a primary page table with collision chains. The long format VHPT is a
much better representation for address spaces that are sparsely populated, since
the short format VHPT has a linear layout and would consume a large amount of
memory. Single address space operating systems may prefer the long format VHPT
for this reason.

5.3.1 Short Format

The short format VHPT is a per-region linear table that contains translation entries for
every page in the region’s virtual address space. This makes the VHPT very large, but
since the VHPT itself lives in virtual address space only those parts of the VHPT that
actually contain valid translation entries have to be present in physical memory. If the
operating system’s page table is a hierarchical data structure and the last level of the
hierarchy is a linear list of translations, the VHPT can be mapped directly onto the page
table as shown in Figure 5-1.

If the VHPT walker tries to access a location in the VHPT for which no translation is
present in the TLB, a VHPT Translation fault is raised. The original address for which the
VHPT walker was trying to find an entry in the VHPT is supplied to the fault handler in
the IFA register. The fault handler can use this address to traverse the page table and
insert a translation into the TLB that maps the address the VHPT walker tried to access
(in IHA) to the page that contains the corresponding leaf page table.

Table 5-1. Comparison of VHPT Formats

Attribute Short Format Long Format

Entry Size 8 Byte 32 Byte

Lookup Linear Hashed

Protection Keys No Yes

Page Size per region per entry

Figure 5-1. Self-mapped Page Table

PTA

. . .

.

.

Page Table
VHPT

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

Volume 2, Part 2: Memory Management 2:573

5.3.2 Long Format

The long format VHPT is organized as a hash table which contains a subset of all
translation entries. The long format VHPT entries contain a 8-byte field that is ignored
by the VHPT walker and can be used by the operating system to link VHPT entries to
software-walkable hash collision chains if it uses the VHPT as its primary page table.
The size of the long format VHPT is usually kept small enough to keep a mapping for it
in one of the translation registers (TRs), so it is not necessary to handle VHPT
translation faults.

The long format hash algorithm is based on the per-region preferred page size, but a
translation for a larger page can still be entered into the VHPT by subdividing the large
page into multiple smaller pages with the preferred page size and placing an entry for
the large page at all VHPT locations that correspond to the smaller pages.

5.3.3 VHPT Updates

Visibility of VHPT updates to a VHPT walker on another processor follows the rules
outlined in Section 4.1.7, “VHPT Environment” on page 2:67. Since a global TLB purge
has release semantics, prior modifications to the VHPT will be visible to operations that
occur after the TLB purge operation.

Atomic updates to short format VHPT entries can easily be done through 8-byte stores.
For atomic updates of long format VHPT entries, the “ti” flag in bit 63 of the tag field
can be utilized as follows:

• Set the “ti” bit to 1.

• Issue a memory fence.

• Update the entry.

• Clear the “ti” bit through a store with release semantics.

5.4 TLB Miss Handlers

The Itanium architecture enables lightweight TLB fault handlers by providing individual
entry points for different excepting conditions and by pre-setting the translation
insertion registers for the various types of TLB faults. The following subsections list the
typical steps for resolving each kind of fault.

5.4.1 Data/Instruction TLB Miss Vectors

These faults occur when the data or instruction TLB required for a data access or
instruction fetch is not found in the processor TLBs, the VHPT walker is enabled, and:

• Either the VHPT walker aborted the walk (for any reason and at any time), or

• The VHPT walker found the translation but the insert failed (due to tag mismatch in
the long format or badly formed PTE), or

• The walker is not implemented on this processor.

There is a separate vector for each fault type (data and instruction).

2:574 Volume 2, Part 2: Memory Management

Since the VHPT walker may abort a walk at any time and raise these faults, software
must always be able to handle all TLB faults, even when the VHPT walker is enabled.
Upon entry to these fault handlers, the IHA, ITIR, and IFA control registers are
initialized by the hardware as follows:

• IHA – contains the virtual address of the hashed page table address corresponding
to the reference which raised the fault.

• ITIR – contains the default translation information for the reference which raised
the fault (i.e. for the virtual address contained in IFA). The access key field is set to
the region ID from the RR corresponding to the faulting address. The page size field
is set to the preferred page size (RR.ps) from the RR corresponding to the faulting
address.

• IFA – the virtual address of the bundle (for instruction faults) or data reference (for
data faults) which missed the TLB.

The fault handler for a short format VHPT performs the following steps, at a minimum,
to handle the fault:

1. Move IHA into a general register, chosen by convention to match the register
expected by the nested TLB fault handler.

2. Perform an 8-byte load into another general register from the address contained
in this general register to grab the VHPT entry. Note that the format of these first
8 bytes is identical to the format required for TLB insertion. If the VHPT is not
mapped by a TR, software must be prepared to handle a nested TLB fault when
performing this load.

3. Using the general register from step 2 that holds the contents of the VHPT entry,
perform a TC insert (itc.i for instruction faults, itc.d for data faults).

4. In an MP environment, reload the VHPT entry from step 2 into a third general
register and compare the value to the one loaded in step 2. If the values are not
the same, then the VHPT has been modified by another processor between steps
2 and 3, and the entry will have to be re-inserted. In this case, purge the entry
just inserted using a ptc.l instruction. The fault will re-occur after the rfi in
step 5 (unless the VHPT walker succeeds on the next TLB miss) and the fault
handler will re-attempt the insertion. (Uniprocessor environments may skip this
step.)

5. rfi.

For a long format VHPT, additional steps are required to load bytes 16-23 of the VHPT
entry and check for the correct tag (the correct tag for the reference can be generated
using the ttag instruction). If the tags do not match, this indicates a VHPT collision, and
the handler must proceed to walk the operating system’s collision chain manually to
find the correct entry. The handler may then choose to swap places between the correct
entry and the VHPT entry. Note that the pointers for a collision chain can be stored in
bytes 24-31 of the VHPT entry format since these bytes are ignored by the VHPT
walker.

If the default page size and key are not sufficient, the handler must also perform
additional steps to load the correct page size and key into the ITIR register before
performing the TC insert in step 3 of the sequence shown above.

Volume 2, Part 2: Memory Management 2:575

5.4.2 VHPT Translation Vector

Processors based on the Itanium architecture does not perform recursive TLB hardware
page walks. Since the VHPT is itself a virtually addressed structure, each reference
performed by the walker itself goes through the TLBs and may miss. These faults are
raised when the VHPT walker is enabled, but the walker misses the TLBs when
attempting to service a TLB miss caused by the program.

There is a separate vector for each fault type (data and instruction).

Upon entry to this fault handler, the IHA, IFA, and ITIR control registers are initialized
by the hardware as follows:

• IHA – contains the virtual address of the hashed page table address corresponding
to the reference which raised the fault.

• ITIR – contains the default translation information for the VHPT address which
missed the TLBs (i.e. for the virtual address contained in IHA). The access key field
is set to the region ID from the RR corresponding to the VHPT address. The page
size field is set to the preferred page size (RR.ps) from the RR corresponding to the
VHPT address.

• IFA – contains the original faulting address that the VHPT walker was attempting to
resolve.

The fault handler for a short format VHPT performs the following steps, at a minimum,
to handle the fault:

1. Move the IHA register into a general register.

2. Perform a thash instruction using the general register from step 1 This will
produce, in the target register, the VHPT address of the VHPT entry that maps the
VHPT entry corresponding to the original faulting address (i.e. the address in
IFA).

3. Using the target general register of the thash from step 2 as the load address,
perform an 8-byte load from the VHPT. Note that the format of these first 8 bytes
is identical to the format required for TLB insertion. Software must be prepared to
take a nested TLB fault if this load misses the TLBs.

4. Move the IHA value from the general register written in step 1 into the IFA
register.

5. Using the general register from step 3 that holds the contents of the VHPT entry,
perform a data TC insert using the itc.d instruction. (VHPT references always go
through the data TLBs.)

6. In an MP environment, reload the VHPT entry from step 3 into a different general
register and compare the value to the one loaded in step 3. If the values are not
the same, then the VHPT has been modified by another processor between steps
3 and 4, and the entry will have to be re-inserted. In this case, purge the entry
just inserted using a ptc.l instruction. The fault will re-occur after the rfi in
step 7 (unless the VHPT walker succeeds on the next TLB miss) and the fault
handler will re-attempt the insertion. (Uniprocessor environments may skip this
step.)

7. rfi.

2:576 Volume 2, Part 2: Memory Management

For a long format VHPT, additional steps are required to load bytes 16-23 of the VHPT
entry and check for the correct tag; see Section 5.4.1 for more details.

A separate structure other than the VHPT may be used to back VHPT translations, in
which case the handler would not use the thash instruction to generate the address of
the translation mapping the VHPT entry corresponding to the original faulting address.
Instead, the handler would use the operating system’s own mechanism for finding VHPT
back-mappings. Other schemes for handling VHPT misses are also possible, but are
beyond the scope of this document.

5.4.3 Alternate Data/Instruction TLB Miss Vectors

These faults are raised when an instruction or data reference misses the processor’s
TLBs and the VHPT walker is not enabled for the faulting address, i.e. TLB misses are
handled entirely in software. Operating systems which do not wish to use the VHPT
walker can disable the walker and use these fault vectors for software TLB fill handlers.
The OS may also choose to enable the walker on a per-region basis and use these
vectors to handle misses in regions where the walker is disabled.

Upon entry to these fault handlers, the IFA and ITIR registers are initialized by the
hardware as follows:

• ITIR – contains the default translation information for the reference which raised
the fault (i.e. for the virtual address contained in IFA). The access key field is set to
the region ID from the RR corresponding to the faulting address. The page size field
is set to the preferred page size (RR.ps) from the RR corresponding to the faulting
address.

• IFA – the virtual address of the bundle (for instruction faults) or data reference (for
data faults) which missed the TLB.

The OS needs to lookup the PTE for the faulting address in the OS page table, convert it
to the architected insertion format (see Section 4.1.1.5, “Translation Insertion
Format”), and insert it into the TLB. The mechanism used to handle these faults is OS
specific and is beyond the scope of this document.

5.4.4 Data Nested TLB Vector

To enable efficient handling of software TLB fills, the Itanium architecture provides a
dedicated Data Nested TLB fault vector. The Data Nested TLB fault handler is intended
to be used by the Data TLB fault handler, which allows the OS to page the page tables
themselves. When PSR.ic is 0, any data reference that misses the TLB and would
normally raise a Data TLB Miss fault (e.g. a load performed by the Data TLB fault
handler to the page tables) will vector to the Data Nested TLB fault handler instead.
Because IFA is not updated when PSR.ic is 0, the Data Nested TLB fault handler must
get the faulting address from the general register used as the load address in the Data
TLB fault handler1. Unlike other nested interruptions, the hardware does not update
ISR when a Data Nested TLB fault is delivered.

1. This requires a register usage convention between all TLB miss handlers and the Data Nested TLB
miss handler.

Volume 2, Part 2: Memory Management 2:577

The processor will not deliver a Data Nested TLB fault when PSR.ic is in-flight; Data
Nested TLB faults are only delivered when PSR.ic is 0. If PSR.ic is in-flight, any data
references which miss the TLB and trigger a fault will raise a Data TLB fault, and the
processor will set ISR.ni to 1.

5.4.5 Dirty Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS
page table and load the PTE into a general register rx. It can then set the “dirty” bit in
rx and write the updated PTE back to the page table. To continue execution, the OS
must insert the updated PTE into the data TLB or update the PTE memory image and let
the VHPT walker perform the insertion.

5.4.6 Data/Instruction Access Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS
page table and load the PTE into a general register rx. It can then set the “access” bit in
rx and to continue execution, the OS must either:

• Write the updated PTE back to the page table, and have the VHPT walker pick it up,
or

• Insert the updated PTE into the TLB using itc.i rx for instruction pages, and itc.d
rx for data pages, or

• Step over the instruction/data access bit fault by setting the IPSR.ia or IPSR.da bits
prior to performing an rfi.

5.4.7 Page Not Present Vector

Forward the fault to the operating system’s virtual memory subsystem.

5.4.8 Data/Instruction Access Rights Vector

Forward the fault to the operating system’s virtual memory subsystem.

5.5 Subpaging

The native page size an Itanium architecture-based operating system will choose for its
page tables is likely be larger than the architectural minimum page size of 4 KB. Some
legacy IA-32 applications, however, expect a page protection granularity of 4 KB. The
following technique allows support for these applications with minimal impact on the
native, larger page size paging mechanism.

A special type of entry is used in the native page table to mark pages that are
subdivided into smaller 4 KByte units. The entry must have its memory attribute field
set to the architecturally “software reserved” encoding (binary 001), and it carries a
pointer to an array of 4 KB subentries in its most significant 59 bits. An example using
a native page size of 16 KB is shown in Figure 5-2. The use of the “software reserved”
memory attribute prevents the VHPT walker from attempting to insert the entry into
the TLB.

2:578 Volume 2, Part 2: Memory Management

When one of the subdivided pages is referenced and does not have a translation in the
TLB, a TLB miss will occur. The handler for this fault can then use the faulting address
to calculate the appropriate offset into the sub-table and insert the corresponding
4KByte PTE into the TLB.

Some care is required to ensure forward progress for IA-32 instructions. Each IA-32
instruction can reference up to 8 distinct memory pages during its execution (see also
Section 10.6.3, “IA-32 TLB Forward Progress Requirements”). This means that the fault
handler not only has to insert the PTE for the current fault into the TLB, but also the
PTEs for up to seven faults that occurred before, if these faults originate from the same
IA-32 instruction. This can be accomplished by maintaining a buffer for the most recent
faulting IIP and for the parameters of up to 7 TLB insertions. If a TLB fault occurs while
executing in IA-32 mode and the IIP matches the most recent IIP, all TLB insertions in
the buffer have to be repeated and the parameters for the new TLB fault must be added
to the buffer. Otherwise, the buffer can be cleared out and the most recent IIP can be
updated. The buffer also has to be cleared out when a TLB purge occurs.

§

Figure 5-2. Subpaging

Native Page Table

16K PTE

16K PTE

16K PTE

16K PTE

4K PTE

4K PTE

4K PTE

4K PTE

Sub-table

001 1

Volume 2, Part 2: Runtime Support for Control and Data Speculation 2:579

Runtime Support for Control and Data
Speculation 6

An Itanium architecture-based operating system needs to handle exceptions generated
by control speculative loads (ld.s or ld.sa), data speculative loads (ld.a) and
architectural loads (ld) in different ways.

Software does not have to worry about control or data speculative loads potentially
hitting uncacheable memory with side-effects, since ld.s, ld.sa, and ld.a instructions
to non-speculative memory are always deferred by the processor for details refer to
Section 4.4.6, “Speculation Attributes” on page 2:79. As a result, compilers can freely
use control and data speculation to all program variables.

Control speculative loads require special exception handling and the Itanium
architecture provides a variety of deferral mechanisms for handling of control
speculative exception handling. This is discussed in Section 6.1.

The Itanium architecture supports different control speculation recovery models. These
are discussed in Section 6.2.

Handling of exceptions caused by architectural and data speculative loads is the same,
except for emulation of unaligned data speculative references, which require special
unaligned emulation handling. This is discussed in Section 6.3.1.

6.1 Exception Deferral of Control Speculative Loads

Exceptions that occur on control speculative loads (ld.s or ld.sa) can be handled by
the operating system in different ways. The operating system can configure a processor
based on the Itanium architecture in three ways:

• Hardware-Only Deferral: automatic hardware deferral of all control speculative
exceptions. In this case, the processor hardware will always defer excepting control
speculative loads without invoking the operating system.

• Combined Hardware/Software Deferral: automatic deferral of some control
speculative exceptions, but deliver others to software. In this case, some
exceptions will result in hardware deferral as described above, other exceptions will
be reported to the operating system. The operating system fault handlers can
identify that an exception has been caused by a control speculative load (ISR.sp will
be 1). Furthermore, OS handlers can software-defer an exception on a control
speculative load by setting IPSR.ed to 1 prior to rfi-ing back to the ld.s or ld.sa.
This allows an operating system to service “cheap” non-fatal exceptions (e.g.
simple TLB misses), while software-deferring both “expensive” non-fatal (e.g. page
faults) as well as fatal exceptions (e.g. non-recovery protection violation).

• Software-Only Deferral: processor is configured to deliver all control speculative
exceptions to software. In this case, operating system software handles all
non-fatal control speculative exceptions, and software-defers all fatal control
speculative exceptions.

2:580 Volume 2, Part 2: Runtime Support for Control and Data Speculation

Details on these three models are discussed in the next three sections as well as in
Section 5.5.5, “Deferral of Speculative Load Faults” on page 2:105.

6.1.1 Hardware-only Deferral

Hardware only deferral is configured by setting all speculation deferral bits in the DCR
register (dd, da, dr, dx, dk, dp and dm) to 1. All excepting control speculative loads are
automatically deferred by the processor. As a result, all excepting control speculative
loads that hit non-fatal exceptions, e.g. a TLB miss or a page fault, will be deferred by
the processor hardware, and will cause speculation recovery code to be invoked. This
can cause speculation recovery code to be invoked more often than strictly necessary.

6.1.2 Combined Hardware/Software Deferral

Setting of a DCR deferral bit to 1 results in hardware deferral by the processor, whereas
clearing of a deferral bit causes exceptions to be delivered to software. The operating
system may want to configure the processor to deliver control speculative exceptions to
its handlers for certain non-fatal faults such as TLB misses or protection key misses.
Early handling of these exceptions avoids unnecessary invocation of speculation
recovery code, and the associated performance penalty. This is especially useful for
exceptions handlers whose overhead is small. Note that handlers will also be invoked
for excepting control speculative loads that have been hoisted from not taken paths,
and therefore are not needed. As a result, software handling of control speculative
exceptions is recommended only for statistically infrequent light weight fault handlers
such as TLB miss or protection key miss handlers. If, while handling the exception, the
operating system determines that this instance of the exception may require too much
effort, e.g. a TLB miss turns out to be a page fault, the handler still has the choice of
software-deferring the exception.

6.1.3 Software-only Deferral

Software only deferral is configured by clearing all speculation deferral bits in the DCR
register (dd, da, dr, dx, dk, dp and dm) to 0. Control speculative loads that hit any
Debug, Access Bit, Access Rights, Key Permissions, Key Miss, or Not Present fault, or
that suffer a TLB miss or a VHPT Translation fault will be delivered to software.

6.2 Speculation Recovery Code Requirements

As described by Table 6-1, code generators for the Itanium architecture are not always
required to generate speculation recovery code for all forms of speculation. Compilers
and operating systems can collaborate to provide two models for handling of recovery
from failed control speculation:

• ITLB.ed=1 (application with recovery code – the default): The compiler generates
appropriate recovery code for all ld.s instructions, as well as for ld.sa and ld.a
instructions that have speculatively executed uses. Speculation failure of ld.sa and
ld.a instructions that have no speculatively executed uses can be recovered by a
ld.c instruction, and hence do not require recovery code. The operating system
may defer non-fatal exceptions.

Volume 2, Part 2: Runtime Support for Control and Data Speculation 2:581

• ITLB.ed=0 (no control speculative recovery code): The compiler generates recovery
code only for ld.sa and ld.a instructions that have speculatively executed uses.
Speculation failure of ld.sa and ld.a instructions that have no speculatively
executed uses can be recovered by a ld.c instruction, and hence do not require
recovery code. Speculation failure of ld.s instructions does not require recovery
code, because, in this model, the operating system must guarantee that only fatal
exceptions will be deferred. This requires software-only deferral of all potential
non-fatal exceptions. The motivation for this model is that the absence of chk.s
instructions and their associated recovery code may make for shorter and more
compact in-line code, especially in loops with tight instruction schedules.

Presence or lack of control speculation recovery code is communicated from the
compiler and the runtime system to the operating system by marking the code page’s
page table entry ed-bit appropriately (this bit is referred to as ITLB.ed). When ITLB.ed
is 1, the operating system will expect recovery code to be present; when ITLB.ed is 0
no recovery code is expected. When a control speculative load takes an exception, the
code page’s ITLB.ed bit is copied into ISR.ed and is made available to the operating
system exception handler. Furthermore, a set ISR.sp bit indicates that an exception was
caused by a control speculative load.

6.3 Speculation Related Exception Handlers

6.3.1 Unaligned Handler

Misaligned control and data speculative loads, as well as architectural loads, are not
required to be handled by the processor. As a result, the operating system’s unaligned
reference handler has to be prepared to emulate such misaligned memory references,
especially in cases where the application has not provided any recovery code (see
Section 6.2 for details). Furthermore, misaligned data speculative loads (ld.sa or
ld.a) must be forced failed by the unaligned emulation handler, because the ALAT
cannot track all sizes of misalignment for store conflict detection.

Table 6-1. Speculation Recovery Code Requirements

Usage Model
OS May Defer Non-fatal Exceptions

on Control Speculative Loads
(ITLB.ed=1)

OS Must Not Defer Non-fatal
Exceptions on Control

Speculative Loads
(ITLB.ed=0)

No Speculative Load Uses

ld.s Recovery code required; Invoked by
chk.s or non-speculative use of
speculative value recovers from failed
control speculation.

No recovery code required;
OS handles all non-fatal exceptions
speculatively.

ld.sa,ld.a No recovery code required;
ld.c recovers from failed data speculation.

With Speculative Load Uses

ld.s Recovery code required; invoked by
chk.s or non-speculative use of
speculative value recovers from failed
control speculation.

No recovery code required;
OS handles all non-fatal exceptions
speculatively.

ld.sa,ld.a Recovery code required;
chk.a recovers from failed data speculation.

2:582 Volume 2, Part 2: Runtime Support for Control and Data Speculation

The following pseudo code outlines the basic steps for an unaligned reference handler:

1. Ensure that only ISR.r is 1, and that ISR.w, ISR.x, and ISR.na are 0.

2. Inspect the ISR.sp and ISR.ed. If both are 1, then defer this control speculative
load by setting IPSR.ed and rfi-ing.

3. Crack the instruction opcode to determine:

a. Size of the load: 1, 2, 4, 8, 10 bytes

b. Type of the load: ld.sa, ld.s, ld.a, ld.c.clr, ld.c.nc or ld

c. Target, source and post-increment registers of the load

4. If this is a data speculative load (ld.sa, or ld.a), invalidate the target register’s
ALAT entry using an invala.e instruction, and rfi.

5. If this is a ld.c.clr instruction invalidate the target register’s ALAT entry using
an invala.e instruction.

6. Emulate the memory read of the load instruction by updating the target register
as follows:

a. Validate that emulated code has the access rights to the target memory
location at the privilege level that it was running prior to taking the alignment
fault. The regular_form probe instruction can be used on the first and the last
byte of the unaligned memory reference. If both probes succeed the memory
reference may proceed.

b. Using architectural ld instructions if the emulated operation is a ld or a ld.c
(either clear or no clear flavor).

c. Using ld.s instructions if the emulated operation is a ld.s. The result in the
target register may end up with its NaT bit or NaTVal set, if one of the parts
of emulation causes an exception. If ITLB.ed is 0 (no control speculation
recovery code), then the misaligned ld.s may only be deferred if a fatal
exception occurred on either half or the ld.s emulation.

7. If this is a post-increment load, compute the new value for the source register.

§

Volume 2, Part 2: Instruction Emulation and Other Fault Handlers 2:583

Instruction Emulation and Other Fault
Handlers 7

This chapter introduces several common emulation handlers that an Itanium
architecture-based operating system must support. A general overview is given for:

• Unaligned Reference Handler – emulation of misaligned memory references that
the processor hardware cannot handle, or has been configured to fault on.

• Unsupported Data Reference Handler – emulation of memory operations that the
processor hardware does not support. Examples are semaphore, ldfe or stfe
operations to uncacheable memory.

• Illegal Dependency Fault Handler – this is a fatal condition that operating system
needs to provide error logging functionality for.

• Long Branch Handler – the Itanium processor does not implement the long branch
instruction. When encountered on the Itanium processor, long branches must be
emulated by the operating system.

Floating-point software assist emulation handlers are not discussed here, but are
presented in Chapter 8, “Floating-point System Software.” Additionally, Section 5.5.1,
“Efficient Interruption Handling” on page 2:102 discusses more details about emulation
code in the Itanium architecture.

7.1 Unaligned Reference Handler

Misaligned memory references that are not supported by the processor cause Unaligned
Reference Faults. This behavior is implementation specific but typically occurs in cases
where the access crosses a cache line or page boundary. In cases where the operating
system chooses to emulate misaligned operations, some special cases need to be
considered:

• Emulation of control and data speculative loads as well as advanced check and
“regular” loads requires special attention. For details consult Section 6.3.1,
“Unaligned Handler” on page 2:581.

• Emulation of unaligned semaphores, especially when interacting with IA-32 code
require special attention. For details consult Section 2.1.3.2, “Behavior of
Uncacheable and Misaligned Semaphores” on page 2:509.

IA-32 programs do not use the Itanium architecture-based handler to support
unaligned references. The hardware that supports IA-32 execution provides the
appropriate behavior if alignment checking is disabled through EFLAGS.ac. If an
unaligned reference occurs in IA-32 code when EFLAGS.ac is set to enable alignment
checking, alignment faults are delivered to a different vector from the unaligned
reference handler. Specifically they are delivered to the
IA_32_Exception(AlignmentCheck) vector; see Chapter 9, “IA-32 Interruption Vector
Descriptions” for details.

2:584 Volume 2, Part 2: Instruction Emulation and Other Fault Handlers

7.2 Unsupported Data Reference Handler

Processors based on the Itanium architecture do not support all types of memory
references to all memory attributes. In particular:

• Semaphore operations to uncacheable memory are not supported. For details
consult Section 2.1.3.2, “Behavior of Uncacheable and Misaligned Semaphores” on
page 2:509.

• A 10-byte memory access, e.g. ldfe or stfe, to uncacheable memory are not
supported by all implementations.

The handler for 10-byte memory accesses must go through the following steps to
emulate the ldfe or stfe instructions:

• Determine that the opcode at the faulting address is an ldfe or stfe. On
control-speculative flavors of these instructions (ldfe.s or ldfe.sa) processor
hardware always defers the unsupported data reference fault. In other words,
software does not have to emulate control-speculative fault deferral.

• If the instruction is an advanced load ldfe.a then the emulation handler should
invalidate the ALAT entry of the appropriate floating-point target register using the
invala.e instruction. Furthermore, a zero should be returned in the floating-point
target register.

• If the instruction is a regular ldfe or stfe, then software must emulate the load or
store behavior of the instruction taking the appropriate faults if necessary.

• If the instruction is the base register update form, update the appropriate base
register.

A number of these steps may require the use of self-modifying code to patch
instructions with the appropriate operands (for example, the target register of the
inval.e must be patched to the destination register of the ldfe or stfe). See
Section 2.5, “Updating Code Images” on page 2:531 for more information.

7.3 Illegal Dependency Fault

The Itanium instruction sequencing rules specify that, generally speaking, instructions
within an instruction group are free of dependencies as described in Section 3.4,
“Instruction Sequencing Considerations” on page 1:39. A dependency violation occurs
anytime a program violates read-after-write (RAW), write-after-write (WAW) or
write-after-read (WAR) resource dependency rules within an instruction group.

As Section 3.4.4, “Processor Behavior on Dependency Violations” on page 1:44
describes, an implementation may provide hardware to detect and report dependency
violations. It is important to note that the presence and capabilities of such hardware is
implementation specific. A processor based on the Itanium architecture reports
dependency violations through the General Exception Vector with an ISR.code of 8.

It is recommended that operating systems log the dependency violation and then
terminate the offending application, as hardware behavior is undefined when a
dependency violation occurs.

Volume 2, Part 2: Instruction Emulation and Other Fault Handlers 2:585

7.4 Long Branch

The Itanium architecture supports “long” branches with a 64-bit offset. This provides
IP-relative conditional- and call-type branches that can reach any address in a 64-bit
address space. These instructions use the MLX template, and similar to the move long
instruction (movl), they encode their immediate in the L and the X slot of the bundle.

The Intel Itanium processor does not support the long branch instruction, brl, and
requires the operating system to emulate its behavior. When an Itanium processor
encounters a brl instruction, it vectors to the Illegal Operation Fault handler,
regardless of the branches’ qualifying predicate. This handler is expected to emulate
the long branch instruction in software. A general outline of the long branch emulation
handler is as follows:

• The emulation handler reads the IIP, IPSR, and predicates at the time of the fault.

• If the fault occurred in IA-32 code or if the fault did not occur in slot 2 of a bundle
(IPSR.ri is not 2), the handler passes the fault to regular illegal operation fault
handler.

• Two floating-point registers are spilled into the integer register file to get ready to
load the bundle.

• The emulation handler speculatively loads the 128-bit bundle at the faulting IP
using the integer form of the floating-point load pair instruction. This instruction is
chosen because it operates atomically (see Section 4.5, “Memory Datum Alignment
and Atomicity”). Using two 64-bit integer loads would require the handler to ensure
that another agent does not update the bundle between the two reads.

• If the speculation fails, the recovery code re-issues the load. Before re-issuing an
architectural load, the processor must first re-enable PSR.ic to be able to handle
potential TLB misses when reading the opcode from memory. In other words, this
becomes a heavyweight handler. For details see Section 3.4.2, “Heavyweight
Interruptions” on page 2:544. Once the opcode has been read from memory
successfully flow of the emulation continues at the next step.

• The 128-bit bundle is moved from the FP register file into two integer registers and
the FP registers are restored to their contents at the time of the fault.

• The handler extracts the fields necessary to decode the instruction (specifically, the
qp, template, major opcode, and btype or b1 fields of slot 2). It also determines the
value of the qualifying predicate of the instruction in slot 2 from the contents of the
predicate register at the time of the fault. Itanium instruction are always stored in
memory in little-endian memory format. When extracting bit fields from the loaded
opcode current processor endianness (PSR.be) must be taken into account.

• The emulation handler passes the fault off to the regular illegal operation fault
handler if the bundle is not an MLX or if the faulting instruction is not a brl.cond or
brl.call.

• If the faulting instruction is a not-taken brl.cond or brl.call, the code prepares
to change the IIP to the address of the sequential successor of the faulting branch
(i.e. IIP + 16) and jumps ahead to the trap detection code mentioned below.

• If the faulting instruction is a taken brl.call, the handler emulates the
appropriate behavior of the call. The code uses a br.call to move the appropriate
values into CFM and AR[PFS]. There are several details, however. First, the branch
register update from the call must be backed out (as it is not the correct update for
the brl.call). Second, AR[PFS].ppl must be set based on the cpl at the time of the
fault (which is given by IPSR.cpl). Finally, the code must update the branch register

2:586 Volume 2, Part 2: Instruction Emulation and Other Fault Handlers

specified in the brl.call instruction with the IP of the successor of the brl.call
(predication helps here as the Itanium instruction set does not provide an indirect
move to branch register instruction).

• The handler forms the 60-bit immediate IP-offset for the brl target from the i and
imm20 fields from the X syllable of the bundle (the brl instruction) and the imm39
field from the L syllable of the bundle.

• The handler checks to see if there are any traps to be taken. Specifically, it verifies
that the next IP is at an implemented address (the specific test depends on whether
the processor was in virtual or physical mode at the time of the fault as IPSR.it
indicates), that taken branch traps are not enabled if the branch is taken, and that
single stepping is not enabled.

• If a trap condition is detected, the ISR.code and ISR.vector fields are set up as
appropriate and the handler jumps to the appropriate operating system entry point
after restoring the predicates at the time of the fault and setting the IIP to the
appropriate address.

• If no trap occurs, the handler restores the predicates and returns to the faulting
code at the appropriate IP.

A processor based on the Itanium architecture typically does not fault on instructions
with false qualifying predicates. However, an implementation may take an Illegal
Operation Fault on an MLX instruction with a false predicate; the Itanium processor is
such an implementation. This implies that the brl emulation handler must also provide
the means to skip the faulting instruction when its qualifying predicate is false.

§

Volume 2, Part 2: Floating-point System Software 2:587

Floating-point System Software 8

This chapter details the way floating-point exceptions are handled in the Itanium
architecture and how the architecture can be used to implement the ANSI/IEEE Std.
754-1985 for Binary Floating-point Arithmetic (IEEE-754). It is useful in creating and
maintaining floating-point exception handling software by operating system writers.

8.1 Floating-point Exceptions in the Intel® Itanium®
Architecture

Floating-point exception handling in the Itanium architecture has two major
responsibilities. The first responsibility is to assist a hardware implementation to
conform to the Itanium floating-point architecture specification. The Floating-point
Software Assistance (FP SWA) Exception handler supports this conformance and is
included as a driver in the Unified Extensible Firmware Interface (UEFI). The second
responsibility is to provide conformance to the IEEE-754 standard. The IEEE
Floating-point Exception Filter (IEEE Filter) supports providing this conformance.

When a floating-point exception occurs, a minimal amount of processor state
information is saved in interruption control registers. Additional information is
contained in the Floating-point Status Register (FPSR), i.e. application register (AR40).
This register contains the IEEE exception enable controls, the IEEE rounding controls,
the IEEE status flags, and information to determine the dynamic precision and range of
the result to be produced.

When a floating-point exception occurs, execution is transferred to the appropriate
interruption vector, either the Floating-point Fault Vector (at vector address 0x5c00) or
the Floating-point Trap Vector (at vector address 0x5d00.) There the operating system
may handle the exception or save additional processor information and arrange for
handling of the exception elsewhere in the operating system. Floating-point exception
faults must be handled differently than other faults. Correcting the condition that
caused the fault (e.g. a page not present is brought into memory) and re-executing the
instruction is how most other faults are handled. For floating-point faults, software is
required to emulate the operation and continue execution at the next instruction as is
normally done for traps. Part of this emulation needs to include a check for any lower
priority traps that would have been raised if the instruction hadn’t faulted, e.g. a
single-step trap.

8.1.1 Software Assistance Exceptions (Faults and Traps)

There are three categories of Software Assistance (SWA) exceptions that must handled
by the operating system. The first two categories, SWA Faults and SWA Traps, are
implementation dependent and could be generated by any Itanium floating-point
arithmetic instruction that contains a status field specifier in the instruction's encoding.
An implementation may choose to raise a SWA Fault as needed. The SWA Trap can only
be raised under special circumstances. The third category, architecturally mandated

2:588 Volume 2, Part 2: Floating-point System Software

SWA Faults, is limited to the scalar reciprocal and scalar reciprocal square-root
approximation instructions and is not implementation dependent. It is required for the
correctness of the divide and square root algorithms.

8.1.1.1 SWA Faults

The Itanium architecture allows an implementation to raise SWA faults as required.
Therefore an implementation-independent operating system must be able to emulate
the architectural behavior of all FP instructions that can raise a floating-point exception.
However, hardware implementations will limit the cases that raise SWA Faults for
performance reasons. The most likely cases would be for the consumption of
denormalized or unnormalized operands and production of denormalized results.

The general flow of the SWA Fault handler is as follows:

1. From the interruption instruction bundle pointer (IIP) and faulting instruction
index (IPSR.ri), determine the FP instruction that faulted.

2. From the instruction, decode the opcode, static precision, status field and
input/output register specifiers.

3. Read the data from the input registers.

4. From the opcode and the FPSR’s status field, decode the result range and
precision.

5. From the ISR.code, determine that a SWA Fault has occurred, if not go to the last
step.

6. From the FPSR, determine if the trap disabled or trap enabled result is wanted.

7. Emulate the Itanium instruction to produce the Itanium architecture specified
result.

8. Place the result(s) in the correct FR and/or PR registers, if required.

9. Update the flags in the appropriate status field of the FPSR, if required.

10. Update the ISR.code if required. (This is required if the SWA fault has been
translated into an IEEE fault or trap.)

11. Check to see if an IEEE fault or trap needs to be raised. If so, then queue it to the
IEEE Filter, otherwise continue checking for lower priority traps that may need to
be raised and if required invoke their handler. When finished, continue execution
at the next instruction.

8.1.1.2 SWA Traps

SWA traps are allowed in the Itanium architecture as an optimization for cases when
the hardware implementation has produced the result of the first (exponent
unbounded) IEEE rounding1 and can't continue with the second (exponent bounded)
IEEE rounding to produce the final result. One option for the implementation would be
to throw away the first IEEE rounding result and raise the SWA Fault. The SWA Fault
handler would then have to redo the computation of the first IEEE rounding. A
potentially more efficient option would be for the implementation to return the first
IEEE rounding result and raise a SWA trap. Returning the first IEEE rounded result is

1. ANSI/IEEE Std 754-1985 sections 7.3 Overflow and 7.4 Underflow.

Volume 2, Part 2: Floating-point System Software 2:589

the same as what is done when the IEEE Overflow or Underflow exceptions are enabled.
However, hardware implementations will limit the cases that raise SWA Traps for
performance reasons. The most likely case would be for the production of denormalized
results.

For tiny1 results, the SWA Trap handler has the simpler task of taking the intermediate
result of the first IEEE rounding, the ISR.fpa and ISR.i status bits and producing the
correctly rounded and signed minimum normal, denormal or zero. For huge2 results,
the SWA Trap handler has the even simpler task of taking the intermediate result of the
first rounding and producing the correctly signed maximum representable normal or
infinity, based on the sign of the result, the rounding direction, and the result precision
and range.

Note: The Itanium architecture also allows for SWA Traps to be raised when the result
is just Inexact. This is a trivial case for the SWA Trap handler, since result of the
second IEEE rounding is identical to the first IEEE rounding.

The general flow of the SWA Trap handler is as follows:

1. From the interruption instruction previous address (IIPA) and exception
instruction index (ISR.ei), determine the FP instruction that trapped.

2. From the instruction, decode the opcode, static precision, status field and

1. Tiny numbers are non-zero values with a magnitude smaller than the smallest normal floating-point
number.

2. Huge numbers have values larger in magnitude than the largest normal floating-point number.

Figure 8-1. Overview of Floating-point Exception Handling in the Intel®
Itanium® Architecture

User Space

User Application User Exception Handler

IEEE Filter

OS Kernel Fault/Trap Vector

PAL

Intel® Itanium® Processor Hardware

IEEE?

"Ease of Use"

"Functionality"

Boot Time

Itanium®-based System

000957a

FP SWA

EFI
FP Emulation Library

2:590 Volume 2, Part 2: Floating-point System Software

input/output register specifiers.

3. From the ISR.code and FPSR trap enable controls, determine if a SWA Trap has
occurred, if not go to the last step.

4. Read the first IEEE rounded result from the FR output register.

5. From the opcode and the status field, decode the result range and precision.

6. From the ISR.code’s FPA, O, U, and I status bits and the intermediate result,
produce the Itanium architecture specified result.

7. Place the result in the output FR register.

8. Update the flags in the appropriate status field of the FPSR, if required.

9. Update the ISR.code if required. (This is required if the SWA trap has been
translated into an IEEE trap.)

10. Check to see if an IEEE trap needs to be raised. If so, then queue it to the IEEE
Filter, otherwise continue checking for lower priority traps that may need to be
raised and if required invoke their handler. When finished, continue execution at
the next instruction.

8.1.1.3 Approximation Instructions and Architecturally Mandated SWA Faults

The scalar approximation instructions, frcpa and frsqrta, can raise architecturally
mandated SWA Faults. This occurs when their input operands are such that they are
potentially prevented from generating the correct result by the usual software
algorithms that are employed for divide and square root. The reasons for this are that
these algorithms may suffer from underflow, overflow, or loss of precision, because the
inputs or result are at the extremes of their range. For these special cases, the SWA
Fault handler must use alternate algorithms to provide the correct quotient or square
root and place that result in the floating-point destination register. The predicate
destination register is also cleared to indicate the result is not an approximation that
needs to be improved via the iterative algorithm.

The parallel approximation instructions fprcpa and fprsqrta have situations similar to
the scalar approximation instruction’s architecturally mandated SWA Faults. This occurs
when their input operands are such that they are potentially prevented from generating
the correct result by the usual software algorithms that are employed for divide and
square root. For these special cases, instead of generating a SWA Fault, the parallel
approximation instructions indicate that software must use alternate algorithms to
provide the correct reciprocal or square-root reciprocal by clearing the destination
predicate register. The cleared predicate is the indication to the parallel IEEE-754 divide
and square root software algorithms that alternative algorithms are required to produce
the correct IEEE-754 quotient or square root.

8.1.2 The IEEE Floating-point Exception Filter

The Itanium architecture supports the reporting of the five IEEE-754 standard
floating-point exceptions and the IA-32 Denormal Operand exception. In the Itanium
architecture the Denormal Operand exception is expanded to the Denormal/Unnormal
Operand exception. When referring to the IEEE-754 exceptions in the Itanium
architecture the Denormal/Unnormal Operand exception is included.

Volume 2, Part 2: Floating-point System Software 2:591

At the application level, a user floating-point exception handler could handle the
Itanium floating-point exception directly. This is the traditional operating system
approach of providing a signal handler with a pointer to a machine-dependent data
structure. It would be more convenient for the application developer if the operating
system were to first transform the results to make them IEEE-754 conforming and then
present the exception to the user in an abstracted manner. It is recommended that the
operating system include such a software layer to enable application developers that
want to handle floating-point exceptions in their application. The IEEE Floating-point
Exception Filter provides this convenience to the developer through three functions.

• The first function of the IEEE Filter is to map the Itanium architecture's result to the
IEEE-754 conforming result. This includes the wrapping of the exponent for
Overflow and Underflow exceptions. The Itanium architecture keeps the exponent
in the 17-bit format, which is not wrapped (i.e. scaled) with the appropriate value
for the destination precision.

• The second function of an IEEE Filter is to transform the interruption information to
a format that is easier to interpret and to invoke a user handler for the exception.
The user's handler may then provide a value to be substituted for the IEEE default
result, based on the operation, exception and inputs.

• The third function of the filter is to hide the complexities of the parallel instructions
from the user. If a floating-point fault occurs in the high half of a parallel
floating-point instruction and there is a user handler provided, the parallel
instruction is split into two scalar instructions. The result for the high half comes
from the user handler, while the low half is emulated by the IEEE Filter. The two
results are combined back into a parallel result and execution is continued. More
complicated cases can also occur with multiple faults and/or traps occurring in the
same instruction.

Note: Usage of the IEEE Filter should not be compulsory – the user should be able to
choose to handle enabled floating-point exceptions directly. The IEEE filter just
hides the details of the instruction set and frees the user handler from having to
emulate instructions directly and potentially incorrectly.

8.1.2.1 Invalid Operation Exception (Fault)

The exception-enabled response of an Itanium floating-point arithmetic instruction to
an Invalid Operation exception is to leave the operands unchanged and to set the V bit
in the ISR.code field of the ISR register. The operating system kernel, reached via the
floating-point fault vector, will then invoke the user floating-point exception handler, if
one has been registered.

8.1.2.2 Divide by Zero Exception (Fault)

The exception-enabled response of an Itanium floating-point arithmetic instruction to a
Divide-by-Zero exception is to leave the operands unchanged and to set the Z bit in the
ISR.code field of the ISR register. The operating system kernel, reached via the
floating-point fault vector, will then invoke the user floating-point exception handler, if
one has been registered.

2:592 Volume 2, Part 2: Floating-point System Software

8.1.2.3 Denormal/Unnormal Operand Exception (Fault)

The exception-enabled response of the Itanium arithmetic instruction to a
Denormal/Unnormal Operand exception is to leave the operands unchanged and to set
the D bit in the ISR.code field of the ISR register. The operating system kernel, reached
via the floating-point fault vector, will then invoke the user floating-point exception
handler, if one has been registered.

8.1.2.4 Overflow Exception (Trap)

The exception-enabled response of an Itanium floating-point arithmetic instruction to
an Overflow exception is to deliver the first (exponent unbounded) IEEE rounded result,
and to set the O bit (and possibly the I and FPA bits) in the ISR.code field of the ISR
register and the Overflow flags (and possibly the Inexact flag) in the appropriate status
field of the FPSR register.

The IEEE-754 standard requires that, when raising an overflow exception, the user
handler should be provided with the result rounded to the destination precision with the
exponent range unbounded. For the huge result to fit in the destination’s range, it must
be scaled down by a factor equal to 2.0a (with a equal to 3*2n-2, where n is the number
of bits in the exponent of the floating-point format used to represent the result.) This
scaling down will bring the result close to the middle of the range covered by the
particular format. The exponent adjustment factors to do the scaling for the various
formats are determined as follows:

• 8-bit (single) exponents are adjusted by 3*26 = 0xc0 = 192.

• 11-bit (double) exponents are adjusted by 3*29 = 0x600 = 1536.

• 15-bit (double-extended) exponents are adjusted by 3*213 = 0x6000 = 24576.

• 17-bit (register) exponents are adjusted by 3*215 = 0x18000 = 98304.

The actual scaling of the result is not performed by the Itanium architecture. The IEEE
filter that is invoked before calling the user floating-point exception handler typically
performs the scaling.

8.1.2.5 Underflow Exception (Trap)

The exception-enabled response of an Itanium floating-point arithmetic instruction to
an Underflow exception is to deliver the first (exponent unbounded) IEEE rounded
result, and to set the U bit (and possibly the I and FPA bits) in the ISR.code field of the
ISR register and the Underflow flag (and possibly the Inexact flag) in the appropriate
status field of the FPSR register.

The IEEE-754 standard requires that, when raising an underflow exception, the user
handler should be provided with the result rounded to the destination precision with the
exponent range unbounded. For the tiny result to fit in the destination’s range, it must
be scaled up by a factor equal to 2.0a (with a equal to 3*2n-2, where n is the number of
bits in the exponent of the floating-point format used to represent the result). The
scaling up will bring result close to the middle of the range covered by the particular
format. The exponent adjustment factors to do this scaling for the various formats are
the same as those for enabled overflow exceptions, listed above.

Volume 2, Part 2: Floating-point System Software 2:593

Just as for overflow, the actual scaling of the result is not performed by the Itanium
architecture. It is typically performed by the IEEE Filter, which is invoked before calling
the user floating-point exception handler.

8.1.2.6 Inexact Exception (Trap)

The exception-enabled response of an Itanium arithmetic instruction to an Inexact
exception is to set the I bit (and possibly the FPA bit) in the ISR.code field of the ISR
register and the Inexact flag in the appropriate status field of the FPSR register. The
operating system kernel, reached via the floating-point fault vector, will then invoke the
user floating-point exception handler, if one has been registered.

8.2 IA-32 Floating-point Exceptions

IA-32 floating-point exceptions may occur when executing code in IA-32 mode. When
this happens, execution is transferred to the Itanium interruption vector for IA-32
Exceptions (at vector address 0x6900.) For classic IA-32 floating-point instructions,
they are raised via the “IA_32_Exception(FPError) – Pending Floating-point Error.” For
SSE instructions, they are raised via the “IA_32_Exception(StreamingSIMD) – SSE
Numeric Error Fault.” The operating system may schedule Itanium architecture-based
and/or IA-32 exception handlers for these exceptions.

§

2:594 Volume 2, Part 2: Floating-point System Software

Volume 2, Part 2: IA-32 Application Support 2:595

IA-32 Application Support 9

The Itanium architecture enables Itanium architecture-based operating systems to host
IA-32 applications, Itanium architecture-based applications, as well as mixed
IA-32/Itanium architecture-based applications. Unless the operating system explicitly
intercepts ISA transfers (using the PSR.di), user-level code can transition between the
two instruction sets without operating system intervention. This allows IA-32 programs
to call Itanium architecture-based subroutines or vice-versa. Itanium
architecture-based and IA-32 code can share data through registers and/or memory.
Multi-threaded IA-32 and Itanium architecture-based applications can easily
communicate with each other or the Itanium architecture-based operating system
using shared memory. The Itanium architecture does not support execution of Itanium
architecture-based programs on an IA-32 operating system. While the architecture
does not prevent IA-32 code from executing as part of an Itanium architecture-based
operating system, it is strongly recommended that Itanium architecture-based
operating systems do not contain IA-32 code.

One of the most compelling motivations for executing IA-32 code on an Itanium
architecture-based operating system is the ability to run existing unmodified IA-32
application binaries. Because IA-32 performs 32-bit instruction/memory references that
are zero-extended into 64-bit virtual addresses, Itanium architecture-based operating
systems must ensure that all IA-32 code and data is located in the lower 4GBytes of the
virtual address space. Compute intensive IA-32 applications can improve their
performance substantially by migrating compute kernels from IA-32 to Itanium
architecture-based code while preserving the bulk of the application’s IA-32 binary
code. If mixed IA-32/Itanium architecture-based applications are supported, care has
to be taken that the data accessible to IA-32 portions of the application is located in the
lower 4GBytes of the virtual address space.

While processors based on the Itanium architecture are capable of supporting a wide
range of Itanium architecture-based/IA-32 code mixing, Itanium architecture-based
operating systems need to provide a software support infrastructure to enable full
interoperability between the IA-32 and Itanium instruction set. Most Itanium
architecture-based operating systems are expected to support user-level IA-32
applications, and, as a result, must be able to provide the full range of operating
system services through a 32-bit system call interface. However, different operating
systems and runtime conventions may reduce the set of interoperability modes as
desired by the operating system vendor.

While it is an interesting topic, this chapter does not discuss 32-bit application binary
interfaces provided by specific operating systems. Instead, this chapter focusses on
what services are required from an Itanium architecture-based operating system by a
processor based on the Itanium architecture that is executing IA-32 code. In other
words, the focus of this chapter is the low-level processor / operating system interface
rather than the IA-32 software / operating system (application binary) interface.

2:596 Volume 2, Part 2: IA-32 Application Support

9.1 Transitioning between Intel® Itanium® and IA-32
Instruction Sets

As mentioned earlier, user-level code can transition from Itanium to IA-32 (or back)
instruction sets without operating system intervention. As described in Chapter 6,
“IA-32 Application Execution Model in an Intel® Itanium® System Environment” in
Volume 1, two instructions are provided for this purpose: br.ia (an Itanium
unconditional branch), and JMPE (an IA-32 register indirect and absolute jump). Prior
to executing any IA-32 instructions, however, the Itanium architecture-based operating
system needs to setup an execution environment for executing IA-32 code.

9.1.1 IA-32 Code Execution Environments

Processors based on the Itanium architecture are capable of executing IA-32 code in
real mode, VM86 mode or protected mode. When segmentation is enabled both 16 and
32-bit code are supported. Prior to transferring control to IA-32 code, an Itanium
architecture-based application and/or operating system is expected to setup the
complete IA-32 execution environment in Itanium registers.

In particular, Itanium architecture-based software must setup IA-32 segment descriptor
and selector registers in Itanium application registers, and must ensure that code and
stack segment descriptors (CSD, SSD) are pointing at valid and correctly aligned
memory areas. It is also worth noting that the IA-32 GDT and LDT descriptors are
maintained in GR30 and GR31, and are unprotected from Itanium architecture-based
user-level code. For more details on the IA-32 execution environment please refer to
Section 6.2.2, “IA-32 Application Register State Model” on page 1:113.

Some IA-32 execution environments may need support from an Itanium
architecture-based operating system. Which IA-32 software environments are
supported by an Itanium architecture-based operating system is determined by the
operating system vendor. Itanium architecture-based platform firmware (SAL) provides
a runtime environment that allows execution of real-mode IA-32 code found in PCI
configuration option ROMs.

9.1.2 br.ia

br.ia is an unconditional indirect branch that transitions from Itanium to IA-32
instruction set. Prior to entering IA-32 code with br.ia, software is also required to
flush the register stack. br.ia sets the size of the current register stack frame to zero.
The register stack is disabled during IA-32 code execution. Because IA-32 code
execution uses Itanium registers, much of the Itanium register state is overwritten and
left in an undefined state when IA-32 code is run. As a result, software can not rely on
the value of such registers across an instruction set transition. Execution of IA-32 code
also invalidates the ALAT. For more details refer to Table 6-2, “IA-32 Segment Register
Fields” on page 1:118.

Volume 2, Part 2: IA-32 Application Support 2:597

For best performance, the following code sequence is recommended for transitioning
from Itanium to IA-32 instruction set:

{.mii
flushrs // flush register stack
mov b7 = rTarget // Setup IA-32 target address
nop.i // nop.i or other instruction
;;

{.mib
nop.m // nop.m or other instruction
nop.i // nop.i or other instruction
br.ia.sptk b7 // branch to IA-32 target defined by

// lower 32-bits of branch register b7
;;

Key to performance is that the register stack flush (flushrs) and the br.ia instruction
are separated by a single cycle, and that the br.ia instruction is the first B-slot in the
bundle directly following the flushrs. The nop instruction slots in the code example
may be used for other instructions.

9.1.3 JMPE

JMPE is an IA-32 instruction that comes in a register indirect and absolute branch
flavors. The code segment descriptor base is held in the CSD application register
(ar.csd).

• JMPE reg16/32 computes the target of the Itanium instruction set as
IP = ([reg16/32] + CSD.base) & 0xfffffff0

• JMPE disp16/32 computes the target of the Itanium instruction set as
IP = (disp16/32 + CSD.base) & 0xfffffff0

Targets of the IA-32 JMPE instruction are forced to be 16-byte aligned, and are
constrained to the lower 4Gbytes of the 64-bit virtual address space. The JMPE
instruction leaves the IA-32 return address (address of the IA-32 instruction following
the JMPE itself) in IA_64 register GR1.

9.1.4 Procedure Calls between Intel® Itanium® and IA-32
Instruction Sets

If procedure call linkage is required between Itanium architecture-based and IA-32
subroutines, software needs to perform additional work as described in the next two
sections.

9.1.4.1 Itanium® Architecture-based Caller to IA-32 Callee

This section outlines what steps an Itanium architecture-based caller of an IA-32
procedure needs to perform. The ordering of the steps is approximate and need not be
executed exactly in the order presented.

1. Setup IA-32 execution environment, if not already done (see Section 9.1.2 for
details). Ensure that no NaTed registers are used to setup IA-32 environment nor
that they are passed as procedure call arguments to IA-32 code.

2. Marshall arguments from the register stack to memory stack according to IA-32
software conventions.

3. Set up exception handle unwind data structures according to OS convention.

2:598 Volume 2, Part 2: IA-32 Application Support

4. Make sure JMPE knows where to return to, e.g. deposit return address for the
JMPE on memory stack or pass it in an IA-32 visible register.

5. Setup IA-32 branch target in branch register.

6. Flush register stack, but no other RSE updates.

7. br.ia is an indirect branch to IA-32 code. There is no need to preserve Itanium
only application registers, since IA-32 code execution leaves them unmodified.

8. Run in the IA-32 callee until it executes a JMPE instruction.

9. JMPE instruction is an unconditional jump to Itanium architecture-based code.
JMPE should use the return address specified in step 4.

10. Move return values from memory stack to static Itanium register used for
procedure return value according to Itanium calling conventions.

11. Ensure that IA-32 code correctly unwound memory stack, and that memory stack
pointer is correctly aligned.

12. Update exception handle unwind data structures according to OS convention.

13. br.ret returns to Itanium architecture-based caller.

9.1.4.2 IA-32 Caller to Itanium® Architecture-based Callee

This section outlines what steps an IA-32 caller of an Itanium architecture-based
procedure needs to perform. The ordering of the steps is approximate and need not be
executed exactly in the order presented.

1. Caller deposits arguments on memory stack, and calls Itanium
architecture-based transition stub using the JMPE instruction.

2. Execute JMPE instruction as an unconditional branch to Itanium
architecture-based code. The JMPE instruction will leave the address of the IA-32
instruction following the JMPE itself in Itanium register GR1. This address may be
used as a return address later.

3. Allocate a register stack frame with the alloc instruction.

4. Load procedure arguments from memory stack into Itanium stacked registers.
Preserve IA-32 return address in memory or register stack.

5. Set up exception handle unwind data structures according to OS convention.

6. br.call to target Itanium architecture-based callee.

7. Execute Itanium architecture-based code until it returns using br.ret.

8. Move return value from static Itanium register to memory stack.

9. Load IA-32 return address from step 4 into branch register.

10. Instead of flushing the register stack to memory, the contents of the register
stack can be discarded at this point since IA-32 code execution will overwrite it
anyway. Invalidate register stack by:

a. Allocating a zero-size stack frame using the alloc instruction.

b. Writing zero into RSC application register, and executing a loadrs instruction.

c. Restore RSC application register to its original value in preparation for the
next call from IA-32 to Itanium instruction set.

Volume 2, Part 2: IA-32 Application Support 2:599

11. Ensure memory stack pointer is correctly aligned prior to returning to IA-32 code.

12. br.ia returns to IA-32 caller.

9.2 IA-32 Architecture Handlers

An Itanium architecture-based operating system needs to be prepared to handle
exceptions from Itanium architecture-based and IA-32 code. Depending on the
exception cause, exception vectors can be:

• Shared Itanium/IA-32 Exception Vectors: all virtual memory related instruction and
data reference faults share a common exception vector, regardless of whether they
were caused by Itanium architecture-based or IA-32 code.

• Unique Itanium Exception vectors: these are conditions that only Itanium
architecture-based code can cause. Examples are: Instruction Breakpoint fault,
Illegal Operation fault, Illegal Dependency fault, Unimplemented Data Address
fault, etc.

• Unique IA-32 Exception Vectors: these conditions can occur only from IA-32
instructions.

A detailed break-down of which exceptions occur on which interruption vector and from
which instruction set is given in Table 5-6. Table 9-1 shown below summarizes all IA-32
related exceptions that an Itanium architecture-based operating system needs to be
ready to handle. These IA-32 specific interrupts are grouped into three vectors: the
IA-32 Exception vector, the IA-32 Intercept, and the IA-32 Interrupt vector. Within each
of these vectors the interrupt status register (ISR) provides detailed codes as to the
origin of this exception. Details on the IA-32 vectors is provided in Chapter 9, “IA-32
Interruption Vector Descriptions.” More details on debug related IA-32 exceptions is
given in the following section of this document.

Table 9-1. IA-32 Vectors that need Itanium® Architecture-based OS
Support

Vector (IVA offset) Exception Name Exception Related To Expected OS Behavior

IA-32 Exception
vector (0x6900)

IA-32 Instruction Debug fault Debug Relay to debugger.

IA-32 Code Fetch fault Segmentation Signal application.

IA-32 Instruction Length > 15
bytes fault

Bad Opcode Signal application.

IA-32 Device Not Available fault Numeric Signal application.

IA-32 FP Error fault Numeric Signal application.

IA-32 Segment Not Present fault Segmentation Signal application.

IA-32 Stack Exception fault Segmentation Signal application.

IA-32 General Protection fault Segmentation Signal application.

IA-32 Divide by Zero fault Numeric Signal application.

IA-32 Alignment Check fault Misaligned IA-32
Memory Reference
with alignment
checking enabled.

Depends on convention.

IA-32 Bound fault Segmentation Signal application.

IA-32 SSE Numeric Error Fault Numeric Signal application.

IA-32 INTO Overflow trap Numeric Signal application.

IA-32 Breakpoint (INT 3) trap Software Breakpoint Depends on convention.

IA-32 Data Breakpoint trap Debug Relay to debugger.

2:600 Volume 2, Part 2: IA-32 Application Support

9.3 Debugging IA-32 and
Itanium®Architecture-based Code

Itanium architecture-based operating systems that want to provide debug support for
both IA-32 and Itanium architecture-based applications, need to be aware of the
differences between taking instruction and data breakpoint exceptions as well as single
step or taken branch traps on Itanium and IA-32 instructions.

9.3.1 Instruction Breakpoints

If an Itanium instruction matches an instruction breakpoint register (IBR) then an
Instruction Debug Fault is delivered on the Itanium Debug vector. To step across a
single Itanium instruction, IPSR.id must be set to one. An IA-32 instruction, however,
that matches an IBR causes an IA-32 Instruction Breakpoint fault which is delivered to
the IA-32 Exception vector (Debug). To step across a single IA-32 instruction, either
IPSR.id or EFLAGS.rf must be set to one.

9.3.2 Data Breakpoints

If an Itanium memory reference matches a data breakpoint register (DBR) then a Data
Debug Fault is delivered on the Itanium Debug vector. To step across a single data
breakpoint, IPSR.dd must be set to one. An IA-32 instruction, however, that matches a
DBR causes an IA-32 Data Breakpoint trap which is delivered to the IA-32 Exception
vector (Debug). In other words, the debugger only gets control after the instruction

IA-32 Taken Branch trap Debug Relay to debugger.

IA-32 Single Step trap Debug Relay to debugger.

IA-32 Invalid Opcode fault Bad Opcode Signal application.

IA-32 Intercept
vector (0x6a00)

IA-32 Instruction Intercept fault Attempted to access
IA-32 paging, MTRRs,
IDT, IA-32 control
registers, IA-32 debug
registers or attempted
to execute IA-32
privileged instructions.

This is not supported on
an Itanium
architecture-based OS.
Signal application.

IA-32 Locked Data Reference
fault

Attempt to reference
misaligned or
uncacheable
semaphore.

Emulation handler if
needed. Refer to
Section 2.1.3.2,
“Behavior of
Uncacheable and
Misaligned Semaphores”
on page 2:509.

IA-32 System Flag Intercept trap System Flag intercept Depends on convention.

IA-32 Gate Intercept trap Gate/Task transfer
intercept

Depends on convention.

IA-32 Interrupt
vector (0x6b00)

IA-32 Software Interrupt (INT)
trap

Software Interrupt Depends on convention.

Cannot happen in
Itanium
architecture-based
operating system

IA-32 Double Fault
IA-32 Invalid TSS Fault,
IA-32 Page Fault,
IA-32 Machine Check

N/A Don’t worry,

Table 9-1. IA-32 Vectors that need Itanium® Architecture-based OS
Support (Continued)

Vector (IVA offset) Exception Name Exception Related To Expected OS Behavior

Volume 2, Part 2: IA-32 Application Support 2:601

making the reference has completed. Since IA-32 instruction can make multiple
memory references, a single IA-32 instruction may cause multiple data break points to
trigger. Details on how this is communicated to software in the interrupt status register
(ISR) is given in Section 9.1, “IA-32 Trap Code” on page 2:213. Since IA-32 data
breakpoints are traps, there is no need to step over them.

9.3.3 Single Step Traps

When PSR.ss enables single stepping of Itanium architecture-based applications, each
instruction that is stepped will stop at the Single Step trap handler. When PSR.ss or
EFLAG.tf enable single stepping of IA-32 applications, an IA_32_Exception(Debug) trap
is taken after each IA-32 instruction. For more details refer to Section 9.1, “IA-32 Trap
Code” on page 2:213.

9.3.4 Taken Branch Traps

When PSR.tb enables taken branch trapping on Itanium architecture-based
applications, each taken branch will transfer control to the Taken Branch Trap handler.
When PSR.tb is set, taken IA-32 branches transfer control to the
IA_32_Exception(Debug) trap handler taken after each IA-32 instruction. For more
details refer to Section 9.1, “IA-32 Trap Code” on page 2:213.

§

2:602 Volume 2, Part 2: IA-32 Application Support

Volume 2, Part 2: External Interrupt Architecture 2:603

External Interrupt Architecture 10

The Itanium architecture provides a high performance external interrupt architecture.
While IA-32 processors commonly use a three wire shared APIC bus, processors based
on the Itanium architecture utilize a high performance, message-based, point-to-point
protocol between processors and multiple I/O interrupt controllers. To ensure that
processors based on the Itanium architecture can fully leverage the large set of existing
platform infrastructure and I/O devices, compatibility with existing platform
infrastructure is provided in the form of direct support for Intel 8259A compatible
interrupt controllers and limited support for level sensitive interrupts.

This chapter introduces the basic external interrupt mechanism provided by the
architecture, while Section 5.8, “Interrupts” provides the complete architectural
definition for the Itanium external interrupt architecture.

10.1 External Interrupt Basics

Interrupts are identified by their vector number. The vector number implies interrupt
priority, and also determines whether the interrupt is delivered to processor firmware
as a “PAL-based” interrupt, or whether it is delivered to the operating system as an
“IVA-based” external interrupt.

This chapter discusses asynchronous external interrupts only. PAL-based platform
management interrupts (PMI) are not discussed here. External interrupts are IVA-based
and are delivered to the operating system by transferring control to code located at
address CR[IVA]+0x3000. This code location is also known as the external interrupt
vector and is described on page 2:186.

Software can distinguish interrupts based on their vector number. Vector numbers
range from 0 to 255. Vector numbers also establish interrupt priorities as follows:

• Vector numbers below 16 are special, and are architecturally defined in
Section 5.8.1, “Interrupt Vectors and Priorities” on page 2:118. The non-maskable
interrupt (NMI) is always vector 2 and is higher priority than all in-service external
interrupts. ExtINT, Intel 8259A compatible external interrupt controller interrupt, is
always vector 0. Vector numbers below 16 have higher priority than vectors above
16. Vector 15 is used to indicate that the highest priority pending interrupt in the
processor is at a priority level that is currently masked or there are no pending
external interrupts.

• For vector numbers between 16 and 255, higher vector numbers imply higher
priority. In this range, vectors are freely assignable by software. This is achieved by
programming of interrupt controllers and the processor internal interrupt
configuration registers.

2:604 Volume 2, Part 2: External Interrupt Architecture

10.2 Configuration of External Interrupt Vectors

As defined in Section 5.8, “Interrupts” on page 2:114, external interrupts originate
from one of four sources:

• From external sources, e.g. external interrupt controllers or intelligent external I/O
devices, or

• From the processor’s LINT0 or LINT1 pins1 (typically connected to an Intel 8259A
compatible interrupt controller), or

• From internal processor sources, e.g. timers or performance monitors, or

• From other processors, e.g. inter-processor interrupts (IPIs).

All interrupts are point-to-point communications. There is no facility for broadcasting of
interrupts. The interrupt message protocol used by the processor-to-processor and the
external source-to-processor is not defined architecturally, and is not visible to
software.

A number of external interrupt control registers (LID,TPR, ITV, PMV, CMCV, LRR0 and
LRR1) allow software to directly configure the processor interrupt resources. The Local
ID register (LID) establishes a processor’s unique physical interrupt identifier. The Task
Priority Register (TPR) allows masking of external interrupts based on vector priority
classes. The ITV, PMV, CMCV, LRR0 and LRR1 external interrupt control registers
configure the vector number for the processor’s local interrupt sources. Configuration of
the external controllers and devices is controller-/device-specific, and is beyond the
scope of this document.

10.3 External Interrupt Masking

The Itanium architecture provides four mechanisms to prevent external interrupts from
being delivered to a processor: a bit in the processor status register (PSR.i), the
interrupt vector register (IVR) and the end-of-interrupt (EOI) register, the task priority
register (TPR), and the external task priority register (XTPR). The next four sections
discuss these mechanisms.

10.3.1 PSR.i

When PSR.i is zero, the processor does not accept any external interrupts. However,
interrupts continue to be pended by the processor. Software can use PSR.i to
temporarily disable taking of external interrupts, e.g. to ensure uninterruptable
execution of critical code sections. Since clearing of PSR.i takes effect immediately
(refer to the rsm instruction page), software is not necessarily required to explicitly
serialize clearing of PSR.i (unless another processor resource requires serialization). On

1. Processors optionally support two external interrupt pins. Software can query for the presence of
LINT pins via the PAL_PROC_GET_FEATURES procedure call.

Volume 2, Part 2: External Interrupt Architecture 2:605

the way out of an uninterruptable code section software is not required to serialize the
setting of PSR.i either, unless it is of interest to software to be able to take interrupts in
the very next instruction group. A code example for this case is given below:

rsm i ;;
// rsm of PSR.i takes effect on the next instruction

// uninterruptable code sequence here

ssm i ;;
// ssm of PSR.i does require data serialization, if we need to ensure
// that external interrupts are enabled at the very next instruction. If
// data serialization is omitted, PSR.i is set to 1 at the latest when
// the next exception is taken.

By avoiding the serialization operations on PSR.i the performance of such
uninterruptable code sections is improved.

10.3.2 IVR Reads and EOI Writes

As described in Section 10.4, IVR reads return the highest priority, pending, unmasked
vector, and places this vector “in-service.” Additionally, IVR reads have the side-effect
of masking all vectors that have equal or lower priority than one that is returned by the
IVR read. Correspondingly, writes to the EOI register unmask all vectors with equal or
lower priority than the highest priority “in-service” vector. Due to nesting of higher
priority interrupts, it is possible to have multiple vectors in the “in-service” state.

10.3.3 Task Priority Register (TPR)

The Task Priority Register (TPR) provides an additional interrupt masking capability. It
allows software to mask interrupt “priority classes” of 16 vectors each by specifying the
mask priority class in the TPR.mic field. The TPR.mmi field allows masking of all
maskable external interrupts (essentially all but NMI).

An example of TPR use is shown in Section 10.5.2, “TPR and XPTR Usage Example” on
page 2:608.

10.3.4 External Task Priority Register (XTPR)

The External Task Priority Register (XTPR) is a per-processor resource that can be
provided by external bus logic in some Itanium architecture-based platforms. If
supported by the platform, XTPR can be used by the operating system to redirect
external interrupts to other processors in a multiprocessor system.

The XTPR is updated by performing a 1-byte store to the XTP byte which is located at
an offset of 0x1e0008 in the Processor Interrupt Block (see Section 5.8.4, “Processor
Interrupt Block” for details). Since the timing of the modification of the XTP register is
not time critical there is no serialization required. Effects of the one byte store
operation are platform specific. Typically, it will generate a transaction on the system
bus identifying it as an XTP register update transaction, and will indicate which
processor generated the transaction as well as the stored data.

An example of XTPR use is included in Section 10.5.2, “TPR and XPTR Usage Example”
on page 2:608.

2:606 Volume 2, Part 2: External Interrupt Architecture

10.4 External Interrupt Delivery

The architectural interrupt model in Section 5.8 defines how each interrupt vector
cycles through one of four states:

• Inactive: there is no interrupt pending on this vector.

• Pending: an interrupt has been received by the processor on this vector, but has
not been accepted by the processor and has not been acquired by software. The
processor hardware will accept the interrupt when this vector’s priority level is
higher than the highest currently in-service vector, PSR.i is one, and TPR settings
do not mask the interrupt. This will cause the processor to transfer control flow to
the external interrupt handler. Software can then acquire the highest priority,
pending, unmasked vector by reading the IVR control register. The IVR read returns
the 8-bit vector number in a register and masks all vectors that have equal or lower
priority. This vector now enters the In-Service/None Pending state.

• In-Service/None Pending: an interrupt has been received by the processor on this
vector, and has been acquired by software (by reading the IVR control register), but
software has not completed servicing this interrupt. In this state, the processor
masks all vectors that have equal or lower priority. In this state, the processor can
receive and remember a second interrupt on this vector. If this happens, the
processor transitions this vector to the “In-Service/One Pending” state. If software
completes the interrupt service routine (indicated to the processor by writing the
EOI register) before another interrupt is received on this vector, then the processor
returns this vector to the Inactive state, and all vectors with equal or lower priority
are unmasked.

• In-Service/One Pending: an interrupt has been received by the processor on this
vector, and has been acquired by software (by reading the IVR control register),
and software has not completed servicing this interrupt. Additionally, the processor
received a second interrupt on this vector, which is now held pending. If additional
interrupts on this vector are received by the processor while this vector is in the
“In-Service/One Pending” state, those additional interrupts are not distinguishable
by the processor hardware. When software completes the interrupt service routine
for the original interrupt on this vector (indicated to the processor by writing the
EOI register), then the processor returns this interrupt vector to the Pending state
for the second interrupt that was received on this vector. Additionally, all vectors
with equal or lower priority are unmasked.

It is recommended the following structure for an Itanium architecture-based external
interrupt handler:

1. Read and Save TPR, i.e. save Old Task Priority variable (optional).

2. External Interrupt Harvest Loop:

a. Read the IVR control register to determine which vector is being delivered. If
the returned IVR value is 15, then this is a spurious interrupt and it can be
can ignored; software can now clear PSR.ic, restore IPSR and IIP and then
rfi to the interrupted context. If the returned IVR value is not 15, continue
with step 2b.

b. Raise TPR register to the interrupt class to which the level read out of IVR
belongs (optional).

Volume 2, Part 2: External Interrupt Architecture 2:607

c. Software must preserve IIP and IPSR prior to re-enabling PSR.ic and PSR.i
which will re-enable taking of exceptions and higher priority external
interrupts.

d. Issue a srlz.d instruction. This ensures that updated PSR.ic and PSR.i
settings are visible, and it also makes sure that the IVR read side effect of
masking lower or equal priority interrupts is visible when PSR.i becomes 1.

e. Dispatch the appropriate interrupt service routine.

f. Disable external interrupts by clearing PSR.i with an rsm 0x4000
instruction.This ensures that external interrupts are disabled prior to the EOI
write in the next step.

g. Notify the processor that interrupt handling for this vector is completed by
writing to the EOI register. This will unmask any pending lower priority
interrupts. If this was a level triggered interrupt, write to the I/O SAPIC EOI
register.

h. Lower TPR register to Old Task Priority (optional).

i. Issue a srlz.d instruction. This ensures that ensure the EOI write from step
2g is reflected in the future IVR read (in step 2a). It also ensures that the TPR
update from step 2h unmasks any interrupts in the priority classes (including
the current task priority level) that were masked by the previous value of
TPR.

j. Return to top of loop (step 2a).

These steps assume that the routine’s caller already performed the required state
preservation of interruption resources. Therefore the focus of the steps above is to
check the IVR to acquire the vector so the operating system can determine what device
the interrupt is associated with. The code is setup to loop, servicing interrupts until the
spurious interrupt vector (15) is returned. Looping and harvesting outstanding
interrupts reduces the time wasted by returning to the previous state just to get
interrupted again. The benefit of interrupt harvesting is that the processor pipeline is
not unnecessarily flushed and that the interrupted context is only saved/restored once
for a sequence of external interrupts. Once the vector is obtained the specific interrupt
service routine is called to service the device request. Upon return from the interrupt
service routine, an EOI is written and the IVR is checked once again.

If the operating system does not implement priority levels then there is no need to save
and restore the task priority level (steps 1, 2b, and 2h are optional). As described in
Section 10.3 above, an IVR read automatically masks interrupts at the current
in-service level and below until the corresponding EOI is issued. For level triggered
interrupts, the programmer must not only inform the processor, but the external
interrupt controller that the level triggered interrupt has been serviced.

10.5 Interrupt Control Register Usage Examples

The examples in this section provide an overview of using the Itanium external
interrupt control registers. Actual and pseudo code fragments are listed to aid in the
development of OS code which will utilize these registers. It is up to the operating
system and its writer to determine what minimum set of control registers are required
to be used.

2:608 Volume 2, Part 2: External Interrupt Architecture

10.5.1 Notation

Preprocessor macros for function ENTRY and END are used in the examples to reduce
duplication of code and reduce document space requirements.
#define ENTRY(label) \

 .text; \
 .align 32;; \
 .global label; \
 .proc label; \

label::

#define END(label) .endp

10.5.2 TPR and XPTR Usage Example

This code will allow certain interrupts to be masked by increasing/decreasing the task
priority register. If you don’t want to mask all external interrupts, you can raise the
priority level to mask out only the interrupts that have higher priority (and no effect on
your current critical section).

We also take the expensive route here by updating not only the processor TPR, but the
External Task Priority Register used by the chipset (if supported) as a hint to what
processor should receive the next external interrupt.
//
// routine to set the task priority register to mask
// interrupts at the specific level or below
//
// INPUT: SPL level
//

TPR_MIC=4
TPR_MIC_LEN=4

.global external_task_pri_reg// address points to Interrupt Delivery block

ENTRY(set_spl)
alloc r18=ar.pfs,1,0,0,0
dep.z r22=r32,TPR_MIC,TPR_MIC_LEN
movl r19=external_task_pri_reg
;;
mov cr.tpr=r22
ld8 r20=[r19] // get address of EXt. TASK Priority Register
;;
srlz.d // srlz.d only required if want TPR update effective

immediately
st1 [r20]=r32 // if supported by platform: update eXternal Task Priority

(XTP)
br.ret.sptk b0
;;

END(set_spl)

Volume 2, Part 2: External Interrupt Architecture 2:609

10.5.3 EOI Usage Example

This example is a typical return from an interrupt service routine to the generic
interrupt handler. Interrupts are disabled before returning to the main trap handler in
preparation for returning from kernel space.

return_from_interrupt:
// disable interrupts here

rsm 0x4000 // make sure interrupts disabled

// interrupt_eoi# clear the sapic/pic interrupt
sapic_eoi:

mov cr.eoi=r0 // issue and eoi
;;
srlz.d // make sure it takes effect

// issue the appropriate EOI sequence to the external interrupt
// controller here.

For level trigger interrupts, the OS is required to issue an EOI not only to the processor,
but also the external interrupt controller where the interrupt originated. This forces the
OS to keep track of whether the vector is associated with a level or an edge trigger
interrupt line.

10.5.4 IRR Usage Example

Waiting on an interrupt with interrupts disabled.

my_interrupt_loop::
//
// check for vector 192 (0xc0) via irr3
//

mov r3=cr.irr3
;;
and r3=0x1,r3
;;
cmp.eq p6,p7=0x1,r3

(p7)br.cond.sptk.few my_interrupt_loop
;;
mov r4=cr.ivr // read the vector
;;
mov cr.eoi=r0 // clear it
;;

10.5.5 Interval Timer Usage Example

The Itanium architecture provides a 64 bit interval timer for elapsed time notification
interrupts. It is similar to the IA-32 Time Stamp Counter (TSC). Programming the
Itanium interval timer consists of initializing the ITV (CR 72), ITM (CR 1), and ITC (AR
44).

The Interval Timer Vector (ITV) specifies the external interrupt vector number for the
Interval Timer Interrupts. The code examples below show how to clear and initialize the
timers vector, match register, and count registers.

2:610 Volume 2, Part 2: External Interrupt Architecture

The Interval Time Counter (ITC) gets updated at a fixed relation to the processor clock.
The ITM, Interval Timer Match, is used to determine when a interval timer interrupt is
generated. When the ITC matches the ITM and the timer is unmasked via ITV then an
interrupt will be generated.

//
// routine to reset the interval timer to zero..
//

ENTRY(em_timer_reinit)
mov ar.itc=r0 // reset itimer counter
br.ret.spnt.few rp

END(em_timer_reinit)

//
// routine to setup the interval timer.
//
// 1) setup the interval timer vector
// 2) initialize the time counter to zero
// 3) initialize the match register
//
// INPUTS: timermatch -- value to initialize ITM register with.
// vector number -- vector to interrupt with
// OUTPUTS: none
//
ENTRY(enable_minterval)

alloc r14=ar.pfs,0x2,0,0,0 // get ready for input parameters
mov ar.itc=r0 // initialize counter to zero
;;
mov cr.itm=r32 // set match register
;;
srlz.d
mov cr.itv=r33 // set interval timer vector
;;
srlz.d // make sure it goes through
br.ret.sptk.few rp // return
.endp

Since the ITC gets updated at a fixed relation to the processor clock, in order to find out
the frequency at run time, one can use a firmware call to obtain the input frequency
information to the interval time. Using this frequency information the ITM can be set to
deliver an interrupt at a specific time interval (i.e. for operating system scheduling
purposes). Assuming the frequency information returned by the firmware is in ticks per
second, the programmer could use a time-out delta for delivering a timer interrupt
every 10 milliseconds as follows:

timeout_delta=ticks_per_second/100;

where ticks_per_second is the frequency value returned by the firmware and
timeout_delta will be the value added to the ITC for setting the next ITM. Therefore, the
ITC is left free running, but the ITM must be updated upon every timer interrupt with its
next time out match value, i.e. ITM = ITC + timeout_delta.

The only issue with this setup is if the timer interrupt delivery is delayed beyond the
point of the original intended delivery time (i.e. ITC > ITM). This could happen if
interrupts were disabled or blocked by the operating system/device driver longer than

Volume 2, Part 2: External Interrupt Architecture 2:611

the time-out value. In this case the ITM has to be adjusted in order for the next ITM to
be accurate. The following algorithm could be used to adjust the next ITM before
returning from the timer interrupt handler.

for (;;) {
itm_next = itm_next + timeout_delta + (read current ITC - read current ITM);
if (itm_next < current ITC) {

/* we missed the next interrupt already, continue */
} else {

set_itm(itm_next);
break;

}
}

where itm_next was initialized to current ITC + timeout_delta, and set_itm in Itanium
architecture-based assembly would look like:

.global set_itm

.proc set_itm
set_itm:

alloc r18=ar.pfs,1,0,0,0
mov cr.itm=r32
;;
srlz.d
br.ret.sptk b0
;;

.endp set_itm

10.5.6 Resource Utilization Counter Usage Example

The Itanium architecture provides a 64-bit counter to provide information on how many
execution cycles a given logical processor is getting. It is similar to the Interval Timer
(ITC, AR 44), except that it is clocked only when the logical processor is active.
Optimizations such as hardware multi-threading and processor virtualization may cause
a logical processor to sometimes be inactive. The Resource Utilization Counter allows
for better cycle accounting for logical processors, given these types of optimizations.

RUC should only be written by Virtual Machine Monitors; other Operating Systems
should not write to RUC, but should only read it.

10.5.7 Local Redirection Example

The Local Redirection Registers (LRR0-1) serves to steer external signal-based
interrupts that are directly connected to the processor. LRR0 and LRR1 control the
external interrupt signals (pins) referred to as Local Interrupt 0 (LINT0) and Local
Interrupt 1 (LINT1) respectively. The example below shows how to mask interrupt
delivery on LINT0.

movl r18=(1<<16)
;;
mov cr.lrr0=r18
;;
srlz.d // srlz.d is required after LRR write to ensure write effect

Note: LINT0 and LINT1 pins are not required to be supported. Writes to LRR0-1 con-
trol registers would have not effect, and reads from LRR0-1 control registers
would return 0.

2:612 Volume 2, Part 2: External Interrupt Architecture

10.5.8 Inter-processor Interrupts Layout and Example

A processor generates an inter-processor interrupt (IPI) by storing a 64-bit interrupt
command to an 8-byte aligned address in the Interrupt delivery region of the Processor
Interrupt block. The address being stored to determines what target processor receives
the IPI. The example below is an example of sending an interrupt to a specific
processor based on the destination ID passed in. The destination ID consists of the
Local interrupt ID and the Extended interrupt ID.

Writing to improperly aligned addresses in the delivery region or failure to store less
than 64 bits can result in an invalid operation fault. The access must be uncacheable in
order to generate an IPI.

//
// send_ipi_physical (dest_id, vector)
//
// inputs: processor destination ID vector to send
// (Local ID (8 bits << 8)| EID (8 bits))
//
//
//

.global ipi_block // pointer to processor I/O block

IPI_DEST_EID=0x4

ENTRY(send_ipi_physical)
alloc r19=ar.pfs,2,0,0,0
movl r17=ipi_block;;
ld8 r17=[r17] // get pointer to processor block
shl r21=r32,IPI_DEST_EID;;
add r20=r21,r17;; // point to proper processor
st8.rel [r20]=r33 // send the IPI
br.ret.sptk b0;;

END(send_ipi_physical)

10.5.9 INTA Example

External interrupt controllers, that are compatible with the Intel 8259A interrupt
controller can not issue interrupt messages, so the vector number is not available at
the time of the interrupt request. When an interrupt is accepted the software must
check to see if it came from an external controller by the vector number (via IVR) to
see if it is the ExtINT vector.

Volume 2, Part 2: External Interrupt Architecture 2:613

Once the software determines it is an ExtINT, it must obtain the actual vector by doing
an uncached 1-byte load from the INTA byte located in the upper half of the processor
interrupt block, offset 0x1e0000 from the base.

EXTINT=r0
INTA_PHYS_ADDRESS=0x80000000fefe0000
inta_address=r31

movl inta_address=INTA_PHYS_ADDRESS
;;
srlz.d // make sure everything is up to date
mov r14 = cr.ivr // read ivr
;;
srlz.d // serialize before the EOI is written...
;;
cmp.ne p1,p2 = EXTINT,r14 ;;

(p1)br.cond.sptk process_interrupt
;;

//
// A single byte load from the INTA address should cause
// the processor to emit the INTA cycle on the processor
// system bus. Any Intel 8259A compatible external interrupt
// controller must respond with the actual interrupt
// vector number as the data to be loaded.
//
//

ld1 r17 = [inta_address] // get the real vector..
;;

// vector obtained

process_interrupt:

§

2:614 Volume 2, Part 2: External Interrupt Architecture

Volume 2, Part 2: I/O Architecture 2:615

I/O Architecture 11

I/O devices can be accessed from Itanium architecture-based programs using regular
loads and stores to uncacheable space. While cacheable Itanium memory references
may be reordered by the processor, uncacheable I/O references are always presented
to the platform in program order. This “sequentiality” of uncacheable references is
discussed in Section 2.2.2, “Memory Attributes” on page 2:524 and in more detail in
Section 4.4.7, “Sequentiality Attribute and Ordering” on page 2:82.

Additionally, uncacheable memory pages are defined to be “non-speculative” which
causes all data and control speculative loads to uncacheable pages to defer. Control
speculative loads to uncacheable memory return a NaT/NaTVal to their target register.
Data speculative loads to uncacheable memory return zero to their target register. For
details, refer to Section 4.4.6, “Speculation Attributes” on page 2:79.

When configuring chipset registers or setting up device registers, it is sometimes
required to know when a memory transaction has been completed. Completion means
the processor received acknowledgment that the transaction finished successfully in the
platform, and that all its side-effects have occurred and will be visible to the next
memory operation (issued by the same processor). To ensure completion of prior
accesses on the platform, the Itanium architecture provides the mf.a instruction. Unlike
the mf instruction that waits for visibility of prior operations, the mf.a waits for
completion of prior operations on the platform. More details in Section 11.1.

To fully leverage the large set of existing platform infrastructure and I/O devices, the
architecture also supports the IA-32 platform I/O port space. The Itanium instruction
set does not provide IN and OUT instructions, but they can be emulated. The I/O port
space can be mapped into user-space, and IA-32 applications can use IN and OUT
instructions to directly communicate with the I/O port space. More details in
Section 11.2.

The Itanium architecture provides a high-performance, high-bandwidth uncacheable
memory attribute that supports write-coalescing. This allows the processor to burst
writes to uncacheable locations at much higher bandwidth. The Itanium architecture
does not guarantee the FIFO delivery of write-coalescing stores. More details in
Section 4.4.5, “Coalescing Attribute” on page 2:78.

11.1 Memory Acceptance Fence (mf.a)

An mf instruction ensures that all cache coherent agents have observed all prior
memory operations made by the processor issuing the mf. However, it does not ensure
that those operations have completed, in the Itanium architecture parlance it does not
ensure that they have been “accepted” by the external platform. For instance, a load
may have been made visible to all processors by snooping their caches, but the data
return may still be in progress. Such a load would be visible, but not complete.

2:616 Volume 2, Part 2: I/O Architecture

The mf.a instruction on the other hand ensures that all prior data memory references
made by the processor issuing the mf.a have been “accepted” by the external platform.
However by itself the mf.a does not guarantee that all cache coherent agents have
observed all prior memory operations. For instance, an uncacheable store to a chipset
register may have completed on the system bus, however, that does not entail that all
prior cacheable transactions (from the processor issuing the store) have been observed
by all other processors in the coherence domain.

If software needs to ensure that all prior memory operations have been accepted by the
platform and have been observed by all cache coherent agents, both an mf.a and an
mf instruction must be issued. The mf.a must be issued first, and the mf must be issued
second. For more details on memory ordering between cache coherent agents please
refer to Chapter 2, “MP Coherence and Synchronization.”

Typically mf.a is used to configure a system’s I/O space, e.g. to setup chipset registers
that affect all subsequent memory operations. Specifically, the mf.a instruction
restrains further data accesses from initiating on the external platform interface until:

1. All previous sequential (i.e. non write-coalescing uncacheable) loads have been
returned data, and

2. All previous stores have been “accepted” by the platform. Typically acceptance is
indicated by a bus-specific signals/phase, e.g. completion of response phase on
the system bus.

Architecturally, the definition of “acceptance” is platform dependent. The next section
discusses the usage of the mf.a instruction in the context of the I/O port space.

11.2 I/O Port Space

IA-32 processors support two I/O models: memory mapped I/O and the 64KB I/O port
space. To support IA-32 platforms, the Itanium architecture allows operating systems
to map the 64KB I/O port space into the 64-bit virtual address space. This allows
Itanium architecture-based operating systems to see all I/O devices as a single unified
memory mapped I/O model, and permits “normal” Itanium load and store instructions
as well as IA-32 IN and OUT instructions to directly access the I/O port space.

As described in Section 10.7, “I/O Port Space Model” on page 2:267, Itanium
architecture-based operating systems can map the physical 64KB I/O port space into a
spread-out 64MB block of virtual address space. The virtual base address of the I/O
port space (IOBase) is maintained by the operating system in kernel register KR0.
When the processor issues Itanium load and stores accesses to the I/O port space, a
port’s virtual address is computed as:
port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

For Itanium loads and stores, this address computation places four 1-byte ports on
each 4KB page and expands the space to 64MB, with the ports being at a relative offset
specified by port{11:0} within each 4KB virtual page. When executing an IA-32 IN or
OUT instruction a processor based on the Itanium architecture automatically converts
the IA-32 address to the appropriate expanded I/O port space address.

Volume 2, Part 2: I/O Architecture 2:617

As a result of the spreading-out of the I/O ports into individual 4KB pages, Itanium
architecture-based operating system code can control IA-32 IN, OUT instruction and
IA-32 or Itanium load/store accessibility to blocks of 4 virtual I/O ports using the TLBs.
This allows Itanium architecture-based operating systems to securely map devices that
inhabit the I/O port space to different Itanium architecture-based device drivers or to
user-space Itanium architecture-based applications.

Itanium architecture-based operating systems must ensure that the I/O port space is
always mapped as uncacheable memory, and that Itanium architecture-based software
only issues aligned 1, 2 or 4 byte references to I/O port space, otherwise device
behavior is undefined.

When porting an IA-32 device driver to the Itanium architecture it can be useful to
emulate the behavior of IA-32 IN and OUT instructions. The following code examples
should be used for this purpose, since they enforce the strict memory ordering and
platform acceptance requirements that IA-32 IN and OUT instructions are subject to.
The following Itanium architecture-based assembly code outb (out byte) and inb (in
byte) examples assume that the io_port_base is the virtual address mapping pointer
set up by the IA_64 operating system. An mf.a instruction is used to verify acceptance
by the platform before returning to the calling routine. Interrupts would expected to be
disabled if these routines are called from user mode. This is for possible issues with
process migration after servicing an interrupt.
//
// void outb(unsigned char *io_port,unsigned char byte)
//
//Output a byte to an I/O port.
//
ENTRY(outb)

base_addr = r16
port_addr = r17
port_offset = r18
mask = r19

alloc r13 = ar.pfs, 2, 0, 0, 0 // 2 in, 0 local, 0 out, 0 rot
movl base_addr = io_port_base
extr.u port_offset = in0, 2, 14
mov mask = 0xfff
;;
ld8 port_addr = [base_addr]
shl port_offset = port_offset, 12
and in0 = mask, in0
;;
add port_offset = port_offset, in0
;;
mf
add port_addr = port_addr, port_offset
;;
st1.rel [port_addr] = in1
mf.a
mf
br.ret.spnt.few rp

END(outb)

//
// unsigned char inb(unsigned char *io_port)
//
// Input a byte from an I/O port.
//
ENTRY(inb)

base_addr = r16
port_addr = r17
port_offset = r18

2:618 Volume 2, Part 2: I/O Architecture

mask = r19

alloc r13 = ar.pfs, 2, 0, 0, 0 // 2 in, 0 local, 0 out, 0 rot
movl base_addr = io_port_base
extr.u port_offset = in0, 2, 14
mov mask = 0xfff
;;
ld8 port_addr = [base_addr]
shl port_offset = port_offset, 12
and in0 = mask, in0
;;
add port_offset = port_offset, in0
;;
mf
add port_addr = port_addr, port_offset
;;
ld1.acq r8 = [port_addr]
mf.a
mf
br.ret.spnt.few rp

END(inb)

§

Volume 2, Part 2: Performance Monitoring Support 2:619

Performance Monitoring Support 12

Processors based on the Itanium architecture include a minimum of four performance
counters which can be programmed to count processor events. These event counts can
be used to analyze both hardware and software performance. Performance counters
can be configured to generate a counter overflow interrupt. This interrupt can be used
for event- or time-based profiling. For hot-spot analysis of running code, performance
monitor interrupts can be used to create a profile of frequently occurring instruction
pointers (IP). Another common use of event counts is to compute processor
performance metrics such as cycles per instructions (CPI), the current branch, cache or
TLB miss rates, etc.

The Itanium architecture provides architected support for context switching of
performance monitors by an Itanium architecture-based operating system. If supported
by the operating system, this allows performance counter events to be broken down
per thread or per process which is important for effective performance tuning of
Itanium architecture-based applications.

The remainder of this chapter reviews the architected performance monitoring
mechanisms. It also discusses the Itanium architecture-based operating system
support needed for two monitoring usage models: per process/thread and system-wide
event monitoring.

12.1 Architected Performance Monitoring Mechanisms

As defined in Section 7.2, “Performance Monitoring” on page 2:155, processors based
on the Itanium architecture provide a minimum of four generic performance counter
pairs (PMC/PMD[4..7]). The performance monitor control (PMC) registers are used to
select the event to be counted, and to define under what conditions the event should
qualify for being counted (for details refer to Section 7.2.1, “Generic Performance
Counter Registers” on page 2:156). The performance monitor data (PMD) registers
contain the event count or data.

The PMC/PMD registers can only be written by privileged software (PSR.cpl must be
zero). A counter can be configured as a “privileged” counter or a “user-level” counter by
setting of the PMC[i].pm bit. Privileged counters can only read at privilege level 0, while
user-level counters can by read by user mode code (unless the operating system has
explicitly disabled the user-level monitor reads using PSR.sp).

Once the PMC/PMD registers have been configured, counting is enabled and disabled by
setting bits in the PSR. User-level counters can be controlled at user-level using the
rum and sum instructions to toggle PSR.up. Privileged counters are controlled by
privileged software using the rsm, ssm, mov from/to PSR instructions to toggle PSR.pp.
Counting for all counters is further controlled by the PMC[0] freeze bit. When PMC[0].fr
is 0, all counters are disabled. When PMC[0].fr is 1, counting is enabled based on
PMC[i].pm, PSR.pp and PSR.up. For more details on controlling of the performance
monitors please refer to Section 7.2.1, “Generic Performance Counter Registers” on
page 2:156.

2:620 Volume 2, Part 2: Performance Monitoring Support

The PAL firmware provides information about the performance monitor registers that
are implemented on the processor through the PAL_PERF_MON_INFO PAL call.
Information provided by the PAL includes bit masks which indicate which PMC/PMD
registers are implemented on this processor model, as well as the implemented number
of generic PMC/PMD pairs, and the counter width of the generic counters.

12.2 Operating System Support

The monitoring mechanisms discussed in the previous section support two performance
monitoring usage models that need support from an Itanium architecture-based
operating system.

• Per Thread/Process Event Monitoring

To monitor processor events per thread the operating system needs to save and restore
performance monitor state at thread/process context switches. This save/restore of
PMC and PMD registers only needs to be done for monitored threads. The effect of the
save/restore is that when a monitored thread is running, PMD reads will reflect events
for the monitored thread/process only. Section 7.2.4.2, “Performance Monitor Context
Switch” defines the steps required for per-thread context switch of performance
monitors. It is worth noting that the PMC/PMD masks returned from
PAL_PERF_MON_INFO indicate which PMC/PMD registers are implemented. The context
switch routine can use the mask to save/restore implemented monitors without
knowing the function of the monitors.

• System Wide Event Monitoring

To monitor processor events system wide (across all processes and the operating
system kernel itself), a monitor must be enabled continuously across all contexts. This
can be achieved by configuring a privileged monitor (PMC.pm=1), and by ensuring that
PSR.pp and DCR.pp remain set for the duration of the monitor session. Since the
operating system typically reloads PSR and possibly DCR on context switch, this
requires the operating system to set PSR.pp and DCR.pp for all contexts that are active
during the monitoring session. One way to accomplish this is to have code in the
context switch routine to always set PSR.pp and DCR.pp when system wide monitoring
is in effect. Another technique is to set the initial state for all new threads/processes to
PSR.pp=1, PSR.up=0, PSR.sp=0 and DCR.pp=1. Setting the per thread PSR and DCR
in this way ensures that privileged monitors will be enabled across all contexts. When
system wide monitoring is in effect, PSR.pp, DCR.pp as well as the PMC and PMD
registers should not be altered by the context switch routine.

To support both per thread and system wide monitoring, the operating system needs to
be aware which type of monitoring is being performed at any given moment. If per
thread/process monitoring is active, then the operating system must save/restore
monitor state for monitored threads. If system wide monitoring is active, then the
operating system must ensure that PSR.pp and DCR.pp remain set.

The preferred approach for performance monitoring is for Itanium architecture-based
operating systems to provide a set of kernel mode services that allow performance
monitoring software to be implemented in a loadable device driver. Such a loadable
device driver can support various usage monitoring models, can be adapted to

Volume 2, Part 2: Performance Monitoring Support 2:621

model-specific processor monitoring capabilities, and is a well-defined isolated and
easily replaceable software component. The following operating system services allow a
kernel mode device driver to take full advantage of the performance monitors:

• Allocation/Free Performance monitors – operating system should delegate
management of the performance monitor resources to device driver.

• Process create/terminate notification – operating system should notify driver on
process create/terminate.

• Thread create/terminate notification – operating system should notify driver on
thread create/terminate.

• Context switch notification – operating system should notify driver on thread and
process context switch. The driver will perform the required save/restore depending
on the currently active usage model.

• Performance counter overflow interrupt – operating system should notify driver
when a performance monitor overflow interrupt occurs.

• Get Current Process Identifier – returns a unique identifier for the current process
or address space. This should be callable in any context, e.g. by an interrupt
handler.

• Get Current Thread Identifier – returns a unique identifier for the current thread of
execution. This should be callable in any context, e.g. by an interrupt handler.

One of the challenges when doing instruction pointer (IP) profiling is to relate the
current IP to an executable binary module and to an instruction within that module. If
appropriate symbol information is available, the IP can be mapped to a line of source
code.

To support this IP to module mapping, it is recommended that the OS provide services
to enumerate all kernel and user mode modules in memory, and to allow a kernel mode
driver to be notified of each module load. The following services are recommended:

• Enumerate kernel mode modules – provides information each kernel mode module
currently loaded in memory.

• Enumerate threads/processes – provides a list of current threads/processes. The
list should include the unique identifier for each thread/process.

• Enumerate all user mode modules – provides information on each user mode
module that is currently loaded in memory (all processes).

• Enumerate modules for a process – provides information on each user mode
module that is currently loaded in memory for the selected process.

• Module load notification – OS should notify a driver when the OS loads a kernel or
user mode module into memory for execution. The notification should occur before
the module begins execution.

In the above services for module enumeration and load notification, the module
information provided for a module should include module name, load address, size in
bytes, section number (if a section of a module is loaded non-contiguously), and a
process/thread identifier that identifies the process into which the module is loaded.

§

2:622 Volume 2, Part 2: Performance Monitoring Support

Volume 2, Part 2: Firmware Overview 2:623

Firmware Overview 13

Itanium-based systems make use of several firmware components: Processor
Abstraction Layer (PAL), System Abstraction Layer (SAL), Unified Extensible Firmware
Interface (UEFI) and Advanced Configuration and Power Interface (ACPI).

The PAL and SAL components work together to handle the reset abort event. The reset
abort handling performs processor and system initialization for operating system (OS)
boot and provides an API to the operating system loader. The PAL and SAL firmware
layers work together to handle machine check aborts (MCA), initialization events
(INIT), and platform management interrupt (PMI) handling. All firmware components
also provide runtime procedure calls to abstract processor and platform functions that
may vary across implementations.

This chapter will provide an overview of the firmware components and how the
firmware components interact with each other as well as with the operating system. For
the full architecture specifications of the PAL firmware please refer to Chapter 11,
“Processor Abstraction Layer.” For full architecture specifications on SAL, UEFI and ACPI
firmware components please refer to Section 1.2, “Related Documents” on page 2:505.

The PAL layer is developed by Intel Corporation and delivered with the processor. The
SAL, UEFI and ACPI firmware is developed by the platform manufacturer and provide a
means of supporting value added platform features from different vendors.

The interaction of the various functional firmware blocks with the processor, platform
and operating system is shown in Figure 13-1, “Firmware Model” on page 2:624.

13.1 Processor Boot Flow Overview

13.1.1 Firmware Boot Flow

Upon detection of a reset event on a processor based on the Itanium architecture,
execution begins at an architected entry point inside of PAL. This PAL code will verify
the integrity of the PAL code and may perform some basic processor testing. PAL will
then branch to an entry point within the SAL firmware. This first branch to SAL is to
determine if a firmware update is needed requiring re-programming of the firmware
code. If no firmware update is needed SAL will branch back to PAL.

PAL now performs additional processor testing and initialization. These first processor
tests are performed without platform memory. PAL indicates the outcome of the testing
and branches to an entry point within SAL firmware for the second time. SAL will now
begin platform testing and initialization. The exact division of work between SAL and
UEFI from that point on is platform implementation dependent. It is required that the
SAL runtime services, the UEFI boot and runtime services, and the ACPI tables and
control methods be exposed to the operating systems for correct operation.

2:624 Volume 2, Part 2: Firmware Overview

The order of steps within the UEFI/SAL firmware is platform implementation dependent
and may vary. In general, the UEFI/SAL firmware selects a Bootstrap processor (BSP) in
multiprocessor (MP) configurations early in the boot sequence. Next, UEFI/SAL will find
and initialize memory and invoke PAL procedures to conduct additional processor tests
to ensure the health of the processors. UEFI/SAL then initializes the system fabric and
platform devices.

The UEFI firmware may incorporate a Boot Manager. The UEFI firmware specification
[UEFI] enables booting from a variety of mass storage devices such as hard disk, CD,
DVD as well as remote boot via a network. At a minimum, one of the mass storage
devices contains an UEFI system partition.

Figure 13-1. Firmware Model

Non-performance criti-
cal hardware events,
e.g., reset, machine
checks

Operating System Software

System Abstraction Layer
(SAL)

 Processor (hardware)

Performance critical hard-
ware events, e.g., inter-
rupts

Instruction
Execution

Platform

Processor Abstraction Layer (PAL)

Interrupts,
traps, and
faults

Transfers to
SAL entrypoints

PAL
procedure
calls

Access to
platform
resources

Unified Extensible Firmware
 Interface (UEFI)

SAL
procedure
calls

OS Boot
Handoff

UEFI
runtime
services

OS Boot
SelectionAdvanced

Configuration
and Power
Interface
(ACPI)

Power mgmt,
hot-plug,
etc.

Transfers
to OS
entrypoints

Volume 2, Part 2: Firmware Overview 2:625

The UEFI Boot Manager displays the list of operating system choices and permits the
user to select the operating system for booting. To support this functionality, the OS
setup program stores the boot paths of the OS loaders and boot options in non-volatile
storage managed by the UEFI firmware. The UEFI reserves the environment variables
Boot#### (#### represents values 0000 to 0xFFFF) for this purpose. The OS setup
program must also store the OS loader binary images within the UEFI System Partition.
The UEFI Boot Manager will also allow the user to add boot options, delete boot options,
launch an UEFI application, and set the auto-boot time out value.

The UEFI System Partition also contains UEFI drivers that may be loaded by the UEFI
firmware prior to transfer of control to an OS loader. The floating-point software assist
(FPSWA) library is included in a UEFI runtime driver. The FPSWA library may be invoked
by the OS during floating-point exception faults and traps. Please see Section 8.1.1,
“Software Assistance Exceptions (Faults and Traps)” on page 2:587 for more
information on the usage of this library.

If the user elects to boot an Itanium architecture-based operating system, the UEFI
loads the appropriate OS loader from the UEFI System Partition and passes control to
it. The OS loader will load other files including the OS kernel from an OS partition using
the UEFI boot services which provides an API interface to the OS loader.

The OS loader can obtain information about the memory map usage of the firmware by
making the UEFI procedure call GetMemoryMap(). This procedure provides information
related to the size and attributes of the memory regions currently used by firmware.

The OS loader will then jump to the OS kernel that takes control of the system. Until
this point, system firmware retained control of key system resources such as the
Interrupt Vector Table and provided the necessary interrupt, trap and fault handlers.

Figure 13-2, “Control Flow of Boot Process in a Multiprocessor Configuration” on page
2:626 depicts the booting steps in a MP configuration.

13.1.2 Operating System Boot Steps

The firmware will initialize the processor(s) and platform to a specific state before
handing off to the operating system boot loader. The boot loader is then responsible for
copying the operating system from some storage medium into memory for running.
Once this is done the operating system will need to initialize some key registers before
entering into a higher level language code such as C. This section will describe code
that an OS will need to execute in order to initialize system registers for preparing an
OS to run in virtual mode and handle interrupts. Appendix A, “Code Examples” provides
the Itanium architecture-based sample assembly code described in this section.

Assuming the specific operating system boot loader hands off to the OS kernel in
physical mode, the operating system should first disable interrupts and interrupt
collection via the PSR. This is done to avoid taking external interrupts from timers, etc
and also prepares for writing specific system registers that require PSR.ic to be 0 when
written.

2:626 Volume 2, Part 2: Firmware Overview

Next the operating system startup code invalidates the ALAT via the invala instruction.
The invala in complete form will invalidate all entries in the ALAT.

Figure 13-2. Control Flow of Boot Process in a Multiprocessor Configuration

Power On

SALE_ENTRY

SAL_RESET

BSP Selection

Initialization

& Memory Test

PAL Late Self-test

Wake APs for

PAL Late Self-test

PAL Late Self-test

Rendezvous_2

Call to OS OS_Loader

Yes

No

Yes

No

No

BSP?

Handoff to the

Itanium-based OS

Handoff to the

Itanium-based OS

Itanium-based OS will

Rendez

Rendez

Interrupt?

Interrupt?

PALE_RESET Recovery?

No

Update Firmware
Do System Reset

Yes

BOOT_RENDEZ

Rendezvous_1

PAL_RESET

PAL

Load OSLoader

from Boot Device

EFI

Set Wakeup Entry
Wakeup APs

APs

wake up the APs

Optional

Yes

Volume 2, Part 2: Firmware Overview 2:627

The register stack should be invalidated. This can be done by setting the Register Stack
Configuration Register (RSC) to zero followed by a loadrs instruction. Setting the RSC
to zero will put the register stack in enforced lazy mode and set the RSC.loadrs, load
distance to tear point, to zero. The loadrs will invalidate all stacked registers outside
current frame.

The region registers and protection key registers are then initialized with operating
system implementation dependent values. For example, the OS will initialize the region
register with a preferred page size. It would also disable the VHPT until it was ready for
it. In the example, all region registers are initialized with an 8-KB page size.

An OS must setup a kernel stack pointer and backing store pointer for the register
stack. The stack pointer (GR12) is set to the OS kernel stack area with scratch space to
cover calling conventions. AR.RSC must be set to enforced lazy mode before writing to
the bspstore register. Initializing the bspstore has effects on all three RSE pointers
(BSP, BSPSTORE, and RSE.BspLoad).

In order for the operating systems to handle interruptions, the operating system
interrupt vector table base address must be set up. The size of the vector table is 32K
bytes and is 32K byte aligned. Setting the location of the table is accomplished by
moving the address into CR.IVA.

Operating systems setup system address translations for the kernel text and data by
using the translation insertion format described in Section 4.1.1.5, “Translation
Insertion Format” on page 2:53. A combination of a general register, Interruption TLB
Insertion Register (ITIR), and the Interruption Faulting Address register (IFA) are used
to insert entries into the TLB. To void TLB faults on specific text and data areas the
operating system can lock critical virtual memory translations in the TLB by use of
Translation Register (TR) section of the TLB. The entries are placed into a TR via the
Insert Translation Register (itr) instruction. The translation will remain unless the
software issues the Purge Translation (ptr) instruction. Other important areas might be
locked also, such as entries for memory mapped I/O, etc.

After the initial translations have been entered, the OS can make final preparations for
enabling virtual addressing. The OS needs to set several important bits in the IPSR,
such as data address translation (dt), register stack translation (rt), instruction address
translation (it), enabling interruption collection (ic), and setting the specific register
bank (bn).

The Default Control Register (DCR) specifies the default parameters for PSR values on
interruption, some additional global controls, and whether speculative load faults can
be deferred. The example defers all speculation faults. Also, if the operating system is
utilizing the performance monitors then the DCR.pp bit should be set so that on
interruption the PSR.pp bit will be set.

The global pointer (GR1) should point to the global data area. It must be setup properly
before using higher level languages such as C. The startup code should also set the
following registers to zero, the Interruption Function State (CR.IFS, to set frame marker
to zero), and AR.RNAT (to make sure no NaT bits are set before OS kernel begins using
the RSE.

2:628 Volume 2, Part 2: Firmware Overview

Before enabling virtual addressing, the Interruption Instruction Bundle Pointer (IIP) is
set to point a virtual address. This is done so when the return from interruption
instruction (rfi) is executed the instruction fetched will have a virtual address. The rfi
will switch modes based on IPSR values which are moved into the PSR. The IIP value
becomes the new IP.

13.2 Runtime Procedure Calls

The PAL, SAL, and UEFI firmware components provide entry points as runtime
interfaces to the OS. These runtime interfaces allow the OS to obtain information about
the processor and platform as well as perform implementation-specific functions on the
processor and platform.

The calling conventions for these runtime procedures are documented in the respective
firmware architecture specifications. For PAL and SAL, the first input argument to the
procedure call specifies the index of the procedure within the list of supported
procedures for each firmware layer.

13.2.1 PAL Procedure Calls

PAL procedure calls are classified into two types: static and stacked. The static calls are
intended for boot-time use before main memory is available or in error recovery
situations where memory or the RSE may not be reliable. All parameters will be passed
in the general registers GR28 to GR31 of Bank 1. The stacked registers (GR32 to
GR127) will not be used for these calls. The static calls can be called at both boot-time
and runtime.

Stacked register calls are intended for use after memory has been made available. The
stacked registers are used for parameter passing and local variable allocation. These
calls also allow memory pointers may be passed as arguments. These calls can be
made at boot-time after memory has been tested and initialized as well as runtime.

For a listing of all the PAL procedures and their classification please see
Section 11.10.1, “PAL Procedure Summary” on page 2:354.

All PAL calls are re-entrant and can be executed simultaneously on multiple processors.

13.2.1.1 Making a Static PAL Call

Since the static PAL calls do not use stacked registers, these calls are made as a pure
jump with branch register B0 containing the address of the bundle to which control will
return. The following code example describes how to make a static PAL call:

Volume 2, Part 2: Firmware Overview 2:629

The sample code is position independent and functions in both physical and virtual
addressing modes. Since the return address is evaluated by using the runtime
instruction pointer (IP value), it will run from any address. This attribute is important
for any relocatable code.

The address of the PAL procedure entry point is passed to SAL at the hand-off from PAL
to SAL during reset. SAL will pass this information on to the OS during OS boot as well.

13.2.1.2 Making a Stacked PAL Call

A stacked PAL call uses the stacked registers for argument passing and local variable
allocation. The stacked PAL calls conform to the calling conventions document [SWC],
with the exception that general register GR28 must also contain the function index
input argument. The following code example describes how to make a stacked PAL call.

GetFeaturesCall:

mov r14 = ip // Get the ip of the current bundle
movl r28 = PAL_PROC_GET_FEATURES// Index of the PAL procedure
movl r4 = AddressOfPALProc;;// Address of the PAL proc entry point
ld8 r4 = [r4];;// Read address from local pointer
mov b5 = r4 // Move address into a branch register

// Compute the return address in a position independent manner

addl r14 = (BackHome - GetFeaturesCall),r14;;
mov b0 = r14 // b0 is the return link
mov r29 = r0 // Initialize rest of input arguments
mov r30 = r0 // to zero as required by the
mov r31 = r0 // architecture.

br.sptk b5;; // Make the PAL call.

// PAL will return here when the call is completed

BackHome:

2:630 Volume 2, Part 2: Firmware Overview

13.2.1.3 PAL Procedure Calls and Performance

PAL procedure calls are designed for a number of different functions varying from
boot-time usage before platform memory is available to processor-specific functions
used during runtime by the OS. PAL runtime procedure calls made by the OS are
designed to be flexible with minimal overhead. The following features aid in this goal:

• PAL procedure calls are relocatable. This feature is useful for platforms that have
PAL stored in non-volatile storage, such as flash. During OS boot the PAL
procedures are copied into RAM which will reduce the memory latency.

• A number of PAL procedure calls are defined to be called in both physical and virtual
addressing. This allows the caller to make the call in its currently executing
addressing mode, thus reducing the need to switch between physical and virtual
addressing.

13.2.2 SAL Procedure Calls

All SAL procedure calls use the stacked register calling convention. SAL follows the
floating-point register conventions specified in the calling conventions document
[SWC], with the exception that SAL does not use the floating-point registers FR32 to
FR127. This exception eliminates the need for the OS to save these registers across SAL
procedure calls.

SAL procedures are non re-entrant. The OS is required to enforce single threaded
access to the SAL procedures except for the following procedures:

• SAL_MC_RENDEZ, SAL_CACHE_INIT, SAL_CACHE_FLUSH

13.2.3 UEFI Procedure Calls

UEFI procedure calls are classified into the following two categories: boot services and
runtime services. The UEFI boot services execute in physical addressing mode only. The
runtime services can execute in either physical or virtual addressing mode. The UEFI
boot services are only available during the boot process and are terminated by a call to

movl r4 = AddressOfPALProc;;// Address of the PAL proc entry point
ld8 r4 = [r4];;// Read address from local pointer
mov b5 = r4 // Move address into a branch register

// Make the PAL_HALT_INFO procedure call. PAL_HALT_INFO uses stacked
register
// convention and parameters are passed with in0-in3

mov r28 = PAL_HALT_INFO;;// Index of the PAL procedure
mov out0 = r28// r28 and in0 must both contain the

// index value for stacked PAL calls.
mov out1 = ScratchMem_Pointer// Pointer to the memory argument
mov out2 = 0x0// Write zero to unused input arguments
mov out3 = 0x0

br.call.sptk.few b0 = b5;;// PAL stacked call

// PAL will return here when the call is completed

Volume 2, Part 2: Firmware Overview 2:631

the EfiExitBootServices() procedure. After this call, UEFI boot services may no longer
be invoked by the OS. The UEFI runtime services execute in physical mode until the OS
invokes the EFISetVirtualAddress() function to switch the UEFI to virtual mode. After
this point, the UEFI runtime services may be invoked in virtual mode only. For full
information on all the UEFI boot and runtime services please refer to the UEFI
specification [UEFI].

13.2.4 ACPI Control Methods

Advanced Configuration and Power Interface (ACPI) firmware provides a method of
reporting system resources (up to the boundary of the box) to the operating systems.
ACPI uses tables to describe system information, features, and methods for controlling
those features. The ACPI tables list devices on the system board, devices that cannot
be detected by bus walks, and devices which require the OS for power or temperature
management. The ACPI control methods use a pseudo-code language called AML (ACPI
Machine Language). AML is a tokenized language. The OS contains and uses an AML
interpreter that interprets and executes these methods stored in the ACPI tables.

13.2.5 Physical and Virtual Addressing Mode Considerations

All of the PAL procedures can be called in the physical addressing mode. A subset of PAL
calls can be made using the virtual addressing mode. For PAL calls that can be invoked
using virtual addressing mode, it is the responsibility of the caller to map these PAL
procedures with an ITR as well as either a DTR or DTC. If the caller chooses to map the
PAL procedures using a DTC it must be able to handle TLB faults that could occur. See
Section 11.10.1, “PAL Procedure Summary” for a summary of all PAL procedures and
the calling conventions.

The SAL and UEFI firmware layers have been designed to operate in virtual addressing
mode. UEFI provides an interface to the OS loader that describes the physical memory
addresses used by firmware and indicates whether the virtual address of such areas
need to be registered by the OS with UEFI. The UEFI Specification [UEFI] also provides
the interfaces for the OS to register the virtual address mappings. In a MP
configuration, the virtual addresses registered by the OS must be valid globally on all
the processors in the system.

The SAL runtime services may be called either in virtual or physical addressing mode.
SAL procedures that execute during machine check, INIT, and PMI handling must be
invoked in physical addressing mode.

The parameters passed to the firmware runtime services must be consistent with the
addressing environment, i.e. PSR.dt, PSR.rt setting. Additionally, the global pointer
(gp) register [SWC] must contain the physical or virtual address for use by the
firmware.

13.2.5.1 SAL Procedures that Invoke PAL Procedures

Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures. While invoking these SAL procedures in virtual mode, the OS must provide
the appropriate translation resources required by PAL (i.e. ITR and DTC covering the
PAL code area).

2:632 Volume 2, Part 2: Firmware Overview

In general, if SAL needs to invoke a PAL procedure, it will do so in the same addressing
mode in which it was called by the OS (i.e. without changing the PSR.dt, PSR.rt, and
PSR.it bits). If a particular PAL procedure can only be invoked in physical mode, SAL will
turn off translations and then invoke the PAL procedure. SAL will then restore
translations before returning to the caller. The PAL_CACHE_INIT procedure invoked by
the SAL_CACHE_INIT is an example of a procedure that would require such an
addressing mode transition.

13.3 Event Handling in Firmware

The PAL and SAL firmware layers are responsible for handling three events. These
events are the machine check abort (MCA), the initialization event (INIT) and the
platform management interrupt (PMI). When the processor detects these events it will
pass control to PAL for handling. The following sections describe the high level overview
of the firmware handling of these events.

13.3.1 Machine Check Abort (MCA) Flows

In order to have a highly reliable and fault tolerant computing environment a great deal
of coordination and cooperation between the system entities (i.e. the processor,
platform, and system software) is required. The PAL firmware, the SAL firmware, and
the operating system all work together to meet this goal. This section will provide an
overview of the machine check abort handling.

When the processor detects an error, control is transferred to the PAL_CHECK
entrypoint. PAL_CHECK will perform error analysis and processor error correction where
possible. Subsequently, PAL either returns to the interrupted context or hands off
control to the SAL_CHECK component. The level of recovery provided by PAL_CHECK is
implementation dependant and is beyond the scope of this specification. SAL_CHECK
will perform error logging and platform error correction where possible. Errors that are
corrected by PAL and SAL firmware are logged and control is transferred back to the
interrupted process/context. For corrected errors, no OS intervention is required for
error handling, but the OS is notified of the event for logging purposes through a low
priority asynchronous corrected machine check interrupt (CMCI). See Section 5.8.3.8,
“Corrected Machine Check Vector (CMCV – CR74)” for more information on the CMCI. If
the error was not corrected by firmware, SAL hands off control to the OS_MCA handler.

Within the firmware the entire machine check is handled with virtual address
translations disabled. However, the OS machine check handler may optionally enable
virtual addressing and execute most of MCA handler in virtual mode.

Figure 13-3 and Figure 13-4 depict an overview of Itanium machine check processing.
The control flows are slightly different for corrected and uncorrected machine checks.

Volume 2, Part 2: Firmware Overview 2:633

For multiprocessor systems, machine checks are classified as local and global. A global
MCA implies a system wide broadcast by hardware of an error condition. During a
global MCA condition, all the processors in the system will be notified of the MCA,
detected by one or more system components, and each of the processors in the system
will start processing the MCA in their respective handlers. The SAL firmware and OS
layers will coordinate the handling of the error among the processors.

A local MCA has a scope of influence that is limited to the particular processor which
encountered the error. This local MCA will not be broadcast to other processors in the
system and will be handled on an individual processor basis. At any point in time, more
than one processor in the system may experience a local MCA and handle it without
notifying other processors in the system.

The next sections will provide an overview of the responsibilities that the PAL, SAL and
OS have for handling machine checks. These sections are not an exhaustive description
of the functionality of the handlers but provides a high level description of how the MCA
handling is split among the different components.

13.3.1.1 Machine Check Handling in PAL

All machine check abort events are first handled in the PAL firmware layer. The
following provides a brief description of some of the functions of the PAL machine check
handler:

• Correct processor errors if possible.

Figure 13-3. Correctable Machine Check Code Flow

Figure 13-4. Uncorrectable Machine Check Code Flow

PAL_MC_RESUME

PAL_CHECK SAL_CHECK OS_MCA
Log Error

CMC
Interrupt

MCA
1 2

4

Return to
Execution
Context

3

5 6

PAL_CHECK SAL_CHECK
OS_MCA

Correct/Log ErrorMCA
1 2 3

2:634 Volume 2, Part 2: Firmware Overview

• Attempt to contain the error by requesting a rendezvous for all processors in the
system if needed.

• Hand off control to SAL for further processing, such as error logging.

• Return processor error log information upon request by SAL.

• Return to the interrupted context by restoring the state of the processor.

• Notify the OS about corrected machine check conditions through the CMC interrupt.

13.3.1.2 Machine Check Handling in SAL

Before SAL is ready to handle machine checks, it must register with PAL an uncacheable
memory buffer that PAL can use to save away processor state. This area is known as
the min-state save area. If a machine check occurs before this memory location has
been registered, return to the interrupted context is not possible and the machine
check is not recoverable.

The following provides a description of some of the functions of the SAL machine check
handler.

• Attempt to rendezvous the other processors in the system on a PAL request.

• Process MCA handling after handoff from PAL.

• Retrieve processor error log information via PAL procedure calls and store this
information for logging purposes.

• Issue a PAL clear log request to clear the processor error logs, which enables
further logging.

• Log platform state for MCA and retain it until it is retrieved by the OS.

• Attempt to correct processor machine check errors which are not corrected by PAL.

• Attempt to correct platform machine check errors.

• Branch to the OS MCA handler for uncorrected errors or optionally reset the
system.

• Return to the interrupted context via a PAL procedure call.

13.3.1.3 Machine Check Abort Handling in OS

Before the OS kernel is ready to handle machine checks, it must register the address of
the OS_MCA entry point and the GP [SWC] value for the OS_MCA handler with SAL. If
the OS does not register its entry point, the occurrence of a machine check will cause a
system reset. In MP configurations, the OS must also register with SAL:

• A rendezvous interrupt vector which SAL firmware can use to rendezvous the
processors.

• The mechanism that the OS will employ to wake up the processors at the end of
machine check processing.

When the OS registers the OS_MCA entry point with SAL, it also supplies the length of
the code (or at least the length of the first level OS_MCA handler). SAL computes and
saves the checksum of this code area. Prior to entering OS_MCA, SAL ensures that the
OS_MCA vector is valid by verifying the checksum of the OS_MCA code. Hence, the
OS_MCA code must not contain any self modifying code.

Volume 2, Part 2: Firmware Overview 2:635

When an uncorrected machine check event occurs, SAL will invoke the OS_MCA
handler. The functionality of this handler is dependent on the OS. At a minimum, it
must call a SAL procedure to retrieve the error logging and state information and then
call another SAL procedure to release these resources for future error logging and state
save.

When the OS_MCA code completes, it decides whether or not to return to the
interrupted context. The OS must take into account the state information retrieved
from the SAL with respect to the continuability of the processor and system. Thus, even
if the OS could correct the error, if PAL or SAL reports that it did not capture the entire
processor context, resumption of the interrupted context will not be possible.

The OS must also determine from values stored by PAL in the min-state save area
whether the machine check occurred while operating with PSR.ic set to 0 and whether
the processor supports recovery for this case. Please refer to Section 11.3.1.1,
“Resources Required for Machine Check and Initialization Event Recovery” for more
information on processor recovery under this condition.

To provide better software error handling, some operating systems build mechanisms
to identify whether machine checks occurred during execution of the OS kernel code or
in the application context. One technique to achieve this is to call the PAL_MC_DRAIN
procedure when an application makes a system call to the OS. This procedure
completes all outstanding transactions within the processor and reports any pending
machine checks. This technique impacts system call and interrupt handling
performance significantly, but will improve system reliability by allowing the OS to
recover from more errors than if this mechanism was not included.

13.3.2 INIT Flows

INIT is an initialization event generated by the platform or by software through an
inter-processor interrupt message. The INIT can be due to a platform INIT event or due
to a failed rendezvous on an application processor.

The INIT event will pass control to the PAL firmware INIT handler. The PAL INIT handler
saves processor state to the registered min-state save area and sets up the architected
hand off state before branching to SAL. See Section 11.5, “Platform Management
Interrupt (PMI)” for more information on the PAL INIT handling.

The SAL INIT handler logs processor state and platform state information and then calls
the OS_INIT handler if one is registered. The OS_INIT handler gains control in physical
mode but may switch to virtual mode if necessary. The OS may choose to implement a
crash dump or an interactive debugger within the OS_INIT handler.

The OS must register the OS_INIT entry point with SAL, otherwise the occurrence of an
INIT event will cause a system reset. At the end of OS_INIT handling, the OS must
return to SAL with the appropriate exit status.

Figure 13-5 illustrates the flow of control during INIT processing.

2:636 Volume 2, Part 2: Firmware Overview

Figure 13-5. INIT Flow

Write processor / platform info to

SAL_INIT

YesNo

OS_INIT

SAL implementation-specific

save area

Yes

No
SAL_MC_RENDEZ

warm boot
(SAL_RESET or reset event)

due to failure to
respond to rendezvous

interrupt?

Wake up

Return to
Interrupted
Context

PAL_MC_RESUME

Return value
from OSWarm boot

OS_INIT
procedures

valid?

INIT

PAL_INITINIT Event

Interrupt

Volume 2, Part 2: Firmware Overview 2:637

13.3.3 PMI Flows

Processors based on the Itanium architecture implement the Platform Management
Interrupt (PMI) to enable platform developers to provide high level system functions,
such as power management and security, in a manner that is transparent not only to
the application software but also to the operating system.

When the processor detects a PMI event it will transfer control to the registered PAL
PMI entrypoint. PAL will set up the hand off state which includes the vector information
for the PMI and hand off control to the registered SAL PMI handler. To reduce the PMI
overhead time, the PAL PMI handler will not save any processor architectural state to
memory. Please see Section 11.5, “Platform Management Interrupt (PMI)” for more
information on PAL PMI handling.

The SAL PMI handler may choose to save some additional register state to SAL
allocated memory to handle the specific platform event that generated the PMI.

The OS will not see the PMI events generated by the platform. The platform developer
can use PMI interrupts to provide features to differentiate their platform.

PMI handling was designed to be executed with minimal overhead. The SAL firmware
code copies the PAL and SAL PMI handlers to RAM during system reset and registers
these entry-points with the processor. This code is then run with the cacheable memory
attribute to improve performance.

Depending on the implementation and the platform, there may be no special hardware
protection of the PMI code's memory area in RAM, and the protection of this code space
may be through the OS memory management’s paging mechanism. SAL sets the
correct attributes for this memory space and passes this information to the OS through
the Memory Descriptor Table from EfiGetMemoryMap() [UEFI].

13.3.4 P-state Feedback Mechanism Flow Diagram

The example flowchart shown below illustrates how the caller can utilize the
PAL_SET_PSTATE and the PAL_GET_PSTATE procedures to manage system utilization
and power consumption, for a processor implementation that belongs to either a
hardware-coordinated dependency domain or a hardware-independent dependency
domain. At the beginning of the loop, PAL_GET_PSTATE gives the performance
characteristics of the processor over the last time period. It is assumed that the caller
maintains an internal count for determining the busy ratio of the logical processor (busy
ratio can be defined as the percentage of time the processor was busy executing
instructions and not idle). The caller then seeks to adjust the P-state for the next time
period to match the busy ratio from the previous time period. For example, if the busy
ratio for a given period was 100%, and the performance_index returned by
PAL_GET_PSTATE was 60, then this indicates that the P-state for the next time period
should be P0 (which has performance index of 100). The caller would then call the
PAL_SET_PSTATE procedure to transition the processor to the P0 state. In essence, if
the busy ratio is greater than the performance_index returned by PAL_GET_PSTATE, the
caller responds to the increased demand requirement of the workload by transitioning
the processor to a higher-performance P-state. Alternatively, if the busy ratio is lower

2:638 Volume 2, Part 2: Firmware Overview

than the performance_index returned by PAL_GET_PSTATE, the caller responds by
transitioning the processor to a lower performance P-state, which consumes less power
and operates at reduced performance.

Such an adaptive policy implemented by the caller to dynamically respond to system
workload characteristics using P-states allows for efficient power utilization – the
processor consumes additional power by operating at a higher performance level only
when the current workload requires it to do so.

§

Figure 13-6. Flowchart Showing P-state Feedback Policy

(1) getperfindex = PAL_GET_PSTATE
(2) OS computes newpstate index from
busy ratio and getperfindex

newpstate == getperfindex?

PAL_SET_PSTATE(newpstate)

Check
Return Code

Mark newpstate as Invalid

Current P-state =
newpstate

Reset
busy ratio

Yes

No

Status == -2

Status == 0
(Accepted)

Status == 1
(Not Accepted)

(Invalid)

Volume 2, Part 2: Code Examples 2:639

Code Examples A

A.1 OS Boot Flow Sample Code

The sample code given below is a example of setting up operating system register state
to prepare the processor for running in virtual mode as described in Section 13.1.2,
“Operating System Boot Steps” on page 2:625.

// This code will perform the following steps:
//1.Initialize PSR with interrupt disabled (bit 13)
//2.Invalidate ALAT via invala instruction
//3.Invalidate register stack
//4.Set region registers rr[r0] - rr[r7] to RID=0, PS=8K, E=0.
//5.Disable the VHPT
//6.Initialize protection key registers
//7.Initialize SP
//8.Initialize BSP
//9.Enable register stack engine.
//10.Setup IVA
//11.Setup virtual->physical address translation
//12.Setup GP.

.file“start.s”

// globals

 .global main
 .type main, @function // C function we will return to

.global __GLOB_DATA_PTR // External pointer to Global Data area

.global IVT_BASE // External pointer to IVT_BASE

 .text

// This is the entry point where primary boot loader
// passes control.

pstart::

mov psr.l = r0 // Initialize psr.l
;;
invala // Invalidate ALAT
mov ar.rsc = r0 // Invalidate register stack
;;
loadrs

// Initialize Region Registers

mov r2 = (13 << 2) // 8K page size
mov r3 = r0
mov r4 = 61
;;

Loader_RRLoop:
shl r10 = r3, r4
;;
mov rr[r10] = r2
add r3 = 1, r3
;;
cmp4.geu p6, p7 = 8, r3

2:640 Volume 2, Part 2: Code Examples

(p6)br.cond.sptk.few.clr Loader_RRLoop
;;

// Disable the VHPT walker and set up the minimum size for it (32K) by writing
// to the page table address register (cr.pta)

mov r2 = (15<<2)
;;

mov cr.pta = r2

// Initialize the protection key registers for kernel

mov r2 = (1<< 0)
mov r3 = r0
;;
mov pkr[r3] = r2 // validate pkr[zero]
;;
mov r2 = r0
;;

pkr_loop:
add r3=r3,r0, 1 // start with index 1
;;
cmp.gtu p6,p7 = 8,r3
;;

(p6)mov pkr[r3] = r2
(p6)br.cond.sptk.few.clr pkr_loop // loop until 8

// Setup kernel stack pointer (r12)

movl sp = kstack + (64*1024) // 64K stack
;;

// Set up the scratch area on stack

add sp = - 32, sp

// Setup the Register stack backing store
//
// 1st deal with Register Stack Configuration register
//
// NOTE: the RSC mode must be enforced lazy (00) to write to bspstore
//
// mode: = enforced lazy
// be = little endian

mov ar.rsc = r0
;;

//Now have to setup the RSE backing store pointer
//
//NOTE: initializing the bspstore has effects on all 3 RSE pointers
// (BSP, BSPSTORE, and RSE.BspLoad)

movl r2 = kstack + ((96 + (96/63))*8)
;;
mov ar.bspstore = r2

// Need to setup base address for interrupt vector table...

movl r3 = IVT_BASE
;;
mov cr.iva = r3

// Setup system address translation for the kernel

Volume 2, Part 2: Code Examples 2:641

//
// The Translation Insertion Format looks like the following...
//
// Below is the register interface to insert entries into the TLB
//
//1) A general register contains an address,attributes,and permissions
//2) ITIR: additional info such as protection key page size info
//3) IFA: specifies the virtual page number for instruction and data
// TLB inserts
//
//Registers used:
//---------------
// | 63 53 | 52 | 51 50 | 49 12 | 11 9| 8 7 | 6 | 5 |4 1| 0 |
//GR | ig | ed | rv | ppn | ar | pl | d | a | ma | p |
//
// ITIR | rv {63:32} | key {31:8} | ps {7:2} | rv {1:0}|
//
//IFA | vpn {63:12}| ignored {11:0} |
//
//RR[vrn] | reserved{63:32} | rid {31:8}| ignored {7:2) | rv{1} | ignored {0}|
//
//
//where
//ig = ignored bits
//rv= reserved bits
//p = present bit
//ma = memory attribute
//a = accessed bit
//d = dirty bit
//pl= privilege level
//ar= access rights
//ppn= physical page number
//ed= exception deferral
//ps= page size of mapping (2**ps)
//vpn= virtual page number
//
// Setup virtual page number
//
// NOTE:The virtual page number depends on a translation’s
//page size.
//
// Add entry for TEXT section

movl r2 = 0x0
;;
mov cr.ifa = r2

//setup ITIR (Interruption TLB Insertion Register)

movl r3=((24 << 2) | (0 << 8)) // set page size to 16 MB
;;
mov cr.itir = r3

//now setup the general register to use with itr (insert translation
//register), use physical page of zero

movl r10 =((1 << 52)| (0x00000000 << 12)|(3 << 9)|(0 << 7)| \
(1 <<6) | (1 << 5) | (1 << 0))

mov r11 = r0
;;
itr.i itr[r11] = r10 // Insert translation register

//Entry for OS Data section

add r11 = 1, r11 // skip to tr next index

2:642 Volume 2, Part 2: Code Examples

movl r2 = 0x0 // use vpn 0
;;
mov cr.ifa = r2

//Setup ITIR (Interruption TLB Insertion Register)

movl r3 = ((24 << 2) | (0 << 8)) // 16 MB
;;
mov cr.itir = r3

//Now setup the general register to use with itr (insert translation
//register)

movl r10 =((1 << 52) | (0x0 << 12) | (3 << 9) | (0 << 7) |\
(1 << 6) | (1 << 5) | (1 << 0))

;;
itr.d dtr[r11] = r10 // Insert translation register
;;

//It is now time to set the appropriate bits in the PSR (processor
//status register)

movl r3 = ((1 << 44) | (1 << 36) |(1 << 38) |(1 << 27) |(1 << 17) | \
(1 << 15) | (1 << 14) | (1 << 13))

;;
mov cr.ipsr = r3

//Initialize DCR to defer all speculation faults

movl r2 = 0x7f00
;;
mov cr.dcr = r2

// Initialize the global pointer (gp = r1)

movl gp = __GLOB_DATA_PTR

// Clear out ifs

mov cr.ifs=r0

// Need to do a “rfi” in order to synchronize above instructions and set
// “it” and “ed” bits in the PSR.

movl r3 = main // Setup for main, C code
;;
mov cr.iip = r3 // Setup iip to hit main
;;
rfi
;;

// Setup kernel stack

.data

.globalkstack

.align 16
kstack:
.skip(64*1024)

§

Intel® Itanium® Architecture
Software Developer’s Manual
Volume 3: Intel® Itanium® Instruction Set Reference

Revision 2.3

May 2010

Document Number: 323207

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 644

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation

*Other names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 645

Contents

1 About this Manual . 3:1

1.1 Overview of Volume 1: Application Architecture . 3:1
1.1.1 Part 1: Application Architecture Guide . 3:1
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 3:1

1.2 Overview of Volume 2: System Architecture. 3:2
1.2.1 Part 1: System Architecture Guide . 3:2
1.2.2 Part 2: System Programmer’s Guide . 3:3
1.2.3 Appendices. 3:4

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 3:4
1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 3:4
1.5 Terminology . 3:5
1.6 Related Documents . 3:5
1.7 Revision History . 3:6

2 Instruction Reference . 3:11

2.1 Instruction Page Conventions. 3:11
2.2 Instruction Descriptions . 3:13

3 Pseudo-Code Functions . 3:281

4 Instruction Formats . 3:293

4.1 Format Summary . 3:294
4.2 A-Unit Instruction Encodings . 3:300

4.2.1 Integer ALU . 3:300
4.2.2 Integer Compare. 3:302
4.2.3 Multimedia . 3:306

4.3 I-Unit Instruction Encodings . 3:310
4.3.1 Multimedia and Variable Shifts . 3:310
4.3.2 Integer Shifts . 3:315
4.3.3 Test Bit . 3:316
4.3.4 Miscellaneous I-Unit Instructions . 3:318
4.3.5 GR/BR Moves. 3:320
4.3.6 GR/Predicate/IP Moves . 3:321
4.3.7 GR/AR Moves (I-Unit). 3:321
4.3.8 Sign/Zero Extend/Compute Zero Index . 3:322
4.3.9 Test Feature . 3:323

4.4 M-Unit Instruction Encodings . 3:323
4.4.1 Loads and Stores . 3:323
4.4.2 Line Prefetch . 3:337
4.4.3 Semaphores . 3:338
4.4.4 Set/Get FR . 3:339
4.4.5 Speculation and Advanced Load Checks. 3:340
4.4.6 Cache/Synchronization/RSE/ALAT . 3:341
4.4.7 GR/AR Moves (M-Unit). 3:342
4.4.8 GR/CR Moves . 3:343
4.4.9 Miscellaneous M-Unit Instructions . 3:344
4.4.10 System/Memory Management . 3:345
4.4.11 Nop/Hint (M-Unit) . 3:349

4.5 B-Unit Instruction Encodings . 3:349
4.5.1 Branches . 3:350
4.5.2 Branch Predict/Nop/Hint . 3:353
4.5.3 Miscellaneous B-Unit Instructions . 3:355

4.6 F-Unit Instruction Encodings. 3:356
4.6.1 Arithmetic . 3:358

646 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

4.6.2 Parallel Floating-point Select. 3:359
4.6.3 Compare and Classify . 3:359
4.6.4 Approximation . 3:361
4.6.5 Minimum/Maximum and Parallel Compare . 3:362
4.6.6 Merge and Logical . 3:363
4.6.7 Conversion . 3:363
4.6.8 Status Field Manipulation . 3:364
4.6.9 Miscellaneous F-Unit Instructions . 3:365

4.7 X-Unit Instruction Encodings . 3:365
4.7.1 Miscellaneous X-Unit Instructions . 3:365
4.7.2 Move Long Immediate64 . 3:366
4.7.3 Long Branches . 3:367
4.7.4 Nop/Hint (X-Unit) . 3:368

4.8 Immediate Formation. 3:368

5 Resource and Dependency Semantics . 3:371

5.1 Reading and Writing Resources . 3:371
5.2 Dependencies and Serialization . 3:371
5.3 Resource and Dependency Table Format Notes . 3:372

5.3.1 Special Case Instruction Rules . 3:374
5.3.2 RAW Dependency Table . 3:374
5.3.3 WAW Dependency Table . 3:383
5.3.4 WAR Dependency Table . 3:387
5.3.5 Listing of Rules Referenced in Dependency Tables 3:387

5.4 Support Tables . 3:389
Index. 3:397

Figures

2-1 Add Pointer. 3:15
2-2 Stack Frame . 3:16
2-3 Operation of br.ctop and br.cexit . 3:23
2-4 Operation of br.wtop and br.wexit. 3:24
2-5 Deposit Example (merge_form) . 3:51
2-6 Deposit Example (zero_form). 3:51
2-7 Extract Example . 3:54
2-8 Floating-point Merge Negative Sign Operation . 3:80
2-9 Floating-point Merge Sign Operation . 3:80
2-10 Floating-point Merge Sign and Exponent Operation . 3:80
2-11 Floating-point Mix Left . 3:83
2-12 Floating-point Mix Right . 3:83
2-13 Floating-point Mix Left-Right. 3:83
2-14 Floating-point Pack. 3:96
2-15 Floating-point Parallel Merge Negative Sign Operation . 3:111
2-16 Floating-point Parallel Merge Sign Operation. 3:111
2-17 Floating-point Parallel Merge Sign and Exponent Operation . 3:112
2-18 Floating-point Swap . 3:137
2-19 Floating-point Swap Negate Left . 3:137
2-20 Floating-point Swap Negate Right . 3:138
2-21 Floating-point Sign Extend Left . 3:139
2-22 Floating-point Sign Extend Right . 3:139
2-23 Function of getf.exp . 3:143
2-24 Function of getf.sig . 3:143

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 647

2-25 Mix Examples . 3:170
2-26 Mux1 Operation (8-bit elements) . 3:190
2-27 Mux2 Examples (16-bit elements) . 3:191
2-28 Pack Operation . 3:195
2-29 Parallel Add Examples. 3:197
2-30 Parallel Average Example . 3:201
2-31 Parallel Average with Round Away from Zero Example . 3:202
2-32 Parallel Average Subtract Example . 3:204
2-33 Parallel Compare Examples . 3:206
2-34 Parallel Maximum Examples . 3:209
2-35 Parallel Minimum Examples . 3:211
2-36 Parallel Multiply Operation. 3:213
2-37 Parallel Multiply and Shift Right Operation . 3:214
2-38 Parallel Sum of Absolute Difference Example . 3:220
2-39 Parallel Shift Left Examples. 3:222
2-40 Parallel Subtract Examples . 3:227
2-41 Function of setf.exp . 3:242
2-42 Function of setf.sig. 3:242
2-43 Shift Left and Add Pointer . 3:246
2-44 Shift Right Pair. 3:248
2-45 Unpack Operation . 3:271
4-1 Bundle Format . 3:293

Tables

2-1 Instruction Page Description. 3:11
2-2 Instruction Page Font Conventions . 3:11
2-3 Register File Notation . 3:12
2-4 C Syntax Differences . 3:12
2-5 Pervasive Conditions Not Included in Instruction Description Code. 3:13
2-6 Branch Types . 3:20
2-7 Branch Whether Hint . 3:25
2-8 Sequential Prefetch Hint . 3:25
2-9 Branch Cache Deallocation Hint. 3:25
2-10 Long Branch Types . 3:30
2-11 IP-relative Branch Predict Whether Hint . 3:32
2-12 Indirect Branch Predict Whether Hint . 3:32
2-13 Importance Hint . 3:32
2-14 ALAT Clear Completer. 3:35
2-15 Comparison Types. 3:39
2-16 64-bit Comparison Relations for Normal and unc Compares 3:40
2-17 64-bit Comparison Relations for Parallel Compares. 3:40
2-18 Immediate Range for 32-bit Compares . 3:43
2-19 Memory Compare and Exchange Size . 3:46
2-20 Compare and Exchange Semaphore Types. 3:46
2-21 Result Ranges for czx . 3:49
2-22 Specified pc Mnemonic Values . 3:56
2-23 sf Mnemonic Values . 3:56
2-24 Floating-point Class Relations . 3:64

648 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

2-25 Floating-point Classes . .3:64
2-26 Floating-point Comparison Types . .3:67
2-27 Floating-point Comparison Relations .3:67
2-28 Fetch and Add Semaphore Types. .3:74
2-29 Floating-point Parallel Comparison Results . 3:101
2-30 Floating-point Parallel Comparison Relations . 3:101
2-31 Hint Immediates . 3:145
2-32 sz Completers . 3:151
2-33 Load Types . 3:151
2-34 Load Hints . 3:152
2-35 fsz Completers. . 3:157
2-36 FP Load Types . 3:157
2-37 lftype Mnemonic Values . 3:164
2-38 lfhint Mnemonic Values . 3:165
2-39 Move to BR Whether Hints . 3:174
2-40 Indirect Register File Mnemonics . 3:180
2-41 Mux Permutations for 8-bit Elements . 3:190
2-42 Pack Saturation Limits. . 3:195
2-43 Parallel Add Saturation Completers . 3:197
2-44 Parallel Add Saturation Limits . 3:197
2-45 Pcmp Relations . 3:206
2-46 Parallel Multiply and Shift Right Shift Options . 3:214
2-47 Faults for regular_form and fault_form Probe Instructions 3:218
2-48 Parallel Subtract Saturation Completers . 3:227
2-49 Parallel Subtract Saturation Limits . 3:227
2-50 Store Types . 3:251
2-51 Store Hints. . 3:252
2-52 xsz Mnemonic Values . 3:258
2-53 Test Bit Relations for Normal and unc tbits . 3:261
2-54 Test Bit Relations for Parallel tbits. . 3:261
2-55 Test Feature Relations for Normal and unc tf . 3:263
2-56 Test Feature Relations for Parallel tf . 3:263
2-57 Test Feature Features Assignment . 3:263
2-58 Test NaT Relations for Normal and unc tnats . 3:266
2-59 Test NaT Relations for Parallel tnats . 3:266
2-60 Memory Exchange Size . 3:274
3-1 Pseudo-code Functions . 3:281
4-1 Relationship between Instruction Type and Execution Unit Type 3:293
4-2 Template Field Encoding and Instruction Slot Mapping 3:294
4-3 Major Opcode Assignments . 3:295
4-4 Instruction Format Summary . 3:296
4-5 Instruction Field Color Key . 3:298
4-6 Instruction Field Names . 3:298
4-7 Special Instruction Notations . 3:299
4-8 Integer ALU 2-bit+1-bit Opcode Extensions . 3:300
4-9 Integer ALU 4-bit+2-bit Opcode Extensions . 3:301
4-10 Integer Compare Opcode Extensions . 3:303
4-11 Integer Compare Immediate Opcode Extensions . 3:303
4-12 Multimedia ALU 2-bit+1-bit Opcode Extensions . 3:306
4-13 Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions 3:307
4-14 Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions 3:307

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 649

4-15 Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions 3:308
4-16 Multimedia and Variable Shift 1-bit Opcode Extensions. 3:310
4-17 Multimedia Opcode 7 Size 1 2-bit Opcode Extensions 3:310
4-18 Multimedia Opcode 7 Size 2 2-bit Opcode Extensions 3:311
4-19 Multimedia Opcode 7 Size 4 2-bit Opcode Extensions 3:311
4-20 Variable Shift Opcode 7 2-bit Opcode Extensions. . 3:312
4-21 Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions 3:315
4-22 Deposit Opcode Extensions . 3:315
4-23 Test Bit Opcode Extensions . 3:317
4-24 Misc I-Unit 3-bit Opcode Extensions. . 3:318
4-25 Misc I-Unit 6-bit Opcode Extensions. . 3:319
4-26 Misc I-Unit 1-bit Opcode Extensions. . 3:319
4-27 Move to BR Whether Hint Completer . 3:320
4-28 Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions. 3:323
4-29 Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions 3:323
4-30 Integer Load/Store Opcode Extensions . 3:324
4-31 Integer Load +Reg Opcode Extensions . 3:324
4-32 Integer Load/Store +Imm Opcode Extensions. . 3:325
4-33 Semaphore/Get FR/16-Byte Opcode Extensions . 3:325
4-34 Floating-point Load/Store/Lfetch Opcode Extensions . 3:326
4-35 Floating-point Load/Lfetch +Reg Opcode Extensions . 3:326
4-36 Floating-point Load/Store/Lfetch +Imm Opcode Extensions 3:327
4-37 Floating-point Load Pair/Set FR Opcode Extensions . 3:327
4-38 Floating-point Load Pair +Imm Opcode Extensions . 3:328
4-39 Load Hint Completer. . 3:328
4-40 Store Hint Completer . 3:328
4-41 Line Prefetch Hint Completer . 3:337
4-42 Opcode 0 System/Memory Management 3-bit Opcode Extensions 3:345
4-43 Opcode 0 System/Memory Management 4-bit+2-bit Opcode Extensions. 3:345
4-44 Opcode 1 System/Memory Management 3-bit Opcode Extensions 3:346
4-45 Opcode 1 System/Memory Management 6-bit Opcode Extensions 3:346
4-46 Misc M-Unit 1-bit Opcode Extensions . 3:349
4-47 IP-Relative Branch Types . 3:350
4-48 Indirect/Miscellaneous Branch Opcode Extensions . 3:350
4-49 Indirect Branch Types . 3:351
4-50 Indirect Return Branch Types . 3:351
4-51 Sequential Prefetch Hint Completer . 3:351
4-52 Branch Whether Hint Completer. . 3:352
4-53 Indirect Call Whether Hint Completer . 3:352
4-54 Branch Cache Deallocation Hint Completer . 3:352
4-55 Indirect Predict/Nop/Hint Opcode Extensions . 3:354
4-56 Branch Importance Hint Completer . 3:354
4-57 IP-Relative Predict Whether Hint Completer . 3:354
4-58 Indirect Predict Whether Hint Completer . 3:355
4-59 Miscellaneous Floating-point 1-bit Opcode Extensions 3:356
4-60 Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions 3:357
4-61 Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions 3:357
4-62 Reciprocal Approximation 1-bit Opcode Extensions. . 3:358
4-63 Floating-point Status Field Completer . 3:358
4-64 Floating-point Arithmetic 1-bit Opcode Extensions . 3:358
4-65 Fixed-point Multiply Add and Select Opcode Extensions 3:358

650 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

4-66 Floating-point Compare Opcode Extensions . 3:360
4-67 Floating-point Class 1-bit Opcode Extensions. . 3:360
4-68 Misc F-Unit 1-bit Opcode Extensions . 3:365
4-69 Misc X-Unit 3-bit Opcode Extensions . 3:366
4-70 Misc X-Unit 6-bit Opcode Extensions . 3:366
4-71 Move Long 1-bit Opcode Extensions . 3:367
4-72 Long Branch Types . 3:367
4-73 Misc X-Unit 1-bit Opcode Extensions . 3:368
4-74 Immediate Formation . 3:368
5-1 Semantics of Dependency Codes . 3:373
5-2 RAW Dependencies Organized by Resource . 3:375
5-3 WAW Dependencies Organized by Resource. . 3:383
5-4 WAR Dependencies Organized by Resource . 3:387
5-5 Instruction Classes . 3:389

§

Volume 3: About this Manual 3:1

About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

3:2 Volume 3: About this Manual

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 – GR 127) of the general
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 3: About this Manual 3:3

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

3:4 Volume 3: About this Manual

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 3: About this Manual 3:5

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

Itanium® Architecture-based Firmware – The Processor Abstraction Layer (PAL)
and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization– Document number 308065
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization – This document (Document number 251110) describes
model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development –
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

3:6 Volume 3: About this Manual

• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide –
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification –
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of
Revision

Revision
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

Volume 3: About this Manual 3:7

August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part I, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of
Revision

Revision
Number Description

3:8 Volume 3: About this Manual

August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1;
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2;
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3,
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s)
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I,
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2,
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of
Revision

Revision
Number Description

Volume 3: About this Manual 3:9

Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of
Revision

Revision
Number Description

3:10 Volume 3: About this Manual

§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description

Volume 3: Instruction Reference 3:11

Instruction Reference 2

This chapter describes the function of each Itanium instruction. The pages of this
chapter are sorted alphabetically by assembly language mnemonic.

2.1 Instruction Page Conventions

The instruction pages are divided into multiple sections as listed in Table 2-1. The first
three sections are present on all instruction pages. The last three sections are present
only when necessary. Table 2-2 lists the font conventions which are used by the
instruction pages.

In the Format section, register addresses are specified using the assembly mnemonic
field names given in the third column of Table 2-3. For instructions that are predicated,
the Description section assumes that the qualifying predicate is true (except for
instructions that modify architectural state when their qualifying predicate is false). The
test of the qualifying predicate is included in the Operation section (when applicable).

In the Operation section, registers are addressed using the notation reg[addr].field.
The register file being accessed is specified by reg, and has a value chosen from the
second column of Table 2-3. The addr field specifies a register address as an assembly
language field name or a register mnemonic. For the general, floating-point, and
predicate register files which undergo register renaming, addr is the register address
prior to renaming and the renaming is not shown. The field option specifies a named
bit field within the register. If field is absent, then all fields of the register are
accessed. The only exception is when referencing the data field of the general registers

Table 2-1. Instruction Page Description

Section Name Contents

Format Assembly language syntax, instruction type and encoding format

Description Instruction function in English

Operation Instruction function in C code

FP Exceptions IEEE floating-point traps

Interruptions Prioritized list of interruptions that may be caused by the instruction

Serialization Serializing behavior or serialization requirements

Table 2-2. Instruction Page Font Conventions

Font Interpretation

regular (Format section) Required characters in an assembly language mnemonic

italic (Format section) Assembly language field name that must be filled with one of a range
of legal values listed in the Description section

code (Operation section) C code specifying instruction behavior

code_italic (Operation section) Assembly language field name corresponding to a italic field listed
in the Format section

3:12 Volume 3: Instruction Reference

(64-bits not including the NaT bit) where the notation GR[addr] is used. The syntactical
differences between the code found in the Operation section and ANSI C is listed in
Table 2-4.

The Operation section contains code that specifies only the execution semantics of each
instruction and does not include any behavior relating to instruction fetch (e.g.,
interrupts and faults caused during fetch). The Interruptions section does not list any
faults that may be caused by instruction fetch or by mandatory RSE loads. The code to
raise certain pervasive faults and actions is not included in the code in the Operation
section. These faults and actions are listed in Table 2-5. The Single step trap applies to
all instructions and is not listed in the Interruptions section.

Table 2-3. Register File Notation

Register File C Notation
Assembly
Mnemonic

Indirect
Access

Application registers AR ar

Branch registers BR b

Control registers CR cr

CPU identification registers CPUID cpuid Y

Data breakpoint registers DBR dbr Y

Instruction breakpoint registers IBR ibr Y

Data TLB translation cache DTC N/A

Data TLB translation registers DTR dtr Y

Floating-point registers FR f

General registers GR r

Instruction TLB translation cache ITC N/A

Instruction TLB translation registers ITR itr Y

Protection key registers PKR pkr Y

Performance monitor configuration registers PMC pmc Y

Performance monitor data registers PMD pmd Y

Predicate registers PR p

Region registers RR rr Y

Table 2-4. C Syntax Differences

Syntax Function

{msb:lsb}, {bit} Bit field specifier. When appended to a variable, denotes a bit field extending from the
most significant bit specified by “msb” to the least significant bit specified by “lsb”
including bits “msb” and “lsb.” If “msb” and “lsb” are equal then a single bit is
accessed. The second form denotes a single bit.

u>, u>=, u<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as
unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.

u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.

u* Unsigned multiplication. Operands are treated as unsigned.

Volume 3: Instruction Reference 3:13

2.2 Instruction Descriptions

The remainder of this chapter provides a description of each of the Itanium instructions.

Table 2-5. Pervasive Conditions Not Included in Instruction Description
Code

Condition Action

Read of a register outside the current frame. An undefined value is returned (no fault).

Access to a banked general register (GR 16 through GR 31). The GR bank specified by PSR.bn is accessed.

PSR.ss is set. A Single Step trap is raised.

3:14 Volume 3: Instruction Reference

add

add — Add
Format: (qp) add r1 = r2, r3 register_form A1

(qp) add r1 = r2, r3, 1 plus1_form, register_form A1
(qp) add r1 = imm, r3 pseudo-op
(qp) adds r1 = imm14, r3 imm14_form A4
(qp) addl r1 = imm22, r3 imm22_form A5

Description: The two source operands (and an optional constant 1) are added and the result placed
in GR r1. In the register form the first operand is GR r2; in the imm_14 form the first
operand is taken from the sign-extended imm14 encoding field; in the imm22_form the
first operand is taken from the sign-extended imm22 encoding field. In the imm22_form,
GR r3 can specify only GRs 0, 1, 2 and 3.

The plus1_form is available only in the register_form (although the equivalent effect in
the immediate forms can be achieved by adjusting the immediate).

The immediate-form pseudo-op chooses the imm14_form or imm22_form based on the
size of the immediate operand and the value of r3.

Operation: if (PR[qp]) {
check_target_register(r1);

if (register_form) // register form
tmp_src = GR[r2];

else if (imm14_form) // 14-bit immediate form
tmp_src = sign_ext(imm14, 14);

else // 22-bit immediate form
tmp_src = sign_ext(imm22, 22);

tmp_nat = (register_form ? GR[r2].nat : 0);

if (plus1_form)
GR[r1] = tmp_src + GR[r3] + 1;

else
GR[r1] = tmp_src + GR[r3];

GR[r1].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:15

addp4

addp4 — Add Pointer
Format: (qp) addp4 r1 = r2, r3 register_form A1

(qp) addp4 r1 = imm14, r3 imm14_form A4

Description: The two source operands are added. The upper 32 bits of the result are forced to zero,
and then bits {31:30} of GR r3 are copied to bits {62:61} of the result. This result is
placed in GR r1. In the register_form the first operand is GR r2; in the imm14_form the
first operand is taken from the sign-extended imm14 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm14, 14));
tmp_nat = (register_form ? GR[r2].nat : 0);

tmp_res = tmp_src + GR[r3];
tmp_res = zero_ext(tmp_res{31:0}, 32);
tmp_res{62:61} = GR[r3]{31:30};
GR[r1] = tmp_res;
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Figure 2-1. Add Pointer

GR r3:

GR r1:

GR r2:

+

00

032 30

63

032

03261

3:16 Volume 3: Instruction Reference

alloc

alloc — Allocate Stack Frame
Format: (qp) alloc r1 = ar.pfs, i, l, o, r M34

Description: A new stack frame is allocated on the general register stack, and the Previous Function
State register (PFS) is copied to GR r1. The change of frame size is immediate. The write
of GR r1 and subsequent instructions in the same instruction group use the new frame.

The four parameters, i (size of inputs), l (size of locals), o (size of outputs), and r (size
of rotating) specify the sizes of the regions of the stack frame.

The size of the frame (sof) is determined by i + l + o. Note that this instruction may
grow or shrink the size of the current register stack frame. The size of the local region
(sol) is given by i + l. There is no real distinction between inputs and locals. They are
given as separate operands in the instruction only as a hint to the assembler about how
the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number.
If this instruction attempts to change the size of CFM.sor, and the register rename base
registers (CFM.rrb.gr, CFM.rrb.fr, CFM.rrb.pr) are not all zero, then the instruction will
cause a Reserved Register/Field fault.

Although the assembler does not allow illegal combinations of operands for alloc, illegal
combinations can be encoded in the instruction. Attempting to allocate a stack frame
larger than 96 registers, or with the rotating region larger than the stack frame, or with
the size of locals larger than the stack frame, or specifying a qualifying predicate other
than PR 0, will cause an Illegal Operation fault.

This instruction must be the first instruction in an instruction group and must either be
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0;
otherwise, the results are undefined.

If insufficient registers are available to allocate the desired frame alloc will stall the
processor until enough dirty registers are written to the backing store. Such mandatory
RSE stores may cause the data related faults listed below.

Figure 2-2. Stack Frame

Local

GR32

sof
sol

Output

sor

Volume 3: Instruction Reference 3:17

alloc

Operation: // tmp_sof, tmp_sol, tmp_sor are the fields encoded in the instruction
tmp_sof = i + l + o;
tmp_sol = i + l;
tmp_sor = r u>> 3;
check_target_register_sof(r1, tmp_sof);
if (tmp_sof u> 96 || r u> tmp_sof || tmp_sol u> tmp_sof || qp != 0)

illegal_operation_fault();
if (tmp_sor != CFM.sor &&

(CFM.rrb.gr != 0 || CFM.rrb.fr != 0 || CFM.rrb.pr != 0))
reserved_register_field_fault();

alat_frame_update(0, tmp_sof - CFM.sof);
rse_new_frame(CFM.sof, tmp_sof);// Make room for new registers; Mandatory

// RSE stores can raise faults listed below.
CFM.sof = tmp_sof;
CFM.sol = tmp_sol;
CFM.sor = tmp_sor;

GR[r1] = AR[PFS];
GR[r1].nat = 0;

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Reserved Register/Field fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
VHPT Data fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Data TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault
Data Page Not Present fault

3:18 Volume 3: Instruction Reference

and

and — Logical And
Format: (qp) and r1 = r2, r3 register_form A1

(qp) and r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically ANDed and the result placed in GR r1. In the
register_form the first operand is GR r2; in the imm8_form the first operand is taken
from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src & GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:19

andcm

andcm — And Complement
Format: (qp) andcm r1 = r2, r3 register_form A1

(qp) andcm r1 = imm8, r3 imm8_form A3

Description: The first source operand is logically ANDed with the 1’s complement of the second
source operand and the result placed in GR r1. In the register_form the first operand is
GR r2; in the imm8_form the first operand is taken from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src & ~GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:20 Volume 3: Instruction Reference

br

br — Branch
Format: (qp) br.btype.bwh.ph.dh target25 ip_relative_form B1

(qp) br.btype.bwh.ph.dh b1 = target25 call_form, ip_relative_form B3
br.btype.bwh.ph.dh target25 counted_form, ip_relative_form B2
br.ph.dh target25 pseudo-op

(qp) br.btype.bwh.ph.dh b2 indirect_form B4
(qp) br.btype.bwh.ph.dh b1 = b2 call_form, indirect_form B5

br.ph.dh b2 pseudo-op

Description: A branch condition is evaluated, and either a branch is taken, or execution continues
with the next sequential instruction. The execution of a branch logically follows the
execution of all previous non-branch instructions in the same instruction group. On a
taken branch, execution begins at slot 0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target25
operand, in assembly, specifies a label to branch to. This is encoded in the branch
instruction as a signed immediate displacement (imm21) between the target bundle and
the bundle containing this instruction (imm21 = target25 - IP >> 4). For indirect branches,
the target address is taken from BR b2.

There are two pseudo-ops for unconditional branches. These are encoded like a
conditional branch (btype = cond), with the qp field specifying PR 0, and with the bwh
hint of sptk.

The branch type determines how the branch condition is calculated and whether the
branch has other effects (such as writing a link register). For the basic branch types,

Table 2-6. Branch Types

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-rel or Indirect

call Conditional procedure call Qualifying predicate IP-rel or Indirect

ret Conditional procedure return Qualifying predicate Indirect

ia Invoke IA-32 instruction set Unconditional Indirect

cloop Counted loop branch Loop count IP-rel

ctop, cexit Mod-scheduled counted loop Loop count and epilog
count

IP-rel

wtop, wexit Mod-scheduled while loop Qualifying predicate and
epilog count

IP-rel

Volume 3: Instruction Reference 3:21

br

the branch condition is simply the value of the specified predicate register. These basic
branch types are:

• cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

• call: If the qualifying predicate is 1, the branch is taken and several other actions
occur:

• The current values of the Current Frame Marker (CFM), the EC application
register and the current privilege level are saved in the Previous Function State
application register.

• The caller’s stack frame is effectively saved and the callee is provided with a
frame containing only the caller’s output region.

• The rotation rename base registers in the CFM are reset to 0.

• A return link value is placed in BR b1.

• return: If the qualifying predicate is 1, the branch is taken and the following
occurs:

• CFM, EC, and the current privilege level are restored from PFS. (The privilege
level is restored only if this does not increase privilege.)

• The caller’s stack frame is restored.

• If the return lowers the privilege, and PSR.lp is 1, then a Lower-Privilege
Transfer trap is taken.

• ia: The branch is taken unconditionally, if it is not intercepted by the OS. The effect
of the branch is to invoke the IA-32 instruction set (by setting PSR.is to 1) and
begin processing IA-32 instructions at the virtual linear target address contained in
BR b2{31:0}. If the qualifying predicate is not PR 0, an Illegal Operation fault is
raised. If instruction set transitions are disabled (PSR.di is 1), then a Disabled
Instruction Set Transition fault is raised.

The IA-32 target effective address is calculated relative to the current code
segment, i.e. EIP{31:0} = BR b2{31:0} - CSD.base. The IA-32 instruction set can
be entered at any privilege level, provided PSR.di is 0. If PSR.dfh is 1, a Disabled FP
Register fault is raised on the target IA-32 instruction. No register bank switch nor
change in privilege level occurs during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are
loaded before issuing the branch. If the target EIP value exceeds the code segment
limit or has a code segment privilege violation, an IA_32_Exception(GPFault) is
raised on the target IA-32 instruction. For entry into 16-bit IA-32 code, if BR b2 is
not within 64K-bytes of CSD.base a GPFault is raised on the target instruction.
EFLAG.rf is unmodified until the successful completion of the first IA-32 instruction.
PSR.da, PSR.id, PSR.ia, PSR.dd, and PSR.ed are cleared to zero after br.ia
completes execution and before the first IA-32 instruction begins execution.
EFLAG.rf is not cleared until the target IA-32 instruction successfully completes.

Software must set PSR properly before branching to the IA-32 instruction set;
otherwise processor operation is undefined. See Table 3-2, “Processor Status
Register Fields” on page 2:24 for details.

Software must issue a mf instruction before the branch if memory ordering is
required between IA-32 processor consistent and Itanium unordered memory
references. The processor does not ensure Itanium-instruction-set-generated
writes into the instruction stream are seen by subsequent IA-32 instruction fetches.
br.ia does not perform an instruction serialization operation. The processor does
ensure that prior writes (even in the same instruction group) to GRs and FRs are
observed by the first IA-32 instruction. Writes to ARs within the same instruction

3:22 Volume 3: Instruction Reference

br

group as br.ia are not allowed, since br.ia may implicitly reads all ARs. If an
illegal RAW dependency is present between an AR write and br.ia, the first IA-32
instruction fetch and execution may or may not see the updated AR value.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software
can not rely on ALAT values being preserved across an instruction set transition. All
registers left in the current register stack frame are undefined across an instruction
set transition. On entry to IA-32 code, existing entries in the ALAT are ignored. If
the register stack contains any dirty registers, an Illegal Operation fault is raised on
the br.ia instruction. The current register stack frame is forced to zero. To flush
the register file of dirty registers, the flushrs instruction must be issued in an
instruction group preceding the br.ia instruction. To enhance the performance of
the instruction set transition, software can start the register stack flush in parallel
with starting the IA-32 instruction set by 1) ensuring flushrs is exactly one
instruction group before the br.ia, and 2) br.ia is in the first B-slot. br.ia should
always be executed in the first B-slot with a hint of “static-taken” (default),
otherwise processor performance will be degraded.

If a br.ia causes any Itanium traps (e.g., Single Step trap, Taken Branch trap, or
Unimplemented Instruction Address trap), IIP will contain the original 64-bit target
IP. (The value will not have been zero extended from 32 bits.)

Another branch type is provided for simple counted loops. This branch type uses the
Loop Count application register (LC) to determine the branch condition, and does not
use a qualifying predicate:

• cloop: If the LC register is not equal to zero, it is decremented and the branch is
taken.

In addition to these simple branch types, there are four types which are used for
accelerating modulo-scheduled loops (see also Section 4.5.1, “Modulo-scheduled Loop
Support” on page 1:75). Two of these are for counted loops (which use the LC register),
and two for while loops (which use the qualifying predicate). These loop types use
register rotation to provide register renaming, and they use predication to turn off
instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some
while loops, a portion of the prolog stages. In the epilog phase, EC is decremented each
time around and, for most loops, when EC is one, the pipeline has been drained, and
the loop is exited. For certain types of optimized, unrolled software-pipelined loops, the
target of a br.cexit or br.wexit is set to the next sequential bundle. In this case, the
pipeline may not be fully drained when EC is one, and continues to drain while EC is
zero.

For these modulo-scheduled loop types, the calculation of whether the branch is taken
or not depends on the kernel branch condition (LC for counted types, and the qualifying
predicate for while types) and on the epilog condition (whether EC is greater than one
or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop)
are used when the loop decision is located at the bottom of the loop body and therefore
a taken branch will continue the loop while a fall through branch will exit the loop. The
exit types (cexit and wexit) are used when the loop decision is located somewhere
other than the bottom of the loop and therefore a fall though branch will continue the
loop and a taken branch will exit the loop. The exit types are also used at intermediate
points in an unrolled pipelined loop. (For more details, see Section 4.5.1,
“Modulo-scheduled Loop Support” on page 1:75).

Volume 3: Instruction Reference 3:23

br

The modulo-scheduled loop types are:

• ctop and cexit: These branch types behave identically, except in the determination
of whether to branch or not. For br.ctop, the branch is taken if either LC is
non-zero or EC is greater than one. For br.cexit, the opposite is true. It is not
taken if either LC is non-zero or EC is greater than one and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate
initialization. During the prolog and kernel phase, when LC is non-zero, LC counts
down. When br.ctop or br.cexit is executed with LC equal to zero, the epilog
phase is entered, and EC counts down. When br.ctop or br.cexit is executed with
LC equal to zero and EC equal to one, a final decrement of EC and a final register
rotation are done. If LC and EC are equal to zero, register rotation stops. These
other effects are the same for the two branch types, and are described in
Figure 2-3.

wtop and wexit: These branch types behave identically, except in the
determination of whether to branch or not. For br.wtop, the branch is taken if
either the qualifying predicate is one or EC is greater than one. For br.wexit, the
opposite is true. It is not taken if either the qualifying predicate is one or EC is
greater than one, and is taken otherwise.

These branch types also use the qualifying predicate and EC to control register
rotation and predicate initialization. During the prolog phase, the qualifying
predicate is either zero or one, depending upon the scheme used to program the
loop. During the kernel phase, the qualifying predicate is one. During the epilog
phase, the qualifying predicate is zero, and EC counts down. When br.wtop or
br.wexit is executed with the qualifying predicate equal to zero and EC equal to
one, a final decrement of EC and a final register rotation are done. If the qualifying
predicate and EC are zero, register rotation stops. These other effects are the same
for the two branch types, and are described in Figure 2-4.

Figure 2-3. Operation of br.ctop and br.cexit

LC?
== 0 (Epilog)

ctop, cexit

ctop: Branch

cexit: Fall-thru
ctop: Fall-thru
cexit: Branch

EC?

EC--

PR[63] = 0

RRB--

EC = EC

PR[63] = 1

RRB--

EC--

PR[63] = 0

RRB--

> 1

== 1

== 0

EC = EC

PR[63] = 0

RRB = RRB

LC = LCLC-- LC = LC LC = LC

Kernel)

!= 0(Prolog /

(Special
Unrolled
Loops)

3:24 Volume 3: Instruction Reference

br

The loop-type branches (br.cloop, br.ctop, br.cexit, br.wtop, and br.wexit) are
only allowed in instruction slot 2 within a bundle. Executing such an instruction in either
slot 0 or 1 will cause an Illegal Operation fault, whether the branch would have been
taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are
slightly different for branch instructions. Changes to BRs, PRs, and PFS by non-branch
instructions are visible to a subsequent branch instruction in the same instruction group
(i.e., a limited RAW is allowed for these resources). This allows for a low-latency
compare-branch sequence, for example. The normal RAW requirements apply to the LC
and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the
reading and writing instructions are branches. For example, a br.wtop or br.wexit
may not use PR[63] as its qualifying predicate and PR[63] cannot be the qualifying
predicate for any branch preceding a br.wtop or br.wexit in the same instruction
group.

For dependency purposes, the loop-type branches effectively always write their
associated resources, whether they are taken or not. The cloop type effectively always
writes LC. When LC is 0, a cloop branch leaves it unchanged, but hardware may
implement this as a re-write of LC with the same value. Similarly, br.ctop and
br.cexit effectively always write LC, EC, the RRBs, and PR[63]. br.wtop and
br.wexit effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether
Prediction Strategy hints are shown in Table 2-7. Sequential Prefetch hints are shown in
Table 2-8. Branch Cache Deallocation hints are shown in Table 2-9. See Section 4.5.2,
“Branch Prediction Hints” on page 1:78.

Figure 2-4. Operation of br.wtop and br.wexit

PR[qp]?

wtop, wexit

wtop: Branch

wexit: Fall-thru

wtop: Fall-thru

wexit: Branch

EC?

EC--

PR[63] = 0

RRB--

EC--

PR[63] = 0

RRB--

> 1

== 1

== 0

EC = EC

PR[63] = 0

RRB--

EC = EC

PR[63] = 0

RRB = RRB

(Prolog /

Epilog) (Epilog)

==0 (Prolog / Epilog)
(Special

Unrolled

Loops)
== 1

Kernel)

(Prolog /

Volume 3: Instruction Reference 3:25

br

Operation: if (ip_relative_form) // determine branch target
tmp_IP = IP + sign_ext((imm21 << 4), 25);

else // indirect_form
tmp_IP = BR[b2];

if (btype != ‘ia’) // for Itanium branches,
tmp_IP = tmp_IP & ~0xf; // ignore bottom 4 bits of target

lower_priv_transition = 0;

switch (btype) {
case ‘cond’: // simple conditional branch

tmp_taken = PR[qp];
break;

case ‘call’: // call saves a return link
tmp_taken = PR[qp];
if (tmp_taken) {

BR[b1] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

}
break;

case ‘ret’: // return restores stack frame

Table 2-7. Branch Whether Hint

bwh Completer Branch Whether Hint

spnt Static Not-Taken

sptk Static Taken

dpnt Dynamic Not-Taken

dptk Dynamic Taken

Table 2-8. Sequential Prefetch Hint

ph Completer Sequential Prefetch Hint

few or none Few lines

many Many lines

Table 2-9. Branch Cache Deallocation Hint

dh Completer Branch Cache Deallocation Hint

none Don’t deallocate

clr Deallocate branch information

3:26 Volume 3: Instruction Reference

br

tmp_taken = PR[qp];
if (tmp_taken) {

// tmp_growth indicates the amount to move logical TOP *up*:
// tmp_growth = sizeof(previous out) - sizeof(current frame)
// a negative amount indicates a shrinking stack
tmp_growth = (AR[PFS].pfm.sof - AR[PFS].pfm.sol) - CFM.sof;
alat_frame_update(-AR[PFS].pfm.sol, 0);
rse_fatal = rse_restore_frame(AR[PFS].pfm.sol,

 tmp_growth, CFM.sof);
if (rse_fatal) {
// See Section 6.4, “RSE Operation” on page 2:137

CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

} else // normal branch return
CFM = AR[PFS].pfm;

rse_enable_current_frame_load();
AR[EC] = AR[PFS].pec;
if (PSR.cpl u< AR[PFS].ppl) { // ... and restores privilege

PSR.cpl = AR[PFS].ppl;
lower_priv_transition = 1;

}
}
break;

case ‘ia’: // switch to IA mode
tmp_taken = 1;
if (PSR.ic == 0 || PSR.dt == 0 || PSR.mc == 1 || PSR.it == 0)

undefined_behavior();
if (qp != 0)

illegal_operation_fault();
if (AR[BSPSTORE] != AR[BSP])

illegal_operation_fault();
if (PSR.di)

disabled_instruction_set_transition_fault();
PSR.is = 1; // set IA-32 Instruction Set Mode
CFM.sof = 0; //force current stack frame
CFM.sol = 0; //to zero
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;
rse_invalidate_non_current_regs();

//compute effective instruction pointer
EIP{31:0} = tmp_IP{31:0} - AR[CSD].Base;

// Note the register stack is disabled during IA-32 instruction
// set execution

break;

case ‘cloop’: // simple counted loop
if (slot != 2)

Volume 3: Instruction Reference 3:27

br

illegal_operation_fault();
tmp_taken = (AR[LC] != 0);
if (AR[LC] != 0)

AR[LC]--;
break;

case ‘ctop’:
case ‘cexit’: // SW pipelined counted loop

if (slot != 2)
illegal_operation_fault();

if (btype == ‘ctop’) tmp_taken = ((AR[LC] != 0) || (AR[EC] u> 1));
if (btype == ‘cexit’)tmp_taken = !((AR[LC] != 0) || (AR[EC] u> 1));
if (AR[LC] != 0) {

AR[LC]--;
AR[EC] = AR[EC];
PR[63] = 1;
rotate_regs();

} else if (AR[EC] != 0) {
AR[LC] = AR[LC];
AR[EC]--;
PR[63] = 0;
rotate_regs();

} else {
AR[LC] = AR[LC];
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

case ‘wtop’:
case ‘wexit’: // SW pipelined while loop

if (slot != 2)
illegal_operation_fault();

if (btype == ‘wtop’) tmp_taken = (PR[qp] || (AR[EC] u> 1));
if (btype == ‘wexit’)tmp_taken = !(PR[qp] || (AR[EC] u> 1));
if (PR[qp]) {

AR[EC] = AR[EC];
PR[63] = 0;
rotate_regs();

} else if (AR[EC] != 0) {
AR[EC]--;
PR[63] = 0;
rotate_regs();

} else {
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

}
if (tmp_taken) {

3:28 Volume 3: Instruction Reference

br

taken_branch = 1;
IP = tmp_IP; // set the new value for IP
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(tmp_IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(tmp_IP))))
unimplemented_instruction_address_trap(lower_priv_transition,

 tmp_IP);
if (lower_priv_transition && PSR.lp)

lower_privilege_transfer_trap();
if (PSR.tb)

taken_branch_trap();
}

Interruptions: Illegal Operation fault Lower-Privilege Transfer trap
Disabled Instruction Set Transition fault Taken Branch trap
Unimplemented Instruction Address trap

Additional Faults on IA-32 target instructions:
IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

Volume 3: Instruction Reference 3:29

break

break — Break
Format: (qp) break imm21 pseudo-op

(qp) break.i imm21 i_unit_form I19
(qp) break.b imm21 b_unit_form B9
(qp) break.m imm21 m_unit_form M37
(qp) break.f imm21 f_unit_form F15
(qp) break.x imm62 x_unit_form X1

Description: A Break Instruction fault is taken. For the i_unit_form, f_unit_form and m_unit_form,
the value specified by imm21 is zero-extended and placed in the Interruption Immediate
control register (IIM).

For the b_unit_form, imm21 is ignored and the value zero is placed in the Interruption
Immediate control register (IIM).

For the x_unit_form, the lower 21 bits of the value specified by imm62 is zero-extended
and placed in the Interruption Immediate control register (IIM). The L slot of the bundle
contains the upper 41 bits of imm62.

A break.i instruction may be encoded in an MLI-template bundle, in which case the L
slot of the bundle is ignored.

This instruction has five forms, each of which can be executed only on a particular
execution unit type. The pseudo-op can be used if the unit type to execute on is
unimportant.

Operation: if (PR[qp]) {
if (b_unit_form)

immediate = 0;
else if (x_unit_form)

immediate = zero_ext(imm62, 21);
else // i_unit_form || m_unit_form || f_unit_form

immediate = zero_ext(imm21, 21);

break_instruction_fault(immediate);
}

Interruptions: Break Instruction fault

3:30 Volume 3: Instruction Reference

brl

brl — Branch Long
Format: (qp) brl.btype.bwh.ph.dh target64 X3

(qp) brl.btype.bwh.ph.dh b1 = target64 call_form X4
brl.ph.dh target64 pseudo-op

Description: A branch condition is evaluated, and either a branch is taken, or execution continues
with the next sequential instruction. The execution of a branch logically follows the
execution of all previous non-branch instructions in the same instruction group. On a
taken branch, execution begins at slot 0.

Long branches are always IP-relative. The target64 operand, in assembly, specifies a label
to branch to. This is encoded in the long branch instruction as an immediate
displacement (imm60) between the target bundle and the bundle containing this
instruction (imm60 = target64 - IP >> 4). The L slot of the bundle contains 39 bits of imm60.

There is a pseudo-op for long unconditional branches, encoded like a conditional branch
(btype = cond), with the qp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the
branch has other effects (such as writing a link register). For all long branch types, the
branch condition is simply the value of the specified predicate register:

• cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

• call: If the qualifying predicate is 1, the branch is taken and several other actions
occur:

• The current values of the Current Frame Marker (CFM), the EC application
register and the current privilege level are saved in the Previous Function State
application register.

• The caller’s stack frame is effectively saved and the callee is provided with a
frame containing only the caller’s output region.

• The rotation rename base registers in the CFM are reset to 0.

• A return link value is placed in BR b1.

Read after Write (RAW) and Write after Read (WAR) dependency requirements for long
branch instructions are slightly different than for other instructions but are the same as
for branch instructions. See page 3:24 for details.

This instruction must be immediately followed by a stop; otherwise its behavior is
undefined.

Values for various branch hint completers are the same as for branch instructions.
Whether Prediction Strategy hints are shown in Table 2-7 on page 3:25, Sequential
Prefetch hints are shown in Table 2-8 on page 3:25, and Branch Cache Deallocation
hints are shown in Table 2-9 on page 3:25. See Section 4.5.2, “Branch Prediction Hints”
on page 1:78.

This instruction is not implemented on the Itanium processor, which takes an Illegal
Operation fault whenever a long branch instruction is encountered, regardless of
whether the branch is taken or not. To support the Itanium processor, the operating

Table 2-10. Long Branch Types

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-relative

call Conditional procedure call Qualifying predicate IP-relative

Volume 3: Instruction Reference 3:31

brl

system is required to provide an Illegal Operation fault handler which emulates taken
and not-taken long branches. Presence of this instruction is indicated by a 1 in the lb bit
of CPUID register 4. See Section 3.1.11, “Processor Identification Registers” on
page 1:34.

Operation: tmp_IP = IP + (imm60 << 4); // determine branch target
if (!followed_by_stop())

undefined_behavior();
if (!instruction_implemented(BRL))

illegal_operation_fault();

switch (btype) {
case ‘cond’: // simple conditional branch

tmp_taken = PR[qp];
break;

case ‘call’: // call saves a return link
tmp_taken = PR[qp];
if (tmp_taken) {

BR[b1] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

}
break;

}
if (tmp_taken) {

taken_branch = 1;
IP = tmp_IP; // set the new value for IP
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(tmp_IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(tmp_IP))))
unimplemented_instruction_address_trap(0,tmp_IP);

if (PSR.tb)
taken_branch_trap();

}

Interruptions: Illegal Operation fault Taken Branch trap
Unimplemented Instruction Address trap

3:32 Volume 3: Instruction Reference

brp

brp — Branch Predict
Format: brp.ipwh.ih target25, tag13 ip_relative_form B6

brp.indwh.ih b2, tag13 indirect_form B7
brp.ret.indwh.ih b2, tag13 return_form, indirect_form B7

Description: This instruction can be used to provide to hardware early information about a future
branch. It has no effect on architectural machine state, and operates as a nop
instruction except for its performance effects.

The tag13 operand, in assembly, specifies the address of the branch instruction to which
this prediction information applies. This is encoded in the branch predict instruction as a
signed immediate displacement (timm9) between the bundle containing the presaged
branch and the bundle containing this instruction (timm9 = tag13 - IP >> 4).

The target25 operand, in assembly, specifies the label that the presaged branch will have
as its target. This is encoded in the branch predict instruction exactly as in branch
instructions, with a signed immediate displacement (imm21) between the target bundle
and the bundle containing this instruction (imm21 = target25 - IP >> 4). The indirect_form
can be used to presage an indirect branch. In the indirect_form, the target of the
presaged branch is given by BR b2.

The return_form is used to indicate that the presaged branch will be a return.

Other hints can be given about the presaged branch. Values for various hint completers
are shown in the following tables. For more details, refer to Section 4.5.2, “Branch
Prediction Hints” on page 1:78.

The ipwh and indwh completers provide information about how best the branch condition
should be predicted, when the branch is reached.

The ih completer can be used to mark a small number of very important branches (e.g.,
an inner loop branch). This can signal to hardware to use faster, smaller prediction
structures for this information.

Table 2-11. IP-relative Branch Predict Whether Hint

ipwh Completer IP-relative Branch Predict Whether Hint

sptk Presaged branch should be predicted Static Taken

loop Presaged branch will be br.cloop, br.ctop, or br.wtop

exit Presaged branch will be br.cexit or br.wexit

dptk Presaged branch should be predicted Dynamically

Table 2-12. Indirect Branch Predict Whether Hint

indwh Completer Indirect Branch Predict Whether Hint

sptk Presaged branch should be predicted Static Taken

dptk Presaged branch should be predicted Dynamically

Table 2-13. Importance Hint

ih Completer Branch Predict Importance Hint

none Less important

imp More important

Volume 3: Instruction Reference 3:33

brp

Operation: tmp_tag = IP + sign_ext((timm9 << 4), 13);
if (ip_relative_form) {

tmp_target = IP + sign_ext((imm21 << 4), 25);
tmp_wh = ipwh;

} else { // indirect_form
tmp_target = BR[b2];
tmp_wh = indwh;

}
branch_predict(tmp_wh, ih, return_form, tmp_target, tmp_tag);

Interruptions: None

3:34 Volume 3: Instruction Reference

bsw

bsw — Bank Switch
Format: bsw.0 zero_form B8

bsw.1 one_form B8

Description: This instruction switches to the specified register bank. The zero_form specifies Bank 0
for GR16 to GR31. The one_form specifies Bank 1 for GR16 to GR31. After the bank
switch the previous register bank is no longer accessible but does retain its current
state. If the new and old register banks are the same, bsw is effectively a nop, although
there may be a performance degradation.

A bsw instruction must be the last instruction in an instruction group; otherwise,
operation is undefined. Instructions in the same instruction group that access GR16 to
GR31 reference the previous register bank. Subsequent instruction groups reference
the new register bank.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
undefined_behavior();

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (PSR.vm == 1)
virtualization_fault();

if (zero_form)
PSR.bn = 0;

else // one_form
PSR.bn = 1;

Interruptions: Privileged Operation fault Virtualization fault

Serialization: This instruction does not require any additional instruction or data serialization
operation. The bank switch occurs synchronously with its execution.

Volume 3: Instruction Reference 3:35

chk

chk — Speculation Check
Format: (qp) chk.s r2, target25 pseudo-op

(qp) chk.s.i r2, target25 control_form, i_unit_form, gr_form I20
(qp) chk.s.m r2, target25 control_form, m_unit_form, gr_form M20
(qp) chk.s f2, target25 control_form, fr_form M21
(qp) chk.a.aclr r1, target25 data_form, gr_form M22
(qp) chk.a.aclr f1, target25 data_form, fr_form M23

Description: The result of a control- or data-speculative calculation is checked for success or failure.
If the check fails, a branch to target25 is taken.

In the control_form, success is determined by a NaT indication for the source register.
If the NaT bit corresponding to GR r2 is 1 (in the gr_form), or FR f2 contains a NaTVal (in
the fr_form), the check fails.

In the data_form, success is determined by the ALAT. The ALAT is queried using the
general register specifier r1 (in the gr_form), or the floating-point register specifier f1
(in the fr_form). If no ALAT entry matches, the check fails. An implementation may
optionally cause the check to fail independent of whether an ALAT entry matches. A
chk.a with general register specifier r0 or floating-point register specifiers f0 or f1
always fails.

The target25 operand, in assembly, specifies a label to branch to. This is encoded in the
instruction as a signed immediate displacement (imm21) between the target bundle and
the bundle containing this instruction (imm21 = target25 - IP >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the
instruction would have branched, and the branching behavior is not implemented, then
a Speculative Operation fault is taken and the value specified by imm21 is zero-extended
and placed in the Interruption Immediate control register (IIM). The fault handler
emulates the branch by sign-extending the IIM value, adding it to IIP and returning.

The control_form of this instruction for checking general registers can be encoded on
either an I-unit or an M-unit. The pseudo-op can be used if the unit type to execute on
is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally
invalidated, based on the value of the aclr completer (See Table 2-14).

Note that if the clr value of the aclr completer is used and the check succeeds, the
matching ALAT entry is invalidated. However, if the check fails (which may happen even
if there is a matching ALAT entry), any matching ALAT entry may optionally be
invalidated, but this is not required. Recovery code for data speculation, therefore,
cannot rely on the absence of a matching ALAT entry.

Table 2-14. ALAT Clear Completer

aclr Completer Effect on ALAT

clr Invalidate matching ALAT entry

nc Don’t invalidate

3:36 Volume 3: Instruction Reference

chk

Operation: if (PR[qp]) {
if (control_form) {

if (fr_form && (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0)))
disabled_fp_register_fault(tmp_isrcode, 0);

check_type = gr_form ? CHKS_GENERAL : CHKS_FLOAT;
fail = (gr_form && GR[r2].nat) || (fr_form && FR[f2] == NATVAL);

} else { // data_form
if (gr_form) {

reg_type = GENERAL;
check_type = CHKA_GENERAL;
alat_index = r1;
always_fail = (alat_index == 0);

} else { // fr_form
reg_type = FLOAT;
check_type = CHKA_FLOAT;
alat_index = f1;
always_fail = ((alat_index == 0) || (alat_index == 1));

}
fail = (always_fail || (!alat_cmp(reg_type, alat_index)));

}
if (fail) {

if (check_branch_implemented(check_type)) {
taken_branch = 1;
IP = IP + sign_ext((imm21 << 4), 25);
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(IP))))

unimplemented_instruction_address_trap(0, IP);
if (PSR.tb)

taken_branch_trap();
} else

speculation_fault(check_type, zero_ext(imm21, 21));
} else if (data_form && (aclr == ‘clr’))

alat_inval_single_entry(reg_type, alat_index);
}

Interruptions: Disabled Floating-point Register fault Unimplemented Instruction Address trap
Speculative Operation fault Taken Branch trap

Volume 3: Instruction Reference 3:37

clrrrb

clrrrb — Clear RRB
Format: clrrrb all_form B8

clrrrb.pr pred_form B8

Description: In the all_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and
CFM.rrb.pr) are cleared. In the pred_form, the single register rename base register for
the predicates (CFM.rrb.pr) is cleared.

This instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
undefined_behavior();

if (all_form) {
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

} else { // pred_form
CFM.rrb.pr = 0;

}

Interruptions: None

3:38 Volume 3: Instruction Reference

clz

clz — Count Leading Zeros
Format: (qp) clz r1 = r3 I9

Description: The number of leading zeros in GR r3 is placed in GR r1.

An Illegal Operation fault is raised on processor models that do not support the
instruction. CPUID register 4 indicates the presence of the feature on the processor
model. See Section 3.1.11, “Processor Identification Registers” on page 1:34 for
details. This capability may also be determined using the test feature (tf) instruction
using the @clz operand.

Operation: if (PR[qp])
if (!instruction_implemented(CLZ))

illegal_operation_fault();
check_target_register(r1);

tmp_val = 0;

do {
if (GR[r3]{63 - tmp_val} != 0) break;

} while (tmp_val++ < 63);

GR[r1] = tmp_val;
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:39

cmp

cmp — Compare
Format: (qp) cmp.crel.ctype p1, p2 = r2, r3 register_form A6

(qp) cmp.crel.ctype p1, p2 = imm8, r3 imm8_form A8
(qp) cmp.crel.ctype p1, p2 = r0, r3 parallel_inequality_form A7
(qp) cmp.crel.ctype p1, p2 = r3, r0 pseudo-op

Description: The two source operands are compared for one of ten relations specified by crel. This
produces a boolean result which is 1 if the comparison condition is true, and 0
otherwise. This result is written to the two predicate register destinations, p1 and p2.
The way the result is written to the destinations is determined by the compare type
specified by ctype.

The compare types describe how the predicate targets are updated based on the result
of the comparison. The normal type simply writes the compare result to one target, and
the complement to the other. The parallel types update the targets only for a particular
comparison result. This allows multiple simultaneous OR-type or multiple simultaneous
AND-type compares to target the same predicate register.

The unc type is special in that it first initializes both predicate targets to 0, independent
of the qualifying predicate. It then operates the same as the normal type. The behavior
of the compare types is described in Table 2-15. A blank entry indicates the predicate
target is left unchanged.

In the register_form the first operand is GR r2; in the imm8_form the first operand is
taken from the sign-extended imm8 encoding field; and in the parallel_inequality_form
the first operand must be GR 0. The parallel_inequality_form is only used when the
compare type is one of the parallel types, and the relation is an inequality (>, >=, <,
<=). See below.

If the two predicate register destinations are the same (p1 and p2 specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is 1, or if the compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually
pseudo-ops. For these, the assembler simply switches the source operand specifiers
and/or switches the predicate target specifiers and uses an implemented relation. For
some of the pseudo-op compares in the imm8_form, the assembler subtracts 1 from
the immediate value, making the allowed immediate range slightly different. Of the six
parallel compare types, three of the types are actually pseudo-ops. The assembler

Table 2-15. Comparison Types

ctype
Pseudo-op

of

PR[qp]==0

PR[qp]==1

Result==0,
No Source NaTs

Result==1,
No Source NaTs

One or More
Source NaTs

PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2]

none 0 1 1 0 0 0

unc 0 0 0 1 1 0 0 0

or 1 1

and 0 0 0 0

or.andcm 1 0

orcm or 1 1

andcm and 0 0 0 0

and.orcm or.andcm 0 1

3:40 Volume 3: Instruction Reference

cmp

simply uses the negative relation with an implemented type. The implemented relations
and how the pseudo-ops map onto them are shown in Table 2-16 (for normal and unc
type compares), and Table 2-17 (for parallel type compares).

The parallel compare types can be used only with a restricted set of relations and
operands. They can be used with equal and not-equal comparisons between two
registers or between a register and an immediate, or they can be used with inequality
comparisons between a register and GR 0. Unsigned relations are not provided, since
they are not of much use when one of the operands is zero. For the parallel inequality
comparisons, hardware only directly implements the ones where the first operand (GR
r2) is GR 0. Comparisons where the second operand is GR 0 are pseudo-ops for which
the assembler switches the register specifiers and uses the opposite relation.

Table 2-16. 64-bit Comparison Relations for Normal and unc Compares

crel
Compare Relation

(a rel b)
Register Form is a

pseudo-op of
Immediate Form is a

pseudo-op of
Immediate Range

eq a == b -128 .. 127

ne a != b eq p1 p2 eq p1 p2 -128 .. 127

lt a < b signed -128 .. 127

le a <= b lt a b p1 p2 lt a-1 -127 .. 128

gt a > b lt a b lt a-1 p1 p2 -127 .. 128

ge a >= b lt p1 p2 lt p1 p2 -128 .. 127

ltu a < b unsigned 0 .. 127,
264-128 .. 264-1

leu a <= b ltu a b p1 p2 ltu a-1 1 .. 128,
264-127 .. 264

gtu a > b ltu a b ltu a-1 p1 p2 1 .. 128,
264-127 .. 264

geu a >= b ltu p1 p2 ltu p1 p2 0 .. 127,
264-128 .. 264-1

Table 2-17. 64-bit Comparison Relations for Parallel Compares

crel
Compare Relation

(a rel b)
Register Form is a

pseudo-op of
Immediate Range

eq a == b -128 .. 127

ne a != b -128 .. 127

lt 0 < b signed no immediate forms

lt a < 0 gt a b

le 0 <= b

le a <= 0 ge a b

gt 0 > b

gt a > 0 lt a b

ge 0 >= b

ge a >= 0 le a b

Volume 3: Instruction Reference 3:41

cmp

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_nat = (register_form ? GR[r2].nat : 0) || GR[r3].nat;
if (register_form)

tmp_src = GR[r2];
else if (imm8_form)

tmp_src = sign_ext(imm8, 8);
else // parallel_inequality_form

tmp_src = 0;

if (crel == ‘eq’) tmp_rel = tmp_src == GR[r3];
else if (crel == ‘ne’) tmp_rel = tmp_src != GR[r3];
else if (crel == ‘lt’) tmp_rel = lesser_signed(tmp_src, GR[r3]);
else if (crel == ‘le’) tmp_rel = lesser_equal_signed(tmp_src, GR[r3]);
else if (crel == ‘gt’) tmp_rel = greater_signed(tmp_src, GR[r3]);
else if (crel == ‘ge’) tmp_rel = greater_equal_signed(tmp_src, GR[r3]);
else if (crel == ‘ltu’) tmp_rel = lesser(tmp_src, GR[r3]);
else if (crel == ‘leu’) tmp_rel = lesser_equal(tmp_src, GR[r3]);
else if (crel == ‘gtu’) tmp_rel = greater(tmp_src, GR[r3]);
else tmp_rel = greater_equal(tmp_src, GR[r3]);//‘geu’

switch (ctype) {
case ‘and’: // and-type compare

if (tmp_nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

3:42 Volume 3: Instruction Reference

cmp

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:43

cmp4

cmp4 — Compare 4 Bytes
Format: (qp) cmp4.crel.ctype p1, p2 = r2, r3 register_form A6

(qp) cmp4.crel.ctype p1, p2 = imm8, r3 imm8_form A8
(qp) cmp4.crel.ctype p1, p2 = r0, r3 parallel_inequality_form A7
(qp) cmp4.crel.ctype p1, p2 = r3, r0 pseudo-op

Description: The least significant 32 bits from each of two source operands are compared for one of
ten relations specified by crel. This produces a boolean result which is 1 if the
comparison condition is true, and 0 otherwise. This result is written to the two predicate
register destinations, p1 and p2. The way the result is written to the destinations is
determined by the compare type specified by ctype. See the Compare instruction and
Table 2-15 on page 3:39.

In the register_form the first operand is GR r2; in the imm8_form the first operand is
taken from the sign-extended imm8 encoding field; and in the parallel_inequality_form
the first operand must be GR 0. The parallel_inequality_form is only used when the
compare type is one of the parallel types, and the relation is an inequality (>, >=, <,
<=). See the Compare instruction and Table 2-17 on page 3:40.

If the two predicate register destinations are the same (p1 and p2 specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is 1, or if the compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually
pseudo-ops. See the Compare instruction and Table 2-16 and Table 2-17 on page 3:40.
The range for immediates is given below.

Table 2-18. Immediate Range for 32-bit Compares

crel
Compare Relation

(a rel b)
Immediate Range

eq a == b -128 .. 127

ne a != b -128 .. 127

lt a < b signed -128 .. 127

le a <= b -127 .. 128

gt a > b -127 .. 128

ge a >= b -128 .. 127

ltu a < b unsigned 0 .. 127, 232-128 .. 232-1

leu a <= b 1 .. 128, 232-127 .. 232

gtu a > b 1 .. 128, 232-127 .. 232

geu a >= b 0 .. 127, 232-128 .. 232-1

3:44 Volume 3: Instruction Reference

cmp4

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_nat = (register_form ? GR[r2].nat : 0) || GR[r3].nat;

if (register_form)
tmp_src = GR[r2];

else if (imm8_form)
tmp_src = sign_ext(imm8, 8);

else // parallel_inequality_form
tmp_src = 0;

if (crel == ‘eq’) tmp_rel = tmp_src{31:0} == GR[r3]{31:0};
else if (crel == ‘ne’) tmp_rel = tmp_src{31:0} != GR[r3]{31:0};
else if (crel == ‘lt’)

tmp_rel = lesser_signed(sign_ext(tmp_src, 32),
sign_ext(GR[r3], 32));

else if (crel == ‘le’)
tmp_rel = lesser_equal_signed(sign_ext(tmp_src, 32),

sign_ext(GR[r3], 32));
else if (crel == ‘gt’)

tmp_rel = greater_signed(sign_ext(tmp_src, 32),
sign_ext(GR[r3], 32));

else if (crel == ‘ge’)
tmp_rel = greater_equal_signed(sign_ext(tmp_src, 32),

sign_ext(GR[r3], 32));
else if (crel == ‘ltu’)

tmp_rel = lesser(zero_ext(tmp_src, 32),
zero_ext(GR[r3], 32));

else if (crel == ‘leu’)
tmp_rel = lesser_equal(zero_ext(tmp_src, 32),

zero_ext(GR[r3], 32));
else if (crel == ‘gtu’)

tmp_rel = greater(zero_ext(tmp_src, 32),
zero_ext(GR[r3], 32));

else // ‘geu’
tmp_rel = greater_equal(zero_ext(tmp_src, 32),

zero_ext(GR[r3], 32));

switch (ctype) {
case ‘and’: // and-type compare

if (tmp_nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;

Volume 3: Instruction Reference 3:45

cmp4

PR[p2] = 0;
}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault

3:46 Volume 3: Instruction Reference

cmpxchg

cmpxchg — Compare and Exchange
Format: (qp) cmpxchgsz.sem.ldhint r1 = [r3], r2, ar.ccv M16

(qp) cmp8xchg16.sem.ldhint r1 = [r3], r2, ar.csd, ar.ccv sixteen_byte_form M16

Description: A value consisting of sz bytes (8 bytes for cmp8xchg16) is read from memory starting at
the address specified by the value in GR r3. The value is zero extended and compared
with the contents of the cmpxchg Compare Value application register (AR[CCV]). If the
two are equal, then the least significant sz bytes of the value in GR r2 are written to
memory starting at the address specified by the value in GR r3. For cmp8xchg16, if the
two are equal, then 8-bytes from GR r2 are stored at the specified address ignoring bit
3 (GR r3 & ~0x8), and 8 bytes from the Compare and Store Data application register
(AR[CSD]) are stored at that address + 8 ((GR r3 & ~0x8) + 8). The zero-extended
value read from memory is placed in GR r1 and the NaT bit corresponding to GR r1 is
cleared.

The values of the sz completer are given in Table 2-19. The sem completer specifies the
type of semaphore operation. These operations are described in Table 2-20. See
Section 4.4.7, “Sequentiality Attribute and Ordering” on page 2:82 for details on
memory ordering.

If the address specified by the value in GR r3 is not naturally aligned to the size of the
value being accessed in memory, an Unaligned Data Reference fault is taken
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the
Processor Status Register). For the cmp8xchg16 instruction, the address specified must
be 8-byte aligned.

The memory read and write are guaranteed to be atomic. For the cmp8xchg16
instruction, the 8-byte memory read and the 16-byte memory write are guaranteed to
be atomic.

Both read and write access privileges for the referenced page are required. The write
access privilege check is performed whether or not the memory write is performed.

This instruction is only supported to cacheable pages with write-back write policy.
Accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages
with other memory attributes cause an Unsupported Data Reference fault.

The value of the ldhint completer specifies the locality of the memory access. The values
of the ldhint completer are given in Table 2-34 on page 3:152. Locality hints do not

Table 2-19. Memory Compare and Exchange Size

sz Completer Bytes Accessed

1 1

2 2

4 4

8 8

Table 2-20. Compare and Exchange Semaphore Types

sem
Completer

Ordering
Semantics

Semaphore Operation

acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.

rel Release The memory read/write is made visible after all previous data memory
accesses.

Volume 3: Instruction Reference 3:47

cmpxchg

affect program functionality and may be ignored by the implementation. See
Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:69 for details.

For cmp8xchg16, Illegal Operation fault is raised on processor models that do not
support the instruction. CPUID register 4 indicates the presence of the feature on the
processor model. See Section 3.1.11, “Processor Identification Registers” on page 1:34
for details.

Operation: if (PR[qp]) {
size = sixteen_byte_form ? 16 : sz;

if (sixteen_byte_form && !instruction_implemented(CMP8XCHG16))
illegal_operation_fault();

check_target_register(r1);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_translate(GR[r3], size, SEMAPHORE, PSR.cpl, &mattr,
 &tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

if (sixteen_byte_form) {
if (sem == ‘acq’)

val = mem_xchg16_cond(AR[CCV], GR[r2], AR[CSD], paddr, UM.be,
mattr, ACQUIRE, ldhint);

else // ‘rel’
val = mem_xchg16_cond(AR[CCV], GR[r2], AR[CSD], paddr, UM.be,

mattr, RELEASE, ldhint);
} else {

if (sem == ‘acq’)
val = mem_xchg_cond(AR[CCV], GR[r2], paddr, size, UM.be, mattr,

ACQUIRE, ldhint);
else // ‘rel’

val = mem_xchg_cond(AR[CCV], GR[r2], paddr, size, UM.be, mattr,
RELEASE, ldhint);

val = zero_ext(val, size * 8);
}

if (AR[CCV] == val)
alat_inval_multiple_entries(paddr, size);

GR[r1] = val;
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault

3:48 Volume 3: Instruction Reference

cover

cover — Cover Stack Frame
Format: cover B8

Description: A new stack frame of zero size is allocated which does not include any registers from
the previous frame (as though all output registers in the previous frame had been
locals). The register rename base registers are reset. If interruption collection is
disabled (PSR.ic is zero), then the old value of the Current Frame Marker (CFM) is
copied to the Interruption Function State register (IFS), and IFS.v is set to one.

A cover instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
undefined_behavior();

if (PSR.cpl == 0 && PSR.vm == 1)
virtualization_fault();

alat_frame_update(CFM.sof, 0);
rse_preserve_frame(CFM.sof);
if (PSR.ic == 0) {

CR[IFS].ifm = CFM;
CR[IFS].v = 1;

}

CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

Interruptions: Virtualization fault

Volume 3: Instruction Reference 3:49

czx

czx — Compute Zero Index
Format: (qp) czx1.l r1 = r3 one_byte_form, left_form I29

(qp) czx1.r r1 = r3 one_byte_form, right_form I29
(qp) czx2.l r1 = r3 two_byte_form, left_form I29
(qp) czx2.r r1 = r3 two_byte_form, right_form I29

Description: GR r3 is scanned for a zero element. The element is either an 8-bit aligned byte
(one_byte_form) or a 16-bit aligned pair of bytes (two_byte_form). The index of the
first zero element is placed in GR r1. If there are no zero elements in GR r3, a default
value is placed in GR r1. Table 2-21 gives the possible result values. In the left_form,
the source is scanned from most significant element to least significant element, and in
the right_form it is scanned from least significant element to most significant element.

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
if (left_form) { // scan from most significant down

if ((GR[r3] & 0xff00000000000000) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x00ff000000000000) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x0000ff0000000000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x000000ff00000000) == 0) GR[r1] = 3;
else if ((GR[r3] & 0x00000000ff000000) == 0) GR[r1] = 4;
else if ((GR[r3] & 0x0000000000ff0000) == 0) GR[r1] = 5;
else if ((GR[r3] & 0x000000000000ff00) == 0) GR[r1] = 6;
else if ((GR[r3] & 0x00000000000000ff) == 0) GR[r1] = 7;
else GR[r1] = 8;

} else { // right_form scan from least significant up
if ((GR[r3] & 0x00000000000000ff) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x000000000000ff00) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x0000000000ff0000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x00000000ff000000) == 0) GR[r1] = 3;
else if ((GR[r3] & 0x000000ff00000000) == 0) GR[r1] = 4;
else if ((GR[r3] & 0x0000ff0000000000) == 0) GR[r1] = 5;
else if ((GR[r3] & 0x00ff000000000000) == 0) GR[r1] = 6;
else if ((GR[r3] & 0xff00000000000000) == 0) GR[r1] = 7;
else GR[r1] = 8;

}
} else { // two_byte_form

if (left_form) { // scan from most significant down
if ((GR[r3] & 0xffff000000000000) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x0000ffff00000000) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x00000000ffff0000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x000000000000ffff) == 0) GR[r1] = 3;
else GR[r1] = 4;

} else { // right_form scan from least significant up
if ((GR[r3] & 0x000000000000ffff) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x00000000ffff0000) == 0) GR[r1] = 1;

Table 2-21. Result Ranges for czx

Size Element Width
Range of Result if Zero Element

Found
Default Result if No Zero Element

Found

1 8 bit 0-7 8

2 16 bit 0-3 4

3:50 Volume 3: Instruction Reference

czx

else if ((GR[r3] & 0x0000ffff00000000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0xffff000000000000) == 0) GR[r1] = 3;
else GR[r1] = 4;

}
}
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:51

dep

dep — Deposit
Format: (qp) dep r1 = r2, r3, pos6, len4 merge_form, register_form I15

(qp) dep r1 = imm1, r3, pos6, len6 merge_form, imm_form I14
(qp) dep.z r1 = r2, pos6, len6 zero_form, register_form I12
(qp) dep.z r1 = imm8, pos6, len6 zero_form, imm_form I13

Description: In the merge_form, a right justified bit field taken from the first source operand is
deposited into the value in GR r3 at an arbitrary bit position and the result is placed in
GR r1. In the register_form the first source operand is GR r2; and in the imm_form it is
the sign-extended value specified by imm1 (either all ones or all zeroes). The deposited
bit field begins at the bit position specified by the pos6 immediate and extends to the left
(towards the most significant bit) a number of bits specified by the len immediate. Note
that len has a range of 1-16 in the register_form and 1-64 in the imm_form. The pos6
immediate has a range of 0 to 63.

In the zero_form, a right justified bit field taken from either the value in GR r2 (in the
register_form) or the sign-extended value in imm8 (in the imm_form) is deposited into
GR r1 and all other bits in GR r1 are cleared to zero. The deposited bit field begins at the
bit position specified by the pos6 immediate and extends to the left (towards the most
significant bit) a number of bits specified by the len immediate. The len immediate has
a range of 1-64 and the pos6 immediate has a range of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len +
pos6 > 64, the most significant len + pos6 - 64 bits of the deposited bit field are
truncated. The len immediate is encoded as len minus 1 in the instruction.

The operation of dep r1 = r2, r3, 36, 16 is illustrated in Figure 2-5.

The operation of dep.z r1 = r2, 36, 16 is illustrated in Figure 2-6.

Figure 2-5. Deposit Example (merge_form)

Figure 2-6. Deposit Example (zero_form)

GR r3:

GR r1:

16

3652

3652

GR r2:

0

0

0 15

GR r1:

16

3652

GR r2:

0

0

00

15

3:52 Volume 3: Instruction Reference

dep

Operation: if (PR[qp]) {
check_target_register(r1);

if (imm_form) {
tmp_src = (merge_form ? sign_ext(imm1,1) : sign_ext(imm8, 8));
tmp_nat = merge_form ? GR[r3].nat : 0;
tmp_len = len6 ;

} else { // register_form
tmp_src = GR[r2];
tmp_nat = (merge_form ? GR[r3].nat : 0) || GR[r2].nat;
tmp_len = merge_form ? len4 : len6 ;

}
if (pos6 + tmp_len u> 64)

tmp_len = 64 - pos6;

if (merge_form)
GR[r1] = GR[r3];

else // zero_form
GR[r1] = 0;

GR[r1]{(pos6 + tmp_len - 1):pos6} = tmp_src{(tmp_len - 1):0};
GR[r1].nat = tmp_nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:53

epc

epc — Enter Privileged Code
Format: epc B8

Description: This instruction increases the privilege level. The new privilege level is given by the TLB
entry for the page containing this instruction. This instruction can be used to implement
calls to higher-privileged routines without the overhead of an interruption.

Before increasing the privilege level, a check is performed. The PFS.ppl (previous
privilege level) is checked to ensure that it is not more privileged than the current
privilege level. If this check fails, the instruction takes an Illegal Operation fault.

If the check succeeds, then the privilege is increased as follows:

• If instruction address translation is enabled and the page containing the epc
instruction has execute-only page access rights and the privilege level assigned to
the page is higher than (numerically less than) the current privilege level, then the
current privilege level is set to the privilege level field in the translation for the page
containing the epc instruction. This instruction can promote but cannot demote,
and the new privilege comes from the TLB entry.

If instruction address translation is disabled, then the current privilege level is set
to 0 (most privileged).

Instructions after the epc in the same instruction group may be executed at the old
privilege level or the new, higher privilege level. Instructions in subsequent
instruction groups will be executed at the new, higher privilege level.

• If the page containing the epc instruction has any other access rights besides
execute-only, or if the privilege level assigned to the page is lower or equal to
(numerically greater than or equal to) the current privilege level, then no action is
taken (the current privilege level is unchanged).

Note that the ITLB is actually only read once, at instruction fetch. Information from the
access rights and privilege level fields from the translation is then used in executing this
instruction.

This instruction cannot be predicated.

Operation: if (AR[PFS].ppl u< PSR.cpl)
illegal_operation_fault();

if (PSR.it)
PSR.cpl = tlb_enter_privileged_code();

else
PSR.cpl = 0;

Interruptions: Illegal Operation fault

3:54 Volume 3: Instruction Reference

extr

extr — Extract
Format: (qp) extr r1 = r3, pos6, len6 signed_form I11

(qp) extr.u r1 = r3, pos6, len6 unsigned_form I11

Description: A field is extracted from GR r3, either zero extended or sign extended, and placed
right-justified in GR r1. The field begins at the bit position given by the second operand
and extends len6 bits to the left. The bit position where the field begins is specified by
the pos6 immediate. The extracted field is sign extended in the signed_form or zero
extended in the unsigned_form. The sign is taken from the most significant bit of the
extracted field. If the specified field extends beyond the most significant bit of GR r3,
the sign is taken from the most significant bit of GR r3. The immediate value len6 can be
any number in the range 1 to 64, and is encoded as len6-1 in the instruction. The
immediate value pos6 can be any value in the range 0 to 63.

The operation of extr r1 = r3, 7, 50 is illustrated in Figure 2-7.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_len = len6;

if (pos6 + tmp_len u> 64)
tmp_len = 64 - pos6;

if (unsigned_form)
GR[r1] = zero_ext(shift_right_unsigned(GR[r3], pos6), tmp_len);

else // signed_form
GR[r1] = sign_ext(shift_right_unsigned(GR[r3], pos6), tmp_len);

GR[r1].nat = GR[r3].nat;
}

Interruptions: Illegal Operation fault

Figure 2-7. Extract Example

56 7 0

49 0

GR r3:

GR r1:

63

63

Sign

Volume 3: Instruction Reference 3:55

fabs

fabs — Floating-point Absolute Value
Format: (qp) fabs f1 = f3 pseudo-op of: (qp) fmerge.s f1 = f0, f3

Description: The absolute value of the value in FR f3 is computed and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

3:56 Volume 3: Instruction Reference

fadd

fadd — Floating-point Add
Format: (qp) fadd.pc.sf f1 = f3, f2 pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f2

Description: FR f3 and FR f2 are added (computed to infinite precision), rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode
specified by FPSR.sf.rc, and placed in FR f1. If either FR f3 or FR f2 is a NaTVal, FR f1 is set
to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22. The mnemonic values
for sf are given in Table 2-23. For the encodings and interpretation of the status field’s
pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

Table 2-22. Specified pc Mnemonic Values

pc Mnemonic Precision Specified

.s single

.d double

none dynamic
(i.e. use pc value in status field)

Table 2-23. sf Mnemonic Values

sf Mnemonic Status Field Accessed

.s0 or none sf0

.s1 sf1

.s2 sf2

.s3 sf3

Volume 3: Instruction Reference 3:57

famax

famax — Floating-point Absolute Maximum
Format: (qp) famax.sf f1 = f2, f3 F8

Description: The operand with the larger absolute value is placed in FR f1. If the magnitude of FR f2
equals the magnitude of FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_right = fp_reg_read(FR[f2]);
tmp_left = fp_reg_read(FR[f3]);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}

fp_update_psr(f1);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:58 Volume 3: Instruction Reference

famin

famin — Floating-point Absolute Minimum
Format: (qp) famin.sf f1 = f2, f3 F8

Description: The operand with the smaller absolute value is placed in FR f1. If the magnitude of FR f2
equals the magnitude of FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_left = fp_reg_read(FR[f2]);
tmp_right = fp_reg_read(FR[f3]);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}

fp_update_psr(f1);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:59

fand

fand — Floating-point Logical And
Format: (qp) fand f1 = f2, f3 F9

Description: The bit-wise logical AND of the significand fields of FR f2 and FR f3 is computed. The
resulting value is stored in the significand field of FR f1. The exponent field of FR f1 is set
to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive
(0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand & FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:60 Volume 3: Instruction Reference

fandcm

fandcm — Floating-point And Complement
Format: (qp) fandcm f1 = f2, f3 F9

Description: The bit-wise logical AND of the significand field of FR f2 with the bit-wise complemented
significand field of FR f3 is computed. The resulting value is stored in the significand field
of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E)
and the sign field of FR f1 is set to positive (0).

If either FR f2 or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand & ~FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:61

fc

fc — Flush Cache
Format: (qp) fc r3 invalidate_line_form M28

(qp) fc.i r3 instruction_cache_coherent_form M28

Description: In the invalidate_line form, the cache line associated with the address specified by the
value of GR r3 is invalidated from all levels of the processor cache hierarchy. The
invalidation is broadcast throughout the coherence domain. If, at any level of the cache
hierarchy, the line is inconsistent with memory it is written to memory before
invalidation. The line size affected is at least 32-bytes (aligned on a 32-byte boundary).
An implementation may flush a larger region.

In the instruction_cache_coherent form, the cache line specified by GR r3 is flushed in
an implementation-specific manner that ensures that the instruction caches are
coherent with the data caches. The fc.i instruction is not required to invalidate the
targeted cache line nor write the targeted cache line back to memory if it is inconsistent
with memory, but may do so if this is required to make the instruction caches coherent
with the data caches. The fc.i instruction is broadcast throughout the coherence
domain if necessary to make all instruction caches coherent. The line size affected is at
least 32-bytes (aligned on a 32-byte boundary). An implementation may flush a larger
region.

When executed at privilege level 0, fc and fc.i perform no access rights or protection
key checks. At other privilege levels, fc and fc.i perform access rights checks as if
they were 1-byte reads, but do not perform any protection key checks (regardless of
PSR.pk).

The memory attribute of the page containing the affected line has no effect on the
behavior of these instructions. The fc instruction can be used to remove a range of
addresses from the cache by first changing the memory attribute to non-cacheable and
then flushing the range.

These instructions follow data dependency ordering rules; they are ordered only with
respect to previous load, store or semaphore instructions to the same line. fc and fc.i
have data dependencies in the sense that any prior stores by this processor will be
included in the flush operation. Subsequent memory operations to the same line need
not wait for prior fc or fc.i completion before being globally visible. fc and fc.i are
unordered operations, and are not affected by a memory fence (mf) instruction. These
instructions are ordered with respect to the sync.i instruction.

Operation: if (PR[qp]) {
itype = NON_ACCESS|FC|READ;
if (GR[r3].nat)

register_nat_consumption_fault(itype);
tmp_paddr = tlb_translate_nonaccess(GR[r3], itype);

if (invalidate_line_form)
mem_flush(tmp_paddr);

else // instruction_cache_coherent_form
make_icache_coherent(tmp_paddr);

}

3:62 Volume 3: Instruction Reference

fc

Interruptions: Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Data Nested TLB fault Data NaT Page Consumption fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault

Volume 3: Instruction Reference 3:63

fchkf

fchkf — Floating-point Check Flags
Format: (qp) fchkf.sf target25 F14

Description: The flags in FPSR.sf.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags
set in FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in
FPSR.sf.flags are not set in FPSR.s0.flags, then a branch to target25 is taken.

The target25 operand, specifies a label to branch to. This is encoded in the instruction
as a signed immediate displacement (imm21) between the target bundle and the bundle
containing this instruction (imm21 = target25 - IP >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the
instruction would have branched, and the branching behavior is not implemented, then
a Speculative Operation fault is taken and the value specified by imm21 is zero-extended
and placed in the Interruption Immediate control register (IIM). The fault handler
emulates the branch by sign-extending the IIM value, adding it to IIP and returning.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
switch (sf) {

case ‘s0’:
tmp_flags = AR[FPSR].sf0.flags;
break;

case ‘s1’:
tmp_flags = AR[FPSR].sf1.flags;
break;

case ‘s2’:
tmp_flags = AR[FPSR].sf2.flags;
break;

case ‘s3’:
tmp_flags = AR[FPSR].sf3.flags;
break;

}
if ((tmp_flags & ~AR[FPSR].traps) || (tmp_flags & ~AR[FPSR].sf0.flags)) {

if (check_branch_implemented(FCHKF)) {
taken_branch = 1;
IP = IP + sign_ext((imm21 << 4), 25);
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(IP, PSR.vm))
|| (!PSR.it && unimplemented_physical_address(IP)))
unimplemented_instruction_address_trap(0, IP);

if (PSR.tb)
taken_branch_trap();

} else
speculation_fault(FCHKF, zero_ext(imm21, 21));

}
}

FP Exceptions: None

Interruptions: Speculative Operation fault Taken Branch trap
Unimplemented Instruction Address trap

3:64 Volume 3: Instruction Reference

fclass

fclass — Floating-point Class
Format: (qp) fclass.fcrel.fctype p1, p2 = f2, fclass9 F5

Description: The contents of FR f2 are classified according to the fclass9 completer as shown in
Table 2-25. This produces a boolean result based on whether the contents of FR f2
agrees with the floating-point number format specified by fclass9, as specified by the fcrel
completer. This result is written to the two predicate register destinations, p1 and p2.
The result written to the destinations is determined by the compare type specified by
fctype.

The allowed types are Normal (or none) and unc. See Table 2-26 on page 3:67. The
assembly syntax allows the specification of membership or non-membership and the
assembler swaps the target predicates to achieve the desired effect.

A number agrees with the pattern specified by fclass9 if:

• the number is NaTVal and fclass9 {8} is 1, or

• the number is a quiet NaN and fclass9 {7} is 1, or

• the number is a signaling NaN and fclass9 {6} is 1, or

• the sign of the number agrees with the sign specified by one of the two low-order
bits of fclass9, and the type of the number (disregarding the sign) agrees with the
number-type specified by the next four bits of fclass9, as shown in Table 2-25.

Note: An fclass9 of 0x1FF is equivalent to testing for any supported operand.

The class names used in Table 2-25 are defined in Table 5-2, “Floating-point Register
Encodings” on page 1:86.

Table 2-24. Floating-point Class Relations

fcrel Test Relation

m FR f2 agrees with the pattern specified by fclass9 (is a member)

nm FR f2 does not agree with the pattern specified by fclass9 (is not a member)

Table 2-25. Floating-point Classes

fclass9 Class Mnemonic

Either these cases can be tested for

0x0100 NaTVal @nat

0x080 Quiet NaN @qnan

0x040 Signaling NaN @snan

or the OR of the following two cases

0x001 Positive @pos

0x002 Negative @neg

AND’ed with OR of the following four cases

0x004 Zero @zero

0x008 Unnormalized @unorm

0x010 Normalized @norm

0x020 Infinity @inf

Volume 3: Instruction Reference 3:65

fclass

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

tmp_rel = ((fclass9{0} && !FR[f2].sign || fclass9{1} && FR[f2].sign)
&& ((fclass9{2} && fp_is_zero(FR[f2]))||

 (fclass9{3} && fp_is_unorm(FR[f2])) ||
 (fclass9{4} && fp_is_normal(FR[f2])) ||
 (fclass9{5} && fp_is_inf(FR[f2]))
)

)
|| (fclass9{6} && fp_is_snan(FR[f2]))
|| (fclass9{7} && fp_is_qnan(FR[f2]))
|| (fclass9{8} && fp_is_natval(FR[f2]));

tmp_nat = fp_is_natval(FR[f2]) && (!fclass9{8});

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
} else {

if (fctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:66 Volume 3: Instruction Reference

fclrf

fclrf — Floating-point Clear Flags
Format: (qp) fclrf.sf F13

Description: The status field’s 6-bit flags field is reset to zero.
The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_set_sf_flags(sf, 0);

}

FP Exceptions: None

Interruptions: None

Volume 3: Instruction Reference 3:67

fcmp

fcmp — Floating-point Compare
Format: (qp) fcmp.frel.fctype.sf p1, p2 = f2, f3 F4

Description: The two source operands are compared for one of twelve relations specified by frel. This
produces a boolean result which is 1 if the comparison condition is true, and 0
otherwise. This result is written to the two predicate register destinations, p1 and p2.
The way the result is written to the destinations is determined by the compare type
specified by fctype. The allowed types are Normal (or none) and unc.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

The relations are defined for each of the comparison types in Table 2-27. Of the twelve
relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
For these, the assembler simply switches the source operand specifiers and/or switches
the predicate target specifiers and uses an implemented relation.

Table 2-26. Floating-point Comparison Types

fctype
PR[qp]==0

PR[qp]==1

Result==0,
No Source NaTVals

Result==1,
No Source NaTVals

One or More
Source NaTVals

PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2]

none 0 1 1 0 0 0

unc 0 0 0 1 1 0 0 0

Table 2-27. Floating-point Comparison Relations

frel
frel Completer
Unabbreviated

Relation Pseudo-op of
Quiet NaN

as Operand
Signals Invalid

eq equal f2 == f3 No

lt less than f2 < f3 Yes

le less than or equal f2 <= f3 Yes

gt greater than f2 > f3 lt f2 f3 Yes

ge greater than or equal f2 >= f3 le f2 f3 Yes

unord unordered f2 ? f3 No

neq not equal !(f2 == f3) eq p1 p2 No

nlt not less than !(f2 < f3) lt p1 p2 Yes

nle not less than or equal !(f2 <= f3) le p1 p2 Yes

ngt not greater than !(f2 > f3) lt f2 f3 p1 p2 Yes

nge not greater than or equal !(f2 >= f3) le f2 f3 p1 p2 Yes

ord ordered !(f2 ? f3) unord p1 p2 No

3:68 Volume 3: Instruction Reference

fcmp

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (tmp_isrcode = fp_reg_disabled(f2, f3, 0, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
PR[p1] = 0;
PR[p2] = 0;

} else {
fcmp_exception_fault_check(f2, f3, frel, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = fp_reg_read(FR[f2]);
tmp_fr3 = fp_reg_read(FR[f3]);

if (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2,
tmp_fr3);

else if (frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2,
tmp_fr3);

else if (frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2,
tmp_fr3);

else if (frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3,
tmp_fr2);

else if (frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3,
tmp_fr2);

else if (frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2,
tmp_fr3);

else if (frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2,
tmp_fr3);

else if (frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2,
tmp_fr3);

else if (frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2,
tmp_fr3);

else if (frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3,
tmp_fr2);

else if (frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3,
tmp_fr2);

else tmp_rel = !fp_unordered(tmp_fr2,
tmp_fr3); //‘ord’

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

fp_update_fpsr(sf, tmp_fp_env);
}

} else {
if (fctype == ‘unc’) {

if (p1 == p2)
illegal_operation_fault();

PR[p1] = 0;
PR[p2] = 0;

}
}

Volume 3: Instruction Reference 3:69

fcmp

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:70 Volume 3: Instruction Reference

fcvt.fx

fcvt.fx — Convert Floating-point to Integer
Format: (qp) fcvt.fx.sf f1 = f2 signed_form F10

(qp) fcvt.fx.trunc.sf f1 = f2 signed_form, trunc_form F10
(qp) fcvt.fxu.sf f1 = f2 unsigned_form F10
(qp) fcvt.fxu.trunc.sf f1 = f2 unsigned_form, trunc_form F10

Description: FR f2 is treated as a register format floating-point value and converted to a signed
(signed_form) or unsigned integer (unsigned_form) using either the rounding mode
specified in the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is
used. The result is placed in the 64-bit significand field of FR f1. The exponent field of FR
f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to
positive (0). If the result of the conversion cannot be represented as a 64-bit integer,
the 64-bit integer indefinite value 0x8000000000000000 is used as the result, if the
IEEE Invalid Operation Floating-point Exception fault is disabled.

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fcvt_exception_fault_check(f2, signed_form,

trunc_form, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f1].significand = INTEGER_INDEFINITE;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

} else {
tmp_res = fp_ieee_rnd_to_int(fp_reg_read(FR[f2]), &tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;

FR[f1].significand = tmp_res.significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

Volume 3: Instruction Reference 3:71

fcvt.fx

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:72 Volume 3: Instruction Reference

fcvt.xf

fcvt.xf — Convert Signed Integer to Floating-point
Format: (qp) fcvt.xf f1 = f2 F11

Description: The 64-bit significand of FR f2 is treated as a signed integer and its register file precision
floating-point representation is placed in FR f1.

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation is always exact and is unaffected by the rounding mode.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;

} else {
tmp_res = FR[f2];
if (tmp_res.significand{63}) {

tmp_res.significand = (~tmp_res.significand) + 1;
tmp_res.sign = 1;

} else
tmp_res.sign = 0;

tmp_res.exponent = FP_INTEGER_EXP;
tmp_res = fp_normalize(tmp_res);

FR[f1].significand = tmp_res.significand;
FR[f1].exponent = tmp_res.exponent;
FR[f1].sign = tmp_res.sign;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:73

fcvt.xuf

fcvt.xuf — Convert Unsigned Integer to Floating-point
Format: (qp) fcvt.xuf.pc.sf f1 = f3 pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f0

Description: FR f3 is multiplied with FR 1, rounded to the precision indicated by pc (and possibly
FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and
placed in FR f1.

Note: Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an
integer in the floating-point register file producing a normal floating-point
value.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

3:74 Volume 3: Instruction Reference

fetchadd

fetchadd — Fetch and Add Immediate
Format: (qp) fetchadd4.sem.ldhint r1 = [r3], inc3 four_byte_form M17

(qp) fetchadd8.sem.ldhint r1 = [r3], inc3 eight_byte_form M17

Description: A value consisting of four or eight bytes is read from memory starting at the address
specified by the value in GR r3. The value is zero extended and added to the
sign-extended immediate value specified by inc3. The values that may be specified by
inc3 are: -16, -8, -4, -1, 1, 4, 8, 16. The least significant four or eight bytes of the sum
are then written to memory starting at the address specified by the value in GR r3. The
zero-extended value read from memory is placed in GR r1 and the NaT bit
corresponding to GR r1 is cleared.

The sem completer specifies the type of semaphore operation. These operations are
described in Table 2-28. See Section 4.4.7, “Sequentiality Attribute and Ordering” on
page 2:82 for details on memory ordering.

The memory read and write are guaranteed to be atomic for accesses to pages with
cacheable, writeback memory attribute. For accesses to other memory types, atomicity
is platform dependent. Details on memory attributes are described in Section 4.4,
“Memory Attributes” on page 2:75.

If the address specified by the value in GR r3 is not naturally aligned to the size of the
value being accessed in memory, an Unaligned Data Reference fault is taken
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the
Processor Status Register).

Both read and write access privileges for the referenced page are required. The write
access privilege check is performed whether or not the memory write is performed.

Only accesses to UCE pages or cacheable pages with write-back write policy are
permitted. Accesses to NaTPages result in a Data NaT Page Consumption fault.
Accesses to pages with other memory attributes cause an Unsupported Data Reference
fault.

On a processor model that supports exported fetchadd, a fetchadd to a UCE page
causes the fetch-and-add operation to be exported outside of the processor; if the
platform does not support exported fetchadd, the operation is undefined. On a
processor model that does not support exported fetchadd, a fetchadd to a UCE page
causes an Unsupported Data Reference fault. See Section 4.4.9, “Effects of Memory
Attributes on Memory Reference Instructions” on page 2:86.

The value of the ldhint completer specifies the locality of the memory access. The values
of the ldhint completer are given in Table 2-34 on page 3:152. Locality hints do not
affect program functionality and may be ignored by the implementation. See
Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:69 for details.

Table 2-28. Fetch and Add Semaphore Types

sem
Completer

Ordering
Semantics

Semaphore Operation

acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.

rel Release The memory read/write is made visible after all previous data memory
accesses.

Volume 3: Instruction Reference 3:75

fetchadd

Operation: if (PR[qp]) {
check_target_register(r1);

if (GR[r3].nat)
register_nat_consumption_fault(SEMAPHORE);

size = four_byte_form ? 4 : 8;

paddr = tlb_translate(GR[r3], size, SEMAPHORE, PSR.cpl, &mattr,
 &tmp_unused);

if (!ma_supports_fetchadd(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

if (sem == ‘acq’)
val = mem_xchg_add(inc3, paddr, size, UM.be, mattr, ACQUIRE, ldhint);

else // ‘rel’
val = mem_xchg_add(inc3, paddr, size, UM.be, mattr, RELEASE, ldhint);

alat_inval_multiple_entries(paddr, size);

GR[r1] = zero_ext(val, size * 8);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault

3:76 Volume 3: Instruction Reference

flushrs

flushrs — Flush Register Stack
Format: flushrs M25

Description: All stacked general registers in the dirty partition of the register stack are written to the
backing store before execution continues. The dirty partition contains registers from
previous procedure frames that have not yet been saved to the backing store. For a
description of the register stack partitions, refer to Chapter 6, “Register Stack Engine”
in Volume 2. A pending external interrupt can interrupt the RSE store loop when
enabled.

After this instruction completes execution BSPSTORE is equal to BSP.

This instruction must be the first instruction in an instruction group and must either be
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0;
otherwise, the results are undefined. This instruction cannot be predicated.

Operation: while (AR[BSPSTORE] != AR[BSP]) {
rse_store(MANDATORY); // increments AR[BSPSTORE]
deliver_unmasked_pending_external_interrupt();

}

Interruptions: Unimplemented Data Address fault Data Key Miss fault
VHPT Data fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Data TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
Data Page Not Present fault Data Debug fault
Data NaT Page Consumption fault

Volume 3: Instruction Reference 3:77

fma

fma — Floating-point Multiply Add
Format: (qp) fma.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision and then FR f2 is added to
this product, again in infinite precision. The resulting value is then rounded to the
precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result.

If f2 is f0, an IEEE multiply operation is performed instead of a multiply and add. See
“fmpy — Floating-point Multiply” on page 3:85.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read(FR[f2]), tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

3:78 Volume 3: Instruction Reference

fma

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:79

fmax

fmax — Floating-point Maximum
Format: (qp) fmax.sf f1 = f2, f3 F8

Description: The operand with the larger value is placed in FR f1. If FR f2 equals FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_bool_res = fp_less_than(fp_reg_read(FR[f3]),
fp_reg_read(FR[f2]));

FR[f1] = (tmp_bool_res ? FR[f2] : FR[f3]);

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:80 Volume 3: Instruction Reference

fmerge

fmerge — Floating-point Merge
Format: (qp) fmerge.ns f1 = f2, f3 neg_sign_form F9

(qp) fmerge.s f1 = f2, f3 sign_form F9
(qp) fmerge.se f1 = f2, f3 sign_exp_form F9

Description: Sign, exponent and significand fields are extracted from FR f2 and FR f3, combined, and
the result is placed in FR f1.

For the neg_sign_form, the sign of FR f2 is negated and concatenated with the exponent
and the significand of FR f3. This form can be used to negate a floating-point number by
using the same register for FR f2 and FR f3.

For the sign_form, the sign of FR f2 is concatenated with the exponent and the
significand of FR f3.

For the sign_exp_form, the sign and exponent of FR f2 is concatenated with the
significand of FR f3.

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the
computed result.

Figure 2-8. Floating-point Merge Negative Sign Operation

Figure 2-9. Floating-point Merge Sign Operation

Figure 2-10. Floating-point Merge Sign and Exponent Operation

81 080 64 63 81 080 64 63

81 080 64 63

FR f2

Negated
Sign Bit

FR f3

FR f1

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

81 080 64 63 81 080 64 63

81 080 64 63

FR f1

FR f3FR f2

Volume 3: Instruction Reference 3:81

fmerge

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f3].significand;
if (neg_sign_form) {

FR[f1].exponent = FR[f3].exponent;
FR[f1].sign = !FR[f2].sign;

} else if (sign_form) {
FR[f1].exponent = FR[f3].exponent;
FR[f1].sign = FR[f2].sign;

} else { // sign_exp_form
FR[f1].exponent = FR[f2].exponent;
FR[f1].sign = FR[f2].sign;

}
}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:82 Volume 3: Instruction Reference

fmin

fmin — Floating-point Minimum
Format: (qp) fmin.sf f1 = f2, f3 F8

Description: The operand with the smaller value is placed in FR f1. If FR f2 equals FR f3, FR f1 gets FR
f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_bool_res = fp_less_than(fp_reg_read(FR[f2]),
fp_reg_read(FR[f3]));

FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:83

fmix

fmix — Floating-point Mix
Format: (qp) fmix.l f1 = f2, f3 mix_l_form F9

(qp) fmix.r f1 = f2, f3 mix_r_form F9
(qp) fmix.lr f1 = f2, f3 mix_lr_form F9

Description: For the mix_l_form (mix_r_form), the left (right) single precision value in FR f2 is
concatenated with the left (right) single precision value in FR f3. For the mix_lr_form,
the left single precision value in FR f2 is concatenated with the right single precision
value in FR f3.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the
computed result.

Figure 2-11. Floating-point Mix Left

Figure 2-12. Floating-point Mix Right

Figure 2-13. Floating-point Mix Left-Right

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

3:84 Volume 3: Instruction Reference

fmix

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (mix_l_form) {

tmp_res_hi = FR[f2].significand{63:32};
tmp_res_lo = FR[f3].significand{63:32};

} else if (mix_r_form) {
tmp_res_hi = FR[f2].significand{31:0};
tmp_res_lo = FR[f3].significand{31:0};

} else { // mix_lr_form
tmp_res_hi = FR[f2].significand{63:32};
tmp_res_lo = FR[f3].significand{31:0};

}
FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:85

fmpy

fmpy — Floating-point Multiply
Format: (qp) fmpy.pc.sf f1 = f3, f4 pseudo-op of: (qp) fma.pc.sf f1 = f3, f4, f0

Description: The product FR f3 and FR f4 is computed to infinite precision. The resulting value is then
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre)
using the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

3:86 Volume 3: Instruction Reference

fms

fms — Floating-point Multiply Subtract
Format: (qp) fms.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision and then FR f2 is
subtracted from this product, again in infinite precision. The resulting value is then
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre)
using the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, a NaTVal is placed in FR f1 instead of the
computed result.

If f2 is f0, an IEEE multiply operation is performed instead of a multiply and subtract.
See “fmpy — Floating-point Multiply” on page 3:85.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fms_fnma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
tmp_fr2 = fp_reg_read(FR[f2]);
tmp_fr2.sign = !tmp_fr2.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, tmp_fr2, tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Volume 3: Instruction Reference 3:87

fms

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:88 Volume 3: Instruction Reference

fneg

fneg — Floating-point Negate
Format: (qp) fneg f1 = f3 pseudo-op of: (qp) fmerge.ns f1 = f3, f3

Description: The value in FR f3 is negated and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

Volume 3: Instruction Reference 3:89

fnegabs

fnegabs — Floating-point Negate Absolute Value
Format: (qp) fnegabs f1 = f3 pseudo-op of: (qp) fmerge.ns f1 = f0, f3

Description: The absolute value of the value in FR f3 is computed, negated, and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

3:90 Volume 3: Instruction Reference

fnma

fnma — Floating-point Negative Multiply Add
Format: (qp) fnma.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision, negated, and then FR f2
is added to this product, again in infinite precision. The resulting value is then rounded
to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the
rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result.

If f2 is f0, an IEEE multiply operation is performed, followed by negation of the product.
See “fnmpy — Floating-point Negative Multiply” on page 3:92.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fms_fnma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read(FR[f2]), tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Volume 3: Instruction Reference 3:91

fnma

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:92 Volume 3: Instruction Reference

fnmpy

fnmpy — Floating-point Negative Multiply
Format: (qp) fnmpy.pc.sf f1 = f3, f4 pseudo-op of: (qp) fnma.pc.sf f1 = f3, f4,f0

Description: The product FR f3 and FR f4 is computed to infinite precision and then negated. The
resulting value is then rounded to the precision indicated by pc (and possibly FPSR.sf.pc
and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The rounded result
is placed in FR f1.

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fnma — Floating-point Negative Multiply Add” on page 3:90.

Volume 3: Instruction Reference 3:93

fnorm

fnorm — Floating-point Normalize
Format: (qp) fnorm.pc.sf f1 = f3 pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f0

Description: FR f3 is normalized and rounded to the precision indicated by pc (and possibly
FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and
placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

3:94 Volume 3: Instruction Reference

for

for — Floating-point Logical Or
Format: (qp) for f1 = f2, f3 F9

Description: The bit-wise logical OR of the significand fields of FR f2 and FR f3 is computed. The
resulting value is stored in the significand field of FR f1. The exponent field of FR f1 is set
to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive
(0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand | FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:95

fpabs

fpabs — Floating-point Parallel Absolute Value
Format: (qp) fpabs f1 = f3 pseudo-op of: (qp) fpmerge.s f1 = f0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f3
are computed and stored in the significand field of FR f1. The exponent field of FR f1 is
set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to
positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.

3:96 Volume 3: Instruction Reference

fpack

fpack — Floating-point Pack
Format: (qp) fpack f1 = f2, f3 pack_form F9

Description: The register format numbers in FR f2 and FR f3 are converted to single precision memory
format. These two single precision numbers are concatenated and stored in the
significand field of FR f1 . The exponent field of FR f1 is set to the biased exponent for
2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
tmp_res_hi = fp_single(FR[f2]);
tmp_res_lo = fp_single(FR[f3]);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Figure 2-14. Floating-point Pack

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1 0 1003E

32 31

82-bit FR to Single Mem Format Conversions

Volume 3: Instruction Reference 3:97

fpamax

fpamax — Floating-point Parallel Absolute Maximum
Format: (qp) fpamax.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 and FR f3 are compared.
The operands with the larger absolute value are returned in the significand field of FR f1.

If the magnitude of high (low) FR f3 is less than the magnitude of high (low) FR f2, high
(low) FR f1 gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, and neither FR f2 or FR f3 is a NaTVal, high
(low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_right = fp_reg_read_hi(f2);
tmp_fr3 = tmp_left = fp_reg_read_hi(f3);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_right = fp_reg_read_lo(f2);
tmp_fr3 = tmp_left = fp_reg_read_lo(f3);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

3:98 Volume 3: Instruction Reference

fpamax

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:99

fpamin

fpamin — Floating-point Parallel Absolute Minimum
Format: (qp) fpamin.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The
operands with the smaller absolute value is returned in the significand of FR f1.

If the magnitude of high (low) FR f2 is less than the magnitude of high (low) FR f3, high
(low) FR f1 gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, and neither FR f2 or FR f3 is a NaTVal, high
(low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_left = fp_reg_read_hi(f2);
tmp_fr3 = tmp_right = fp_reg_read_hi(f3);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_left = fp_reg_read_lo(f2);
tmp_fr3 = tmp_right = fp_reg_read_lo(f3);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

3:100 Volume 3: Instruction Reference

fpamin

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:101

fpcmp

fpcmp — Floating-point Parallel Compare
Format: (qp) fpcmp.frel.sf f1= f2, f3 F8

Description: The two pairs of single precision source operands in the significand fields of FR f2 and FR
f3 are compared for one of twelve relations specified by frel. This produces a boolean
result which is a mask of 32 1’s if the comparison condition is true, and a mask of 32 0’s
otherwise. This result is written to a pair of 32-bit integers in the significand field of FR
f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the
sign field of FR f1 is set to positive (0).

The mnemonic values for sf are given in Table 2-23 on page 3:56.

The relations are defined for each of the comparison types in Table 2-29. Of the twelve
relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
For these, the assembler simply switches the source operand specifiers and/or switches
the predicate type specifiers and uses an implemented relation.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Table 2-29. Floating-point Parallel Comparison Results

PR[qp]==0

PR[qp]==1

Result==false,
No Source NaTVals

Result==true,
No Source NaTVals

One or More
Source NaTVals

unchanged 0...0 1...1 NaTVal

Table 2-30. Floating-point Parallel Comparison Relations

frel
frel Completer
Unabbreviated

Relation Pseudo-op of
Quiet NaN

as Operand
Signals Invalid

eq equal f2 == f3 No

lt less than f2 < f3 Yes

le less than or equal f2 <= f3 Yes

gt greater than f2 > f3 lt f2 f3 Yes

ge greater than or equal f2 >= f3 le f2 f3 Yes

unord unordered f2 ? f3 No

neq not equal !(f2 == f3) No

nlt not less than !(f2 < f3) Yes

nle not less than or equal !(f2 <= f3) Yes

ngt not greater than !(f2 > f3) nlt f2 f3 Yes

nge not greater than or equal !(f2 >= f3) nle f2 f3 Yes

ord ordered !(f2 ? f3) No

3:102 Volume 3: Instruction Reference

fpcmp

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpcmp_exception_fault_check(f2, f3, frel, sf, &tmp_fp_env);

if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = fp_reg_read_hi(f2);
tmp_fr3 = fp_reg_read_hi(f3);

if (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else if (frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);
else if (frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else tmp_rel = !fp_unordered(tmp_fr2,

tmp_fr3); //‘ord’

tmp_res_hi = (tmp_rel ? 0xFFFFFFFF : 0x00000000);

tmp_fr2 = fp_reg_read_lo(f2);
tmp_fr3 = fp_reg_read_lo(f3);

if (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else if (frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);
else if (frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, tmp_fr3);
else if (frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2, tmp_fr3);
else if (frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2,

tmp_fr3);
else if (frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, tmp_fr2);
else if (frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3,

tmp_fr2);
else tmp_rel = !fp_unordered(tmp_fr2,

tmp_fr3); //‘ord’

Volume 3: Instruction Reference 3:103

fpcmp

tmp_res_lo = (tmp_rel ? 0xFFFFFFFF : 0x00000000);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:104 Volume 3: Instruction Reference

fpcvt.fx

fpcvt.fx — Convert Parallel Floating-point to Integer
Format: (qp) fpcvt.fx.sf f1 = f2 signed_form F10

(qp) fpcvt.fx.trunc.sf f1 = f2 signed_form, trunc_form F10
(qp) fpcvt.fxu.sf f1 = f2 unsigned_form F10
(qp) fpcvt.fxu.trunc.sf f1 = f2 unsigned_form, trunc_form F10

Description: The pair of single precision values in the significand field of FR f2 is converted to a pair
of 32-bit signed integers (signed_form) or unsigned integers (unsigned_form) using
either the rounding mode specified in the FPSR.sf.rc, or using Round-to-Zero if the
trunc_form of the instruction is used. The result is written as a pair of 32-bit integers
into the significand field of FR f1. The exponent field of FR f1 is set to the biased
exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0). If the
result of the conversion cannot be represented as a 32-bit integer, the 32-bit integer
indefinite value 0x80000000 is used as the result, if the IEEE Invalid Operation
Floating-point Exception fault is disabled.

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Volume 3: Instruction Reference 3:105

fpcvt.fx

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpcvt_exception_fault_check(f2,

signed_form, trunc_form, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res_hi = INTEGER_INDEFINITE_32_BIT;

} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f2), HIGH,

&tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;

tmp_res_hi = tmp_res.significand{31:0};
}

if (fp_is_nan(tmp_default_result_pair.lo)) {
tmp_res_lo = INTEGER_INDEFINITE_32_BIT;

} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_lo(f2), LOW,

&tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;

tmp_res_lo = tmp_res.significand{31:0};
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault

3:106 Volume 3: Instruction Reference

fpcvt.fx

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:107

fpma

fpma — Floating-point Parallel Multiply Add
Format: (qp) fpma.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f3 and FR f4 are computed to infinite precision and then the pair of single precision
values in the significand field of FR f2 is added to these products, again in infinite
precision. The resulting values are then rounded to single precision using the rounding
mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed
results.

Note: If f2 is f0 in the fpma instruction, just the IEEE multiply operation is performed.
(See “fpmpy — Floating-point Parallel Multiply” on page 3:115.) FR f1, as an
operand, is not a packed pair of 1.0 values, it is just the register file format’s
1.0 value.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

3:108 Volume 3: Instruction Reference

fpma

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpma_exception_fault_check(f2,

f3, f4, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_hi(f2), tmp_fp_env);
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_lo(f2), tmp_fp_env);
tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:109

fpmax

fpmax — Floating-point Parallel Maximum
Format: (qp) fpmax.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The
operands with the larger value is returned in the significand of FR f1.

If the value of high (low) FR f3 is less than the value of high (low) FR f2, high (low) FR f1
gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, high (low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_right = fp_reg_read_hi(f2);
tmp_fr3 = tmp_left = fp_reg_read_hi(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2 : tmp_fr3);

tmp_fr2 = tmp_right = fp_reg_read_lo(f2);
tmp_fr3 = tmp_left = fp_reg_read_lo(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2 : tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

3:110 Volume 3: Instruction Reference

fpmax

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:111

fpmerge

fpmerge — Floating-point Parallel Merge
Format: (qp) fpmerge.ns f1 = f2, f3 neg_sign_form F9

(qp) fpmerge.s f1 = f2, f3 sign_form F9
(qp) fpmerge.se f1 = f2, f3 sign_exp_form F9

Description: For the neg_sign_form, the signs of the pair of single precision values in the significand
field of FR f2 are negated and concatenated with the exponents and the significands of
the pair of single precision values in the significand field of FR f3 and stored in the
significand field of FR f1. This form can be used to negate a pair of single precision
floating-point numbers by using the same register for f2 and f3.

For the sign_form, the signs of the pair of single precision values in the significand field
of FR f2 are concatenated with the exponents and the significands of the pair of single
precision values in the significand field of FR f3 and stored in FR f1.

For the sign_exp_form, the signs and exponents of the pair of single precision values in
the significand field of FR f2 are concatenated with the pair of single precision
significands in the significand field of FR f3 and stored in the significand field of FR f1.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the
computed result.

Figure 2-15. Floating-point Parallel Merge Negative Sign Operation

Figure 2-16. Floating-point Parallel Merge Sign Operation

81 080 64 81 080 64

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

Negated

3062 62 30

3062

63 63

Sign Bits

81 080 64 63 81 080 64

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

62 30 62 30

62 30

63

3:112 Volume 3: Instruction Reference

fpmerge

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (neg_sign_form) {

tmp_res_hi = (!FR[f2].significand{63} << 31)
 | (FR[f3].significand{62:32});

tmp_res_lo = (!FR[f2].significand{31} << 31)
 | (FR[f3].significand{30:0});

} else if (sign_form) {
tmp_res_hi = (FR[f2].significand{63} << 31)

 | (FR[f3].significand{62:32});
tmp_res_lo = (FR[f2].significand{31} << 31)

 | (FR[f3].significand{30:0});
} else { // sign_exp_form

tmp_res_hi = (FR[f2].significand{63:55} << 23)
 | (FR[f3].significand{54:32});

tmp_res_lo = (FR[f2].significand{31:23} << 23)
 | (FR[f3].significand{22:0});

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Figure 2-17. Floating-point Parallel Merge Sign and Exponent Operation

81 080 64 63

FR f2 FR f3

FR f1 0 1003E

32 31 23 2255 5481 080 64 63 32 31 23 2255 54

81 080 64 63 32 31 23 2255 54

Volume 3: Instruction Reference 3:113

fpmin

fpmin — Floating-point Parallel Minimum
Format: (qp) fpmin.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The
operands with the smaller value is returned in significand of FR f1.

If the value of high (low) FR f2 is less than the value of high (low) FR f3, high (low) FR f1
gets high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, high (low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the
sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_left = fp_reg_read_hi(f2);
tmp_fr3 = tmp_right = fp_reg_read_hi(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_left = fp_reg_read_lo(f2);
tmp_fr3 = tmp_right = fp_reg_read_lo(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

3:114 Volume 3: Instruction Reference

fpmin

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:115

fpmpy

fpmpy — Floating-point Parallel Multiply
Format: (qp) fpmpy.sf f1 = f3, f4 pseudo-op of: (qp) fpma.sf f1 = f3, f4, f0

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f3 and FR f4 are computed to infinite precision. The resulting values are then rounded to
single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded
results are stored in the significand field of FR f1. The exponent field of FR f1 is set to the
biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If either FR f3, or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed
results.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

Operation: See “fpma — Floating-point Parallel Multiply Add” on page 3:107.

3:116 Volume 3: Instruction Reference

fpms

fpms — Floating-point Parallel Multiply Subtract
Format: (qp) fpms.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f3 and FR f4 are computed to infinite precision and then the pair of single precision
values in the significand field of FR f2 is subtracted from these products, again in infinite
precision. The resulting values are then rounded to single precision using the rounding
mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

Note: If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the
computed results.

Mapping: If f2 is f0 in the fpms instruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpms_fpnma_exception_fault_check(f2, f3,

 f4, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
if (f2 != 0) {

tmp_sub = fp_reg_read_hi(f2);
tmp_sub.sign = !tmp_sub.sign;
tmp_res = fp_add(tmp_res, tmp_sub, tmp_fp_env);

}
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
if (f2 != 0) {

tmp_sub = fp_reg_read_lo(f2);
tmp_sub.sign = !tmp_sub.sign;
tmp_res = fp_add(tmp_res, tmp_sub, tmp_fp_env);

}

Volume 3: Instruction Reference 3:117

fpms

tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:118 Volume 3: Instruction Reference

fpneg

fpneg — Floating-point Parallel Negate
Format: (qp) fpneg f1 = f3 pseudo-op of: (qp) fpmerge.ns f1 = f3, f3

Description: The pair of single precision values in the significand field of FR f3 are negated and stored
in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent
for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.

Volume 3: Instruction Reference 3:119

fpnegabs

fpnegabs — Floating-point Parallel Negate Absolute Value
Format: (qp) fpnegabs f1 = f3 pseudo-op of: (qp) fpmerge.ns f1 = f0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f3
are computed, negated and stored in the significand field of FR f1. The exponent field of
FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set
to positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.

3:120 Volume 3: Instruction Reference

fpnma

fpnma — Floating-point Parallel Negative Multiply Add
Format: (qp) fpnma.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f3 and FR f4 are computed to infinite precision, negated, and then the pair of single
precision values in the significand field of FR f2 are added to these (negated) products,
again in infinite precision. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored
in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent
for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result.

Note: If f2 is f0 in the fpnma instruction, just the IEEE multiply operation (with the
product being negated before rounding) is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

Volume 3: Instruction Reference 3:121

fpnma

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpms_fpnma_exception_fault_check(f2, f3,

f4, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_hi(f2), tmp_fp_env);
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_lo(f2), tmp_fp_env);
tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:122 Volume 3: Instruction Reference

fpnmpy

fpnmpy — Floating-point Parallel Negative Multiply
Format: (qp) fpnmpy.sf f1 = f3, f4 pseudo-op of: (qp) fpnma.sf f1 = f3, f4,f0

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f3 and FR f4 are computed to infinite precision and then negated. The resulting values
are then rounded to single precision using the rounding mode specified by FPSR.sf.rc.
The pair of rounded results are stored in the significand field of FR f1. The exponent field
of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is
set to positive (0).

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

Operation: See “fpnma — Floating-point Parallel Negative Multiply Add” on page 3:120.

Volume 3: Instruction Reference 3:123

fprcpa

fprcpa — Floating-point Parallel Reciprocal Approximation
Format: (qp) fprcpa.sf f1, p2 = f2, f3 F6

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• Each half of the significand of FR f1 is either set to an approximation (with a relative
error < 2-8.886) of the reciprocal of the corresponding half of FR f3, or set to the
IEEE-754 mandated response for the quotient FR f2/FR f3 of the corresponding half
— if that half of FR f2 or of FR f3 is in the set {-Infinity, -0, +0, +Infinity, NaN}.

• If either half of FR f1 is set to the IEEE-754 mandated quotient, or is set to an
approximation of the reciprocal which may cause the Newton-Raphson iterations to
fail to produce the correct IEEE-754 divide result, then PR p2 is set to 0, otherwise it
is set to 1.

For correct IEEE divide results, when PR p2 is cleared, user software is expected to
compute the quotient (FR f2/FR f3) for each half (using the non-parallel frcpa
instruction), and merge the results into FR f1, keeping PR p2 cleared.

• The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and
the sign field of FR f1 is set to positive (0).

• If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result, and PR p2 is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result_pair = fprcpa_exception_fault_check(f2, f3, sf,

&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi) ||
limits_check.hi_fr3) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);
tmp_pred_hi = 0;

} else {
num = fp_normalize(fp_reg_read_hi(f2));
den = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_inf(num) && fp_is_finite(den)) {

tmp_res = FP_INFINITY;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {

3:124 Volume 3: Instruction Reference

fprcpa

tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else {
tmp_res = fp_ieee_recip(den);
if (limits_check.hi_fr2_or_quot)

tmp_pred_hi = 0;
else

tmp_pred_hi = 1;
}
tmp_res_hi = fp_single(tmp_res);

}
if (fp_is_nan_or_inf(tmp_default_result_pair.lo) ||

limits_check.lo_fr3) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);
tmp_pred_lo = 0;

} else {
num = fp_normalize(fp_reg_read_lo(f2));
den = fp_normalize(fp_reg_read_lo(f3));
if (fp_is_inf(num) && fp_is_finite(den)) {

tmp_res = FP_INFINITY;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else {
tmp_res = fp_ieee_recip(den);
if (limits_check.lo_fr2_or_quot)

tmp_pred_lo = 0;
else

tmp_pred_lo = 1;
}
tmp_res_lo = fp_single(tmp_res);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;
PR[p2] = tmp_pred_hi && tmp_pred_lo;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

FP Exceptions: Invalid Operation (V)
Zero Divide (Z)

Volume 3: Instruction Reference 3:125

fprcpa

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:126 Volume 3: Instruction Reference

fprsqrta

fprsqrta — Floating-point Parallel Reciprocal Square Root
Approximation
Format: (qp) fprsqrta.sf f1, p2 = f3 F7

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• Each half of the significand of FR f1 is either set to an approximation (with a relative
error < 2-8.831) of the reciprocal square root of the corresponding half of FR f3, or
set to the IEEE-754 compliant response for the reciprocal square root of the
corresponding half of FR f3 — if that half of FR f3 is in the set {-Infinity, -Finite, -0,
+0, +Infinity, NaN}.

• If either half of FR f1 is set to the IEEE-754 mandated reciprocal square root, or is
set to an approximation of the reciprocal square root which may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 square root
result, then PR p2 is set to 0, otherwise it is set to 1.

For correct IEEE square root results, when PR p2 is cleared, user software is
expected to compute the square root for each half (using the non-parallel frsqrta
instruction), and merge the results in FR f1, keeping PR p2 cleared.

• The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and
the sign field of FR f1 is set to positive (0).

• If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2
is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f3, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result_pair = fprsqrta_exception_fault_check(f3, sf,

&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);
tmp_pred_hi = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_zero(tmp_fr3)) {

tmp_res = FP_INFINITY;
tmp_res.sign = tmp_fr3.sign;
tmp_pred_hi = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
tmp_res = FP_ZERO;
tmp_pred_hi = 0;

} else {
tmp_res = fp_ieee_recip_sqrt(tmp_fr3);

Volume 3: Instruction Reference 3:127

fprsqrta

if (limits_check.hi)
tmp_pred_hi = 0;

else
tmp_pred_hi = 1;

}
tmp_res_hi = fp_single(tmp_res);

}

if (fp_is_nan(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);
tmp_pred_lo = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read_lo(f3));
if (fp_is_zero(tmp_fr3)) {

tmp_res = FP_INFINITY;
tmp_res.sign = tmp_fr3.sign;
tmp_pred_lo = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
tmp_res = FP_ZERO;
tmp_pred_lo = 0;

} else {
tmp_res = fp_ieee_recip_sqrt(tmp_fr3);
if (limits_check.lo)

tmp_pred_lo = 0;
else

tmp_pred_lo = 1;
}
tmp_res_lo = fp_single(tmp_res);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;
PR[p2] = tmp_pred_hi && tmp_pred_lo;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:128 Volume 3: Instruction Reference

frcpa

frcpa — Floating-point Reciprocal Approximation
Format: (qp) frcpa.sf f1, p2 = f2, f3 F6

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• FR f1 is either set to an approximation (with a relative error < 2-8.886) of the
reciprocal of FR f3, or to the IEEE-754 mandated quotient of FR f2/FR f3 — if either
FR f2 or FR f3 is in the set {-Infinity, -0, Pseudo-zero, +0, +Infinity, NaN,
Unsupported}.

• If FR f1 is set to the approximation of the reciprocal of FR f3, then PR p2 is set to 1;
otherwise, it is set to 0.

• If FR f2 and FR f3 are such that the approximation of FR f3’s reciprocal may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 result of FR f2/FR
f3, then a Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 quotient (FR f2/FR f3), return
the result in FR f1, and set PR p2 to 0.

• If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result, and PR p2 is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result = frcpa_exception_fault_check(f2, f3, sf,

&tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;
PR[p2] = 0;

} else {
num = fp_normalize(fp_reg_read(FR[f2]));
den = fp_normalize(fp_reg_read(FR[f3]));
if (fp_is_inf(num) && fp_is_finite(den)) {

FR[f1] = FP_INFINITY;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
FR[f1] = FP_ZERO;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
FR[f1] = FP_ZERO;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

Volume 3: Instruction Reference 3:129

frcpa

} else {
FR[f1] = fp_ieee_recip(den);
PR[p2] = 1;

}
}
fp_update_fpsr(sf, tmp_fp_env);

}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

// fp_ieee_recip()

fp_ieee_recip(den)
{

RECIP_TABLE[256] = {
0x3fc, 0x3f4, 0x3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
0x3be, 0x3b7, 0x3af, 0x3a8, 0x3a1, 0x399, 0x392, 0x38b,
0x384, 0x37d, 0x376, 0x36f, 0x368, 0x361, 0x35b, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, 0x2fa, 0x2f4, 0x2ee,
0x2e8, 0x2e2, 0x2dc, 0x2d7, 0x2d1, 0x2cb, 0x2c5, 0x2bf,
0x2ba, 0x2b4, 0x2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27e, 0x279, 0x273, 0x26e, 0x269,
0x264, 0x25f, 0x25a, 0x255, 0x250, 0x24b, 0x246, 0x241,
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21b,
0x216, 0x211, 0x20d, 0x208, 0x204, 0x1ff, 0x1fb, 0x1f6,
0x1f2, 0x1ed, 0x1e9, 0x1e5, 0x1e0, 0x1dc, 0x1d8, 0x1d4,
0x1cf, 0x1cb, 0x1c7, 0x1c3, 0x1bf, 0x1bb, 0x1b6, 0x1b2,
0x1ae, 0x1aa, 0x1a6, 0x1a2, 0x19e, 0x19a, 0x197, 0x193,
0x18f, 0x18b, 0x187, 0x183, 0x17f, 0x17c, 0x178, 0x174,
0x171, 0x16d, 0x169, 0x166, 0x162, 0x15e, 0x15b, 0x157,
0x154, 0x150, 0x14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, 0x12e, 0x12a, 0x127, 0x124, 0x120,
0x11d, 0x11a, 0x117, 0x113, 0x110, 0x10d, 0x10a, 0x107,
0x103, 0x100, 0x0fd, 0x0fa, 0x0f7, 0x0f4, 0x0f1, 0x0ee,
0x0eb, 0x0e8, 0x0e5, 0x0e2, 0x0df, 0x0dc, 0x0d9, 0x0d6,
0x0d3, 0x0d0, 0x0cd, 0x0ca, 0x0c8, 0x0c5, 0x0c2, 0x0bf,
0x0bc, 0x0b9, 0x0b7, 0x0b4, 0x0b1, 0x0ae, 0x0ac, 0x0a9,
0x0a6, 0x0a4, 0x0a1, 0x09e, 0x09c, 0x099, 0x096, 0x094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, 0x07f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 0x06b,
0x069, 0x066, 0x064, 0x061, 0x05f, 0x05d, 0x05a, 0x058,
0x056, 0x053, 0x051, 0x04f, 0x04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0x036, 0x033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0x022,
0x020, 0x01e, 0x01c, 0x01a, 0x018, 0x015, 0x013, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001,

};

tmp_index = den.significand{62:55};
tmp_res.significand = (1 << 63) | (RECIP_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_ONES - 2 - den.exponent;
tmp_res.sign = den.sign;

3:130 Volume 3: Instruction Reference

frcpa

return (tmp_res);
}

FP Exceptions: Invalid Operation (V)
Zero Divide (Z)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:131

frsqrta

frsqrta — Floating-point Reciprocal Square Root Approximation
Format: (qp) frsqrta.sf f1, p2 = f3 F7

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• FR f1 is either set to an approximation (with a relative error < 2-8.831) of the
reciprocal square root of FR f3, or set to the IEEE-754 mandated square root of FR f3
— if FR f3 is in the set {-Infinity, -Finite, -0, Pseudo-zero, +0, +Infinity, NaN,
Unsupported}.

• If FR f1 is set to an approximation of the reciprocal square root of FR f3, then PR p2 is
set to 1; otherwise, it is set to 0.

• If FR f3 is such the approximation of its reciprocal square root may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 square root
result, then a Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 square root, return the
result in FR f1, and set PR p2 to 0.

• If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2
is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f3, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result = frsqrta_exception_fault_check(f3, sf,

&tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f1] = tmp_default_result;
PR[p2] = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read(FR[f3]));
if (fp_is_zero(tmp_fr3)) {

FR[f1] = tmp_fr3;
PR[p2] = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
FR[f1] = tmp_fr3;
PR[p2] = 0;

} else {
FR[f1] = fp_ieee_recip_sqrt(tmp_fr3);
PR[p2] = 1;

}
}
fp_update_fpsr(sf, tmp_fp_env);

}

3:132 Volume 3: Instruction Reference

frsqrta

fp_update_psr(f1);
} else {

PR[p2] = 0;
}

// fp_ieee_recip_sqrt()

fp_ieee_recip_sqrt(root)
{

RECIP_SQRT_TABLE[256] = {
0x1a5, 0x1a0, 0x19a, 0x195, 0x18f, 0x18a, 0x185, 0x180,
0x17a, 0x175, 0x170, 0x16b, 0x166, 0x161, 0x15d, 0x158,
0x153, 0x14e, 0x14a, 0x145, 0x140, 0x13c, 0x138, 0x133,
0x12f, 0x12a, 0x126, 0x122, 0x11e, 0x11a, 0x115, 0x111,
0x10d, 0x109, 0x105, 0x101, 0x0fd, 0x0fa, 0x0f6, 0x0f2,
0x0ee, 0x0ea, 0x0e7, 0x0e3, 0x0df, 0x0dc, 0x0d8, 0x0d5,
0x0d1, 0x0ce, 0x0ca, 0x0c7, 0x0c3, 0x0c0, 0x0bd, 0x0b9,
0x0b6, 0x0b3, 0x0b0, 0x0ad, 0x0a9, 0x0a6, 0x0a3, 0x0a0,
0x09d, 0x09a, 0x097, 0x094, 0x091, 0x08e, 0x08b, 0x088,
0x085, 0x082, 0x07f, 0x07d, 0x07a, 0x077, 0x074, 0x071,
0x06f, 0x06c, 0x069, 0x067, 0x064, 0x061, 0x05f, 0x05c,
0x05a, 0x057, 0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x045, 0x043, 0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035,
0x033, 0x030, 0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0x020, 0x01e, 0x01c, 0x01a, 0x018, 0x016, 0x014, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001,
0x3fc, 0x3f4, 0x3ec, 0x3e5, 0x3dd, 0x3d5, 0x3ce, 0x3c7,
0x3bf, 0x3b8, 0x3b1, 0x3aa, 0x3a3, 0x39c, 0x395, 0x38e,
0x388, 0x381, 0x37a, 0x374, 0x36d, 0x367, 0x361, 0x35a,
0x354, 0x34e, 0x348, 0x342, 0x33c, 0x336, 0x330, 0x32b,
0x325, 0x31f, 0x31a, 0x314, 0x30f, 0x309, 0x304, 0x2fe,
0x2f9, 0x2f4, 0x2ee, 0x2e9, 0x2e4, 0x2df, 0x2da, 0x2d5,
0x2d0, 0x2cb, 0x2c6, 0x2c1, 0x2bd, 0x2b8, 0x2b3, 0x2ae,
0x2aa, 0x2a5, 0x2a1, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x286, 0x282, 0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x264, 0x260, 0x25c, 0x258, 0x254, 0x250, 0x24c, 0x249,
0x245, 0x241, 0x23d, 0x239, 0x235, 0x232, 0x22e, 0x22a,
0x227, 0x223, 0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x20a, 0x207, 0x204, 0x200, 0x1fd, 0x1f9, 0x1f6, 0x1f3,
0x1f0, 0x1ec, 0x1e9, 0x1e6, 0x1e3, 0x1df, 0x1dc, 0x1d9,
0x1d6, 0x1d3, 0x1d0, 0x1cd, 0x1ca, 0x1c7, 0x1c4, 0x1c1,
0x1be, 0x1bb, 0x1b8, 0x1b5, 0x1b2, 0x1af, 0x1ac, 0x1aa,

};

tmp_index = (root.exponent{0} << 7) | root.significand{62:56};
tmp_res.significand = (1 << 63) | (RECIP_SQRT_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_HALF -

 ((root.exponent - FP_REG_BIAS) >> 1);
tmp_res.sign = FP_SIGN_POSITIVE;
return (tmp_res);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Volume 3: Instruction Reference 3:133

frsqrta

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:134 Volume 3: Instruction Reference

fselect

fselect — Floating-point Select
Format: (qp) fselect f1 = f3, f4, f2 F3

Description: The significand field of FR f3 is logically AND-ed with the significand field of FR f2 and the
significand field of FR f4 is logically AND-ed with the one’s complement of the significand
field of FR f2. The two results are logically OR-ed together. The result is placed in the
significand field of FR f1.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E). The sign
bit field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = (FR[f3].significand & FR[f2].significand)

| (FR[f4].significand & ~FR[f2].significand);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:135

fsetc

fsetc — Floating-point Set Controls
Format: (qp) fsetc.sf amask7, omask7 F12

Description: The status field’s control bits are initialized to the value obtained by logically AND-ing
the sf0.controls and amask7 immediate field and logically OR-ing the omask7 immediate
field.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[qp]) {
tmp_controls = (AR[FPSR].sf0.controls & amask7) | omask7;
if (is_reserved_field(FSETC, sf, tmp_controls))

reserved_register_field_fault();
fp_set_sf_controls(sf, tmp_controls);

}

FP Exceptions: None

Interruptions: Reserved Register/Field fault

3:136 Volume 3: Instruction Reference

fsub

fsub — Floating-point Subtract
Format: (qp) fsub.pc.sf f1 = f3, f2 pseudo-op of: (qp) fms.pc.sf f1 = f3, f1, f2

Description: FR f2 is subtracted from FR f3 (computed to infinite precision), rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode
specified by FPSR.sf.rc, and placed in FR f1.

If either FR f3 or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The
mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and
interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fms — Floating-point Multiply Subtract” on page 3:86.

Volume 3: Instruction Reference 3:137

fswap

fswap — Floating-point Swap
Format: (qp) fswap f1 = f2, f3 swap_form F9

(qp) fswap.nl f1 = f2, f3 swap_nl_form F9
(qp) fswap.nr f1 = f2, f3 swap_nr_form F9

Description: For the swap_form, the left single precision value in FR f2 is concatenated with the right
single precision value in FR f3. The concatenated pair is then swapped.

For the swap_nl_form, the left single precision value in FR f2 is concatenated with the
right single precision value in FR f3. The concatenated pair is then swapped, and the left
single precision value is negated.

For the swap_nr_form, the left single precision value in FR f2 is concatenated with the
right single precision value in FR f3. The concatenated pair is then swapped, and the
right single precision value is negated.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the
computed result.

Figure 2-18. Floating-point Swap

Figure 2-19. Floating-point Swap Negate Left

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

Negated Sign Bit

30

62

3:138 Volume 3: Instruction Reference

fswap

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (swap_form) {

tmp_res_hi = FR[f3].significand{31:0};
tmp_res_lo = FR[f2].significand{63:32};

} else if (swap_nl_form) {
tmp_res_hi = (!FR[f3].significand{31} << 31)

 | (FR[f3].significand{30:0});
tmp_res_lo = FR[f2].significand{63:32};

} else { // swap_nr_form
tmp_res_hi = FR[f3].significand{31:0};
tmp_res_lo = (!FR[f2].significand{63} << 31)

 | (FR[f2].significand{62:32});
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Figure 2-20. Floating-point Swap Negate Right

81 080 64 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

31

32 31

Negated Sign Bit

62

30

63 32

Volume 3: Instruction Reference 3:139

fsxt

fsxt — Floating-point Sign Extend
Format: (qp) fsxt.l f1 = f2, f3 sxt_l_form F9

(qp) fsxt.r f1 = f2, f3 sxt_r_form F9

Description: For the sxt_l_form (sxt_r_form), the sign of the left (right) single precision value in FR
f2 is extended to 32-bits and is concatenated with the left (right) single precision value
in FR f3.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the
computed result.

Figure 2-21. Floating-point Sign Extend Left

Figure 2-22. Floating-point Sign Extend Right

81 080 64 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

Extended

63 62

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

3132

0 1003E

32 31

32 31

Extended

30

3:140 Volume 3: Instruction Reference

fsxt

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (sxt_l_form) {

tmp_res_hi = (FR[f2].significand{63} ? 0xFFFFFFFF : 0x00000000);
tmp_res_lo = FR[f3].significand{63:32};

} else { // sxt_r_form
tmp_res_hi = (FR[f2].significand{31} ? 0xFFFFFFFF : 0x00000000);
tmp_res_lo = FR[f3].significand{31:0};

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:141

fwb

fwb — Flush Write Buffers
Format: (qp) fwb M24

Description: The processor is instructed to expedite flushing of any pending stores held in write or
coalescing buffers. Since this operation is a hint, the processor may or may not take
any action and actually flush any outstanding stores. The processor gives no indication
when flushing of any prior stores is completed. An fwb instruction does not ensure
ordering of stores, since later stores may be flushed before prior stores.

To ensure prior coalesced stores are made visible before later stores, software must
issue a release operation between stores (see Table 4-15 on page 2:83 for a list of
release operations).

This instruction can be used to help ensure stores held in write or coalescing buffers are
not delayed for long periods or to expedite high priority stores out of the processors.

Operation: if (PR[qp]) {
mem_flush_pending_stores();

}

Interruptions: None

3:142 Volume 3: Instruction Reference

fxor

fxor — Floating-point Exclusive Or
Format: (qp) fxor f1 = f2, f3 F9

Description: The bit-wise logical exclusive-OR of the significand fields of FR f2 and FR f3 is computed.
The resulting value is stored in the significand field of FR f1. The exponent field of FR f1
is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to
positive (0).

If either of FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand ^ FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:143

getf

getf — Get Floating-point Value or Exponent or Significand
Format: (qp) getf.s r1 = f2 single_form M19

(qp) getf.d r1 = f2 double_form M19
(qp) getf.exp r1 = f2 exponent_form M19
(qp) getf.sig r1 = f2 significand_form M19

Description: In the single and double forms, the value in FR f2 is converted into a single precision
(single_form) or double precision (double_form) memory representation and placed in
GR r1, as shown in Figure 5-7 and Figure 5-8 on page 1:95, respectively. In the
single_form, the most-significant 32 bits of GR r1 are set to 0.

In the exponent_form, the exponent field of FR f2 is copied to bits 16:0 of GR r1 and the
sign bit of the value in FR f2 is copied to bit 17 of GR r1. The most-significant 46-bits of
GR r1 are set to zero.

In the significand_form, the significand field of the value in FR f2 is copied to GR r1

For all forms, if FR f2 contains a NaTVal, then the NaT bit corresponding to GR r1 is set to
1.

Figure 2-23. Function of getf.exp

Figure 2-24. Function of getf.sig

s significandexponentFR f2

GR r1 0

01618

17146

63

significandexponentsFR f2

GR r1

063

64

3:144 Volume 3: Instruction Reference

getf

Operation: if (PR[qp]) {
check_target_register(r1);
if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (single_form) {
GR[r1]{31:0} = fp_fr_to_mem_format(FR[f2], 4, 0);
GR[r1]{63:32} = 0;

} else if (double_form) {
GR[r1] = fp_fr_to_mem_format(FR[f2], 8, 0);

} else if (exponent_form) {
GR[r1]{63:18} = 0;
GR[r1]{16:0} = FR[f2].exponent;
GR[r1]{17} = FR[f2].sign;

} else // significand_form
GR[r1] = FR[f2].significand;

if (fp_is_natval(FR[f2]))
GR[r1].nat = 1;

else
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:145

hint

hint — Performance Hint
Format: (qp) hint imm21 pseudo-op

(qp) hint.i imm21 i_unit_form I18
(qp) hint.b imm21 b_unit_form B9
(qp) hint.m imm21 m_unit_form M48
(qp) hint.f imm21 f_unit_form F16
(qp) hint.x imm62 x_unit_form X5

Description: Provides a performance hint to the processor about the program being executed. It has
no effect on architectural machine state, and operates as a nop instruction except for its
performance effects.

The immediate, imm21 or imm62, specifies the hint. For the x_unit_form, the L slot of the
bundle contains the upper 41 bits of imm62.

This instruction has five forms, each of which can be executed only on a particular
execution unit type. The pseudo-op can be used if the unit type to execute on is
unimportant.

Operation: if (PR[qp]) {
if (x_unit_form)

hint = imm62;
else // i_unit_form || b_unit_form || b_unit_form || f_unit_form

hint = imm21;

if (is_supported_hint(hint))
execute_hint(hint);

}

Interruptions: None

Table 2-31. Hint Immediates

imm21 or imm62 Mnemonic Hint

0x0 @pause Indicates to the processor that the currently executing stream is waiting,
spinning, or performing low priority tasks. This hint can be used by the
processor to allocate more resources or time to another executing stream
on the same processor. For the case where the currently executing stream
is spinning or otherwise waiting for a particular address in memory to
change, an advanced load to that address should be done before
executing a hint @pause; this hint can be used by the processor to
resume normal allocation of resources or time to the currently executing
stream at the point when some other stream stores to that address.

0x1 @priority Indicates to the processor that the currently executing stream is performing
a high priority task. This hint can be used by the processor to allocate more
resources or time to this stream. Implementations will ensure that such
increased allocation is only temporary, and that repeated use of this hint
will not impair longer-term fairness of allocation.

0x02-0x3f These values are available for future architected extensions and will
execute as a nop on all current processors. Use of these values may
cause unexpected performance issues on future processors and should
not be used.

other Implementation specific. Performs an implementation-specific hint action.
Consult processor model-specific documentation for details.

3:146 Volume 3: Instruction Reference

invala

invala — Invalidate ALAT
Format: (qp) invala complete_form M24

(qp) invala.e r1 gr_form, entry_form M26
(qp) invala.e f1 fr_form, entry_form M27

Description: The selected entry or entries in the ALAT are invalidated.

In the complete_form, all ALAT entries are invalidated. In the entry_form, the ALAT is
queried using the general register specifier r1 (gr_form), or the floating-point register
specifier f1 (fr_form), and if any ALAT entry matches, it is invalidated.

Operation: if (PR[qp]) {
if (complete_form)

alat_inval();
else { // entry_form

if (gr_form)
alat_inval_single_entry(GENERAL, r1);

else // fr_form
alat_inval_single_entry(FLOAT, f1);

}
}

Interruptions: None

Volume 3: Instruction Reference 3:147

itc

itc — Insert Translation Cache
Format: (qp) itc.i r2 instruction_form M41

(qp) itc.d r2 data_form M41

Description: An entry is inserted into the instruction or data translation cache. GR r2 specifies the
physical address portion of the translation. ITIR specifies the protection key, page size
and additional information. The virtual address is specified by the IFA register and the
region register is selected by IFA{63:61}. The processor determines which entry to
replace based on an implementation-specific replacement algorithm.

The visibility of the itc instruction to externally generated purges (ptc.g, ptc.ga)
must occur before subsequent memory operations. From a software perspective, this is
similar to acquire semantics. Serialization is still required to observe the side-effects of
a translation being present.

itc must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The TLB is first purged of any overlapping entries as specified by Table 4-1 on
page 2:52.

This instruction can only be executed at the most privileged level, and when PSR.ic and
PSR.vm are both 0.

To ensure forward progress, software must ensure that PSR.ic remains 0 until rfi-ing
to the instruction that requires the translation.

3:148 Volume 3: Instruction Reference

itc

Operation: if (PR[qp]) {
if (!followed_by_stop())

undefined_behavior();
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r2].nat)

register_nat_consumption_fault(0);

tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(ITC_TYPE);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TC);

} else { // data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(DTC_TYPE);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TC);

}
}

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue a
data serialization operation before issuing a data access or non-access reference
dependent on the new translation.

Volume 3: Instruction Reference 3:149

itr

itr — Insert Translation Register
Format: (qp) itr.i itr[r3] = r2 instruction_form M42

(qp) itr.d dtr[r3] = r2 data_form M42

Description: A translation is inserted into the instruction or data translation register specified by the
contents of GR r3. GR r2 specifies the physical address portion of the translation. ITIR
specifies the protection key, page size and additional information. The virtual address is
specified by the IFA register and the region register is selected by IFA{63:61}.

As described in Table 4-1, “Purge Behavior of TLB Inserts and Purges” on page 2:52,
the TLB is first purged of any entries that overlap with the newly inserted translation.
The translation previously contained in the TR slot specified by GR r3 is not necessarily
purged from the processor's TLBs and may remain as a TC entry. To ensure that the
previous TR translation is purged, software must use explicit ptr instructions before
inserting the new TR entry.

This instruction can only be executed at the most privileged level, and when PSR.ic and
PSR.vm are both 0.

Operation: if (PR[qp]) {
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);

slot = GR[r3]{7:0};
tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

tmp_tr_type = instruction_form ? ITR_TYPE : DTR_TYPE;

if (is_reserved_reg(tmp_tr_type, slot))
reserved_register_field_fault();

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TR);

} else { // data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TR);

}
}

3:150 Volume 3: Instruction Reference

itr

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue a
data serialization operation before issuing a data access or non-access reference
dependent on the new translation.

Notes: The processor may use invalid translation registers for translation cache entries.
Performance can be improved on some processor models by ensuring translation
registers are allocated beginning at translation register zero and continuing
contiguously upwards.

Volume 3: Instruction Reference 3:151

ld

ld — Load
Format: (qp) ldsz.ldtype.ldhint r1 = [r3] no_base_update_form M2

(qp) ldsz.ldtype.ldhint r1 = [r3], r2 reg_base_update_form M2
(qp) ldsz.ldtype.ldhint r1 = [r3], imm9 imm_base_update_form M3
(qp) ld16.ldhint r1, ar.csd = [r3] sixteen_byte_form, no_base_update_form M2
(qp) ld16.acq.ldhint r1, ar.csd = [r3] sixteen_byte_form, acquire_form,

no_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3] fill_form, no_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3], r2 fill_form, reg_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3], imm9 fill_form, imm_base_update_form M3

Description: A value consisting of sz bytes is read from memory starting at the address specified by
the value in GR r3. The value is then zero extended and placed in GR r1. The values of
the sz completer are given in Table 2-32. The NaT bit corresponding to GR r1 is cleared,
except as described below for speculative loads. The ldtype completer specifies special
load operations, which are described in Table 2-33.

For the sixteen_byte_form, two 8-byte values are loaded as a single, 16-byte memory
read. The value at the lowest address is placed in GR r1, and the value at the highest
address is placed in the Compare and Store Data application register (AR[CSD]). The
only load types supported for this sixteen_byte_form are none and acq.

For the fill_form, an 8-byte value is loaded, and a bit in the UNAT application register is
copied into the target register NaT bit. This instruction is used for reloading a spilled
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the base update forms, the value in GR r3 is added to either a signed immediate
value (imm9) or a value from GR r2, and the result is placed back in GR r3. This base
register update is done after the load, and does not affect the load address. In the
reg_base_update_form, if the NaT bit corresponding to GR r2 is set, then the NaT bit
corresponding to GR r3 is set and no fault is raised. Base register update is not
supported for the ld16 instruction.

Table 2-32. sz Completers

sz Completer Bytes Accessed

1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes

Table 2-33. Load Types

ldtype
Completer

Interpretation Special Load Operation

none Normal load

s Speculative load Certain exceptions may be deferred rather than generating a fault.
Deferral causes the target register’s NaT bit to be set. The NaT bit is
later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, the target register and NaT bit is cleared, and the processor
ensures that no ALAT entry exists for the target register. The absence of
an ALAT entry is later used to detect deferral or collision.

3:152 Volume 3: Instruction Reference

ld

For more details on ordered, biased, speculative, advanced and check loads see
Section 4.4.4, “Control Speculation” on page 1:60 and Section 4.4.5, “Data
Speculation” on page 1:63. For more details on ordered loads see Section 4.4.7,
“Memory Access Ordering” on page 1:73. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:69 for details on biased loads. Details on memory
attributes are described in Section 4.4, “Memory Attributes” on page 2:75.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is
raised, and the exception is deferred. For the base-update calculation, if the NaT bit
associated with GR r2 is 1, the NaT bit associated with GR r3 is set to 1 and no fault is
raised.

The value of the ldhint completer specifies the locality of the memory access. The values
of the ldhint completer are given in Table 2-34. A prefetch hint is implied in the base
update forms. The address specified by the value in GR r3 after the base update acts as
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified
by ldhint. Prefetch and locality hints do not affect program functionality and may be
ignored by the implementation. See Section 4.4.6, “Memory Hierarchy Control and
Consistency” on page 1:69 for details.

sa Speculative
Advanced load

An entry is added to the ALAT, and certain exceptions may be deferred.
Deferral causes the target register’s NaT bit to be set, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.

c.nc Check load
– no clear

The ALAT is searched for a matching entry. If found, no load is done
and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load
– clear

The ALAT is searched for a matching entry. If found, the entry is
removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.

c.clr.acq Ordered check load
– clear

This type behaves the same as the unordered clear form, except that
the ALAT lookup (and resulting load, if no ALAT entry is found) is
performed with acquire semantics.

acq Ordered load An ordered load is performed with acquire semantics.

bias Biased load A hint is provided to the implementation to acquire exclusive ownership
of the accessed cache line.

Table 2-34. Load Hints

ldhint Completer Interpretation

none Temporal locality, level 1

Table 2-33. Load Types (Continued)

ldtype
Completer

Interpretation Special Load Operation

Volume 3: Instruction Reference 3:153

ld

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is
implied.

For the base update forms, specifying the same register address in r1 and r3 will cause
an Illegal Operation fault.

Hardware support for ld16 instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such ld16 accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted.

For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do
not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See Section 3.1.11, “Processor Identification Registers” on
page 1:34 for details.

nt1 No temporal locality, level 1

nta No temporal locality, all levels

Table 2-34. Load Hints (Continued)

ldhint Completer Interpretation

3:154 Volume 3: Instruction Reference

ld

Operation: if (PR[qp]) {
size = fill_form ? 8 : (sixteen_byte_form ? 16 : sz);

speculative = (ldtype == ‘s’ || ldtype == ‘sa’);
advanced = (ldtype == ‘a’ || ldtype == ‘sa’);
check_clear = (ldtype == ‘c.clr’ || ldtype == ‘c.clr.acq’);
check_no_clear = (ldtype == ‘c.nc’);
check = check_clear || check_no_clear;
acquire = (acquire_form || ldtype == ‘acq’ || ldtype == ‘c.clr.acq’);
otype = acquire ? ACQUIRE : UNORDERED;
bias = (ldtype == ‘bias’) ? BIAS : 0 ;
translate_address = 1;
read_memory = 1;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced) itype |= ADVANCE ;
if (size == 16) itype |= UNCACHE_OPT ;

if (sixteen_byte_form && !instruction_implemented(LD16))
illegal_operation_fault();

if ((reg_base_update_form || imm_base_update_form) && (r1 == r3))
illegal_operation_fault();

check_target_register(r1);
if (reg_base_update_form || imm_base_update_form)

check_target_register(r3);

if (reg_base_update_form) {
tmp_r2 = GR[r2];
tmp_r2nat = GR[r2].nat;

}

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(GENERAL, r1)) {
translate_address = alat_translate_address_on_hit(ldtype, GENERAL,

r1);
read_memory = alat_read_memory_on_hit(ldtype, GENERAL, r1);

}
if (!translate_address) {

if (check_clear || advanced) // remove any old alat entry
alat_inval_single_entry(GENERAL, r1);

} else {
if (!defer) {

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,
&defer);

spontaneous_deferral(paddr, size, UM.be, mattr, otype,
bias | ldhint, &defer);

if (!defer && read_memory) {
if (size == 16) {

mem_read_pair(&val, &val_ar, paddr, size, UM.be, mattr,
 otype, ldhint);

}
else {

Volume 3: Instruction Reference 3:155

ld

val = mem_read(paddr, size, UM.be, mattr, otype,
 bias | ldhint);

}
}

}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(GENERAL, r1);
if (defer) {

if (speculative) {
GR[r1] = natd_gr_read(paddr, size, UM.be, mattr, otype,

 bias | ldhint);
GR[r1].nat = 1;

} else {
GR[r1] = 0; // ld.a to sequential memory
GR[r1].nat = 0;

}
} else { // execute load normally

if (fill_form) { // fill NaT on ld8.fill
bit_pos = GR[r3]{8:3};
GR[r1] = val;
GR[r1].nat = AR[UNAT]{bit_pos};

} else { // clear NaT on other types
if (size == 16) {

GR[r1] = val;
AR[CSD] = val_ar;

}
else {

GR[r1] = zero_ext(val, size * 8);
}
GR[r1].nat = 0;

}
if ((check_no_clear || advanced) && ma_is_speculative(mattr))

// add entry to ALAT
alat_write(ldtype, GENERAL, r1, paddr, size);

}
}

if (imm_base_update_form) { // update base register
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + tmp_r2;
GR[r3].nat = GR[r3].nat || tmp_r2nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], ldhint | bias, itype);

}

3:156 Volume 3: Instruction Reference

ld

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Volume 3: Instruction Reference 3:157

ldf

ldf — Floating-point Load
Format: (qp) ldffsz.fldtype.ldhint f1 = [r3] no_base_update_form M9

(qp) ldffsz.fldtype.ldhint f1 = [r3], r2 reg_base_update_form M7
(qp) ldffsz.fldtype.ldhint f1 = [r3], imm9 imm_base_update_form M8
(qp) ldf8.fldtype.ldhint f1 = [r3] integer_form, no_base_update_form M9
(qp) ldf8.fldtype.ldhint f1 = [r3], r2 integer_form, reg_base_update_form M7
(qp) ldf8.fldtype.ldhint f1 = [r3], imm9 integer_form, imm_base_update_form M8
(qp) ldf.fill.ldhint f1 = [r3] fill_form, no_base_update_form M9
(qp) ldf.fill.ldhint f1 = [r3], r2 fill_form, reg_base_update_form M7
(qp) ldf.fill.ldhint f1 = [r3], imm9 fill_form, imm_base_update_form M8

Description: A value consisting of fsz bytes is read from memory starting at the address specified by
the value in GR r3. The value is then converted into the floating-point register format
and placed in FR f1. See Section 5.1, “Data Types and Formats” on page 1:85 for details
on conversion to floating-point register format. The values of the fsz completer are
given in Table 2-35. The fldtype completer specifies special load operations, which are
described in Table 2-36.

For the integer_form, an 8-byte value is loaded and placed in the significand field of FR
f1 without conversion. The exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

For the fill_form, a 16-byte value is loaded, and the appropriate fields are placed in FR
f1 without conversion. This instruction is used for reloading a spilled register. See
Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the base update forms, the value in GR r3 is added to either a signed immediate
value (imm9) or a value from GR r2, and the result is placed back in GR r3. This base
register update is done after the load, and does not affect the load address. In the
reg_base_update_form, if the NaT bit corresponding to GR r2 is set, then the NaT bit
corresponding to GR r3 is set and no fault is raised.

Table 2-35. fsz Completers

fsz Completer Bytes Accessed Memory Format

s 4 bytes Single precision

d 8 bytes Double precision

e 10 bytes Extended precision

Table 2-36. FP Load Types

fldtype
Completer

Interpretation Special Load Operation

none Normal load

s Speculative load Certain exceptions may be deferred rather than generating a fault.
Deferral causes NaTVal to be placed in the target register. The NaTVal
value is later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, no ALAT entry is added to the ALAT and the target register is
set as follows: for the integer_form, the exponent is set to 0x1003E and
the sign and significand are set to zero; for all other forms, the sign,
exponent and significand are set to zero. The absence of an ALAT entry
is later used to detect deferral or collision.

3:158 Volume 3: Instruction Reference

ldf

For more details on speculative, advanced and check loads see Section 4.4.4, “Control
Speculation” on page 1:60 and Section 4.4.5, “Data Speculation” on page 1:63. Details
on memory attributes are described in Section 4.4, “Memory Attributes” on page 2:75.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is
raised, and the exception is deferred. For the base-update calculation, if the NaT bit
associated with GR r2 is 1, the NaT bit associated with GR r3 is set to 1 and no fault is
raised.

The value of the ldhint modifier specifies the locality of the memory access. The
mnemonic values of ldhint are given in Table 2-34 on page 3:152. A prefetch hint is
implied in the base update forms. The address specified by the value in GR r3 after the
base update acts as a hint to prefetch the indicated cache line. This prefetch uses the
locality hints specified by ldhint. Prefetch and locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory
Hierarchy Control and Consistency” on page 1:69 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is
implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f1.

Hardware support for ldfe (10-byte) instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such ldfe accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted. The fault is delivered only on the normal,
advanced, and check load flavors. Control-speculative flavors of ldfe always defer the
Unsupported Data Reference fault.

sa Speculative
Advanced load

An entry is added to the ALAT, and certain exceptions may be deferred.
Deferral causes NaTVal to be placed in the target register, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.

c.nc Check load –
no clear

The ALAT is searched for a matching entry. If found, no load is done
and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load – clear The ALAT is searched for a matching entry. If found, the entry is
removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.

Table 2-36. FP Load Types (Continued)

fldtype
Completer

Interpretation Special Load Operation

Volume 3: Instruction Reference 3:159

ldf

Operation: if (PR[qp]) {
size = (fill_form ? 16 : (integer_form ? 8 : fsz));
speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == ‘a’ || fldtype == ‘sa’);
check_clear = (fldtype == ‘c.clr’);
check_no_clear = (fldtype == ‘c.nc’);
check = check_clear || check_no_clear;
translate_address = 1;
read_memory = 1;

itype = READ;
if (speculative) itype |= SPEC;
if (advanced) itype |= ADVANCE;
if (size == 10) itype |= UNCACHE_OPT;

if (reg_base_update_form || imm_base_update_form)
check_target_register(r3);

fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, itype);

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(FLOAT, f1)) {
translate_address = alat_translate_address_on_hit(fldtype, FLOAT, f1);
read_memory = alat_read_memory_on_hit(fldtype, FLOAT, f1);

}

if (!translate_address) {
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
} else {

if (!defer) {
paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,

&defer);
spontaneous_deferral(paddr, size, UM.be, mattr, UNORDERED,

ldhint, &defer);
if (!defer && read_memory)

val = mem_read(paddr, size, UM.be, mattr, UNORDERED, ldhint);
}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
if (speculative && defer) {

FR[f1] = NATVAL;
} else if (advanced && !speculative && defer) {

FR[f1] = (integer_form ? FP_INT_ZERO : FP_ZERO);
} else { // execute load normally

FR[f1] = fp_mem_to_fr_format(val, size, integer_form);

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
// add entry to ALAT

alat_write(fldtype, FLOAT, f1, paddr, size);
}

3:160 Volume 3: Instruction Reference

ldf

}

if (imm_base_update_form) { // update base register
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + GR[r2];
GR[r3].nat = GR[r3].nat || GR[r2].nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], ldhint, itype);

fp_update_psr(f1);
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault
VHPT Data fault Unaligned Data Reference fault
Data TLB fault Unsupported Data Reference fault
Data Page Not Present fault

Volume 3: Instruction Reference 3:161

ldfp

ldfp — Floating-point Load Pair
Format: (qp) ldfps.fldtype.ldhint f1, f2 = [r3] single_form, no_base_update_form M11

(qp) ldfps.fldtype.ldhint f1, f2 = [r3], 8 single_form, base_update_form M12
(qp) ldfpd.fldtype.ldhint f1, f2 = [r3] double_form, no_base_update_form M11
(qp) ldfpd.fldtype.ldhint f1, f2 = [r3], 16 double_form, base_update_form M12
(qp) ldfp8.fldtype.ldhint f1, f2 = [r3] integer_form, no_base_update_form M11
(qp) ldfp8.fldtype.ldhint f1, f2 = [r3], 16 integer_form, base_update_form M12

Description: Eight (single_form) or sixteen (double_form/integer_form) bytes are read from
memory starting at the address specified by the value in GR r3. The value read is
treated as a contiguous pair of floating-point numbers for the single_form/double_form
and as integer/Parallel FP data for the integer_form. Each number is converted into the
floating-point register format. The value at the lowest address is placed in FR f1, and the
value at the highest address is placed in FR f2. See Section 5.1, “Data Types and
Formats” on page 1:85 for details on conversion to floating-point register format. The
fldtype completer specifies special load operations, which are described in Table 2-36 on
page 3:157.

For more details on speculative, advanced and check loads see Section 4.4.4, “Control
Speculation” on page 1:60 and Section 4.4.5, “Data Speculation” on page 1:63.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is
raised, and the exception is deferred.

In the base_update_form, the value in GR r3 is added to an implied immediate value
(equal to double the data size) and the result is placed back in GR r3. This base register
update is done after the load, and does not affect the load address.

The value of the ldhint modifier specifies the locality of the memory access. The
mnemonic values of ldhint are given in Table 2-34 on page 3:152. A prefetch hint is
implied in the base update form. The address specified by the value in GR r3 after the
base update acts as a hint to prefetch the indicated cache line. This prefetch uses the
locality hints specified by ldhint. Prefetch and locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory
Hierarchy Control and Consistency” on page 1:69 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is
implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f1 and FR f2.

There is a restriction on the choice of target registers. Register specifiers f1 and f2 must
specify one odd-numbered physical FR and one even-numbered physical FR. Specifying
two odd or two even registers will cause an Illegal Operation fault to be raised. The
restriction is on physical register numbers after register rotation. This means that if f1
and f2 both specify static registers or both specify rotating registers, then f1 and f2
must be odd/even or even/odd. If f1 and f2 specify one static and one rotating register,
the restriction depends on CFM.rrb.fr. If CFM.rrb.fr is even, the restriction is the same;
f1 and f2 must be odd/even or even/odd. If CFM.rrb.fr is odd, then f1 and f2 must be
even/even or odd/odd. Specifying one static and one rotating register should only be
done when CFM.rrb.fr will have a predictable value (such as 0).

3:162 Volume 3: Instruction Reference

ldfp

Operation: if (PR[qp]) {
size = single_form ? 8 : 16;

speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == ‘a’ || fldtype == ‘sa’);
check_clear = (fldtype == ‘c.clr’);
check_no_clear = (fldtype == ‘c.nc’);
check = check_clear || check_no_clear;
translate_address = 1;
read_memory = 1;

itype = READ;
if (speculative) itype |= SPEC;
if (advanced) itype |= ADVANCE;

if (fp_reg_bank_conflict(f1, f2))
illegal_operation_fault();

if (base_update_form)
check_target_register(r3);

fp_check_target_register(f1);
fp_check_target_register(f2);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, itype);

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(FLOAT, f1)) {
translate_address = alat_translate_address_on_hit(fldtype, FLOAT, f1);
read_memory = alat_read_memory_on_hit(fldtype, FLOAT, f1);

}

if (!translate_address) {
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
} else {

if (!defer) {
paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,

&defer);
spontaneous_deferral(paddr, size, UM.be, mattr, UNORDERED,

ldhint, &defer);
if (!defer && read_memory)

mem_read_pair(&f1_val, &f2_val, paddr, size, UM.be,
mattr, UNORDERED, ldhint);

}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
if (speculative && defer) {

FR[f1] = NATVAL;
FR[f2] = NATVAL;

} else if (advanced && !speculative && defer) {
FR[f1] = (integer_form ? FP_INT_ZERO : FP_ZERO);

Volume 3: Instruction Reference 3:163

ldfp

FR[f2] = (integer_form ? FP_INT_ZERO : FP_ZERO);
} else { // execute load normally

FR[f1] = fp_mem_to_fr_format(f1_val, size/2, integer_form);
FR[f2] = fp_mem_to_fr_format(f2_val, size/2, integer_form);

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
// add entry to ALAT

alat_write(fldtype, FLOAT, f1, paddr, size);
}

}

if (base_update_form) { // update base register
GR[r3] = GR[r3] + size;
GR[r3].nat = GR[r3].nat;
if (!GR[r3].nat)

mem_implicit_prefetch(GR[r3], ldhint, itype);
}

fp_update_psr(f1);
fp_update_psr(f2);

}

Interruptions: Illegal Operation fault Data Page Not Present fault
Disabled Floating-point Register fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault

3:164 Volume 3: Instruction Reference

lfetch

lfetch — Line Prefetch
Format: (qp) lfetch.lftype.lfhint [r3] no_base_update_form M18

(qp) lfetch.lftype.lfhint [r3], r2 reg_base_update_form M20
(qp) lfetch.lftype.lfhint [r3], imm9 imm_base_update_form M22
(qp) lfetch.lftype.excl.lfhint [r3] no_base_update_form, exclusive_form M18
(qp) lfetch.lftype.excl.lfhint [r3], r2 reg_base_update_form, exclusive_form M20
(qp) lfetch.lftype.excl.lfhint [r3], imm9 imm_base_update_form, exclusive_form M22

Description: The line containing the address specified by the value in GR r3 is moved to the highest
level of the data memory hierarchy. The value of the lfhint modifier specifies the locality
of the memory access; see Section 4.4, “Memory Access Instructions” on page 1:57 for
details. The mnemonic values of lfhint are given in Table 2-38.

The behavior of the memory read is also determined by the memory attribute
associated with the accessed page. See Chapter 4, “Addressing and Protection” in
Volume 2. Line size is implementation dependent but must be a power of two greater
than or equal to 32 bytes. In the exclusive form, the cache line is allowed to be marked
in an exclusive state. This qualifier is used when the program expects soon to modify a
location in that line. If the memory attribute for the page containing the line is not
cacheable, then no reference is made.

The completer, lftype, specifies whether or not the instruction raises faults normally
associated with a regular load. Table 2-37 defines these two options.

In the base update forms, after being used to address memory, the value in GR r3 is
incremented by either the sign-extended value in imm9 (in the imm_base_update_form)
or the value in GR r2 (in the reg_base_update_form). In the reg_base_update_form, if
the NaT bit corresponding to GR r2 is set, then the NaT bit corresponding to GR r3 is set
– no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit
corresponding to GR r3 is clear, then the address specified by the value in GR r3 after
the post-increment acts as a hint to implicitly prefetch the indicated cache line. This
implicit prefetch uses the locality hints specified by lfhint. The implicit prefetch does not
affect program functionality, does not raise any faults, and may be ignored by the
implementation.

In the no_base_update_form, the value in GR r3 is not modified and no implicit prefetch
hint is implied.

If the NaT bit corresponding to GR r3 is set then the state of memory is not affected. In
the reg_base_update_form and imm_base_update_form, the post increment of GR r3 is
performed and prefetch is hinted as described above.

lfetch instructions, like hardware prefetches, are not orderable operations, i.e., they
have no order with respect to prior or subsequent memory operations.

Table 2-37. lftype Mnemonic Values

lftype Mnemonic Interpretation

none No faults are raised

fault Raise faults

Volume 3: Instruction Reference 3:165

lfetch

A faulting lfetch to an unimplemented address results in an Unimplemented Data
Address fault. A non-faulting lfetch to an unimplemented address does not take the
fault and will not issue a prefetch request, but, if specified, will perform a register
post-increment.

Both the non-faulting and the faulting forms of lfetch can be used speculatively. The
purpose of raising faults on the faulting form is to allow the operating system to resolve
problems with the address to the extent that it can do so relatively quickly. If problems
with the address cannot be resolved quickly, the OS simply returns to the program, and
forces the data prefetch to be skipped over.

Specifically, if a faulting lfetch takes any of the listed faults (other than Illegal
Operation fault), the operating system must handle this fault to the extent that it can
do so relatively quickly and invisibly to the interrupted program. If the fault cannot be
handled quickly or cannot be handled invisibly (e.g., if handling the fault would involve
terminating the program), the OS must return to the interrupted program, skipping
over the data prefetch. This can easily be done by setting the IPSR.ed bit to 1 before
executing an rfi to go back to the process, which will allow the lfetch.fault to
perform its base register post-increment (if specified), but will suppress any prefetch
request and hence any prefetch-related fault. Note that the OS can easily identify that a
faulting lfetch was the cause of the fault by observing that ISR.na is 1, and
ISR.code{3:0} is 4. The one exception to this is the Illegal Operation fault, which can
be caused by an lfetch.fault if base register post-increment is specified, and the
base register is outside of the current stack frame, or is GR0. Since this one fault is not
related to the prefetch aspect of lfetch.fault, but rather to the base update portion,
Illegal Operation faults on lfetch.fault should be handled the same as for any other
instruction.

Table 2-38. lfhint Mnemonic Values

lfhint Mnemonic Interpretation

none Temporal locality, level 1

nt1 No temporal locality, level 1

nt2 No temporal locality, level 2

nta No temporal locality, all levels

3:166 Volume 3: Instruction Reference

lfetch

Operation: if (PR[qp]) {
itype = READ|NON_ACCESS;
itype |= (lftype == ‘fault’) ? LFETCH_FAULT : LFETCH;

if (reg_base_update_form || imm_base_update_form)
check_target_register(r3);

if (lftype == ‘fault’) { // faulting form
if (GR[r3].nat && !PSR.ed) // fault on NaT address

register_nat_consumption_fault(itype);
}

excl_hint = (exclusive_form) ? EXCLUSIVE : 0;

if (!GR[r3].nat && !PSR.ed) {// faulting form already faulted if r3 is nat
paddr = tlb_translate(GR[r3], 1, itype, PSR.cpl, &mattr, &defer);
if (!defer)

mem_promote(paddr, mattr, lfhint | excl_hint);
}

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + GR[r2];
GR[r3].nat = GR[r2].nat || GR[r3].nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], lfhint | excl_hint, itype);

}

Interruptions: Illegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault

Volume 3: Instruction Reference 3:167

loadrs

loadrs — Load Register Stack
Format: loadrs M25

Description: This instruction ensures that a specified number of bytes (registers values and/or NaT
collections) below the current BSP have been loaded from the backing store into the
stacked general registers. The loaded registers are placed into the dirty partition of the
register stack. All other stacked general registers are marked as invalid, without being
saved to the backing store.

The number of bytes to be loaded is specified in a sub-field of the RSC application
register (RSC.loadrs). Backing store addresses are always 8-byte aligned, and
therefore the low order 3 bits of the loadrs field (RSC.loadrs{2:0}) are ignored. This
instruction can be used to invalidate all stacked registers outside the current frame, by
setting RSC.loadrs to zero.

This instruction will fault with an Illegal Operation fault under any of the following
conditions:

• the RSE is not in enforced lazy mode (RSC.mode is non-zero).

• CFM.sof and RSC.loadrs are both non-zero.

• an attempt is made to load up more registers than are available in the physical
stacked register file.

This instruction must be the first instruction in an instruction group and must either be
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0;
otherwise, the results are undefined. This instruction cannot be predicated.

Operation: if (AR[RSC].mode != 0)
illegal_operation_fault();

if ((CFM.sof != 0) && (AR[RSC].loadrs != 0))
illegal_operation_fault();

rse_ensure_regs_loaded(AR[RSC].loadrs); // can raise faults listed below
AR[RNAT] = undefined();

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault
Data Page Not Present fault

3:168 Volume 3: Instruction Reference

mf

mf — Memory Fence
Format: (qp) mf ordering_form M24

(qp) mf.a acceptance_form M24

Description: This instruction forces ordering between prior and subsequent memory accesses. The
ordering_form ensures all prior data memory accesses are made visible prior to any
subsequent data memory accesses being made visible. It does not ensure prior data
memory references have been accepted by the external platform, nor that prior data
memory references are visible.

The acceptance_form prevents any subsequent data memory accesses by the processor
from initiating transactions to the external platform until:

• all prior loads to sequential pages have returned data, and

• all prior stores to sequential pages have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance_form is typically
used to ensure the processor has “waited” until a memory-mapped I/O transaction has
been “accepted” before initiating additional external transactions. The acceptance_form
does not ensure ordering, or acceptance to memory areas other than sequential pages.

Operation: if (PR[qp]){
if (acceptance_form)

acceptance_fence();
else // ordering_form

ordering_fence();
}

Interruptions: None

Volume 3: Instruction Reference 3:169

mix

mix — Mix
Format: (qp) mix1.l r1 = r2, r3 one_byte_form, left_form I2

(qp) mix2.l r1 = r2, r3 two_byte_form, left_form I2
(qp) mix4.l r1 = r2, r3 four_byte_form, left_form I2
(qp) mix1.r r1 = r2, r3 one_byte_form, right_form I2
(qp) mix2.r r1 = r2, r3 two_byte_form, right_form I2
(qp) mix4.r r1 = r2, r3 four_byte_form, right_form I2

Description: The data elements of GR r2 and r3 are mixed as shown in Figure 2-25, and the result
placed in GR r1. The data elements in the source registers are grouped in pairs, and one
element from each pair is selected for the result. In the left_form, the result is formed
from the leftmost elements from each of the pairs. In the right_form, the result is
formed from the rightmost elements. Elements are selected alternately from the two
source registers.

3:170 Volume 3: Instruction Reference

mix

Figure 2-25. Mix Examples

GR r2:

GR r1:

GR r3:

mix1.l

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

mix1.r

GR r2:

GR r1:

GR r3:

mix2.l

mix2.r

GR r2:

GR r1:

GR r3:

mix4.l

mix4.r

Volume 3: Instruction Reference 3:171

mix

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (left_form)
GR[r1] = concatenate8(x[7], y[7], x[5], y[5],

x[3], y[3], x[1], y[1]);
else // right_form

GR[r1] = concatenate8(x[6], y[6], x[4], y[4],
x[2], y[2], x[0], y[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (left_form)
GR[r1] = concatenate4(x[3], y[3], x[1], y[1]);

else // right_form
GR[r1] = concatenate4(x[2], y[2], x[0], y[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

if (left_form)
GR[r1] = concatenate2(x[1], y[1]);

else // right_form
GR[r1] = concatenate2(x[0], y[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:172 Volume 3: Instruction Reference

mov ar

mov — Move Application Register
Format: (qp) mov r1 = ar3 pseudo-op

(qp) mov ar3 = r2 pseudo-op
(qp) mov ar3 = imm8 pseudo-op
(qp) mov.i r1 = ar3 i_form, from_form I28
(qp) mov.i ar3 = r2 i_form, register_form, to_form I26
(qp) mov.i ar3 = imm8 i_form, immediate_form, to_form I27
(qp) mov.m r1 = ar3 m_form, from_form M31
(qp) mov.m ar3 = r2 m_form, register_form, to_form M29
(qp) mov.m ar3 = imm8 m_form, immediate_form, to_form M30

Description: The source operand is copied to the destination register.

In the from_form, the application register specified by ar3 is copied into GR r1 and the
corresponding NaT bit is cleared.

In the to_form, the value in GR r2 (in the register_form), or the sign-extended value in
imm8 (in the immediate_form), is placed in AR ar3. In the register_form if the NaT bit
corresponding to GR r2 is set, then a Register NaT Consumption fault is raised.

Only a subset of the application registers can be accessed by each execution unit (M or
I). Table 3-3 on page 1:28 indicates which application registers may be accessed from
which execution unit type. An access to an application register from the wrong unit type
causes an Illegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need for
specifying the execution unit. Accesses of the ARs are always implicitly serialized. While
implicitly serialized, read-after-write and write-after-write dependency violations must
be avoided (e.g., setting CCV, followed by cmpxchg in the same instruction group, or
simultaneous writes to the UNAT register by ld.fill and mov to UNAT).

Volume 3: Instruction Reference 3:173

mov ar

Operation: if (PR[qp]) {
tmp_type = (i_form ? AR_I_TYPE : AR_M_TYPE);
if (is_reserved_reg(tmp_type, ar3))

illegal_operation_fault();

if (from_form) {
check_target_register(r1);
if (((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode != 0))

illegal_operation_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.cpl != 0)
privileged_register_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.vm == 1)
virtualization_fault();

GR[r1] = (is_ignored_reg(ar3)) ? 0 : AR[ar3];
GR[r1].nat = 0;

} else { // to_form
tmp_val = (register_form) ? GR[r2] : sign_ext(imm8, 8);

if (is_read_only_reg(AR_TYPE, ar3) ||
(((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode != 0)))
illegal_operation_fault();

if (register_form && GR[r2].nat)
register_nat_consumption_fault(0);

if (is_reserved_field(AR_TYPE, ar3, tmp_val))
reserved_register_field_fault();

if ((is_kernel_reg(ar3) || ar3 == ITC || ar3 == RUC) && (PSR.cpl != 0))
privileged_register_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.vm == 1)
virtualization_fault();

if (!is_ignored_reg(ar3)) {
tmp_val = ignored_field_mask(AR_TYPE, ar3, tmp_val);
// check for illegal promotion
if (ar3 == RSC && tmp_val{3:2} u< PSR.cpl)

tmp_val{3:2} = PSR.cpl;
AR[ar3] = tmp_val;

if (ar3 == BSPSTORE) {
AR[BSP] = rse_update_internal_stack_pointers(tmp_val);
AR[RNAT] = undefined();

}
}

}
}

Interruptions: Illegal Operation fault Privileged Register fault
Register NaT Consumption fault Virtualization fault
Reserved Register/Field fault

3:174 Volume 3: Instruction Reference

mov br

mov — Move Branch Register
Format: (qp) mov r1 = b2 from_form I22

(qp) mov b1 = r2 pseudo-op
(qp) mov.mwh.ih b1 = r2, tag13 to_form I21
(qp) mov.ret.mwh.ih b1 = r2, tag13 return_form, to_form I21

Description: The source operand is copied to the destination register.

In the from_form, the branch register specified by b2 is copied into GR r1. The NaT bit
corresponding to GR r1 is cleared.

In the to_form, the value in GR r2 is copied into BR b1. If the NaT bit corresponding to
GR r2 is 1, then a Register NaT Consumption fault is taken.

A set of hints can also be provided when moving to a branch register. These hints are
very similar to those provided on the brp instruction, and provide prediction
information about a future branch which may use the value being moved into BR b1. The
return_form is used to provide the hint that this value will be used in a return-type
branch.

The values for the mwh whether hint completer are given in Table 2-39. For a
description of the ih hint completer see the Branch Prediction instruction and Table 2-13
on page 3:32.

A pseudo-op is provided for copying a general register into a branch register when
there is no hint information to be specified. This is encoded with a value of 0 for tag13
and values corresponding to none for the hint completers.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);
GR[r1] = BR[b2];
GR[r1].nat = 0;

} else { // to_form
tmp_tag = IP + sign_ext((timm9 << 4), 13);
if (GR[r2].nat)

register_nat_consumption_fault(0);
BR[b1] = GR[r2];
branch_predict(mwh, ih, return_form, GR[r2], tmp_tag);

}
}

Interruptions: Illegal Operation fault Register NaT Consumption fault

Table 2-39. Move to BR Whether Hints

mwh Completer Move to BR Whether Hint

none Ignore all hints

sptk Static Taken

dptk Dynamic

Volume 3: Instruction Reference 3:175

mov cr

mov — Move Control Register
Format: (qp) mov r1 = cr3 from_form M33

(qp) mov cr3 = r2 to_form M32

Description: The source operand is copied to the destination register.

For the from_form, the control register specified by cr3 is read and the value copied into
GR r1.

For the to_form, GR r2 is read and the value copied into CR cr3.

Control registers can only be accessed at the most privileged level, and when PSR.vm is
0. Reading or writing an interruption control register (CR16-CR27), when the PSR.ic bit
is one, will result in an Illegal Operation fault.

Operation: if (PR[qp]) {
if (is_reserved_reg(CR_TYPE, cr3)

|| to_form && is_read_only_reg(CR_TYPE, cr3)
|| PSR.ic && is_interruption_cr(cr3))

{
illegal_operation_fault();

}

if (from_form)
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (from_form) {
if (PSR.vm == 1)

virtualization_fault();
if (cr3 == IVR)

check_interrupt_request();

if (cr3 == ITIR)
GR[r1] = impl_itir_cwi_mask(CR[ITIR]);

else
GR[r1] = CR[cr3];

GR[r1].nat = 0;
} else { // to_form

if (GR[r2].nat)
register_nat_consumption_fault(0);

if (is_reserved_field(CR_TYPE, cr3, GR[r2]))
reserved_register_field_fault();

if ((cr3 == IFA) && impl_check_mov_ifa() &&
unimplemented_virtual_address(GR[r2], PSR.vm))
unimplemented_data_address_fault(0);

if (PSR.vm == 1)
virtualization_fault();

if (cr3 == EOI)
end_of_interrupt();

tmp_val = ignored_field_mask(CR_TYPE, cr3, GR[r2]);
CR[cr3] = tmp_val;
if (cr3 == IIPA)

3:176 Volume 3: Instruction Reference

mov cr

last_IP = tmp_val;
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Serialization: Reads of control registers reflect the results of all prior instruction groups and
interruptions.

In general, writes to control registers do not immediately affect subsequent
instructions. Software must issue a serialize operation before a dependent instruction
uses a modified resource.

Control register writes are not implicitly synchronized with a corresponding control
register read and requires data serialization.

Volume 3: Instruction Reference 3:177

mov fr

mov — Move Floating-point Register
Format: (qp) mov f1 = f3 pseudo-op of: (qp) fmerge.s f1 = f3, f3

Description: The value of FR f3 is copied to FR f1.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

3:178 Volume 3: Instruction Reference

mov gr

mov — Move General Register
Format: (qp) mov r1 = r3 pseudo-op of: (qp) adds r1 = 0, r3

Description: The value of GR r3 is copied to GR r1.

Operation: See “add — Add” on page 3:14.

Volume 3: Instruction Reference 3:179

mov imm

mov — Move Immediate
Format: (qp) mov r1 = imm22 pseudo-op of: (qp) addl r1 = imm22, r0

Description: The immediate value, imm22, is sign extended to 64 bits and placed in GR r1.

Operation: See “add — Add” on page 3:14.

3:180 Volume 3: Instruction Reference

mov indirect

mov — Move Indirect Register
Format: (qp) mov r1 = ireg[r3] from_form M43

(qp) mov ireg[r3] = r2 to_form M42

Description: The source operand is copied to the destination register.

For move from indirect register, GR r3 is read and the value used as an index into the
register file specified by ireg (see Table 2-40 below). The indexed register is read and its
value is copied into GR r1.

For move to indirect register, GR r3 is read and the value used as an index into the
register file specified by ireg. GR r2 is read and its value copied into the indexed register.

For all register files other than the region registers, bits {7:0} of GR r3 are used as the
index. For region registers, bits {63:61} are used. The remainder of the bits are
ignored.

Instruction and data breakpoint, performance monitor configuration, protection key,
and region registers can only be accessed at the most privileged level. Performance
monitor data registers can only be written at the most privileged level.

The CPU identification registers can only be read. There is no to_form of this
instruction.

For move to protection key register, the processor ensures uniqueness of protection
keys by checking new valid protection keys against all protection key registers. If any
matching keys are found, duplicate protection keys are invalidated.

Apart from the PMC and PMD register files, access of a non-existent register results in a
Reserved Register/Field fault. All accesses to the implementation-dependent portion of
PMC and PMD register files result in implementation dependent behavior but do not
fault.

Modifying a region register or a protection key register which is being used to translate:

• the executing instruction stream when PSR.it == 1, or

• the data space for an eager RSE reference when PSR.rt == 1

is an undefined operation.

Operation: if (PR[qp]) {
if (ireg == RR_TYPE)

tmp_index = GR[r3]{63:61};
else // all other register types

tmp_index = GR[r3]{7:0};

Table 2-40. Indirect Register File Mnemonics

ireg Register File

cpuid Processor Identification Register

dbr Data Breakpoint Register

ibr Instruction Breakpoint Register

pkr Protection Key Register

pmc Performance Monitor Configuration Register

pmd Performance Monitor Data Register

rr Region Register

Volume 3: Instruction Reference 3:181

mov indirect

if (from_form) {
check_target_register(r1);

if (PSR.cpl != 0 && !(ireg == PMD_TYPE || ireg == CPUID_TYPE))
privileged_operation_fault(0);

if (GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index))
reserved_register_field_fault();

if (PSR.vm == 1 && ireg != PMD_TYPE)
virtualization_fault();

if (ireg == PMD_TYPE) {
if ((PSR.cpl != 0) && ((PSR.sp == 1) ||

 (tmp_index > 3 &&
 tmp_index <= IMPL_MAXGENERIC_PMCPMD &&
 PMC[tmp_index].pm == 1)))
GR[r1] = 0;

else
GR[r1] = pmd_read(tmp_index);

} else
switch (ireg) {

case CPUID_TYPE: GR[r1] = CPUID[tmp_index]; break;
case DBR_TYPE: GR[r1] = DBR[tmp_index]; break;
case IBR_TYPE: GR[r1] = IBR[tmp_index]; break;
case PKR_TYPE: GR[r1] = PKR[tmp_index]; break;
case PMC_TYPE: GR[r1] = pmc_read(tmp_index); break;
case RR_TYPE: GR[r1] = RR[tmp_index]; break;

}
GR[r1].nat = 0;

} else { // to_form
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (GR[r2].nat || GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index)
|| ireg == CPUID_TYPE
|| is_reserved_field(ireg, tmp_index, GR[r2]))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (ireg == PKR_TYPE && GR[r2]{0} == 1) { // writing valid prot key
if ((tmp_slot = tlb_search_pkr(GR[r2]{31:8})) != NOT_FOUND)

PKR[tmp_slot].v = 0; // clear valid bit of matching key reg
}
tmp_val = ignored_field_mask(ireg, tmp_index, GR[r2]);
switch (ireg) {

case DBR_TYPE: DBR[tmp_index] = tmp_val; break;
case IBR_TYPE: IBR[tmp_index] = tmp_val; break;
case PKR_TYPE: PKR[tmp_index] = tmp_val; break;
case PMC_TYPE: pmc_write(tmp_index, tmp_val); break;

3:182 Volume 3: Instruction Reference

mov indirect

case PMD_TYPE: pmd_write(tmp_index, tmp_val); break;
case RR_TYPE: RR[tmp_index]= tmp_val; break;

}
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For move to data breakpoint registers, software must issue a data serialize operation
before issuing a memory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction
serialize operation before fetching an instruction dependent on the modified register.

For move to protection key, region, performance monitor configuration, and
performance monitor data registers, software must issue an instruction or data serialize
operation to ensure the changes are observed before issuing any dependent
instruction.

To obtain improved accuracy, software can issue an instruction or data serialize
operation before reading the performance monitors.

Volume 3: Instruction Reference 3:183

mov ip

mov — Move Instruction Pointer
Format: (qp) mov r1 = ip I25

Description: The Instruction Pointer (IP) for the bundle containing this instruction is copied into GR
r1.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = IP;
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault

3:184 Volume 3: Instruction Reference

mov pr

mov — Move Predicates
Format: (qp) mov r1 = pr from_form I25

(qp) mov pr = r2, mask17 to_form I23
(qp) mov pr.rot = imm44 to_rotate_form I24

Description: The source operand is copied to the destination register.

For moving the predicates to a GR, PR i is copied to bit position i within GR r1.

For moving to the predicates, the source can either be a general register, or an
immediate value. In the to_form, the source operand is GR r2 and only those predicates
specified by the immediate value mask17 are written. The value mask17 is encoded in the
instruction in an imm16 field such that: imm16 = mask17 >> 1. Predicate register 0 is
always one. The mask17 value is sign extended. The most significant bit of mask17,
therefore, is the mask bit for all of the rotating predicates. If there is a deferred
exception for GR r2 (the NaT bit is 1), a Register NaT Consumption fault is taken.

In the to_rotate_form, only the 48 rotating predicates can be written. The source
operand is taken from the imm44 operand (which is encoded in the instruction in an imm28
field, such that: imm28 = imm44 >> 16). The low 16-bits correspond to the static
predicates. The immediate is sign extended to set the top 21 predicates. Bit position i in
the source operand is copied to PR i.

This instruction operates as if the predicate rotation base in the Current Frame Marker
(CFM.rrb.pr) were zero.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);
GR[r1] = 1; // PR[0] is always 1
for (i = 1; i <= 63; i++) {

GR[r1]{i} = PR[pr_phys_to_virt(i)];
}
GR[r1].nat = 0;

} else if (to_form) {
if (GR[r2].nat)

register_nat_consumption_fault(0);
tmp_src = sign_ext(mask17, 17);
for (i = 1; i <= 63; i++) {

if (tmp_src{i})
PR[pr_phys_to_virt(i)] = GR[r2]{i};

}
} else { // to_rotate_form

tmp_src = sign_ext(imm44, 44);
for (i = 16; i <= 63; i++) {

PR[pr_phys_to_virt(i)] = tmp_src{i};
}

}
}

Interruptions: Illegal Operation fault Register NaT Consumption fault

Volume 3: Instruction Reference 3:185

mov psr

mov — Move Processor Status Register
Format: (qp) mov r1 = psr from_form M36

(qp) mov psr.l = r2 to_form M35

Description: The source operand is copied to the destination register. See Section 3.3.2, “Processor
Status Register (PSR)” on page 2:23.

For move from processor status register, PSR bits {36:35} and {31:0} are read, and
copied into GR r1. All other bits of the PSR read as zero.

For move to processor status register, GR r2 is read, bits {31:0} copied into PSR{31:0}
and bits {63:32} are ignored. Bits {31:0} of GR r2 corresponding to reserved fields of
the PSR must be 0 or a Reserved Register/Field fault will result. An implementation may
also raise Reserved Register/Field fault if bits {63:32} in GR r2 corresponding to
reserved fields of the PSR are non-zero.

Moves to and from the PSR can only be performed at the most privileged level, and
when PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is
1) are undefined if an interruption occurs between the enabling of the PSR.ic bit and a
subsequent instruction serialize operation.

Operation: if (PR[qp]) {
if (from_form)

check_target_register(r1);
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (from_form) {
if (PSR.vm == 1)

virtualization_fault();
tmp_val = zero_ext(PSR{31:0}, 32); // read lower 32 bits
tmp_val |= PSR{36:35} << 35; // read mc and it bits
GR[r1] = tmp_val; // other bits read as zero
GR[r1].nat = 0;

} else { // to_form
if (GR[r2].nat)

register_nat_consumption_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_MOVPART, GR[r2]))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

PSR{31:0} = GR[r2]{31:0};
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue an instruction or data serialize operation before issuing
instructions dependent upon the altered PSR bits. Unlike with the rsm instruction, the
PSR.i bit is not treated specially when cleared.

3:186 Volume 3: Instruction Reference

mov um

mov — Move User Mask
Format: (qp) mov r1 = psr.um from_form M36

(qp) mov psr.um = r2 to_form M35

Description: The source operand is copied to the destination register.

For move from user mask, PSR{5:0} is read, zero-extend, and copied into GR r1.

For move to user mask, PSR{5:0} is written by bits {5:0} of GR r2. PSR.up can only be
modified if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is
not modified.

Writing a non-zero value into any other parts of the PSR results in a Reserved
Register/Field fault.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);

GR[r1] = zero_ext(PSR{5:0}, 6);
GR[r1].nat = 0;

} else { // to_form
if (GR[r2].nat)

register_nat_consumption_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_UM, GR[r2]))
reserved_register_field_fault();

PSR{1:0} = GR[r2]{1:0};

if (PSR.sp == 0) // unsecured perf monitor
PSR{2} = GR[r2]{2};

PSR{5:3} = GR[r2]{5:3};
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Register NaT Consumption fault

Serialization: All user mask modifications are observed by the next instruction group.

Volume 3: Instruction Reference 3:187

movl

movl — Move Long Immediate
Format: (qp) movl r1 = imm64 X2

Description: The immediate value imm64 is copied to GR r1. The L slot of the bundle contains 41 bits of
imm64.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = imm64;
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault

3:188 Volume 3: Instruction Reference

mpy4

mpy4 — Unsigned Integer Multiply
Format: (qp) mpy4 r1 = r2, r3 I2

Description: The lower 32 bits of each of the two source operands are treated as unsigned values
and are multiplied, and the result is placed in GR r1. The upper 32 bits of each of the
source operands are ignored.

Operation: if (PR[qp]) {
if (!instruction_implemented(mpy4))

illegal_operation_fault();
check_target_register(r1);

GR[r1] = zero_ext(GR[r2], 32) * zero_ext(GR[r3], 32);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:189

mpyshl4

mpyshl4 — Unsigned Integer Shift Left and Multiply
Format: (qp) mpyshl4 r1 = r2, r3 I2

Description: The upper 32 bits of GR r2 and the lower 32 bits of GR r3 are treated as unsigned values
and are multiplied. The result of the multiplication is shifted left 32 bits, with the
vacated bit positions filled with zeroes, and the result is placed in GR r1. The lower 32
bits of GR r2 and the upper 32 bits of GR r3 are ignored.

This instruction can be used to perform a 64-bit integer multiply operation producing a
64-bit result (rc = ra * rb):

mpy4 r1 = ra, rb;; //partial product low 32 bits * low 32 bits
mpyshl4 r2 = ra, rb;; //partial product high 32 bits * low 32 bits
mpyshl4 r3 = rb, ra //partial product low 32 bits * high 32 bits
add r1 = r1, r2;; //partial sum
add rc = r1, r3 //final sum

Operation: if (PR[qp]) {
if (!instruction_implemented(MPYSHL4))

illegal_operation_fault();
check_target_register(r1);

GR[r1] = (zero_ext((GR[r2] >> 32), 32) * zero_ext(GR[r3], 32)) << 32;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:190 Volume 3: Instruction Reference

mux

mux — Mux
Format: (qp) mux1 r1 = r2, mbtype4 one_byte_form I3

(qp) mux2 r1 = r2, mhtype8 two_byte_form I4

Description: A permutation is performed on the packed elements in a single source register, GR r2,
and the result is placed in GR r1. For 8-bit elements, only some of all possible
permutations can be specified. The five possible permutations are given in Table 2-41
and shown in Figure 2-26.

Table 2-41. Mux Permutations for 8-bit Elements

mbtype4 Function

@rev Reverse the order of the bytes

@mix Perform a Mix operation on the two halves of GR r2
@shuf Perform a Shuffle operation on the two halves of GR r2
@alt Perform an Alternate operation on the two halves of GR r2
@brcst Perform a Broadcast operation on the least significand byte of GR r2

Figure 2-26. Mux1 Operation (8-bit elements)

GR r1:

GR r2:

mux1 r1 = r2, @rev

GR r1:

GR r2:

mux1 r1 = r2, @mix

GR r1:

GR r2:

mux1 r1 = r2, @shuf

GR r1:

GR r2:

mux1 r1 = r2, @alt

GR r1:

GR r2:

mux1 r1 = r2, @brcst

Volume 3: Instruction Reference 3:191

mux

For 16-bit elements, all possible permutations, with and without repetitions can be
specified. They are expressed with an 8-bit mhtype8 field, which encodes the indices of
the four 16-bit data elements. The indexed 16-bit elements of GR r2 are copied to
corresponding 16-bit positions in the target register GR r1. The indices are encoded in
little-endian order. (The 8 bits of mhtype8[7:0] are grouped in pairs of bits and named
mhtype8[3], mhtype8[2], mhtype8[1], mhtype8[0] in the Operation section).

Figure 2-27. Mux2 Examples (16-bit elements)

GR r1:

GR r2:

mux2 r1 = r2, 0x8d (shuffle 10 00 11 01)

GR r1:

GR r2:

mux2 r1 = r2, 0x1b (reverse 00 01 10 11)

GR r1:

GR r2:

mux2 r1 = r2, 0xaa (broadcast 10 10 10 10)

GR r1:

GR r2:

mux2 r1 = r2, 0xd8 (alternate 11 01 10 00)

3:192 Volume 3: Instruction Reference

mux

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
x[0] = GR[r2]{7:0};
x[1] = GR[r2]{15:8};
x[2] = GR[r2]{23:16};
x[3] = GR[r2]{31:24};
x[4] = GR[r2]{39:32};
x[5] = GR[r2]{47:40};
x[6] = GR[r2]{55:48};
x[7] = GR[r2]{63:56};

switch (mbtype) {
case ‘@rev’:

GR[r1] = concatenate8(x[0], x[1], x[2], x[3],
x[4], x[5], x[6], x[7]);

break;

case ‘@mix’:
 GR[r1] = concatenate8(x[7], x[3], x[5], x[1],

x[6], x[2], x[4], x[0]);
break;

case ‘@shuf’:
GR[r1] = concatenate8(x[7], x[3], x[6], x[2],

x[5], x[1], x[4], x[0]);
break;

case ‘@alt’:
GR[r1] = concatenate8(x[7], x[5], x[3], x[1],

x[6], x[4], x[2], x[0]);
break;

case ‘@brcst’:
GR[r1] = concatenate8(x[0], x[0], x[0], x[0],

x[0], x[0], x[0], x[0]);
break;

}
} else { // two_byte_form

x[0] = GR[r2]{15:0};
x[1] = GR[r2]{31:16};
x[2] = GR[r2]{47:32};
x[3] = GR[r2]{63:48};

res[0] = x[mhtype8{1:0}];
res[1] = x[mhtype8{3:2}];
res[2] = x[mhtype8{5:4}];
res[3] = x[mhtype8{7:6}];

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
}
GR[r1].nat = GR[r2].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:193

nop

nop — No Operation
Format: (qp) nop imm21 pseudo-op

(qp) nop.i imm21 i_unit_form I18
(qp) nop.b imm21 b_unit_form B9
(qp) nop.m imm21 m_unit_form M48
(qp) nop.f imm21 f_unit_form F16
(qp) nop.x imm62 x_unit_form X5

Description: No operation is done.

The immediate, imm21 or imm62, can be used by software as a marker in program code. It
is ignored by hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of imm62.

A nop.i instruction may be encoded in an MLI-template bundle, in which case the L slot
of the bundle is ignored.

This instruction has five forms, each of which can be executed only on a particular
execution unit type. The pseudo-op can be used if the unit type to execute on is
unimportant.

Operation: if (PR[qp]) {
; // no operation

}

Interruptions: None

3:194 Volume 3: Instruction Reference

or

or — Logical Or
Format: (qp) or r1 = r2, r3 register_form A1

(qp) or r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically ORed and the result placed in GR r1. In the
register form the first operand is GR r2; in the immediate form the first operand is taken
from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src | GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:195

pack

pack — Pack
Format: (qp) pack2.sss r1 = r2, r3 two_byte_form, signed_saturation_form I2

(qp) pack2.uss r1 = r2, r3 two_byte_form, unsigned_saturation_form I2
(qp) pack4.sss r1 = r2, r3 four_byte_form, signed_saturation_form I2

Description: 32-bit or 16-bit elements from GR r2 and GR r3 are converted into 16-bit or 8-bit
elements respectively, and the results are placed GR r1. The source elements are
treated as signed values. If a source element cannot be represented in the result
element, then saturation clipping is performed. The saturation can either be signed or
unsigned. If an element is larger than the upper limit value, the result is the upper limit
value. If it is smaller than the lower limit value, the result is the lower limit value. The
saturation limits are given in Table 2-42.

Table 2-42. Pack Saturation Limits

Size
Source Element

Width
Result Element

Width
Saturation

Upper
Limit

Lower Limit

2 16 bit 8 bit signed 0x7f 0x80

2 16 bit 8 bit unsigned 0xff 0x00

4 32 bit 16 bit signed 0x7fff 0x8000

Figure 2-28. Pack Operation

GR r3:

GR r1:

GR r2:

pack4

GR r3:

GR r1:

GR r2:

pack2

3:196 Volume 3: Instruction Reference

pack

Operation: if (PR[qp]) {
check_target_register(r1);

if (two_byte_form) {
if (signed_saturation_form) {

max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);

} else { // unsigned_saturation_form
max = 0xff;
min = 0x00;

}
temp[0] = sign_ext(GR[r2]{15:0}, 16);
temp[1] = sign_ext(GR[r2]{31:16}, 16);
temp[2] = sign_ext(GR[r2]{47:32}, 16);
temp[3] = sign_ext(GR[r2]{63:48}, 16);
temp[4] = sign_ext(GR[r3]{15:0}, 16);
temp[5] = sign_ext(GR[r3]{31:16}, 16);
temp[6] = sign_ext(GR[r3]{47:32}, 16);
temp[7] = sign_ext(GR[r3]{63:48}, 16);

for (i = 0; i < 8; i++) {
if (temp[i] > max)

temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}

GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],
 temp[3], temp[2], temp[1], temp[0]);

} else { // four_byte_form
max = sign_ext(0x7fff, 16); // signed_saturation_form
min = sign_ext(0x8000, 16);
temp[0] = sign_ext(GR[r2]{31:0}, 32);
temp[1] = sign_ext(GR[r2]{63:32}, 32);
temp[2] = sign_ext(GR[r3]{31:0}, 32);
temp[3] = sign_ext(GR[r3]{63:32}, 32);

for (i = 0; i < 4; i++) {
if (temp[i] > max)

temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}

GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);
}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:197

padd

padd — Parallel Add
Format: (qp) padd1 r1 = r2, r3 one_byte_form, modulo_form A9

(qp) padd1.sss r1 = r2, r3 one_byte_form, sss_saturation_form A9
(qp) padd1.uus r1 = r2, r3 one_byte_form, uus_saturation_form A9
(qp) padd1.uuu r1 = r2, r3 one_byte_form, uuu_saturation_form A9
(qp) padd2 r1 = r2, r3 two_byte_form, modulo_form A9
(qp) padd2.sss r1 = r2, r3 two_byte_form, sss_saturation_form A9
(qp) padd2.uus r1 = r2, r3 two_byte_form, uus_saturation_form A9
(qp) padd2.uuu r1 = r2, r3 two_byte_form, uuu_saturation_form A9
(qp) padd4 r1 = r2, r3 four_byte_form, modulo_form A9

Description: The sets of elements from the two source operands are added, and the results placed in
GR r1.

If a sum of two elements cannot be represented in the result element and a saturation
completer is specified, then saturation clipping is performed. The saturation can either
be signed or unsigned, as given in Table 2-43. If the sum of two elements is larger than
the upper limit value, the result is the upper limit value. If it is smaller than the lower
limit value, the result is the lower limit value. The saturation limits are given in
Table 2-44.

Table 2-43. Parallel Add Saturation Completers

Completer Result r1 treated as Source r2 treated as Source r3 treated as

sss signed signed signed

uus unsigned unsigned signed

uuu unsigned unsigned unsigned

Table 2-44. Parallel Add Saturation Limits

Size Element Width
Result r1 Signed Result r1 Unsigned

Upper Limit Lower Limit Upper Limit Lower Limit

1 8 bit 0x7f 0x80 0xff 0x00

2 16 bit 0x7fff 0x8000 0xffff 0x0000

Figure 2-29. Parallel Add Examples

GR r2:

GR r1:

GR r3:

++++

padd1 padd2

GR r2:

GR r1:

GR r3:

++++ ++++

3:198 Volume 3: Instruction Reference

padd

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (sss_saturation_form) {
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);

for (i = 0; i < 8; i++) {
temp[i] = sign_ext(x[i], 8) + sign_ext(y[i], 8);

}
} else if (uus_saturation_form) {

max = 0xff;
min = 0x00;

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + sign_ext(y[i], 8);

}
} else if (uuu_saturation_form) {

max = 0xff;
min = 0x00;

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

}
} else { // modulo_form

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

}
}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 8; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}
GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],

temp[3], temp[2], temp[1], temp[0]);

} else if (two_byte_form) { // 2-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};

Volume 3: Instruction Reference 3:199

padd

x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (sss_saturation_form) {
max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = sign_ext(x[i], 16) + sign_ext(y[i], 16);

}
} else if (uus_saturation_form) {

max = 0xffff;
min = 0x0000;

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + sign_ext(y[i], 16);

}
} else if (uuu_saturation_form) {

max = 0xffff;
min = 0x0000;

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}
} else { // modulo_form

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}
}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 4; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}
GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

for (i = 0; i < 2; i++) { // modulo_form
temp[i] = zero_ext(x[i], 32) + zero_ext(y[i], 32);

}

GR[r1] = concatenate2(temp[1], temp[0]);
}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

3:200 Volume 3: Instruction Reference

padd

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:201

pavg

pavg — Parallel Average
Format: (qp) pavg1 r1 = r2, r3 normal_form, one_byte_form A9

(qp) pavg1.raz r1 = r2, r3 raz_form, one_byte_form A9
(qp) pavg2 r1 = r2, r3 normal_form, two_byte_form A9
(qp) pavg2.raz r1 = r2, r3 raz_form, two_byte_form A9

Description: The unsigned data elements of GR r2 are added to the unsigned data elements of GR r3.
The results of the add are then each independently shifted to the right by one bit
position. The high-order bits of each element are filled with the carry bits of the sums.
To prevent cumulative round-off errors, an averaging is performed. The unsigned
results are placed in GR r1.

The averaging operation works as follows. In the normal_form, the low-order bit of
each result is set to 1 if at least one of the two least significant bits of the
corresponding sum is 1. In the raz_form, the average rounds away from zero by adding
1 to each of the sums.

Figure 2-30. Parallel Average Example

GR r2:

GR r1:

GR r3:

++++

pavg2

or

Sum Bits
Carry
Bit

16-bit Sum
Plus
Carry

Shift Right
1 Bit

Shift Right 1 Bit
with Average in
Low-order Bit

3:202 Volume 3: Instruction Reference

pavg

Figure 2-31. Parallel Average with Round Away from Zero Example

GR r2:

GR r1:

GR r3:

++++

pavg2.raz

Sum Bits
Carry
Bit

1 1 1 1

16-bit Sum
Plus
Carry

Shift Right
1 Bit

Shift Right 1 Bit

Volume 3: Instruction Reference 3:203

pavg

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (raz_form) {
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8) + 1;
res[i] = shift_right_unsigned(temp[i], 1);

}
} else { // normal form

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
res[i] = shift_right_unsigned(temp[i], 1) | (temp[i]{0});

}
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);

} else { // two_byte_form
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (raz_form) {
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16) + 1;
res[i] = shift_right_unsigned(temp[i], 1);

}
} else { // normal form

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
res[i] = shift_right_unsigned(temp[i], 1) | (temp[i]{0});

}
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:204 Volume 3: Instruction Reference

pavgsub

pavgsub — Parallel Average Subtract
Format: (qp) pavgsub1 r1 = r2, r3 one_byte_form A9

(qp) pavgsub2 r1 = r2, r3 two_byte_form A9

Description: The unsigned data elements of GR r3 are subtracted from the unsigned data elements of
GR r2. The results of the subtraction are then each independently shifted to the right by
one bit position. The high-order bits of each element are filled with the borrow bits of
the subtraction (the complements of the ALU carries). To prevent cumulative round-off
errors, an averaging is performed. The low-order bit of each result is set to 1 if at least
one of the two least significant bits of the corresponding difference is 1. The signed
results are placed in GR r1.

Figure 2-32. Parallel Average Subtract Example

GR r2:

GR r1:

GR r3:

pavgsub2

or

Sum Bits
Borrow
Bit

16-bit Difference
Plus
Carry

Shift Right
1 Bit

Shift Right 1 Bit
with Average in
Low-order Bit

Volume 3: Instruction Reference 3:205

pavgsub

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
res[i] = (temp[i]{8:0} u>> 1) | (temp[i]{0});

}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);

} else { // two_byte_form
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
res[i] = (temp[i]{16:0} u>> 1) | (temp[i]{0});

}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:206 Volume 3: Instruction Reference

pcmp

pcmp — Parallel Compare
Format: (qp) pcmp1.prel r1 = r2, r3 one_byte_form A9

(qp) pcmp2.prel r1 = r2, r3 two_byte_form A9
(qp) pcmp4.prel r1 = r2, r3 four_byte_form A9

Description: The two source operands are compared for one of the two relations shown in
Table 2-45. If the comparison condition is true for corresponding data elements of GR r2
and GR r3, then the corresponding data element in GR r1 is set to all ones. If the
comparison condition is false, then the corresponding data element in GR r1 is set to all
zeros. For the ‘>’ relation, both operands are interpreted as signed.

Table 2-45. Pcmp Relations

prel Compare Relation (r2 prel r3)

eq r2 == r3
gt r2 > r3 (signed)

Figure 2-33. Parallel Compare Examples

GR r2:

GR r1:

GR r3:

====

pcmp2.eq

True False True True

0xffff 0x0000 0xffff 0xffff

GR r2:

GR r1:

GR r3:

>

pcmp1.gt

T

ff 00

GR r2:

GR r1:

GR r3:

=

pcmp4.eq

True

0xffffffff 0x00000000

>

F

>

T

>

T

>

F

>

F

>

F

>

T

ff ff 00 00 00 ff

=

False

Volume 3: Instruction Reference 3:207

pcmp

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

if (prel == ‘eq’)
tmp_rel = x[i] == y[i];

else // ‘gt’
tmp_rel = greater_signed(sign_ext(x[i], 8),

 sign_ext(y[i], 8));

if (tmp_rel)
res[i] = 0xff;

else
res[i] = 0x00;

}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else if (two_byte_form) { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

if (prel == ‘eq’)
tmp_rel = x[i] == y[i];

else // ‘gt’
tmp_rel = greater_signed(sign_ext(x[i], 16),

 sign_ext(y[i], 16));

if (tmp_rel)
res[i] = 0xffff;

else
res[i] = 0x0000;

}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};
for (i = 0; i < 2; i++) {

if (prel == ‘eq’)
tmp_rel = x[i] == y[i];

else // ‘gt’
tmp_rel = greater_signed(sign_ext(x[i], 32),

 sign_ext(y[i], 32));

if (tmp_rel)
res[i] = 0xffffffff;

3:208 Volume 3: Instruction Reference

pcmp

else
res[i] = 0x00000000;

}
GR[r1] = concatenate2(res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:209

pmax

pmax — Parallel Maximum
Format: (qp) pmax1.u r1 = r2, r3 one_byte_form I2

(qp) pmax2 r1 = r2, r3 two_byte_form I2

Description: The maximum of the two source operands is placed in the result register. In the
one_byte_form, each unsigned 8-bit element of GR r2 is compared with the
corresponding unsigned 8-bit element of GR r3 and the greater of the two is placed in
the corresponding 8-bit element of GR r1. In the two_byte_form, each signed 16-bit
element of GR r2 is compared with the corresponding signed 16-bit element of GR r3 and
the greater of the two is placed in the corresponding 16-bit element of GR r1.

Figure 2-34. Parallel Maximum Examples

GR r2:

GR r1:

GR r3:

<<<<

pmax2

True False True True

GR r2:

GR r1:

GR r3:

<

pmax1.u

T

<

F

<

T

<

T

<

F

<

F

<

F

<

T

3:210 Volume 3: Instruction Reference

pmax

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? y[i] : x[i];
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? y[i] : x[i];
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:211

pmin

pmin — Parallel Minimum
Format: (qp) pmin1.u r1 = r2, r3 one_byte_form I2

(qp) pmin2 r1 = r2, r3 two_byte_form I2

Description: The minimum of the two source operands is placed in the result register. In the
one_byte_form, each unsigned 8-bit element of GR r2 is compared with the
corresponding unsigned 8-bit element of GR r3 and the smaller of the two is placed in
the corresponding 8-bit element of GR r1. In the two_byte_form, each signed 16-bit
element of GR r2 is compared with the corresponding signed 16-bit element of GR r3 and
the smaller of the two is placed in the corresponding 16-bit element of GR r1.

Figure 2-35. Parallel Minimum Examples

GR r2:

GR r1:

GR r3:

<<<<

pmin2

True False True True

GR r2:

GR r1:

GR r3:

<

pmin1.u

T

<

F

<

T

<

T

<

F

<

F

<

F

<

T

3:212 Volume 3: Instruction Reference

pmin

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? x[i] : y[i];
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? x[i] : y[i];
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:213

pmpy

pmpy — Parallel Multiply
Format: (qp) pmpy2.r r1 = r2, r3 right_form I2

(qp) pmpy2.l r1 = r2, r3 left_form I2

Description: Two signed 16-bit data elements of GR r2 are multiplied by the corresponding two
signed 16-bit data elements of GR r3 as shown in Figure 2-36. The two 32-bit results
are placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

if (right_form) {
GR[r1]{31:0} = sign_ext(GR[r2]{15:0}, 16) *

sign_ext(GR[r3]{15:0}, 16);
GR[r1]{63:32} = sign_ext(GR[r2]{47:32}, 16) *

sign_ext(GR[r3]{47:32}, 16);
} else { // left_form

GR[r1]{31:0} = sign_ext(GR[r2]{31:16}, 16) *
sign_ext(GR[r3]{31:16}, 16);

GR[r1]{63:32} = sign_ext(GR[r2]{63:48}, 16) *
sign_ext(GR[r3]{63:48}, 16);

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

Figure 2-36. Parallel Multiply Operation

GR r2:

GR r1:

GR r3:

**

pmpy2.r

GR r2:

GR r1:

GR r3:

**

pmpy2.l

3:214 Volume 3: Instruction Reference

pmpyshr

pmpyshr — Parallel Multiply and Shift Right
Format: (qp) pmpyshr2 r1 = r2, r3, count2 signed_form I1

(qp) pmpyshr2.u r1 = r2, r3, count2 unsigned_form I1

Description: The four 16-bit data elements of GR r2 are multiplied by the corresponding four 16-bit
data elements of GR r3 as shown in Figure 2-37. This multiplication can either be signed
(pmpyshr2), or unsigned (pmpyshr2.u). Each product is then shifted to the right count2
bits, and the least-significant 16-bits of each shifted product form 4 16-bit results,
which are placed in GR r1. A count2 of 0 gives the 16 low bits of the results, a count2 of 16
gives the 16 high bits of the results. The allowed values for count2 are given in
Table 2-46.

Table 2-46. Parallel Multiply and Shift Right Shift Options

count2 Selected Bit Field from Each 32-bit Product

0 15:0

7 22:7

15 30:15

16 31:16

Figure 2-37. Parallel Multiply and Shift Right Operation

GR r2:

GR r1:

GR r3:

pmpyshr2

32-bit

Shift Right
count2 Bits

Products

16-bit
Source

Elements

16-bit
Result

Elements

Volume 3: Instruction Reference 3:215

pmpyshr

Operation: if (PR[qp]) {
check_target_register(r1);
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

if (unsigned_form) // unsigned multiplication
temp[i] = zero_ext(x[i], 16) * zero_ext(y[i], 16);

else // signed multiplication
temp[i] = sign_ext(x[i], 16) * sign_ext(y[i], 16);

res[i] = temp[i]{(count2 + 15):count2};
}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:216 Volume 3: Instruction Reference

popcnt

popcnt — Population Count
Format: (qp) popcnt r1 = r3 I9

Description: The number of bits in GR r3 having the value 1 is counted, and the resulting sum is
placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

res = 0;
// Count up all the one bits
for (i = 0; i < 64; i++) {

res += GR[r3]{i};
}

GR[r1] = res;
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:217

probe

probe — Probe Access
Format: (qp) probe.r r1 = r3, r2 regular_form, read_form, register_form M38

(qp) probe.w r1 = r3, r2 regular_form, write_form, register_form M38
(qp) probe.r r1 = r3, imm2 regular_form, read_form, immediate_form M39
(qp) probe.w r1 = r3, imm2 regular_form, write_form, immediate_form M39
(qp) probe.r.fault r3, imm2 fault_form, read_form, immediate_form M40
(qp) probe.w.fault r3, imm2 fault_form, write_form, immediate_form M40
(qp) probe.rw.fault r3, imm2 fault_form, read_write_form, immediate_form M40

Description: This instruction determines whether read or write access, with a specified privilege
level, to a given virtual address is permitted. In the regular_form, GR r1 is set to 1 if the
specified access is allowed and to 0 otherwise. In the fault_form, if the specified access
is allowed this instruction does nothing; if the specified access is not allowed, a fault is
taken.

When PSR.dt is 1, the DTLB and the VHPT are queried for present translations to
determine if access to the virtual address specified by GR r3 bits {60:0} and the region
register indexed by GR r3 bits {63:61}, is permitted at the privilege level given by
either GR r2 bits{1:0} or imm2. If PSR.pk is 1, protection key checks are also performed.
The read or write form specifies whether the instruction checks for read or write access,
or both.

When PSR.dt is 0, a regular_form probe uses its address operand as a virtual address
to query the DTLB only, because the VHPT walker is disabled. If the probed address is
found in the DTLB, the regular_form probe returns the appropriate value, if not an
Alternate Data TLB fault is raised if psr.ic is 1 or a Data Nested TLB fault is raised if
psr.ic is 0 or in-flight.

When PSR.dt is 0, a fault_form probe treats its address operand as a physical address,
and takes no TLB related faults.

A regular_form probe to an unimplemented virtual address returns 0. A fault_form
probe to an unimplemented virtual address (when PSR.dt is 1) or unimplemented
physical address (when PSR.dt is 0) takes an Unimplemented Data Address fault.

If this instruction faults, then it will set the non-access bit in the ISR and set the ISR
read or write bits depending on the completer. The faults generated by the different
forms of the probe instruction are shown in Table 2-47 below:

3:218 Volume 3: Instruction Reference

probe

This instruction can only probe with equal or lower privilege levels. If the specified
privilege level is higher (lower number), then the probe is performed with the current
privilege level.

When PSR.vm is 1, this instruction may optionally raise Virtualization faults, see
Section 11.7.4.2.8, “Probe Instruction Virtualization” on page 2:344 for details.

Please refer to the Intel® Itanium® Software Conventions and Runtime
Architecture Guide for usage information of the probe instruction.

Table 2-47. Faults for regular_form and fault_form Probe Instructions

Probe Form Type Faults

regular_form Register NaT Consumption fault
Virtualization faulta

Data Nested TLB fault
Alternate Data TLB fault
VHPT Data fault
Data TLB fault
Data Page Not Present fault
Data NaT Page Consumption fault
Data Key Miss fault

a. This instruction may optionally raise Virtualization faults, see Section 11.7.4.2.8, “Probe Instruction
Virtualization” on page 2:344 for details.

fault_form Register NaT Consumption fault
Unimplemented Data Address fault
Virtualization faulta

Data Nested TLB fault
Alternate Data TLB fault
VHPT Data fault
Data TLB fault
Data Page Not Present fault
Data NaT Page Consumption fault
Data Key Miss fault
Data Key Permission fault
Data Access Rights fault
Data Dirty Bit fault
Data Access Bit fault
Data Debug fault

Volume 3: Instruction Reference 3:219

probe

Operation: if (PR[qp]) {
itype = NON_ACCESS;
itype |= (read_write_form) ? READ|WRITE : ((write_form) ? WRITE : READ);
itype |= (fault_form) ? PROBE_FAULT : PROBE;
itype |= (register_form) ? REGISTER_FORM : IMM_FORM;

if (!fault_form)
check_target_register(r1);

if (GR[r3].nat || (register_form ? GR[r2].nat : 0))
register_nat_consumption_fault(itype);

tmp_pl = (register_form) ? GR[r2]{1:0} : imm2;
if (tmp_pl < PSR.cpl)

tmp_pl = PSR.cpl;

if (fault_form) {
tlb_translate(GR[r3], 1, itype, tmp_pl, &mattr, &defer);

} else { // regular_form
if (impl_probe_intercept())

check_probe_virtualization_fault(itype, tmp_pl);
GR[r1] = tlb_grant_permission(GR[r3], itype, tmp_pl);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Virtualization fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Dirty Bit fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault

3:220 Volume 3: Instruction Reference

psad

psad — Parallel Sum of Absolute Difference
Format: (qp) psad1 r1 = r2, r3 I2

Description: The unsigned 8-bit elements of GR r2 are subtracted from the unsigned 8-bit elements
of GR r3. The absolute value of each difference is accumulated across the elements and
placed in GR r1.

Figure 2-38. Parallel Sum of Absolute Difference Example

psad1

GR r2:

GR r1:

GR r3:

---- ----

abs

+ + + +

+

+

+

abs abs abs abs abs abs abs

Volume 3: Instruction Reference 3:221

psad

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

GR[r1] = 0;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
if (temp[i] < 0)

temp[i] = -temp[i];
GR[r1] += temp[i];

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:222 Volume 3: Instruction Reference

pshl

pshl — Parallel Shift Left
Format: (qp) pshl2 r1 = r2, r3 two_byte_form, variable_form I7

(qp) pshl2 r1 = r2, count5 two_byte_form, fixed_form I8
(qp) pshl4 r1 = r2, r3 four_byte_form, variable_form I7
(qp) pshl4 r1 = r2, count5 four_byte_form, fixed_form I8

Description: The data elements of GR r2 are each independently shifted to the left by the scalar shift
count in GR r3, or in the immediate field count5. The low-order bits of each element are
filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 15
(for 16-bit quantities) or 31 (for 32-bit quantities) yield all zero results. The results are
placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

shift_count = (variable_form ? GR[r3] : count5);
tmp_nat = (variable_form ? GR[r3].nat : 0);

if (two_byte_form) { // two_byte_form
if (shift_count u> 16)

shift_count = 16;
GR[r1]{15:0} = GR[r2]{15:0} << shift_count;
GR[r1]{31:16} = GR[r2]{31:16} << shift_count;
GR[r1]{47:32} = GR[r2]{47:32} << shift_count;
GR[r1]{63:48} = GR[r2]{63:48} << shift_count;

} else { // four_byte_form
if (shift_count u> 32)

shift_count = 32;
GR[r1]{31:0} = GR[r2]{31:0} << shift_count;
GR[r1]{63:32} = GR[r2]{63:32} << shift_count;

}

GR[r1].nat = GR[r2].nat || tmp_nat;
}

Interruptions: Illegal Operation fault

Figure 2-39. Parallel Shift Left Examples

GR r2:

GR r1:

Shift Left

pshl2

0

0

0

0

0 0 0 0

GR r2:

GR r1:

pshl4

0

0

0 0

Volume 3: Instruction Reference 3:223

pshladd

pshladd — Parallel Shift Left and Add
Format: (qp) pshladd2 r1 = r2, count2, r3 A10

Description: The four signed 16-bit data elements of GR r2 are each independently shifted to the left
by count2 bits (shifting zeros into the low-order bits), and added to the four signed
16-bit data elements of GR r3. Both the left shift and the add operations are saturating:
if the result of either the shift or the add is not representable as a signed 16-bit value,
the final result is saturated. The four signed 16-bit results are placed in GR r1. The first
operand can be shifted by 1, 2 or 3 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = sign_ext(x[i], 16) << count2;

if (temp[i] > max)
res[i] = max;

else if (temp[i] < min)
res[i] = min;

else {
res[i] = temp[i] + sign_ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < min)

res[i] = min;
}

}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:224 Volume 3: Instruction Reference

pshr

pshr — Parallel Shift Right
Format: (qp) pshr2 r1 = r3, r2 signed_form, two_byte_form, variable_form I5

(qp) pshr2 r1 = r3, count5 signed_form, two_byte_form, fixed_form I6
(qp) pshr2.u r1 = r3, r2 unsigned_form, two_byte_form, variable_form I5
(qp) pshr2.u r1 = r3, count5 unsigned_form, two_byte_form, fixed_form I6
(qp) pshr4 r1 = r3, r2 signed_form, four_byte_form, variable_form I5
(qp) pshr4 r1 = r3, count5 signed_form, four_byte_form, fixed_form I6
(qp) pshr4.u r1 = r3, r2 unsigned_form, four_byte_form, variable_form I5
(qp) pshr4.u r1 = r3, count5 unsigned_form, four_byte_form, fixed_form I6

Description: The data elements of GR r3 are each independently shifted to the right by the scalar
shift count in GR r2, or in the immediate field count5. The high-order bits of each
element are filled with either the initial value of the sign bits of the data elements in GR
r3 (arithmetic shift) or zeros (logical shift). The shift count is interpreted as unsigned.
Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities) yield all
zero or all one results depending on the initial values of the sign bits of the data
elements in GR r3 and whether a signed or unsigned shift is done. The results are placed
in GR r1.

Volume 3: Instruction Reference 3:225

pshr

Operation: if (PR[qp]) {
check_target_register(r1);

shift_count = (variable_form ? GR[r2] : count5);
tmp_nat = (variable_form ? GR[r2].nat : 0);

if (two_byte_form) { // two_byte_form
if (shift_count u> 16)

shift_count = 16;
if (unsigned_form) { // unsigned shift

GR[r1]{15:0} = shift_right_unsigned(zero_ext(GR[r3]{15:0}, 16),
shift_count);

GR[r1]{31:16} = shift_right_unsigned(zero_ext(GR[r3]{31:16}, 16),
shift_count);

GR[r1]{47:32} = shift_right_unsigned(zero_ext(GR[r3]{47:32}, 16),
shift_count);

GR[r1]{63:48} = shift_right_unsigned(zero_ext(GR[r3]{63:48}, 16),
shift_count);

} else { // signed shift
GR[r1]{15:0} = shift_right_signed(sign_ext(GR[r3]{15:0}, 16),

shift_count);
GR[r1]{31:16} = shift_right_signed(sign_ext(GR[r3]{31:16}, 16),

shift_count);
GR[r1]{47:32} = shift_right_signed(sign_ext(GR[r3]{47:32}, 16),

shift_count);
GR[r1]{63:48} = shift_right_signed(sign_ext(GR[r3]{63:48}, 16),

shift_count);
}

} else { // four_byte_form
if (shift_count > 32)

shift_count = 32;
if (unsigned_form) { // unsigned shift

GR[r1]{31:0} = shift_right_unsigned(zero_ext(GR[r3]{31:0}, 32),
shift_count);

GR[r1]{63:32} = shift_right_unsigned(zero_ext(GR[r3]{63:32}, 32),
shift_count);

} else { // signed shift
GR[r1]{31:0} = shift_right_signed(sign_ext(GR[r3]{31:0}, 32),

shift_count);
GR[r1]{63:32} = shift_right_signed(sign_ext(GR[r3]{63:32}, 32),

shift_count);
}

}

GR[r1].nat = GR[r3].nat || tmp_nat;
}

Interruptions: Illegal Operation fault

3:226 Volume 3: Instruction Reference

pshradd

pshradd — Parallel Shift Right and Add
Format: (qp) pshradd2 r1 = r2, count2, r3 A10

Description: The four signed 16-bit data elements of GR r2 are each independently shifted to the
right by count2 bits, and added to the four signed 16-bit data elements of GR r3. The
right shift operation fills the high-order bits of each element with the initial value of the
sign bits of the data elements in GR r2. The add operation is performed with signed
saturation. The four signed 16-bit results of the add are placed in GR r1. The first
operand can be shifted by 1, 2 or 3 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = shift_right_signed(sign_ext(x[i], 16), count2);

res[i] = temp[i] + sign_ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < min)

res[i] = min;
}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:227

psub

psub — Parallel Subtract
Format: (qp) psub1 r1 = r2, r3 one_byte_form, modulo_form A9

(qp) psub1.sss r1 = r2, r3 one_byte_form, sss_saturation_form A9
(qp) psub1.uus r1 = r2, r3 one_byte_form, uus_saturation_form A9
(qp) psub1.uuu r1 = r2, r3 one_byte_form, uuu_saturation_form A9
(qp) psub2 r1 = r2, r3 two_byte_form, modulo_form A9
(qp) psub2.sss r1 = r2, r3 two_byte_form, sss_saturation_form A9
(qp) psub2.uus r1 = r2, r3 two_byte_form, uus_saturation_form A9
(qp) psub2.uuu r1 = r2, r3 two_byte_form, uuu_saturation_form A9
(qp) psub4 r1 = r2, r3 four_byte_form, modulo_form A9

Description: The sets of elements from the two source operands are subtracted, and the results
placed in GR r1.

If the difference between two elements cannot be represented in the result element
and a saturation completer is specified, then saturation clipping is performed. The
saturation can either be signed or unsigned, as given in Table 2-48. If the difference of
two elements is larger than the upper limit value, the result is the upper limit value. If
it is smaller than the lower limit value, the result is the lower limit value. The saturation
limits are given in Table 2-49.

Table 2-48. Parallel Subtract Saturation Completers

Completer Result r1 treated as Source r2 treated as Source r3 treated as

sss signed signed signed

uus unsigned unsigned signed

uuu unsigned unsigned unsigned

Table 2-49. Parallel Subtract Saturation Limits

Size Element Width
Result r1 Signed Result r1 Unsigned

Upper Limit Lower Limit Upper Limit Lower Limit

1 8 bit 0x7f 0x80 0xff 0x00

2 16 bit 0x7fff 0x8000 0xffff 0x0000

Figure 2-40. Parallel Subtract Examples

GR r2:

GR r1:

GR r3:

psub1 psub2

GR r2:

GR r1:

GR r3:

---- ----

3:228 Volume 3: Instruction Reference

psub

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (sss_saturation_form) { // sss_saturation_form
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);
for (i = 0; i < 8; i++) {

temp[i] = sign_ext(x[i], 8) - sign_ext(y[i], 8);
}

} else if (uus_saturation_form) { // uus_saturation_form
max = 0xff;
min = 0x00;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - sign_ext(y[i], 8);
}

} else if (uuu_saturation_form) { // uuu_saturation_form
max = 0xff;
min = 0x00;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}

} else { // modulo_form
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}

}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 8; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}

GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],
temp[3], temp[2], temp[1], temp[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (sss_saturation_form) { // sss_saturation_form

Volume 3: Instruction Reference 3:229

psub

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);
for (i = 0; i < 4; i++) {

temp[i] = sign_ext(x[i], 16) - sign_ext(y[i], 16);
}

} else if (uus_saturation_form) { // uus_saturation_form
max = 0xffff;
min = 0x0000;
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - sign_ext(y[i], 16);
}

} else if (uuu_saturation_form) { // uuu_saturation_form
max = 0xffff;
min = 0x0000;
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
}

} else { // modulo_form
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
}

}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for (i = 0; i < 4; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}

GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);
} else { // four-byte elements

x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

for (i = 0; i < 2; i++) { // modulo_form
temp[i] = zero_ext(x[i], 32) - zero_ext(y[i], 32);

}

GR[r1] = concatenate2(temp[1], temp[0]);
}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:230 Volume 3: Instruction Reference

ptc.e

ptc.e — Purge Translation Cache Entry
Format: (qp) ptc.e r3 M47

Description: One or more translation entries are purged from the local processor’s instruction and
data translation cache. Translation Registers and the VHPT are not modified.

The number of translation cache entries purged is implementation specific. Some
implementations may purge all levels of the translation cache hierarchy with one
iteration of PTC.e, while other implementations may require several iterations to flush
all levels, sets and associativities of both instruction and data translation caches. GR r3
specifies an implementation-specific parameter associated with each iteration.

The following loop is defined to flush the entire translation cache for all processor
models. Software can acquire parameters through a processor dependent layer that is
accessed through a procedural interface. The selected region registers must remain
unchanged during the loop.

disable_interrupts();
addr = base;
for (i = 0; i < count1; i++) {

for (j = 0; j < count2; j++) {
ptc.e(addr);
addr += stride2;

}
addr += stride1;

}
enable_interrupts();

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat)

register_nat_consumption_fault(0);
if (PSR.vm == 1)

virtualization_fault();
tlb_purge_translation_cache(GR[r3]);

}

Interruptions: Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue a data serialization operation to ensure the purge is complete
before issuing a data access or non-access reference dependent upon the purge.
Software must issue instruction serialize operation before fetching an instruction
dependent upon the purge.

Volume 3: Instruction Reference 3:231

ptc.g, ptc.ga

ptc.g, ptc.ga — Purge Global Translation Cache
Format: (qp) ptc.g r3, r2 global_form M45

(qp) ptc.ga r3, r2 global_alat_form M45

Description: The instruction and data translation cache for each processor in the local TLB coherence
domain are searched for all entries whose virtual address and page size partially or
completely overlap the specified purge virtual address and purge address range. These
entries are removed.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the
purge as 1<<GR[r2]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57
for details on supported page sizes for TLB purges.

Based on the processor model, the translation cache may be also purged of more
translations than specified by the purge parameters up to and including removal of all
entries within the translation cache.

ptc.g has release semantics and is guaranteed to be made visible after all previous
data memory accesses are made visible. Serialization is still required to observe the
side-effects of a translation being removed. If it is desired that the ptc.g become
visible before any subsequent data memory accesses are made visible, a memory fence
instruction (mf) should be executed immediately following the ptc.g.

ptc.g must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The behavior of the ptc.ga instruction is similar to ptc.g. In addition to the behavior
specified for ptc.g the ptc.ga instruction encodes an extra bit of information in the
broadcast transaction. This information specifies the purge is due to a page remapping
as opposed to a protection change or page tear down. The remote processors within the
coherence domain will then take what ever additional action is necessary to make their
ALAT consistent. Matching entries in the local ALAT are optionally invalidated; software
must perform a local ALAT invalidation via the invala instruction on the processor
issuing the ptc.ga to ensure the local ALAT is coherent.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

Unless specifically supported by the processors and platform, only one global purge
transaction may be issued at a time by all processors, the operation is undefined
otherwise. Software is responsible for enforcing this restriction. Implementations may
optionally support multiple concurrent global purge transactions. The firmware returns
if implementations support this optional behavior. It also returns the maximum number
of simultaneous outstanding purges allowed.

Propagation of ptc.g between multiple local TLB coherence domains is platform
dependent, and must be handled by software. It is expected that the local TLB
coherence domain covers at least the processors on the same local bus.

3:232 Volume 3: Instruction Reference

ptc.g, ptc.ga

Operation: if (PR[qp]) {
if (!followed_by_stop())

undefined_behavior();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

if (global_alat_form) tmp_ptc_type = GLOBAL_ALAT_FORM;
else tmp_ptc_type = GLOBAL_FORM;

tlb_broadcast_purge(tmp_rid, tmp_va, tmp_size, tmp_ptc_type);
}

Interruptions: Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: The broadcast purge TC is not synchronized with the instruction stream on a remote
processor. Software cannot depend on any such synchronization with the instruction
stream. Hardware on the remote machine cannot reload an instruction from memory or
cache after acknowledging a broadcast purge TC without first retranslating the I-side
access in the TLB. Hardware may continue to use a valid private copy of the instruction
stream data (possibly in an I-buffer) obtained prior to acknowledging a broadcast purge
TC to a page containing the i-stream data. Hardware must retranslate access to an
instruction page upon an interruption or any explicit or implicit instruction serialization
event (e.g., srlz.i, rfi).

Software must issue the appropriate data and/or instruction serialization operation to
ensure the purge is completed before a local data access, non-access reference, or local
instruction fetch access dependent upon the purge.

Volume 3: Instruction Reference 3:233

ptc.l

ptc.l — Purge Local Translation Cache
Format: (qp) ptc.l r3, r2 M45

Description: The instruction and data translation cache of the local processor is searched for all
entries whose virtual address and page size partially or completely overlap the specified
purge virtual address and purge address range. All these entries are removed.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the
purge as 1<<GR[r2]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57
for details on supported page sizes for TLB purges.

The processor ensures that all entries matching the purging parameters are removed.
However, based on the processor model, the translation cache may be also purged of
more translations than specified by the purge parameters up to and including removal
of all entries within the translation cache.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

This is a local operation, no purge broadcast to other processors occurs in a
multiprocessor system. This instruction ensures that all prior stores are made locally
visible before the actual purge operation is performed.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

}

Interruptions: Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue the appropriate data and/or instruction serialization operation to
ensure the purge is completed before a data access, non-access reference, or
instruction fetch access dependent upon the purge.

3:234 Volume 3: Instruction Reference

ptr

ptr — Purge Translation Register
Format: (qp) ptr.d r3, r2 data_form M45

(qp) ptr.i r3, r2 instruction_form M45

Description: In the data form of this instruction, the data translation registers and caches are
searched for all entries whose virtual address and page size partially or completely
overlap the specified purge virtual address and purge address range. All these entries
are removed. Entries in the instruction translation registers are unaffected by the data
form of the purge.

In the instruction form, the instruction translation registers and caches are searched for
all entries whose virtual address and page size partially or completely overlap the
specified purge virtual address and purge address range. All these entries are removed.
Entries in the data translation registers are unaffected by the instruction form of the
purge.

In addition, in both forms, the instruction and data translation cache may be purged of
more translations than specified by the purge parameters up to and including removal
of all entries within the translation cache.

The purge virtual address is specified by GR r3 bits{60:0} and the purge region
identifier is selected by GR r3 bits {63:61}. GR r2 specifies the address range of the
purge as 1<<GR[r2]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57
for details on supported page sizes for TLB purges.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

This is a local operation, no purge broadcast to other processors occurs in a
multiprocessor system.

As described in Section 4.1.1.2, “Translation Cache (TC)” on page 2:49, the processor
may use the translation caches to cache virtual address mappings held by translation
registers. The ptr.i and ptr.d instructions purge the processor’s translation registers
as well as cached translation register copies that may be contained in the respective
translation caches.

Volume 3: Instruction Reference 3:235

ptr

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);
if (unimplemented_virtual_address(GR[r3], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

tmp_rid = RR[GR[r3]{63:61}].rid;
tmp_va = GR[r3]{60:0};
tmp_size = GR[r2]{7:2};
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

if (data_form) {
tlb_must_purge_dtr_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

} else { // instruction_form
tlb_must_purge_itr_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);

}
}

Interruptions: Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Serialization: For the data form, software must issue a data serialization operation to ensure the
purge is completed before issuing an instruction dependent upon the purge. For the
instruction form, software must issue an instruction serialization operation to ensure
the purge is completed before fetching an instruction dependent on that purge.

3:236 Volume 3: Instruction Reference

rfi

rfi — Return From Interruption
Format: rfi B8

Description: The machine context prior to an interruption is restored. PSR is restored from IPSR,
IPSR is unmodified, and IP is restored from IIP. Execution continues at the bundle
address loaded into the IP, and the instruction slot loaded into PSR.ri.

This instruction must be immediately followed by a stop; otherwise, operation is
undefined. This instruction switches to the register bank specified by IPSR.bn.
Instructions in the same instruction group that access GR16 to GR31 reference the
previous register bank. Subsequent instruction groups reference the new register bank.

This instruction performs instruction serialization, which ensures:

• prior modifications to processor register resources that affect fetching of
subsequent instruction groups are observed.

• prior modifications to processor register resources that affect subsequent execution
or data memory accesses are observed.

• prior memory synchronization (sync.i) operations have taken effect on the local
processor instruction cache.

• subsequent instruction group fetches (including the target instruction group) are
re-initiated after rfi completes.

The rfi instruction must be in an instruction group after the instruction group
containing the operation that is to be serialized.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0. This instruction can not be predicated.

Execution of this instruction is undefined if PSR.ic or PSR.i are 1. Software must ensure
that an interruption cannot occur that could modify IIP, IPSR, or IFS between when
they are written and the subsequent rfi.

Execution of this instruction is undefined if IPSR.ic is 0 and the current register stack
frame is incomplete.

This instruction does not take Lower Privilege Transfer, Taken Branch or Single Step
traps.

If this instruction sets PSR.ri to 2 and the target is an MLX bundle, then an Illegal
Operation fault will be taken on the target bundle.

If IPSR.is is 1, control is resumed in the IA-32 instruction set at the virtual linear
address specified by IIP{31:0}. PSR.di does not inhibit instruction set transitions for
this instruction. If PSR.dfh is 1 after rfi completes execution, a Disabled FP Register
fault is raised on the target IA-32 instruction.

If IPSR.is is 1 and an Unimplemented Instruction Address trap is taken, IIP will contain
the original 64-bit target IP. (The value will not have been zero extended from 32 bits.)

When entering the IA-32 instruction set, the size of the current stack frame is set to
zero, and all stacked general registers are left in an undefined state. Software can not
rely on the value of these registers across an instruction set transition. Software must
ensure that BSPSTORE==BSP on entry to the IA-32 instruction set, otherwise
undefined behavior may result.

Volume 3: Instruction Reference 3:237

rfi

If IPSR.is is 1, software must set other IPSR fields properly for IA-32 instruction set
execution; otherwise processor operation is undefined. See Table 3-2, “Processor
Status Register Fields” on page 2:24 for details.

Software must issue a mf instruction before this instruction if memory ordering is
required between IA-32 processor-consistent and Itanium unordered memory
references. The processor does not ensure Itanium-instruction-set-generated writes
into the instruction stream are seen by subsequent IA-32 instructions.

Software must ensure the code segment descriptor and selector are loaded before
issuing this instruction. If the target EIP value exceeds the code segment limit or has a
code segment privilege violation, an IA_32_Exception(GPFault) exception is raised on
the target IA-32 instruction. For entry into 16-bit IA-32 code, if IIP is not within
64K-bytes of CSD.base a GPFault is raised on the target instruction.
EFLAG.rf and PSR.id are unmodified until the successful completion of the target IA-32
instruction. PSR.da, PSR.dd, PSR.ia and PSR.ed are cleared to zero before the target
IA-32 instruction begins execution.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can
not rely on ALAT state across an instruction set transition. On entry to IA-32 code,
existing entries in the ALAT are ignored.

Operation: if (!followed_by_stop())
undefined_behavior();

unimplemented_address = 0;
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (PSR.vm == 1)
virtualization_fault();

taken_rfi = 1;

PSR = CR[IPSR];
if (CR[IPSR].is == 1) { //resume IA-32 instruction set

if (CR[IPSR].ic == 0 || CR[IPSR].dt == 0 ||
CR[IPSR].mc == 1 || CR[IPSR].it == 0)
undefined_behavior();

tmp_IP = CR[IIP];
if (!impl_uia_fault_supported() &&

((CR[IPSR].it && unimplemented_virtual_address(tmp_IP, IPSR.vm))
|| (!CR[IPSR].it && unimplemented_physical_address(tmp_IP))))
unimplemented_address = 1;

//compute effective instruction pointer
EIP{31:0} = CR[IIP]{31:0} - AR[CSD].Base;

//force zero-sized restored frame
rse_restore_frame(0, 0, CFM.sof);
CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;
rse_invalidate_non_current_regs();
//The register stack engine is disabled during IA-32

3:238 Volume 3: Instruction Reference

rfi

//instruction set execution.
} else { //return to Itanium instruction set

tmp_IP = CR[IIP] & ~0xf;
slot = CR[IPSR].ri;
if ((CR[IPSR].it && unimplemented_virtual_address(tmp_IP, IPSR.vm))

|| (!CR[IPSR].it && unimplemented_physical_address(tmp_IP)))
unimplemented_address = 1;

if (CR[IFS].v) {
tmp_growth = -CFM.sof;
alat_frame_update(-CR[IFS].ifm.sof, 0);
rse_restore_frame(CR[IFS].ifm.sof, tmp_growth, CFM.sof);
CFM = CR[IFS].ifm;

}
rse_enable_current_frame_load();

}
IP = tmp_IP;
instruction_serialize();
if (unimplemented_address)

unimplemented_instruction_address_trap(0, tmp_IP);

Interruptions: Privileged Operation fault Unimplemented Instruction Address trap
Virtualization fault

Additional Faults on IA-32 target instructions
IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

Serialization: An implicit instruction and data serialization operation is performed.

Volume 3: Instruction Reference 3:239

rsm

rsm — Reset System Mask
Format: (qp) rsm imm24 M44

Description: The complement of the imm24 operand is ANDed with the system mask (PSR{23:0}) and
the result is placed in the system mask. See Section 3.3.2, “Processor Status Register
(PSR)” on page 2:23.

The PSR system mask can only be written at the most privileged level, and when
PSR.vm is 0.

When the current privilege level is zero (PSR.cpl is 0), an rsm instruction whose mask
includes PSR.i may cause external interrupts to be disabled for an
implementation-dependent number of instructions, even if the qualifying predicate for
the rsm instruction is false. Architecturally, the extents of this external interrupt
disabling “window” are defined as follows:

• External interrupts may be disabled for any instructions in the same instruction
group as the rsm, including those that precede the rsm in sequential program order,
regardless of the value of the qualifying predicate of the rsm instruction.

• If the qualifying predicate of the rsm is true, then external interrupts are disabled
immediately following the rsm instruction.

• If the qualifying predicate of the rsm is false, then external interrupts may be
disabled until the next data serialization operation that follows the rsm instruction.

The external interrupt disable window is guaranteed to be no larger than defined by the
above criteria, but it may be smaller, depending on the processor implementation.

When the current privilege level is non-zero (PSR.cpl is not 0), an rsm instruction whose
mask includes PSR.i may briefly disable external interrupts, regardless of the value of
the qualifying predicate of the rsm instruction. However, processor implementations
guarantee that non-privileged code cannot lock out external interrupts indefinitely
(e.g., via an arbitrarily long sequence of rsm instructions with zero-valued qualifying
predicates).

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_SM, imm24))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (imm24{1}) PSR{1} = 0;) // be
if (imm24{2}) PSR{2} = 0;) // up
if (imm24{3}) PSR{3} = 0;) // ac
if (imm24{4}) PSR{4} = 0;) // mfl
if (imm24{5}) PSR{5} = 0;) // mfh
if (imm24{13}) PSR{13} = 0;) // ic
if (imm24{14}) PSR{14} = 0;) // i
if (imm24{15}) PSR{15} = 0;) // pk
if (imm24{17}) PSR{17} = 0;) // dt
if (imm24{18}) PSR{18} = 0;) // dfl
if (imm24{19}) PSR{19} = 0;) // dfh
if (imm24{20}) PSR{20} = 0;) // sp

3:240 Volume 3: Instruction Reference

rsm

if (imm24{21}) PSR{21} = 0;) // pp
if (imm24{22}) PSR{22} = 0;) // di
if (imm24{23}) PSR{23} = 0;) // si

}

Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must use a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits – except the PSR.i bit. The PSR.i bit is
implicitly serialized and the processor ensures that external interrupts are masked by
the time the next instruction executes.

Volume 3: Instruction Reference 3:241

rum

rum — Reset User Mask
Format: (qp) rum imm24 M44

Description: The complement of the imm24 operand is ANDed with the user mask (PSR{5:0}) and the
result is placed in the user mask. See Section 3.3.2, “Processor Status Register (PSR)”
on page 2:23.

PSR.up is only cleared if the secure performance monitor bit (PSR.sp) is zero.
Otherwise PSR.up is not modified.

Operation: if (PR[qp]) {
if (is_reserved_field(PSR_TYPE, PSR_UM, imm24))

reserved_register_field_fault();

if (imm24{1}) PSR{1} = 0;) // be
if (imm24{2} && PSR.sp == 0) //non-secure perf monitor

PSR{2} = 0;) // up
if (imm24{3}) PSR{3} = 0;) // ac
if (imm24{4}) PSR{4} = 0;) // mfl
if (imm24{5}) PSR{5} = 0;) // mfh

}

Interruptions: Reserved Register/Field fault

Serialization: All user mask modifications are observed by the next instruction group.

3:242 Volume 3: Instruction Reference

setf

setf — Set Floating-point Value, Exponent, or Significand
Format: (qp) setf.s f1 = r2 single_form M18

(qp) setf.d f1 = r2 double_form M18
(qp) setf.exp f1 = r2 exponent_form M18
(qp) setf.sig f1 = r2 significand_form M18

Description: In the single and double forms, GR r2 is treated as a single precision (in the
single_form) or double precision (in the double_form) memory representation,
converted into floating-point register format, and placed in FR f1, as shown in Figure 5-4
and Figure 5-5 on page 1:93, respectively.

In the exponent_form, bits 16:0 of GR r2 are copied to the exponent field of FR f1 and bit
17 of GR r2 is copied to the sign bit of FR f1. The significand field of FR f1 is set to one
(0x800...000).

In the significand_form, the value in GR r2 is copied to the significand field of FR f1.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the
sign field of FR f1 is set to positive (0).

For all forms, if the NaT bit corresponding to r2 is equal to 1, FR f1 is set to NaTVal
instead of the computed result.

Figure 2-41. Function of setf.exp

Figure 2-42. Function of setf.sig

1000exponentsFR f1

GR r1

018 17

000. . .

63

significand0x1003E0FR f1

GR r1

063

Volume 3: Instruction Reference 3:243

setf

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (!GR[r2].nat) {
if (single_form)

FR[f1] = fp_mem_to_fr_format(GR[r2], 4, 0);
else if (double_form)

FR[f1] = fp_mem_to_fr_format(GR[r2], 8, 0);
else if (significand_form) {

FR[f1].significand = GR[r2];
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = 0;

} else { // exponent_form
FR[f1].significand = 0x8000000000000000;
FR[f1].exp = GR[r2]{16:0};
FR[f1].sign = GR[r2]{17};

}
} else

FR[f1] = NATVAL;

fp_update_psr(f1);
}

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:244 Volume 3: Instruction Reference

shl

shl — Shift Left
Format: (qp) shl r1= r2, r3 I7

(qp) shl r1 = r2, count6 pseudo-op of: (qp) dep.z r1 = r2, count6, 64-count6

Description: The value in GR r2 is shifted to the left, with the vacated bit positions filled with zeroes,
and placed in GR r1. The number of bit positions to shift is specified by the value in GR
r3 or by an immediate value count6. The shift count is interpreted as an unsigned number.
If the value in GR r3 is greater than 63, then the result is all zeroes.

See “dep — Deposit” on page 3:51 for the immediate form.

Operation: if (PR[qp]) {
check_target_register(r1);

count = GR[r3];
GR[r1] = (count > 63) ? 0: GR[r2] << count;

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:245

shladd

shladd — Shift Left and Add
Format: (qp) shladd r1 = r2, count2, r3 A2

Description: The first source operand is shifted to the left by count2 bits and then added to the second
source operand and the result placed in GR r1. The first operand can be shifted by 1, 2,
3, or 4 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = (GR[r2] << count2) + GR[r3];
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:246 Volume 3: Instruction Reference

shladdp4

shladdp4 — Shift Left and Add Pointer
Format: (qp) shladdp4 r1 = r2, count2, r3 A2

Description: The first source operand is shifted to the left by count2 bits and then is added to the
second source operand. The upper 32 bits of the result are forced to zero, and then bits
{31:30} of GR r3 are copied to bits {62:61} of the result. This result is placed in GR r1.
The first operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_res = (GR[r2] << count2) + GR[r3];
tmp_res = zero_ext(tmp_res{31:0}, 32);
tmp_res{62:61} = GR[r3]{31:30};
GR[r1] = tmp_res;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Figure 2-43. Shift Left and Add Pointer

GR r3:

GR r1:

GR r2:

+

00

Volume 3: Instruction Reference 3:247

shr

shr — Shift Right
Format: (qp) shr r1 = r3, r2 signed_form I5

(qp) shr.u r1 = r3, r2 unsigned_form I5
(qp) shr r1 = r3, count6 pseudo-op of: (qp) extr r1 = r3, count6, 64-count6
(qp) shr.u r1 = r3, count6 pseudo-op of: (qp) extr.u r1 = r3, count6, 64-count6

Description: The value in GR r3 is shifted to the right and placed in GR r1. In the signed_form the
vacated bit positions are filled with bit 63 of GR r3; in the unsigned_form the vacated
bit positions are filled with zeroes. The number of bit positions to shift is specified by
the value in GR r2 or by an immediate value count6. The shift count is interpreted as an
unsigned number. If the value in GR r2 is greater than 63, then the result is all zeroes
(for the unsigned_form, or if bit 63 of GR r3 was 0) or all ones (for the signed_form if
bit 63 of GR r3 was 1).

If the .u completer is specified, the shift is unsigned (logical), otherwise it is signed
(arithmetic).

See “extr — Extract” on page 3:54 for the immediate forms.

Operation: if (PR[qp]) {
check_target_register(r1);

if (signed_form) {
count = (GR[r2] > 63) ? 63 : GR[r2];
GR[r1] = shift_right_signed(GR[r3], count);

} else {
count = GR[r2];
GR[r1] = (count > 63) ? 0 : shift_right_unsigned(GR[r3], count);

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:248 Volume 3: Instruction Reference

shrp

shrp — Shift Right Pair
Format: (qp) shrp r1 = r2, r3, count6 I10

Description: The two source operands, GR r2 and GR r3, are concatenated to form a 128-bit value and
shifted to the right count6 bits. The least-significant 64 bits of the result are placed in
GR r1.

The immediate value count6 can be any number in the range 0 to 63.

Operation: if (PR[qp]) {
check_target_register(r1);

temp1 = shift_right_unsigned(GR[r3], count6);
temp2 = GR[r2] << (64 - count6);
GR[r1] = zero_ext(temp1, 64 - count6) | temp2;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Figure 2-44. Shift Right Pair

GR r3:

GR r1:

GR r2:

Volume 3: Instruction Reference 3:249

srlz

srlz — Serialize
Format: (qp) srlz.i instruction_form M24

(qp) srlz.d data_form M24

Description: Instruction serialization (srlz.i) ensures:

• prior modifications to processor register resources that affect fetching of
subsequent instruction groups are observed,

• prior modifications to processor register resources that affect subsequent execution
or data memory accesses are observed,

• prior memory synchronization (sync.i) operations have taken effect on the local
processor instruction cache,

• subsequent instruction group fetches are re-initiated after srlz.i completes.

The srlz.i instruction must be in an instruction group after the instruction group
containing the operation that is to be serialized. Operations dependent on the
serialization must be in an instruction group after the instruction group containing the
srlz.i.

Data serialization (srlz.d) ensures:

• prior modifications to processor register resources that affect subsequent execution
or data memory accesses are observed.

The srlz.d instruction must be in an instruction group after the instruction group
containing the operation that is to be serialized. Operations dependent on the
serialization must follow the srlz.d, but they can be in the same instruction group as
the srlz.d.

A srlz cannot be used to stall processor data memory references until prior data
memory references, or memory fences are visible or “accepted” by the external
platform.

The following processor resources require a serialize to ensure side-effects are
observed; CRs, PSR, DBRs, IBRs, PMDs, PMCs, RRs, PKRs, TRs and TCs (refer to
Section 3.2, “Serialization” on page 2:17 for details).

Operation: if (PR[qp]) {
if (instruction_form)

instruction_serialize();
else // data_form

data_serialize();
}

Interruptions: None

3:250 Volume 3: Instruction Reference

ssm

ssm — Set System Mask
Format: (qp) ssm imm24 M44

Description: The imm24 operand is ORed with the system mask (PSR{23:0}) and the result is placed
in the system mask. See Section 3.3.2, “Processor Status Register (PSR)” on
page 2:23.

The PSR system mask can only be written at the most privileged level, and when
PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is
1), are undefined if an interruption occurs between the enabling of the PSR.ic bit and a
subsequent instruction serialize operation.

Operation: if (PR[qp]) {
if (PSR.cpl != 0)

privileged_operation_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_SM, imm24))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (imm24{1}) PSR{1} = 1;) // be
if (imm24{2}) PSR{2} = 1;) // up
if (imm24{3}) PSR{3} = 1;) // ac
if (imm24{4}) PSR{4} = 1;) // mfl
if (imm24{5}) PSR{5} = 1;) // mfh
if (imm24{13}) PSR{13} = 1;) // ic
if (imm24{14}) PSR{14} = 1;) // i
if (imm24{15}) PSR{15} = 1;) // pk
if (imm24{17}) PSR{17} = 1;) // dt
if (imm24{18}) PSR{18} = 1;) // dfl
if (imm24{19}) PSR{19} = 1;) // dfh
if (imm24{20}) PSR{20} = 1;) // sp
if (imm24{21}) PSR{21} = 1;) // pp
if (imm24{22}) PSR{22} = 1;) // di
if (imm24{23}) PSR{23} = 1;) // si

}

Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must issue a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits from the ssm instruction. Unlike with
the rsm instruction, setting the PSR.i bit is not treated specially. Refer to Section 3.2,
“Serialization” on page 2:17 for a description of serialization.

Volume 3: Instruction Reference 3:251

st

st — Store
Format: (qp) stsz.sttype.sthint [r3] = r2 normal_form, no_base_update_form M6

(qp) stsz.sttype.sthint [r3] = r2, imm9 normal_form, imm_base_update_form M5
(qp) st16.sttype.sthint [r3] = r2, ar.csd sixteen_byte_form, no_base_update_form M6
(qp) st8.spill.sthint [r3] = r2 spill_form, no_base_update_form M6
(qp) st8.spill.sthint [r3] = r2, imm9 spill_form, imm_base_update_form M5

Description: A value consisting of the least significant sz bytes of the value in GR r2 is written to
memory starting at the address specified by the value in GR r3. The values of the sz
completer are given in Table 2-32 on page 3:151. The sttype completer specifies special
store operations, which are described in Table 2-50. If the NaT bit corresponding to GR
r3 is 1, or in sixteen_byte_form or normal_form, if the NaT bit corresponding to GR r2 is
1, a Register NaT Consumption fault is taken.

In the sixteen_byte_form, two 8-byte values are stored as a single, 16-byte atomic
memory write. The value in GR r2 is written to memory starting at the address specified
by the value in GR r3. The value in the Compare and Store Data application register
(AR[CSD]) is written to memory starting at the address specified by the value in GR r3
plus 8.

In the spill_form, an 8-byte value is stored, and the NaT bit corresponding to GR r2 is
copied to a bit in the UNAT application register. This instruction is used for spilling a
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the imm_base_update form, the value in GR r3 is added to a signed immediate value
(imm9) and the result is placed back in GR r3. This base register update is done after the
store, and does not affect the store address, nor the value stored (for the case where r2
and r3 specify the same register). Base register update is not supported for the st16
instruction.

For more details on ordered stores see Section 4.4.7, “Memory Access Ordering” on
page 1:73.

The ALAT is queried using the physical memory address and the access size, and all
overlapping entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values
of the sthint completer are given in Table 2-51. A prefetch hint is implied in the base
update forms. The address specified by the value in GR r3 after the base update acts as
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified
by sthint. See Section 4.4.6, “Memory Hierarchy Control and Consistency” on
page 1:69.

Hardware support for st16 instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such st16 accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted.

Table 2-50. Store Types

sttype
Completer

Interpretation Special Store Operation

none Normal store

rel Ordered store An ordered store is performed with release semantics.

3:252 Volume 3: Instruction Reference

st

For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do
not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See Section 3.1.11, “Processor Identification Registers” on
page 1:34 for details.

Operation: if (PR[qp]) {
size = spill_form ? 8 : (sixteen_byte_form ? 16 : sz);
itype = WRITE;
if (size == 16) itype |= UNCACHE_OPT;
otype = (sttype == ‘rel’) ? RELEASE : UNORDERED;

if (sixteen_byte_form && !instruction_implemented(ST16))
illegal_operation_fault();

if (imm_base_update_form)
check_target_register(r3);

if (GR[r3].nat || ((sixteen_byte_form || normal_form) && GR[r2].nat))
register_nat_consumption_fault(WRITE);

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,
&tmp_unused);

if (spill_form && GR[r2].nat) {
natd_gr_write(GR[r2], paddr, size, UM.be, mattr, otype, sthint);

}
else {

if (sixteen_byte_form)
mem_write16(GR[r2], AR[CSD], paddr, UM.be, mattr, otype, sthint);

else
mem_write(GR[r2], paddr, size, UM.be, mattr, otype, sthint);

}

if (spill_form) {
bit_pos = GR[r3]{8:3};
AR[UNAT]{bit_pos} = GR[r2].nat;

}

alat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = 0;
mem_implicit_prefetch(GR[r3], sthint, WRITE);

}
}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault

Table 2-51. Store Hints

sthint Completer Interpretation

none Temporal locality, level 1

nta Non-temporal locality, all levels

Volume 3: Instruction Reference 3:253

st

Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault

3:254 Volume 3: Instruction Reference

stf

stf — Floating-point Store
Format: (qp) stffsz.sthint [r3] = f2 normal_form, no_base_update_form M13

(qp) stffsz.sthint [r3] = f2, imm9 normal_form, imm_base_update_form M10
(qp) stf8.sthint [r3] = f2 integer_form, no_base_update_form M13
(qp) stf8.sthint [r3] = f2, imm9 integer_form, imm_base_update_form M10
(qp) stf.spill.sthint [r3] = f2 spill_form, no_base_update_form M13
(qp) stf.spill.sthint [r3] = f2, imm9 spill_form, imm_base_update_form M10

Description: A value, consisting of fsz bytes, is generated from the value in FR f2 and written to
memory starting at the address specified by the value in GR r3. In the normal_form, the
value in FR f2 is converted to the memory format and then stored. In the integer_form,
the significand of FR f2 is stored. The values of the fsz completer are given in Table 2-35
on page 3:157. In the normal_form or the integer_form, if the NaT bit corresponding to
GR r3 is 1 or if FR f2 contains NaTVal, a Register NaT Consumption fault is taken. See
Section 5.1, “Data Types and Formats” on page 1:85 for details on conversion from
floating-point register format.

In the spill_form, a 16-byte value from FR f2 is stored without conversion. This
instruction is used for spilling a register. See Section 4.4.4, “Control Speculation” on
page 1:60 for details.

In the imm_base_update form, the value in GR r3 is added to a signed immediate value
(imm9) and the result is placed back in GR r3. This base register update is done after the
store, and does not affect the store address.

The ALAT is queried using the physical memory address and the access size, and all
overlapping entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values
of the sthint completer are given in Table 2-51 on page 3:252. A prefetch hint is implied
in the base update forms. The address specified by the value in GR r3 after the base
update acts as a hint to prefetch the indicated cache line. This prefetch uses the locality
hints specified by sthint. See Section 4.4.6, “Memory Hierarchy Control and
Consistency” on page 1:69.

Hardware support for stfe (10-byte) instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such stfe accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted.

Volume 3: Instruction Reference 3:255

stf

Operation: if (PR[qp]) {
if (imm_base_update_form)

check_target_register(r3);
if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, WRITE);

if (GR[r3].nat || (!spill_form && (FR[f2] == NATVAL)))
register_nat_consumption_fault(WRITE);

size = spill_form ? 16 : (integer_form ? 8 : fsz);
itype = WRITE;
if (size == 10) itype |= UNCACHE_OPT;

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr, &tmp_unused);
val = fp_fr_to_mem_format(FR[f2], size, integer_form);
mem_write(val, paddr, size, UM.be, mattr, UNORDERED, sthint);

alat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = 0;
mem_implicit_prefetch(GR[r3], sthint, WRITE);

}
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

3:256 Volume 3: Instruction Reference

sub

sub — Subtract
Format: (qp) sub r1 = r2, r3 register_form A1

(qp) sub r1 = r2, r3, 1 minus1_form, register_form A1
(qp) sub r1 = imm8, r3 imm8_form A3

Description: The second source operand (and an optional constant 1) are subtracted from the first
operand and the result placed in GR r1. In the register form the first operand is GR r2; in
the immediate form the first operand is taken from the sign-extended imm8 encoding
field.

The minus1_form is available only in the register_form (although the equivalent effect
can be achieved by adjusting the immediate).

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

if (minus1_form)
GR[r1] = tmp_src - GR[r3] - 1;

else
GR[r1] = tmp_src - GR[r3];

GR[r1].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:257

sum

sum — Set User Mask
Format: (qp) sum imm24 M44

Description: The imm24 operand is ORed with the user mask (PSR{5:0}) and the result is placed in
the user mask. See Section 3.3.2, “Processor Status Register (PSR)” on page 2:23.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) is zero.
Otherwise PSR.up is not modified.

Operation: if (PR[qp]) {
if (is_reserved_field(PSR_TYPE, PSR_UM, imm24))

reserved_register_field_fault();

if (imm24{1}) PSR{1} = 1;) // be
if (imm24{2} && PSR.sp == 0) //non-secure perf monitor

PSR{2} = 1;) // up
if (imm24{3}) PSR{3} = 1;) // ac
if (imm24{4}) PSR{4} = 1;) // mfl
if (imm24{5}) PSR{5} = 1;) // mfh

}

Interruptions: Reserved Register/Field fault

Serialization: All user mask modifications are observed by the next instruction group.

3:258 Volume 3: Instruction Reference

sxt

sxt — Sign Extend
Format: (qp) sxtxsz r1 = r3 I29

Description: The value in GR r3 is sign extended from the bit position specified by xsz and the result
is placed in GR r1. The mnemonic values for xsz are given in Table 2-52.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = sign_ext(GR[r3],xsz * 8);
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault

Table 2-52. xsz Mnemonic Values

xsz Mnemonic Bit Position

1 7

2 15

4 31

Volume 3: Instruction Reference 3:259

sync

sync — Memory Synchronization
Format: (qp) sync.i M24

Description: sync.i ensures that when previously initiated Flush Cache (fc, fc.i) operations issued
by the local processor become visible to local data memory references, prior Flush
Cache operations are also observed by the local processor instruction fetch stream.
sync.i also ensures that at the time previously initiated Flush Cache (fc, fc.i)
operations are observed on a remote processor by data memory references they are
also observed by instruction memory references on the remote processor. sync.i is
ordered with respect to all cache flush operations as observed by another processor. A
sync.i and a previous fc must be in separate instruction groups. If semantically
required, the programmer must explicitly insert ordered data references (acquire,
release or fence type) to appropriately constrain sync.i (and hence fc and fc.i)
visibility to the data stream on other processors.

sync.i is used to maintain an ordering relationship between instruction and data
caches on local and remote processors. An instruction serialize operation must be used
to ensure synchronization initiated by sync.i on the local processor has been observed
by a given point in program execution.

An example of self-modifying code (local processor):

st [L1] = data //store into local instruction stream
fc.i L1 //flush stale datum from instruction/data cache
;; //require instruction boundary between fc.i and sync.i
sync.i //ensure local and remote data/inst caches

//are synchronized
;;
srlz.i //ensure sync has been observed by the local processor,
;; //ensure subsequent instructions observe

//modified memory
L1: target //instruction modified

Operation: if (PR[qp]) {
instruction_synchronize();

}

Interruptions: None

3:260 Volume 3: Instruction Reference

tak

tak — Translation Access Key
Format: (qp) tak r1 = r3 M46

Description: The protection key for a given virtual address is obtained and placed in GR r1.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified
by GR r3 and the region register indexed by GR r3 bits {63:61}. If a matching present
translation is found, the protection key of the translation is placed in bits 31:8 of GR r1.
If a matching present translation is not found or if an unimplemented virtual address is
specified by GR r3, the value 1 is returned.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is disabled. If no
matching present translation is found in the DTLB, the value 1 is returned.

A translation with the NaTPage attribute is not treated differently and returns its key
field.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

Operation: if (PR[qp]) {
itype = NON_ACCESS|TAK;
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

if (PSR.vm == 1)
virtualization_fault();

GR[r1] = tlb_access_key(GR[r3], itype);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault Virtualization fault

Volume 3: Instruction Reference 3:261

tbit

tbit — Test Bit
Format: (qp) tbit.trel.ctype p1, p2 = r3, pos6 I16

Description: The bit specified by the pos6 immediate is selected from GR r3. The selected bit forms a
single bit result either complemented or not depending on the trel completer. This result
is written to the two predicate register destinations p1 and p2. The way the result is
written to the destinations is determined by the compare type specified by ctype. See
the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For
normal and unc types, only the .z value is directly implemented in hardware; the .nz
value is actually a pseudo-op. For it, the assembler simply switches the predicate target
specifiers and uses the implemented relation. For the parallel types, both relations are
implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is set, or if the compare type is unc.

Table 2-53. Test Bit Relations for Normal and unc tbits

trel Test Relation Pseudo-op of

nz selected bit == 1 z p1 p2

z selected bit == 0

Table 2-54. Test Bit Relations for Parallel tbits

trel Test Relation

nz selected bit == 1

z selected bit == 0

3:262 Volume 3: Instruction Reference

tbit

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (trel == ‘nz’) // ‘nz’ - test for 1
tmp_rel = GR[r3]{pos6};

else // ‘z’ - test for 0
tmp_rel = !GR[r3]{pos6};

switch (ctype) {
case ‘and’: // and-type compare

if (GR[r3].nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!GR[r3].nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!GR[r3].nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (GR[r3].nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:263

tf

tf — Test Feature
Format: (qp) tf.trel.ctype p1, p2 = imm5 I30

Description: The imm5 value (in the range of 32-63) selects the feature bit defined in Table 2-57 to be
tested from the features vector in CPUID[4]. See Section 3.1.11, “Processor
Identification Registers” on page 1:34 for details on CPUID registers. The selected bit
forms a single-bit result either complemented or not depending on the trel completer.
This result is written to the two predicate register destinations p1 and p2. The way the
result is written to the destinations is determined by the compare type specified by
ctype. See the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For
normal and unc types, only the .z value is directly implemented in hardware; the .nz
value is actually a pseudo-op. For it, the assembler simply switches the predicate
target specifiers and uses the implemented relation. For the parallel types, both
relations are implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is set or the compare type is unc.

Table 2-55. Test Feature Relations for Normal and unc tf

trel Test Relation Pseudo-op of

nz selected feature available z p1 p2

z selected feature unavailable

Table 2-56. Test Feature Relations for Parallel tf

trel Test Relation

nz selected feature available

z selected feature unavailable

Table 2-57. Test Feature Features Assignment

imm5 Feature Symbol Feature

32 @clz clz feature

33 @mpy mpy4, mpyshl4 feature

34 - 63 none Not currently defined

3:264 Volume 3: Instruction Reference

tf

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_rel = (psr.vm && pal_vp_env_enabled() && VAC.a_tf) ?
vcpuid[4]{imm5} : cpuid[4]{imm5};

if (trel == ‘z’) // ‘z’ - test for 0, not 1
tmp_rel = !tmp_rel;

switch (ctype) {
case ‘and’: // and-type compare

if (!tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:265

thash

thash — Translation Hashed Entry Address
Format: (qp) thash r1 = r3 M46

Description: A Virtual Hashed Page Table (VHPT) entry address is generated based on the specified
virtual address and the result is placed in GR r1. The virtual address is specified by GR r3
and the region register selected by GR r3 bits {63:61}.

If thash is given a NaT input argument or an unimplemented virtual address as an
input, the resulting target register value is undefined, and its NaT bit is set to one.

When the processor is configured to use the region-based short format VHPT
(PTA.vf=0), the value returned by thash is defined by the architected short format
hash function. See Section 4.1.5.3, “Region-based VHPT Short Format” on page 2:63.

When the processor is configured to use the long format VHPT (PTA.vf=1), thash
performs an implementation-specific long format hash function on the virtual address
to generate a hash index into the long format VHPT.

In the long format, a translation in the VHPT must be uniquely identified by its hash
index generated by this instruction and the hash tag produced from the ttag
instruction.

The hash function must use all implemented region bits and only virtual address bits
{60:0} to determine the offset into the VHPT. Virtual address bits {63:61} are used
only by the short format hash to determine the region of the VHPT.

This instruction must be implemented on all processor models, even processor models
that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

Operation: if (PR[qp]) {
check_target_register(r1);

if (PSR.vm == 1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR[r3], PSR.vm)) {
GR[r1] = undefined();
GR[r1].nat = 1;

} else {
tmp_vr = GR[r3]{63:61};
tmp_va = GR[r3]{60:0};
GR[r1] = tlb_vhpt_hash(tmp_vr, tmp_va, RR[tmp_vr].rid,

 RR[tmp_vr].ps);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Virtualization fault

3:266 Volume 3: Instruction Reference

tnat

tnat — Test NaT
Format: (qp) tnat.trel.ctype p1, p2 = r3 I17

Description: The NaT bit from GR r3 forms a single bit result, either complemented or not depending
on the trel completer. This result is written to the two predicate register destinations, p1
and p2. The way the result is written to the destinations is determined by the compare
type specified by ctype. See the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For
normal and unc types, only the .z value is directly implemented in hardware; the .nz
value is actually a pseudo-op. For it, the assembler simply switches the predicate target
specifiers and uses the implemented relation. For the parallel types, both relations are
implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is set, or if the compare type is unc.

Table 2-58. Test NaT Relations for Normal and unc tnats

trel Test Relation Pseudo-op of

nz selected bit == 1 z p1 p2

z selected bit == 0

Table 2-59. Test NaT Relations for Parallel tnats

trel Test Relation

nz selected bit == 1

z selected bit == 0

Volume 3: Instruction Reference 3:267

tnat

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (trel == ‘nz’) // ‘nz’ - test for 1
tmp_rel = GR[r3].nat;

else // ‘z’ - test for 0
tmp_rel = !GR[r3].nat;

switch (ctype) {
case ‘and’: // and-type compare

if (!tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault

3:268 Volume 3: Instruction Reference

tpa

tpa — Translate to Physical Address
Format: (qp) tpa r1 = r3 M46

Description: The physical address for the virtual address specified by GR r3 is obtained and placed in
GR r1.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified
by GR r3 and the region register indexed by GR r3 bits {63:61}. If a matching present
translation is found the physical address of the translation is placed in GR r1. If a
matching present translation is not found the appropriate TLB fault is taken.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is disabled. If no
matching present translation is found in the DTLB, an Alternate Data TLB fault is raised
if psr.ic is one or a Data Nested TLB fault is raised if psr.ic is zero.

If this instruction faults, then it will set the non-access bit in the ISR. The ISR read and
write bits are not set.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

Operation: if (PR[qp]) {
itype = NON_ACCESS|TPA;
check_target_register(r1);

if (PSR.cpl != 0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

GR[r1] = tlb_translate_nonaccess(GR[r3], itype);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Alternate Data TLB fault
Privileged Operation fault VHPT Data fault
Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Virtualization fault Data NaT Page Consumption fault
Data Nested TLB fault

Volume 3: Instruction Reference 3:269

ttag

ttag — Translation Hashed Entry Tag
Format: (qp) ttag r1 = r3 M46

Description: A tag used for matching during searches of the long format Virtual Hashed Page Table
(VHPT) is generated and placed in GR r1. The virtual address is specified by GR r3 and
the region register selected by GR r3 bits {63:61}.

If ttag is given a NaT input argument or an unimplemented virtual address as an input,
the resulting target register value is undefined, and its NaT bit is set to one.

The tag generation function generates an implementation-specific long format VHPT
tag. The tag generation function must use all implemented region bits and only virtual
address bits {60:0}. PTA.vf is ignored by this instruction.

A translation in the long format VHPT must be uniquely identified by its hash index
generated by the thash instruction and the tag produced from this instruction.

This instruction must be implemented on all processor models, even processor models
that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

Operation: if (PR[qp]) {
check_target_register(r1);

if (PSR.vm == 1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR[r3], PSR.vm)) {
GR[r1] = undefined();
GR[r1].nat = 1;

} else {
tmp_vr = GR[r3]{63:61};
tmp_va = GR[r3]{60:0};
GR[r1] = tlb_vhpt_tag(tmp_va, RR[tmp_vr].rid, RR[tmp_vr].ps);
GR[r1].nat = 0;

}
}

Interruptions: Illegal Operation fault Virtualization fault

3:270 Volume 3: Instruction Reference

unpack

unpack — Unpack
Format: (qp) unpack1.h r1 = r2, r3 one_byte_form, high_form I2

(qp) unpack2.h r1 = r2, r3 two_byte_form, high_form I2
(qp) unpack4.h r1 = r2, r3 four_byte_form, high_form I2
(qp) unpack1.l r1 = r2, r3 one_byte_form, low_form I2
(qp) unpack2.l r1 = r2, r3 two_byte_form, low_form I2
(qp) unpack4.l r1 = r2, r3 four_byte_form, low_form I2

Description: The data elements of GR r2 and r3 are unpacked, and the result placed in GR r1. In the
high_form, the most significant elements of each source register are selected, while in
the low_form the least significant elements of each source register are selected.
Elements are selected alternately from the source registers.

Volume 3: Instruction Reference 3:271

unpack

Figure 2-45. Unpack Operation

GR r2:

GR r1:

GR r3:

unpack1.h

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

unpack1.l

GR r2:

GR r1:

GR r3:

unpack2.h

unpack2.l

GR r2:

GR r1:

GR r3:

unpack4.h

unpack4.l

3:272 Volume 3: Instruction Reference

unpack

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (high_form)
GR[r1] = concatenate8(x[7], y[7], x[6], y[6],

x[5], y[5], x[4], y[4]);
else // low_form

GR[r1] = concatenate8(x[3], y[3], x[2], y[2],
x[1], y[1], x[0], y[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (high_form)
GR[r1] = concatenate4(x[3], y[3], x[2], y[2]);

else // low_form
GR[r1] = concatenate4(x[1], y[1], x[0], y[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

if (high_form)
GR[r1] = concatenate2(x[1], y[1]);

else // low_form
GR[r1] = concatenate2(x[0], y[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:273

vmsw

vmsw — Virtual Machine Switch
Format: vmsw.0 zero_form B8

vmsw.1 one_form B8

Description: This instruction sets the PSR.vm bit to the specified value. This instruction can be used
to implement transitions to/from virtual machine mode without the overhead of an
interruption.

If instruction address translation is enabled and the page containing the vmsw
instruction has access rights equal to 7, then the new value is written to the PSR.vm
bit. In the zero_form, PSR.vm is set to 0, and in the one_form, PSR.vm is set to 1.

Instructions after the vmsw instruction in the same instruction group may be executed
with the old or new value of PSR.vm. Instructions in subsequent instruction groups will
be executed with PSR.vm equal to the new value.

If the above conditions are not met, this instruction takes a Virtualization fault.

This instruction can only be executed at the most privileged level. This instruction
cannot be predicated.

Implementation of PSR.vm is optional. If it is not implemented, this instruction takes
Illegal Operation fault. If it is implemented but either virtual machine features or the
vmsw instruction are disabled, this instruction takes Virtualization fault when executed
at the most privileged level.

Operation: if (!implemented_vm())
illegal_operation fault();

if (PSR.cpl != 0)
privileged_operation_fault(0);

if (!(PSR.it == 1 && itlb_ar() == 7) || vm_disabled() || vmsw_disabled())
virtualization_fault();

if (zero_form) {
PSR.vm = 0;

}
else {

PSR.vm = 1;
}

Interruptions: Illegal Operation fault Virtualization fault
Privileged Operation fault

3:274 Volume 3: Instruction Reference

xchg

xchg — Exchange
Format: (qp) xchgsz.ldhint r1 = [r3], r2 M16

Description: A value consisting of sz bytes is read from memory starting at the address specified by
the value in GR r3. The least significant sz bytes of the value in GR r2 are written to
memory starting at the address specified by the value in GR r3. The value read from
memory is then zero extended and placed in GR r1 and the NaT bit corresponding to GR
r1 is cleared. The values of the sz completer are given in Table 2-60.

If the address specified by the value in GR r3 is not naturally aligned to the size of the
value being accessed in memory, an Unaligned Data Reference fault is taken
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the
Processor Status Register).

Both read and write access privileges for the referenced page are required.

The exchange is performed with acquire semantics, i.e., the memory read/write is
made visible prior to all subsequent data memory accesses. See Section 4.4.7,
“Sequentiality Attribute and Ordering” on page 2:82 for details on memory ordering.

The memory read and write are guaranteed to be atomic.

This instruction is only supported to cacheable pages with write-back write policy.
Accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages
with other memory attributes cause an Unsupported Data Reference fault.

The value of the ldhint completer specifies the locality of the memory access. The values
of the ldhint completer are given in Table 2-34 on page 3:152. Locality hints do not
affect program functionality and may be ignored by the implementation. See
Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:69 for details.

Table 2-60. Memory Exchange Size

sz Completer Bytes Accessed

1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes

Volume 3: Instruction Reference 3:275

xchg

Operation: if (PR[qp]) {
check_target_register(r1);

if (GR[r3].nat || GR[r2].nat)
register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_translate(GR[r3], sz, SEMAPHORE, PSR.cpl, &mattr,
 &tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

val = mem_xchg(GR[r2], paddr, sz, UM.be, mattr, ACQUIRE, ldhint);

alat_inval_multiple_entries(paddr, sz);

GR[r1] = zero_ext(val, sz * 8);
GR[r1].nat = 0;

}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault

3:276 Volume 3: Instruction Reference

xma

xma — Fixed-Point Multiply Add
Format: (qp) xma.l f1 = f3, f4, f2 low_form F2

(qp) xma.lu f1 = f3, f4, f2 pseudo-op of: (qp) xma.l f1 = f3, f4, f2
(qp) xma.h f1 = f3, f4, f2 high_form F2
(qp) xma.hu f1 = f3, f4, f2 high_unsigned_form F2

Description: Two source operands (FR f3 and FR f4) are treated as either signed or unsigned integers
and multiplied. The third source operand (FR f2) is zero extended and added to the
product. The upper or lower 64 bits of the resultant sum are selected and placed in FR
f1.

In the high_unsigned_form, the significand fields of FR f3 and FR f4 are treated as
unsigned integers and multiplied to produce a full 128-bit unsigned result. The
significand field of FR f2 is zero extended and added to the product. The most significant
64-bits of the resultant sum are placed in the significand field of FR f1.

In the high_form, the significand fields of FR f3 and FR f4 are treated as signed integers
and multiplied to produce a full 128-bit signed result. The significand field of FR f2 is
zero extended and added to the product. The most significant 64-bits of the resultant
sum are placed in the significand field of FR f1.

In the other forms, the significand fields of FR f3 and FR f4 are treated as signed integers
and multiplied to produce a full 128-bit signed result. The significand field of FR f2 is
zero extended and added to the product. The least significant 64-bits of the resultant
sum are placed in the significand field of FR f1.

In all forms, the exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0).

Note: f1 as an operand is not an integer 1; it is just the register file format’s 1.0
value.

In all forms, if any of FR f3 , FR f4 , or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of
the computed result.

Volume 3: Instruction Reference 3:277

xma

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) ||
fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;

} else {
if (low_form || high_form)

tmp_res_128 =
fp_I64_x_I64_to_I128(FR[f3].significand, FR[f4].significand);

else // high_unsigned_form
tmp_res_128 =

fp_U64_x_U64_to_U128(FR[f3].significand, FR[f4].significand);

tmp_res_128 =
fp_U128_add(tmp_res_128, fp_U64_to_U128(FR[f2].significand));

if (high_form || high_unsigned_form)
FR[f1].significand = tmp_res_128.hi;

else // low_form
FR[f1].significand = tmp_res_128.lo;

FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

Interruptions: Disabled Floating-point Register fault

3:278 Volume 3: Instruction Reference

xmpy

xmpy — Fixed-Point Multiply
Format: (qp) xmpy.l f1 = f3, f4 pseudo-op of: (qp) xma.l f1 = f3, f4, f0

(qp) xmpy.lu f1 = f3, f4 pseudo-op of: (qp) xma.l f1 = f3, f4, f0
(qp) xmpy.h f1 = f3, f4 pseudo-op of: (qp) xma.h f1 = f3, f4, f0
(qp) xmpy.hu f1 = f3, f4 pseudo-op of: (qp) xma.hu f1 = f3, f4, f0

Description: Two source operands (FR f3 and FR f4) are treated as either signed or unsigned integers
and multiplied. The upper or lower 64 bits of the resultant product are selected and
placed in FR f1.

In the high_unsigned_form, the significand fields of FR f3 and FR f4 are treated as
unsigned integers and multiplied to produce a full 128-bit unsigned result. The most
significant 64-bits of the resultant product are placed in the significand field of FR f1.

In the high_form, the significand fields of FR f3 and FR f4 are treated as signed integers
and multiplied to produce a full 128-bit signed result. The most significant 64-bits of
the resultant product are placed in the significand field of FR f1.

In the other forms, the significand fields of FR f3 and FR f4 are treated as signed integers
and multiplied to produce a full 128-bit signed result. The least significant 64-bits of the
resultant product are placed in the significand field of FR f1.

In all forms, the exponent field of FR f1 is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f1 is set to positive (0). Note: f1 as an operand is not
an integer 1; it is just the register file format’s 1.0 value.

Operation: See “xma — Fixed-Point Multiply Add” on page 3:276.

Volume 3: Instruction Reference 3:279

xor

xor — Exclusive Or
Format: (qp) xor r1 = r2, r3 register_form A1

(qp) xor r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically XORed and the result placed in GR r1. In the
register_form the first operand is GR r2; in the imm8_form the first operand is taken
from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src ^ GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:280 Volume 3: Instruction Reference

zxt

zxt — Zero Extend
Format: (qp) zxtxsz r1 = r3 I29

Description: The value in GR r3 is zero extended above the bit position specified by xsz and the result
is placed in GR r1. The mnemonic values for xsz are given in Table 2-52 on page 3:258.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = zero_ext(GR[r3],xsz * 8);
GR[r1].nat = GR[r3].nat;

}

Interruptions: Illegal Operation fault

§

Volume 3: Pseudo-Code Functions 3:281

3

Pseudo-Code Functions 3

This chapter contains a table of all pseudo-code functions used on the Itanium
instruction pages.

Table 3-1. Pseudo-code Functions

Function Operation

xxx_fault(parameters ...) There are several fault functions. Each fault function accepts parameters specific to
the fault, e.g., exception code values, virtual addresses, etc. If the fault is deferred for
speculative load exceptions the fault function will return with a deferral indication.
Otherwise, fault routines do not return and terminate the instruction sequence.

xxx_trap(parameters ...) There are several trap functions. Each trap function accepts parameters specific to
the trap, e.g., trap code values, virtual addresses, etc. Trap routines do not return.

acceptance_fence() Ensures prior data memory references to uncached ordered-sequential memory
pages are “accepted” before subsequent data memory references are performed by
the processor.

alat_cmp(rtype, raddr) Returns a one if the implementation finds an ALAT entry which matches the register
type specified by rtype and the register address specified by raddr, else returns
zero. This function is implementation specific. Note that an implementation may
optionally choose to return zero (indicating no match) even if a matching entry exists
in the ALAT. This provides implementation flexibility in designing fast ALAT lookup
circuits.

alat_frame_update(delta_bof, delta_sof) Notifies the ALAT of a change in the bottom of frame and/or size of frame. This allows
management of the ALAT’s tag bits or other management functions it might need.

alat_inval() Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, size) The ALAT is queried using the physical memory address specified by paddr and the
access size specified by size. All matching ALAT entries are invalidated. No value is
returned.

alat_inval_single_entry(rtype, rega) The ALAT is queried using the register type specified by rtype and the register
address specified by rega. At most one matching ALAT entry is invalidated. No value
is returned.

alat_read_memory_on_hit(ldtype, rtype,
raddr)

Returns a one if the implementation requires that the requested check load should
perform a memory access (requires prior address translation); returns a zero
otherwise.

alat_translate_address_on_hit(ldtype,
rtype, raddr)

Returns a one if the implementation requires that the requested check load should
translate the source address and take associated faults; returns a zero otherwise.

alat_write(ldtype, rtype, raddr, paddr,
size)

Allocates a new ALAT entry or updates an existing entry using the load type specified
by ldtype, the register type specified by rtype, the register address specified by
raddr, the physical memory address specified by paddr, and the access size
specified by size. No value is returned. This function guarantees that at most only
one ALAT entry exists for a given raddr. Based on the load type ldtype, if a
ld.c.nc, ldf.c.nc, or ldfp.c.nc instruction's raddr matches an existing ALAT
entry's register tag, but the instruction's size and/or paddr are different than that of
the existing entry's, then this function may either preserve the existing entry, or
invalidate it and write a new entry with the instruction's specified size and paddr.

align_to_size_boundary(vaddr, size) Returns vaddr aligned to the boundary specified by size.

branch_predict(wh, ih, ret, target, tag) Implementation-dependent routine which updates the processor’s branch prediction
structures.

3:282 Volume 3: Pseudo-Code Functions

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

check_branch_implemented(check_type) Implementation-dependent routine which returns TRUE or FALSE, depending on
whether a failing check instruction causes a branch (TRUE), or a Speculative
Operation fault (FALSE). The result may be different for different types of check
instructions: CHKS_GENERAL, CHKS_FLOAT, CHKA_GENERAL, CHKA_FLOAT. In
addition, the result may depend on other implementation-dependent parameters.

check_probe_virtualization_fault(type,
cpl)

If implemented, this function may raise virtualization faults for specific probe
instructions. Please refer to the instruction page for probe instruction for details.

check_target_register(r1) If the r1 argument specifies an out-of-frame stacked register (as defined by CFM) or
r1 specifies GR0, an Illegal Operation fault is delivered, and this function does not
return.

check_target_register_sof(r1, newsof) If the r1 argument specifies an out-of-frame stacked register (as defined by the
newsof argument) or r1 specifies GR0, an Illegal Operation fault is delivered and
this function does not return.

concatenate2(x1, x2) Concatenates the lower 32 bits of the 2 arguments, and returns the 64-bit result.

concatenate4(x1, x2, x3, x4) Concatenates the lower 16 bits of the 4 arguments, and returns the 64-bit result.

concatenate8(x1, x2, x3, x4, x5, x6, x7,
x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit result.

data_serialize() Ensures all prior register updates with side-effects are observed before subsequent
execution and data memory references are performed.

deliver_unmasked_pending_interrupt() This implementation-specific function checks whether any unmasked external
interrupts are pending, and if so, transfers control to the external interrupt vector.

execute_hint(hint) Executes the hint specified by hint.

fadd(fp_dp, fr2) Adds a floating-point register value to the infinitely precise product and return the
infinitely precise sum, ready for rounding.

fcmp_exception_fault_check(f2, f3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcmp instruction.

fcvt_fx_exception_fault_check(fr2,
signed_form, trunc_form, sf *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt.fx, fcvt.fxu,
fcvt.fx.trunc and fcvt.fxu.trunc instructions. It propagates NaNs.

fma_exception_fault_check(f2, f3, f4, pc,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fma instruction. It propagates
NaNs and special IEEE results.

fminmax_exception_fault_check(f2, f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the famax, famin, fmax, and fmin
instructions.

fms_fnma_exception_fault_check(f2, f3,
f4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fms and fnma instructions. It
propagates NaNs and special IEEE results.

fmul(fr3, fr4) Performs an infinitely precise multiply of two floating-point register values.

followed_by_stop() Returns TRUE if the current instruction is followed by a stop; otherwise, returns
FALSE.

fp_check_target_register(f1) If the specified floating-point register identifier is 0 or 1, this function causes an illegal
operation fault.

fp_decode_fault(tmp_fp_env) Returns floating-point exception fault code values for ISR.code.

fp_decode_traps(tmp_fp_env) Returns floating-point trap code values for ISR.code.

fp_equal(fr1, fr2) IEEE standard equality relationship test.

fp_fr_to_mem_format(freg, size) Converts a floating-point value in register format to floating-point memory format. It
assumes that the floating-point value in the register has been previously rounded to
the correct precision which corresponds with the size parameter.

fp_ieee_recip(num, den) Returns the true quotient for special sets of operands, or an approximation to the
reciprocal of the divisor to be used in the software divide algorithm.

fp_ieee_recip_sqrt(root) Returns the true square root result for special operands, or an approximation to the
reciprocal square root to be used in the software square root algorithm.

fp_is_nan(freg) Returns true when floating register contains a NaN.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Volume 3: Pseudo-Code Functions 3:283

fp_is_nan_or_inf(freg) Returns true if the floating-point exception_fault_check functions returned a IEEE
fault disabled default result or a propagated NaN.

fp_is_natval(freg) Returns true when floating register contains a NaTVal

fp_is_normal(freg) Returns true when floating register contains a normal number.

fp_is_pos_inf(freg) Returns true when floating register contains a positive infinity.

fp_is_qnan(freg) Returns true when floating register contains a quiet NaN.

fp_is_snan(freg) Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg) Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg) Returns true when floating register contains an unsupported format.

fp_less_than(fr1, fr2) IEEE standard less-than relationship test.

fp_lesser_or_equal(fr1, fr2) IEEE standard less-than or equal-to relationship test

fp_mem_to_fr_format(mem, size) Converts a floating-point value in memory format to floating-point register format.

fp_normalize(fr1) Normalizes an unnormalized fp value. This function flushes to zero any unnormal
values which can not be represented in the register file

fp_raise_fault(tmp_fp_env) Checks the local instruction state for any faulting conditions which require an
interruption to be raised.

fp_raise_traps(tmp_fp_env) Checks the local instruction state for any trapping conditions which require an
interruption to be raised.

fp_reg_bank_conflict(f1, f2) Returns true if the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, f3, f4) Check for possible disabled floating-point register faults.

fp_reg_read(freg) Reads the FR and gives canonical double-extended denormals (and
pseudo-denormals) their true mathematical exponent. Other classes of operands are
unaltered.

fp_unordered(fr1, fr2) IEEE standard unordered relationship

fp_update_fpsr(sf, tmp_fp_env) Copies a floating-point instruction’s local state into the global FPSR.

fp_update_psr(dest_freg) Conditionally sets PSR.mfl or PSR.mfh based on dest_freg.

fpcmp_exception_fault_check(f2, f3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcmp instruction.

fpcvt_exception_fault_check(f2,
signed_form, trunc_form, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcvt.fx, fpcvt.fxu,
fpcvt.fx.trunc, and fpcvt.fxu.trunc instructions. It propagates NaNs.

fpma_exception_fault_check(f2, f3, f4, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpma instruction. It propagates
NaNs and special IEEE results.

fpminmax_exception_fault_check(f2, f3,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpmin, fpmax, fpamin and
fpamax instructions.

fpms_fpnma_exception_fault_check(f2,
f3, f4, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpms and fpnma instructions. It
propagates NaNs and special IEEE results.

fprcpa_exception_fault_check(f2, f3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprcpa instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

fprsqrta_exception_fault_check(f3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprsqrta instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

frcpa_exception_fault_check(f2, f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frcpa instruction. It
propagates NaNs and special IEEE results.

frsqrta_exception_fault_check(f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frsqrta instruction. It
propagates NaNs and special IEEE results

ignored_field_mask(regclass, reg, value) Boolean function that returns value with bits cleared to 0 corresponding to ignored
bits for the specified register and register type.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

3:284 Volume 3: Pseudo-Code Functions

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

impl_check_mov_itir() Implementation-specific function that returns TRUE if ITIR is checked for reserved
fields and encodings on a mov to ITIR instruction.

impl_check_mov_psr_l(gr) Implementation-specific function to check bits {63:32} of gr corresponding to
reserved fields of the PSR for Reserved Register/Field fault.

impl_check_tlb_itir() Implementation-specific function that returns TRUE if all fields of ITIR are checked for
reserved encodings on a TLB insert instruction regardless of whether the translation
is present.

impl_gitc_enable() Implementation-specific function that indicates whether guest MOV-from-AR.ITC
optimization is enabled.

impl_ia32_ar_reserved_ignored(ar3) Implementation-specific function which indicates how the reserved and ignored fields
in the specified IA-32 application register, ar3, behave. If it returns FALSE, the
reserved and/or ignored bits in the specified application register can be written, and
when read they return the value most-recently written. If it returns TRUE, attempts to
write a non-zero value to a reserved field in the specified application register cause a
Reserved Register/Field fault, and reads return 0; writing to an ignored field in the
specified application register is ignored, and reads return the constant value defined
for that field.

impl_iib() Implementation-specific function which indicates whether Interruption Instruction
Bundle registers (IIB0-1) are implemented.

impl_itir_cwi_mask() Implementation-specific function that either returns the value passed to it or the value
passed to it masked with zeros in bit positions {63:32} and/or {1:0}.

impl_ito() Implementation-specific function which indicates whether Interval Timer Offset (ITO)
register is implemented.

impl_probe_intercept() Implementation-specific function indicates whether probe interceptions are
supported.

impl_ruc() Implementation-specific function which indicates whether Resource Utilization
Counter (RUC) application register is implemented.

impl_uia_fault_supported() Implementation-specific function that either returns TRUE if the processor reports
unimplemented instruction addresses with an Unimplemented Instruction Address
fault, and returns FALSE if the processor reports them with an Unimplemented
Instruction Address trap.

implemented_vm() Returns TRUE if the processor implements the PSR.vm bit (regardless of whether
virtual machine features are enabled or disabled).

instruction_implemented(inst) Implementation-dependent routine which returns TRUE or FALSE, depending on
whether inst is implemented.

instruction_serialize() Ensures all prior register updates with side-effects are observed before subsequent
instruction and data memory references are performed. Also ensures prior SYNC.i
operations have been observed by the instruction cache.

instruction_synchronize() Synchronizes the instruction and data stream for Flush Cache operations. This
function ensures that when prior Flush Cache operations are observed by the local
data cache they are observed by the local instruction cache, and when prior Flush
Cache operations are observed by another processor’s data cache they are observed
within the same processor’s instruction cache.

is_finite(freg) Returns true when floating register contains a finite number.

is_ignored_reg(regnum) Boolean function that returns true if regnum is an ignored application register,
otherwise false.

is_inf(freg) Returns true when floating register contains an infinite number.

is_interruption_cr(regnum) Boolean function that returns true if regnum is one of the Interruption Control
registers (see Section 3.3.5, “Interruption Control Registers” on page 2:36), otherwise
false.

is_kernel_reg(ar_addr) Returns a one if ar_addr is the address of a kernel register application register

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Volume 3: Pseudo-Code Functions 3:285

is_read_only_reg(rtype, raddr) Returns a one if the register addressed by raddr in the register bank of type rtype
is a read only register.

is_reserved_field(regclass, arg2, arg3) Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum) Returns true if register regnum is reserved in the regclass register file.

is_supported_hint(hint) Returns true if the implementation supports the specified hint. This function may
depend on factors other than the hint value, such as which execution unit it is
executed on or the slot number the instruction was encoded in.

itlb_ar() Returns the page access rights from the ITLB for the page addressed by the current
IP, or INVALID_AR if PSR.it is 0.

make_icache_coherent(paddr) The cache line addressed by the physical address paddr is flushed in an
implementation-specific manner that ensures that the instruction cache is coherent
with the data caches.

mem_flush(paddr) The line addressed by the physical address paddr is invalidated in all levels of the
memory hierarchy above memory and written back to memory if it is inconsistent with
memory.

mem_flush_pending_stores() The processor is instructed to start draining pending stores in write coalescing and
write buffers. This operation is a hint. There is no indication when prior stores have
actually been drained.

mem_implicit_prefetch(vaddr, hint, type) Moves the line addressed by vaddr to the location of the memory hierarchy specified
by hint. This function is implementation dependent and can be ignored. The type
allows the implementation to distinguish prefetches for different instruction types.

mem_promote(paddr, mtype, hint) Moves the line addressed by paddr to the highest level of the memory hierarchy
conditioned by the access hints specified by hint. Implementation dependent and
can be ignored.

mem_read(paddr, size, border, mattr,
otype, hint)

Returns the size bytes starting at the physical memory location specified by paddr
with byte order specified by border, memory attributes specified by mattr, and
access hint specified by hint. otype specifies the memory ordering attribute of this
access, and must be UNORDERED or ACQUIRE.

mem_read_pair(*low_value, *high_value,
paddr, size, border, mattr, otype, hint)

Reads the size / 2 bytes of memory starting at the physical memory address
specified by paddr into low_value, and the size / 2 bytes of memory starting at the
physical memory address specified by (paddr + size / 2) into high_value, with
byte order specified by border, memory attributes specified by mattr, and access
hint specified by hint. otype specifies the memory ordering attribute of this access,
and must be UNORDERED or ACQUIRE. No value is returned.

mem_write(value, paddr, size, border,
mattr, otype, hint)

Writes the least significant size bytes of value into memory starting at the physical
memory address specified by paddr with byte order specified by border, memory
attributes specified by mattr, and access hint specified by hint. otype specifies the
memory ordering attribute of this access, and must be UNORDERED or RELEASE.
No value is returned.

mem_write16(gr_value, ar_value, paddr,
border, mattr, otype, hint)

Writes the 8 bytes of gr_value into memory starting at the physical memory address
specified by paddr, and the 8 bytes of ar_value into memory starting at the physical
memory address specified by (paddr + 8), with byte order specified by border,
memory attributes specified by mattr, and access hint specified by hint. otype
specifies the memory ordering attribute of this access, and must be UNORDERED or
RELEASE. No value is returned.

mem_xchg(data, paddr, size, byte_order,
mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. After the read, the least
significant size bytes of data are written to size bytes in memory starting at the
physical address specified by paddr. The read and write are performed atomically.
Both the read and the write are conditioned by the memory attribute specified by
mattr and the byte ordering in memory is specified by byte_order. otype specifies
the memory ordering attribute of this access, and must be ACQUIRE.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

3:286 Volume 3: Pseudo-Code Functions

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

mem_xchg_add(add_val, paddr, size,
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. The least
significant size bytes of the sum of the value read from memory and add_val is
then written to size bytes in memory starting at the physical address specified by
paddr. The read and write are performed atomically. Both the read and the write are
conditioned by the memory attribute specified by mattr and the byte ordering in
memory is specified by byte_order. otype specifies the memory ordering attribute
of this access, and has the value ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data, paddr,
size, byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. If the value read
from memory is equal to cmp_val, then the least significant size bytes of data are
written to size bytes in memory starting at the physical address specified by
paddr. If the write is performed, the read and write are performed atomically. Both the
read and the write are conditioned by the memory attribute specified by mattr and
the byte ordering in memory is specified by byte_order. otype specifies the
memory ordering attribute of this access, and has the value ACQUIRE or RELEASE.

mem_xchg16_cond(cmp_val, gr_data,
ar_data, paddr, byte_order, mattr, otype,
hint)

Returns 8 bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. If the value read from
memory is equal to cmp_val, then the 8 bytes of gr_data are written to 8 bytes in
memory starting at the physical address specified by (paddr & ~0x8), and the 8 bytes
of ar_data are written to 8 bytes in memory starting at the physical address
specified by ((paddr & ~0x8) + 8). If the write is performed, the read and write are
performed atomically. Both the read and the write are conditioned by the memory
attribute specified by mattr and the byte ordering in memory is specified by
byte_order. The byte ordering only affects the ordering of bytes within each of the
8-byte values stored. otype specifies the memory ordering attribute of this access,
and has the value ACQUIRE or RELEASE.

ordering_fence() Ensures prior data memory references are made visible before future data memory
references are made visible by the processor.

partially_implemented_ip() Implementation-dependent routine which returns TRUE if the implementation, on an
Unimplemented Instruction Address trap, writes IIP with the sign-extended virtual
address or zero-extended physical address for what would have been the next value
of IP. Returns FALSE if the implementation, on this trap, simply writes IIP with the full
address which would have been the next value of IP.

pending_virtual_interrupt() Check for unmasked pending virtual interrupt.

pr_phys_to_virt(phys_id) Returns the virtual register id of the predicate from the physical register id, phys_id
of the predicate.

rotate_regs() Decrements the Register Rename Base registers, effectively rotating the register
files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

rse_enable_current_frame_load() If the RSE load pointer (RSE.BSPLoad) is greater than AR[BSP], the RSE.CFLE bit is
set to indicate that mandatory RSE loads are allowed to restore registers in the
current frame (in no other case does the RSE spill or fill registers in the current
frame). This function does not perform mandatory RSE loads. This procedure does
not cause any interruptions.

rse_ensure_regs_loaded(number_of_byt
es)

All registers and NaT collections between AR[BSP] and
(AR[BSP]-number_of_bytes) which are not already in stacked registers are
loaded into the register stack with mandatory RSE loads. If the number of registers to
be loaded is greater than RSE.N_STACK_PHYS an Illegal Operation fault is raised. All
registers starting with backing store address (AR[BSP] - 8) and decrementing down
to and including backing store address (AR[BSP] - number_of_bytes) are made part
of the dirty partition. With exception of the current frame, all other stacked registers
are made part of the invalid partition. Note that number_of_bytes may be zero. The
resulting sequence of RSE loads may be interrupted. Mandatory RSE loads may
cause an interruption; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_invalidate_non_current_regs() All registers outside the current frame are invalidated.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Volume 3: Pseudo-Code Functions 3:287

rse_load(type) Restores a register or NaT collection from the backing store (load_address =
RSE.BspLoad - 8). If load_address{8:3} is equal to 0x3f then a NaT collection is
loaded into a NaT dispersal register. (dispersal register may not be the same
as AR[RNAT].) If load_address{8:3} is not equal to 0x3f then the register
RSE.LoadReg - 1 is loaded and the NaT bit for that register is set to
dispersal_register{load_address{8:3}}. If the load is successful
RSE.BspLoad is decremented by 8. If the load is successful and a register was
loaded RSE.LoadReg is decremented by 1 (possibly wrapping in the stacked
registers). The load moves a register from the invalid partition to the current frame if
RSE.CFLE is 1, or to the clean partition if RSE.CFLE is 0. For mandatory RSE loads,
type is MANDATORY. Mandatory RSE loads may cause interruptions. See
Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_new_frame(current_frame_size,
new_frame_size)

A new frame is defined without changing any register renaming. The new frame size
is completely defined by the new_frame_size parameter (successive calls are not
cumulative). If new_frame_size is larger than current_frame_size and the
number of registers in the invalid and clean partitions is less than the size of frame
growth then mandatory RSE stores are issued until enough registers are available.
The resulting sequence of RSE stores may be interrupted. Mandatory RSE stores
may cause interruptions; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_preserve_frame(preserved_frame_si
ze)

The number of registers specified by preserved_frame_size are marked to be
preserved by the RSE. Register renaming causes the preserved_frame_size
registers after GR[32] to be renamed to GR[32]. AR[BSP] is updated to contain the
backing store address where the new GR[32] will be stored.

rse_restore_frame(preserved_sol,
growth, current_frame_size)

The first two parameters define how the current frame is about to be updated by a
branch return or rfi: preserved_sol defines how many registers need to be
restored below RSE.BOF; growth defines by how many registers the top of the
current frame will grow (growth will generally be negative). The number of registers
specified by preserved_sol are marked to be restored. Register renaming causes
the preserved_sol registers before GR[32] to be renamed to GR[32]. AR[BSP] is
updated to contain the backing store address where the new GR[32] will be stored. If
the number of dirty and clean registers is less than preserved_sol then mandatory
RSE loads must be issued before the new current frame is considered valid. This
function does not perform mandatory RSE loads. This function returns TRUE if the
preserved frame grows beyond the invalid and clean regions into the dirty region. In
this case the third argument, current_frame_size, is used to force the returned to
frame to zero (see Section 6.5.5, “Bad PFS used by Branch Return” on page 2:143).

rse_store(type) Saves a register or NaT collection to the backing store (store_address =
AR[BSPSTORE]). If store_address{8:3} is equal to 0x3f then the NaT collection
AR[RNAT] is stored. If store_address{8:3} is not equal to 0x3f then the register
RSE.StoreReg is stored and the NaT bit from that register is deposited in
AR[RNAT]{store_address{8:3}}. If the store is successful AR[BSPSTORE] is
incremented by 8. If the store is successful and a register was stored RSE.StoreReg
is incremented by 1 (possibly wrapping in the stacked registers). This store moves a
register from the dirty partition to the clean partition. For mandatory RSE stores, type
is MANDATORY. Mandatory RSE stores may cause interruptions. See Table 6-6,
“RSE Interruption Summary” on page 6-145.

rse_update_internal_stack_pointers(new
_store_pointer)

Given a new value for AR[BSPSTORE] (new_store_pointer) this function
computes the new value for AR[BSP]. This value is equal to new_store_pointer
plus the number of dirty registers plus the number of intervening NaT collections. This
means that the size of the dirty partition is the same before and after a write to
AR[BSPSTORE]. All clean registers are moved to the invalid partition.

sign_ext(value, pos) Returns a 64 bit number with bits pos-1 through 0 taken from value and bit pos-1 of
value replicated in bit positions pos through 63. If pos is greater than or equal to 64,
value is returned.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

3:288 Volume 3: Pseudo-Code Functions

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

spontaneous_deferral(paddr, size,
border, mattr, otype, hint, *defer)

Implementation-dependent routine which optionally forces *defer to TRUE if all of
the following are true: spontaneous deferral is enabled, spontaneous deferral is
permitted by the programming model, and the processor determines it would be
advantageous to defer the speculative load (e.g., based on a miss in some particular
level of cache).

spontaneous_deferral_enabled() Implementation-dependent routine which returns TRUE or FALSE, depending on
whether spontaneous deferral of speculative loads is enabled or disabled in the
processor.

tlb_access_key(vaddr, itype) This function returns, in bits 31:8, the access key from the TLB for the entry
corresponding to vaddr and itype; bits 63:32 and 7:0 return 0. If vaddr is an
unimplemented virtual address, or a matching present translation is not found, the
value 1 is returned.

tlb_broadcast_purge(rid, vaddr, size,
type)

Sends a broadcast purge DTC and ITC transaction to other processors in the
multiprocessor coherency domain, where the region identifier (rid), virtual address
(vaddr) and page size (size) specify the translation entry to purge. The operation
waits until all processors that receive the purge have completed the purge operation.
The purge type (type) specifies whether the ALAT on other processors should also
be purged in conjunction with the TC.

tlb_enter_privileged_code() This function determines the new privilege level for epc from the TLB entry for the
page containing this instruction. If the page containing the epc instruction has
execute-only page access rights and the privilege level assigned to the page is higher
than (numerically less than) the current privilege level, then the current privilege level
is set to the privilege level field in the translation for the page containing the epc
instruction.

tlb_grant_permission(vaddr, type, pl) Returns a boolean indicating if read, write access is granted for the specified virtual
memory address (vaddr) and privilege level (pl). The access type (type) specifies
either read or write. The following faults are checked::

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault
If a fault is generated, this function does not return.

tlb_insert_data(slot, pte0, pte1, vaddr, rid,
tr)

Inserts an entry into the DTLB, at the specified slot number. pte0, pte1 compose
the translation. vaddr and rid specify the virtual address and region identifier for the
translation. If tr is true the entry is placed in the TR section, otherwise the TC
section.

tlb_insert_inst(slot, pte0, pte1, vaddr, rid,
tr)

Inserts an entry into the ITLB, at the specified slot number. pte0, pte1 compose
the translation. vaddr and rid specify the virtual address and region identifier for the
translation. If tr is true, the entry is placed in the TR section, otherwise the TC
section.

tlb_may_purge_dtc_entries(rid, vaddr,
size)

May locally purge DTC entries that match the specified virtual address (vaddr),
region identifier (rid) and page size (size). May also invalidate entries that partially
overlap the parameters. The extent of purging is implementation dependent. If the
purge size is not supported, an implementation may generate a machine check abort
or over purge the translation cache up to and including removal of all entries from the
translation cache.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Volume 3: Pseudo-Code Functions 3:289

tlb_may_purge_itc_entries(rid, vaddr,
size)

May locally purge ITC entries that match the specified virtual address (vaddr), region
identifier (rid) and page size (size). May also invalidate entries that partially overlap
the parameters. The extent of purging is implementation dependent. If the purge size
is not supported, an implementation may generate a machine check abort or over
purge the translation cache up to and including removal of all entries from the
translation cache.

tlb_must_purge_dtc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTC entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing DTR translation, an implementation may generate a
machine check abort.

tlb_must_purge_dtr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTR entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_must_purge_itc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITC entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing ITR translation, an implementation may generate a
machine check abort.

tlb_must_purge_itr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITR entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_purge_translation_cache(loop) Removes 1 to N translations from the local processor’s ITC and DTC. The number of
entries removed is implementation specific. The parameter loop is used to generate
an implementation-specific purge parameter.

tlb_replacement_algorithm(tlb) Returns the next ITC or DTC slot number to replace. Replacement algorithms are
implementation specific. tlb specifies to perform the algorithm on the ITC or DTC.

tlb_search_pkr(key) Searches for a valid protection key register with a matching protection key. The
search algorithm is implementation specific. Returns the PKR register slot number if
found, otherwise returns Not Found.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

3:290 Volume 3: Pseudo-Code Functions

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

tlb_translate(vaddr, size, type, cpl, *attr,
*defer)

Returns the translated data physical address for the specified virtual memory address
(vaddr) when translation enabled; otherwise, returns vaddr. size specifies the size
of the access, type specifies the type of access (e.g., read, write, advance, spec).
cpl specifies the privilege level for access checking purposes. *attr returns the
mapped physical memory attribute. If any fault conditions are detected and deferred,
tlb_translate returns with *defer set. If a fault is generated but the fault is not
deferred, tlb_translate does not return. tlb_translate checks the following faults:

• Unimplemented Data Address fault

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty Bit fault

• Data Access Bit fault

• Data Debug fault

• Unaligned Data Reference fault

• Unsupported Data Reference fault

tlb_translate_nonaccess(vaddr, type) Returns the translated data physical address for the specified virtual memory address
(vaddr). type specifies the type of access (e.g., FC, TPA). If a fault is generated,
tlb_translate_nonaccess does not return. The following faults are checked:

• Unimplemented Data Address fault

• Virtualization fault (tpa only)

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Access Rights fault (fc only)

tlb_vhpt_hash(vrn, vaddr61, rid, size) Generates a VHPT entry address for the specified virtual region number (vrn) and
61-bit virtual offset (vaddr61), region identifier (rid) and page size (size).
Tlb_vhpt_hash hashes vaddr, rid and size parameters to produce a hash index.
The hash index is then masked based on PTA.size and concatenated with PTA.base
to generate the VHPT entry address. The long format hash is implementation
specific.

tlb_vhpt_tag(vaddr, rid, size) Generates a VHPT tag identifier for the specified virtual address (vaddr), region
identifier (rid) and page size (size). Tlb_vhpt_tag hashes the vaddr, rid and size
parameters to produce translation identifier. The tag in conjunction with the hash
index is used to uniquely identify translations in the VHPT. Tag generation is
implementation specific. All processor models tag function must guarantee that bit 63
of the generated tag is zero (ti bit).

undefined() Returns an undefined 64-bit value.

undefined_behavior() Causes undefined processor behavior. Extent of undefined behavior is described in
Section 3.5, “Undefined Behavior” on page 1:44.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Volume 3: Pseudo-Code Functions 3:291

§

unimplemented_physical_address(paddr) Return TRUE if the presented physical address is unimplemented on this processor
model; FALSE otherwise. This function is model specific.

unimplemented_virtual_address(vaddr,
vm)

Return TRUE if the presented virtual address is unimplemented on this processor
model; FALSE otherwise. If vm is 1, one additional bit of virtual address is treated as
unimplemented. This function is model specific.

vm_all_probes() Returns TRUE if the processor is configured to virtualize all probe instructions when
PSR.vm is 1. See Section 11.7.4.2.8, “Probe Instruction Virtualization” on
page 2:344 for details.

vm_disabled() Returns TRUE if the processor implements the PSR.vm bit and virtual machine
features are disabled. See Section 3.4, “Processor Virtualization” on page 2:44 in
SDM and “PAL_PROC_GET_FEATURES – Get Processor Dependent Features
(17)” on page 2:446 in SDM for details.

vm_select_probes() Returns TRUE if the processor is configured to virtualize selected probe instructions
when PSR.vm is 1. See Section 11.7.4.2.8, “Probe Instruction Virtualization” on
page 2:344 for details.

vmsw_disabled() Returns TRUE if the processor implements the PSR.vm bit and the vmsw instruction
is disabled. See Section 3.4, “Processor Virtualization” on page 2:44 in SDM and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on
page 2:446 in SDM for details.

zero_ext(value, pos) Returns a 64 bit unsigned number with bits pos-1 through 0 taken from value and
zeroes in bit positions pos through 63. If pos is greater than or equal to 64, value is
returned.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

3:292 Volume 3: Pseudo-Code Functions

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

Volume 3: Instruction Formats 3:293

Instruction Formats 4

Each Itanium instruction is categorized into one of six types; each instruction type may
be executed on one or more execution unit types. Table 4-1 lists the instruction types
and the execution unit type on which they are executed:

Three instructions are grouped together into 128-bit sized and aligned containers called
bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template
field. The format of a bundle is depicted in Figure 4-1.

The template field specifies two properties: stops within the current bundle, and the
mapping of instruction slots to execution unit types. Not all combinations of these two
properties are allowed - Table 4-2 indicates the defined combinations. The three
rightmost columns correspond to the three instruction slots in a bundle; listed within
each column is the execution unit type controlled by that instruction slot for each
encoding of the template field. A double line to the right of an instruction slot indicates
that a stop occurs at that point within the current bundle. See “Instruction Encoding
Overview” on page 1:38 for the definition of a stop. Within a bundle, execution order
proceeds from slot 0 to slot 2. Unused template values (appearing as empty rows in
Table 4-2) are reserved and cause an Illegal Operation fault.

Extended instructions, used for long immediate integer and long branch instructions,
occupy two instruction slots. Depending on the major opcode, extended instructions
execute on a B-unit (long branch/call) or an I-unit (all other L+X instructions).

Table 4-1. Relationship between Instruction Type and Execution Unit Type

Instruction
Type

Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unita

a. L+X Major Opcodes 0 - 7 execute on an I-unit. L+X Major Opcodes 8 - F execute on a B-unit.

Figure 4-1. Bundle Format

127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template

41 41 41 5

3:294 Volume 3: Instruction Formats

4.1 Format Summary

All instructions in the instruction set are 41 bits in length. The leftmost 4 bits (40:37) of
each instruction are the major opcode. Table 4-3 shows the major opcode assignments
for each of the 5 instruction types — ALU (A), Integer (I), Memory (M), Floating-point
(F), and Branch (B). Bundle template bits are used to distinguish among the 4 columns,
so the same major op values can be reused in each column.

Unused major ops (appearing as blank entries in Table 4-3) behave in one of four ways:

• Ignored major ops (white entries in Table 4-3) execute as nop instructions.

Table 4-2. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unita

05 M-unit L-unit X-unita

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F

a. The MLX template was formerly called MLI, and for compatibility, the X slot may encode break.i and nop.i in
addition to any X-unit instruction.

Volume 3: Instruction Formats 3:295

• Reserved major ops (light gray in the gray scale version of Table 4-3, brown in the
color version) cause an Illegal Operation fault.

• Reserved if PR[qp] is 1 major ops (dark gray in the gray scale version of Table 4-3,
purple in the color version) cause an Illegal Operation fault if the predicate register
specified by the qp field of the instruction (bits 5:0) is 1 and execute as a nop
instruction if 0.

• Reserved if PR[qp] is 1 B-unit major ops (medium gray in the gray scale version of
Table 4-3, cyan in the color version) cause an Illegal Operation fault if the predicate
register specified by the qp field of the instruction (bits 5:0) is 1 and execute as a
nop instruction if 0. These differ from the Reserved if PR[qp] is 1 major ops (purple)
only in their RAW dependency behavior (see “RAW Dependency Table” on
page 3:374).

Table 4-4 on page 3:296 summarizes all the instruction formats. The instruction fields
are color-coded for ease of identification, as described in Table 4-5 on page 3:298. A
color version of this chapter is available for those heavily involved in working with the
instruction encodings.

The instruction field names, used throughout this chapter, are described in Table 4-6 on
page 3:298. The set of special notations (such as whether an instruction is privileged)
are listed in Table 4-7 on page 3:299. These notations appear in the “Instruction”
column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one
instruction field. For example, the 14-bit immediate in the Add Imm14 instruction
(format A4) is formed from the imm7b, imm6d, and s fields. Table 4-74 on page 3:368
shows how the immediates are formed from the instruction fields for each instruction
which has an immediate.

Table 4-3. Major Opcode Assignments

Major
Op

(Bits
40:37)

Instruction Type

I/A M/A F B L+X

0 Misc 0 Sys/Mem Mgmt 0 FP Misc 0 Misc/Indirect Branch 0 Misc 0

1 1 Sys/Mem Mgmt 1 FP Misc 1 Indirect Call 1 1

2 2 2 2 Indirect Predict/Nop 2 2

3 3 3 3 3 3

4 Deposit 4 Int Ld +Reg/getf 4 FP Compare 4 IP-relative Branch 4 4

5 Shift/Test Bit 5 Int Ld/St +Imm 5 FP Class 5 IP-rel Call 5 5

6 6 FP Ld/St +Reg/setf 6 6 6 movl 6

7 MM Mpy/Shift 7 FP Ld/St +Imm 7 7 IP-relative Predict 7 7

8 ALU/MM ALU 8 ALU/MM ALU 8 fma 8 e 8 8

9 Add Imm22
9 Add Imm22

9 fma 9 e 9 9

A A A fms A e A A

B B B fms B e B B

C Compare C Compare C fnma C e C Long Branch C

D Compare D Compare D fnma D e D Long Call D

E Compare E Compare E fselect/xma E e E E

F F F F e F F

3:296 Volume 3: Instruction Formats

Table 4-4. Instruction Format Summary

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0
ALU A1 8 x2a ve x4 x2b r3 r2 r1 qp

Shift L and Add A2 8 x2a ve x4 ct2d r3 r2 r1 qp
ALU Imm8 A3 8 s x2a ve x4 x2b r3 imm7b r1 qp
Add Imm14 A4 8 s x2a ve imm6d r3 imm7b r1 qp
Add Imm22 A5 9 s imm9d imm5c r3 imm7b r1 qp
Compare A6 C - E tb x2 ta p2 r3 r2 c p1 qp

Compare to Zero A7 C - E tb x2 ta p2 r3 0 c p1 qp
Compare Imm8 A8 C - E s x2 ta p2 r3 imm7b c p1 qp

MM ALU A9 8 za x2a zb x4 x2b r3 r2 r1 qp
MM Shift and Add A10 8 za x2a zb x4 ct2d r3 r2 r1 qp

MM Multiply Shift I1 7 za x2a zb ve ct2d x2b r3 r2 r1 qp
MM Mpy/Mix/Pack I2 7 za x2a zb ve x2c x2b r3 r2 r1 qp

MM Mux1 I3 7 za x2a zb ve x2c x2b mbt4c r2 r1 qp
MM Mux2 I4 7 za x2a zb ve x2c x2b mht8c r2 r1 qp

Shift R Variable I5 7 za x2a zb ve x2c x2b r3 r2 r1 qp
MM Shift R Fixed I6 7 za x2a zb ve x2c x2b r3 count5b r1 qp
Shift L Variable I7 7 za x2a zb ve x2c x2b r3 r2 r1 qp

MM Shift L Fixed I8 7 za x2a zb ve x2c x2b ccount5c r2 r1 qp
Bit Strings I9 7 za x2a zb ve x2c x2b r3 0 r1 qp

Shift Right Pair I10 5 x2 x count6d r3 r2 r1 qp
Extract I11 5 x2 x len6d r3 pos6b y r1 qp
Dep.Z I12 5 x2 x len6d y cpos6c r2 r1 qp

Dep.Z Imm8 I13 5 s x2 x len6d y cpos6c imm7b r1 qp
Deposit Imm1 I14 5 s x2 x len6d r3 cpos6b r1 qp

Deposit I15 4 cpos6d len4d r3 r2 r1 qp
Test Bit I16 5 tb x2 ta p2 r3 pos6b y c p1 qp

Test NaT I17 5 tb x2 ta p2 r3 x y c p1 qp
Nop/Hint I18 0 i x3 x6 y imm20a qp

Break I19 0 i x3 x6 imm20a qp
Int Spec Check I20 0 s x3 imm13c r2 imm7a qp

Move to BR I21 0 x3 timm9c ih x wh r2 b1 qp
Move from BR I22 0 x3 x6 b2 r1 qp
Move to Pred I23 0 s x3 mask8c r2 mask7a qp

Move to Pred Imm44 I24 0 s x3 imm27a qp
Move from Pred/IP I25 0 x3 x6 r1 qp

Move to AR I26 0 x3 x6 ar3 r2 qp
Move to AR Imm8 I27 0 s x3 x6 ar3 imm7b qp

Move from AR I28 0 x3 x6 ar3 r1 qp
Sxt/Zxt/Czx I29 0 x3 x6 r3 r1 qp
Test Feature I30 5 tb x2 ta p2 0 x imm5b y c p1 qp

Int Load M1 4 m x6 hint x r3 r1 qp
Int Load +Reg M2 4 m x6 hint x r3 r2 r1 qp
Int Load +Imm M3 5 s x6 hint i r3 imm7b r1 qp

Int Store M4 4 m x6 hint x r3 r2 qp
Int Store +Imm M5 5 s x6 hint i r3 r2 imm7a qp

FP Load M6 6 m x6 hint x r3 f1 qp
FP Load +Reg M7 6 m x6 hint x r3 r2 f1 qp
FP Load +Imm M8 7 s x6 hint i r3 imm7b f1 qp

FP Store M9 6 m x6 hint x r3 f2 qp
FP Store +Imm M10 7 s x6 hint i r3 f2 imm7a qp
FP Load Pair M11 6 m x6 hint x r3 f2 f1 qp

FP Load Pair +Imm M12 6 m x6 hint x r3 f2 f1 qp
Line Prefetch M13 6 m x6 hint x r3 qp

Line Prefetch +Reg M14 6 m x6 hint x r3 r2 qp
Line Prefetch +Imm M15 7 s x6 hint i r3 imm7b qp

(Cmp &) Exchg M16 4 m x6 hint x r3 r2 r1 qp
Fetch & Add M17 4 m x6 hint x r3 s i2b r1 qp

Set FR M18 6 m x6 x r2 f1 qp
Get FR M19 4 m x6 x f2 r1 qp

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Volume 3: Instruction Formats 3:297

Int Spec Check M20 1 s x3 imm13c r2 imm7a qp
FP Spec Check M21 1 s x3 imm13c f2 imm7a qp
Int ALAT Check M22 0 s x3 imm20b r1 qp
FP ALAT Check M23 0 s x3 imm20b f1 qp
Sync/Srlz/ALAT M24 0 x3 x2 x4 qp

RSE Control M25 0 x3 x2 x4 0
Int ALAT Inval M26 0 x3 x2 x4 r1 qp
FP ALAT Inval M27 0 x3 x2 x4 f1 qp
Flush Cache M28 1 x x3 x6 r3 qp
Move to AR M29 1 x3 x6 ar3 r2 qp

Move to AR Imm8 M30 0 s x3 x2 x4 ar3 imm7b qp
Move from AR M31 1 x3 x6 ar3 r1 qp
Move to CR M32 1 x3 x6 cr3 r2 qp

Move from CR M33 1 x3 x6 cr3 r1 qp
Alloc M34 1 x3 sor sol sof r1 qp

Move to PSR M35 1 x3 x6 r2 qp
Move from PSR M36 1 x3 x6 r1 qp

Break M37 0 i x3 x2 x4 imm20a qp
Probe M38 1 x3 x6 r3 r2 r1 qp

Probe Imm2 M39 1 x3 x6 r3 i2b r1 qp
Probe Fault Imm2 M40 1 x3 x6 r3 i2b qp

TC Insert M41 1 x3 x6 r2 qp
Mv to Ind/TR Ins M42 1 x3 x6 r3 r2 qp

Mv from Ind M43 1 x3 x6 r3 r1 qp
Set/Reset Mask M44 0 i x3 i2d x4 imm21a qp

Translation Purge M45 1 x3 x6 r3 r2 qp
Translation Access M46 1 x3 x6 r3 r1 qp

TC Entry Purge M47 1 x3 x6 r3 qp
Nop/Hint M48 0 i x3 x2 x4 y imm20a qp

IP-Relative Branch B1 4 s d wh imm20b p btype qp
Counted Branch B2 4 s d wh imm20b p btype 0
IP-Relative Call B3 5 s d wh imm20b p b1 qp
Indirect Branch B4 0 d wh x6 b2 p btype qp

Indirect Call B5 1 d wh b2 p b1 qp
IP-Relative Predict B6 7 s ih t2e imm20b timm7a wh

Indirect Predict B7 2 ih t2e x6 b2 timm7a wh
Misc B8 0 x6 0

Break/Nop/Hint B9 0/2 i x6 imm20a qp
FP Arithmetic F1 8 - D x sf f4 f3 f2 f1 qp

Fixed Multiply Add F2 E x x2 f4 f3 f2 f1 qp
FP Select F3 E x f4 f3 f2 f1 qp

FP Compare F4 4 rb sf ra p2 f3 f2 ta p1 qp
FP Class F5 5 fc2 p2 fclass7c f2 ta p1 qp

FP Recip Approx F6 0 - 1 q sf x p2 f3 f2 f1 qp
FP Recip Sqrt App F7 0 - 1 q sf x p2 f3 f1 qp
FP Min/Max/Pcmp F8 0 - 1 sf x x6 f3 f2 f1 qp
FP Merge/Logical F9 0 - 1 x x6 f3 f2 f1 qp

Convert FP to Fixed F10 0 - 1 sf x x6 f2 f1 qp
Convert Fixed to FP F11 0 x x6 f2 f1 qp

FP Set Controls F12 0 sf x x6 omask7c amask7b qp
FP Clear Flags F13 0 sf x x6 qp
FP Check Flags F14 0 s sf x x6 imm20a qp

Break F15 0 i x x6 imm20a qp
Nop/Hint F16 0 i x x6 y imm20a qp

Break X1 0 i x3 x6 imm20a qp imm41
Move Imm64 X2 6 i imm9d imm5c ic vc imm7b r1 qp imm41
Long Branch X3 C i d wh imm20b p btype qp imm39

Long Call X4 D i d wh imm20b p b1 qp imm39
Nop/Hint X5 0 i x3 x6 y imm20a qp imm41

Table 4-4. Instruction Format Summary (Continued)

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

3:298 Volume 3: Instruction Formats

Table 4-5. Instruction Field Color Key

Field & Color

ALU Instruction Opcode Extension

Integer Instruction Opcode Hint Extension

Memory Instruction Immediate

Branch Instruction Indirect Source

Floating-point Instruction Predicate Destination

Integer Source Integer Destination

Memory Source Memory Source & Destination

Shift Source Shift Immediate

Special Register Source Special Register Destination

Floating-point Source Floating-point Destination

Branch Source Branch Destination

Address Source Branch Tag Immediate

Qualifying Predicate Reserved Instruction

Ignored Field/Instruction Reserved Inst if PR[qp] is 1

Reserved B-type Inst if PR[qp] is 1

Table 4-6. Instruction Field Names

Field Name Description

ar3 application register source/target

b1, b2 branch register source/target

btype branch type opcode extension

c complement compare relation opcode extension

ccount5c multimedia shift left complemented shift count immediate

count5b, count6d multimedia shift right/shift right pair shift count immediate

cposx deposit complemented bit position immediate

cr3 control register source/target

ct2d multimedia multiply shift/shift and add shift count immediate

d branch cache deallocation hint opcode extension

fn floating-point register source/target

fc2, fclass7c floating-point class immediate

hint memory reference hint opcode extension

i, i2b, i2d, immx immediate of length 1, 2, or x

ih branch importance hint opcode extension

len4d, len6d extract/deposit length immediate

m memory reference post-modify opcode extension

maskx predicate immediate mask

mbt4c, mht8c multimedia mux1/mux2 immediate

p sequential prefetch hint opcode extension

p1, p2 predicate register target

pos6b test bit/extract bit position immediate

q floating-point reciprocal/reciprocal square-root opcode extension

qp qualifying predicate register source

rn general register source/target

s immediate sign bit

sf floating-point status field opcode extension

Volume 3: Instruction Formats 3:299

The remaining sections of this chapter present the detailed encodings of all instructions.
The “A-Unit Instruction encodings” are presented first, followed by the “I-Unit
Instruction Encodings” on page 3:310, “M-Unit Instruction Encodings” on page 3:323,
“B-Unit Instruction Encodings” on page 3:349, “F-Unit Instruction Encodings” on
page 3:356, and “X-Unit Instruction Encodings” on page 3:365.

Within each section, the instructions are grouped by function, and appear with their
instruction format in the same order as in Table 4-4, “Instruction Format Summary” on
page 3:296. The opcode extension fields are briefly described and tables present the
opcode extension assignments. Unused instruction encodings (appearing as blank
entries in the opcode extensions tables) behave in one of four ways:

• Ignored instructions (white color entries in the tables) execute as nop instructions.

• Reserved instructions (light gray color in the gray scale version of the tables, brown
color in the color version) cause an Illegal Operation fault.

• Reserved if PR[qp] is 1 instructions (dark gray in the gray scale version of the
tables, purple in the color version) cause an Illegal Operation fault if the predicate
register specified by the qp field of the instruction (bits 5:0) is 1 and execute as a
nop instruction if 0.

• Reserved if PR[qp] is 1 B-unit instructions (medium gray in the gray scale version
of the tables, cyan in the color version) cause an Illegal Operation fault if the
predicate register specified by the qp field of the instruction (bits 5:0) is 1 and
execute as a nop instruction if 0. These differ from the Reserved if PR[qp] is 1
instructions (purple) only in their RAW dependency behavior (see “RAW
Dependency Table” on page 3:374).

sof, sol, sor alloc size of frame, size of locals, size of rotating immediates

ta, tb compare type opcode extension

t2e, timmx branch predict tag immediate

vx reserved opcode extension field

wh branch whether hint opcode extension

x, xn opcode extension of length 1 or n

y extract/deposit/test bit/test NaT/hint opcode extension

za, zb multimedia operand size opcode extension

Table 4-7. Special Instruction Notations

Notation Description

e instruction ends an instruction group when taken, or for Reserved if PR[qp] is 1 (cyan)
encodings and non-branch instructions with a qualifying predicate, when its PR[qp] is
1, or for Reserved (brown) encodings, unconditionally

f instruction must be the first instruction in an instruction group and must either be in
instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0

i instruction is allowed in the I slot of an MLI template

l instruction must be the last in an instruction group

p privileged instruction

t instruction is only allowed in instruction slot 2

Table 4-6. Instruction Field Names (Continued)

Field Name Description

3:300 Volume 3: Instruction Formats

Some processors may implement the Reserved if PR[qp] is 1 (purple) and Reserved if
PR[qp] is 1 B-unit (cyan) encodings in the L+X opcode space as Reserved (brown).
These encodings appear in the L+X column of Table 4-3 on page 3:295, and in
Table 4-69 on page 3:366, Table 4-70 on page 3:366, Table 4-71 on page 3:367, and
Table 4-72 on page 3:367. On processors which implement these encodings as
Reserved (brown), the operating system is required to provide an Illegal Operation fault
handler which emulates them as Reserved if PR[qp] is 1 (cyan/purple) by decoding the
reserved opcodes, checking the qualifying predicate, and returning to the next
instruction if PR[qp] is 0.

Constant 0 fields in instructions must be 0 or undefined operation results. The
undefined operation may include checking that the constant field is 0 and causing an
Illegal Operation fault if it is not. If an instruction having a constant 0 field also has a
qualifying predicate (qp field), the fault or other undefined operation must not occur if
PR[qp] is 0. For constant 0 fields in instruction bits 5:0 (normally used for qp), the fault
or other undefined operation may or may not depend on the PR addressed by those
bits.

Ignored (white space) fields in instructions should be coded as 0. Although ignored in
this revision of the architecture, future architecture revisions may define these fields as
hint extensions. These hint extensions will be defined such that the 0 value in each field
corresponds to the default hint. It is expected that assemblers will automatically set
these fields to zero by default.

Unused opcode hint extension values (white color entries in Hint Completer tables)
should not be used by software. Processors must perform the architected functional
behavior of the instruction independent of the hint extension value (whether defined or
unused), but different processor models may interpret unused opcode hint extension
values in different ways, resulting in undesirable performance effects.

4.2 A-Unit Instruction Encodings

4.2.1 Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode
extension field in bits 35:34 (x2a) and most have a second 2-bit opcode extension field
in bits 28:27 (x2b), a 4-bit opcode extension field in bits 32:29 (x4), and a 1-bit
reserved opcode extension field in bit 33 (ve). Table 4-8 shows the 2-bit x2a and 1-bit
ve assignments, Table 4-9 shows the integer ALU 4-bit+2-bit assignments, and
Table 4-12 on page 3:306 shows the multimedia ALU 1-bit+2-bit assignments (which
also share major opcode 8).

Table 4-8. Integer ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

ve
Bit 33

0 1

8

0 Integer ALU 4-bit+2-bit Ext (Table 4-9)

1 Multimedia ALU 1-bit+2-bit Ext (Table 4-12)

2 adds – imm14 A4

3 addp4 – imm14 A4

Volume 3: Instruction Formats 3:301

4.2.1.1 Integer ALU – Register-Register

A1

4.2.1.2 Shift Left and Add

A2

Table 4-9. Integer ALU 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

ve
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 0 0

0 add A1 add +1 A1

1 sub -1 A1 sub A1

2 addp4 A1

3 and A1 andcm A1 or A1 xor A1

4 shladd A2

5

6 shladdp4 A2

7

8

9 sub – imm8 A3

A

B and – imm8 A3 andcm – imm8 A3 or – imm8 A3 xor – imm8 A3

C

D

E

F

40 373635343332 29282726 2019 1312 6 5 0

8 x2a ve x4 x2b r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b

add
r1 = r2, r3

8 0 0

0
0

r1 = r2, r3, 1 1

sub
r1 = r2, r3

1
1

r1 = r2, r3, 1 0

addp4

r1 = r2, r3

2 0

and

3

0

andcm 1

or 2

xor 3

40 373635343332 29282726 2019 1312 6 5 0

8 x2a ve x4 ct2d r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4

shladd
r1 = r2, count2, r3 8 0 0

4

shladdp4 6

3:302 Volume 3: Instruction Formats

4.2.1.3 Integer ALU – Immediate8-Register

A3

4.2.1.4 Add Immediate14

A4

4.2.1.5 Add Immediate22

A5

4.2.2 Integer Compare

The integer compare instructions are encoded within major opcodes C - E using a 2-bit
opcode extension field (x2) in bits 35:34 and three 1-bit opcode extension fields in bits
33 (ta), 36 (tb), and 12 (c), as shown in Table 4-10. The integer compare immediate
instructions are encoded within major opcodes C - E using a 2-bit opcode extension
field (x2) in bits 35:34 and two 1-bit opcode extension fields in bits 33 (ta) and 12 (c),
as shown in Table 4-11.

40 373635343332 29282726 2019 1312 6 5 0

8 s x2a ve x4 x2b r3 imm7b r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b

sub

r1 = imm8, r3 8 0 0

9 1

and

B

0

andcm 1

or 2

xor 3

40 373635343332 2726 2019 1312 6 5 0

8 s x2a ve imm6d r3 imm7b r1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve

adds
r1 = imm14, r3 8

2
0

addp4 3

40 373635 2726 22212019 1312 6 5 0

9 s imm9d imm5c r3 imm7b r1 qp

4 1 9 5 2 7 7 6

Instruction Operands Opcode

addl r1 = imm22, r3 9

Volume 3: Instruction Formats 3:303

Table 4-10. Integer Compare Opcode Extensions

x2
Bits

35:34

tb
Bit
36

ta
Bit
33

c
Bit
12

Opcode
Bits 40:37

C D E

0

0

0
0 cmp.lt A6 cmp.ltu A6 cmp.eq A6

1 cmp.lt.unc A6 cmp.ltu.unc A6 cmp.eq.unc A6

1
0 cmp.eq.and A6 cmp.eq.or A6 cmp.eq.or.andcm A6

1 cmp.ne.and A6 cmp.ne.or A6 cmp.ne.or.andcm A6

1

0
0 cmp.gt.and A7 cmp.gt.or A7 cmp.gt.or.andcm A7

1 cmp.le.and A7 cmp.le.or A7 cmp.le.or.andcm A7

1
0 cmp.ge.and A7 cmp.ge.or A7 cmp.ge.or.andcm A7

1 cmp.lt.and A7 cmp.lt.or A7 cmp.lt.or.andcm A7

1

0

0
0 cmp4.lt A6 cmp4.ltu A6 cmp4.eq A6

1 cmp4.lt.unc A6 cmp4.ltu.unc A6 cmp4.eq.unc A6

1
0 cmp4.eq.and A6 cmp4.eq.or A6 cmp4.eq.or.andcm A6

1 cmp4.ne.and A6 cmp4.ne.or A6 cmp4.ne.or.andcm A6

1

0
0 cmp4.gt.and A7 cmp4.gt.or A7 cmp4.gt.or.andcm A7

1 cmp4.le.and A7 cmp4.le.or A7 cmp4.le.or.andcm A7

1
0 cmp4.ge.and A7 cmp4.ge.or A7 cmp4.ge.or.andcm A7

1 cmp4.lt.and A7 cmp4.lt.or A7 cmp4.lt.or.andcm A7

Table 4-11. Integer Compare Immediate Opcode Extensions

x2
Bits

35:34

ta
Bit
33

c
Bit
12

Opcode
Bits 40:37

C D E

2

0
0 cmp.lt – imm8 A8 cmp.ltu – imm8 A8 cmp.eq – imm8 A8

1 cmp.lt.unc – imm8 A8 cmp.ltu.unc – imm8 A8 cmp.eq.unc – imm8 A8

1
0 cmp.eq.and – imm8 A8 cmp.eq.or – imm8 A8 cmp.eq.or.andcm – imm8 A8

1 cmp.ne.and – imm8 A8 cmp.ne.or – imm8 A8 cmp.ne.or.andcm – imm8 A8

3

0
0 cmp4.lt – imm8 A8 cmp4.ltu – imm8 A8 cmp4.eq – imm8 A8

1 cmp4.lt.unc – imm8 A8 cmp4.ltu.unc – imm8 A8 cmp4.eq.unc – imm8 A8

1

0
cmp4.eq.and – imm8 A8 cmp4.eq.or – imm8 A8 cmp4.eq.or.andcm – imm8

A8

1
cmp4.ne.and – imm8 A8 cmp4.ne.or – imm8 A8 cmp4.ne.or.andcm – imm8

A8

3:304 Volume 3: Instruction Formats

4.2.2.1 Integer Compare – Register-Register

A6

40 373635343332 2726 2019 1312 11 6 5 0

C - E tb x2 ta p2 r3 r2 c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c

cmp.lt

p1, p2 = r2, r3

C

0 0

0

0cmp.ltu D

cmp.eq E

cmp.lt.unc C

1cmp.ltu.unc D

cmp.eq.unc E

cmp.eq.and C

1

0cmp.eq.or D

cmp.eq.or.andcm E

cmp.ne.and C

1cmp.ne.or D

cmp.ne.or.andcm E

cmp4.lt C

1 0

0

0cmp4.ltu D

cmp4.eq E

cmp4.lt.unc C

1cmp4.ltu.unc D

cmp4.eq.unc E

cmp4.eq.and C

1

0cmp4.eq.or D

cmp4.eq.or.andcm E

cmp4.ne.and C

1cmp4.ne.or D

cmp4.ne.or.andcm E

Volume 3: Instruction Formats 3:305

4.2.2.2 Integer Compare to Zero – Register

A7

40 373635343332 2726 2019 1312 11 6 5 0

C - E tb x2 ta p2 r3 0 c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c

cmp.gt.and

p1, p2 = r0, r3

C

0

1

0

0cmp.gt.or D

cmp.gt.or.andcm E

cmp.le.and C

1cmp.le.or D

cmp.le.or.andcm E

cmp.ge.and C

1

0cmp.ge.or D

cmp.ge.or.andcm E

cmp.lt.and C

1cmp.lt.or D

cmp.lt.or.andcm E

cmp4.gt.and C

1

0

0cmp4.gt.or D

cmp4.gt.or.andcm E

cmp4.le.and C

1cmp4.le.or D

cmp4.le.or.andcm E

cmp4.ge.and C

1

0cmp4.ge.or D

cmp4.ge.or.andcm E

cmp4.lt.and C

1cmp4.lt.or D

cmp4.lt.or.andcm E

3:306 Volume 3: Instruction Formats

4.2.2.3 Integer Compare – Immediate-Register

A8

4.2.3 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit
opcode extension fields in bits 36 (za) and 33 (zb) and a 2-bit opcode extension field in
bits 35:34 (x2a) as shown in Table 4-12. The multimedia ALU instructions also have a
4-bit opcode extension field in bits 32:29 (x4), and a 2-bit opcode extension field in bits
28:27 (x2b) as shown in Table 4-13 on page 3:307.

40 373635343332 2726 2019 1312 11 6 5 0

C - E s x2 ta p2 r3 imm7b c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 ta c

cmp.lt

p1, p2 = imm8, r3

C

2

0

0cmp.ltu D

cmp.eq E

cmp.lt.unc C

1cmp.ltu.unc D

cmp.eq.unc E

cmp.eq.and C

1

0cmp.eq.or D

cmp.eq.or.andcm E

cmp.ne.and C

1cmp.ne.or D

cmp.ne.or.andcm E

cmp4.lt C

3

0

0cmp4.ltu D

cmp4.eq E

cmp4.lt.unc C

1cmp4.ltu.unc D

cmp4.eq.unc E

cmp4.eq.and C

1

0cmp4.eq.or D

cmp4.eq.or.andcm E

cmp4.ne.and C

1cmp4.ne.or D

cmp4.ne.or.andcm E

Table 4-12. Multimedia ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits 40:37

x2a
Bits 35:34

za
Bit 36

zb
Bit 33

8 1

0
0 Multimedia ALU Size 1 (Table 4-13)

1 Multimedia ALU Size 2 (Table 4-14)

1
0 Multimedia ALU Size 4 (Table 4-15)

1

Volume 3: Instruction Formats 3:307

Table 4-13. Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

za
Bit
36

zb
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 0

0 padd1 A9 padd1.sss A9 padd1.uuu A9 padd1.uus A9

1 psub1 A9 psub1.sss A9 psub1.uuu A9 psub1.uus A9

2 pavg1 A9 pavg1.raz A9

3 pavgsub1 A9

4

5

6

7

8

9 pcmp1.eq A9 pcmp1.gt A9

A

B

C

D

E

F

Table 4-14. Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

za
Bit
36

zb
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 1

0 padd2 A9 padd2.sss A9 padd2.uuu A9 padd2.uus A9

1 psub2 A9 psub2.sss A9 psub2.uuu A9 psub2.uus A9

2 pavg2 A9 pavg2.raz A9

3 pavgsub2 A9

4 pshladd2 A10

5

6 pshradd2 A10

7

8

9 pcmp2.eq A9 pcmp2.gt A9

A

B

C

D

E

F

3:308 Volume 3: Instruction Formats

Table 4-15. Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

za
Bit
36

zb
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 1 1 0

0 padd4 A9

1 psub4 A9

2

3

4

5

6

7

8

9 pcmp4.eq A9 pcmp4.gt A9

A

B

C

D

E

F

Volume 3: Instruction Formats 3:309

4.2.3.1 Multimedia ALU

A9

4.2.3.2 Multimedia Shift and Add

A10

40 373635343332 29282726 2019 1312 6 5 0

8 za x2a zb x4 x2b r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4 x2b

padd1

r1 = r2, r3 8 1

0
0

0

0padd2 1

padd4 1 0

padd1.sss
0

0
1

padd2.sss 1

padd1.uuu
0

0
2

padd2.uuu 1

padd1.uus
0

0
3

padd2.uus 1

psub1
0

0

1

0psub2 1

psub4 1 0

psub1.sss
0

0
1

psub2.sss 1

psub1.uuu
0

0
2

psub2.uuu 1

psub1.uus
0

0
3

psub2.uus 1

pavg1
0

0

2

2
pavg2 1

pavg1.raz
0

0
3

pavg2.raz 1

pavgsub1
0

0
3 2

pavgsub2 1

pcmp1.eq
0

0

9

0pcmp2.eq 1

pcmp4.eq 1 0

pcmp1.gt
0

0

1pcmp2.gt 1

pcmp4.gt 1 0

40 373635343332 29282726 2019 1312 6 5 0

8 za x2a zb x4 ct2d r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4

pshladd2
r1 = r2, count2, r3 8 1 0 1

4

pshradd2 6

3:310 Volume 3: Instruction Formats

4.3 I-Unit Instruction Encodings

4.3.1 Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift
instructions are encoded within major opcode 7 using two 1-bit opcode extension fields
in bits 36 (za) and 33 (zb) and a 1-bit reserved opcode extension in bit 32 (ve) as
shown in Table 4-16. They also have a 2-bit opcode extension field in bits 35:34 (x2a)
and a 2-bit field in bits 29:28 (x2b) and most have a 2-bit field in bits 31:30 (x2c) as
shown in Table 4-17.

Table 4-16. Multimedia and Variable Shift 1-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit 32

0 1

7

0
0 Multimedia Size 1 (Table 4-17)

1 Multimedia Size 2 (Table 4-18)

1
0 Multimedia Size 4 (Table 4-19)

1 Variable Shift (Table 4-20)

Table 4-17. Multimedia Opcode 7 Size 1 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 0 0 0

0

0

1

2

3

1

0

1

2

3

2

0 unpack1.h I2 mix1.r I2

1 pmin1.u I2 pmax1.u I2

2 unpack1.l I2 mix1.l I2

3 psad1 I2

3

0

1

2 mux1 I3

3

Volume 3: Instruction Formats 3:311

Table 4-18. Multimedia Opcode 7 Size 2 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 0 1 0

0

0 pshr2.u – var I5 pshl2 – var I7

1 pmpyshr2.u I1

2 pshr2 – var I5

3 pmpyshr2 I1

1

0

1 pshr2.u – fixed I6 popcnt I9 clz I9

2

3 pshr2 – fixed I6

2

0 pack2.uss I2 unpack2.h I2 mix2.r I2

1 pmpy2.r I2

2 pack2.sss I2 unpack2.l I2 mix2.l I2

3 pmin2 I2 pmax2 I2 pmpy2.l I2

3

0

1 pshl2 – fixed I8

2 mux2 I4

3

Table 4-19. Multimedia Opcode 7 Size 4 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 1 0 0

0

0 pshr4.u – var I5 pshl4 – var I7

1 mpy4 I2

2 pshr4 – var I5

3 mpyshl4 I2

1

0

1 pshr4.u – fixed I6

2

3 pshr4 – fixed I6

2

0 unpack4.h I2 mix4.r I2

1

2 pack4.sss I2 unpack4.l I2 mix4.l I2

3

3

0

1 pshl4 – fixed I8

2

3

3:312 Volume 3: Instruction Formats

4.3.1.1 Multimedia Multiply and Shift

I1

Table 4-20. Variable Shift Opcode 7 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 1 1 0

0

0 shr.u – var I5 shl – var I7

1

2 shr – var I5

3

1

0

1

2

3

2

0

1

2

3

3

0

1

2

3

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve ct2d x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b

pmpyshr2
r1 = r2, r3, count2 7 0 1 0 0

3

pmpyshr2.u 1

Volume 3: Instruction Formats 3:313

4.3.1.2 Multimedia Multiply/Mix/Pack/Unpack

I2

4.3.1.3 Multimedia Mux1

I3

4.3.1.4 Multimedia Mux2

I4

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mpy4

r1 = r2, r3 7

1 0

0

0
1

3
mpyshl4 3

pmpy2.r
0 1

2

1
3

pmpy2.l 3

mix1.r 0 0

0

2

mix2.r 0 1

mix4.r 1 0

mix1.l 0 0

2mix2.l 0 1

mix4.l 1 0

pack2.uss 0 1 0

0pack2.sss 0 1
2

pack4.sss 1 0

unpack1.h 0 0

0

1

unpack2.h 0 1

unpack4.h 1 0

unpack1.l 0 0

2unpack2.l 0 1

unpack4.l 1 0

pmin1.u
0 0 1

0

pmax1.u 1

pmin2
0 1 3

0

pmax2 1

psad1 0 0 3 2

40 3736353433323130292827 2423 2019 1312 6 5 0

7 za x2a zb ve x2c x2b mbt4c r2 r1 qp

4 1 2 1 1 2 2 4 4 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mux1 r1 = r2, mbtype4 7 0 0 0 3 2 2

40 3736353433323130292827 2019 1312 6 5 0

7 za x2a zb ve x2c x2b mht8c r2 r1 qp

4 1 2 1 1 2 2 8 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mux2 r1 = r2, mhtype8 7 0 1 0 3 2 2

3:314 Volume 3: Instruction Formats

4.3.1.5 Shift Right – Variable

I5

4.3.1.6 Multimedia Shift Right – Fixed

I6

4.3.1.7 Shift Left – Variable

I7

4.3.1.8 Multimedia Shift Left – Fixed

I8

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshr2

r1 = r3, r2 7

0 1

0 0

2

0

pshr4 1 0

shr 1 1

pshr2.u 0 1

0pshr4.u 1 0

shr.u 1 1

40 373635343332313029282726 201918 141312 6 5 0

7 za x2a zb ve x2c x2b r3 count5b r1 qp

4 1 2 1 1 2 2 1 7 1 5 1 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshr2

r1 = r3, count5 7

0 1

0 1

3

0
pshr4 1 0

pshr2.u 0 1
1

pshr4.u 1 0

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshl2

r1 = r2, r3 7

0 1

0 0 0 1pshl4 1 0

shl 1 1

40 3736353433323130292827 2524 2019 1312 6 5 0

7 za x2a zb ve x2c x2b ccount5c r2 r1 qp

4 1 2 1 1 2 2 3 5 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshl2
r1 = r2, count5 7

0 1
0 3 1 1

pshl4 1 0

Volume 3: Instruction Formats 3:315

4.3.1.9 Bit Strings

I9

4.3.2 Integer Shifts

The integer shift, test bit, and test NaT instructions are encoded within major opcode 5
using a 2-bit opcode extension field in bits 35:34 (x2) and a 1-bit opcode extension
field in bit 33 (x). The extract and test bit instructions also have a 1-bit opcode
extension field in bit 13 (y). Table 4-21 shows the test bit, extract, and shift right pair
assignments.

Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y).
Table 4-22 shows these assignments.

4.3.2.1 Shift Right Pair

I10

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 0 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

popcnt
r1 = r3 7 0 1 0 1 1

2

clz 3

Table 4-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions

Opcode
Bits 40:37

x2
Bits 35:34

x
Bit 33

y
Bit 13

0 1

5

0

0

Test Bit (Table 4-23) Test NaT/Test Feature (Table 4-23)

1 extr.u I11 extr I11

2

3 shrp I10

Table 4-22. Deposit Opcode Extensions

Opcode
Bits 40:37

x2
Bits 35:34

x
Bit 33

y
Bit 26

0 1

5

0

1

Test Bit/Test NaT/Test Feature (Table 4-23)

1 dep.z I12 dep.z – imm8 I13

2

3 dep – imm1 I14

40 373635343332 2726 2019 1312 6 5 0

5 x2 x count6d r3 r2 r1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x2 x

shrp r1 = r2, r3, count6 5 3 0

3:316 Volume 3: Instruction Formats

4.3.2.2 Extract

I11

4.3.2.3 Zero and Deposit

I12

4.3.2.4 Zero and Deposit Immediate8

I13

4.3.2.5 Deposit Immediate1

I14

4.3.2.6 Deposit

I15

4.3.3 Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode
extension field in bits 35:34 (x2) plus five 1-bit opcode extension fields in bits 33 (ta),
36 (tb), 12 (c), 13 (y) and 19 (x). Table 4-23 summarizes these assignments.

40 37 36 35 34 33 32 27 26 20 19 14 13 12 6 5 0

5 x2 x len6d r3 pos6b y r1 qp

4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension

x2 x y

extr.u
r1 = r3, pos6, len6 5 1 0

0

extr 1

40 373635343332 272625 2019 1312 6 5 0

5 x2 x len6d y cpos6c r2 r1 qp

4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y

dep.z r1 = r2, pos6, len6 5 1 1 0

40 373635343332 272625 2019 1312 6 5 0

5 s x2 x len6d y cpos6c imm7b r1 qp

4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y

dep.z r1 = imm8, pos6, len6 5 1 1 1

40 373635343332 2726 2019 141312 6 5 0

5 s x2 x len6d r3 cpos6b r1 qp

4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension

x2 x

dep r1 = imm1, r3, pos6, len6 5 3 1

40 3736 3130 2726 2019 1312 6 5 0

4 cpos6d len4d r3 r2 r1 qp

4 6 4 7 7 7 6

Instruction Operands Opcode

dep r1 = r2, r3, pos6, len4 4

Volume 3: Instruction Formats 3:317

4.3.3.1 Test Bit

I16

Table 4-23. Test Bit Opcode Extensions

Opcode
Bits 40:37

x2
Bits

35:34

ta
Bit 33

tb
Bit 36

c
Bit 12

y
Bit 13

x
Bit 19

0 1

5 0

0

0

0
0 tbit.z I16

1 tnat.z I17 tf.z I30

1
0 tbit.z.unc I16

1 tnat.z.unc I17 tf.z.unc I30

1

0
0 tbit.z.and I16

1 tnat.z.and I17 tf.z.and I30

1
0 tbit.nz.and I16

1 tnat.nz.and I17 tf.nz.and I30

1

0

0
0 tbit.z.or I16

1 tnat.z.or I17 tf.z.or I30

1
0 tbit.nz.or I16

1 tnat.nz.or I17 tf.nz.or I30

1

0
0 tbit.z.or.andcm I16

1 tnat.z.or.andcm I17 tf.z.or.andcm I30

1
0 tbit.nz.or.andcm I16

1 tnat.nz.or.andcm I17 tf.nz.or.andcm I30

40 373635343332 2726 2019 141312 11 6 5 0

5 tb x2 ta p2 r3 pos6b y c p1 qp

4 1 2 1 6 7 6 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y c

tbit.z

p1, p2 = r3, pos6 5 0

0

0

0

0

tbit.z.unc 1

tbit.z.and
1

0

tbit.nz.and 1

tbit.z.or

1

0
0

tbit.nz.or 1

tbit.z.or.andcm
1

0

tbit.nz.or.andcm 1

3:318 Volume 3: Instruction Formats

4.3.3.2 Test NaT

I17

4.3.4 Miscellaneous I-Unit Instructions

The miscellaneous I-unit instructions are encoded in major opcode 0 using a 3-bit
opcode extension field (x3) in bits 35:33. Some also have a 6-bit opcode extension field
(x6) in bits 32:27. Table 4-24 shows the 3-bit assignments and Table 4-25 summarizes
the 6-bit assignments.

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 r3 x y c p1 qp

4 1 2 1 6 7 1 5 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y x c

tnat.z

p1, p2 = r3 5 0

0

0

1 0

0

tnat.z.unc 1

tnat.z.and
1

0

tnat.nz.and 1

tnat.z.or

1

0
0

tnat.nz.or 1

tnat.z.or.andcm
1

0

tnat.nz.or.andcm 1

Table 4-24. Misc I-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0 6-bit Ext (Table 4-25)

1 chk.s.i – int I20

2 mov to pr.rot – imm44 I24

3 mov to pr I23

4

5

6

7 mov to b I21

Volume 3: Instruction Formats 3:319

4.3.4.1 Nop/Hint (I-Unit)

I-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode
extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (x6), and
a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-26.

I18

Table 4-25. Misc I-Unit 6-bit Opcode Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x6

Bits
30:27

Bits 32:31

0 1 2 3

0 0

0 break.i I19 zxt1 I29 mov from ip I25

1 1-bit Ext (Table 4-26) zxt2 I29 mov from b I22

2 zxt4 I29 mov.i from ar I28

3 mov from pr I25

4 sxt1 I29

5 sxt2 I29

6 sxt4 I29

7

8 czx1.l I29

9 czx2.l I29

A mov.i to ar – imm8 I27 mov.i to ar I26

B

C czx1.r I29

D czx2.r I29

E

F

Table 4-26. Misc I-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.i

1 hint.i

40 373635 3332 272625 6 5 0

0 i x3 x6 y imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x3 x6 y

nop.i i
imm21 0 0 01

0

hint.i 1

3:320 Volume 3: Instruction Formats

4.3.4.2 Break (I-Unit)

I19

4.3.4.3 Integer Speculation Check (I-Unit)

I20

4.3.5 GR/BR Moves

The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit
Instructions” on page 3:318 for a summary of the opcode extensions. The mov to BR
instruction uses a 2-bit “whether” prediction hint field in bits 21:20 (wh) as shown in
Table 4-27.

The mov to BR instruction also uses a 1-bit opcode extension field (x) in bit 22 to
distinguish the return form from the normal form, and a 1-bit hint extension in bit 23
(ih) (see Table 4-56 on page 3:354).

4.3.5.1 Move to BR

I21

40 373635 3332 272625 6 5 0

0 i x3 x6 imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x3 x6

break.i i imm21 0 0 00

40 373635 3332 2019 1312 6 5 0

0 s x3 imm13c r2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s.i r2, target25 0 1

Table 4-27. Move to BR Whether Hint Completer

wh
Bits 21:20

mwh

0 .sptk

1 none

2 .dptk

3

40 373635 3332 242322212019 1312 9 8 6 5 0

0 x3 timm9c ih x wh r2 b1 qp

4 1 3 9 1 1 2 7 4 3 6

Instruction Operands Opcode
Extension

x3 x ih wh

mov.mwh.ih
b1 = r2, tag13 0 7

0 See Table 4-56
on page 3:354

See Table 4-27
on page 3:320mov.ret.mwh.ih 1

Volume 3: Instruction Formats 3:321

4.3.5.2 Move from BR

I22

4.3.6 GR/Predicate/IP Moves

The GR/Predicate/IP move instructions are encoded in major opcode 0. See
“Miscellaneous I-Unit Instructions” on page 3:318 for a summary of the opcode
extensions.

4.3.6.1 Move to Predicates – Register

I23

4.3.6.2 Move to Predicates – Immediate44

I24

4.3.6.3 Move from Predicates/IP

I25

4.3.7 GR/AR Moves (I-Unit)

The I-Unit GR/AR move instructions are encoded in major opcode 0. (Some ARs are
accessed using system/memory management instructions on the M-unit. See “GR/AR
Moves (M-Unit)” on page 3:342.) See “Miscellaneous I-Unit Instructions” on
page 3:318 for a summary of the I-Unit GR/AR opcode extensions.

40 373635 3332 2726 1615 1312 6 5 0

0 x3 x6 b2 r1 qp

4 1 3 6 11 3 7 6

Instruction Operands Opcode
Extension

x3 x6

mov r1 = b2 0 0 31

40 373635 333231 2423 2019 1312 6 5 0

0 s x3 mask8c r2 mask7a qp

4 1 3 1 8 4 7 7 6

Instruction Operands Opcode
Extension

x3

mov pr = r2, mask17 0 3

40 373635 3332 6 5 0

0 s x3 imm27a qp

4 1 3 27 6

Instruction Operands Opcode
Extension

x3

mov pr.rot = imm44 0 2

40 373635 3332 2726 1312 6 5 0

0 x3 x6 r1 qp

4 1 3 6 14 7 6

Instruction Operands Opcode
Extension

x3 x6

mov
r1 = ip

0 0
30

r1 = pr 33

3:322 Volume 3: Instruction Formats

4.3.7.1 Move to AR – Register (I-Unit)

I26

4.3.7.2 Move to AR – Immediate8 (I-Unit)

I27

4.3.7.3 Move from AR (I-Unit)

I28

4.3.8 Sign/Zero Extend/Compute Zero Index

I29

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 ar3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i ar3 = r2 0 0 2A

40 373635 3332 2726 2019 1312 6 5 0

0 s x3 x6 ar3 imm7b qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i ar3 = imm8 0 0 0A

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 ar3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i r1 = ar3 0 0 32

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

zxt1

r1 = r3 0 0

10

zxt2 11

zxt4 12

sxt1 14

sxt2 15

sxt4 16

czx1.l 18

czx2.l 19

czx1.r 1C

czx2.r 1D

Volume 3: Instruction Formats 3:323

4.3.9 Test Feature

I30

4.4 M-Unit Instruction Encodings

4.4.1 Loads and Stores

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a
6-bit opcode extension field in bits 35:30 (x6). Instructions in major opcode 4 (integer
load/store, semaphores, and get FR) use two 1-bit opcode extension fields in bit 36 (m)
and bit 27 (x) as shown in Table 4-28. Instructions in major opcode 6 (floating-point
load/store, load pair, and set FR) use two 1-bit opcode extension fields in bit 36 (m)
and bit 27 (x) as shown in Table 4-29.

The integer load/store opcode extensions are summarized in Table 4-30 on page 3:324,
Table 4-31 on page 3:324, and Table 4-32 on page 3:325, and the semaphore and get
FR opcode extensions in Table 4-33 on page 3:325. The floating-point load/store

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 0 x imm5b y c p1 qp

4 1 2 1 6 7 1 5 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y x c

tf.z

p1, p2 = imm5 5 0

0

0

1 1

0

tf.z.unc 1

tf.z.and
1

0

tf.nz.and 1

tf.z.or

1

0
0

tf.nz.or 1

tf.z.or.andcm
1

0

tf.nz.or.andcm 1

Table 4-28. Integer Load/Store/Semaphore/Get FR 1-bit Opcode
Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

4

0 0 Load/Store (Table 4-30)

0 1 Semaphore/get FR (Table 4-33)

1 0 Load +Reg (Table 4-31)

1 1

Table 4-29. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode
Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

6

0 0 FP Load/Store (Table 4-34)

0 1 FP Load Pair/set FR (Table 4-37)

1 0 FP Load +Reg (Table 4-35)

1 1 FP Load Pair +Imm (Table 4-38)

3:324 Volume 3: Instruction Formats

opcode extensions are summarized in Table 4-34 on page 3:326, Table 4-35 on
page 3:326, and Table 4-36 on page 3:327, the floating-point load pair and set FR
opcode extensions in Table 4-37 on page 3:327 and Table 4-38 on page 3:328.

Table 4-30. Integer Load/Store Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

4 0 0

0 ld1 M2 ld2 M2 ld4 M2 ld8 M2

1 ld1.s M2 ld2.s M2 ld4.s M2 ld8.s M2

2 ld1.a M2 ld2.a M2 ld4.a M2 ld8.a M2

3 ld1.sa M2 ld2.sa M2 ld4.sa M2 ld8.sa M2

4 ld1.bias M2 ld2.bias M2 ld4.bias M2 ld8.bias M2

5 ld1.acq M2 ld2.acq M2 ld4.acq M2 ld8.acq M2

6 ld8.fill M2

7

8 ld1.c.clr M2 ld2.c.clr M2 ld4.c.clr M2 ld8.c.clr M2

9 ld1.c.nc M2 ld2.c.nc M2 ld4.c.nc M2 ld8.c.nc M2

A ld1.c.clr.acq M2 ld2.c.clr.acq M2 ld4.c.clr.acq M2 ld8.c.clr.acq M2

B

C st1 M6 st2 M6 st4 M6 st8 M6

D st1.rel M6 st2.rel M6 st4.rel M6 st8.rel M6

E st8.spill M6

F

Table 4-31. Integer Load +Reg Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

4 1 0

0 ld1 M2 ld2 M2 ld4 M2 ld8 M2

1 ld1.s M2 ld2.s M2 ld4.s M2 ld8.s M2

2 ld1.a M2 ld2.a M2 ld4.a M2 ld8.a M2

3 ld1.sa M2 ld2.sa M2 ld4.sa M2 ld8.sa M2

4 ld1.bias M2 ld2.bias M2 ld4.bias M2 ld8.bias M2

5 ld1.acq M2 ld2.acq M2 ld4.acq M2 ld8.acq M2

6 ld8.fill M2

7

8 ld1.c.clr M2 ld2.c.clr M2 ld4.c.clr M2 ld8.c.clr M2

9 ld1.c.nc M2 ld2.c.nc M2 ld4.c.nc M2 ld8.c.nc M2

A ld1.c.clr.acq M2 ld2.c.clr.acq M2 ld4.c.clr.acq M2 ld8.c.clr.acq M2

B

C

D

E

F

Volume 3: Instruction Formats 3:325

Table 4-32. Integer Load/Store +Imm Opcode Extensions

Opcode
Bits

40:37

x6

Bits
35:32

Bits 31:30

0 1 2 3

5

0 ld1 M3 ld2 M3 ld4 M3 ld8 M3

1 ld1.s M3 ld2.s M3 ld4.s M3 ld8.s M3

2 ld1.a M3 ld2.a M3 ld4.a M3 ld8.a M3

3 ld1.sa M3 ld2.sa M3 ld4.sa M3 ld8.sa M3

4 ld1.bias M3 ld2.bias M3 ld4.bias M3 ld8.bias M3

5 ld1.acq M3 ld2.acq M3 ld4.acq M3 ld8.acq M3

6 ld8.fill M3

7

8 ld1.c.clr M3 ld2.c.clr M3 ld4.c.clr M3 ld8.c.clr M3

9 ld1.c.nc M3 ld2.c.nc M3 ld4.c.nc M3 ld8.c.nc M3

A ld1.c.clr.acq M3 ld2.c.clr.acq M3 ld4.c.clr.acq M3 ld8.c.clr.acq M3

B

C st1 M5 st2 M5 st4 M5 st8 M5

D st1.rel M5 st2.rel M5 st4.rel M5 st8.rel M5

E st8.spill M5

F

Table 4-33. Semaphore/Get FR/16-Byte Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

4 0 1

0
cmpxchg1.acq

M16
cmpxchg2.acq

M16
cmpxchg4.acq

M16
cmpxchg8.acq M16

1 cmpxchg1.rel M16 cmpxchg2.rel M16 cmpxchg4.rel M16 cmpxchg8.rel M16

2 xchg1 M16 xchg2 M16 xchg4 M16 xchg8 M16

3

4
fetchadd4.acq

M17
fetchadd8.acq M17

5 fetchadd4.rel M17 fetchadd8.rel M17

6

7 getf.sig M19 getf.exp M19 getf.s M19 getf.d M19

8
cmp8xchg16.acq

M16

9
cmp8xchg16.rel

M16

A ld16 M2

B ld16.acq M2

C st16 M6

D st16.rel M6

E

F

3:326 Volume 3: Instruction Formats

Table 4-34. Floating-point Load/Store/Lfetch Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 0 0

0 ldfe M9 ldf8 M9 ldfs M9 ldfd M9

1 ldfe.s M9 ldf8.s M9 ldfs.s M9 ldfd.s M9

2 ldfe.a M9 ldf8.a M9 ldfs.a M9 ldfd.a M9

3 ldfe.sa M9 ldf8.sa M9 ldfs.sa M9 ldfd.sa M9

4

5

6 ldf.fill M9

7

8 ldfe.c.clr M9 ldf8.c.clr M9 ldfs.c.clr M9 ldfd.c.clr M9

9 ldfe.c.nc M9 ldf8.c.nc M9 ldfs.c.nc M9 ldfd.c.nc M9

A

B lfetch M18 lfetch.excl M18 lfetch.fault M18 lfetch.fault.excl M18

C stfe M13 stf8 M13 stfs M13 stfd M13

D

E stf.spill M13

F

Table 4-35. Floating-point Load/Lfetch +Reg Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 1 0

0 ldfe M7 ldf8 M7 ldfs M7 ldfd M7

1 ldfe.s M7 ldf8.s M7 ldfs.s M7 ldfd.s M7

2 ldfe.a M7 ldf8.a M7 ldfs.a M7 ldfd.a M7

3 ldfe.sa M7 ldf8.sa M7 ldfs.sa M7 ldfd.sa M7

4

5

6 ldf.fill M7

7

8 ldfe.c.clr M7 ldf8.c.clr M7 ldfs.c.clr M7 ldfd.c.clr M7

9 ldfe.c.nc M7 ldf8.c.nc M7 ldfs.c.nc M7 ldfd.c.nc M7

A

B lfetch M20 lfetch.excl M20 lfetch.fault M20 lfetch.fault.excl M20

C

D

E

F

Volume 3: Instruction Formats 3:327

Table 4-36. Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Opcode
Bits

40:37

x6

Bits
35:32

Bits 31:30

0 1 2 3

7

0 ldfe M8 ldf8 M8 ldfs M8 ldfd M8

1 ldfe.s M8 ldf8.s M8 ldfs.s M8 ldfd.s M8

2 ldfe.a M8 ldf8.a M8 ldfs.a M8 ldfd.a M8

3 ldfe.sa M8 ldf8.sa M8 ldfs.sa M8 ldfd.sa M8

4

5

6 ldf.fill M8

7

8 ldfe.c.clr M8 ldf8.c.clr M8 ldfs.c.clr M8 ldfd.c.clr M8

9 ldfe.c.nc M8 ldf8.c.nc M8 ldfs.c.nc M8 ldfd.c.nc M8

A

B lfetch M22 lfetch.excl M22 lfetch.fault M22 lfetch.fault.excl M22

C stfe M10 stf8 M10 stfs M10 stfd M10

D

E stf.spill M10

F

Table 4-37. Floating-point Load Pair/Set FR Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 0 1

0 ldfp8 M11 ldfps M11 ldfpd M11

1 ldfp8.s M11 ldfps.s M11 ldfpd.s M11

2 ldfp8.a M11 ldfps.a M11 ldfpd.a M11

3 ldfp8.sa M11 ldfps.sa M11 ldfpd.sa M11

4

5

6

7 setf.sig M18 setf.exp M18 setf.s M18 setf.d M18

8 ldfp8.c.clr M11 ldfps.c.clr M11 ldfpd.c.clr M11

9 ldfp8.c.nc M11 ldfps.c.nc M11 ldfpd.c.nc M11

A

B

C

D

E

F

3:328 Volume 3: Instruction Formats

The load and store instructions all have a 2-bit cache locality opcode hint extension field
in bits 29:28 (hint). Table 4-39 and Table 4-40 summarize these assignments.

Table 4-38. Floating-point Load Pair +Imm Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 1 1

0 ldfp8 M12 ldfps M12 ldfpd M12

1 ldfp8.s M12 ldfps.s M12 ldfpd.s M12

2 ldfp8.a M12 ldfps.a M12 ldfpd.a M12

3 ldfp8.sa M12 ldfps.sa M12 ldfpd.sa M12

4

5

6

7

8 ldfp8.c.clr M12 ldfps.c.clr M12 ldfpd.c.clr M12

9 ldfp8.c.nc M12 ldfps.c.nc M12 ldfpd.c.nc M12

A

B

C

D

E

F

Table 4-39. Load Hint Completer

hint
Bits 29:28

ldhint

0 none

1 .nt1

2

3 .nta

Table 4-40. Store Hint Completer

hint
Bits 29:28

sthint

0 none

1

2

3 .nta

Volume 3: Instruction Formats 3:329

4.4.1.1 Integer Load

M2

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ld1.ldhint

r1 = [r3]

4

0 0

00

See Table 4-39
on page 3:328

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B

ld16.ldhint
r1, ar.csd = [r3] 0 1

28

ld16.acq.ldhint 2C

3:330 Volume 3: Instruction Formats

4.4.1.2 Integer Load – Increment by Register

M2

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ld1.ldhint

r1 = [r3], r2 4 1 0

00

See Table 4-39
on page 3:328

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B

Volume 3: Instruction Formats 3:331

4.4.1.3 Integer Load – Increment by Immediate

M3

40 373635 3029282726 2019 1312 6 5 0

5 s x6 hint i r3 imm7b r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

ld1.ldhint

r1 = [r3], imm9 5

00

See Table 4-39 on
page 3:328

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B

3:332 Volume 3: Instruction Formats

4.4.1.4 Integer Store

M6

4.4.1.5 Integer Store – Increment by Immediate

M5

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

st1.sthint

[r3] = r2
4

0 0

30

See Table 4-40
on page 3:328

st2.sthint 31

st4.sthint 32

st8.sthint 33

st1.rel.sthint 34

st2.rel.sthint 35

st4.rel.sthint 36

st8.rel.sthint 37

st8.spill.sthint 3B

st16.sthint
[r3] = r2, ar.csd 0 1

30

st16.rel.sthint 34

40 373635 3029282726 2019 1312 6 5 0

5 s x6 hint i r3 r2 imm7a qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

st1.sthint

[r3] = r2, imm9 5

30

See Table 4-40 on
page 3:328

st2.sthint 31

st4.sthint 32

st8.sthint 33

st1.rel.sthint 34

st2.rel.sthint 35

st4.rel.sthint 36

st8.rel.sthint 37

st8.spill.sthint 3B

Volume 3: Instruction Formats 3:333

4.4.1.6 Floating-point Load

M9

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfs.ldhint

f1 = [r3] 6 0 0

02

See Table 4-39
on page 3:328

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24

3:334 Volume 3: Instruction Formats

4.4.1.7 Floating-point Load – Increment by Register

M7

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 r2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfs.ldhint

f1 = [r3], r2 6 1 0

02

See Table 4-39 on
page 3:328

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24

Volume 3: Instruction Formats 3:335

4.4.1.8 Floating-point Load – Increment by Immediate

M8

4.4.1.9 Floating-point Store

M13

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 imm7b f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

ldfs.ldhint

f1 = [r3], imm9 7

02

See Table 4-39 on
page 3:328

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

stfs.sthint

[r3] = f2 6 0 0

32

See Table 4-40 on
page 3:328

stfd.sthint 33

stf8.sthint 31

stfe.sthint 30

stf.spill.sthint 3B

3:336 Volume 3: Instruction Formats

4.4.1.10 Floating-point Store – Increment by Immediate

M10

4.4.1.11 Floating-point Load Pair

M11

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 f2 imm7a qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

stfs.sthint

[r3] = f2, imm9 7

32

See Table 4-40 on
page 3:328

stfd.sthint 33

stf8.sthint 31

stfe.sthint 30

stf.spill.sthint 3B

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfps.ldhint

f1, f2 = [r3] 6 0 1

02

See Table 4-39
on page 3:328

ldfpd.ldhint 03

ldfp8.ldhint 01

ldfps.s.ldhint 06

ldfpd.s.ldhint 07

ldfp8.s.ldhint 05

ldfps.a.ldhint 0A

ldfpd.a.ldhint 0B

ldfp8.a.ldhint 09

ldfps.sa.ldhint 0E

ldfpd.sa.ldhint 0F

ldfp8.sa.ldhint 0D

ldfps.c.clr.ldhint 22

ldfpd.c.clr.ldhint 23

ldfp8.c.clr.ldhint 21

ldfps.c.nc.ldhint 26

ldfpd.c.nc.ldhint 27

ldfp8.c.nc.ldhint 25

Volume 3: Instruction Formats 3:337

4.4.1.12 Floating-point Load Pair – Increment by Immediate

M12

4.4.2 Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the
floating-point load/store instructions. See “Loads and Stores” on page 3:323 for a
summary of the opcode extensions.

The line prefetch instructions all have a 2-bit cache locality opcode hint extension field
in bits 29:28 (hint) as shown in Table 4-44.

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfps.ldhint f1, f2 = [r3], 8

6 1 1

02

See Table 4-39
on page 3:328

ldfpd.ldhint
f1, f2 = [r3], 16

03

ldfp8.ldhint 01

ldfps.s.ldhint f1, f2 = [r3], 8 06

ldfpd.s.ldhint
f1, f2 = [r3], 16

07

ldfp8.s.ldhint 05

ldfps.a.ldhint f1, f2 = [r3], 8 0A

ldfpd.a.ldhint
f1, f2 = [r3], 16

0B

ldfp8.a.ldhint 09

ldfps.sa.ldhint f1, f2 = [r3], 8 0E

ldfpd.sa.ldhint
f1, f2 = [r3], 16

0F

ldfp8.sa.ldhint 0D

ldfps.c.clr.ldhint f1, f2 = [r3], 8 22

ldfpd.c.clr.ldhint
f1, f2 = [r3], 16

23

ldfp8.c.clr.ldhint 21

ldfps.c.nc.ldhint f1, f2 = [r3], 8 26

ldfpd.c.nc.ldhint
f1, f2 = [r3], 16

27

ldfp8.c.nc.ldhint 25

Table 4-41. Line Prefetch Hint Completer

hint
Bits 29:28

lfhint

0 none

1 .nt1

2 .nt2

3 .nta

3:338 Volume 3: Instruction Formats

4.4.2.1 Line Prefetch

M13

4.4.2.2 Line Prefetch – Increment by Register

M14

4.4.2.3 Line Prefetch – Increment by Immediate

M15

4.4.3 Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer
load/store instructions. See “Loads and Stores” on page 3:323 for a summary of the
opcode extensions. These instructions have the same cache locality opcode hint
extension field in bits 29:28 (hint) as load instructions. See Table 4-39, “Load Hint
Completer” on page 3:328.

40 373635 3029282726 2019 6 5 0

6 m x6 hint x r3 qp

4 1 6 2 1 7 14 6

Instruction Operands Opcode
Extension

m x x6 hint

lfetch.excl.lfhint

[r3] 6 0 0

2D
See Table 4-41 on

page 3:337
lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 r2 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

lfetch.lfhint

[r3], r2 6 1 0

2C

See Table 4-41 on
page 3:337

lfetch.excl.lfhint 2D

lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 imm7b qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

lfetch.lfhint

[r3], imm9 7

2C

See Table 4-41 on
page 3:337

lfetch.excl.lfhint 2D

lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

Volume 3: Instruction Formats 3:339

4.4.3.1 Exchange/Compare and Exchange

M16

4.4.3.2 Fetch and Add – Immediate

M17

4.4.4 Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point
load/store instructions. The get FR instructions are encoded in major opcode 4 along
with the integer load/store instructions. See “Loads and Stores” on page 3:323 for a
summary of the opcode extensions.

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

cmpxchg1.acq.ldhint

r1 = [r3], r2, ar.ccv

4 0 1

00

See
Table 4-39 on
page 3:328

cmpxchg2.acq.ldhint 01

cmpxchg4.acq.ldhint 02

cmpxchg8.acq.ldhint 03

cmpxchg1.rel.ldhint 04

cmpxchg2.rel.ldhint 05

cmpxchg4.rel.ldhint 06

cmpxchg8.rel.ldhint 07

cmp8xchg16.acq.ldhint
r1 = [r3], r2, ar.csd, ar.ccv

20

cmp8xchg16.rel.ldhint 24

xchg1.ldhint

r1 = [r3], r2

08

xchg2.ldhint 09

xchg4.ldhint 0A

xchg8.ldhint 0B

40 373635 3029282726 2019 1615141312 6 5 0

4 m x6 hint x r3 s i2b r1 qp

4 1 6 2 1 7 4 1 2 7 6

Instruction Operands Opcode
Extension

m x x6 hint

fetchadd4.acq.ldhint

r1 = [r3], inc3 4 0 1

12

See Table 4-39
on page 3:328

fetchadd8.acq.ldhint 13

fetchadd4.rel.ldhint 16

fetchadd8.rel.ldhint 17

3:340 Volume 3: Instruction Formats

4.4.4.1 Set FR

M18

4.4.4.2 Get FR

M19

4.4.5 Speculation and Advanced Load Checks

The speculation and advanced load check instructions are encoded in major opcodes 0
and 1 along with the system/memory management instructions. See “System/Memory
Management” on page 3:345 for a summary of the opcode extensions.

4.4.5.1 Integer Speculation Check (M-Unit)

M20

4.4.5.2 Floating-point Speculation Check

M21

40 373635 3029282726 2019 1312 6 5 0

6 m x6 x r2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6

setf.sig

f1 = r2 6 0 1

1C

setf.exp 1D

setf.s 1E

setf.d 1F

40 373635 3029282726 2019 1312 6 5 0

4 m x6 x f2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6

getf.sig

r1 = f2 4 0 1

1C

getf.exp 1D

getf.s 1E

getf.d 1F

40 373635 3332 2019 1312 6 5 0

1 s x3 imm13c r2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s.m r2, target25 1 1

40 373635 3332 2019 1312 6 5 0

1 s x3 imm13c f2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s f2, target25 1 3

Volume 3: Instruction Formats 3:341

4.4.5.3 Integer Advanced Load Check

M22

4.4.5.4 Floating-point Advanced Load Check

M23

4.4.6 Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along
with the memory management instructions. See “System/Memory Management” on
page 3:345 for a summary of the opcode extensions.

4.4.6.1 Sync/Fence/Serialize/ALAT Control

M24

40 373635 3332 1312 6 5 0

0 s x3 imm20b r1 qp

4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3

chk.a.nc
r1, target25 0

4

chk.a.clr 5

40 373635 3332 1312 6 5 0

0 s x3 imm20b f1 qp

4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3

chk.a.nc
f1, target25 0

6

chk.a.clr 7

40 373635 33323130 2726 6 5 0

0 x3 x2 x4 qp

4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2

invala

0 0

0 1

fwb 0

2mf 2

mf.a 3

srlz.d 0

3srlz.i 1

sync.i 3

3:342 Volume 3: Instruction Formats

4.4.6.2 RSE Control

M25

4.4.6.3 Integer ALAT Entry Invalidate

M26

4.4.6.4 Floating-point ALAT Entry Invalidate

M27

4.4.6.5 Flush Cache

M28

4.4.7 GR/AR Moves (M-Unit)

The M-Unit GR/AR move instructions are encoded in major opcode 0 along with the
system/memory management instructions. (Some ARs are accessed using system
control instructions on the I-unit. See “GR/AR Moves (I-Unit)” on page 3:321.) See
“System/Memory Management” on page 3:345 for a summary of the M-Unit GR/AR
opcode extensions.

40 373635 33323130 2726 6 5 0

0 x3 x2 x4 0

4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2

flushrs f

0 0
C

0
loadrs f A

40 373635 33323130 2726 1312 6 5 0

0 x3 x2 x4 r1 qp

4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

invala.e r1 0 0 2 1

40 373635 33323130 2726 1312 6 5 0

0 x3 x2 x4 f1 qp

4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

invala.e f1 0 0 3 1

40 373635 3332 2726 2019 6 5 0

1 x x3 x6 r3 qp

4 1 3 6 7 14 6

Instruction Operands Opcode
Extension

x3 x6 x

fc
r3 1 0 30

0

fc.i 1

Volume 3: Instruction Formats 3:343

4.4.7.1 Move to AR – Register (M-Unit)

M29

4.4.7.2 Move to AR – Immediate8 (M-Unit)

M30

4.4.7.3 Move from AR (M-Unit)

M31

4.4.8 GR/CR Moves

The GR/CR move instructions are encoded in major opcode 0 along with the
system/memory management instructions. See “System/Memory Management” on
page 3:345 for a summary of the opcode extensions.

4.4.8.1 Move to CR

M32

4.4.8.2 Move from CR

M33

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 ar3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.m ar3 = r2 1 0 2A

40 373635 33323130 2726 2019 1312 6 5 0

0 s x3 x2 x4 ar3 imm7b qp

4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

mov.m ar3 = imm8 0 0 8 2

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 ar3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.m r1 = ar3 1 0 22

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 cr3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p cr3 = r2 1 0 2C

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 cr3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p r1 = cr3 1 0 24

3:344 Volume 3: Instruction Formats

4.4.9 Miscellaneous M-Unit Instructions

The miscellaneous M-unit instructions are encoded in major opcode 0 along with the
system/memory management instructions. See “System/Memory Management” on
page 3:345 for a summary of the opcode extensions.

4.4.9.1 Allocate Register Stack Frame

M34

Note: The three immediates in the instruction encoding are formed from the operands
as follows:
sof = i + l + o
sol = i + l
sor = r >> 3

4.4.9.2 Move to PSR

M35

4.4.9.3 Move from PSR

M36

4.4.9.4 Break (M-Unit)

M37

40 373635 33323130 2726 2019 1312 6 5 0

1 x3 sor sol sof r1 qp

4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3

alloc f r1 = ar.pfs, i, l, o, r 1 6

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p psr.l = r2
1 0

2D

mov psr.um = r2 29

40 373635 3332 2726 1312 6 5 0

1 x3 x6 r1 qp

4 1 3 6 14 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p r1 = psr
1 0

25

mov r1 = psr.um 21

40 373635 33323130 272625 6 5 0

0 i x3 x2 x4 imm20a qp

4 1 3 2 4 1 20 6

Instruction Operands Opcode
Extension

x3 x4 x2

break.m imm21 0 0 0 0

Volume 3: Instruction Formats 3:345

4.4.10 System/Memory Management

All system/memory management instructions are encoded within major opcodes 0 and
1 using a 3-bit opcode extension field (x3) in bits 35:33. Some instructions also have a
4-bit opcode extension field (x4) in bits 30:27, or a 6-bit opcode extension field (x6) in
bits 32:27. Most of the instructions having a 4-bit opcode extension field also have a
2-bit extension field (x2) in bits 32:31. Table 4-42 shows the 3-bit assignments for
opcode 0, Table 4-43 summarizes the 4-bit+2-bit assignments for opcode 0, Table 4-44
shows the 3-bit assignments for opcode 1, and Table 4-45 summarizes the 6-bit
assignments for opcode 1.

Table 4-42. Opcode 0 System/Memory Management 3-bit Opcode
Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0
System/Memory Management 4-bit+2-bit Ext

(Table 4-43)

1

2

3

4 chk.a.nc – int M22

5 chk.a.clr – int M22

6 chk.a.nc – fp M23

7 chk.a.clr – fp M23

Table 4-43. Opcode 0 System/Memory Management 4-bit+2-bit Opcode
Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x4
Bits

30:27

x2
Bits 32:31

0 1 2 3

0 0

0 break.m M37 invala M24 fwb M24 srlz.d M24

1
1-bit Ext

(Table 4-46)
srlz.i M24

2 invala.e – int M26 mf M24

3 invala.e – fp M27 mf.a M24 sync.i M24

4 sum M44

5 rum M44

6 ssm M44

7 rsm M44

8 mov.m to ar – imm8 M30

9

A loadrs M25

B

C flushrs M25

D

E

F

3:346 Volume 3: Instruction Formats

4.4.10.1 Probe – Register

M38

Table 4-44. Opcode 1 System/Memory Management 3-bit Opcode
Extensions

Opcode
Bits 40:37

x3
Bits

35:33

1

0 System/Memory Management 6-bit Ext (Table 4-45)

1 chk.s.m – int M20

2

3 chk.s – fp M21

4

5

6 alloc M34

7

Table 4-45. Opcode 1 System/Memory Management 6-bit Opcode
Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x6

Bits
30:27

Bits 32:31

0 1 2 3

1 0

0 mov to rr M42 mov from rr M43 fc M28

1
mov to dbr M42 mov from dbr M43 mov from psr.um

M36
probe.rw.fault –

imm2 M40

2
mov to ibr M42 mov from ibr M43 mov.m from ar M31 probe.r.fault –

imm2 M40

3
mov to pkr M42 mov from pkr M43 probe.w.fault –

imm2 M40

4 mov to pmc M42 mov from pmc M43 mov from cr M33 ptc.e M47

5 mov to pmd M42 mov from pmd M43 mov from psr M36

6

7 mov from cpuid M43

8 probe.r – imm2 M39 probe.r M38

9 ptc.l M45 probe.w – imm2 M39 mov to psr.um M35 probe.w M38

A ptc.g M45 thash M46 mov.m to ar M29

B ptc.ga M45 ttag M46

C ptr.d M45 mov to cr M32

D ptr.i M45 mov to psr.l M35

E itr.d M42 tpa M46 itc.d M41

F itr.i M42 tak M46 itc.i M41

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r2 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.r
r1 = r3, r2 1 0

38

probe.w 39

Volume 3: Instruction Formats 3:347

4.4.10.2 Probe – Immediate2

M39

4.4.10.3 Probe Fault – Immediate2

M40

4.4.10.4 Translation Cache Insert

M41

4.4.10.5 Move to Indirect Register/Translation Register Insert

M42

40 373635 3332 2726 2019 15141312 6 5 0

1 x3 x6 r3 i2b r1 qp

4 1 3 6 7 5 2 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.r
r1 = r3, imm2 1 0

18

probe.w 19

40 373635 3332 2726 2019 15141312 6 5 0

1 x3 x6 r3 i2b qp

4 1 3 6 7 5 2 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.rw.fault

r3, imm2 1 0

31

probe.r.fault 32

probe.w.fault 33

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

itc.d l p

r2 1 0
2E

itc.i l p 2F

40 373635 3332 2726 2019 13 12 6 5 0

1 x3 x6 r3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p

rr[r3] = r2

1 0

00

dbr[r3] = r2 01

ibr[r3] = r2 02

pkr[r3] = r2 03

pmc[r3] = r2 04

pmd[r3] = r2 05

itr.d p dtr[r3] = r2 0E

itr.i p itr[r3] = r2 0F

3:348 Volume 3: Instruction Formats

4.4.10.6 Move from Indirect Register

M43

4.4.10.7 Set/Reset User/System Mask

M44

4.4.10.8 Translation Purge

M45

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p

r1 = rr[r3]

1 0

10

r1 = dbr[r3] 11

r1 = ibr[r3] 12

r1 = pkr[r3] 13

r1 = pmc[r3] 14

mov
r1 = pmd[r3] 15

r1 = cpuid[r3] 17

40 373635 33323130 2726 6 5 0

0 i x3 i2d x4 imm21a qp

4 1 3 2 4 21 6

Instruction Operands Opcode
Extension

x3 x4

sum

imm24 0 0

4

rum 5

ssm p 6

rsm p 7

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

ptc.l p

r3, r2 1 0

09

ptc.g l p 0A

ptc.ga l p 0B

ptr.d p 0C

ptr.i p 0D

Volume 3: Instruction Formats 3:349

4.4.10.9 Translation Access

M46

4.4.10.10 Purge Translation Cache Entry

M47

4.4.11 Nop/Hint (M-Unit)

M-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit
opcode extension field in bits 35:33 (x3), a 2-bit opcode extension field in bits 32:31
(x2), a 4-bit opcode extension field in bits 30:27 (x4), and a 1-bit opcode extension
field in bit 26 (y), as shown in Table 4-46.

M48

4.5 B-Unit Instruction Encodings

The branch-unit includes branch, predict, and miscellaneous instructions.

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

thash

r1 = r3 1 0

1A

ttag 1B

tpa p 1E

tak p 1F

40 373635 3332 2726 2019 6 5 0

1 x3 x6 r3 qp

4 1 3 6 7 14 6

Instruction Operands Opcode
Extension

x3 x6

ptc.e p r3 1 0 34

Table 4-46. Misc M-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x4
Bits 30:27

x2
Bits 32:31

y
Bit 26

0 0 1 0
0 nop.m

1 hint.m

40 373635 33323130 272625 6 5 0

0 i x3 x2 x4 y imm20a qp

4 1 3 2 4 1 20 6

Instruction Operands Opcode
Extension

x3 x4 x2 y

nop.m
imm21 0 0 1 0

0

hint.m 1

3:350 Volume 3: Instruction Formats

4.5.1 Branches

Opcode 0 is used for indirect branch, opcode 1 for indirect call, opcode 4 for IP-relative
branch, and opcode 5 for IP-relative call.

The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode
extension field in bits 8:6 (btype) to distinguish the branch types as shown in
Table 4-47.

The indirect branch, indirect return, and miscellaneous branch-unit instructions are
encoded within major opcode 0 using a 6-bit opcode extension field in bits 32:27 (x6).
Table 4-48 summarizes these assignments.

Table 4-47. IP-Relative Branch Types

Opcode
Bits 40:37

btype
Bits 8:6

4

0 br.cond B1

1 e

2 br.wexit B1

3 br.wtop B1

4 e

5 br.cloop B2

6 br.cexit B2

7 br.ctop B2

Table 4-48. Indirect/Miscellaneous Branch Opcode Extensions

Opcode
Bits 40:37

x6

Bits
30:27

Bits 32:31

0 1 2 3

0

0 break.b B9 epc B8
Indirect Branch

(Table 4-49)
 e

1 e Indirect Return
(Table 4-50)

 e

2 cover B8 e e e

3 e e e e

4 clrrrb B8 e e e

5 clrrrb.pr B8 e e e

6 e e e e

7 e e e e

8 rfi B8 vmsw.0 B8 e e

9 vmsw.1 B8 e e

A e e e e

B e e e e

C bsw.0 B8 e e e

D bsw.1 B8 e e e

E e e e e

F e e e e

Volume 3: Instruction Formats 3:351

The indirect branch instructions encoded within major opcodes 0 use a 3-bit opcode
extension field in bits 8:6 (btype) to distinguish the branch types as shown in
Table 4-49.

The indirect return branch instructions encoded within major opcodes 0 use a 3-bit
opcode extension field in bits 8:6 (btype) to distinguish the branch types as shown in
Table 4-50.

All of the branch instructions have a 1-bit sequential prefetch opcode hint extension
field, p, in bit 12. Table 4-51 summarizes these assignments.

The IP-relative and indirect branch instructions all have a 2-bit branch prediction
“whether” opcode hint extension field in bits 34:33 (wh) as shown in Table 4-52.
Indirect call instructions have a 3-bit “whether” opcode hint extension field in bits
34:32 (wh) as shown in Table 4-53.

Table 4-49. Indirect Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 20

0 br.cond B4

1 br.ia B4

2 e

3 e

4 e

5 e

6 e

7 e

Table 4-50. Indirect Return Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 21

0 e

1 e

2 e

3 e

4 br.ret B4

5 e

6 e

7 e

Table 4-51. Sequential Prefetch Hint Completer

p
Bit 12

ph

0 .few

1 .many

3:352 Volume 3: Instruction Formats

The branch instructions also have a 1-bit branch cache deallocation opcode hint
extension field in bit 35 (d) as shown in Table 4-54.

4.5.1.1 IP-Relative Branch

B1

Table 4-52. Branch Whether Hint Completer

wh
Bits 34:33

bwh

0 .sptk

1 .spnt

2 .dptk

3 .dpnt

Table 4-53. Indirect Call Whether Hint Completer

wh
Bits 34:32

bwh

0

1 .sptk

2

3 .spnt

4

5 .dptk

6

7 .dpnt

Table 4-54. Branch Cache Deallocation Hint Completer

d
Bit 35

dh

0 none

1 .clr

40 373635343332 1312 11 9 8 6 5 0

4 s d wh imm20b p btype qp

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d

br.cond.bwh.ph.dh e

target25 4

0 See
Table 4-51 on
page 3:351

See
Table 4-52 on
page 3:352

See
Table 4-54 on
page 3:352

br.wexit.bwh.ph.dh e t 2

br.wtop.bwh.ph.dh e t 3

Volume 3: Instruction Formats 3:353

4.5.1.2 IP-Relative Counted Branch

B2

4.5.1.3 IP-Relative Call

B3

4.5.1.4 Indirect Branch

B4

4.5.1.5 Indirect Call

B5

4.5.2 Branch Predict/Nop/Hint

The branch predict, nop, and hint instructions are encoded in major opcodes 2 (Indirect
Predict/Nop/Hint) and 7 (IP-relative Predict). The indirect predict, nop, and hint
instructions in major opcode 2 use a 6-bit opcode extension field in bits 32:27 (x6).
Table 4-55 summarizes these assignments.

40 373635343332 1312 11 9 8 6 5 0

4 s d wh imm20b p btype 0

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d

br.cloop.bwh.ph.dh e t

target25 4

5 See
Table 4-51 on
page 3:351

See
Table 4-52 on
page 3:352

See
Table 4-54 on
page 3:352

br.cexit.bwh.ph.dh e t 6

br.ctop.bwh.ph.dh e t 7

40 373635343332 1312 11 9 8 6 5 0

5 s d wh imm20b p b1 qp

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh e b1 = target25 5
See Table 4-51
on page 3:351

See Table 4-52
on page 3:352

See Table 4-54
on page 3:352

40 373635343332 2726 1615 1312 11 9 8 6 5 0

0 d wh x6 b2 p btype qp

4 1 1 2 6 11 3 1 3 3 6

Instruction Operands Opcode
Extension

x6 btype p wh d

br.cond.bwh.ph.dh e

b2 0
20

0 See
Table 4-51

on
page 3:351

See
Table 4-52

on
page 3:352

See
Table 4-54

on
page 3:352

br.ia.bwh.ph.dh e 1

br.ret.bwh.ph.dh e 21 4

40 37363534 3231 1615 1312 11 9 8 6 5 0

1 d wh b2 p b1 qp

4 1 1 3 16 3 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh e b1 = b2 1
See Table 4-51
on page 3:351

See Table 4-53
on page 3:352

See Table 4-54
on page 3:352

3:354 Volume 3: Instruction Formats

The branch predict instructions all have a 1-bit branch importance opcode hint
extension field in bit 35 (ih). The mov to BR instruction (page 3:320) also has this hint
in bit 23. Table 4-56 shows these assignments.

The IP-relative branch predict instructions have a 2-bit branch prediction “whether”
opcode hint extension field in bits 4:3 (wh) as shown in Table 4-57. Note that the
combination of the .loop or .exit whether hint completer with the none importance hint
completer is undefined.

The indirect branch predict instructions have a 2-bit branch prediction “whether”
opcode hint extension field in bits 4:3 (wh) as shown in Table 4-58.

Table 4-55. Indirect Predict/Nop/Hint Opcode Extensions

Opcode
Bits

40:37

x6

Bits
30:27

Bits 32:31

0 1 2 3

2

0 nop.b B9 brp B7

1 hint.b B9 brp.ret B7

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Table 4-56. Branch Importance Hint Completer

ih
Bit 23 or

Bit 35
ih

0 none

1 .imp

Table 4-57. IP-Relative Predict Whether Hint Completer

wh
Bits 4:3

ipwh

0 .sptk

1 .loop

2 .dptk

3 .exit

Volume 3: Instruction Formats 3:355

4.5.2.1 IP-Relative Predict

B6

4.5.2.2 Indirect Predict

B7

4.5.3 Miscellaneous B-Unit Instructions

The miscellaneous branch-unit instructions include a number of instructions encoded
within major opcode 0 using a 6-bit opcode extension field in bits 32:27 (x6) as
described in Table 4-48 on page 3:350.

4.5.3.1 Miscellaneous (B-Unit)

B8

Table 4-58. Indirect Predict Whether Hint Completer

wh
Bits 4:3

indwh

0 .sptk

1

2 .dptk

3

40 373635343332 1312 6 5 4 3 2 0

7 s ih t2e imm20b timm7a wh

4 1 1 2 20 7 1 2 3

Instruction Operands Opcode
Extension

ih wh

brp.ipwh.ih target25, tag13 7
See Table 4-56 on

page 3:354
See Table 4-57 on

page 3:354

40 373635343332 2726 1615 1312 6 5 4 3 2 0

2 ih t2e x6 b2 timm7a wh

4 1 1 2 6 11 3 7 1 2 3

Instruction Operands Opcode
Extension

x6 ih wh

brp.indwh.ih
b2, tag13 2

10 See Table 4-56 on
page 3:354

See Table 4-58 on
page 3:355brp.ret.indwh.ih 11

40 3736 3332 2726 6 5 0

0 x6 0

4 4 6 21 6

Instruction Opcode
Extension

x6

cover l

0

02

clrrrb l 04

clrrrb.pr l 05

rfi e l p 08

bsw.0 l p 0C

bsw.1 l p 0D

epc 10

3:356 Volume 3: Instruction Formats

4.5.3.2 Break/Nop/Hint (B-Unit)

B9

4.6 F-Unit Instruction Encodings

The floating-point instructions are encoded in major opcodes 8 – E for floating-point
and fixed-point arithmetic, opcode 4 for floating-point compare, opcode 5 for
floating-point class, and opcodes 0 and 1 for miscellaneous floating-point instructions.

The miscellaneous and reciprocal approximation floating-point instructions are encoded
within major opcodes 0 and 1 using a 1-bit opcode extension field (x) in bit 33 and
either a second 1-bit extension field in bit 36 (q) or a 6-bit opcode extension field (x6)
in bits 32:27. Table 4-59 shows the 1-bit x assignments, Table 4-62 shows the
additional 1-bit q assignments for the reciprocal approximation instructions; Table 4-60
and Table 4-61 summarize the 6-bit x6 assignments.

vmsw.0 p

0
18

vmsw.1 p 19

40 373635 3332 272625 6 5 0

0/2 i x6 imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x6

break.b e

imm21

0
00

nop.b
2

hint.b 01

Table 4-59. Miscellaneous Floating-point 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 33

0
0 6-bit Ext (Table 4-60)

1 Reciprocal Approximation (Table 4-62)

1
0 6-bit Ext (Table 4-61)

1 Reciprocal Approximation (Table 4-62)

Instruction Opcode
Extension

x6

Volume 3: Instruction Formats 3:357

Table 4-60. Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits

40:37

x
Bit
33

x6

Bits
30:27

Bits 32:31

0 1 2 3

0 0

0 break.f F15 fmerge.s F9

1 1-bit Ext
(Table 4-68)

fmerge.ns F9

2 fmerge.se F9

3

4 fsetc F12 fmin F8 fswap F9

5 fclrf F13 fmax F8 fswap.nl F9

6 famin F8 fswap.nr F9

7 famax F8

8 fchkf F14 fcvt.fx F10 fpack F9

9 fcvt.fxu F10 fmix.lr F9

A fcvt.fx.trunc F10 fmix.r F9

B fcvt.fxu.trunc F10 fmix.l F9

C fcvt.xf F11 fand F9 fsxt.r F9

D fandcm F9 fsxt.l F9

E for F9

F fxor F9

Table 4-61. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits

40:37

x
Bit
33

x6

Bits
30:27

Bits 32:31

0 1 2 3

1 0

0 fpmerge.s F9 fpcmp.eq F8

1 fpmerge.ns F9 fpcmp.lt F8

2 fpmerge.se F9 fpcmp.le F8

3 fpcmp.unord F8

4 fpmin F8 fpcmp.neq F8

5 fpmax F8 fpcmp.nlt F8

6 fpamin F8 fpcmp.nle F8

7 fpamax F8 fpcmp.ord F8

8 fpcvt.fx F10

9 fpcvt.fxu F10

A fpcvt.fx.trunc F10

B fpcvt.fxu.trunc F10

C

D

E

F

3:358 Volume 3: Instruction Formats

Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf)
which encodes the FPSR status field to be used. Table 4-63 summarizes these
assignments.

4.6.1 Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 – D using
a 1-bit opcode extension field (x) in bit 36 and a 2-bit opcode extension field (sf) in bits
35:34. The opcode and x assignments are shown in Table 4-64.

The fixed-point arithmetic and parallel floating-point select instructions are encoded
within major opcode E using a 1-bit opcode extension field (x) in bit 36. The fixed-point
arithmetic instructions also have a 2-bit opcode extension field (x2) in bits 35:34. These
assignments are shown in Table 4-65.

Table 4-62. Reciprocal Approximation 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 33

q
Bit 36

0

1

0 frcpa F6

1 frsqrta F7

1
0 fprcpa F6

1 fprsqrta F7

Table 4-63. Floating-point Status Field Completer

sf
Bits 35:34

sf

0 .s0

1 .s1

2 .s2

3 .s3

Table 4-64. Floating-point Arithmetic 1-bit Opcode Extensions

x
Bit 36

Opcode
Bits 40:37

8 9 A B C D

0 fma F1 fma.d F1 fms F1 fms.d F1 fnma F1 fnma.d F1

1 fma.s F1 fpma F1 fms.s F1 fpms F1 fnma.s F1 fpnma F1

Table 4-65. Fixed-point Multiply Add and Select Opcode Extensions

Opcode
Bits 40:37

x
Bit 36

x2
Bits 35:34

0 1 2 3

E
0 fselect F3

1 xma.l F2 xma.hu F2 xma.h F2

Volume 3: Instruction Formats 3:359

4.6.1.1 Floating-point Multiply Add

F1

4.6.1.2 Fixed-point Multiply Add

F2

4.6.2 Parallel Floating-point Select

F3

4.6.3 Compare and Classify

The predicate setting floating-point compare instructions are encoded within major
opcode 4 using three 1-bit opcode extension fields in bits 33 (ra), 36 (rb), and 12 (ta),
and a 2-bit opcode extension field (sf) in bits 35:34. The opcode, ra, rb, and ta
assignments are shown in Table 4-66. The sf assignments are shown in Table 4-63 on
page 3:358.

The parallel floating-point compare instructions are described on page 3:362.

40 3736353433 2726 2019 1312 6 5 0

8 - D x sf f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x sf

fma.sf

f1 = f3, f4, f2

8
0

See Table 4-63 on
page 3:358

fma.s.sf 1

fma.d.sf
9

0

fpma.sf 1

fms.sf
A

0

fms.s.sf 1

fms.d.sf
B

0

fpms.sf 1

fnma.sf
C

0

fnma.s.sf 1

fnma.d.sf
D

0

fpnma.sf 1

40 3736353433 2726 2019 1312 6 5 0

E x x2 f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x x2

xma.l

f1 = f3, f4, f2 E 1

0

xma.h 3

xma.hu 2

40 3736353433 2726 2019 1312 6 5 0

E x f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x

fselect f1 = f3, f4, f2 E 0

3:360 Volume 3: Instruction Formats

The floating-point class instructions are encoded within major opcode 5 using a 1-bit
opcode extension field in bit 12 (ta) as shown in Table 4-67.

4.6.3.1 Floating-point Compare

F4

4.6.3.2 Floating-point Class

F5

Table 4-66. Floating-point Compare Opcode Extensions

Opcode
Bits

40:37

ra
Bit 33

rb
Bit 36

ta
Bit 12

0 1

4

0
0 fcmp.eq F4 fcmp.eq.unc F4

1 fcmp.lt F4 fcmp.lt.unc F4

1
0 fcmp.le F4 fcmp.le.unc F4

1 fcmp.unord F4 fcmp.unord.unc F4

Table 4-67. Floating-point Class 1-bit Opcode Extensions

Opcode
Bits 40:37

ta
Bit 12

5
0 fclass.m F5

1 fclass.m.unc F5

40 373635343332 2726 2019 1312 11 6 5 0

4 rb sf ra p2 f3 f2 ta p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ra rb ta sf

fcmp.eq.sf

p1, p2 = f2, f3 4

0
0

0

See Table 4-63
on page 3:358

fcmp.lt.sf 1

fcmp.le.sf
1

0

fcmp.unord.sf 1

fcmp.eq.unc.sf
0

0

1
fcmp.lt.unc.sf 1

fcmp.le.unc.sf
1

0

fcmp.unord.unc.sf 1

40 373635343332 2726 2019 1312 11 6 5 0

5 fc2 p2 fclass7c f2 ta p1 qp

4 2 2 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ta
fclass.m

p1, p2 = f2, fclass9 5
0

fclass.m.unc 1

Volume 3: Instruction Formats 3:361

4.6.4 Approximation

4.6.4.1 Floating-point Reciprocal Approximation

There are two Reciprocal Approximation instructions. The first, in major op 0, encodes
the full register variant. The second, in major op 1, encodes the parallel variant.

F6

4.6.4.2 Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op
0, encodes the full register variant. The second, in major op 1, encodes the parallel
variant.

F7

40 373635343332 2726 2019 1312 6 5 0

0 - 1 q sf x p2 f3 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frcpa.sf
f1, p2 = f2, f3

0
1 0

See Table 4-63 on
page 3:358

fprcpa.sf 1

40 373635343332 2726 2019 1312 6 5 0

0 - 1 q sf x p2 f3 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frsqrta.sf
f1, p2 = f3

0
1 1

See Table 4-63 on
page 3:358fprsqrta.sf 1

3:362 Volume 3: Instruction Formats

4.6.5 Minimum/Maximum and Parallel Compare

There are two groups of Minimum/Maximum instructions. The first group, in major op
0, encodes the full register variants. The second group, in major op 1, encodes the
parallel variants. The parallel compare instructions are all encoded in major op 1.

F8

40 373635343332 2726 2019 1312 6 5 0

0 - 1 sf x x6 f3 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fmin.sf

f1 = f2, f3

0

0

14

See Table 4-63 on
page 3:358

fmax.sf 15

famin.sf 16

famax.sf 17

fpmin.sf

1

14

fpmax.sf 15

fpamin.sf 16

fpamax.sf 17

fpcmp.eq.sf 30

fpcmp.lt.sf 31

fpcmp.le.sf 32

fpcmp.unord.sf 33

fpcmp.neq.sf 34

fpcmp.nlt.sf 35

fpcmp.nle.sf 36

fpcmp.ord.sf 37

Volume 3: Instruction Formats 3:363

4.6.6 Merge and Logical

F9

4.6.7 Conversion

4.6.7.1 Convert Floating-point to Fixed-point

F10

40 3736 343332 2726 2019 1312 6 5 0

0 - 1 x x6 f3 f2 f1 qp

4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6

fmerge.s

f1 = f2, f3

0

0

10

fmerge.ns 11

fmerge.se 12

fmix.lr 39

fmix.r 3A

fmix.l 3B

fsxt.r 3C

fsxt.l 3D

fpack 28

fswap 34

fswap.nl 35

fswap.nr 36

fand 2C

fandcm 2D

for 2E

fxor 2F

fpmerge.s

1

10

fpmerge.ns 11

fpmerge.se 12

40 373635343332 2726 2019 1312 6 5 0

0 - 1 sf x x6 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fcvt.fx.sf

f1 = f2

0

0

18

See Table 4-63 on
page 3:358

fcvt.fxu.sf 19

fcvt.fx.trunc.sf 1A

fcvt.fxu.trunc.sf 1B

fpcvt.fx.sf

1

18

fpcvt.fxu.sf 19

fpcvt.fx.trunc.sf 1A

fpcvt.fxu.trunc.sf 1B

3:364 Volume 3: Instruction Formats

4.6.7.2 Convert Fixed-point to Floating-point

F11

4.6.8 Status Field Manipulation

4.6.8.1 Floating-point Set Controls

F12

4.6.8.2 Floating-point Clear Flags

F13

4.6.8.3 Floating-point Check Flags

F14

40 3736 343332 2726 2019 1312 6 5 0

0 x x6 f2 f1 qp

4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6

fcvt.xf f1 = f2 0 0 1C

40 373635343332 2726 2019 1312 6 5 0

0 sf x x6 omask7c amask7b qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fsetc.sf amask7, omask7 0 0 04
See Table 4-63 on

page 3:358

40 373635343332 2726 6 5 0

0 sf x x6 qp

4 1 2 1 6 21 6

Instruction Opcode
Extension

x x6 sf

fclrf.sf 0 0 05 See Table 4-63 on page 3:358

40 373635343332 272625 6 5 0

0 s sf x x6 imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6 sf

fchkf.sf target25 0 0 08
See Table 4-63 on

page 3:358

Volume 3: Instruction Formats 3:365

4.6.9 Miscellaneous F-Unit Instructions

4.6.9.1 Break (F-Unit)

F15

4.6.9.2 Nop/Hint (F-Unit)

F-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit
opcode extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27
(x6), and a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-46.

F16

4.7 X-Unit Instruction Encodings

The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode
extensions and hints, qp, and small immediate fields occupy the X instruction slot. For
movl, break.x, and nop.x, the imm41 field occupies the L instruction slot. For brl, the
imm39 field and a 2-bit Ignored field occupy the L instruction slot.

4.7.1 Miscellaneous X-Unit Instructions

The miscellaneous X-unit instructions are encoded in major opcode 0 using a 3-bit
opcode extension field (x3) in bits 35:33 and a 6-bit opcode extension field (x6) in bits
32:27. Table 4-69 shows the 3-bit assignments and Table 4-70 summarizes the 6-bit
assignments. These instructions are executed by an I-unit.

40 373635343332 272625 6 5 0

0 i x x6 imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6

break.f imm21 0 0 00

Table 4-68. Misc F-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit :33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.f

1 hint.f

40 373635343332 272625 6 5 0

0 i x x6 y imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6 y

nop.f
imm21 0 0 01

0

hint.f 1

3:366 Volume 3: Instruction Formats

4.7.1.1 Break (X-Unit)

X1

4.7.2 Move Long Immediate64

The move long immediate instruction is encoded within major opcode 6 using a 1-bit
reserved opcode extension in bit 20 (vc) as shown in Table 4-71. This instruction is
executed by an I-unit.

Table 4-69. Misc X-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0 6-bit Ext (Table 4-70)

1

2

3

4

5

6

7

Table 4-70. Misc X-Unit 6-bit Opcode Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x6

Bits
30:27

Bits 32:31

0 1 2 3

0 0

0 break.x X1

1 1-bit Ext
(Table 4-73)

2

3

4

5

6

7

8

9

A

B

C

D

E

F

40 373635 3332 272625 6 5 0 40 0

0 i x3 x6 imm20a qp imm41

4 1 3 6 1 20 6 41

Instruction Operands Opcode
Extension

x3 x6

break.x imm62 0 0 00

Volume 3: Instruction Formats 3:367

X2

4.7.3 Long Branches

Long branches are executed by a B-unit. Opcode C is used for long branch and opcode
D for long call.

The long branch instructions encoded within major opcode C use a 3-bit opcode
extension field in bits 8:6 (btype) to distinguish the branch types as shown in
Table 4-72.

The long branch instructions have the same opcode hint fields in bit 12 (p), bits 34:33
(wh), and bit 35 (d) as normal IP-relative branches. These are shown in Table 4-51 on
page 3:351, Table 4-52 on page 3:352, and Table 4-54 on page 3:352.

4.7.3.1 Long Branch

X3

Table 4-71. Move Long 1-bit Opcode Extensions

Opcode
Bits 40:37

vc
Bit 20

6
0 movl X2

1

40 373635 2726 22212019 1312 6 5 0 40 0

6 i imm9d imm5c ic vc imm7b r1 qp imm41

4 1 9 5 1 1 7 7 6 41

Instruction Operands Opcode
Extension

vc

movl i r1 = imm64 6 0

Table 4-72. Long Branch Types

Opcode
Bits 40:37

btype
Bits 8:6

C

0 brl.cond X3

1

2

3

4

5

6

7

40 373635343332 1312 11 9 8 6 5 0 40 2 1 0

C i d wh imm20b p btype qp imm39

4 1 1 2 20 1 3 3 6 39 2

Instruction Operands Opcode
Extension

btype p wh d

brl.cond.bwh.ph.dh e l target64 C 0
See Table 4-51
on page 3:351

See Table 4-52
on page 3:352

See Table 4-54
on page 3:352

3:368 Volume 3: Instruction Formats

4.7.3.2 Long Call

X4

4.7.4 Nop/Hint (X-Unit)

X-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit
opcode extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27
(x6), and a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-73. These
instructions are executed by an I-unit.

X5

4.8 Immediate Formation

Table 4-74 shows, for each instruction format that has one or more immediates, how
those immediates are formed. In each equation, the symbol to the left of the equals is
the assembly language name for the immediate. The symbols to the right are the field
names in the instruction encoding.

40 373635343332 1312 11 9 8 6 5 0 40 2 1 0

D i d wh imm20b p b1 qp imm39

4 1 1 2 20 1 3 3 6 39 2

Instruction Operands Opcode
Extension

p wh d

brl.call.bwh.ph.dh e l b1 = target64 D
See Table 4-51
on page 3:351

See Table 4-52
on page 3:352

See Table 4-54
on page 3:352

Table 4-73. Misc X-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.x

1 hint.x

40 373635 3332 272625 6 5 0 40 0

0 i x3 x6 y imm20a qp imm41

4 1 3 6 1 20 6 41

Instruction Operands Opcode
Extension

x3 x6 y

nop.x
imm62 0 0 01

0

hint.x 1

Table 4-74. Immediate Formation

Instruction
Format

Immediate Formation

A2 count2 = ct2d + 1

A3 A8 I27 M30 imm8 = sign_ext(s << 7 | imm7b, 8)

A4 imm14 = sign_ext(s << 13 | imm6d << 7 | imm7b, 14)

A5 imm22 = sign_ext(s << 21 | imm5c << 16 | imm9d << 7 | imm7b, 22)

A10 count2 = (ct2d > 2) ? reservedQPa : ct2d + 1

I1 count2 = (ct2d == 0) ? 0 : (ct2d == 1) ? 7 : (ct2d == 2) ? 15 : 16

Volume 3: Instruction Formats 3:369

I3
mbtype4 = (mbt4c == 0) ? @brcst : (mbt4c == 8) ? @mix : (mbt4c == 9) ? @shuf : (mbt4c ==

0xA) ? @alt : (mbt4c == 0xB) ? @rev : reservedQPa

I4 mhtype8 = mht8c

I6 count5 = count5b

I8 count5 = 31 – ccount5c

I10 count6 = count6d

I11
len6 = len6d + 1

pos6 = pos6b

I12
len6 = len6d + 1

pos6 = 63 – cpos6c

I13
len6 = len6d + 1

pos6 = 63 – cpos6c
imm8 = sign_ext(s << 7 | imm7b, 8)

I14
len6 = len6d + 1

pos6 = 63 – cpos6b
imm1 = sign_ext(s, 1)

I15
len4 = len4d + 1

pos6 = 63 – cpos6d

I16 pos6 = pos6b

I18 I19 M37 M48 imm21 = i << 20 | imm20a

I21 tag13 = IP + (sign_ext(timm9c, 9) << 4)

I23 mask17 = sign_ext(s << 16 | mask8c << 8 | mask7a << 1, 17)

I24 imm44 = sign_ext(s << 43 | imm27a << 16, 44)

I30 imm5 = imm5b + 32

M3 M8 M22 imm9 = sign_ext(s << 8 | i << 7 | imm7b, 9)

M5 M10 imm9 = sign_ext(s << 8 | i << 7 | imm7a, 9)

M17 inc3 = sign_ext(((s) ? –1 : 1) * ((i2b == 3) ? 1 : 1 << (4 – i2b)), 6)

I20 M20 M21 target25 = IP + (sign_ext(s << 20 | imm13c << 7 | imm7a, 21) << 4)

M22 M23 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

M34
il = sol

o = sof – sol
r = sor << 3

M39 M40 imm2 = i2b

M44 imm24 = i << 23 | i2d << 21 | imm21a

B1 B2 B3 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

B6
target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

tag13 = IP + (sign_ext(t2e << 7 | timm7a, 9) << 4)

B7 tag13 = IP + (sign_ext(t2e << 7 | timm7a, 9) << 4)

B9 imm21 = i << 20 | imm20a

F5 fclass9 = fclass7c << 2 | fc2

F12
amask7 = amask7b
omask7 = omask7c

F14 target25 = IP + (sign_ext(s << 20 | imm20a, 21) << 4)

F15 F16 imm21 = i << 20 | imm20a

X1 X5 imm62 = imm41 << 21 | i << 20 | imm20a

X2 imm64 = i << 63 | imm41 << 22 | ic << 21 | imm5c << 16 | imm9d << 7 | imm7b

X3 X4 target64 = IP + ((i << 59 | imm39 << 20 | imm20b) << 4)

Table 4-74. Immediate Formation (Continued)

Instruction
Format

Immediate Formation

3:370 Volume 3: Instruction Formats

§

a. This encoding causes an Illegal Operation fault if the value of the qualifying predicate is 1.

Volume 3: Resource and Dependency Semantics 3:371

Resource and Dependency Semantics 5

5.1 Reading and Writing Resources

An Itanium instruction is said to be a reader of a resource if the instruction’s qualifying
predicate is 1 or it has no qualifying predicate or is one of the instructions that reads a
resource even when its qualifying predicate is 0, and the execution of the instruction
depends on that resource.

An Itanium instruction is said to be an writer of a resource if the instruction’s
qualifying predicate is 1 or it has no qualifying predicate or writes the resource even
when the qualifying predicate is 0, and the execution of the instruction writes that
resource.

An Itanium instruction is said to be a reader or writer of a resource even if it only
sometimes depends on that resource and it cannot be determined statically whether
the resource will be read or written. For example, cover only writes CR[IFS] when
PSR.ic is 0, but for purposes of dependency, it is treated as if it always writes the
resource since this condition cannot be determined statically. On the other hand, rsm
conditionally writes several bits in the PSR depending on a mask which is encoded as an
immediate in the instruction. Since the PSR bits to be written can be determined by
examining the encoded instruction, the instruction is treated as only writing those bits
which have a corresponding mask bit set. All exceptions to these general rules are
described in this appendix.

5.2 Dependencies and Serialization

A RAW (Read-After-Write) dependency is a sequence of two events where the first is a
writer of a resource and the second is a reader of the same resource. Events may be
instructions, interruptions, or other ‘uses’ of the resource such as instruction stream
fetches and VHPT walks. Table 5-2 covers only dependencies based on instruction
readers and writers.

A WAW (Write-After-Write) dependency is a sequence of two events where both events
write the resource in question. Events may be instructions, interruptions, or other
‘updates’ of the resource. Table 5-3 covers only dependencies based on instruction
writers.

A WAR (Write-After-Read) dependency is a sequence of two instructions, where the
first is a reader of a resource and the second is a writer of the same resource. Such
dependencies are always allowed except as indicated in Table 5-4 and only those
related to instruction readers and writers are included.

A RAR (Read-After-Read) dependency is a sequence of two instructions where both are
readers of the same resource. Such dependencies are always allowed.

3:372 Volume 3: Resource and Dependency Semantics

RAW and WAW dependencies are generally not allowed without some type of
serialization event (an implied, data, or instruction serialization after the first writing
instruction. (See Section 3.2, “Serialization” on page 2:17 for details on serialization.)
The tables and associated rules in this appendix provide a comprehensive list of readers
and writers of resources and describe the serialization required for the dependency to
be observed and possible outcomes if the required serialization is not met. Even when
targeting code for machines which do not check for particular disallowed dependencies,
such code sequences are considered architecturally undefined and may cause code to
behave differently across processors, operating systems, or even separate executions
of the code sequence during the same program run. In some cases, different
serializations may yield different, but well-defined results.

The serialization of application level (non-privileged) resources is always implied. This
means that if a writer of that resource and a subsequent read of that same resource are
in different instruction groups, then the reader will see the value written. In addition,
for dependencies on PRs and BRs, where the writer is a non-branch instruction and the
reader is a branch instruction, the writer and reader may be in the same instruction
group.

System resources generally require explicit serialization, i.e., the use of a srlz.i or
srlz.d instruction, between the writing and the reading of that resource. Note that
RAW accesses to CRs are not exceptional – they require explicit data or instruction
serialization. However, in some cases (other than CRs) where pairs of instructions
explicitly encode the same resource, serialization is implied.

There are cases where it is architecturally allowed to omit a serialization, and that the
response from the CPU must be atomic (act as if either the old or the new state were
fully in place). The tables in this appendix indicate dependency requirements under the
assumption that the desired result is for the dependency to always be observed. In
some such cases, the programmer may not care if the old or new state is used; such
situations are allowed, but the value seen is not deterministic.

On the other hand, if an impliedF dependency is violated, then the program is
incorrectly coded and the processor's behavior is undefined.

5.3 Resource and Dependency Table Format Notes

• The “Writers” and “Readers” columns of the dependency tables contain instruction
class names and instruction mnemonic prefixes as given in the format section of
each instruction page. To avoid ambiguity, instruction classes are shown in bold,
while instruction mnemonic prefixes are in regular font. For instruction mnemonic
prefixes, all instructions that exactly match the name specified or those that begin
with the specified text and are followed by a ‘.’ and then followed by any other text
will match.

• The dependency on a listed instruction is in effect no matter what values are
encoded in the instruction or what dynamic values occur in operands, unless a
superscript is present or one of the special case instruction rules in Section 5.3.1
applies. Instructions listed are still subject to rules regarding qualifying predicates.

• Instruction classes are groups of related instructions. Such names appear in
boldface for clarity. The list of all instruction classes is contained in Table 5-5. Note
that an instruction may appear in multiple instruction classes, instruction classes

Volume 3: Resource and Dependency Semantics 3:373

may expand to contain other classes, and that when fully expanded, a set of
classes (e.g., the readers of some resource) may contain the same instruction
multiple times.

• The syntax ‘x\y’ where x and y are both instruction classes, indicates an unnamed
instruction class that includes all instructions in instruction class x but that are not
in instruction class y. Similarly, the notation ‘x\y\z’ means all instructions in
instruction class x, but that are not in either instruction class y or instruction class
z.

• Resources on separate rows of a table are independent resources. This means that
there are no serialization requirements for an event which references one of them
followed by an event which uses a different resource. In cases where resources are
broken into subrows, dependencies only apply between instructions within a
subrow. Instructions that do not appear in a subrow together have no
dependencies (reader/writer or writer/writer dependencies) for the resource in
question, although they may still have dependencies on some other resource.

• The dependencies listed for pairs of instructions on each resource are not unique –
the same pair of instructions might also have a dependency on some other resource
with a different semantics of dependency. In cases where there are multiple
resource dependencies for the same pair of instructions, the most stringent
semantics are assumed: instr overrides data which overrides impliedF which
overrides implied which overrides none.

• Arrays of numbered resources are represented in a single row of a table using the
% notation as a substitute for the number of the resource. In such cases, the
semantics of the table are as if each numbered resource had its own row in that
table and is thus an independent resource. The range of values that the % can take
are given in the “Resource Name” column.

• An asterisk ‘*’ in the “Resource Name” column indicates that this resource may not
have a physical resource associated with it, but is added to enforce special
dependencies.

• A pound sign ‘#’ in the “Resource Name” column indicates that this resource is an
array of resources that are indexed by a value in a GR. The number of individual
elements in the array is described in the detailed description of each resource.

• The “Semantics of Dependency” column describes the outcome given various
serialization and instruction group boundary conditions. The exact definition for
each keyword is given in Table 5-1.

Table 5-1. Semantics of Dependency Codes

Semantics of
Dependency Code

Serialization Type Required Effects of Serialization Violation

instr Instruction Serialization (See “Instruction
Serialization” on page 2:18).

Atomic: Any attempt to read a resource after one or
more insufficiently serialized writes is either the
value previously in the register (before any of the
unserialized writes) or the value of one of any
unserialized writes. Which value is returned is
unpredictable and multiple insufficiently serialized
reads may see different results. No fault will be
caused by the insufficient serialization.

data Data Serialization (See “Data Serialization” on
page 2:18)

implied Instruction Group Break. Writer and reader must be in
separate instruction groups. (See “Instruction
Sequencing Considerations” on page 1:39).

3:374 Volume 3: Resource and Dependency Semantics

5.3.1 Special Case Instruction Rules

The following rules apply to the specified instructions when they appear in Table 5-2,
Table 5-3, Table 5-4, or Table 5-5:

• An instruction always reads a given resource if its qualifying predicate is 1 and it
appears in the “Reader” column of the table (except as noted). An instruction
always writes a given resource if its qualifying predicate is 1 and it appears in the
“Writer” column of the table (except as noted). An instruction never reads or writes
the specified resource if its qualifying predicate is 0 (except as noted). These rules
include branches and their qualifying predicate. Instructions in the
unpredicatable-instructions class have no qualifying predicate and thus always
read or write their resources (except as noted).

• An instruction of type mov-from-PR reads all PRs if its PR[qp] is true. If the
PR[qp] is false, then only the PR[qp] is read.

• An instruction of type mov-to-PR writes only those PRs as indicated by the
immediate mask encoded in the instruction.

• A st8.spill only writes AR[UNAT]{X} where X equals the value in bits 8:3 of the
store’s data address. A ld8.fill instruction only reads AR[UNAT]{Y} where Y
equals the value in bits 8:3 of the load’s data address.

• Instructions of type mod-sched-brs always read AR[EC] and the rotating register
base registers in CFM, and always write AR[EC], the rotating register bases in CFM,
and PR[63] even if they do not change their values or if their PR[qp] is false.

• Instructions of type mod-sched-brs-counted always read and write AR[LC], even
if they do not change its value.

• For instructions of type pr-or-writers or pr-and-writers, if their completer is
or.andcm, then only the first target predicate is an or-compare and the second
target predicate is an and-compare. Similarly, if their completer is and.orcm, then
only the second target predicate is an or-compare and the first target predicate is
an and-compare.

• rum and sum only read PSR.sp when the bit corresponding to PSR.up (bit 2) is set in
the immediate field of the instruction.

5.3.2 RAW Dependency Table

Table 5-2 architecturally defines the following information:

impliedF Instruction Group Break (same as above). An undefined value is returned, or an Illegal
Operation fault may be taken. If no fault is taken,
the value returned is unpredictable, and may be
unrelated to past writes, but will not be data which
could not be accessed by the current process (e.g.,
if PSR.cpl != 0, the undefined value to return
cannot be read from some control register).

stop Stop. Writer and reader must be separated by a stop.

none None N/A

specific Implementation Specific

SC Special Case Described elsewhere in book, see referenced
section in the entry.

Table 5-1. Semantics of Dependency Codes (Continued)

Semantics of
Dependency Code

Serialization Type Required Effects of Serialization Violation

Volume 3: Resource and Dependency Semantics 3:375

• A list of all architecturally-defined, independently-writable resources in the Itanium
architecture. Each row represents an ‘atomic’ resource. Thus, for each row in the
table, hardware will probably require a separate write-enable control signal.

• For each resource, a complete list of readers and writers.

• For each instruction, a complete list of all resources read and written. Such a list
can be obtained by taking the union of all the rows in which each instruction
appears.

Table 5-2. RAW Dependencies Organized by Resource

Resource Name Writers Readers
Semantics of
Dependency

ALAT chk.a.clr,
mem-readers-alat,
mem-writers, invala-all

mem-readers-alat,
mem-writers, chk-a,
invala.e

none

AR[BSP] br.call, brl.call, br.ret, cover,
mov-to-AR-BSPSTORE, rfi

br.call, brl.call, br.ia, br.ret, cover,
flushrs, loadrs,
mov-from-AR-BSP, rfi

impliedF

AR[BSPSTORE] alloc, loadrs, flushrs,
mov-to-AR-BSPSTORE

alloc, br.ia, flushrs,
mov-from-AR-BSPSTORE

impliedF

AR[CCV] mov-to-AR-CCV br.ia, cmpxchg,
mov-from-AR-CCV

impliedF

AR[CFLG] mov-to-AR-CFLG br.ia, mov-from-AR-CFLG impliedF

AR[CSD] ld16, mov-to-AR-CSD br.ia, cmp8xchg16,
mov-from-AR-CSD, st16

impliedF

AR[EC] mod-sched-brs, br.ret,
mov-to-AR-EC

br.call, brl.call, br.ia, mod-sched-brs,
mov-from-AR-EC

impliedF

AR[EFLAG] mov-to-AR-EFLAG br.ia, mov-from-AR-EFLAG impliedF

AR[FCR] mov-to-AR-FCR br.ia, mov-from-AR-FCR impliedF

AR[FDR] mov-to-AR-FDR br.ia, mov-from-AR-FDR impliedF

AR[FIR] mov-to-AR-FIR br.ia, mov-from-AR-FIR impliedF

AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.s0 br.ia, fp-arith-s0, fcmp-s0, fpcmp-s0,
fsetc, mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 br.ia, fp-arith-s1, fcmp-s1, fpcmp-s1,
mov-from-AR-FPSR

AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 br.ia, fp-arith-s2, fcmp-s2, fpcmp-s2,
mov-from-AR-FPSR

AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 br.ia, fp-arith-s3, fcmp-s3, fpcmp-s3,
mov-from-AR-FPSR

AR[FPSR].sf0.flags fp-arith-s0, fclrf.s0, fcmp-s0,
fpcmp-s0, mov-to-AR-FPSR

br.ia, fchkf,
mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.flags fp-arith-s1, fclrf.s1, fcmp-s1,
fpcmp-s1, mov-to-AR-FPSR

br.ia, fchkf.s1,
mov-from-AR-FPSR

AR[FPSR].sf2.flags fp-arith-s2, fclrf.s2, fcmp-s2,
fpcmp-s2, mov-to-AR-FPSR

br.ia, fchkf.s2,
mov-from-AR-FPSR

AR[FPSR].sf3.flags fp-arith-s3, fclrf.s3, fcmp-s3,
fpcmp-s3, mov-to-AR-FPSR

br.ia, fchkf.s3,
mov-from-AR-FPSR

AR[FPSR].traps mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp,
mov-from-AR-FPSR

impliedF

AR[FPSR].rv mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp,
mov-from-AR-FPSR

impliedF

AR[FSR] mov-to-AR-FSR br.ia, mov-from-AR-FSR impliedF

3:376 Volume 3: Resource and Dependency Semantics

AR[ITC] mov-to-AR-ITC br.ia, mov-from-AR-ITC impliedF

AR[K%],
% in 0 - 7

mov-to-AR-K1 br.ia, mov-from-AR-K1 impliedF

AR[LC] mod-sched-brs-counted,
mov-to-AR-LC

br.ia, mod-sched-brs-counted,
mov-from-AR-LC

impliedF

AR[PFS] br.call, brl.call alloc, br.ia, br.ret, epc,
mov-from-AR-PFS

impliedF

mov-to-AR-PFS alloc, br.ia, epc,
mov-from-AR-PFS

impliedF

br.ret none

AR[RNAT] alloc, flushrs, loadrs,
mov-to-AR-RNAT,
mov-to-AR-BSPSTORE

alloc, br.ia, flushrs, loadrs,
mov-from-AR-RNAT

impliedF

AR[RSC] mov-to-AR-RSC alloc, br.ia, flushrs, loadrs,
mov-from-AR-RSC,
mov-from-AR-BSPSTORE,
mov-to-AR-RNAT,
mov-from-AR-RNAT,
mov-to-AR-BSPSTORE

impliedF

AR[RUC] mov-to-AR-RUC br.ia, mov-from-AR-RUC impliedF

AR[SSD] mov-to-AR-SSD br.ia, mov-from-AR-SSD impliedF

AR[UNAT]{%},
% in 0 - 63

mov-to-AR-UNAT, st8.spill br.ia, ld8.fill,
mov-from-AR-UNAT

impliedF

AR%,
% in 8-15, 20, 22-23, 31,
33-35, 37-39, 41-43, 46-47,
67-111

none br.ia, mov-from-AR-rv1 none

AR%,
% in 48-63, 112-127

mov-to-AR-ig1 br.ia, mov-from-AR-ig1 impliedF

BR%,
% in 0 - 7

br.call1, brl.call1 indirect-brs1, indirect-brp1,
mov-from-BR1

impliedF

mov-to-BR1 indirect-brs1 none

indirect-brp1,
mov-from-BR1

impliedF

CFM mod-sched-brs mod-sched-brs impliedF

cover, alloc, rfi, loadrs, br.ret, br.call,
brl.call

impliedF

cfm-readers2 impliedF

br.call, brl.call, br.ret, clrrrb, cover,
rfi

cfm-readers impliedF

alloc cfm-readers none

CPUID# none mov-from-IND-CPUID3 specific

CR[CMCV] mov-to-CR-CMCV mov-from-CR-CMCV data

CR[DCR] mov-to-CR-DCR mov-from-CR-DCR,
mem-readers-spec

data

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Volume 3: Resource and Dependency Semantics 3:377

CR[EOI] mov-to-CR-EOI none SC Section
5.8.3.4, “End of
External
Interrupt
Register (EOI –
CR67)” on
page 2:124

CR[IFA] mov-to-CR-IFA itc.i, itc.d, itr.i, itr.d implied

mov-from-CR-IFA data

CR[IFS] mov-to-CR-IFS mov-from-CR-IFS data

rfi implied

cover rfi, mov-from-CR-IFS implied

CR[IHA] mov-to-CR-IHA mov-from-CR-IHA data

CR[IIB%],
% in 0 - 1

mov-to-CR-IIB mov-from-CR-IIB data

CR[IIM] mov-to-CR-IIM mov-from-CR-IIM data

CR[IIP] mov-to-CR-IIP mov-from-CR-IIP data

rfi implied

CR[IIPA] mov-to-CR-IIPA mov-from-CR-IIPA data

CR[IPSR] mov-to-CR-IPSR mov-from-CR-IPSR data

rfi implied

CR[IRR%],
% in 0 - 3

mov-from-CR-IVR mov-from-CR-IRR1 data

CR[ISR] mov-to-CR-ISR mov-from-CR-ISR data

CR[ITIR] mov-to-CR-ITIR mov-from-CR-ITIR data

itc.i, itc.d, itr.i, itr.d implied

CR[ITM] mov-to-CR-ITM mov-from-CR-ITM data

CR[ITO] mov-to-CR-ITO mov-from-AR-ITC, mov-from-CR-ITO data

CR[ITV] mov-to-CR-ITV mov-from-CR-ITV data

CR[IVA] mov-to-CR-IVA mov-from-CR-IVA instr

CR[IVR] none mov-from-CR-IVR SC Section
5.8.3.2,
“External
Interrupt Vector
Register (IVR –
CR65)” on
page 2:123

CR[LID] mov-to-CR-LID mov-from-CR-LID SC Section
5.8.3.1, “Local
ID (LID –
CR64)” on
page 2:122

CR[LRR%],
% in 0 - 1

mov-to-CR-LRR1 mov-from-CR-LRR1 data

CR[PMV] mov-to-CR-PMV mov-from-CR-PMV data

CR[PTA] mov-to-CR-PTA mov-from-CR-PTA, mem-readers,
mem-writers, non-access, thash

data

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

3:378 Volume 3: Resource and Dependency Semantics

CR[TPR] mov-to-CR-TPR mov-from-CR-TPR,
mov-from-CR-IVR

data

mov-to-PSR-l17, ssm17 SC Section
5.8.3.3, “Task
Priority Register
(TPR – CR66)”
on page 2:123

rfi implied

CR%,
% in 3, 5-7, 10-15, 18, 28-63,
75-79, 82-127

none mov-from-CR-rv1 none

DBR# mov-to-IND-DBR3 mov-from-IND-DBR3 impliedF

probe-all, lfetch-all,
mem-readers, mem-writers

data

DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d,
itc.i, itc.d, itr.i, itr.d

mem-readers, mem-writers,
non-access

data

itc.i, itc.d, itr.i, itr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i,
itc.d, itr.i, itr.d

impliedF

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

itc.i, itc.d, itr.i, itr.d impliedF

DTC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

DTR itr.d mem-readers, mem-writers,
non-access

data

ptc.g, ptc.ga, ptc.l, ptr.d, itr.d impliedF

ptr.d mem-readers, mem-writers,
non-access

data

ptc.g, ptc.ga, ptc.l, ptr.d none

itr.d, itc.d impliedF

FR%,
% in 0 - 1

none fr-readers1 none

FR%,
% in 2 - 127

fr-writers1\ldf-c1\ldfp-c1 fr-readers1 impliedF

ldf-c1, ldfp-c1 fr-readers1 none

GR0 none gr-readers1 none

GR%,
% in 1 - 127

ld-c1,13 gr-readers1 none

gr-writers1\ld-c1,13 gr-readers1 impliedF

IBR# mov-to-IND-IBR3 mov-from-IND-IBR3 impliedF

InService* mov-to-CR-EOI mov-from-CR-IVR data

mov-from-CR-IVR mov-from-CR-IVR impliedF

mov-to-CR-EOI mov-to-CR-EOI impliedF

IP all all none

ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d epc, vmsw instr

itc.i, itc.d, itr.i, itr.d impliedF

ptr.i, ptr.d, ptc.e, ptc.g, ptc.ga, ptc.l none

itc.i, itc.d, itr.i, itr.d epc, vmsw instr

itc.d, itc.i, itr.d, itr.i, ptr.d, ptr.i, ptc.g,
ptc.ga, ptc.l

impliedF

ITC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Volume 3: Resource and Dependency Semantics 3:379

ITR itr.i itr.i, itc.i, ptc.g, ptc.ga, ptc.l, ptr.i impliedF

epc, vmsw instr

ptr.i itc.i, itr.i impliedF

ptc.g, ptc.ga, ptc.l, ptr.i none

epc, vmsw instr

memory mem-writers mem-readers none

PKR# mov-to-IND-PKR3 mem-readers, mem-writers,
mov-from-IND-PKR4, probe-all

data

mov-to-IND-PKR4 none

mov-from-IND-PKR3 impliedF

mov-to-IND-PKR3 impliedF

PMC# mov-to-IND-PMC3 mov-from-IND-PMC3 impliedF

mov-from-IND-PMD3 SC Section
7.2.1, “Generic
Performance
Counter
Registers” for
PMC[0].fr on
page 2:156

PMD# mov-to-IND-PMD3 mov-from-IND-PMD3 impliedF

PR0 pr-writers1 pr-readers-br1,
pr-readers-nobr-nomovpr1,
mov-from-PR12,
mov-to-PR12

none

PR%,
% in 1 - 15

pr-writers1,
mov-to-PR-allreg7

pr-readers-nobr-nomovpr1,
mov-from-PR,
mov-to-PR12

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1,
mov-to-PR-allreg7

pr-readers-br1 none

PR%,
% in 16 - 62

pr-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-nobr-nomovpr1,
mov-from-PR,
mov-to-PR12

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-br1 none

PR63 mod-sched-brs,
pr-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-nobr-nomovpr1,
mov-from-PR,
mov-to-PR12

impliedF

pr-writers-fp1,
mod-sched-brs

pr-readers-br1 impliedF

pr-writers-int1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-br1 none

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

3:380 Volume 3: Resource and Dependency Semantics

PSR.ac user-mask-writers-partial7,
mov-to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7,
mov-to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7,
mov-to-PSR-um,
sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR,
mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers,
mov-from-PSR, mov-from-PSR-um

impliedF

PSR.be user-mask-writers-partial7,
mov-to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7,
mov-to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7,
mov-to-PSR-um,
sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR,
mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers,
mov-from-PSR, mov-from-PSR-um

impliedF

PSR.bn bsw, rfi gr-readers10, gr-writers10 impliedF

PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all

implied

rfi priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all

impliedF

PSR.da rfi mem-readers, lfetch-all, mem-writers,
probe-fault

impliedF

PSR.db mov-to-PSR-l lfetch-all, mem-readers,
mem-writers, probe-fault

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers,
mem-writers,
mov-from-PSR, probe-fault

impliedF

PSR.dd rfi lfetch-all, mem-readers, probe-fault,
mem-writers

impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Volume 3: Resource and Dependency Semantics 3:381

PSR.dfh sys-mask-writers-partial7,
mov-to-PSR-l

fr-readers8, fr-writers8 data

mov-from-PSR impliedF

rfi fr-readers8, fr-writers8,
mov-from-PSR

impliedF

PSR.dfl sys-mask-writers-partial7,
mov-to-PSR-l

fr-writers8, fr-readers8 data

mov-from-PSR impliedF

rfi fr-writers8, fr-readers8,
mov-from-PSR

impliedF

PSR.di sys-mask-writers-partial7,
mov-to-PSR-l

br.ia data

mov-from-PSR impliedF

rfi br.ia, mov-from-PSR impliedF

PSR.dt sys-mask-writers-partial7,
mov-to-PSR-l

mem-readers, mem-writers,
non-access

data

mov-from-PSR impliedF

rfi mem-readers, mem-writers,
non-access, mov-from-PSR

impliedF

PSR.ed rfi lfetch-all,
mem-readers-spec

impliedF

PSR.i sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ia rfi all none

PSR.ic sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

cover, itc.i, itc.d, itr.i, itr.d,
mov-from-interruption-CR,
mov-to-interruption-CR

data

rfi mov-from-PSR, cover, itc.i, itc.d, itr.i,
itr.d, mov-from-interruption-CR,
mov-to-interruption-CR

impliedF

PSR.id rfi all none

PSR.is br.ia, rfi none none

PSR.it rfi branches, mov-from-PSR, chk, epc,
fchkf, vmsw

impliedF

PSR.lp mov-to-PSR-l mov-from-PSR impliedF

br.ret data

rfi mov-from-PSR, br.ret impliedF

PSR.mc rfi mov-from-PSR impliedF

PSR.mfh fr-writers9,
user-mask-writers-partial7,
mov-to-PSR-um,
sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

PSR.mfl fr-writers9,
user-mask-writers-partial7,
mov-to-PSR-um,
sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

3:382 Volume 3: Resource and Dependency Semantics

PSR.pk sys-mask-writers-partial7,
mov-to-PSR-l

lfetch-all, mem-readers,
mem-writers, probe-all

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers,
mem-writers, mov-from-PSR,
probe-all

impliedF

PSR.pp sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ri rfi all none

PSR.rt mov-to-PSR-l mov-from-PSR impliedF

alloc, flushrs, loadrs data

rfi mov-from-PSR, alloc, flushrs, loadrs impliedF

PSR.si sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-AR-ITC, mov-from-AR-RUC data

rfi mov-from-AR-ITC,
mov-from-AR-RUC, mov-from-PSR

impliedF

PSR.sp sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-IND-PMD,
mov-to-PSR-um, rum, sum

data

rfi mov-from-IND-PMD, mov-from-PSR,
mov-to-PSR-um, rum, sum

impliedF

PSR.ss rfi all impliedF

PSR.tb mov-to-PSR-l branches, chk, fchkf data

mov-from-PSR impliedF

rfi branches, chk, fchkf, mov-from-PSR impliedF

PSR.up user-mask-writers-partial7,
mov-to-PSR-um,
sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

PSR.vm vmsw mem-readers, mem-writers,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-from-IND-CPUID,
mov-to-AR-ITC, mov-to-AR-RUC,
priv-ops\vmsw, cover, thash, ttag

implied

rfi mem-readers, mem-writers,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-from-IND-CPUID,
mov-to-AR-ITC, mov-to-AR-RUC,
priv-ops\vmsw, cover, thash, ttag

impliedF

RR# mov-to-IND-RR6 mem-readers, mem-writers, itc.i, itc.d,
itr.i, itr.d, non-access, ptc.g, ptc.ga,
ptc.l, ptr.i, ptr.d, thash, ttag

data

mov-from-IND-RR6 impliedF

RSE rse-writers14 rse-readers14 impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Volume 3: Resource and Dependency Semantics 3:383

5.3.3 WAW Dependency Table

General rules specific to the WAW table:

• All resources require at most an instruction group break to provide sequential
behavior.

• Some resources require no instruction group break to provide sequential behavior.

• There are a few special cases that are described in greater detail elsewhere in the
manual and are indicated with an SC (special case) result.

• Each sub-row of writers represents a group of instructions that when taken in pairs
in any combination has the dependency result indicated. If the column is split in
sub-columns, then the dependency semantics apply to any pair of instructions
where one is chosen from left sub-column and one is chosen from the right
sub-column.

Table 5-3. WAW Dependencies Organized by Resource

Resource Name Writers
Semantics of
Dependency

ALAT mem-readers-alat, mem-writers, chk.a.clr,
invala-all

none

AR[BSP] br.call, brl.call, br.ret, cover, mov-to-AR-BSPSTORE, rfi impliedF

AR[BSPSTORE] alloc, loadrs, flushrs, mov-to-AR-BSPSTORE impliedF

AR[CCV] mov-to-AR-CCV impliedF

AR[CFLG] mov-to-AR-CFLG impliedF

AR[CSD] ld16, mov-to-AR-CSD impliedF

AR[EC] br.ret, mod-sched-brs, mov-to-AR-EC impliedF

AR[EFLAG] mov-to-AR-EFLAG impliedF

AR[FCR] mov-to-AR-FCR impliedF

AR[FDR] mov-to-AR-FDR impliedF

AR[FIR] mov-to-AR-FIR impliedF

AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.s0 impliedF

AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 impliedF

AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 impliedF

AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 impliedF

AR[FPSR].sf0.flags fp-arith-s0, fcmp-s0, fpcmp-s0 none

fclrf.s0, fcmp-s0, fp-arith-s0,
fpcmp-s0, mov-to-AR-FPSR

fclrf.s0, mov-to-AR-FPSR impliedF

AR[FPSR].sf1.flags fp-arith-s1, fcmp-s1, fpcmp-s1 none

fclrf.s1, fcmp-s1, fp-arith-s1,
fpcmp-s1, mov-to-AR-FPSR

fclrf.s1, mov-to-AR-FPSR impliedF

AR[FPSR].sf2.flags fp-arith-s2, fcmp-s2, fpcmp-s2 none

fclrf.s2, fcmp-s2, fp-arith-s2,
fpcmp-s2, mov-to-AR-FPSR

fclrf.s2, mov-to-AR-FPSR impliedF

AR[FPSR].sf3.flags fp-arith-s3, fcmp-s3, fpcmp-s3 none

fclrf.s3, fcmp-s3, fp-arith-s3,
fpcmp-s3, mov-to-AR-FPSR

fclrf.s3, mov-to-AR-FPSR impliedF

AR[FPSR].rv mov-to-AR-FPSR impliedF

AR[FPSR].traps mov-to-AR-FPSR impliedF

AR[FSR] mov-to-AR-FSR impliedF

AR[ITC] mov-to-AR-ITC impliedF

3:384 Volume 3: Resource and Dependency Semantics

AR[K%],
% in 0 - 7

mov-to-AR-K1 impliedF

AR[LC] mod-sched-brs-counted, mov-to-AR-LC impliedF

AR[PFS] br.call, brl.call none

br.call, brl.call mov-to-AR-PFS impliedF

AR[RNAT] alloc, flushrs, loadrs,
mov-to-AR-RNAT,

mov-to-AR-BSPSTORE

impliedF

AR[RSC] mov-to-AR-RSC impliedF

AR[RUC] mov-to-AR-RUC impliedF

AR[SSD] mov-to-AR-SSD impliedF

AR[UNAT]{%},
% in 0 - 63

mov-to-AR-UNAT, st8.spill impliedF

AR%,
% in 8-15, 20, 22-23, 31,
33-35, 37-39, 41-43, 46-47,
67-111

none none

AR%,
% in 48 - 63, 112-127

mov-to-AR-ig1 impliedF

BR%,
% in 0 - 7

br.call1, brl.call1 mov-to-BR1 impliedF

mov-to-BR1 impliedF

br.call1, brl.call1 none

CFM mod-sched-brs, br.call, brl.call, br.ret, alloc, clrrrb, cover, rfi impliedF

CPUID# none none

CR[CMCV] mov-to-CR-CMCV impliedF

CR[DCR] mov-to-CR-DCR impliedF

CR[EOI] mov-to-CR-EOI SC Section
5.8.3.4, “End of
External Interrupt
Register (EOI –
CR67)” on
page 2:124

CR[IFA] mov-to-CR-IFA impliedF

CR[IFS] mov-to-CR-IFS, cover impliedF

CR[IHA] mov-to-CR-IHA impliedF

CR[IIB%],
% in 0 - 1

mov-to-CR-IIB impliedF

CR[IIM] mov-to-CR-IIM impliedF

CR[IIP] mov-to-CR-IIP impliedF

CR[IIPA] mov-to-CR-IIPA impliedF

CR[IPSR] mov-to-CR-IPSR impliedF

CR[IRR%],
% in 0 - 3

mov-from-CR-IVR impliedF

CR[ISR] mov-to-CR-ISR impliedF

CR[ITIR] mov-to-CR-ITIR impliedF

CR[ITM] mov-to-CR-ITM impliedF

CR[ITO] mov-to-CR-ITO impliedF

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

Volume 3: Resource and Dependency Semantics 3:385

CR[ITV] mov-to-CR-ITV impliedF

CR[IVA] mov-to-CR-IVA impliedF

CR[IVR] none SC

CR[LID] mov-to-CR-LID SC

CR[LRR%],
% in 0 - 1

mov-to-CR-LRR1 impliedF

CR[PMV] mov-to-CR-PMV impliedF

CR[PTA] mov-to-CR-PTA impliedF

CR[TPR] mov-to-CR-TPR impliedF

CR%,
% in 3, 5-7, 10-15, 18, 28-63,
75-79, 82-127

none none

DBR# mov-to-IND-DBR3 impliedF

DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d,
itc.i, itc.d, itr.i, itr.d

itc.i, itc.d, itr.i, itr.d impliedF

DTC_LIMIT* ptc.g, ptc.ga impliedF

DTR itr.d impliedF

itr.d ptr.d impliedF

ptr.d none

FR%,
% in 0 - 1

none none

FR%,
% in 2 - 127

fr-writers1, ldf-c1, ldfp-c1 impliedF

GR0 none none

GR%,
% in 1 - 127

ld-c1, gr-writers1 impliedF

IBR# mov-to-IND-IBR3 impliedF

InService* mov-to-CR-EOI, mov-from-CR-IVR SC

IP all none

ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d,
itc.i, itc.d, itr.i, itr.d

itc.i, itc.d, itr.i, itr.d impliedF

ITR itr.i itr.i, ptr.i impliedF

ptr.i none

memory mem-writers none

PKR# mov-to-IND-PKR3 mov-to-IND-PKR4 none

mov-to-IND-PKR3 impliedF

PMC# mov-to-IND-PMC3 impliedF

PMD# mov-to-IND-PMD3 impliedF

PR0 pr-writers1 none

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

3:386 Volume 3: Resource and Dependency Semantics

PR%,
% in 1 - 15

pr-and-writers1 none

pr-or-writers1 none

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7

impliedF

PR%,
% in 16 - 62

pr-and-writers1 none

pr-or-writers1 none

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

impliedF

PR63 pr-and-writers1 none

pr-or-writers1 none

mod-sched-brs,
pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

mod-sched-brs,
pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

impliedF

PSR.ac user-mask-writers-partial7, mov-to-PSR-um,
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.be user-mask-writers-partial7, mov-to-PSR-um,
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.bn bsw, rfi impliedF

PSR.cpl epc, br.ret, rfi impliedF

PSR.da rfi impliedF

PSR.db mov-to-PSR-l, rfi impliedF

PSR.dd rfi impliedF

PSR.dfh sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.dfl sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.di sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.dt sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ed rfi impliedF

PSR.i sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ia rfi impliedF

PSR.ic sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.id rfi impliedF

PSR.is br.ia, rfi impliedF

PSR.it rfi impliedF

PSR.lp mov-to-PSR-l, rfi impliedF

PSR.mc rfi impliedF

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

Volume 3: Resource and Dependency Semantics 3:387

5.3.4 WAR Dependency Table

A general rule specific to the WAR table:

1. WAR dependencies are always allowed within instruction groups except for the
entry in Table 5-4 below. The readers and subsequent writers specified must be
separated by a stop in order to have defined behavior.

5.3.5 Listing of Rules Referenced in Dependency Tables

The following rules restrict the specific instances in which some of the instructions in
the tables cause a dependency and must be applied where referenced to correctly
interpret those entries. Rules only apply to the instance of the instruction class, or
instruction mnemonic prefix where the rule is referenced as a superscript. If the rule is
referenced in Table 5-5 where instruction classes are defined, then it applies to all
instances of the instruction class.

Rule 1. These instructions only write a register when that register’s number is explicitly
encoded as a target of the instruction and is only read when it is encoded as a
source of the instruction (or encoded as its PR[qp]).

PSR.mfh fr-writers9 none

 user-mask-writers-partial7,
mov-to-PSR-um, fr-writers9,
sys-mask-writers-partial7,

mov-to-PSR-l, rfi

user-mask-writers-partial7,
mov-to-PSR-um,

sys-mask-writers-partial7,
mov-to-PSR-l, rfi

impliedF

PSR.mfl fr-writers9 none

user-mask-writers-partial7,
mov-to-PSR-um, fr-writers9,
sys-mask-writers-partial7,

mov-to-PSR-l, rfi

user-mask-writers-partial7,
mov-to-PSR-um,

sys-mask-writers-partial7,
mov-to-PSR-l, rfi

impliedF

PSR.pk sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.pp sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ri rfi impliedF

PSR.rt mov-to-PSR-l, rfi impliedF

PSR.si sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.sp sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ss rfi impliedF

PSR.tb mov-to-PSR-l, rfi impliedF

PSR.up user-mask-writers-partial7, mov-to-PSR-um,
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.vm rfi, vmsw impliedF

RR# mov-to-IND-RR6 impliedF

RSE rse-writers14 impliedF

Table 5-4. WAR Dependencies Organized by Resource

Resource Name Readers Writers Semantics of Dependency

PR63 pr-readers-br1 mod-sched-brs stop

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

3:388 Volume 3: Resource and Dependency Semantics

Rule 2. These instructions only read CFM when they access a rotating GR, FR, or PR.
mov-to-PR and mov-from-PR only access CFM when their qualifying
predicate is in the rotating region.

Rule 3. These instructions use a general register value to determine the specific indirect
register accessed. These instructions only access the register resource specified
by the value in bits {7:0} of the dynamic value of the index register.

Rule 4. These instructions only read the given resource when bits {7:0} of the indirect
index register value does not match the register number of the resource.

Rule 5. All rules are implementation specific.

Rule 6. There is a dependency only when both the index specified by the reader and
the index specified by the writer have the same value in bits {63:61}.

Rule 7. These instructions access the specified resource only when the corresponding
mask bit is set.

Rule 8. PSR.dfh is only read when these instructions reference FR32-127. PSR.dfl is
only read when these instructions reference FR2-31.

Rule 9. PSR.mfl is only written when these instructions write FR2-31. PSR.mfh is only
written when these instructions write FR32-127.

Rule 10.The PSR.bn bit is only accessed when one of GR16-31 is specified in the
instruction.

Rule 11.The target predicates are written independently of PR[qp], but source registers
are only read if PR[qp] is true.

Rule 12.This instruction only reads the specified predicate register when that register is
the PR[qp].

Rule 13.This reference to ld-c only applies to the GR whose value is loaded with data
returned from memory, not the post-incremented address register. Thus, a stop
is still required between a post-incrementing ld-c and a consumer that reads
the post-incremented GR.

Rule 14.The RSE resource includes implementation-specific internal state. At least one
(and possibly more) of these resources are read by each instruction listed in the
rse-readers class. At least one (and possibly more) of these resources are
written by each instruction listed in the rse-writers class. To determine exactly
which instructions read or write each individual resource, see the corresponding
instruction pages.

Rule 15.This class represents all instructions marked as Reserved if PR[qp] is 1 B-type
instructions as described in “Format Summary” on page 3:294.

Rule 16.This class represents all instructions marked as Reserved if PR[qp] is 1
instructions as described in “Format Summary” on page 3:294.

Rule 17.CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.

Volume 3: Resource and Dependency Semantics 3:389

5.4 Support Tables

Table 5-5. Instruction Classes

Class Events/Instructions

all predicatable-instructions, unpredicatable-instructions

branches indirect-brs, ip-rel-brs

cfm-readers fr-readers, fr-writers, gr-readers, gr-writers, mod-sched-brs,
predicatable-instructions, pr-writers, alloc, br.call, brl.call, br.ret, cover, loadrs, rfi, chk-a,
invala.e

chk-a chk.a.clr, chk.a.nc

cmpxchg cmpxchg1, cmpxchg2, cmpxchg4, cmpxchg8, cmp8xchg16

czx czx1, czx2

fcmp-s0 fcmp[Field(sf)==s0]

fcmp-s1 fcmp[Field(sf)==s1]

fcmp-s2 fcmp[Field(sf)==s2]

fcmp-s3 fcmp[Field(sf)==s3]

fetchadd fetchadd4, fetchadd8

fp-arith fadd, famax, famin, fcvt.fx, fcvt.fxu, fcvt.xuf, fma, fmax, fmin, fmpy, fms, fnma, fnmpy, fnorm,
fpamax, fpamin, fpcvt.fx, fpcvt.fxu, fpma, fpmax, fpmin, fpmpy, fpms, fpnma, fpnmpy, fprcpa,
fprsqrta, frcpa, frsqrta, fsub

fp-arith-s0 fp-arith[Field(sf)==s0]

fp-arith-s1 fp-arith[Field(sf)==s1]

fp-arith-s2 fp-arith[Field(sf)==s2]

fp-arith-s3 fp-arith[Field(sf)==s3]

fp-non-arith fabs, fand, fandcm, fclass, fcvt.xf, fmerge, fmix, fneg, fnegabs, for, fpabs, fpmerge, fpack,
fpneg, fpnegabs, fselect, fswap, fsxt, fxor, xma, xmpy

fpcmp-s0 fpcmp[Field(sf)==s0]

fpcmp-s1 fpcmp[Field(sf)==s1]

fpcmp-s2 fpcmp[Field(sf)==s2]

fpcmp-s3 fpcmp[Field(sf)==s3]

fr-readers fp-arith, fp-non-arith, mem-writers-fp, pr-writers-fp, chk.s[Format in {M21}], getf

fr-writers fp-arith, fp-non-arith\fclass, mem-readers-fp, setf

gr-readers gr-readers-writers, mem-readers, mem-writers, chk.s, cmp, cmp4, fc, itc.i, itc.d, itr.i, itr.d,
mov-to-AR-gr, mov-to-BR, mov-to-CR, mov-to-IND, mov-from-IND, mov-to-PR-allreg,
mov-to-PSR-l, mov-to-PSR-um, probe-all, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, setf, tbit,
tnat

gr-readers-writers mov-from-IND, add, addl, addp4, adds, and, andcm, clz, czx, dep\dep[Format in {I13}],
extr, mem-readers-int, ld-all-postinc, lfetch-postinc, mix, mux, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-regular, psad, pshl,
pshladd, pshr, pshradd, psub, shl, shladd, shladdp4, shr, shrp, st-postinc, sub, sxt, tak,
thash, tpa, ttag, unpack, xor, zxt

gr-writers alloc, dep, getf, gr-readers-writers, mem-readers-int, mov-from-AR, mov-from-BR,
mov-from-CR, mov-from-PR, mov-from-PSR, mov-from-PSR-um, mov-ip, movl

indirect-brp brp[Format in {B7}]

indirect-brs br.call[Format in {B5}], br.cond[Format in {B4}], br.ia, br.ret

invala-all invala[Format in {M24}], invala.e

ip-rel-brs mod-sched-brs, br.call[Format in {B3}], brl.call, brl.cond, br.cond[Format in {B1}], br.cloop

ld ld1, ld2, ld4, ld8, ld8.fill, ld16

ld-a ld1.a, ld2.a, ld4.a, ld8.a

3:390 Volume 3: Resource and Dependency Semantics

ld-all-postinc ld[Format in {M2 M3}], ldfp[Format in {M12}], ldf[Format in {M7 M8}]

ld-c ld-c-nc, ld-c-clr

ld-c-clr ld1.c.clr, ld2.c.clr, ld4.c.clr, ld8.c.clr, ld-c-clr-acq

ld-c-clr-acq ld1.c.clr.acq, ld2.c.clr.acq, ld4.c.clr.acq, ld8.c.clr.acq

ld-c-nc ld1.c.nc, ld2.c.nc, ld4.c.nc, ld8.c.nc

ld-s ld1.s, ld2.s, ld4.s, ld8.s

ld-sa ld1.sa, ld2.sa, ld4.sa, ld8.sa

ldf ldfs, ldfd, ldfe, ldf8, ldf.fill

ldf-a ldfs.a, ldfd.a, ldfe.a, ldf8.a

ldf-c ldf-c-nc, ldf-c-clr

ldf-c-clr ldfs.c.clr, ldfd.c.clr, ldfe.c.clr, ldf8.c.clr

ldf-c-nc ldfs.c.nc, ldfd.c.nc, ldfe.c.nc, ldf8.c.nc

ldf-s ldfs.s, ldfd.s, ldfe.s, ldf8.s

ldf-sa ldfs.sa, ldfd.sa, ldfe.sa, ldf8.sa

ldfp ldfps, ldfpd, ldfp8

ldfp-a ldfps.a, ldfpd.a, ldfp8.a

ldfp-c ldfp-c-nc, ldfp-c-clr

ldfp-c-clr ldfps.c.clr, ldfpd.c.clr, ldfp8.c.clr

ldfp-c-nc ldfps.c.nc, ldfpd.c.nc, ldfp8.c.nc

ldfp-s ldfps.s, ldfpd.s, ldfp8.s

ldfp-sa ldfps.sa, ldfpd.sa, ldfp8.sa

lfetch-all lfetch

lfetch-fault lfetch[Field(lftype)==fault]

lfetch-nofault lfetch[Field(lftype)==]

lfetch-postinc lfetch[Format in {M20 M22}]

mem-readers mem-readers-fp, mem-readers-int

mem-readers-alat ld-a, ldf-a, ldfp-a, ld-sa, ldf-sa, ldfp-sa, ld-c, ldf-c, ldfp-c

mem-readers-fp ldf, ldfp

mem-readers-int cmpxchg, fetchadd, xchg, ld

mem-readers-spec ld-s, ld-sa, ldf-s, ldf-sa, ldfp-s, ldfp-sa

mem-writers mem-writers-fp, mem-writers-int

mem-writers-fp stf

mem-writers-int cmpxchg, fetchadd, xchg, st

mix mix1, mix2, mix4

mod-sched-brs br.cexit, br.ctop, br.wexit, br.wtop

mod-sched-brs-counted br.cexit, br.cloop, br.ctop

mov-from-AR mov-from-AR-M, mov-from-AR-I, mov-from-AR-IM

mov-from-AR-BSP mov-from-AR-M[Field(ar3) == BSP]

mov-from-AR-BSPSTORE mov-from-AR-M[Field(ar3) == BSPSTORE]

mov-from-AR-CCV mov-from-AR-M[Field(ar3) == CCV]

mov-from-AR-CFLG mov-from-AR-M[Field(ar3) == CFLG]

mov-from-AR-CSD mov-from-AR-M[Field(ar3) == CSD]

mov-from-AR-EC mov-from-AR-I[Field(ar3) == EC]

mov-from-AR-EFLAG mov-from-AR-M[Field(ar3) == EFLAG]

mov-from-AR-FCR mov-from-AR-M[Field(ar3) == FCR]

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

Volume 3: Resource and Dependency Semantics 3:391

mov-from-AR-FDR mov-from-AR-M[Field(ar3) == FDR]

mov-from-AR-FIR mov-from-AR-M[Field(ar3) == FIR]

mov-from-AR-FPSR mov-from-AR-M[Field(ar3) == FPSR]

mov-from-AR-FSR mov-from-AR-M[Field(ar3) == FSR]

mov-from-AR-I mov_ar[Format in {I28}]

mov-from-AR-ig mov-from-AR-IM[Field(ar3) in {48-63 112-127}]

mov-from-AR-IM mov_ar[Format in {I28 M31}]

mov-from-AR-ITC mov-from-AR-M[Field(ar3) == ITC]

mov-from-AR-K mov-from-AR-M[Field(ar3) in {K0 K1 K2 K3 K4 K5 K6 K7}]

mov-from-AR-LC mov-from-AR-I[Field(ar3) == LC]

mov-from-AR-M mov_ar[Format in {M31}]

mov-from-AR-PFS mov-from-AR-I[Field(ar3) == PFS]

mov-from-AR-RNAT mov-from-AR-M[Field(ar3) == RNAT]

mov-from-AR-RSC mov-from-AR-M[Field(ar3) == RSC]

mov-from-AR-RUC mov-from-AR-M[Field(ar3) == RUC]

mov-from-AR-rv none

mov-from-AR-SSD mov-from-AR-M[Field(ar3) == SSD]

mov-from-AR-UNAT mov-from-AR-M[Field(ar3) == UNAT]

mov-from-BR mov_br[Format in {I22}]

mov-from-CR mov_cr[Format in {M33}]

mov-from-CR-CMCV mov-from-CR[Field(cr3) == CMCV]

mov-from-CR-DCR mov-from-CR[Field(cr3) == DCR]

mov-from-CR-EOI mov-from-CR[Field(cr3) == EOI]

mov-from-CR-IFA mov-from-CR[Field(cr3) == IFA]

mov-from-CR-IFS mov-from-CR[Field(cr3) == IFS]

mov-from-CR-IHA mov-from-CR[Field(cr3) == IHA]

mov-from-CR-IIB mov-from-CR[Field(cr3) in {IIB0 IIB1}]

mov-from-CR-IIM mov-from-CR[Field(cr3) == IIM]

mov-from-CR-IIP mov-from-CR[Field(cr3) == IIP]

mov-from-CR-IIPA mov-from-CR[Field(cr3) == IIPA]

mov-from-CR-IPSR mov-from-CR[Field(cr3) == IPSR]

mov-from-CR-IRR mov-from-CR[Field(cr3) in {IRR0 IRR1 IRR2 IRR3}]

mov-from-CR-ISR mov-from-CR[Field(cr3) == ISR]

mov-from-CR-ITIR mov-from-CR[Field(cr3) == ITIR]

mov-from-CR-ITM mov-from-CR[Field(cr3) == ITM]

mov-from-CR-ITO mov-from-CR[Field(cr3) == ITO]

mov-from-CR-ITV mov-from-CR[Field(cr3) == ITV]

mov-from-CR-IVA mov-from-CR[Field(cr3) == IVA]

mov-from-CR-IVR mov-from-CR[Field(cr3) == IVR]

mov-from-CR-LID mov-from-CR[Field(cr3) == LID]

mov-from-CR-LRR mov-from-CR[Field(cr3) in {LRR0 LRR1}]

mov-from-CR-PMV mov-from-CR[Field(cr3) == PMV]

mov-from-CR-PTA mov-from-CR[Field(cr3) == PTA]

mov-from-CR-rv none

mov-from-CR-TPR mov-from-CR[Field(cr3) == TPR]

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

3:392 Volume 3: Resource and Dependency Semantics

mov-from-IND mov_indirect[Format in {M43}]

mov-from-IND-CPUID mov-from-IND[Field(ireg) == cpuid]

mov-from-IND-DBR mov-from-IND[Field(ireg) == dbr]

mov-from-IND-IBR mov-from-IND[Field(ireg) == ibr]

mov-from-IND-PKR mov-from-IND[Field(ireg) == pkr]

mov-from-IND-PMC mov-from-IND[Field(ireg) == pmc]

mov-from-IND-PMD mov-from-IND[Field(ireg) == pmd]

mov-from-IND-priv mov-from-IND[Field(ireg) in {dbr ibr pkr pmc rr}]

mov-from-IND-RR mov-from-IND[Field(ireg) == rr]

mov-from-interruption-CR mov-from-CR-ITIR, mov-from-CR-IFS, mov-from-CR-IIB, mov-from-CR-IIM,
mov-from-CR-IIP, mov-from-CR-IPSR, mov-from-CR-ISR, mov-from-CR-IFA,
mov-from-CR-IHA, mov-from-CR-IIPA

mov-from-PR mov_pr[Format in {I25}]

mov-from-PSR mov_psr[Format in {M36}]

mov-from-PSR-um mov_um[Format in {M36}]

mov-ip mov_ip[Format in {I25}]

mov-to-AR mov-to-AR-M, mov-to-AR-I

mov-to-AR-BSP mov-to-AR-M[Field(ar3) == BSP]

mov-to-AR-BSPSTORE mov-to-AR-M[Field(ar3) == BSPSTORE]

mov-to-AR-CCV mov-to-AR-M[Field(ar3) == CCV]

mov-to-AR-CFLG mov-to-AR-M[Field(ar3) == CFLG]

mov-to-AR-CSD mov-to-AR-M[Field(ar3) == CSD]

mov-to-AR-EC mov-to-AR-I[Field(ar3) == EC]

mov-to-AR-EFLAG mov-to-AR-M[Field(ar3) == EFLAG]

mov-to-AR-FCR mov-to-AR-M[Field(ar3) == FCR]

mov-to-AR-FDR mov-to-AR-M[Field(ar3) == FDR]

mov-to-AR-FIR mov-to-AR-M[Field(ar3) == FIR]

mov-to-AR-FPSR mov-to-AR-M[Field(ar3) == FPSR]

mov-to-AR-FSR mov-to-AR-M[Field(ar3) == FSR]

mov-to-AR-gr mov-to-AR-M[Format in {M29}], mov-to-AR-I[Format in {I26}]

mov-to-AR-I mov_ar[Format in {I26 I27}]

mov-to-AR-ig mov-to-AR-IM[Field(ar3) in {48-63 112-127}]

mov-to-AR-IM mov_ar[Format in {I26 I27 M29 M30}]

mov-to-AR-ITC mov-to-AR-M[Field(ar3) == ITC]

mov-to-AR-K mov-to-AR-M[Field(ar3) in {K0 K1 K2 K3 K4 K5 K6 K7}]

mov-to-AR-LC mov-to-AR-I[Field(ar3) == LC]

mov-to-AR-M mov_ar[Format in {M29 M30}]

mov-to-AR-PFS mov-to-AR-I[Field(ar3) == PFS]

mov-to-AR-RNAT mov-to-AR-M[Field(ar3) == RNAT]

mov-to-AR-RSC mov-to-AR-M[Field(ar3) == RSC]

mov-to-AR-RUC mov-to-AR-M[Field(ar3) == RUC]

mov-to-AR-SSD mov-to-AR-M[Field(ar3) == SSD]

mov-to-AR-UNAT mov-to-AR-M[Field(ar3) == UNAT]

mov-to-BR mov_br[Format in {I21}]

mov-to-CR mov_cr[Format in {M32}]

mov-to-CR-CMCV mov-to-CR[Field(cr3) == CMCV]

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

Volume 3: Resource and Dependency Semantics 3:393

mov-to-CR-DCR mov-to-CR[Field(cr3) == DCR]

mov-to-CR-EOI mov-to-CR[Field(cr3) == EOI]

mov-to-CR-IFA mov-to-CR[Field(cr3) == IFA]

mov-to-CR-IFS mov-to-CR[Field(cr3) == IFS]

mov-to-CR-IHA mov-to-CR[Field(cr3) == IHA]

mov-to-CR-IIB mov-to-CR[Field(cr3) in {IIB0 IIB1}]

mov-to-CR-IIM mov-to-CR[Field(cr3) == IIM]

mov-to-CR-IIP mov-to-CR[Field(cr3) == IIP]

mov-to-CR-IIPA mov-to-CR[Field(cr3) == IIPA]

mov-to-CR-IPSR mov-to-CR[Field(cr3) == IPSR]

mov-to-CR-IRR mov-to-CR[Field(cr3) in {IRR0 IRR1 IRR2 IRR3}]

mov-to-CR-ISR mov-to-CR[Field(cr3) == ISR]

mov-to-CR-ITIR mov-to-CR[Field(cr3) == ITIR]

mov-to-CR-ITM mov-to-CR[Field(cr3) == ITM]

mov-to-CR-ITO mov-to-CR[Field(cr3) == ITO]

mov-to-CR-ITV mov-to-CR[Field(cr3) == ITV]

mov-to-CR-IVA mov-to-CR[Field(cr3) == IVA]

mov-to-CR-IVR mov-to-CR[Field(cr3) == IVR]

mov-to-CR-LID mov-to-CR[Field(cr3) == LID]

mov-to-CR-LRR mov-to-CR[Field(cr3) in {LRR0 LRR1}]

mov-to-CR-PMV mov-to-CR[Field(cr3) == PMV]

mov-to-CR-PTA mov-to-CR[Field(cr3) == PTA]

mov-to-CR-TPR mov-to-CR[Field(cr3) == TPR]

mov-to-IND mov_indirect[Format in {M42}]

mov-to-IND-CPUID mov-to-IND[Field(ireg) == cpuid]

mov-to-IND-DBR mov-to-IND[Field(ireg) == dbr]

mov-to-IND-IBR mov-to-IND[Field(ireg) == ibr]

mov-to-IND-PKR mov-to-IND[Field(ireg) == pkr]

mov-to-IND-PMC mov-to-IND[Field(ireg) == pmc]

mov-to-IND-PMD mov-to-IND[Field(ireg) == pmd]

mov-to-IND-priv mov-to-IND

mov-to-IND-RR mov-to-IND[Field(ireg) == rr]

mov-to-interruption-CR mov-to-CR-ITIR, mov-to-CR-IFS, mov-to-CR-IIB, mov-to-CR-IIM, mov-to-CR-IIP,
mov-to-CR-IPSR, mov-to-CR-ISR, mov-to-CR-IFA, mov-to-CR-IHA, mov-to-CR-IIPA

mov-to-PR mov-to-PR-allreg, mov-to-PR-rotreg

mov-to-PR-allreg mov_pr[Format in {I23}]

mov-to-PR-rotreg mov_pr[Format in {I24}]

mov-to-PSR-l mov_psr[Format in {M35}]

mov-to-PSR-um mov_um[Format in {M35}]

mux mux1, mux2

non-access fc, lfetch, probe-all, tpa, tak

none -

pack pack2, pack4

padd padd1, padd2, padd4

pavg pavg1, pavg2

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

3:394 Volume 3: Resource and Dependency Semantics

pavgsub pavgsub1, pavgsub2

pcmp pcmp1, pcmp2, pcmp4

pmax pmax1, pmax2

pmin pmin1, pmin2

pmpy pmpy2

pmpyshr pmpyshr2

pr-and-writers pr-gen-writers-int[Field(ctype) in {and andcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-gen-writers-fp fclass, fcmp

pr-gen-writers-int cmp, cmp4, tbit, tf, tnat

pr-norm-writers-fp pr-gen-writers-fp[Field(ctype)==]

pr-norm-writers-int pr-gen-writers-int[Field(ctype)==]

pr-or-writers pr-gen-writers-int[Field(ctype) in {or orcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-readers-br br.call, br.cond, brl.call, brl.cond, br.ret, br.wexit, br.wtop, break.b, hint.b, nop.b,
ReservedBQP

pr-readers-nobr-nomovpr add, addl, addp4, adds, and, andcm, break.f, break.i, break.m, break.x, chk.s, chk-a, cmp,
cmp4, cmpxchg, clz, czx, dep, extr, fp-arith, fp-non-arith, fc, fchkf, fclrf, fcmp, fetchadd,
fpcmp, fsetc, fwb, getf, hint.f, hint.i, hint.m, hint.x, invala-all, itc.i, itc.d, itr.i, itr.d, ld, ldf, ldfp,
lfetch-all, mf, mix, mov-from-AR-M, mov-from-AR-IM, mov-from-AR-I, mov-to-AR-M,
mov-to-AR-I, mov-to-AR-IM, mov-to-BR, mov-from-BR, mov-to-CR, mov-from-CR,
mov-to-IND, mov-from-IND, mov-ip, mov-to-PSR-l, mov-to-PSR-um, mov-from-PSR,
mov-from-PSR-um, movl, mux, nop.f, nop.i, nop.m, nop.x, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-all, psad, pshl, pshladd,
pshr, pshradd, psub, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.d, ptr.i, ReservedQP, rsm, setf, shl,
shladd, shladdp4, shr, shrp, srlz.i, srlz.d, ssm, st, stf, sub, sum, sxt, sync, tak, tbit, tf, thash,
tnat, tpa, ttag, unpack, xchg, xma, xmpy, xor, zxt

pr-unc-writers-fp pr-gen-writers-fp[Field(ctype)==unc]11, fprcpa11, fprsqrta11, frcpa11, frsqrta11

pr-unc-writers-int pr-gen-writers-int[Field(ctype)==unc]11

pr-writers pr-writers-int, pr-writers-fp

pr-writers-fp pr-norm-writers-fp, pr-unc-writers-fp

pr-writers-int pr-norm-writers-int, pr-unc-writers-int, pr-and-writers, pr-or-writers

predicatable-instructions mov-from-PR, mov-to-PR, pr-readers-br, pr-readers-nobr-nomovpr

priv-ops mov-to-IND-priv, bsw, itc.i, itc.d, itr.i, itr.d, mov-to-CR, mov-from-CR, mov-to-PSR-l,
mov-from-PSR, mov-from-IND-priv, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, rfi, rsm, ssm, tak,
tpa, vmsw

probe-all probe-fault, probe-regular

probe-fault probe[Format in {M40}]

probe-regular probe[Format in {M38 M39}]

psad psad1

pshl pshl2, pshl4

pshladd pshladd2

pshr pshr2, pshr4

pshradd pshradd2

psub psub1, psub2, psub4

ReservedBQP -15

ReservedQP -16

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

Volume 3: Resource and Dependency Semantics 3:395

§

rse-readers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-from-AR-BSP,
mov-from-AR-BSPSTORE, mov-to-AR-BSPSTORE, mov-from-AR-RNAT,
mov-to-AR-RNAT, rfi

rse-writers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-to-AR-BSPSTORE, rfi

st st1, st2, st4, st8, st8.spill, st16

st-postinc stf[Format in {M10}], st[Format in {M5}]

stf stfs, stfd, stfe, stf8, stf.spill

sxt sxt1, sxt2, sxt4

sys-mask-writers-partial rsm, ssm

unpack unpack1, unpack2, unpack4

unpredicatable-instructions alloc, br.cloop, br.ctop, br.cexit, br.ia, brp, bsw, clrrrb, cover, epc, flushrs, loadrs, rfi, vmsw

user-mask-writers-partial rum, sum

xchg xchg1, xchg2, xchg4, xchg8

zxt zxt1, zxt2, zxt4

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

3:396 Volume 3: Resource and Dependency Semantics

Intel® Itanium® Architecture
Software Developer’s Manual
Volume 4: IA-32 Instruction Set Reference

Revision 2.3

May 2010

Document Number: 323208

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 398

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation

*Other names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 399

Contents

1 About this Manual . 4:1

1.1 Overview of Volume 1: Application Architecture . 4:1
1.1.1 Part 1: Application Architecture Guide . 4:1
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 4:1

1.2 Overview of Volume 2: System Architecture. 4:2
1.2.1 Part 1: System Architecture Guide . 4:2
1.2.2 Part 2: System Programmer’s Guide . 4:3
1.2.3 Appendices. 4:4

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 4:4
1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 4:4
1.5 Terminology . 4:5
1.6 Related Documents . 4:5
1.7 Revision History . 4:6

2 Base IA-32 Instruction Reference . 4:11

2.1 Additional Intel® Itanium® Faults . 4:11
2.2 Interpreting the IA-32 Instruction Reference Pages . 4:12

2.2.1 IA-32 Instruction Format . 4:12
2.2.2 Operation . 4:15
2.2.3 Flags Affected. 4:18
2.2.4 FPU Flags Affected . 4:18
2.2.5 Protected Mode Exceptions . 4:19
2.2.6 Real-address Mode Exceptions . 4:19
2.2.7 Virtual-8086 Mode Exceptions . 4:19
2.2.8 Floating-point Exceptions . 4:20

2.3 IA-32 Base Instruction Reference. 4:20

3 IA-32 Intel® MMX™ Technology Instruction Reference . 4:399

4 IA-32 SSE Instruction Reference . 4:463

4.1 IA-32 SSE Instructions . 4:463
4.2 About the Intel® SSE Architecture . 4:463
4.3 Single Instruction Multiple Data . 4:464
4.4 New Data Types . 4:464
4.5 SSE Registers . 4:465
4.6 Extended Instruction Set. 4:465

4.6.1 Instruction Group Review . 4:466
4.7 IEEE Compliance . 4:474

4.7.1 Real Number System . 4:474
4.7.2 Operating on NaNs. 4:480

4.8 Data Formats . 4:481
4.8.1 Memory Data Formats . 4:481
4.8.2 SSE Register Data Formats . 4:481

4.9 Instruction Formats . 4:483
4.10 Instruction Prefixes . 4:483
4.11 Reserved Behavior and Software Compatibility . 4:484
4.12 Notations. 4:484
4.13 SIMD Integer Instruction Set Extensions . 4:562
4.14 Cacheability Control Instructions . 4:575

 Index . 4:583

400 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

Figures

2-2 Bit Offset for BIT[EAX,21]. 4:18
2-3 Memory Bit Indexing. 4:18
2-4 Version Information in Registers EAX . 4:79
3-1 Operation of the MOVD Instruction . 4:401
3-2 Operation of the MOVQ Instruction . 4:403
3-3 Operation of the PACKSSDW Instruction. 4:405
3-4 Operation of the PACKUSWB Instruction. 4:408
3-5 Operation of the PADDW Instruction . 4:410
3-6 Operation of the PADDSW Instruction . 4:413
3-7 Operation of the PADDUSB Instruction . 4:416
3-8 Operation of the PAND Instruction . 4:419
3-9 Operation of the PANDN Instruction. 4:421
3-10 Operation of the PCMPEQW Instruction . 4:423
3-11 Operation of the PCMPGTW Instruction . 4:426
3-12 Operation of the PMADDWD Instruction . 4:429
3-13 Operation of the PMULHW Instruction . 4:431
3-14 Operation of the PMULLW Instruction . 4:433
3-15 Operation of the POR Instruction. . 4:435
3-16 Operation of the PSLLW Instruction . 4:437
3-17 Operation of the PSRAW Instruction . 4:440
3-18 Operation of the PSRLW Instruction . 4:443
3-19 Operation of the PSUBW Instruction . 4:446
3-20 Operation of the PSUBSW Instruction . 4:449
3-21 Operation of the PSUBUSB Instruction . 4:452
3-22 High-order Unpacking and Interleaving of Bytes with the PUNPCKHBW Instruction. 4:455
3-23 Low-order Unpacking and Interleaving of Bytes with the PUNPCKLBW Instruction 4:458
3-24 Operation of the PXOR Instruction . 4:461
4-1 Packed Single-FP Data Type . 4:464
4-2 SSE Register Set . 4:465
4-3 Packed Operation. 4:466
4-4 Scalar Operation. 4:466
4-5 Packed Shuffle Operation. 4:468
4-6 Unpack High Operation . 4:469
4-7 Unpack Low Operation . 4:469
4-8 Binary Real Number System . 4:475
4-9 Binary Floating-point Format . 4:476
4-10 Real Numbers and NaNs . 4:478
4-11 Four Packed FP Data in Memory (at address 1000H) . 4:481

Tables

2-1 Register Encodings Associated with the +rb, +rw, and +rd Nomenclature 4:13
2-2 Exception Mnemonics, Names, and Vector Numbers . .4:19
2-3 Floating-point Exception Mnemonics and Names . .4:20
2-4 Information Returned by CPUID Instruction . .4:78
2-5 Feature Flags Returned in EDX Register .4:80

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 401

2-6 FPATAN Zeros and NaNs . 4:149
2-7 FPREM Zeros and NaNs . 4:151
2-8 FPREM1 Zeros and NaNs . 4:154
2-9 FSUB Zeros and NaNs . 4:183
2-10 FSUBR Zeros and NaNs . 4:186
2-11 FYL2X Zeros and NaNs . 4:199
2-12 FYL2XP1 Zeros and NaNs . 4:201
2-13 IDIV Operands . 4:204
2-14 INT Cases . 4:218
2-15 LAR Descriptor Validity . 4:253
2-16 LEA Address and Operand Sizes . 4:258
2-17 Repeat Conditions . 4:338
4-1 Real Number Notation . 4:476
4-2 Denormalization Process . 4:478
4-3 Results of Operations with NAN Operands . 4:481
4-4 Precision and Range of SSE Datatype . 4:482
4-5 Real Number and NaN Encodings. . 4:482
4-6 SSE Instruction Behavior with Prefixes . 4:483
4-7 SIMD Integer Instructions – Behavior with Prefixes . 4:483
4-8 Cacheability Control Instruction Behavior with Prefixes 4:483
4-9 Key to SSE Naming Convention. . 4:485

§

402 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

Volume 4: About this Manual 4:1

About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

4:2 Volume 4: About this Manual

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 – GR 127) of the general
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 4: About this Manual 4:3

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

4:4 Volume 4: About this Manual

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 4: About this Manual 4:5

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

IA-32 System Environment – The operating system privileged environment and
resources as defined by the Intel Architecture Software Developer’s Manual. Resources
include virtual paging, control registers, debugging, performance monitoring, machine
checks, and the set of privileged instructions.

Itanium® Architecture-based Firmware – The Processor Abstraction Layer (PAL)
and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization– Document number 308065
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization – This document (Document number 251110) describes

4:6 Volume 4: About this Manual

model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development –
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide –
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification –
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of
Revision

Revision
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

Volume 4: About this Manual 4:7

August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part I, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of
Revision

Revision
Number Description

4:8 Volume 4: About this Manual

August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1;
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2;
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3,
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s)
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I,
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2,
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of
Revision

Revision
Number Description

Volume 4: About this Manual 4:9

Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of
Revision

Revision
Number Description

4:10 Volume 4: About this Manual

§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description

Volume 4: Base IA-32 Instruction Reference 4:11

Base IA-32 Instruction Reference 2

This section lists all IA-32 instructions and their behavior in the Itanium System
Environment and IA-32 System Environments on an processor based on the Itanium
architecture. Unless noted otherwise all IA-32 and MMX technology and SSE
instructions operate as defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

This volume describes the complete IA-32 Architecture instruction set, including the
integer, floating-point, MMX technology and SSE technology, and system instructions.
The instruction descriptions are arranged in alphabetical order. For each instruction, the
forms are given for each operand combination, including the opcode, operands
required, and a description. Also given for each instruction are a description of the
instruction and its operands, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of the exceptions that
can be generated.

For all IA-32 the following relationships hold:

• Writes – Writes of any IA-32 general purpose, floating-point or SSE, MMX
technology registers by IA-32 instructions are reflected in the Itanium registers
defined to hold that IA-32 state when IA-32 instruction set completes execution.

• Reads – Reads of any IA-32 general purpose, floating-point or SSE, MMX
technology registers by IA-32 instructions see the state of the Itanium registers
defined to hold the IA-32 state after entering the IA-32 instruction set.

• State mappings – IA-32 numeric instructions are controlled by and reflect their
status in FCW, FSW, FTW, FCS, FIP, FOP, FDS and FEA. On exit from the IA-32
instruction set, Itanium numeric status and control resources defined to hold IA-32
state reflect the results of all IA-32 prior numeric instructions in FCR, FSR, FIR and
FDR. Itanium numeric status and control resources defined to hold IA-32 state are
honored by IA-32 numeric instructions when entering the IA-32 instruction set.

2.1 Additional Intel® Itanium® Faults

The following fault behavior is defined for all IA-32 instructions in the Itanium System
Environment:

• IA-32 Faults – All IA-32 faults are performed as defined in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, unless otherwise noted.
IA-32 faults are delivered on the IA_32_Exception interruption vector.

• IA-32 GPFault – Null segments are signified by the segment descriptor register’s
P-bit being set to zero. IA-32 memory references through DSD, ESD, FSD, and GSD
with the P-bit set to zero result in an IA-32 GPFault.

• Itanium Low FP Reg Fault – If PSR.dfl is 1, execution of any IA-32 MMX
technology, SSE or floating-point instructions results in a Disabled FP Register fault
(regardless of whether FR2-31 is referenced).

• Itanium High FP Reg Fault – If PSR.dfh is 1, execution of the first target IA-32
instruction following an br.ia or rfi results in a Disabled FP Register fault
(regardless of whether FR32-127 is referenced).

4:12 Volume 4: Base IA-32 Instruction Reference

• Itanium Instruction Mem Faults – The following additional Itanium memory
faults can be generated on each virtual page referenced when fetching IA-32 or
MMX technology or SSE instructions for execution:

• Alternative instruction TLB fault

• VHPT instruction fault

• Instruction TLB fault

• Instruction Page Not Present fault

• Instruction NaT Page Consumption Abort

• Instruction Key Miss fault

• Instruction Key Permission fault

• Instruction Access Rights fault

• Instruction Access Bit fault

• Itanium Data Mem Faults – The following additional Itanium memory faults can
be generated on each virtual page touched when reading or writing memory
operands from the IA-32 instruction set including MMX technology and SSE
instructions:

• Nested TLB fault

• Alternative data TLB fault

• VHPT data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption Abort

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty bit fault

• Data Access bit fault

2.2 Interpreting the IA-32 Instruction Reference
Pages

This section describes the information contained in the various sections of the
instruction reference pages that make up the majority of this chapter. It also explains
the notational conventions and abbreviations used in these sections.

2.2.1 IA-32 Instruction Format

The following is an example of the format used for each Intel architecture instruction
description in this chapter.

2.2.1.0.0.1 CMC—Complement Carry Flag

Opcode Instruction Description

F5 CMC Complement carry flag

Volume 4: Base IA-32 Instruction Reference 4:13

2.2.1.1 Opcode Column

The “Opcode” column gives the complete object code produced for each form of the
instruction. When possible, the codes are given as hexadecimal bytes, in the same
order in which they appear in memory. Definitions of entries other than hexadecimal
bytes are as follows:

• /digit – A digit between 0 and 7 indicates that the ModR/M byte of the instruction
uses only the r/m (register or memory) operand. The reg field contains the digit
that provides an extension to the instruction's opcode.

• /r – Indicates that the ModR/M byte of the instruction contains both a register
operand and an r/m operand.

• cb, cw, cd, cp – A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value
following the opcode that is used to specify a code offset and possibly a new value
for the code segment register.

• ib, iw, id – A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the
instruction that follows the opcode, ModR/M bytes or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words and doublewords are
given with the low-order byte first.

• +rb, +rw, +rd – A register code, from 0 through 7, added to the hexadecimal byte
given at the left of the plus sign to form a single opcode byte. The register codes
are given in Table 2-1.

• +i – A number used in floating-point instructions when one of the operands is ST(i)
from the FPU register stack. The number i (which can range from 0 to 7) is added to
the hexadecimal byte given at the left of the plus sign to form a single opcode byte.

2.2.1.2 Instruction Column

The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to represent
operands in the instruction statements:

• rel8 – A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.

• rel16 and rel32 – A relative address within the same code segment as the
instruction assembled. The rel16 symbol applies to instructions with an
operand-size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits.

Table 2-1. Register Encodings Associated with the +rb, +rw, and +rd
Nomenclature

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7

4:14 Volume 4: Base IA-32 Instruction Reference

• ptr16:16 and ptr16:32 – A far pointer, typically in a code segment different from
that of the instruction. The notation 16:16 indicates that the value of the pointer
has two parts. The value to the left of the colon is a 16-bit selector or value
destined for the code segment register. The value to the right corresponds to the
offset within the destination segment. The ptr16:16 symbol is used when the
instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when
the operand-size attribute is 32 bits.

• r8 – One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16 – One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32 – One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP,
EBP, ESI, or EDI.

• imm8 – An immediate byte value. The imm8 symbol is a signed number between –
128 and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or
doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

• imm16 – An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32 – An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and -2,147,483,648 inclusive.

• r/m8 – A byte operand that is either the contents of a byte general-purpose
register (AL, BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

• r/m16 – A word general-purpose register or memory operand used for instructions
whose operand-size attribute is 16 bits. The word general-purpose registers are:
AX, BX, CX, DX, SP, BP, SI, and DI. The contents of memory are found at the
address provided by the effective address computation.

• r/m32 – A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword
general-purpose registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The
contents of memory are found at the address provided by the effective address
computation.

• m – A 16- or 32-bit operand in memory.

• m8 – A byte operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used
only with the string instructions and the XLAT instruction.

• m16 – A word operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used
only with the string instructions.

• m32 – A doubleword operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.

• m64 – A memory quadword operand in memory. This nomenclature is used only
with the CMPXCHG8B instruction.

• m16:16, m16:32 – A memory operand containing a far pointer composed of two
numbers. The number to the left of the colon corresponds to the pointer's segment
selector. The number to the right corresponds to its offset.

• m16&32, m16&16, m32&32 – A memory operand consisting of data item pairs
whose sizes are indicated on the left and the right side of the ampersand. All

Volume 4: Base IA-32 Instruction Reference 4:15

memory addressing modes are allowed. The m16&16 and m32&32 operands are
used by the BOUND instruction to provide an operand containing an upper and
lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to
provide a word with which to load the limit field, and a doubleword with which to
load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32 – A simple memory variable (memory offset) of type
byte, word, or doubleword used by some variants of the MOV instruction. The
actual address is given by a simple offset relative to the segment base. No ModR/M
byte is used in the instruction. The number shown with moffs indicates its size,
which is determined by the address-size attribute of the instruction.

• Sreg – A segment register. The segment register bit assignments are ES=0, CS=1,
SS=2, DS=3, FS=4, and GS=5.

• m32real, m64real, m80real – A single-, double-, and extended-real
(respectively) floating-point operand in memory.

• m16int, m32int, m64int – A word-, short-, and long-integer (respectively)
floating-point operand in memory.

• ST or ST(0) – The top element of the FPU register stack.

• ST(i) – The ith element from the top of the FPU register stack. (i = 0 through 7).

• mm – An MMX technology register. The 64-bit MMX technology registers are: MM0
through MM7.

• mm/m32 – The low order 32 bits of an MMX technology register or a 32-bit
memory operand. The 64-bit MMX technology registers are: MM0 through MM7.
The contents of memory are found at the address provided by the effective address
computation.

• mm/m64 – An MMX technology register or a 64-bit memory operand. The 64-bit
MMX technology registers are: MM0 through MM7. The contents of memory are
found at the address provided by the effective address computation.

2.2.1.3 Description Column

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following “Description” and “Operation” sections contain
more details of the instruction's operation.

2.2.1.4 Description

The “Description” section describes the purpose of the instructions and the required
operands. It also discusses the effect of the instruction on flags.

2.2.2 Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of
the instruction. The pseudo-code uses a notation similar to the Algol or Pascal
language. The algorithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for
an if statement, DO and OD for a do statement, or CASE... OF and ESAC for a case
statement.

4:16 Volume 4: Base IA-32 Instruction Reference

• A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
address contained in register SI relative to SI’s default segment (DS) or overridden
segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that an offset is read from the SI register if the current address-size
attribute is 16 or is read from the ESI register if the address-size attribute is 32.

• Brackets are also used for memory operands, where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates that
the contents of the source operand is a segment-relative offset.

• A B; indicates that the value of B is assigned to A.

• The symbols =, , , and are relational operators used to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A = B is TRUE if the value of A is equal to B; otherwise it is
FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination
operand should be shifted left or right, respectively, by the number of bits indicated
by the count operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize – The OperandSize identifier represents the
operand-size attribute of the instruction, which is either 16 or 32 bits. The
AddressSize identifier represents the address-size attribute, which is either 16 or
32 bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize 16;
ELSE

IF instruction = CMPSD
THEN OperandSize 32;

FI;
FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel
Architecture Software Developer’s Manual, Volume 1, for general guidelines on how
these attributes are determined.

• StackAddrSize – Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for
Stack” in Chapter 4 of the Intel Architecture Software Developer’s Manual, Volume
1).

• SRC – Represents the source operand.

• DEST – Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value) – Returns a value zero-extended to the operand-size attribute
of the instruction. For example, if the operand-size attribute is 32, zero extending a
byte value of -10 converts the byte from F6H to a doubleword value of 000000F6H.
If the value passed to the ZeroExtend function and the operand-size attribute are
the same size, ZeroExtend returns the value unaltered.

Volume 4: Base IA-32 Instruction Reference 4:17

• SignExtend(value) – Returns a value sign-extended to the operand-size attribute
of the instruction. For example, if the operand-size attribute is 32, sign extending a
byte containing the value -10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size
attribute are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte – Converts a signed 16-bit value to a signed
8-bit value. If the signed 16-bit value is less than -128, it is represented by the
saturated value -128 (80H); if it is greater than 127, it is represented by the
saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord – Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than -32768, it is represented
by the saturated value
-32768 (8000H); if it is greater than 32767, it is represented by the saturated
value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte – Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (00H); if it is greater than 255, it is represented by the
saturated value 255 (FFH).

• SaturateToSignedByte – Represents the result of an operation as a signed 8-bit
value. If the result is less than -128, it is represented by the saturated value -128
(80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord – Represents the result of an operation as a signed
16-bit value. If the result is less than -32768, it is represented by the saturated
value -32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

• SaturateToUnsignedByte – Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value
zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

• SaturateToUnsignedWord – Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
zero (00H); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

• LowOrderWord(DEST * SRC) – Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination
operand.

• HighOrderWord(DEST * SRC) – Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

• Push(value) – Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction.

• Pop() – Removes the value from the top of the stack and returns it. The statement
EAX Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word or a doubleword depending on the operand-size attribute.

• PopRegisterStack – Marks the FPU ST(0) register as empty and increments the
FPU register stack pointer (TOP) by 1.

• Switch-Tasks – Performs a task switch.

• Bit(BitBase, BitOffset) – Returns the value of a bit within a bit string, which is a
sequence of bits in memory or a register. Bits are numbered from low-order to

4:18 Volume 4: Base IA-32 Instruction Reference

high-order within registers and within memory bytes. If the base operand is a
register, the offset can be in the range 0..31. This offset addresses a bit within the
indicated register. An example, the function Bit[EAX, 21] is illustrated in Figure 2-2.

If BitBase is a memory address, BitOffset can range from -2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase +
(BitOffset DIV 8)), where DIV is signed division with rounding towards negative infinity,
and MOD returns a positive number. This operation is illustrated in Figure 2-3.

2.2.3 Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, EFLAGS Cross-Reference, in the Intel Architecture
Software Developer’s Manual, Volume 1). Non-conventional assignments are described
in the “Operation” section. The values of flags listed as undefined may be changed by
the instruction in an indeterminate manner. Flags that are not listed are unchanged by
the instruction.

2.2.4 FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how
each instruction can affect the four condition code flags of the FPU status word.

Figure 2-2. Bit Offset for BIT[EAX,21]

Figure 2-3. Memory Bit Indexing

02131

BitOffset = 21

0777 5 0 0

0777 50 0

BitBase +1 BitBase BitBase -1

BitOffset = +13

BitBase BitBase -1 BitBase -2

BitOffset = -11

Volume 4: Base IA-32 Instruction Reference 4:19

2.2.5 Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two letters
and an optional error code in parentheses. For example, #GP(0) denotes a general
protection exception with an error code of 0. Table 2-2 associates each two-letter
mnemonic with the corresponding interrupt vector number and exception name. See
Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software
Developer’s Manual, Volume 3, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their
operating systems to determine the actions taken when exceptions occur.

2.2.6 Real-address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode.

2.2.7 Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode.

Table 2-2. Exception Mnemonics, Names, and Vector Numbers

Vector
No.

Mnemonic Name Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) UD2 instruction or reserved opcode.a

a. The UD2 instruction was introduced in the Pentium® Pro processor.

 7 #NM Device Not Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other protection
checks.

14 #PF Page Fault Any memory reference.

16 #MF Floating-point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.b

b. This exception was introduced in the Intel® 486 processor.

18 #MC Machine Check Model dependent.c

c. This exception was introduced in the Pentium processor and enhanced in the Pentium Pro processor.

4:20 Volume 4: Base IA-32 Instruction Reference

2.2.8 Floating-point Exceptions

The “Floating-point Exceptions” section lists additional exceptions that can occur when
a floating-point instruction is executed in any mode. All of these exception conditions
result in a floating-point error exception (#MF, vector number 16) being generated.
Table 2-3 associates each one- or two-letter mnemonic with the corresponding
exception name. See “Floating-Point Exception Conditions” in Chapter 7 of the Intel
Architecture Software Developer’s Manual, Volume 1, for a detailed description of these
exceptions.

2.3 IA-32 Base Instruction Reference

The remainder of this chapter provides detailed descriptions of each of the Intel
architecture instructions.

Table 2-3. Floating-point Exception Mnemonics and Names

Vector
No.

Mnemonic Name Source

16
#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- FPU stack overflow or underflow
- Invalid FPU arithmetic operation

16 #Z Floating-point divide-by-zero FPU divide-by-zero

16 #D Floating-point denormalized operation Attempting to operate on a denormal
number

16 #O Floating-point numeric overflow FPU numeric overflow

16 #U Floating-point numeric underflow FPU numeric underflow

16 #P Floating-point inexact result (precision) Inexact result (precision)

Volume 4: Base IA-32 Instruction Reference 4:21

AAA—ASCII Adjust After Addition

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addition)
two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented by 1, and the
CF and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register are
cleared to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL (AL + 6);
AH AH + 1;
AF 1;
CF 1;

ELSE
AF 0;
CF 0;

FI;
AL AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise
they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

37 AAA ASCII adjust AL after addition

4:22 Volume 4: Base IA-32 Instruction Reference

AAD—ASCII Adjust AX Before Division

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on the
result will yield a correct unpacked BCD value. The AAD instruction is only useful when
it precedes a DIV instruction that divides (binary division) the adjusted value in the AL
register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then
clears the AH register to 00H. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit number in registers AH and AL.

Operation

tempAL AL;
tempAH AH;
AL (tempAL + (tempAH imm8)) AND FFH;
AH 0

The immediate value (imm8) is taken from the second byte of the instruction, which
under normal assembly is 0AH (10 decimal). However, this immediate value can be
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are
undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D5 0A AAD ASCII adjust AX before division

Volume 4: Base IA-32 Instruction Reference 4:23

AAM—ASCII Adjust AX After Multiply

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of
unpacked BCD values. The AX register is the implied source and destination operand for
this instruction. The AAM instruction is only useful when it follows an MUL instruction
that multiplies (binary multiplication) two unpacked BCD values and stores a word
result in the AX register. The AAM instruction then adjusts the contents of the AX
register to contain the correct 2-digit unpacked BCD result.

Operation

tempAL AL;
AH tempAL / imm8;
AL tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction, which
under normal assembly is 0AH (10 decimal). However, this immediate value can be
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are
undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D4 0A AAM ASCII adjust AX after multiply

4:24 Volume 4: Base IA-32 Instruction Reference

AAS—ASCII Adjust AL After Subtraction

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked
BCD result. The AL register is the implied source and destination operand for this
instruction. The AAS instruction is only useful when it follows a SUB instruction that
subtracts (binary subtraction) one unpacked BCD value from another and stores a byte
result in the AL register. The AAA instruction then adjusts the contents of the AL
register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and
the CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are
cleared, and the AH register is unchanged. In either case, the AL register is left with its
top nibble set to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL AL - 6;
AH AH - 1;
AF 1;
CF 1;

ELSE
CF 0;
AF 0;

FI;
AL AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

3F AAS ASCII adjust AL after subtraction

Volume 4: Base IA-32 Instruction Reference 4:25

ADC—Add with Carry

Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. The state of the CF flag represents a carry
from a previous addition. When an immediate value is used as an operand, it is
sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in
which an ADD instruction is followed by an ADC instruction.

Operation

DEST DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32

4:26 Volume 4: Base IA-32 Instruction Reference

ADC—Add with Carry (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:27

ADD—Add

Description

Adds the first operand (destination operand) and the second operand (source operand)
and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a
memory location. When an immediate value is used as an operand, it is sign-extended
to the length of the destination operand format.

The ADD instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

Operation

DEST DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

4:28 Volume 4: Base IA-32 Instruction Reference

ADD—Add (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0)If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:29

AND—Logical AND

Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand
can be an immediate, a register, or a memory location; the destination operand can be
a register or a memory location.

Operation

DEST DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8

83 /4 ib AND r/m32,imm8 r/m32 AND imm8

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32

4:30 Volume 4: Base IA-32 Instruction Reference

AND—Logical AND (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:31

ARPL—Adjust RPL Field of Segment Selector

Description

Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the RPL
field of the destination operand is less than the RPL field of the source operand, the ZF
flag is set and the RPL field of the destination operand is increased to match that of the
source operand. Otherwise, the ZF flag is cleared and no change is made to the
destination operand. (The destination operand can be a word register or a memory
location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector passed
to the operating system is placed in the destination operand and segment selector for
the application program’s code segment is placed in the source operand. (The RPL field
in the source operand represents the privilege level of the application program.)
Execution of the ARPL instruction then insures that the RPL of the segment selector
received by the operating system is no lower (does not have a higher privilege) than
the privilege level of the application program. (The segment selector for the application
program’s code segment can be read from the procedure stack following a procedure
call.)

See the Intel Architecture Software Developer’s Manual, Volume 3 for more information
about the use of this instruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF 1;
DEST(RPL) SRC(RPL);

ELSE
ZF 0;

FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the
source operand; otherwise, is cleared to 0.

Opcode Instruction Description

63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16

4:32 Volume 4: Base IA-32 Instruction Reference

ARPL—Adjust RPL Field of Segment Selector (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The ARPL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:33

BOUND—Check Array Index Against Bounds

Description

Determines if the first operand (array index) is within the bounds of an array specified
the second operand (bounds operand). The array index is a signed integer located in a
register. The bounds operand is a memory location that points to a pair of signed
doubleword-integers (when the operand-size attribute is 32) or a pair of signed
word-integers (when the operand-size attribute is 16). The first doubleword (or word)
is the lower bound of the array and the second doubleword (or word) is the upper
bound of the array. The array index must be greater than or equal to the lower bound
and less than or equal to the upper bound plus the operand size in bytes. If the index is
not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When a this
exception is generated, the saved return instruction pointer points to the BOUND
instruction.)

The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the limits
addressable via a constant offset from the beginning of the array. Because the address
of the array already will be present in a register, this practice avoids extra bus cycles to
obtain the effective address of the array bounds.

Operation
IF (ArrayIndex < LowerBound OR ArrayIndex > (UppderBound + OperandSize/8]))

(* Below lower bound or above upper bound *)
THEN

#BR;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by m16&16

62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by m16&16

4:34 Volume 4: Base IA-32 Instruction Reference

BOUND—Check Array Index Against Bounds (Continued)

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#BR If the bounds test fails.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#BR If the bounds test fails.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:35

BSF—Bit Scan Forward

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If
a least significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be a register or a memory location; the destination
operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the contents source operand are 0, the contents of the destination operand
is undefined.

Operation

IF SRC = 0
THEN

ZF 1;
DEST is undefined;

ELSE
ZF 0;
temp 0;

WHILE Bit(SRC, temp) = 0
DO

temp temp + 1;
DEST temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BC BSF r16,r/m16 Bit scan forward on r/m16

0F BC BSF r32,r/m32 Bit scan forward on r/m32

4:36 Volume 4: Base IA-32 Instruction Reference

BSF—Bit Scan Forward (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:37

BSR—Bit Scan Reverse

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If
a most significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be a register or a memory location; the destination
operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the contents source operand are 0, the contents of the destination operand
is undefined.

Operation

IF SRC = 0
THEN

ZF 1;
DEST is undefined;

ELSE
ZF 0;
temp OperandSize - 1;

WHILE Bit(SRC, temp) = 0
DO

temp temp 1;
DEST temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BD BSR r16,r/m16 Bit scan reverse on r/m16

0F BD BSR r32,r/m32 Bit scan reverse on r/m32

4:38 Volume 4: Base IA-32 Instruction Reference

BSR—Bit Scan Reverse (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:39

BSWAP—Byte Swap

Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped
with bits 24 through 31, and bits 8 through 15 are swapped with bits 16 through 23.
This instruction is provided for converting little-endian values to big-endian format and
vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the
BSWAP instruction references a 16-bit register, the result is undefined.

Operation

TEMP DEST
DEST(7..0) TEMP(31..24)
DEST(15..8) TEMP(23..16)
DEST(23..16) TEMP(15..8)
DEST(31..24) TEMP(7..0)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility Information

The BSWAP instruction is not supported on Intel architecture processors earlier than
the Intel486™ processor family. For compatibility with this instruction, include
functionally-equivalent code for execution on Intel processors earlier than the Intel486
processor family.

Opcode Instruction Description

0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.

4:40 Volume 4: Base IA-32 Instruction Reference

BT—Bit Test

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand) and stores the value
of the bit in the CF flag. The bit base operand can be a register or a memory location;
the bit offset operand can be a register or an immediate value. If the bit base operand
specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16-
or 32-bit register, respectively. If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string. The offset operand then selects a bit position within the
range 231 to 231 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. In
this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the
immediate bit offset are stored in the immediate bit offset field, and the high-order bits
are shifted and combined with the byte displacement in the addressing mode by the
assembler. The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:

Effective Address + (4 (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using
this relationship:

Effective Address + (2 (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit.
When using this bit addressing mechanism, software should avoid referencing areas of
memory close to address space holes. In particular, it should avoid references to
memory-mapped I/O registers. Instead, software should use the MOV instructions to
load from or store to these addresses, and use the register form of these instructions to
manipulate the data.

Operation

CF Bit(BitBase, BitOffset)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Opcode Instruction Description

0F A3 BT r/m16,r16 Store selected bit in CF flag

0F A3 BT r/m32,r32 Store selected bit in CF flag

0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag

0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag

Volume 4: Base IA-32 Instruction Reference 4:41

BT—Bit Test (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:42 Volume 4: Base IA-32 Instruction Reference

BTC—Bit Test and Complement

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and complements the selected bit in the bit string. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range 231 to 231 1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF,
ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BB BTC r/m16,r16 Store selected bit in CF flag and complement

0F BB BTC r/m32,r32 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement

Volume 4: Base IA-32 Instruction Reference 4:43

BTC—Bit Test and Complement (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:44 Volume 4: Base IA-32 Instruction Reference

BTR—Bit Test and Reset

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range 231 to 231 1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF,
and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear

0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear

Volume 4: Base IA-32 Instruction Reference 4:45

BTR—Bit Test and Reset (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:46 Volume 4: Base IA-32 Instruction Reference

BTS—Bit Test and Set

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range 231 to 231 1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and
PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F AB BTS r/m16,r16 Store selected bit in CF flag and set

0F AB BTS r/m32,r32 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set

Volume 4: Base IA-32 Instruction Reference 4:47

BTS—Bit Test and Set (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:48 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure

Description

Saves procedure linking information on the procedure stack and jumps to the
procedure (called procedure) specified with the destination (target) operand. The target
operand specifies the address of the first instruction in the called procedure. This
operand can be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call – A call to a procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment
call.

• Far call – A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call – A far call to a procedure in a segment at a different
privilege level than that of the currently executing program or procedure. Results
in an IA-32_Intercept(Gate) in Itanium System Environment.

• Task switch – A call to a procedure located in a different task. Results in an
IA-32_Intercept(Gate) in Itanium System Environment.

The latter two call types (inter-privilege-level call and task switch) can only be executed
in protected mode. See Chapter 6 in the Intel Architecture Software Developer’s
Manual, Volume 3 for information on task switching with the CALL instruction.

When executing a near call, the processor pushes the value of the EIP register (which
contains the address of the instruction following the CALL instruction) onto the
procedure stack (for use later as a return-instruction pointer. The processor then jumps
to the address specified with the target operand for the called procedure. The target
operand specifies either an absolute address in the code segment (that is an offset from
the base of the code segment) or a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register, which points to the
instruction following the call). An absolute address is specified directly in a register or
indirectly in a memory location (r/m16 or r/m32 target-operand form). (When
accessing an absolute address indirectly using the stack pointer (ESP) as a base
register, the base value used is the value of the ESP before the instruction executes.) A
relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at
the machine code level, it is encoded as a signed, 16- or 32-bit immediate value, which
is added to the instruction pointer.

Opcode Instruction Description

E8 cw CALL rel16 Call near, displacement relative to next instruction

E8 cd CALL rel32 Call near, displacement relative to next instruction

FF /2 CALL r/m16 Call near, r/m16 indirect

FF /2 CALL r/m32 Call near, r/m32 indirect

9A cd CALL ptr16:16 Call far, to full pointer given

9A cp CALL ptr16:32 Call far, to full pointer given

FF /3 CALL m16:16 Call far, address at r/m16

FF /3 CALL m16:32 Call far, address at r/m32

Volume 4: Base IA-32 Instruction Reference 4:49

CALL—Call Procedure (Continued)

When executing a near call, the operand-size attribute determines the size of the target
operand (16 or 32 bits) for absolute addresses. Absolute addresses are loaded directly
into the EIP register. When a relative offset is specified, it is added to the value of the
EIP register. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s, resulting in a maximum instruction pointer size of 16 bits. The CS
register is not changed on near calls.

When executing a far call, the processor pushes the current value of both the CS and
EIP registers onto the procedure stack for use as a return-instruction pointer. The
processor then performs a far jump to the code segment and address specified with the
target operand for the called procedure. Here the target operand specifies an absolute
far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect
method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared to 0s.

Any far call from a 32-bit code segment to a 16-bit code segment should be made from
the first 64 Kbytes of the 32-bit code segment, because the operand-size attribute of
the instruction is set to 16, allowing only a 16-bit return address offset to be saved.
Also, the call should be made using a 16-bit call gate so that 16-bit values will be
pushed on the stack.

When the processor is operating in protected mode, a far call can also be used to
access a code segment at a different privilege level or to switch tasks. Here, the
processor uses the segment selector part of the far address to access the segment
descriptor for the segment being jumped to. Depending on the value of the type and
access rights information in the segment selector, the CALL instruction can perform:

• A far call to the same privilege level (described in the previous paragraph).

• An far call to a different privilege level. Results in an IA-32_Intercept(Gate) in
Itanium System Environment.

• A task switch. Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

When executing an inter-privilege-level far call, the code segment for the procedure
being called is accessed through a call gate. The segment selector specified by the
target operand identifies the call gate. In executing a call through a call gate where a
change of privilege level occurs, the processor switches to the stack for the privilege
level of the called procedure, pushes the current values of the CS and EIP registers and
the SS and ESP values for the old stack onto the new stack, then performs a far jump to
the new code segment. The new code segment is specified in the call gate descriptor;
the new stack segment is specified in the TSS for the currently running task. The jump
to the new code segment occurs after the stack switch. On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack, a set of
parameters from the calling procedures stack, and the segment selector and instruction
pointer for the calling procedure’s code segment. (A value in the call gate descriptor
determines how many parameters to copy to the new stack.)

Finally, the processor jumps to the address of the procedure being called within the new
code segment. The procedure address is the offset specified by the target operand.
Here again, the target operand can specify the far address of the call gate and
procedure either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32).

4:50 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

Executing a task switch with the CALL instruction, is similar to executing a call through
a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to and the address of the procedure being called in the task.
The task gate in turn points to the TSS for the task, which contains the segment
selectors for the task’s code and stack segments. The CALL instruction can also specify
the segment selector of the TSS directly. See the Intel Architecture Software
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task
switch.

Operation

IF near call
THEN IF near relative call

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP EIP + DEST; (* DEST is rel32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI;
FI;
ELSE (* near absolute call *)

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI;
FI:
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;
IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)

THEN
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);

Volume 4: Base IA-32 Instruction Reference 4:51

CALL—Call Procedure (Continued)

Push(IP);
CS DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP EIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

THEN #GP(new code selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF not present THEN #NP(selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) CPL
EIP DEST(offset);

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) CPL
EIP DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL CPL) THEN #GP(new code segment selector); FI;

4:52 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

IF stack not large enough for return address THEN #SS(0); FI;
tempEIP DEST(offset)
IF OperandSize=16

THEN
tempEIP tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) CPL;
EIP tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) CPL;
EIP tempEIP;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF not present THEN #NP(call gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress new code segment (DPL 8) + 4
IF (TSSstackAddress + 7) TSS limit

THEN #TS(current TSS selector); FI;
newSS TSSstackAddress + 4;
newESP stack address;

ELSE (* TSS is 16-bit *)

Volume 4: Base IA-32 Instruction Reference 4:53

CALL—Call Procedure (Continued)

TSSstackAddress new code segment (DPL 4) + 2
IF (TSSstackAddress + 4) TSS limit

THEN #TS(current TSS selector); FI;
newESP TSSstackAddress;
newSS TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector's RPL DPL of code segment

OR stack segment DPL DPL of code segment
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS newSS;
(* segment descriptor information also loaded *)
ESP newESP;
CS:EIP CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS newSS;
(* segment descriptor information also loaded *)
ESP newESP;
CS:IP CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

FI;
CPL CodeSegment(DPL)
CS(RPL) CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;

4:54 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

IF EIP not within code segment limit then #GP(0); FI;
CS:EIP CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 4 bytes

THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

FI;
CS(RPL) CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector);
FI;
IF task gate not present

THEN #NP(task gate selector);
FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
ORTSS segment selector local/global bit is set to local
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

Volume 4: Base IA-32 Instruction Reference 4:55

CALL—Call Procedure (Continued)

THEN #GP(0);
FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Gate Intercept for CALLs through CALL Gates, Task Gates and Task
Segments

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code
segment limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor
table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL
or the RPL for the segment’s segment selector is greater than the
CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is
less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s
segment selector.

If the segment descriptor for a segment selector from a call gate
does not indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor
table limits.

If the DPL for a code-segment obtained from a call gate is greater
than the CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

4:56 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

#SS(0) If pushing the return address, parameters, or stack segment pointer
onto the stack exceeds the bounds of the stack segment, when no
stack switch occurs.

If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer
onto the stack exceeds the bounds of the stack segment, when a
stack switch occurs.

If the SS register is being loaded as part of a stack switch and the
segment pointed to is marked not present.

If stack segment does not have room for the return address,
parameters, or stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task
gate, or TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of
the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal
to the DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is
not equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and
alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the target offset is beyond the code segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

Volume 4: Base IA-32 Instruction Reference 4:57

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Description

Double the size of the source operand by means of sign extension. The CBW (convert
byte to word) instruction copies the sign (bit 7) in the source operand into every bit in
the AH register. The CWDE (convert word to doubleword) instruction copies the sign (bit
15) of the word in the AX register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is
intended for use when the operand-size attribute is 16 and the CWDE instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size to
16 when CBW is used and to 32 when CWDE is used. Others may treat these
mnemonics as synonyms (CBW/CWDE) and use the current setting of the operand-size
attribute to determine the size of values to be converted, regardless of the mnemonic
used.

The CWDE instruction is different from the CWD (convert word to double) instruction.
The CWD instruction uses the DX:AX register pair as a destination operand; whereas,
the CWDE instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX SignExtend(AX);
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

98 CBW AX sign-extend of AL

98 CWDE EAX sign-extend of AX

4:58 Volume 4: Base IA-32 Instruction Reference

CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Double/Convert Double to Quad.

Volume 4: Base IA-32 Instruction Reference 4:59

CLC—Clear Carry Flag

Description

Clears the CF flag in the EFLAGS register.

Operation

CF 0;

Flags Affected

The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F8 CLC Clear CF flag

4:60 Volume 4: Base IA-32 Instruction Reference

CLD—Clear Direction Flag

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations
increment the index registers (ESI and/or EDI).

Operation

DF 0;

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FC CLD Clear DF flag

Volume 4: Base IA-32 Instruction Reference 4:61

CLI—Clear Interrupt Flag

Description

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF
flag causes the processor to ignore maskable external interrupts. The IF flag and the
CLI and STI instruction have no affect on the generation of exceptions and NMI
interrupts. In the Itanium System Environment, external interrupts are enabled
for IA-32 instructions if PSR.i and (~CFLG.if or EFLAG.if) is 1 and for Itanium
instructions if PSR.i is 1.

The following decision table indicates the action of the CLI instruction (bottom of the
table) depending on the processor’s mode of operating and the CPL and IOPL of the
currently running program or procedure (top of the table).

Notes:
XDon't care.
NAction in column 1 not taken.
YAction in column 1 taken.

Operation

OLD_IF <- IF;

IF PE = 0 (* Executing in real-address mode *)
THEN

IF 0;
ELSE

IF VM = 0 (* Executing in protected mode *)
THEN

IF CR4.PVI = 1
THEN

IF CPL = 3
THEN

IF IOPL<3
THEN VIF <- 0;
ELSE IF <- 0;
FI;

ELSE (*CPL < 3*)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <- 0;

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt flag
cleared

PE = 0 1 1 1 1

VM = X 0 X 0 1

CPL X IOPL X > IOPL X

IOPL X X 3 X < 3

IF 0 Y Y Y N N

#GP(0) N N N Y Y

4:62 Volume 4: Base IA-32 Instruction Reference

CLI—Clear Interrupt Flag (Continued)

FI;
FI;

ELSE (*CR4.PVI==0 *)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <- 0;
FI;

FI;
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF
ELSE

IF CR4.VME= 0
THEN #GP(0);
ELSE VIF <- 0;
FI;

FI;
FI;

FI;
IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF

THEN IA-32_Intercept(System_Flag,CLI);

Flags Affected

The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, the it is not
affected. The other flags in the EFLAGS register are unaffected.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes
state.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Volume 4: Base IA-32 Instruction Reference 4:63

CLTS—Clear Task-Switched Flag in CR0

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for
use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the description
of the TS flag in the Intel Architecture Software Developer’s Manual, Volume 3 for more
information about this flag.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,CLTS);

CR0(TS) 0;

Flags Affected

The TS flag in CR0 register is cleared.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept fault.

Protected Mode Exceptions

#GP(0) If the CPL is greater than 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater than 0.

Opcode Instruction Description

0F 06 CLTS Clears TS flag in CR0

4:64 Volume 4: Base IA-32 Instruction Reference

CMC—Complement Carry Flag

Description

Complements the CF flag in the EFLAGS register.

Operation

CF NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF
flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F5 CMC Complement CF flag

Volume 4: Base IA-32 Instruction Reference 4:65

CMOVcc—Conditional Move

Opcode Instruction Description

0F 47 cw/cd CMOVA r16, r/m16 Move if above (CF=0 and ZF=0)

0F 47 cw/cd CMOVA r32, r/m32 Move if above (CF=0 and ZF=0)

0F 43 cw/cd CMOVAE r16, r/m16 Move if above or equal (CF=0)

0F 43 cw/cd CMOVAE r32, r/m32 Move if above or equal (CF=0)

0F 42 cw/cd CMOVB r16, r/m16 Move if below (CF=1)

0F 42 cw/cd CMOVB r32, r/m32 Move if below (CF=1)

0F 46 cw/cd CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1)

0F 46 cw/cd CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1)

0F 42 cw/cd CMOVC r16, r/m16 Move if carry (CF=1)

0F 42 cw/cd CMOVC r32, r/m32 Move if carry (CF=1)

0F 44 cw/cd CMOVE r16, r/m16 Move if equal (ZF=1)

0F 44 cw/cd CMOVE r32, r/m32 Move if equal (ZF=1)

0F 4F cw/cd CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF)

0F 4F cw/cd CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF)

0F 4D cw/cd CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

0F 4D cw/cd CMOVGE r32, r/m32 Move if greater or equal (SF=OF)

0F 4C cw/cd CMOVL r16, r/m16 Move if less (SF<>OF)

0F 4C cw/cd CMOVL r32, r/m32 Move if less (SF<>OF)

0F 4E cw/cd CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

0F 46 cw/cd CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

0F 46 cw/cd CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1)

0F 42 cw/cd CMOVNAE r16, r/m16 Move if not above or equal (CF=1)

0F 42 cw/cd CMOVNAE r32, r/m32 Move if not above or equal (CF=1)

0F 43 cw/cd CMOVNB r16, r/m16 Move if not below (CF=0)

0F 43 cw/cd CMOVNB r32, r/m32 Move if not below (CF=0)

0F 47 cw/cd CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0)

0F 47 cw/cd CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0)

0F 43 cw/cd CMOVNC r16, r/m16 Move if not carry (CF=0)

0F 43 cw/cd CMOVNC r32, r/m32 Move if not carry (CF=0)

0F 45 cw/cd CMOVNE r16, r/m16 Move if not equal (ZF=0)

0F 45 cw/cd CMOVNE r32, r/m32 Move if not equal (ZF=0)

0F 4E cw/cd CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF)

0F 4C cw/cd CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF)

0F 4C cw/cd CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF)

0F 4D cw/cd CMOVNL r16, r/m16 Move if not less (SF=OF)

0F 4D cw/cd CMOVNL r32, r/m32 Move if not less (SF=OF)

0F 4F cw/cd CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF)

0F 4F cw/cd CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF)

4:66 Volume 4: Base IA-32 Instruction Reference

CMOVcc—Conditional Move (Continued)

Description

The CMOVcc instructions check the state of one or more of the status flags in the
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are
in a specified state (or condition). A condition code (cc) is associated with each
instruction to indicate the condition being tested for. If the condition is not satisfied, a
move is not performed and execution continues with the instruction following the
CMOVcc instruction.

If the condition is false for the memory form, some processor implementations will
initiate the load (and discard the loaded data), possible memory faults can be
generated. Other processor models will not initiate the load and not generate any faults
if the condition is false.

These instructions can move a 16- or 32-bit value from memory to a general-purpose
register or from one general-purpose register to another. Conditional moves of 8-bit
register operands are not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the
above table. The terms “less” and “greater” are used for comparisons of signed integers
and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the CMOVA
(conditional move if above) instruction and the CMOVNBE (conditional move if not
below or equal) instruction are alternate mnemonics for the opcode 0F 47H.

Opcode Instruction Description

0F 41 cw/cd CMOVNO r16, r/m16 Move if not overflow (OF=0)

0F 41 cw/cd CMOVNO r32, r/m32 Move if not overflow (OF=0)

0F 4B cw/cd CMOVNP r16, r/m16 Move if not parity (PF=0)

0F 4B cw/cd CMOVNP r32, r/m32 Move if not parity (PF=0)

0F 49 cw/cd CMOVNS r16, r/m16 Move if not sign (SF=0)

0F 49 cw/cd CMOVNS r32, r/m32 Move if not sign (SF=0)

0F 45 cw/cd CMOVNZ r16, r/m16 Move if not zero (ZF=0)

0F 45 cw/cd CMOVNZ r32, r/m32 Move if not zero (ZF=0)

0F 40 cw/cd CMOVO r16, r/m16 Move if overflow (OF=0)

0F 40 cw/cd CMOVO r32, r/m32 Move if overflow (OF=0)

0F 4A cw/cd CMOVP r16, r/m16 Move if parity (PF=1)

0F 4A cw/cd CMOVP r32, r/m32 Move if parity (PF=1)

0F 4A cw/cd CMOVPE r16, r/m16 Move if parity even (PF=1)

0F 4A cw/cd CMOVPE r32, r/m32 Move if parity even (PF=1)

0F 4B cw/cd CMOVPO r16, r/m16 Move if parity odd (PF=0)

0F 4B cw/cd CMOVPO r32, r/m32 Move if parity odd (PF=0)

0F 48 cw/cd CMOVS r16, r/m16 Move if sign (SF=1)

0F 48 cw/cd CMOVS r32, r/m32 Move if sign (SF=1)

0F 44 cw/cd CMOVZ r16, r/m16 Move if zero (ZF=1)

0F 44 cw/cd CMOVZ r32, r/m32 Move if zero (ZF=1)

Volume 4: Base IA-32 Instruction Reference 4:67

CMOVcc—Conditional Move (Continued)

The CMOVcc instructions are new for the Pentium Pro processor family; however, they
may not be supported by all the processors in the family. Software can determine if the
CMOVcc instructions are supported by checking the processor’s feature information
with the CPUID instruction (see “CPUID—CPU Identification” on page 4:78).

Operation

temp DEST
IF condition TRUE

THEN
DEST SRC

ELSE
DEST temp

FI;

Flags Affected

None.

If the condition is false for the memory form, some processor implementations will
initiate the load (and discard the loaded data), possible memory faults can be
generated. Other processor models will not initiate the load and not generate any faults
if the condition is false.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

4:68 Volume 4: Base IA-32 Instruction Reference

CMOVcc—Conditional Move (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:69

CMP—Compare Two Operands

Description

Compares the first source operand with the second source operand and sets the status
flags in the EFLAGS register according to the results. The comparison is performed by
subtracting the second operand from the first operand and then setting the status flags
in the same manner as the SUB instruction. When an immediate value is used as an
operand, it is sign-extended to the length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc),
condition move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc,
CMOVcc, and SETcc instructions are based on the results of a CMP instruction.

Operation

temp SRC1 SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

3C ib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32

83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16

83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32

38 /r CMP r/m8,r8 Compare r8 with r/m8

39 /r CMP r/m16,r16 Compare r16 with r/m16

39 /r CMP r/m32,r32 Compare r32 with r/m32

3A /r CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32

4:70 Volume 4: Base IA-32 Instruction Reference

CMP—Compare Two Operands (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:71

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Description

Compares the byte, word, or double word specified with the first source operand with
the byte, word, or double word specified with the second source operand and sets the
status flags in the EFLAGS register according to the results. The first source operand
specifies the memory location at the address DS:ESI and the second source operand
specifies the memory location at address ES:EDI. (When the operand-size attribute is
16, the SI and DI register are used as the source-index and destination-index registers,
respectively.) The DS segment may be overridden with a segment override prefix, but
the ES segment cannot be overridden.

The CMPSB, CMPSW, and CMPSD mnemonics are synonyms of the byte, word, and
doubleword versions of the CMPS instructions. They are simpler to use, but provide no
type or segment checking. (For the CMPS instruction, “DS:ESI” and “ES:EDI” must be
explicitly specified in the instruction.)

After the comparison, the ESI and EDI registers are incremented or decremented
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the ESI and EDI register are incremented; if the DF flag is 1, the ESI and EDI
registers are decremented.) The registers are incremented or decremented by 1 for
byte operations, by 2 for word operations, or by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix
for block comparisons of ECX bytes, words, or doublewords. More often, however, these
instructions will be used in a LOOP construct that takes some action based on the
setting of the status flags before the next comparison is made.

Opcode Instruction Description

A6 CMPS DS:(E)SI, ES:(E)DI Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS DS:SI, ES:DI Compares byte at address DS:SI with byte at address
ES:DI and sets the status flags accordingly

A7 CMPS DS:ESI, ES:EDI Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares byte at address DS:SI with byte at address
ES:DI and sets the status flags accordingly

A7 CMPSD Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

4:72 Volume 4: Base IA-32 Instruction Reference

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Operation

temp SRC1 SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
THEN (E)DI 1; (E)SI 1;
ELSE (E)DI -1; (E)SI -1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
THEN DI 2; (E)SI 2;
ELSE DI -2; (E)SI -2;

FI;
ELSE (* doubleword comparison *)

THEN IF DF = 0
THEN EDI 4; (E)SI 4;
ELSE EDI -4; (E)SI -4;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the
comparison.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Volume 4: Base IA-32 Instruction Reference 4:73

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:74 Volume 4: Base IA-32 Instruction Reference

CMPXCHG—Compare and Exchange

Description

Compares the value in the AL, AX, or EAX register (depending on the size of the
operand) with the first operand (destination operand). If the two values are equal, the
second operand (source operand) is loaded into the destination operand. Otherwise,
the destination operand is loaded into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed
atomically. To simplify the interface to the processor’s bus, the destination operand
receives a write cycle without regard to the result of the comparison. The destination
operand is written back if the comparison fails; otherwise, the source operand is written
into the destination. (The processor never produces a locked read without also
producing a locked write.)

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)

IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc
THEN IA-32_Intercept(LOCK,CMPXCHG);

IF accumulator = DEST
THEN

ZF 1
DEST SRC

ELSE
ZF 0
accumulator DEST

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX
are; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the
results of the comparison operation.

Opcode Instruction Description

0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded into
r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is loaded
into r/m16. Else, clear ZF and load r/m16 into AL

0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is loaded
into r/m32. Else, clear ZF and load r/m32 into AL

Volume 4: Base IA-32 Instruction Reference 4:75

CMPXCHG—Compare and Exchange (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486
processors.

4:76 Volume 4: Base IA-32 Instruction Reference

CMPXCHG8B—Compare and Exchange 8 Bytes

Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the
values are equal, the 64-bit value in ECX:EBX is stored in the destination operand.
Otherwise, the value in the destination operand is loaded into EDX:EAX. The destination
operand is an 8-byte memory location. For the EDX:EAX and ECX:EBX register pairs,
EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-order 32
bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed
atomically. To simplify the interface to the processor’s bus, the destination operand
receives a write cycle without regard to the result of the comparison. The destination
operand is written back if the comparison fails; otherwise, the source operand is written
into the destination. (The processor never produces a locked read without also
producing a locked write.)

Operation
IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK,CMPXCHG);

IF (EDX:EAX = DEST)
ZF 1
DEST ECX:EBX

ELSE
ZF 0
EDX:EAX DEST

FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction

Opcode Instruction Description

0F C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load
ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.

Volume 4: Base IA-32 Instruction Reference 4:77

CMPXCHG8B—Compare and Exchange 8 Bytes (Continued)

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Pentium
processors.

4:78 Volume 4: Base IA-32 Instruction Reference

CPUID—CPU Identification

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The information returned is selected by entering a value in the EAX register
before the instruction is executed. Table 2-4 shows the information returned,
depending on the initial value loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction.
If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic
information and extended function information. Basic information is returned by
entering an input value starting at 0 in the EAX register; extended function information
is returned by entering an input value starting at 80000000H. When the input value in
the EAX register is 0, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning basic information. Always use an EAX
parameter value that is equal to or greater than zero and less than or equal to this
highest EAX return value for basic information. When the input value in the EAX
register is 80000000H, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning extended function information. Always use
an EAX parameter value that is equal to or greater than zero and less than or equal to
this highest EAX return value for extended function information.

The CPUID instruction can be executed at any privilege level to serialize instruction
execution. Serializing instruction execution guarantees that any modifications to flags,
registers, and memory for previous instructions are completed before the next
instruction is fetched and executed.

Opcode Instruction Description

0F A2 CPUID Returns processor identification and feature information in the
EAX, EBX, ECX, and EDX registers, according to the input
value entered initially in the EAX register.

Table 2-4. Information Returned by CPUID Instruction

Initial EAX Value Information Provided about the Processor

Basic CPUID Information

0 EAX
EBX
ECX
EDX

Maximum CPUID Input Value
756E6547H “Genu” (G in BL)
6C65746EH “ntel” (n in CL)
49656E69H “ineI” (i in DL)

1H EAX
EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0: Brand Indexa

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor
Bits 31-24: Local APIC IDb

Reserved
Feature Information (see Table 2-5)

2H EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

Volume 4: Base IA-32 Instruction Reference 4:79

When the input value is 1, the processor returns version information in the EAX register
(see Figure 2-4). The version information consists of an Intel architecture family
identifier, a model identifier, a stepping ID, and a processor type.

If the values in the family and/or model fields reach or exceed FH, the CPUID
instruction will generate two additional fields in the EAX register: the extended family
field and the extended model field. Here, a value of FH in either the model field or the
family field indicates that the extended model or family field, respectively, is valid.
Family and model numbers beyond FH range from 0FH to FFH, with the least significant
hexadecimal digit always FH.

See AP-485, Intel® Processor Identification and the CPUID Instruction (Order Number
241618) for more information on identifying Intel architecture processors.

Extended Function CPUID Information

8000000H EAX
EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information
Reserved
Reserved
Reserved

8000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently
reserved.)
Reserved
Reserved
Reserved

8000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

8000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

a. This field is not supported for processors based on Itanium architecture, zero (unsupported encoding) is
returned.

b. This field is invalid for processors based on Itanium architecture, reserved value is returned.

Figure 2-4. Version Information in Registers EAX

Table 2-4. Information Returned by CPUID Instruction (Continued)

Initial EAX Value Information Provided about the Processor

31 1211 8 7 4 3

EAX ModelFamily
Stepping

ID

1519 1627 2028

Extended
Model

Extended Family

1314 0

Processor Type

4:80 Volume 4: Base IA-32 Instruction Reference

CPUID—CPU Identification (Continued)

When the input value in EAX is 1, three unrelated pieces of information are returned to
the EBX register:

• Brand index (low byte of EBX) – this number provides an entry into a brand string
table that contains brand strings for IA-32 processors. Please refer to AP-485,
Intel® Processor Identification and the CPUID Instruction (Order Number 241618)
for information on brand indices.

Note: The Brand index field is not supported for processors based on Itanium
architecture, zero (unsupported encoding) is returned.

• CLFLUSH instruction cache line size (second byte of EBX) – this number indicates
the size of the cache line flushed with CLFLUSH instruction in 8-byte increments.
This field is valid only when the CLFSH feature flag is set.

• Local APIC ID (high byte of EBX) – this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up.

Note: The local APIC ID field is invalid for processors based on the Itanium
architecture, reserved value is returned. Software should check the
feature flags to make sure they are not running on processors based on
the Itanium architecture before interpreting the return value in this
field.

When the EAX register contains a value of 1, the CPUID instruction (in addition to
loading the processor signature in the EAX register) loads the EDX register with the
feature flags. The feature flags (when a Flag = 1) indicate what features the processor
supports. Table 2-5 lists the currently defined feature flag values.

A feature flag set to 1 indicates the corresponding feature is supported. Software
should identify Intel as the vendor to properly interpret the feature flags.

Table 2-5. Feature Flags Returned in EDX Register

Bit Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode
enhancements, including CR4.VME for controlling the feature,
CR4.PVI for protected mode virtual interrupts, software interrupt
indirection, expansion of the TSS with the software indirection bitmap,
and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including
CR4.DE for controlling the feature, and optional trapping of accesses
to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported,
including CR4.PSE for controlling the feature, the defined dirty bit in
PDE (Page Directory Entries), optional reserved bit trapping in CR3,
PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The
RDMSR and WRMSR instructions are supported. Some of the MSRs
are implementation dependent.

Volume 4: Base IA-32 Instruction Reference 4:81

6 PAE Physical Address Extension. Physical addresses greater than 32
bits are supported: extended page table entry formats, an extra level
in the page translation tables is defined, 2 Mbyte pages are supported
instead of 4 Mbyte pages if PAE bit is 1. The actual number of address
bits beyond 32 is not defined, and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine
Checks, including CR4.MCE for controlling the feature. This feature
does not define the model-specific implementations of machine-check
error logging, reporting, and processor shutdowns. Machine Check
exception handlers may have to depend on processor version to do
model-specific processing of the exception, or test for the presence of
the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64
bits) instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable
Interrupt Controller (APIC), responding to memory mapped
commands in the physical address range FFFE0000H to FFFE0FFFH
(by default – some processors permit the APIC to be relocated).

10 Reserved Reserved.

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and
SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The
MTRRcap MSR contains feature bits that describe what memory
types are supported, how many variable MTRRs are supported, and
whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and
page table entries (PTEs) is supported, indicating TLB entries that are
common to different processes and need not be flushed. The
CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture,
which provides a compatible mechanism for error reporting is
supported. The MCG_CAP MSR contains feature bits describing how
many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction
CMOV is supported. In addition, if x87 FPU is present as indicated by
the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions
are supported.

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory on a 4K granularity
through a linear address.

17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are
capable of addressing physical memory beyond 4 GBytes are
supported. This feature indicates that the upper four bits of the
physical address of the 4-MByte page is encoded by bits 13-16 of the
page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit
processor identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 NX Execute Disable Bit.

21 DS Debug Store. The processor supports the ability to write debug
information into a memory resident buffer. This feature is used by the
branch trace store (BTS) and precise event-based sampling (PEBS)
facilities.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description

4:82 Volume 4: Base IA-32 Instruction Reference

When the input value is 2, the processor returns information about the processor’s
internal caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of
these registers is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs.

• The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte
descriptors.

Please see the processor-specific supplement for further information on how to decode
the return values for the processors internal caches and TLBs.

CPUID performs instruction serialization and a memory fence operation.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The
processor implements internal MSRs that allow processor
temperature to be monitored and processor performance to be
modulated in predefined duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX
technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating
point context. Presence of this bit also indicates that CR4.OSFXSR is
available for an operating system to indicate that it supports the
FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting
memory types by performing a snoop of its own cache structure for
transactions issued to the bus.

28 HTT Hyper-Threading Technology. The processor implements
Hyper-Threading technology.

29 TM Thermal Monitor. The processor implements the thermal monitor
automatic thermal control circuitry (TCC).

30 Processor based on the Intel
Itanium architecture

The processor is based on the Intel Itanium architecture and is
capable of executing the Intel Itanium instruction set. IA-32 application
level software MUST also check with the running operating system to
see if the system can also support Itanium architecture-based code
before switching to the Intel Itanium instruction set.

31 PBE Pending Break Enable. The processor supports the use of the
FERR#/PBE# pin when the processor is in the stop-clock state
(STPCLK# is asserted) to signal the processor that an interrupt is
pending and that the processor should return to normal operation to
handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE
MSR enables this capability.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description

Volume 4: Base IA-32 Instruction Reference 4:83

CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = 0H:

EAX Highest input value understood by CPUID;
EBX Vendor identification string;
EDX Vendor identification string;
ECX Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] Stepping ID;
EAX[7:4] Model;
EAX[11:8] Family;
EAX[13:12] Processor Type;
EAX[15:14] Reserved;
EAX[19:16] Extended Model;
EAX[27:20] Extended Family;
EAX[31:28] Reserved;
EBX[7:0] Brand Index; (* Always zero for processors based on Itanium architecture *)
EBX[15:8] CLFLUSH Line Size;
EBX[16:23] Number of logical processors per physical processor;
EBX[31:24] Initial APIC ID; (* Reserved for processors based on Itanium architecture *)
ECX Reserved;
EDX Feature flags;

BREAK;
EAX = 2H:

EAX Cache and TLB information;
EBX Cache and TLB information;
ECX Cache and TLB information;
EDX Cache and TLB information;

BREAK;
EAX = 80000000H:

EAX Highest extended function input value understood by CPUID;
EBX Reserved;
ECX Reserved;
EDX Reserved;

BREAK;
EAX = 80000001H:

EAX Extended Processor Signature and Feature Bits; (* Currently Reserved *)
EBX Reserved;
ECX Reserved;
EDX Reserved;

BREAK;
EAX = 80000002H:

EAX Processor Name;
EBX Processor Name;
ECX Processor Name;
EDX Processor Name;

BREAK;
EAX = 80000003H:

EAX Processor Name;
EBX Processor Name;
ECX Processor Name;
EDX Processor Name;

4:84 Volume 4: Base IA-32 Instruction Reference

CPUID—CPU Identification (Continued)

BREAK;
EAX = 80000004H:

EAX Processor Name;
EBX Processor Name;
ECX Processor Name;
EDX Processor Name;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX Reserved, Undefined;
EBX Reserved, Undefined;
ECX Reserved, Undefined;
EDX Reserved, Undefined;

BREAK;
ESAC;

memory_fence();
instruction_serialize();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in
any Intel architecture processor earlier than the Intel486 processor. The ID flag in the
EFLAGS register can be used to determine if this instruction is supported. If a procedure
is able to set or clear this flag, the CPUID is supported by the processor running the
procedure.

Volume 4: Base IA-32 Instruction Reference 4:85

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword to
Quadword

Description

Doubles the size of the operand in register AX or EAX (depending on the operand size)
by means of sign extension and stores the result in registers DX:AX or EDX:EAX,
respectively. The CWD instruction copies the sign (bit 15) of the value in the AX register
into every bit position in the DX register. The CDQ instruction copies the sign (bit 31) of
the value in the EAX register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before
a word division, and the CDQ instruction can be used to produce a quadword dividend
from a doubleword before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is
intended for use when the operand-size attribute is 16 and the CDQ instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size to
16 when CWD is used and to 32 when CDQ is used. Others may treat these mnemonics
as synonyms (CWD/CDQ) and use the current setting of the operand-size attribute to
determine the size of values to be converted, regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX SignExtend(EAX);
FI;

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

99 CWD DX:AX sign-extend of AX

99 CDQ EDX:EAX sign-extend of EAX

4:86 Volume 4: Base IA-32 Instruction Reference

CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.

Volume 4: Base IA-32 Instruction Reference 4:87

DAA—Decimal Adjust AL after Addition

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL
register is the implied source and destination operand. The DAA instruction is only
useful when it follows an ADD instruction that adds (binary addition) two 2-digit,
packed BCD values and stores a byte result in the AL register. The DAA instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result.
If a decimal carry is detected, the CF and AF flags are set accordingly.

Operation

IF (((AL AND 0FH) > 9) or AF = 1)
THEN

AL AL + 6;
CF CF OR CarryFromLastAddition; (* CF OR carry from AL AL + 6 *)
AF 1;

ELSE
AF 0;

FI;
IF ((AL AND F0H) > 90H) or CF = 1)

THEN
AL AL + 60H;
CF 1;

ELSE
CF 0;

FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=79H BL=35H EFLAGS(OSZAPC)=110000
After: AL=AEH BL=35H EFLAGS(0SZAPC)=X00111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in
either digit of the result (see “Operation” above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

27 DAA Decimal adjust AL after addition

4:88 Volume 4: Base IA-32 Instruction Reference

DAS—Decimal Adjust AL after Subtraction

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD
result. The AL register is the implied source and destination operand. The DAS
instruction is only useful when it follows a SUB instruction that subtracts (binary
subtraction) one 2-digit, packed BCD value from another and stores a byte result in the
AL register. The DAS instruction then adjusts the contents of the AL register to contain
the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF and AF
flags are set accordingly.

Operation

IF (AL AND 0FH) > 9 OR AF = 1
THEN

AL AL 6;
CF CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL AL 6 *)
AF 1;

ELSE AF 0;
FI;
IF ((AL > 9FH) or CF = 1)

THEN
AL AL 60H;
CF 1;

ELSE CF 0;
FI;

Example

SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX
After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111

DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111
After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in
either digit of the result (see “Operation” above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

2F DAS Decimal adjust AL after subtraction

Volume 4: Base IA-32 Instruction Reference 4:89

DEC—Decrement by 1

Description

Subtracts 1 from the operand, while preserving the state of the CF flag. The source
operand can be a register or a memory location. This instruction allows a loop counter
to be updated without disturbing the CF flag. (Use a SUB instruction with an immediate
operand of 1 to perform a decrement operation that does updates the CF flag.)

Operation

DEST DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1

4:90 Volume 4: Base IA-32 Instruction Reference

DEC—Decrement by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:91

DIV—Unsigned Divide

Description

Divides (unsigned) the value in the AL, AX, or EAX register (dividend) by the source
operand (divisor) and stores the result in the AX, DX:AX, or EDX:EAX registers. The
source operand can be a general-purpose register or a memory location. The action of
this instruction depends on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL temp;
AH AX MOD SRC;

FI;
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

temp DX:AX / SRC;
IF temp > FFFFH

THEN #DE; (* divide error *) ;
ELSE

AX temp;
DX DX:AX MOD SRC;

FI;

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL Quotient,
AH Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16; AX Quotient,
DX Remainder

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX Quotient, EDX Remainder

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 1

4:92 Volume 4: Base IA-32 Instruction Reference

DIV—Unsigned Divide (Continued)

ELSE (* quadword/doubleword operation *)
temp EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX temp;
EDX EDX:EAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Volume 4: Base IA-32 Instruction Reference 4:93

DIV—Unsigned Divide (Continued)

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:94 Volume 4: Base IA-32 Instruction Reference

ENTER—Make Stack Frame for Procedure Parameters

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the
size of the stack frame (that is, the number of bytes of dynamic storage allocated on
the stack for the procedure). The second operand (nesting level operand) gives the
lexical nesting level (0 to 31) of the procedure. The nesting level determines the
number of stack frame pointers that are copied into the “display area” of the new stack
frame from the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register
specifies the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies
the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. They do not provide a jump or call to another procedure; they merely set up
a new stack frame for an already called procedure. An ENTER instruction is commonly
followed by a CALL, JMP, or Jcc instruction to transfer program control to the procedure
being called.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register
onto the stack, copies the current stack pointer from the ESP register into the EBP
register, and loads the ESP register with the current stack-pointer value minus the value
in the size operand. For nesting levels of 1 or greater, the processor pushes additional
frame pointers on the stack before adjusting the stack pointer. These additional frame
pointers provide the called procedure with access points to other nested frames on the
stack.

Operation

NestingLevel NestingLevel MOD 32
IF StackSize = 32

THEN
Push(EBP) ;
FrameTemp ESP;

ELSE (* StackSize = 16*)
Push(BP);
FrameTemp SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;
IF (NestingLevel 0)

FOR i 1 TO (NestingLevel 1)
DO

IF OperandSize = 32
THEN

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure

Volume 4: Base IA-32 Instruction Reference 4:95

ENTER—Make Stack Frame for Procedure Parameters (Continued)

IF StackSize = 32
EBP EBP 4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP BP 4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

EBP EBP 2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP BP 2;
Push([BP]); (* word push *)

FI;
FI;

OD;
IF OperandSize = 32

THEN
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32

THEN
EBP FrameTemp
ESP EBP Size;

ELSE (* StackSize = 16*)
BP FrameTemp
SP BP Size;

FI;
END;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption Abort, Data Key
Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data Access Bit Fault,
Data Dirty Bit Fault

4:96 Volume 4: Base IA-32 Instruction Reference

ENTER—Make Stack Frame for Procedure Parameters (Continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack
segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Volume 4: Base IA-32 Instruction Reference 4:97

F2XM1—Compute 2x-1

Description

Calculates the exponential value of 2 to the power of the source operand minus 1. The
source operand is located in register ST(0) and the result is also stored in ST(0). The
value of the source operand must lie in the range -1.0 to +1.0. If the source value is
outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential value
of various classes of numbers, assuming that neither overflow nor underflow occurs:

Values other than 2 can be exponentiated using the following formula:

xy = 2(y log
2
x)

Operation

ST(0) (2ST(0) 1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Opcode Instruction Description

D9 F0 F2XM1 Replace ST(0) with (2ST(0) - 1)

ST(0) SRC ST(0) DEST

-1.0 to 0 0.5 to 0

0 0

0 +0

+0 to +1.0 +0 to 1.0

4:98 Volume 4: Base IA-32 Instruction Reference

F2XM1—Compute 2x-1 (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:99

FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following
table shows the results obtained when creating the absolute value of various classes of
numbers.

Note:
Fmeans finite-real number.

Operation

ST(0) |ST(0)|

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E1 FABS Replace ST with its absolute value.

ST(0) SRC ST(0) DEST

• +

F +F

0 +0

0 +0

+F +F

+ +

NaN NaN

4:100 Volume 4: Base IA-32 Instruction Reference

FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination
location. The destination operand is always an FPU register; the source operand can be
a register or a memory location. Source operands in memory can be in single-real,
double-real, word-integer, or short-integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register to the
ST(1) register. The one-operand version adds the contents of a memory location (either
a real or an integer value) to the contents of the ST(0) register. The two-operand
version, adds the contents of the ST(0) register to the ST(i) register or vice versa. The
value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. (The no-operand
version of the floating-point add instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FADD rather than
FADDP.)

The FIADD instructions convert an integer source operand to extended-real format
before performing the addition.

The table on the following page shows the results obtained when adding various classes
of numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the
round toward mode, in which case the result is 0. When the source operand is an
integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is of the expected sign.
If both operands are infinities of opposite signs, an invalid-operation exception is
generated.

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD m64real Add m64real to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the register
stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the register
stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)

Volume 4: Base IA-32 Instruction Reference 4:101

FADD/FADDP/FIADD—Add (Continued)

.

Notes:
Fmeans finite-real number.
Lmeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIADD
THEN

DEST DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST DEST + SRC;
FI;
IF instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

DEST

-• F 0 +0 +F + NaN

- - - - - - * NaN

F or I - F SRC SRC F or 0 + NaN

SRC 0 - DEST 0 0 DEST + NaN

+0 - DEST 0 +0 DEST + NaN

+For +I - F or 0 SRC SRC +F + NaN

+ * + + + + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:102 Volume 4: Base IA-32 Instruction Reference

FADD/FADDP/FIADD—Add (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Result is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:103

FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into extended-real format and pushes the value onto
the FPU stack. The source operand is loaded without rounding errors. The sign of the
source operand is preserved, including that of 0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does
not check for invalid digits (AH through FH). Attempting to load an invalid encoding
produces an undefined result.

Operation

TOP TOP 1;
ST(0) ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack overflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.

4:104 Volume 4: Base IA-32 Instruction Reference

FBLD—Load Binary Coded Decimal (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:105

FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the
result in the destination operand, and pops the register stack. If the source value is a
non-integral value, it is rounded to an integer value, according to rounding mode
specified by the RC field of the FPU control word. To pop the register stack, the
processor marks the ST(0) register as empty and increments the stack pointer (TOP) by
1.

The destination operand specifies the address where the first byte destination value is
to be stored. The BCD value (including its sign bit) requires 10 bytes of space in
memory.

The following table shows the results obtained when storing various classes of numbers
in packed BCD format.

Notes:
Fmeans finite-real number.
Dmeans packed-BCD number.
*indicates floating-point invalid-operation (#IA) exception.
**0 or 1, depending on the rounding mode.

If the source value is too large for the destination format and the invalid-operation
exception is not masked, an invalid-operation exception is generated and no value is
stored in the destination operand. If the invalid-operation exception is masked, the
packed BCD indefinite value is stored in memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet
NaNs do not normally cause this exception to be generated.

Operation

DEST BCD(ST(0));
PopRegisterStack;

Opcode Instruction Description

DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

ST(0) DEST

• *

F < 1 D

1 < F < 0 **

0 0

0 +0

+0 < +F < +1 **

+F > +1 +D

+ *

NaN *

4:106 Volume 4: Base IA-32 Instruction Reference

FBSTP—Store BCD Integer and Pop (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is empty; contains a NaN, , or unsupported
format; or contains value that exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that
points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:107

FBSTP—Store BCD Integer and Pop (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:108 Volume 4: Base IA-32 Instruction Reference

FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a
negative value of equal magnitude or vice-versa. The following table shows the results
obtained when creating the absolute value of various classes of numbers.

Note:
Fmeans finite-real number.

Operation

SignBit(ST(0)) NOT (SignBit(ST(0)))

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E0 FCHS Complements sign of ST(0)

ST(0) SRC ST(0) DEST

• +

F +F

0 0

0 0

+F F

+ •

NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:109

FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU
status word. The FCLEX instruction checks for and handles any pending unmasked
floating-point exceptions before clearing the exception flags; the FNCLEX instruction
does not.

Operation

FPUStatusWord[0..7] 0;
FPUStatusWord[15] 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The
C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set. /

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for pending
unmasked floating-point exceptions.

DB E2 FNCLEX Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

4:110 Volume 4: Base IA-32 Instruction Reference

FCMOVcc—Floating-point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second
operand) to the destination operand (first operand) if the given test condition is true.
The source operand is always in the ST(i) register and the destination operand is always
ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also
help eliminate branching overhead for IF operations and the possibility of branch
mispredictions by the processor.

A processor in the Pentium Pro processor family may not support the FCMOVcc
instructions. Software can check if the FCMOVcc instructions are supported by checking
the processor’s feature information with the CPUID instruction (see “CPUID—CPU
Identification” on page 4:78). If both the CMOV and FPU feature bits are set, the
FCMOVcc instructions are supported.

Operation

IF condition TRUE
ST(0) ST(i)

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Opcode Instruction Description

DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)

Volume 4: Base IA-32 Instruction Reference 4:111

FCMOVcc—Floating-point Conditional Move (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:112 Volume 4: Base IA-32 Instruction Reference

FCOM/FCOMP/FCOMPP—Compare Real

Description

Compares the contents of register ST(0) and source value and sets condition code flags
C0, C2, and C3 in the FPU status word according to the results (see the table below).
The source operand can be a data register or a memory location. If no source operand
is given, the value in ST(0) is compared with the value in ST(1). The sign of zero is
ignored, so that -0.0 = +0.0.

This instruction checks the class of the numbers being compared. If either operand is a
NaN or is in an unsupported format, an invalid-arithmetic-operand exception (#IA) is
raised and, if the exception is masked, the condition flags are set to “unordered.” If the
invalid-arithmetic-operand exception is unmasked, the condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and
the FCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value or is in an unsupported format. The FUCOM instructions perform the same
operation as the FCOM instructions, except that they do not generate an
invalid-arithmetic-operand exception for QNaNs.

Opcode Instruction Description

D8 /2 FCOM m32real Compare ST(0) with m32real.

DC /2 FCOM m64real Compare ST(0) with m64real.

D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.

DC /3 FCOMP m64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is
generated.

1 1 1

Volume 4: Base IA-32 Instruction Reference 4:113

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 000;
ST < SRC: C3, C2, C0 001;
ST = SRC: C3, C2, C0 100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 111;

FI;
FI;
IF instruction = FCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See table on previous page.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

4:114 Volume 4: Base IA-32 Instruction Reference

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:115

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS

Description

Compares the contents of register ST(0) and ST(i) and sets the status flags ZF, PF, and
CF in the EFLAGS register according to the results (see the table below). The sign of
zero is ignored for comparisons, so that -0.0 = +0.0.

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle QNaN operands. The
FCOMI/FCOMIP instructions set the status flags to “unordered” and generate an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value (SNaN or QNaN) or is in an unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception
for QNaNs.

If invalid-operation exception is unmasked, the status flags are not set if the
invalid-arithmetic-operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the
comparison operation. To pop the register stack, the processor marks the ST(0) register
as empty and increments the stack pointer (TOP) by 1.

Opcode Instruction Description

DB F0+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly

DF F0+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and pop
register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and set
status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set status
flags accordingly, and pop register stack

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic- operand
(#IA) exception is generated.

1 1 1

4:116 Volume 4: Base IA-32 Instruction Reference

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS
(Continued)

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF 000;
ST(0) < ST(i): ZF, PF, CF 001;
ST(0) = ST(i): ZF, PF, CF 100;

ESAC;
IF instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF 111;

FI;
FI;

FI;
IF instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF, PF, CF 111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF 111;

FI;
FI;

FI;
IF instruction is FCOMIP or FUCOMIP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Not affected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference 4:117

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS
(Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values
or have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a
QNaN value does not raise an invalid-operand exception.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set./

4:118 Volume 4: Base IA-32 Instruction Reference

FCOS—Cosine

Description

Calculates the cosine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range 263
to +263. The following table shows the results obtained when taking the cosine of
various classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
* indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF |ST(0)| 263

THEN
C2 0;
ST(0) cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 1;

FI;

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine

ST(0) SRC ST(0) DEST

 *

F 1 to +1

0 +1

0 +1

+F 1 to +1

+ *

NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:119

FCOS—Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:120 Volume 4: Base IA-32 Instruction Reference

FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack
pointer). The contents of the FPU data registers and tag register are not affected.

Operation

IF TOP = 0
THEN TOP 7;
ELSE TOP TOP - 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F6 FDECSTP Decrement TOP field in FPU status word.

Volume 4: Base IA-32 Instruction Reference 4:121

FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the
destination location. The destination operand (dividend) is always in an FPU register;
the source operand (divisor) can be a register or a memory location. Source operands
in memory can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by
the contents of the ST(0) register. The one-operand version divides the contents of the
ST(0) register by the contents of a memory location (either a real or an integer value).
The two-operand version, divides the contents of the ST(0) register by the contents of
the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The no-operand version
of the floating-point divide instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FDIV rather than
FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format
before performing the division. When the source operand is an integer 0, it is treated as
a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the
exception is masked, an of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV m64real Divide ST(0) by m64real and store result in ST(0)

D8 F0+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the register
stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by m64int and store result in ST(0)

4:122 Volume 4: Base IA-32 Instruction Reference

FDIV/FDIVP/FIDIV—Divide (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

Operation

IF SRC 0
THEN

#Z
ELSE

IF instruction is FIDIV
THEN

DEST DEST ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST DEST SRC;
FI;

FI;
IF instruction = FDIVP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

DEST

-• F 0 +0 +F + NaN

- * +0 +0 0 0 * NaN

F + +F +0 0 F -• NaN

I + +F +0 0 F -• NaN

SRC 0 + ** * * ** -• NaN

+0 -• ** * * ** + NaN

+I -• F 0 +0 +F + NaN

+F -• F 0 +0 +F + NaN

+ * 0 0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:123

FDIV/FDIVP/FIDIV—Divide (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

; 0 / 0

#D Result is a denormal value.

#Z DEST / 0, where DEST is not equal to 0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:124 Volume 4: Base IA-32 Instruction Reference

FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the
destination location. The destination operand (divisor) is always in an FPU register; the
source operand (dividend) can be a register or a memory location. Source operands in
memory can be in single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by
the contents of the ST(1) register. The one-operand version divides the contents of a
memory location (either a real or an integer value) by the contents of the ST(0)
register. The two-operand version, divides the contents of the ST(i) register by the
contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The no-operand version
of the floating-point divide instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FDIVR rather than
FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format
before performing the division.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the
exception is masked, an of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide m64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC F0+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE F0+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the register
stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m64int by ST(0) and store result in ST(0)

Volume 4: Base IA-32 Instruction Reference 4:125

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation

IF DEST 0
THEN

#Z
ELSE

IF instruction is FIDIVR
THEN

DEST ConvertExtendedReal(SRC) DEST;
ELSE (* source operand is real number *)

DEST SRC DEST;
FI;

FI;
IF instruction = FDIVRP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

DEST

 F 0 +0 +F + NaN

 * + + -• * NaN

SRC F +0 +F ** ** -F 0 NaN

I +0 +F ** ** -F 0 NaN

0 +0 +0 * * 0 0 NaN

+0 0 0 * * +0 +0 NaN

+I 0 -F ** ** +F + NaN

+F 0 -F ** ** +F + NaN

+ * + + * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:126 Volume 4: Base IA-32 Instruction Reference

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

; 0 / 0

#D Result is a denormal value.

#Z SRC / 0, where SRC is not equal to 0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:127

FFREE—Free Floating-point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The
contents of ST(i) and the FPU stack-top pointer (TOP) are not affected.

Operation

TAG(i) 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

DD C0+i FFREE ST(i) Sets tag for ST(i) to empty

4:128 Volume 4: Base IA-32 Instruction Reference

FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition
code flags C0, C2, and C3 in the FPU status word according to the results (see table
below). The integer value is converted to extended-real format before the comparison
is made.

These instructions perform an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared. If either operand is a NaN or is in an
undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that -0.0 = +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the
register stack, the processor marks the ST(0) register empty and increments the stack
pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0 000;
ST(0) < SRC: C3, C2, C0 001;
ST(0) = SRC: C3, C2, C0 100;
Unordered: C3, C2, C0 111;

ESAC;
IF instruction = FICOMP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1

Volume 4: Base IA-32 Instruction Reference 4:129

FICOM/FICOMP—Compare Integer (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:130 Volume 4: Base IA-32 Instruction Reference

FILD—Load Integer

Description

Converts the signed-integer source operand into extended-real format and pushes the
value onto the FPU register stack. The source operand can be a word, short, or long
integer value. It is loaded without rounding errors. The sign of the source operand is
preserved.

Operation

TOP TOP 1;
ST(0) ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD m64int Push m64int onto the FPU register stack.

Volume 4: Base IA-32 Instruction Reference 4:131

FILD—Load Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:132 Volume 4: Base IA-32 Instruction Reference

FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer).
The contents of the FPU data registers and tag register are not affected. This operation
is not equivalent to popping the stack, because the tag for the previous top-of-stack
register is not marked empty.

Operation

IF TOP = 7
THEN TOP 0;
ELSE TOP TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, generates an #IS fault. The C0, C2, and C3 flags are
undefined.

Floating-point Exceptions

#IS

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F7 FINCSTP Increment the TOP field in the FPU status register

Volume 4: Base IA-32 Instruction Reference 4:133

FINIT/FNINIT—Initialize Floating-point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their
default states. The FPU control word is set to 037FH (round to nearest, all exceptions
masked, 64-bit precision). The status word is cleared (no exception flags set, TOP is set
to 0). The data registers in the register stack are left unchanged, but they are all
tagged as empty (11B). Both the instruction and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point
exceptions before performing the initialization; the FNINIT instruction does not.

Operation

FPUControlWord 037FH;
FPUStatusWord 0;
FPUTagWord FFFFH;
FPUDataPointer 0;
FPUInstructionPointer 0;
FPULastInstructionOpcode 0;

FPU Flags Affected

C0, C1, C2, C3 cleared to 0.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT Initialize FPU without checking for pending unmasked
floating-point exceptions.

4:134 Volume 4: Base IA-32 Instruction Reference

FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and
stores the result in the destination operand. Values can be stored in word- or
short-integer format. The destination operand specifies the address where the first byte
of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then
pops the register stack. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction
can also stores values in long-integer format.

The following table shows the results obtained when storing various classes of numbers
in integer format.

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-operation (#IA) exception.
**0 or 1, depending on the rounding mode.

If the source value is a non-integral value, it is rounded to an integer value, according
to the rounding mode specified by the RC field of the FPU control word.

If the value being stored is too large for the destination format, is an , is a NaN, or is
in an unsupported format and if the invalid-arithmetic-operand exception (#IA) is
unmasked, an invalid-operation exception is generated and no value is stored in the
destination operand. If the invalid-operation exception is masked, the integer indefinite
value is stored in the destination operand.

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP m64int Store ST(0) in m64int and pop register stack

ST(0) DEST

 *

F <1 I

1 < F < 0 **

0 0

0 0

+0 < +F < +1 **

+F > +1 +I

+ *

NaN *

Volume 4: Base IA-32 Instruction Reference 4:135

FIST/FISTP—Store Integer (Continued)

Operation

DEST Integer(ST(0));
IF instruction = FISTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cleared to 0 otherwise.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:136 Volume 4: Base IA-32 Instruction Reference

FIST/FISTP—Store Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:137

FLD—Load Real

Description

Pushes the source operand onto the FPU register stack. If the source operand is in
single- or double-real format, it is automatically converted to the extended-real format
before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the
stack. Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(i)
THEN

temp ST(i)
TOP TOP 1;
FI;
IF SRC is memory-operand

THEN
ST(0) ExtendedReal(SRC);

ELSE (* SRC is ST(i) *)
ST(0) temp;

FI;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value. Does not occur if the source
operand is in extended-real format.

FLD—Load Real (Continued)

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD m64real Push m64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 C0+i FLD ST(i) Push ST(i) onto the FPU register stack.

4:138 Volume 4: Base IA-32 Instruction Reference

FLD—Load Real (Continued)

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:139

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Description

Push one of seven commonly-used constants (in extended-real format) onto the FPU
register stack. The constants that can be loaded with these instructions include +1.0,
+0.0, log210, log2e, , log102, and loge2. For each constant, an internal 66-bit constant
is rounded (as specified by the RC field in the FPU control word) to external-real format.
The inexact-result exception (#P) is not generated as a result of the rounding.

Operation

TOP TOP 1;
ST(0) CONSTANT;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Floating-point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push log210 onto the FPU register stack.

D9 EA FLDL2E Push log2e onto the FPU register stack.

D9 EB FLDPI Push onto the FPU register stack.

D9 EC FLDLG2 Push log102 onto the FPU register stack.

D9 ED FLDLN2 Push loge2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.

4:140 Volume 4: Base IA-32 Instruction Reference

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant (Continued)

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Intel Architecture Compatibility Information

When the RC field is set to round-to-nearest, the FPU produces the same constants that
is produced by the Intel 8087 and Intel287 math coprocessors.

Volume 4: Base IA-32 Instruction Reference 4:141

FLDCW—Load Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a
memory location. This instruction is typically used to establish or change the FPU’s
mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU
control word and the new control word unmasks one or more of those exceptions, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions. To avoid raising
exceptions when changing FPU operating modes, clear any pending exceptions (using
the FCLEX or FNCLEX instruction) before loading the new control word.

Operation

FPUControlWord SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None; however, this operation might unmask a pending exception in the FPU status
word. That exception is then generated upon execution of the next waiting
floating-point instruction.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

D9 /5 FLDCW m2byte Load FPU control word from m2byte.

4:142 Volume 4: Base IA-32 Instruction Reference

FLDCW—Load Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:143

FLDENV—Load FPU Environment

Description

Loads the complete FPU operating environment from memory into the FPU registers.
The source operand specifies the first byte of the operating-environment data in
memory.This data is typically written to the specified memory location by a FSTENV or
FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the loaded
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the
corresponding FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions. To avoid generating
exceptions when loading a new environment, clear all the exception flags in the FPU
status word that is being loaded.

Operation

FPUControlWord SRC(FPUControlWord);
FPUStatusWord SRC(FPUStatusWord);
FPUTagWord SRC(FPUTagWord);
FPUDataPointer SRC(FPUDataPointer);
FPUInstructionPointer SRC(FPUInstructionPointer);
FPULastInstructionOpcode SRC(FPULastInstructionOpcode);

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated
upon execution of the next waiting floating-point instruction.

Opcode Instruction Description

D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.

4:144 Volume 4: Base IA-32 Instruction Reference

FLDENV—Load FPU Environment (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:145

FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destination
location. The destination operand is always an FPU data register; the source operand
can be a register or a memory location. Source operands in memory can be in
single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(0) register
by the contents of the ST(1) register. The one-operand version multiplies the contents
of a memory location (either a real or an integer value) by the contents of the ST(0)
register. The two-operand version, multiplies the contents of the ST(0) register by the
contents of the ST(i) register or vice versa.

The FMULP instructions perform the additional operation of popping the FPU register
stack after storing the product. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point multiply instructions always results in the register stack
being popped. In some assemblers, the mnemonic for this instruction is FMUL rather
than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format
before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or
more of the values being multiplied is 0 or . When the source operand is an integer 0,
it is treated as a +0.

The following table shows the results obtained when multiplying various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC /1 FMUL m64real Multiply ST(0) by m64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(0) by ST(1), store result in ST(0), and pop the
register stack

DA /1 FIMUL m32int Multiply m32int by ST(0) and store result in ST(0)

DE /1 FIMUL m16int Multiply m16int by ST(0) and store result in ST(0)

4:146 Volume 4: Base IA-32 Instruction Reference

FMUL/FMULP/FIMUL—Multiply (Continued)

Notes:
Fmeans finite-real number.
Imeans Integer.
*indicates invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIMUL
THEN

DEST DEST ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST DEST SRC;
FI;
IF instruction = FMULP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

One operand is 0 and the other is .

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

DEST

 F 0 +0 +F + NaN

 + + * * NaN

F + +F +0 0 F NaN

I + +F +0 0 F NaN

SRC 0 * +0 +0 0 0 * NaN

+0 * 0 0 +0 +0 * NaN

+I F 0 +0 +F + NaN

+F F 0 +0 +F + NaN

+ * * + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:147

FMUL/FMULP/FIMUL—Multiply (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:148 Volume 4: Base IA-32 Instruction Reference

FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but
does not affect the FPU or machine context, except the EIP register.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 D0 FNOP No operation is performed.

Volume 4: Base IA-32 Instruction Reference 4:149

FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the source
operand in register ST(0), stores the result in ST(1), and pops the FPU register stack.
The result in register ST(0) has the same sign as the source operand ST(1) and a
magnitude less than .

The following table shows the results obtained when computing the arctangent of
various classes of numbers, assuming that underflow does not occur.

Note:
Fmeans finite-real number.

There is no restriction on the range of source operands that FPATAN can accept.

Operation

ST(1) arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)ST(0)) and pop the register
stack

Table 2-6. FPATAN Zeros and NaNs

ST(0)

-• F 0 +0 +F + NaN

-• 34 /2 /2 /2 /2 /4 NaN

ST(1) F -p to2 /2 /2 2 to 0 -0 NaN

0 -p -p -p 0 0 0 NaN

+0 + + + +0 +0 +0 NaN

+F + +to+2 +2 +2 +2 to +0 +0 NaN

+ +34 +2 +2 +2 +2 +/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:150 Volume 4: Base IA-32 Instruction Reference

FPATAN—Partial Arctangent (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Intel Architecture Compatibility Information

The source operands for this instruction are restricted for the 80287 math coprocessor
to the following range:

0 |ST(1)| |ST(0)|

Volume 4: Base IA-32 Instruction Reference 4:151

FPREM—Partial Remainder

Description

Computes the remainder obtained on dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:

Remainder = ST(0) (N ST(1))

Here, N is an integer value that is obtained by truncating the real-number quotient of
[ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the sign of the
dividend. The magnitude of the remainder is less than that of the modulus, unless a
partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming that
underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is
, the result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std. 754. The
IEEE specified remainder can be computed with the FPREM1 instruction. The FPREM
instruction is provided for compatibility with the Intel 8087 and Intel287 math
coprocessors.

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained on dividing ST(0)
by ST(1)

Table 2-7. FPREM Zeros and NaNs

ST(1)

-• F 0 +0 +F + NaN

-• * * * * * * NaN

ST(0) F ST(0) F or 0 ** ** F or 0 ST(0) NaN

0 0 0 * * 0 0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:152 Volume 4: Base IA-32 Instruction Reference

FPREM—Partial Remainder (Continued)

The FPREM instruction gets its name “partial remainder” because of the way it
computes the remainder. This instructions arrives at a remainder through iterative
subtraction. It can, however, reduce the exponent of ST(0) by no more than 63 in one
execution of the instruction. If the instruction succeeds in producing a remainder that is
less than the modulus, the operation is complete and the C2 flag in the FPU status word
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder.
The exponent of the partial remainder will be less than the exponent of the original
dividend by at least 32. Software can re-execute the instruction (using the partial
remainder in ST(0) as the dividend) until C2 is cleared.

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the
instructions in the loop.

An important use of the FPREM instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-significant
bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This information
is important in argument reduction for the tangent function (using a modulus of /4),
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation

D exponent(ST(0)) - exponent(ST(1));
IF D < 64

THEN
Q Integer(TruncateTowardZero(ST(0) ST(1)));
ST(0) ST(0) - (ST(1) Q);
C2 0;
C0, C3, C1 LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 1;
N an implementation-dependent number between 32 and 63;
QQ Integer(TruncateTowardZero((ST(0) ST(1)) / 2(D N)));
ST(0) ST(0) - (ST(1) QQ 2(D N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference 4:153

FPREM—Partial Remainder (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is , or
unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:154 Volume 4: Base IA-32 Instruction Reference

FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained on dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:

Remainder = ST(0) (N ST(1))

Here, N is an integer value that is obtained by rounding the real-number quotient of
[ST(0) / ST(1)] toward the nearest integer value. The sign of the remainder is the same
as the sign of the dividend. The magnitude of the remainder is less than half the
magnitude of the modulus, unless a partial remainder was computed (as described
below).

This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming that
underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is
, the result is equal to the value in ST(0).

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This
instruction operates differently from the FPREM instruction in the way that it rounds the
quotient of ST(0) divided by ST(1) to an integer (see the “Operation” below).

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained on dividing
ST(0) by ST(1)

Table 2-8. FPREM1 Zeros and NaNs

ST(1)

-• F 0 +0 +F + NaN

-• * * * * * * NaN

ST(0) F ST(0) F or 0 ** ** F or 0 ST(0) NaN

0 0 0 * * 0 0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:155

FPREM1—Partial Remainder (Continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative
subtraction, but can reduce the exponent of ST(0) by no more than 63 in one execution
of the instruction. If the instruction succeeds in producing a remainder that is less than
one half the modulus, the operation is complete and the C2 flag in the FPU status word
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder.
The exponent of the partial remainder will be less than the exponent of the original
dividend by at least 32. Software can re-execute the instruction (using the partial
remainder in ST(0) as the dividend) until C2 is cleared.

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the
instructions in the loop.

An important use of the FPREM1 instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-significant
bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This information
is important in argument reduction for the tangent function (using a modulus of /4),
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation

D exponent(ST(0)) - exponent(ST(1));
IF D < 64

THEN
Q Integer(RoundTowardNearestInteger(ST(0) ST(1)));
ST(0) ST(0) - (ST(1) Q);
C2 0;
C0, C3, C1 LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 1;
N an implementation-dependent number between 32 and 63;
QQ Integer(TruncateTowardZero((ST(0) ST(1)) / 2(D N)));
ST(0) ST(0) - (ST(1) QQ 2(D N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

4:156 Volume 4: Base IA-32 Instruction Reference

FPREM1—Partial Remainder (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is
, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:157

FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in
ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be given
in radians and must be less than ±263. The following table shows the unmasked results
obtained when computing the partial tangent of various classes of numbers, assuming
that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

The value 1.0 is pushed onto the register stack after the tangent has been computed to
maintain compatibility with the Intel 8087 and Intel287 math coprocessors. This
operation also simplifies the calculation of other trigonometric functions. For instance,
the cotangent (which is the reciprocal of the tangent) can be computed by executing a
FDIVR instruction after the FPTAN instruction.

Operation

IF ST(0) 263

THEN
C2 0;
ST(0) tan(ST(0));
TOP TOP 1;
ST(0) 1.0;

ELSE (*source operand is out-of-range *)
C2 1;

FI;

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1 onto
the FPU stack.

ST(0) SRC ST(0) DEST

 *

F F to +F

0 0

0 +0

+F F to +F

+ *

NaN NaN

4:158 Volume 4: Base IA-32 Instruction Reference

FPTAN—Partial Tangent (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:159

FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, depending
on the current rounding mode (setting of the RC field of the FPU control word), and
stores the result in ST(0).

If the source value is , the value is not changed. If the source value is not an integral
value, the floating-point inexact-result exception (#P) is generated.

Operation

ST(0) RoundToIntegralValue(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 FC FRNDINT Round ST(0) to an integer.

4:160 Volume 4: Base IA-32 Instruction Reference

FRSTOR—Restore FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area
specified with the source operand. This state data is typically written to the specified
memory location by a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the
80 bytes immediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the
corresponding FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a
floating-point exception will be generated. To avoid raising exceptions when loading a
new operating environment, clear all the exception flags in the FPU status word that is
being loaded.

Operation

FPUControlWord SRC(FPUControlWord);
FPUStatusWord SRC(FPUStatusWord);
FPUTagWord SRC(FPUTagWord);
FPUDataPointer SRC(FPUDataPointer);
FPUInstructionPointer SRC(FPUInstructionPointer);
FPULastInstructionOpcode SRC(FPULastInstructionOpcode);
ST(0) SRC(ST(0));
ST(1) SRC(ST(1));
ST(2) SRC(ST(2));
ST(3) SRC(ST(3));
ST(4) SRC(ST(4));
ST(5) SRC(ST(5));
ST(6) SRC(ST(6));
ST(7) SRC(ST(7));

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-point Exceptions

None; however, this operation might unmask an existing exception that has been
detected but not generated, because it was masked. Here, the exception is generated
at the completion of the instruction.

Opcode Instruction Description

DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.

Volume 4: Base IA-32 Instruction Reference 4:161

FRSTOR—Restore FPU State (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:162 Volume 4: Base IA-32 Instruction Reference

FSAVE/FNSAVE—Store FPU State

Description

Stores the current FPU state (operating environment and register stack) at the specified
destination in memory, and then re-initializes the FPU. The FSAVE instruction checks for
and handles pending unmasked floating-point exceptions before storing the FPU state;
the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the
80 bytes immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions
preceding the FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set
to with the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-point Unit”
on page 4:133).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application
program needs to pass a “clean” FPU to a procedure.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord) FPUControlWord;
DEST(FPUStatusWord) FPUStatusWord;
DEST(FPUTagWord) FPUTagWord;
DEST(FPUDataPointer) FPUDataPointer;
DEST(FPUInstructionPointer) FPUInstructionPointer;
DEST(FPULastInstructionOpcode) FPULastInstructionOpcode;
DEST(ST(0)) ST(0);
DEST(ST(1)) ST(1);
DEST(ST(2)) ST(2);
DEST(ST(3)) ST(3);
DEST(ST(4)) ST(4);
DEST(ST(5)) ST(5);
DEST(ST(6)) ST(6);
DEST(ST(7)) ST(7);
(* Initialize FPU *)
FPUControlWord 037FH;

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for pending
unmasked floating-point exceptions. Then re-initialize the FPU.

DD /6 FNSAVE m94/108byte Store FPU environment to m94byte or m108byte without checking
for pending unmasked floating-point exceptions. Then re-initialize
the FPU.

Volume 4: Base IA-32 Instruction Reference 4:163

FSAVE/FNSAVE—Store FPU State (Continued)

FPUStatusWord 0;
FPUTagWord FFFFH;
FPUDataPointer 0;
FPUInstructionPointer 0;
FPULastInstructionOpcode 0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

4:164 Volume 4: Base IA-32 Instruction Reference

FSAVE/FNSAVE—Store FPU State (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility Information

For Intel math coprocessors and FPUs prior to the Pentium processor, an FWAIT
instruction should be executed before attempting to read from the memory image
stored with a prior FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that
the storage operation has been completed.

Volume 4: Base IA-32 Instruction Reference 4:165

FSCALE—Scale

Description

Multiplies the destination operand by 2 to the power of the source operand and stores
the result in the destination operand. This instruction provides rapid multiplication or
division by integral powers of 2. The destination operand is a real value that is located
in register ST(0). The source operand is the nearest integer value that is smaller than
the value in the ST(1) register (that is, the value in register ST(1) is truncate toward 0
to its nearest integer value to form the source operand). The actual scaling operation is
performed by adding the source operand (integer value) to the exponent of the value in
register ST(0). The following table shows the results obtained when scaling various
classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
Nmeans integer.

In most cases, only the exponent is changed and the mantissa (significand) remains
unchanged. However, when the value being scaled in ST(0) is a denormal value, the
mantissa is also changed and the result may turn out to be a normalized number.
Similarly, if overflow or underflow results from a scale operation, the resulting mantissa
will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT
instruction, as shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from
the value in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then
scales the significand in ST(0) by the exponent in ST(1), recreating the original value
before the FXTRACT operation was performed. The FSTP ST(1) instruction returns the
recreated value to the FPU register where it originally resided.

Opcode Instruction Description

D9 FD FSCALE Scale ST(0) by ST(1).

ST(1)

N 0 +N

ST(0) F F F F

0 0 0 0

+0 +0 +0 +0

+F +F +F +F

+ + + +

NaN NaN NaN NaN

4:166 Volume 4: Base IA-32 Instruction Reference

FSCALE—Scale (Continued)

Operation

ST(0) ST(0) 2ST(1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:167

FSIN—Sine

Description

Calculates the sine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range 263
to +263. The following table shows the results obtained when taking the sine of various
classes of numbers, assuming that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF ST(0) 263

THEN
C2 0;
ST(0) sin(ST(0));

ELSE (* source operand out of range *)
C2 1;

FI:

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.

SRC (ST(0)) DEST (ST(0))

 *

F 1 to +1

0 0

0 0

+F 1 to +1

+ *

NaN NaN

4:168 Volume 4: Base IA-32 Instruction Reference

FSIN—Sine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:169

FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0), stores
the sine in ST(0), and pushes the cosine onto the top of the FPU register stack. (This
instruction is faster than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range 263 to
+263. The following table shows the results obtained when taking the sine and cosine of
various classes of numbers, assuming that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF ST(0) 263

THEN
C2 0;
TEMP cosine(ST(0));
ST(0) sine(ST(0));
TOP TOP 1;
ST(0) TEMP;

ELSE (* source operand out of range *)
C2 1;

FI:

Opcode Instruction Description

D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with the
sine, and push the cosine onto the register stack.

SRC DEST

ST(0)) ST(0) Cosine ST(1) Sine

 * *

F 1 to +1 1 to +1

0 1 0

0 1 0

+F 1 to +1 1 to +1

+ * *

NaN NaN NaN

4:170 Volume 4: Base IA-32 Instruction Reference

FSINCOS—Sine and Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow
occurs.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:171

FSQRT—Square Root

Description

Calculates the square root of the source value in the ST(0) register and stores the
result in ST(0).

The following table shows the results obtained when taking the square root of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

ST(0) SquareRoot(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for 0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Opcode Instruction Description

D9 FA FSQRT Calculates square root of ST(0) and stores the result in ST(0)

SRC (ST(0)) DEST (ST(0))

 *

F *

0 0

0 0

+F +F

+ +

NaN NaN

4:172 Volume 4: Base IA-32 Instruction Reference

FSQRT—Square Root (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:173

FST/FSTP—Store Real

Description

The FST instruction copies the value in the ST(0) register to the destination operand,
which can be a memory location or another register in the FPU registers stack. When
storing the value in memory, the value is converted to single- or double-real format.

The FSTP instruction performs the same operation as the FST instruction and then pops
the register stack. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The FSTP instruction can also
stores values in memory in extended-real format.

If the destination operand is a memory location, the operand specifies the address
where the first byte of the destination value is to be stored. If the destination operand
is a register, the operand specifies a register in the register stack relative to the top of
the stack.

If the destination size is single- or double-real, the significand of the value being stored
is rounded to the width of the destination (according to rounding mode specified by the
RC field of the FPU control word), and the exponent is converted to the width and bias
of the destination format. If the value being stored is too large for the destination
format, a numeric overflow exception (#O) is generated and, if the exception is
unmasked, no value is stored in the destination operand. If the value being stored is a
denormal value, the denormal exception (#D) is not generated. This condition is simply
signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±, or a NaN, the least-significant bits of the significand
and the exponent are truncated to fit the destination format. This operation preserves
the value’s identity as a 0, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is
not generated.

Operation

DEST ST(0);
IF instruction = FSTP

THEN
PopRegisterStack;

FI;

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST m64real Copy ST(0) to m64real

DD D0+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack

DD /3 FSTP m64real Copy ST(0) to m64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack

4:174 Volume 4: Base IA-32 Instruction Reference

FST/FSTP—Store Real (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception
(#P) is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:175

FST/FSTP—Store Real (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:176 Volume 4: Base IA-32 Instruction Reference

FSTCW/FNSTCW—Store Control Word

Description

Stores the current value of the FPU control word at the specified destination in memory.
The FSTCW instruction checks for and handles pending unmasked floating-point
exceptions before storing the control word; the FNSTCW instruction does not.

Operation

DEST FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for pending
unmasked floating-point exceptions.

D9 /7 FNSTCW m2byte Store FPU control word to m2byte without checking for pending
unmasked floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:177

FSTCW/FNSTCW—Store Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:178 Volume 4: Base IA-32 Instruction Reference

FSTENV/FNSTENV—Store FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with the
destination operand, and then masks all floating-point exceptions. The FPU operating
environment consists of the FPU control word, status word, tag word, instruction
pointer, data pointer, and last opcode. See the Intel® 64 and IA-32 Architectures
Software Developer’s Manual for the layout in memory of the stored environment,
depending on the operating mode of the processor (protected or real) and the size of
the current address attribute (16-bit or 32-bit). (In virtual-8086 mode, the real mode
layouts are used.)

The FSTENV instruction checks for and handles any pending unmasked floating-point
exceptions before storing the FPU environment; the FNSTENV instruction does not.The
saved image reflects the state of the FPU after all floating-point instructions preceding
the FSTENV/FNSTENV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to
the FPU instruction and data pointers. The environment is typically saved in the
procedure stack. Masking all exceptions after saving the environment prevents
floating-point exceptions from interrupting the exception handler.

Operation

DEST(FPUControlWord) FPUControlWord;
DEST(FPUStatusWord) FPUStatusWord;
DEST(FPUTagWord) FPUTagWord;
DEST(FPUDataPointer) FPUDataPointer;
DEST(FPUInstructionPointer) FPUInstructionPointer;
DEST(FPULastInstructionOpcode) FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after checking
for pending unmasked floating-point exceptions. Then mask all
floating-point exceptions.

D9 /6 FNSTENV m14/28byte Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point exceptions. Then
mask all floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:179

FSTENV/FNSTENV—Store FPU Environment (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:180 Volume 4: Base IA-32 Instruction Reference

FSTSW/FNSTSW—Store Status Word

Description

Stores the current value of the FPU status word in the destination location. The
destination operand can be either a two-byte memory location or the AX register. The
FSTSW instruction checks for and handles pending unmasked floating-point exceptions
before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM
instruction), where the direction of the branch depends on the state of the FPU
condition code flags. This instruction can also be used to invoke exception handlers (by
examining the exception flags) in environments that do not use interrupts. When the
FNSTSW AX instruction is executed, the AX register is updated before the processor
executes any further instructions. The status stored in the AX register is thus
guaranteed to be from the completion of the prior FPU instruction.

Operation

DEST FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for pending
unmasked floating-point exceptions.

9B DF E0 FSTSW AX Store FPU status word in AX register after checking for pending
unmasked floating-point exceptions.

DD /7 FNSTSW m2byte Store FPU status word at m2byte without checking for pending
unmasked floating-point exceptions.

DF E0 FNSTSW AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:181

FSTSW/FNSTSW—Store Status Word (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:182 Volume 4: Base IA-32 Instruction Reference

FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference in
the destination location. The destination operand is always an FPU data register; the
source operand can be a register or a memory location. Source operands in memory
can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register
from the ST(1) register and stores the result in ST(1). The one-operand version
subtracts the contents of a memory location (either a real or an integer value) from the
contents of the ST(0) register and stores the result in ST(0). The two-operand version,
subtracts the contents of the ST(0) register from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point subtract instructions always results in the register stack
being popped. In some assemblers, the mnemonic for this instruction is FSUB rather
than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs. Here,
the SRC value is subtracted from the DEST value (DEST SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for
the round toward mode, in which case the result is 0. This instruction also
guarantees that +0 (0) = +0, and that 0 (+0) = 0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is , the result is of the expected sign. If both operands are of
the same sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB m64real Subtract m64real from ST(0) and store result in ST(0)

D8 E0+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop register
stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

Volume 4: Base IA-32 Instruction Reference 4:183

FSUB/FSUBP/FISUB—Subtract (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUB
THEN

DEST DEST ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST DEST SRC;
FI;
IF instruction = FSUBP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Table 2-9. FSUB Zeros and NaNs

SRC

 F or I 0 +0 +F or +I + NaN

 * NaN

F + F or 0 DEST DEST F NaN

DEST 0 + SRC 0 0 SRC NaN

+0 + SRC +0 0 SRC NaN

+F + +F DEST DEST F or 0 NaN

+ + + + + + * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:184 Volume 4: Base IA-32 Instruction Reference

FSUB/FSUBP/FISUB—Subtract (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:185

FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference in
the destination location. The destination operand is always an FPU register; the source
operand can be a register or a memory location. Source operands in memory can be in
single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register
from the ST(0) register and stores the result in ST(1). The one-operand version
subtracts the contents of the ST(0) register from the contents of a memory location
(either a real or an integer value) and stores the result in ST(0). The two-operand
version, subtracts the contents of the ST(i) register from the ST(0) register or vice
versa.

The FSUBRP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point reverse subtract instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FSUBR
rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs. Here,
the DEST value is subtracted from the SRC value (SRC DEST = result).

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR m64real Subtract ST(0) from m64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC E0+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0)and store result in ST(i)

DE E0+i FSUBRP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop register
stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

4:186 Volume 4: Base IA-32 Instruction Reference

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

When the difference between two operands of like sign is 0, the result is +0, except for
the round toward mode, in which case the result is 0. This instruction also
guarantees that +0 (0) = +0, and that 0 (+0) = 0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is , the result is of the expected sign. If both operands are of
the same sign, an invalid-operation exception is generated.

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUBR
THEN

DEST ConvertExtendedReal(SRC) DEST;
ELSE (* source operand is real number *)

DEST SRC DEST;
FI;
IF instruction = FSUBRP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Table 2-10. FSUBR Zeros and NaNs

SRC

 F 0 +0 +F + NaN

 * + + + + + NaN

DEST F or I F or 0 DEST DEST +F + NaN

0 SRC 0 +0 SRC + NaN

+0 SRC 0 0 SRC + NaN

+F or +I F DEST DEST F or 0 + NaN

+ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:187

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:188 Volume 4: Base IA-32 Instruction Reference

FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0,
C2, and C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared (see “FXAM—Examine” on
page 4:193). If the value in register ST(0) is a NaN or is in an undefined format, the
condition flags are set to “unordered.”)

The sign of zero is ignored, so that -0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0 111;
ST(0) > 0.0: C3, C2, C0 000;
ST(0) < 0.0: C3, C2, C0 001;
ST(0) = 0.0: C3, C2, C0 100;

ESAC;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See above table.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.

Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0) 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1

Volume 4: Base IA-32 Instruction Reference 4:189

FTST—TEST (Continued)

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:190 Volume 4: Base IA-32 Instruction Reference

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets
condition code flags C0, C2, and C3 in the FPU status word according to the results (see
the table below). If no operand is specified, the contents of registers ST(0) and ST(1)
are compared. The sign of zero is ignored, so that -0.0 = +0.0.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine” on page 4:193). The FUCOM instructions perform the same
operation as the FCOM instructions. The only difference is that the FUCOM instruction
raises the invalid-arithmetic-operand exception (#IA) only when either or both
operands is an SNaN or is in an unsupported format; QNaNs cause the condition code
flags to be set to unordered, but do not cause an exception to be generated. The FCOM
instruction raises an invalid-operation exception when either or both of the operands is
a NaN value of any kind or is in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand
exception being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instructions pop the register stack following the comparison operation and
the FUCOMPP instructions pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 000;
ST < SRC: C3, C2, C0 001;
ST = SRC: C3, C2, C0 100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

Opcode Instruction Description

DD E0+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice

Comparison Results C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic- operand
(#IA) exception is generated.

1 1 1

Volume 4: Base IA-32 Instruction Reference 4:191

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real (Continued)

THEN
C3, C2, C0 111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 111;

FI;
FI;
IF instruction = FUCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FUCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See table on previous page.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported
formats. Detection of a QNaN value in and of itself does not raise an
invalid-operand exception.

#D One or both operands are denormal values.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:192 Volume 4: Base IA-32 Instruction Reference

FWAIT—Wait

See entry for WAIT.

Volume 4: Base IA-32 Instruction Reference 4:193

FXAM—Examine

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2,
and C3 in the FPU status word to indicate the class of value or number in the register
(see the table below).

.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is
empty or full.

Operation

C1 sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0 000;
NaN: C3, C2, C0 001;
Normal: C3, C2, C0 010;
Infinity: C3, C2, C0 011;
Zero: C3, C2, C0 100;
Empty: C3, C2, C0 101;
Denormal: C3, C2, C0 110;

ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).

C0, C2, C3 See table above.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Opcode Instruction Description

D9 E5 FXAM Classify value or number in ST(0)

Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0

4:194 Volume 4: Base IA-32 Instruction Reference

FXAM—Examine (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:195

FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified,
the contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to
the top of the stack [ST(0)], so that they can be operated on by those floating-point
instructions that can only operate on values in ST(0). For example, the following
instruction sequence takes the square root of the third register from the top of the
register stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

Operation

IF number-of-operands is 1
THEN

temp ST(0);
ST(0) SRC;
SRC temp;

ELSE
temp ST(0);
ST(0) ST(1);
ST(1) temp;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)

4:196 Volume 4: Base IA-32 Instruction Reference

FXCH—Exchange Register Contents (Continued)

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:197

FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand,
stores the exponent in ST(0), and pushes the significand onto the register stack.
Following this operation, the new top-of-stack register ST(0) contains the value of the
original significand expressed as a real number. The sign and significand of this value
are the same as those found in the source operand, and the exponent is 3FFFH (biased
value for a true exponent of zero). The ST(1) register contains the value of the original
operand’s true (unbiased) exponent expressed as a real number. (The operation
performed by this instruction is a superset of the IEEE-recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range
scaling operations. The FXTRACT instruction is also useful for converting numbers in
extended-real format to decimal representations (e.g. for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is
zero, an exponent value of - is stored in register ST(1) and 0 with the sign of the
source operand is stored in register ST(0).

Operation

TEMP Significand(ST(0));
ST(0) Exponent(ST(0));
TOP TOP 1;
ST(0) TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is 0.

#D Source operand is a denormal value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand, store
exponent in ST(0), and push the significand onto the register
stack.

4:198 Volume 4: Base IA-32 Instruction Reference

FXTRACT—Extract Exponent and Significand (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:199

FYL2X—Compute y log2x

Description

Calculates (ST(1) log2 (ST(0))), stores the result in resister ST(1), and pops the FPU
register stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-operation (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains 0, the
instruction returns with a sign that is the opposite of the sign of the source operand in
register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the
calculation of logarithms with an arbitrary positive base (b):

logbx = (log2b)-1 log2x

Operation

ST(1) ST(1) log2ST(0);
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) log2ST(0)) and pop the register
stack

Table 2-11. FYL2X Zeros and NaNs

ST(0)

 F 0 0 F + NaN

 * * + + + NaN

ST(1) F * * ** ** F NaN

0 * * * * 0 * NaN

0 * * * * 0 * NaN

F * * ** ** F + NaN

+ * * + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:200 Volume 4: Base IA-32 Instruction Reference

FYL2X—Compute y log2x (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not 0).

#Z Source operand in register ST(0) is 0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:201

FYL2XP1—Compute y log2(x +1)

Description

Calculates the log epsilon (ST(1) log2(ST(0) + 1.0)), stores the result in register
ST(1), and pops the FPU register stack. The source operand in ST(0) must be in the
range:

The source operand in ST(1) can range from to . If either of the source operands
is outside its acceptable range, the result is undefined and no exception is generated.

The following table shows the results obtained when taking the log epsilon of various
classes of numbers, assuming that underflow does not occur:

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register
ST(0)] that are close to 0. When the epsilon value () is small, more significant digits
can be retained by using the FYL2XP1 instruction than by using (+1) as an argument
to the FYL2X instruction. The (+1) expression is commonly found in compound interest
and annuity calculations. The result can be simply converted into a value in another
logarithm base by including a scale factor in the ST(1) source operand. The following
equation is used to calculate the scale factor for a particular logarithm base, where n is
the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor = logn 2

Operation

ST(1) ST(1) log2(ST(0) + 1.0);
PopRegisterStack;

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) log2(ST(0) + 1.0) and pop the
register stack

Table 2-12. FYL2XP1 Zeros and NaNs

ST(0)

 (1)) to 0 0 0 +0 to +(1 ()) + NaN

 * + * * NaN

ST(1) F * +F +0 0 F NaN

0 * +0 +0 0 0 * NaN

0 * 0 0 +0 +0 * NaN

F * F 0 +0 +F + NaN

+ * * * + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

1 2 2– to 1 2 2– –

2 2 2 2

4:202 Volume 4: Base IA-32 Instruction Reference

FYL2XP1—Compute y log2(x +1) (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:203

HLT—Halt

Description

Stops instruction execution and places the processor in a HALT state. An enabled
interrupt, NMI, or a reset will resume execution. If an interrupt (including NMI) is used
to resume execution after a HLT instruction, the saved instruction pointer (CS:EIP)
points to the instruction following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in
protected or virtual 8086 mode, the privilege level of a program or procedure must to 0
to execute the HLT instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,HALT);

Enter Halt state;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

Opcode Instruction Description

F4 HLT Halt

4:204 Volume 4: Base IA-32 Instruction Reference

IDIV—Signed Divide

Description

Divides (signed) the value in the AL, AX, or EAX register by the source operand and
stores the result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a
general-purpose register or a memory location. The action of this instruction depends
on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is
always the same as the sign of the dividend. The absolute value of the remainder is
always less than the absolute value of the divisor. Overflow is indicated with the #DE
(divide error) exception rather than with the OF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp AX / SRC; (* signed division *)
IF (temp > 7FH) OR (temp < 80H)
(* if a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* divide error *) ;
ELSE

AL temp;
AH AX SignedModulus SRC;

FI;
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

Opcode Instruction Description

F6 /7 IDIV r/m8 Signed divide AX (where AH must contain sign-extension of
AL) by r/m byte. (Results: AL=Quotient, AH=Remainder)

F7 /7 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-extension
of AX) by r/m word. (Results: AX=Quotient, DX=Remainder)

F7 /7 IDIV r/m32 Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)

Table 2-13. IDIV Operands

Operand Size Dividend Divisor Quotient Remainder
Quotient
Range

Word/byte AX r/m8 AL AH 128 to +127

Doubleword/word DX:AX r/m16 AX DX 32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX 231 to 232 1

Volume 4: Base IA-32 Instruction Reference 4:205

IDIV—Signed Divide (Continued)

temp DX:AX / SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)

THEN #DE; (* divide error *) ;
ELSE

AX temp;
DX DX:AX SignedModulus SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp EDX:EAX / SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)

THEN #DE; (* divide error *) ;
ELSE

EAX temp;
EDX EDXE:AX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:206 Volume 4: Base IA-32 Instruction Reference

IDIV—Signed Divide (Continued)

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:207

IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms,
depending on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction.
Here, the source operand (in a general-purpose register or memory location) is
multiplied by the value in the AL, AX, or EAX register (depending on the operand
size) and the product is stored in the AX, DX:AX, or EDX:EAX registers,
respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a
general-purpose register and the source operand is an immediate value, a
general-purpose register, or a memory location. The product is then stored in the
destination operand location.

• Three-operand form. This form requires a destination operand (the first operand)
and two source operands (the second and the third operands). Here, the first
source operand (which can be a general-purpose register or a memory location) is
multiplied by the second source operand (an immediate value). The product is then
stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The CF and OF flags are set when significant bits are carried into the upper half of the
result. The CF and OF flags are cleared when the result fits exactly in the lower half of
the result.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX AL r/m byte

F7 /5 IMUL r/m16 DX:AX AX r/m word

F7 /5 IMUL r/m32 EDX:EAX EAX r/m doubleword

0F AF /r IMUL r16,r/m16 word register word register r/m word

0F AF /r IMUL r32,r/m32 doubleword register doubleword register r/m doubleword

6B /r ib IMUL r16,r/m16,imm8 word register r/m16 sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register r/m32 sign-extended immediate byte

6B /r ib IMUL r16,imm8 word register word register sign-extended immediate byte

6B /r ib IMUL r32,imm8 doubleword register doubleword register sign-extended
immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register r/m16 immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register r/m32 immediate doubleword

69 /r iw IMUL r16,imm16 word register r/m16 immediate word

69 /r id IMUL r32,imm32 doubleword register r/m32 immediate doubleword

4:208 Volume 4: Base IA-32 Instruction Reference

IMUL—Signed Multiply (Continued)

The three forms of the IMUL instruction are similar in that the length of the product is
calculated to twice the length of the operands. With the one-operand form, the product
is stored exactly in the destination. With the two- and three- operand forms, however,
result is truncated to the length of the destination before it is stored in the destination
register. Because of this truncation, the CF or OF flag should be tested to ensure that no
significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because
the lower half of the product is the same regardless if the operands are signed or
unsigned. The CF and OF flags, however, cannot be used to determine if the upper half
of the result is non-zero.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX AL SRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE IF OperandSize = 16

THEN
DX:AX AX SRC (* signed multiplication *)
IF ((DX = 0000H) OR (DX = FFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE (* OperandSize = 32 *)

EDX:EAX EAX SRC (* signed multiplication *)
IF ((EDX = 00000000H) OR (EDX = FFFFFFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp DEST SRC (* signed multiplication; temp is double DEST size*)
DEST DEST SRC (* signed multiplication *)
IF temp DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;

ELSE (* NumberOfOperands = 3 *)
DEST SRC1 SRC2 (* signed multiplication *)
temp SRC1 SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;
FI;

FI;

Volume 4: Base IA-32 Instruction Reference 4:209

IMUL—Signed Multiply (Continued)

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when
significant bits are carried into the upper half of the result and cleared when the result
fits exactly in the lower half of the result. For the two- and three-operand forms of the
instruction, the CF and OF flags are set when the result must be truncated to fit in the
destination operand size and cleared when the result fits exactly in the destination
operand size. The SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:210 Volume 4: Base IA-32 Instruction Reference

IN—Input from Port

Description

Copies the value from the I/O port specified with the second operand (source operand)
to the destination operand (first operand). The source operand can be a
byte-immediate or the DX register; the destination operand can be register AL, AX, or
EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respectively).
Using the DX register as a source operand allows I/O port addresses from 0 to 65,535
to be accessed; using a byte immediate allows I/O port addresses 0 to 255 to be
accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing
a 16- and 32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports.
Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize the TLB in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing IN instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 I/O port address into AL

E5 ib IN AX,imm8 Input byte from imm8 I/O port address into AX

E5 ib IN EAX,imm8 Input byte from imm8 I/O port address into EAX

EC IN AL,DX Input byte from I/O port in DX into AL

ED IN AX,DX Input word from I/O port in DX into AX

ED IN EAX,DX Input doubleword from I/O port in DX into EAX

Volume 4: Base IA-32 Instruction Reference 4:211

IN—Input from Port (Continued)

ELSE (* Real-address mode or protected mode with CPL IOPL *)
(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)

FI;

IF (Itanium_System_Environment THEN
SRC_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST [SRC_PA]; (* Reads from I/O port *)

FI;

memory_fence();
DEST <-SRC;
memory-fence();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 when CFLG.io is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

4:212 Volume 4: Base IA-32 Instruction Reference

INC—Increment by 1

Description

Adds 1 to the operand, while preserving the state of the CF flag. The source operand
can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate
operand of 1 to perform a increment operation that does updates the CF flag.)

Operation

DEST DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1

Volume 4: Base IA-32 Instruction Reference 4:213

INC—Increment by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:214 Volume 4: Base IA-32 Instruction Reference

INS/INSB/INSW/INSD—Input from Port to String

Description

Copies the data from the I/O port specified with the second operand (source operand)
to the destination operand (first operand). The source operand must be the DX register,
allowing I/O port addresses from 0 to 65,535 to be accessed. When accessing an 8-bit
I/O port, the opcode determines the port size; when accessing a 16- and 32-bit I/O
port, the operand-size attribute determines the port size.

The destination operand is a memory location at the address ES:EDI. (When the
operand-size attribute is 16, the DI register is used as the destination-index register.)
The ES segment cannot be overridden with a segment override prefix.

The INSB, INSW, and INSD mnemonics are synonyms of the byte, word, and
doubleword versions of the INS instructions. (For the INS instruction, “ES:EDI” must be
explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the I/O port to the memory
location, the EDI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is
incremented; if the DF flag is 1, the EDI register is decremented.) The EDI register is
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4
for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize the TLBs in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

Opcode Instruction Description

6C INS ES:(E)DI, DX Input byte from port DX into ES:(E)DI

6D INS ES:DI, DX Input word from port DX into ES:DI

6D INS ES:EDI, DX Input doubleword from port DX into ES:EDI

6C INSB Input byte from port DX into ES:(E)DI

6D INSW Input word from port DX into ES:DI

6D INSD Input doubleword from port DX into ES:EDI

Volume 4: Base IA-32 Instruction Reference 4:215

INS/INSB/INSW/INSD—Input from Port to String (Continued)

If the referenced I/O port is mapped to an unimplemented virtual address (via
the IOBase register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing INS instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* I/O operation is allowed *)

FI;
IF (Itanium_System_Environment) THEN

SRC_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST [SRC_PA]; (* Reads from I/O port *)

FI;

memory_fence();
DEST <- SRC;
memory_fence();

IF (byte transfer)
THEN IF DF = 0

THEN (E)DI 1;
ELSE (E)DI -1;

FI;
ELSE IF (word transfer)

THEN IF DF = 0
THEN DI 2;
ELSE DI -2;

FI;
ELSE (* doubleword transfer *)

THEN IF DF = 0
THEN EDI 4;
ELSE EDI -4;

FI;
FI;

FI;
FI;

Flags Affected

None.

4:216 Volume 4: Base IA-32 Instruction Reference

INS/INSB/INSW/INSD—Input from Port to String (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 and when CFLG.io is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments
is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:217

INTn/INTO/INT3—Call to Interrupt Procedure

Description

The INTn instruction generates a call to the interrupt or exception handler specified
with the destination operand. The destination operand specifies an interrupt vector
from 0 to 255, encoded as an 8-bit unsigned intermediate value. The first 32 interrupt
vectors are reserved by Intel for system use. Some of these interrupts are used for
internally generated exceptions.

The INTn instruction is the general mnemonic for executing a software-generated call
to an interrupt handler. The INTO instruction is a special mnemonic for calling overflow
exception (#OF), interrupt vector 4. The overflow interrupt checks the OF flag in the
EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1.

The INT3 instruction is a special mnemonic for calling the debug exception handler. The
action of the INT3 instruction (opcode CC) is slightly different from the operation of the
INT 3 instruction (opcode CC03), as follows:

• Interrupt redirection does not happen when in VME mode; the interrupt is handled
by a protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without
faulting at any IOPL level.

The action of the INTn instruction (including the INTO and INT3 instructions) is similar
to that of a far call made with the CALL instruction. The primary difference is that with
the INTn instruction, the EFLAGS register is pushed onto the stack before the return
address. (The return address is a far address consisting of the current values of the CS
and EIP registers.) Returns from interrupt procedures are handled with the IRET
instruction, which pops the EFLAGS information and return address from the stack.

The interrupt vector specifies an interrupt descriptor in the interrupt descriptor table
(IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn
contains a pointer to an interrupt or exception handler procedure. In protected mode,
the IDT contains an array of 8-byte descriptors, each of which points to an interrupt
gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far
pointers (2-byte code segment selector and a 2-byte instruction pointer), each of which
point directly to procedure in the selected segment.

The following decision table indicates which action in the lower portion of the table is
taken given the conditions in the upper portion of the table. Each Y in the lower section
of the decision table represents a procedure defined in the “Operation” section for this
instruction (except #GP).

Opcode Instruction Description

CC INT3 Interrupt 3—trap to debugger

CD ib INT imm8 Interrupt vector numbered by immediate byte

CE INTO Interrupt 4—if overflow flag is 1

4:218 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Notes:
 Don't Care
Y Yes, Action Taken
BlankAction Not Taken

When the processor is executing in virtual-8086 mode, the IOPL determines the action
of the INTn instruction. If the IOPL is less than 3, the processor generates a general
protection exception (#GP); if the IOPL is 3, the processor executes a protected mode
interrupt to privilege level 0. The interrupt gate's DPL must be set to three and the
target CPL of the interrupt handler procedure must be 0 to execute the protected mode
interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit
of the IDT. The initial base address value of the IDTR after the processor is powered up
or reset is 0.

Operation

The following operational description applies not only to the INTn and INTO
instructions, but also to external interrupts and exceptions.

IF Itanium System EnvironmentTHEN

IF INT3 Form THEN IA_32_Exception(3);

IF INTO Form THEN IA_32_Exception(4);

IF INT Form THEN IA-32_Interrupt(N);

FI;

Table 2-14. INT Cases

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-G
ATE

Y Y Y Y Y

INTER-PRIVILEGE-LEVEL
-INTERRUPT

Y

INTRA-PRIVILEGE-LEVE
L-INTERRUPT

Y

INTERRUPT-FROM-VIRT
UAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

Volume 4: Base IA-32 Instruction Reference 4:219

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

/*IN the Itanium System Environment all of the following operations are intercepted*/

IF PE=0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1 *)

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE:
IF ((DEST 4) + 3) is not within IDT limit THEN #GP; FI;
IF stack not large enough for a 6-byte return information THEN #SS; FI;
Push (EFLAGS[15:0]);
IF 0; (* Clear interrupt flag *)
TF 0; (* Clear trap flag *)
AC 0; (*Clear AC flag*)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS IDT(Descriptor (vector 4), selector));
EIP IDT(Descriptor (vector 4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:
IF ((DEST 8) + 7) is not within IDT limits

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST 8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* generated by INTn, INT3, or INTO *)

THEN
IF gate descriptor DPL < CPL

THEN #GP((vector number 8) + 2);
(* PE=1, DPL<CPL, software interrupt *)

FI;
FI;
IF gate not present THEN #NP((vector number 8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)

FI;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local
OR index not within GDT limits

THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector);
FI;

4:220 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

IF TSS not present
THEN #NP(TSS selector);

FI;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of two bytes

THEN #SS(0);
FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;
TRAP-OR-INTERRUPT-GATE

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null

THEN #GP(0H + EXT); (* null selector with EXT flag set *)
FI;
IF segment selector is not within its descriptor table limits

THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment

OR code segment descriptor DPL CPL
THEN #GP(selector + EXT);

FI;
IF trap or interrupt gate segment is not present,

THEN #NP(selector + EXT);
FI;
IF code segment is non-conforming AND DPL CPL

THEN IF VM=0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPLCPL, VM=0 *)

ELSE (* VM=1 *)
IF code segment DPL 0 THEN #GP(new code segment selector); FI;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE=1, interrupt or trap gate, DPLCPL, VM=1 *)

FI;
ELSE (* PE=1, interrupt or trap gate, DPL CPL *)

IF VM=1 THEN #GP(new code segment selector); FI;
IF code segment is conforming OR code segment DPL = CPL

THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE
#GP(CodeSegmentSelector + EXT);
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)

FI;

Volume 4: Base IA-32 Instruction Reference 4:221

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

FI;
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT

(* PE=1, interrupt or trap gate, non-conforming code segment, DPLCPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress new code segment (DPL 8) + 4
IF (TSSstackAddress + 7) TSS limit

THEN #TS(current TSS selector); FI;
NewSS TSSstackAddress + 4;
NewESP stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress new code segment (DPL 4) + 2
IF (TSSstackAddress + 4) TSS limit

THEN #TS(current TSS selector); FI;
NewESP TSSstackAddress;
NewSS TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Read segment descriptor for stack segment in GDT or LDT;

IF stack segment DPL DPL of code segment,
OR stack segment does not indicate writable data segment,

THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed)

OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP TSS(SS:ESP) (* segment descriptor information also loaded *)
IF 32-bit gate

THEN
CS:EIP Gate(CS:EIP); (* segment descriptor information also loaded *)

ELSE (* 16-bit gate *)
CS:IP Gate(CS:IP); (* segment descriptor information also loaded *)

FI;
IF 32-bit gate

THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);

4:222 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)

FI;
CPL CodeSegmentDescriptor(DPL);
CS(RPL) CPL;
IF interrupt gate

THEN IF 0 (* interrupt flag to 0 (disabled) *); FI;
TF 0;
VM 0;
RF 0;
NT 0;

I END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress new code segment (DPL 8) + 4
IF (TSSstackAddress + 7) TSS limit

THEN #TS(current TSS selector); FI;
NewSS TSSstackAddress + 4;
NewESP stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress new code segment (DPL 4) + 2
IF (TSSstackAddress + 4) TSS limit

THEN #TS(current TSS selector); FI;
NewESP TSSstackAddress;
NewSS TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL DPL of code segment,

OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed)

OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 20 bytes (error code pushed)

Volume 4: Base IA-32 Instruction Reference 4:223

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

OR 18 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;

IF CR4.VME = 0
THEN

IF IOPL=3
THEN

IF Gate DPL = 3
THEN (*CPL=3, VM=1, IOPL=3, VME=0, gate DPL=3)

IF Target CPL != 0
THEN #GP(0);
ELSE Goto VM86_INTERURPT_TO_PRIV0;

FI;
ELSE (*Gate DPL < 3*)

#GP(0);
FI;

ELSE (*IOPL < 3*)
#GP(0);

FI;
ELSE (*VME = 1*)

(*Check whether interrupt is directed for INT n instruction only,
(*executes virtual 8086 interupt, protected mode interrupt or faults*)
Ptr <- [TSS + 66]; (*Fetch IO permission bitmpa pointer*)
IF BIT[Ptr-32,N] = 0 (*software redirection bitmap is 32 bytes below IO

Permission*)
THEN (*Interrupt redirected*)

Goto VM86_INTERRUPT_TO_VM86;
ELSE

IF IOPL = 3
THEN

IF Gate DPL = 3
THEN

IF Target CPL != 0
THEN #GP(0);
ELSE Goto VM86_INTERRUPT_TO_PRIV0;
FI;

ELSE #GP(0);
FI;

ELSE (*IOPL < 3*)
#GP(0);

FI;
FI;

FI;
END;

VM86_INTERRUPT_TO_PRIV0:
tempEFLAGS EFLAGS;
VM 0;

4:224 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

TF 0;
RF 0;
IF service through interrupt gate THEN IF 0; FI;
TempSS SS;
TempESP ESP;
SS:ESP TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS 0; (*segment registers nullified, invalid in protected mode *)
FS 0;
DS 0;
ES 0;
CS Gate(CS);
IF OperandSize=32

THEN
EIP Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Starts execution of new routine in Protected Mode *)

END;

VM86_INTERRUPT_TO_VM86:
IF IOPL = 3

THEN
push(FLAGS OR 3000H); (*Push FLAGS w/ IOPL bits as 11B or IOPL 3*)
push(CS);
push(IP);
CS <- [N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 7CD5H; (*Clear TF and IF in EFLAGS like 8086*)

ELSE
TempFlags <- FLAGS OR 3000H; (*Set IOPL to 11B or IOPL 3*)
TempFlags.IF <- EFLAGS.VIF;
push(TempFlags);
push(CS);
push(IP);
CS <- [N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 77ED5H; (*Clear VIF and TF and IF in EFLAGS like 8086*)

FI;
END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:

Volume 4: Base IA-32 Instruction Reference 4:225

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate

THEN
IF current stack does not have room for 16 bytes (error code pushed)

OR 12 bytes (no error code pushed); THEN #SS(0);
FI;

ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)

OR 6 bytes (no error code pushed); THEN #SS(0);
FI;

IF instruction pointer not within code segment limit THEN #GP(0); FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

FI;
CS(RPL) CPL;
IF interrupt gate

THEN
IF 0; FI;
TF 0;
NT 0;
VM 0;
RF 0;

FI;
END;

Flags Affected

The EFLAGS register is pushed onto stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction
is executed (see “Operation” section.)

Additional Itanium System Environment Exceptions

IA_32_Exception If INT3 or INTO form, vector numbers are 3 and 4 respectively.

IA-32_Interrupt If INT n form, vector number is N.

4:226 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Protected Mode Exceptions

#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task
gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(0) If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment and no stack switch
occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, or stack segment
pointer exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor pointed to by the stack
segment selector in the TSS is not equal to the DPL of the code
segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the interrupt vector is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment when a stack switch
occurs.

Volume 4: Base IA-32 Instruction Reference 4:227

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Virtual 8086 Mode Exceptions

#GP(0) (For INTn instruction) If the IOPL is less than 3 and the DPL of the
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task
gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, stack segment
pointer, or data segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor for the TSS’s stack segment
is not equal to the DPL of the code segment descriptor for the
interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

#BP If the INT3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

4:228 Volume 4: Base IA-32 Instruction Reference

INVD—Invalidate Internal Caches

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus
cycle that directs external caches to also flush themselves. Data held in internal caches
is not written back to main memory.

After executing this instruction, the processor does not wait for the external caches to
complete their flushing operation before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also implementation-dependent; its function may be
implemented differently on future Intel architecture processors.

Use this instruction with care. Data cached internally and not written back to main
memory will be lost. Unless there is a specific requirement or benefit to flushing caches
without writing back modified cache lines (for example, testing or fault recovery where
cache coherency with main memory is not a concern), software should use the WBINVD
instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVD);

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVD instruction cannot be executed at the virtual 8086 mode.

Opcode Instruction Description

0F 08 INVD Flush internal caches; initiate flushing of external caches.

Volume 4: Base IA-32 Instruction Reference 4:229

INVD—Invalidate Internal Caches (Continued)

Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the
Intel486 processor.

4:230 Volume 4: Base IA-32 Instruction Reference

INVLPG—Invalidate TLB Entry

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the
source operand. The source operand is a memory address. The processor determines
the page that contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also implementation-dependent; its function may be
implemented differently on future Intel architecture processors.

The INVLPG instruction normally flushes the TLB entry only for the specified page;
however, in some cases, it flushes the entire TLB.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVLPG);

Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual 8086
mode.

Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the
Intel486 processor.

Opcode Instruction Description

0F 01/7 INVLPG m Invalidate TLB Entry for page that contains m

Volume 4: Base IA-32 Instruction Reference 4:231

IRET/IRETD—Interrupt Return

Description

Returns program control from an exception or interrupt handler to a program or
procedure that was interrupted by an exception, an external interrupt or, a
software-generated interrupt, or returns from a nested task. IRET and IRETD are
mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is
intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand
sizes.

In Real Address Mode, the IRET instruction preforms a far return to the interrupted
program or procedure. During this operation, the processor pops the return instruction
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS,
and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT
(nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image
stored on the current stack. Depending on the setting of these flags, the processor
performs the following types of interrupt returns:

• Real Mode.

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

Return from nested task (task switch)

All forms of IRET result in an IA-32_Intercept(Inst,IRET) in the Itanium
System Environment.

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return
from the interrupt procedure, without a task switch. The code segment being returned
to must be equally or less privileged than the interrupt handler routine (as indicated by
the RPL field of the code segment selector popped from the stack). As with a
real-address mode interrupt return, the IRET instruction pops the return instruction
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS,
and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure. If the return is to another privilege level, the IRET instruction
also pops the stack pointer and SS from the stack, before resuming program execution.
If the return is to virtual-8086 mode, the processor also pops the data segment
registers from the stack.

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)

4:232 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

If the NT flag is set, the IRET instruction performs a return from a nested task (switches
from the called task back to the calling task) or reverses the operation of an interrupt
or exception that caused a task switch. The updated state of the task executing the
IRET instruction is saved in its TSS. If the task is reentered later, the code that follows
the IRET instruction is executed.

IRET performs an instruction serialization and a memory fence operation.

Operation

IF(Itanium System Environment)
THEN IA-32_Intercept(Inst,IRET);

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE:;
ELSE

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP Pop();
CS Pop(); (* 32-bit pop, high-order 16-bits discarded *)
tempEFLAGS Pop();
EFLAGS (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP Pop();
EIP EIP AND 0000FFFFH;
CS Pop(); (* 16-bit pop *)
EFLAGS[15:0] Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)

FI;
IF OperandSize=32

THEN
IF top 12 bytes of stack not within stack limits

Volume 4: Base IA-32 Instruction Reference 4:233

IRET/IRETD—Interrupt Return (Continued)

THEN #SS(0)
FI;
tempEIP Pop();
tempCS Pop();
tempEFLAGS Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0);
FI;
tempEIP Pop();
tempCS Pop();
tempEFLAGS Pop();
tempEIP tempEIP AND FFFFH;
tempEFLAGS tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 AND CPL=0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)

FI;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF CR4.VME = 0
THEN

IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP Pop();
CS Pop(); (* 32-bit pop, high-order 16-bits discarded *)
EFLAGS Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP Pop();
EIP EIP AND 0000FFFFH;
CS Pop(); (* 16-bit pop *)
EFLAGS[15:0] Pop(); (* IOPL in EFLAGS is not modified by pop *)

FI;
ELSE #GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)

FI;
ELSE (*VME is 1*)

IF IOPL = 3
THEN

IF OperandSize = 32

4:234 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

THEN
EIP Pop();
CS Pop(); (* 32-bit pop, high-order 16-bits discarded *)
TempEFlags Pop();
FLAGS = (EFLAGS AND 1B3000H) OR (TempEFlags AND 244FD7H)
(*VM,IOPL,RF,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
EIP Pop();
EIP EIP AND 0000FFFFH;
CS Pop(); (* 16-bit pop *)
TempFlags <- Pop();
FLAGS = (FLAGS AND 3000H) OR (TempFLags AND 4FD5H)
(*IOPL unmodified*)

FI;
ELSE (*IOPL < 3*)

IF OperandSize = 16
THEN

IF ((STACK.TF !-0) OR (EFLAGS.VIP=1 AND STACK.IF=1))
THEN #GP(0);
ELSE

IP <- Pop(); (*Word Pops*)
CS <- Pop(0);
TempFlags <- Pop();
(*FLAGS IOPL, IF and TF are not modified*)
FLAGS = (FLAGS AND 3302H) OR (TempFlags AND 4CD5H)
EFLAGS.VIF <- TempFlags.IF;

FI;
ELSE (*OperandSize = 32 *)

#GP(0);
FI;

FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)

IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);

FI;
IF instruction pointer not within code segment limits

THEN #GP(0);
FI;
CS tempCS;
EIP tempEIP;
EFLAGS tempEFLAGS
TempESP Pop();
TempSS Pop();
ES Pop(); (* pop 2 words; throw away high-order word *)
DS Pop(); (* pop 2 words; throw away high-order word *)
FS Pop(); (* pop 2 words; throw away high-order word *)
GS Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP TempSS:TempESP;

Volume 4: Base IA-32 Instruction Reference 4:235

IRET/IRETD—Interrupt Return (Continued)

(* Resume execution in Virtual 8086 mode *)
END;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0);
FI;

END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector; FI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP tempEIP;
CS tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) tempEFLAGS;

FI;
IF CPL IOPL

THEN
EFLAGS(IF) tempEFLAGS;

FI;

4:236 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

IF CPL = 0
THEN

EFLAGS(IOPL) tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) tempEFLAGS;
FI;

FI;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:

IF OperandSize=32
THEN

IF top 8 bytes on stack are not within limits THEN #SS(0); FI;
ELSE (* OperandSize=16 *)

IF top 4 bytes on stack are not within limits THEN #SS(0); FI;
FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL RPL of the return code segment selector

IF stack segment selector RPL RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL RPL of the return code segment selector

THEN #GP(SS selector);
FI;
IF stack segment is not present THEN #NP(SS selector); FI;

IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP tempEIP;
CS tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) tempEFLAGS;

FI;
IF CPO IOPL

THEN
EFLAGS(IF) tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL) tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) tempEFLAGS;
FI;

FI;
CPL RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment

Volume 4: Base IA-32 Instruction Reference 4:237

IRET/IRETD—Interrupt Return (Continued)

AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)
THEN (* segment register invalid *)

SegmentSelector 0; (* null segment selector *)
FI;

OD;
END:

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on
the mode of operation of the processor.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Instruction Intercept Trap for ALL forms of IRET.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code
segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return
code segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL
of the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the
return code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the segment descriptor for a code segment does not indicate it is
a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and
alignment checking is enabled.

4:238 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code
segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code
segment limit.

IF IOPL not equal to 3

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is
enabled.

Volume 4: Base IA-32 Instruction Reference 4:239

Jcc—Jump if Condition Is Met

Opcode Instruction Description

77 cb JA rel8 Jump short if above (CF=0 and ZF=0)

73 cb JAE rel8 Jump short if above or equal (CF=0)

72 cb JB rel8 Jump short if below (CF=1)

76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1)

72 cb JC rel8 Jump short if carry (CF=1)

E3 cb JCXZ rel8 Jump short if CX register is 0

E3 cb JECXZ rel8 Jump short if ECX register is 0

74 cb JE rel8 Jump short if equal (ZF=1)

7F cb JG rel8 Jump short if greater (ZF=0 and SF=OF)

7D cb JGE rel8 Jump short if greater or equal (SF=OF)

7C cb JL rel8 Jump short if less (SF<>OF)

7E cb JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF)

76 cb JNA rel8 Jump short if not above (CF=1 or ZF=1)

72 cb JNAE rel8 Jump short if not above or equal (CF=1)

73 cb JNB rel8 Jump short if not below (CF=0)

77 cb JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0)

73 cb JNC rel8 Jump short if not carry (CF=0)

75 cb JNE rel8 Jump short if not equal (ZF=0)

7E cb JNG rel8 Jump short if not greater (ZF=1 or SF<>OF)

7C cb JNGE rel8 Jump short if not greater or equal (SF<>OF)

7D cb JNL rel8 Jump short if not less (SF=OF)

7F cb JNLE rel8 Jump short if not less or equal (ZF=0 and SF=OF)

71 cb JNO rel8 Jump short if not overflow (OF=0)

7B cb JNP rel8 Jump short if not parity (PF=0)

79 cb JNS rel8 Jump short if not sign (SF=0)

75 cb JNZ rel8 Jump short if not zero (ZF=0)

70 cb JO rel8 Jump short if overflow (OF=1)

7A cb JP rel8 Jump short if parity (PF=1)

7A cb JPE rel8 Jump short if parity even (PF=1)

7B cb JPO rel8 Jump short if parity odd (PF=0)

78 cb JS rel8 Jump short if sign (SF=1)

74 cb JZ rel8 Jump short if zero (ZF = 1)

0F 87 cw/cd JA rel16/32 Jump near if above (CF=0 and ZF=0)

0F 83 cw/cd JAE rel16/32 Jump near if above or equal (CF=0)

0F 82 cw/cd JB rel16/32 Jump near if below (CF=1)

0F 86 cw/cd JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)

0F 82 cw/cd JC rel16/32 Jump near if carry (CF=1)

0F 84 cw/cd JE rel16/32 Jump near if equal (ZF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

0F 8F cw/cd JG rel16/32 Jump near if greater (ZF=0 and SF=OF)

4:240 Volume 4: Base IA-32 Instruction Reference

Jcc—Jump if Condition Is Met (Continued)

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to
the target instruction specified by the destination operand. A condition code (cc) is
associated with each instruction to indicate the condition being tested for. If the
condition is not satisfied, the jump is not performed and execution continues with the
instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16,
or rel32) is generally specified as a label in assembly code, but at the machine code
level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the
instruction pointer. Instruction coding is most efficient for offsets of -128 to +127. If
the operand-size attribute is 16, the upper two bytes of the EIP register are cleared to
0s, resulting in a maximum instruction pointer size of 16 bits.

The conditions for each Jcc mnemonic are given in the “Description” column of the
above table. The terms “less” and “greater” are used for comparisons of signed integers
and the terms “above” and “below” are used for unsigned integers.

Opcode Instruction Description

0F 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF)

0F 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)

0F 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)

0F 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)

0F 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)

0F 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)

0F 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)

0F 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)

0F 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)

0F 8E cw/cd JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF)

0F 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)

0F 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF)

0F 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=OF)

0F 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)

0F 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)

0F 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)

0F 85 cw/cd JNZ rel16/32 Jump near if not zero (ZF=0)

0F 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)

0F 8A cw/cd JP rel16/32 Jump near if parity (PF=1)

0F 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)

0F 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)

0F 88 cw/cd JS rel16/32 Jump near if sign (SF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

Volume 4: Base IA-32 Instruction Reference 4:241

Jcc—Jump if Condition Is Met (Continued)

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the JA (jump if
above) instruction and the JNBE (jump if not below or equal) instruction are alternate
mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When
the target for the conditional jump is in a different segment, use the opposite condition
from the condition being tested for the Jcc instruction, and then access the target with
an unconditional far jump (JMP instruction) to the other segment. For example, the
following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do
not check the status flags. Instead they check the contents of the ECX and CX registers,
respectively, for 0. These instructions are useful at the beginning of a conditional loop
that terminates with a conditional loop instruction (such as LOOPNE). They prevent
entering the loop when the ECX or CX register is equal to 0, which would cause the loop
to execute 232 or 64K times, respectively, instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines,
regardless of jump address or cacheability.

Operation

IF condition
THEN

 EIP EIP + SignExtend(DEST);
IF OperandSize = 16

THEN
EIP EIP AND 0000FFFFH;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

4:242 Volume 4: Base IA-32 Instruction Reference

Jcc—Jump if Condition Is Met (Continued)

Real Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment
or is outside of the effective address space from 0 to FFFFH. This
condition can occur if 32-address size override prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment
or is outside of the effective address space from 0 to FFFFH. This
condition can occur if 32-address size override prefix is used.

Volume 4: Base IA-32 Instruction Reference 4:243

JMP—Jump

Description

Transfers program control to a different point in the instruction stream without
recording return information. The destination (target) operand specifies the address of
the instruction being jumped to. This operand can be an immediate value, a
general-purpose register, or a memory location.

• Near jump – A jump to an instruction within the current code segment (the
segment currently pointed to by the CS register), sometimes referred to as an
intrasegment call.

• Far jump – A jump to an instruction located in a different segment than the current
code segment, sometimes referred to as an intersegment call.

• Task switch – A jump to an instruction located in a different task. (This is a form of
a far jump.) Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

A task switch can only be executed in protected mode (see Chapter 6 in the Intel
Architecture Software Developer’s Manual, Volume 3 for information on task switching
with the JMP instruction).

When executing a near jump, the processor jumps to the address (within the current
code segment) that is specified with the target operand. The target operand specifies
either an absolute address (that is an offset from the base of the code segment) or a
relative offset (a signed offset relative to the current value of the instruction pointer in
the EIP register). An absolute address is specified directly in a register or indirectly in a
memory location (r/m16 or r/m32 operand form). A relative offset (rel8, rel16, or
rel32) is generally specified as a label in assembly code, but at the machine code level,
it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the value
in the EIP register (that is, to the instruction following the JMP instruction). The
operand-size attribute determines the size of the target operand (16 or 32 bits) for
absolute addresses. Absolute addresses are loaded directly into the EIP register. When
a relative offset is specified, it is added to the value of the EIP register. If the
operand-size attribute is 16, the upper two bytes of the EIP register are cleared to 0s,
resulting in a maximum instruction pointer size of 16 bits. The CS register is not
changed on near jumps.

Opcode Instruction Description

EB cb JMP rel8 Jump near, relative address

E9 cw JMP rel16 Jump near, relative address

E9 cd JMP rel32 Jump near, relative address

FF /4 JMP r/m16 Jump near, indirect address

FF /4 JMP r/m32 Jump near, indirect address

EA cd JMP ptr16:16 Jump far, absolute address

EA cp JMP ptr16:32 Jump far, absolute address

FF /5 JMP m16:16 Jump far, indirect address

FF /5 JMP m16:32 Jump far, indirect address

4:244 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

When executing a far jump, the processor jumps to the code segment and address
specified with the target operand. Here the target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect
method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared to 0s.

When the processor is operating in protected mode, a far jump can also be used to
access a code segment through a call gate or to switch tasks. Here, the processor uses
the segment selector part of the far address to access the segment descriptor for the
segment being jumped to. Depending on the value of the type and access rights
information in the segment selector, the JMP instruction can perform:

• A far jump to a conforming or non-conforming code segment (same mechanism as
the far jump described in the previous paragraph, except that the processor checks
the access rights of the code segment being jumped to).

• An far jump through a call gate.

• A task switch. Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

The JMP instruction cannot be used to perform inter-privilege level jumps.

When executing an far jump through a call gate, the segment selector specified by the
target operand identifies the call gate. (The offset part of the target operand is
ignored.) The processor then jumps to the code segment specified in the call gate
descriptor and begins executing the instruction at the offset specified in the gate. No
stack switch occurs. Here again, the target operand can specify the far address of the
call gate and instruction either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction, is similar to executing a jump through
a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to. (The offset part of the target operand is ignored). The task
gate in turn points to the TSS for the task, which contains the segment selectors for the
task’s code, data, and stack segments and the instruction pointer to the target
instruction. One form of the JMP instruction allows the jump to be made directly to a
TSS, without going through a task gate. See Chapter 13 in Intel Architecture Software
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task
switch.

All branches are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

Volume 4: Base IA-32 Instruction Reference 4:245

JMP—Jump (Continued)

Operation

IF near jump
THEN IF near relative jump

THEN
tempEIP EIP + DEST; (* EIP is instruction following JMP instruction*)

ELSE (* near absolute jump *)
tempEIP DEST;

FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP tempEIP;

ELSE (* OperandSize=16 *)
EIP tempEIP AND 0000FFFFH;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI:

IF far jump AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN

tempEIP DEST(offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32

THEN
EIP tempEIP; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
EIP tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;
IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)

THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

OR segment selector in target operand null
THEN #GP(0);

FI;
IF segment selector index not within descriptor table limits

THEN #GP(new selector);
FI;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

ELSE
#GP(segment selector);

FI;

4:246 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP DEST(offset);
IF OperandSize=16

THEN tempEIP tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) CPL
EIP tempEIP;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL CPL) THEN #GP(code segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP DEST(offset);
IF OperandSize=16

THEN tempEIP tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) CPL
EIP tempEIP;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

CALL-GATE:

IF call gate DPL < CPL
OR call gate DPL < call gate segment-selector RPL

THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment

OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL CPL

THEN #GP(code segment selector); FI;
IF code segment is not present THEN #NP(code-segment selector); FI;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP DEST(offset);
IF GateSize=16

THEN tempEIP tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) CPL
EIP tempEIP;

Volume 4: Base IA-32 Instruction Reference 4:247

JMP—Jump (Continued)

END;

TASK-GATE:
IF task gate DPL < CPL

OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); FI;

IF task gate not present THEN #NP(gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
IF TSS not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL

OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present THEN #NP(TSS selector); FI;
IF Itanium System Environment THENIA-32_Intercept(Gate,JMP);
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Gate Intercept for JMP through CALL Gates, Task Gates and Task
Segments

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code
segment limits.

If the segment selector in the destination operand, call gate, task
gate, or TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

4:248 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment
selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is
less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s
segment selector.

If the segment descriptor for selector in a call gate does not indicate
it is a code segment.

If the segment descriptor for the segment selector in a task gate
does not indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3. (Only occurs
when fetching target from memory.)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made. (Only occurs when fetching target from memory.)

Volume 4: Base IA-32 Instruction Reference 4:249

JMPE—Jump to Intel® Itanium® Instruction Set

Description

This instruction is available only on processors based on the Itanium architecture in the
Itanium System Environment. Otherwise, execution of this instruction at privilege levels
1, 2, and 3 results in an Illegal Opcode fault, and at privilege level 0, termination of the
IA-32 System Environment on a processor based on the Itanium architecture.

JMPE switches the processor to the Itanium instruction set and starts execution at the
specified target address There are two forms; an indirect form, r/mr16/32, and an
unsigned absolute form, disp16/32. Both 16 and 32-bit formats are supported.

The absolute form computes the 16-byte aligned 64-bit virtual target address in the
Itanium instruction set by adding the unsigned 16 or 32-bit displacement to the current
CS base (IP{31:0} = disp16/32 + CSD.base). The indirect form specifies the virtual
target address by the contents of a register or memory location (IP{31:0} =
[r/m16/32] + CSD.base). Target addresses are constrained to the lower 4G-bytes of
the 64-bit virtual address space within virtual region 0.

GR[1] is loaded with the next sequential instruction address following JMPE.

If PSR.di is 1, the instruction is nullified and a Disabled Instruction Set Transition fault is
generated. If Itanium branch debugging is enabled, an IA_32_Exception(Debug)
trap is taken after JMPE completes execution.

JMPE can be performed at any privilege level and does not change the privilege level of
the processor.

JMPE performs a FWAIT operation, any pending IA-32 unmasked floating-point
exceptions are reported as faults on the JMPE instruction.

JMPE does not perform a memory fence or serialization operation.

Successful execution of JMPE clears EFLAG.rf and PSR.id to zero.

If the register stack engine is enabled for eager execution, the register stack engine
may immediately start loading registers when the processor enters the Itanium
instruction set.

Opcode Instruction Description

0F 00 /6 JMPE r/m16 Jump to Intel Itanium instruction set, indirect address specified by
r/m16

0F 00 /6 JMPE r/m32 Jump to Intel Itanium instruction set, indirect address specified by
r/m32

0F B8 JMPE disp16 Jump to Intel Itanium instruction set, absolute address specified by
addr16

0F B8 JMPE disp32 Jump to Intel Itanium instruction set, absolute address specified by
addr32

4:250 Volume 4: Base IA-32 Instruction Reference

JMPE—Jump to Intel® Itanium® Instruction Set (Continued)

Operation

IF(NOT Itanium System Environment) {
IF (PSR.cpl==0) Terminate_IA-32_System_Env();
ELSE IA_32_Exception(IllegalOpcode);

} ELSE IF(PSR.di==1) {

Disabled_Instruction_Set_Transition_Fault();

} ELSE IF(pending_numeric_exceptions()) {

IA_32_exception(FPError);

} ELSE {

IF(absolute_form) { //compute virtual target
IP{31:0} = disp16/32 + AR[CSD].base;//disp is 16/32-bit unsigned value

} ELSE IF(indirect_form) {

IP{31:0} = [r/m16/32] + AR[CSD].base;

}

PSR.is = 0; //set Itanium Instruction Set bit

IP{3:0}= 0; //Force 16-byte alignment

IP{63:32} = 0; //zero extend from 32-bits to 64-bits

GR[1]{31:0} = EIP + AR[CSD].base; //next sequential instruction address

GR[1]{63:32} = 0;

PSR.id = EFLAG.rf = 0;

IF (PSR.tb) //taken branch trap
IA_32_Exception(Debug);

}

Flags Affected

None (other than EFLAG.rf)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Fault.

Disabled ISA Disabled Instruction Set Transition Fault, if PSR.di is 1

IA_32_Exception Floating-point Error, if any floating-point exceptions are pending

IA_32_Exception Taken Branch trap, if PSR.tb is 1.

IA-32 System Environment Exceptions (All Operating Modes)

#UD JMPE raises an invalid opcode exception at privilege levels 1, 2 and
3. Privilege level 0 results in termination of the IA-32 System
Environment on a processor based on the Itanium architecture.

Volume 4: Base IA-32 Instruction Reference 4:251

LAHF—Load Status Flags into AH Register

Description

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF,
and CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in
the AH register as shown in the “Operation” below.

Operation

AH EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected

None (that is, the state of the flags in the EFLAGS register are not affected).

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

9F LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)

4:252 Volume 4: Base IA-32 Instruction Reference

LAR—Load Access Rights Byte

Description

Loads the access rights from the segment descriptor specified by the second operand
(source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location)
contains the segment selector for the segment descriptor being accessed. The
destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can preform additional checks on the access rights
information.

When the operand size is 32 bits, the access rights for a segment descriptor comprise
the type and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in
the second doubleword (bytes 4 through 7) of the segment descriptor. The doubleword
is masked by 00FXFF00H before it is loaded into the destination operand. When the
operand size is 16 bits, the access rights comprise the type and DPL fields. Here, the
two lower-order bytes of the doubleword are masked by FF00H before being loaded into
the destination operand.

This instruction performs the following checks before it loads the access rights in the
destination register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed.

• Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LAR instruction. The
valid system segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, it checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the
segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Opcode Instruction Description

0F 02 /r LAR r16,r/m16 r16 r/m16 masked by FF00H

0F 02 /r LAR r32,r/m32 r32 r/m32 masked by 00FxFF00H

Volume 4: Base IA-32 Instruction Reference 4:253

LAR—Load Access Rights Byte (Continued)

Operation
IF SRC(Offset) > descriptor table limit THEN ZF 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF 0

ELSE
IF OperandSize = 32

THEN
DEST [SRC] AND 00FxFF00H;

ELSE (*OperandSize = 16*)
DEST [SRC] AND FF00H;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is
cleared to 0.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Table 2-15. LAR Descriptor Validity

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate Yes

5 16-bit/32-bit task gate Yes

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate Yes

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No

4:254 Volume 4: Base IA-32 Instruction Reference

LAR—Load Access Rights Byte (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3. (Only occurs
when fetching target from memory.)

Real Address Mode Exceptions

#UD The LAR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LAR instruction cannot be executed in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:255

LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description

Load a far pointer (segment selector and offset) from the second operand (source
operand) into a segment register and the first operand (destination operand). The
source operand specifies a 48-bit or a 32-bit pointer in memory depending on the
current setting of the operand-size attribute (32 bits or 16 bits, respectively). The
instruction opcode and the destination operand specify a segment
register/general-purpose register pair. The 16-bit segment selector from the source
operand is loaded into the segment register implied with the opcode (DS, SS, ES, FS, or
GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination
operand.

If one of these instructions is executed in protected mode, additional information from
the segment descriptor pointed to by the segment selector in the source operand is
loaded in the hidden part of the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into
DS, ES, FS, or GS registers without causing a protection exception. (Any subsequent
reference to a segment whose corresponding segment register is loaded with a null
selector, causes a general-protection exception (#GP) and no memory reference to the
segment occurs.)

Operation

IF ProtectedMode
THEN IF SS is loaded

THEN IF SegementSelector = null
THEN #GP(0);

FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL CPL
OR Access rights indicate nonwritable data segment
OR DPL CPL

THEN #GP(selector);
FI;
ELSE IF Segment marked not present

THEN #SS(selector);
FI;
SS SegmentSelector(SRC);

Opcode Instruction Description

C5 /r LDS r16,m16:16 Load DS:r16 with far pointer from memory

C5 /r LDS r32,m16:32 Load DS:r32 with far pointer from memory

0F B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory

0F B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory

C4 /r LES r16,m16:16 Load ES:r16 with far pointer from memory

C4 /r LES r32,m16:32 Load ES:r32 with far pointer from memory

0F B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory

0F B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory

0F B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory

0F B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory

4:256 Volume 4: Base IA-32 Instruction Reference

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

SS SegmentDescriptor([SRC]);
ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector

THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #NP(selector);
FI;
SegmentRegister SegmentSelector(SRC) AND RPL;
SegmentRegister SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister NullSelector;
SegmentRegister(DescriptorValidBit) 0; (*hidden flag; not accessible by software*)

FI;
FI;
IF (Real-Address or Virtual 8086 Mode)

THEN
SS SegmentSelector(SRC);

FI;
DEST Offset(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true:
the segment selector index is not within the descriptor table limits,
the segment selector RPL is not equal to CPL, the segment is a
nonwritable data segment, or DPL is not equal to CPL.

Volume 4: Base IA-32 Instruction Reference 4:257

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

If the DS, ES, FS, or GS register is being loaded with a non-null
segment selector and any of the following is true: the segment
selector index is not within descriptor table limits, the segment is
neither a data nor a readable code segment, or the segment is a
data or nonconforming-code segment and both RPL and CPL are
greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If the SS register is being loaded and the segment is marked not
present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment
selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:258 Volume 4: Base IA-32 Instruction Reference

LEA—Load Effective Address

Description

Computes the effective address of the second operand (the source operand) and stores
it in the first operand (destination operand). The source operand is a memory address
(offset part) specified with one of the processors addressing modes; the destination
operand is a general-purpose register. The address-size and operand-size attributes
affect the action performed by this instruction, as shown in the following table. The
operand-size attribute of the instruction is determined by the chosen register; the
address-size attribute is determined by the attribute of the code segment.

Different assemblers may use different algorithms based on the size attribute and
symbolic reference of the source operand.

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN

DEST EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 AND AddressSize = 32

THEN
temp EffectiveAddress(SRC); (* 32-bit address *)
DEST temp[0..15]; (* 16-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 16
THEN

temp EffectiveAddress(SRC); (* 16-bit address *)
DEST ZeroExtend(temp); (* 32-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 32
THEN

DEST EffectiveAddress(SRC); (* 32-bit address *)
FI;

FI;

Opcode Instruction Description

8D /r LEA r16,m Store effective address for m in register r16

8D /r LEA r32,m Store effective address for m in register r32

Table 2-16. LEA Address and Operand Sizes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested 16-bit
register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the address
are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is
zero-extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.

Volume 4: Base IA-32 Instruction Reference 4:259

LEA—Load Effective Address (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

4:260 Volume 4: Base IA-32 Instruction Reference

LEAVE—High Level Procedure Exit

Description

Executes a return from a procedure or group of nested procedures established by an
earlier ENTER instruction. The instruction copies the frame pointer (in the EBP register)
into the stack pointer register (ESP), releasing the stack space used by a procedure for
its local variables. The old frame pointer (the frame pointer for the calling procedure
that issued the ENTER instruction) is then popped from the stack into the EBP register,
restoring the calling procedure’s frame.

A RET instruction is commonly executed following a LEAVE instruction to return
program control to the calling procedure and remove any arguments pushed onto the
stack by the procedure being returned from.

Operation

IF StackAddressSize = 32
THEN

ESP EBP;
ELSE (* StackAddressSize = 16*)

SP BP;
FI;
IF OperandSize = 32

THEN
EBP Pop();

ELSE (* OperandSize = 16*)
BP Pop();

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of
the current stack segment.

Opcode Instruction Description

C9 LEAVE Set SP to BP, then pop BP

C9 LEAVE Set ESP to EBP, then pop EBP

Volume 4: Base IA-32 Instruction Reference 4:261

LEAVE—High Level Procedure Exit (Continued)

Real Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective
address space from 0 to 0FFFFH.

Virtual 8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective
address space from 0 to 0FFFFH.

4:262 Volume 4: Base IA-32 Instruction Reference

LES—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

Volume 4: Base IA-32 Instruction Reference 4:263

LFS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

4:264 Volume 4: Base IA-32 Instruction Reference

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Description

Loads the values in the source operand into the global descriptor table register (GDTR)
or the interrupt descriptor table register (IDTR). The source operand is a pointer to 6
bytes of data in memory that contains the base address (a linear address) and the limit
(size of table in bytes) of the global descriptor table (GDT) or the interrupt descriptor
table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 bytes of the
6-byte data operand) and a 32-bit base address (upper 4 bytes of the data operand)
are loaded into the register. If the operand-size attribute is 16 bits, a 16-bit limit (lower
2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, the
high-order byte of the operand is not used and the high-order byte of the base address
in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are
not used in application programs. They are the only instructions that directly load a
linear address (that is, not a segment-relative address) and a limit in protected mode.
They are commonly executed in real-address mode to allow processor initialization prior
to switching to protected mode.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,LGDT/LIDT);

IF instruction is LIDT
THEN

IF OperandSize = 16
THEN

IDTR(Limit) SRC[0:15];
IDTR(Base) SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
IDTR(Limit) SRC[0:15];
IDTR(Base) SRC[16:47];

FI;
ELSE (* instruction is LGDT *)

IF OperandSize = 16
THEN

GDTR(Limit) SRC[0:15];
GDTR(Base) SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
GDTR(Limit) SRC[0:15];
GDTR(Base) SRC[16:47];

FI;
FI;

Flags Affected

None.

Opcode Instruction Description

0F 01 /2 LGDT m16&32 Load m into GDTR

0F 01 /3 LIDT m16&32 Load m into IDTR

Volume 4: Base IA-32 Instruction Reference 4:265

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register (Continued)

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept for LIDT and LGDT

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

4:266 Volume 4: Base IA-32 Instruction Reference

LGS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

Volume 4: Base IA-32 Instruction Reference 4:267

LLDT—Load Local Descriptor Table Register

Description

Loads the source operand into the segment selector field of the local descriptor table
register (LDTR). The source operand (a general-purpose register or a memory location)
contains a segment selector that points to a local descriptor table (LDT). After the
segment selector is loaded in the LDTR, the processor uses to segment selector to
locate the segment descriptor for the LDT in the global descriptor table (GDT). It then
loads the segment limit and base address for the LDT from the segment descriptor into
the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not affected by this
instruction, nor is the LDTR field in the task state segment (TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors
in the LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general
protection exception (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be
used in application programs. Also, this instruction can only be executed in protected
mode.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LLDT);

IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI;
Read segment descriptor;
IF SegmentDescriptor(Type) LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector) SRC;
LDTR(SegmentDescriptor) GDTSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

0F 00 /2 LLDT r/m16 Load segment selector r/m16 into LDTR

4:268 Volume 4: Base IA-32 Instruction Reference

LLDT—Load Local Descriptor Table Register (Continued)

#GP(selector) If the selector operand does not point into the Global Descriptor
Table or if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LLDT instruction is recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:269

LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global Descriptor Table Register/Load Interrupt
Descriptor Table Register.

4:270 Volume 4: Base IA-32 Instruction Reference

LMSW—Load Machine Status Word

Description

Loads the source operand into the machine status word, bits 0 through 15 of register
CR0. The source operand can be a 16-bit general-purpose register or a memory
location. Only the low-order 4 bits of the source operand (which contains the PE, MP,
EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of
CR0 are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the
processor to switch to protected mode. The PE flag in the CR0 register is a sticky bit.
Once set to 1, the LMSW instruction cannot be used clear this flag and force a switch
back to real address mode.

The LMSW instruction is provided for use in operating-system software; it should not be
used in application programs. In protected or virtual 8086 mode, it can only be
executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and
procedures intended to run on processors more recent than the Intel 286 should use
the MOV (control registers) instruction to load the machine status word.

This instruction is a serializing instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LMSW);

CR0[0:3] SRC[0:3];

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CR0

Volume 4: Base IA-32 Instruction Reference 4:271

LMSW—Load Machine Status Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

4:272 Volume 4: Base IA-32 Instruction Reference

LOCK—Assert LOCK# Signal Prefix

Description

Causes the processor’s LOCK# signal to be asserted during execution of the
accompanying instruction (turns the instruction into an atomic instruction). In a
multiprocessor environment, the LOCK# signal insures that the processor has exclusive
use of any shared memory while the signal is asserted.

The LOCK prefix can be prepended only to the following instructions and to those forms
of the instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS,
CMPXCHG, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined
opcode exception will be generated if the LOCK prefix is used with any other instruction.
The XCHG instruction always asserts the LOCK# signal regardless of the presence or
absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a
read-modify-write operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Operation
IF Itanium System Environment AND External_Bus_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK);

AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, the instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of the instruction.

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

Opcode Instruction Description

F0 LOCK Asserts LOCK# signal for duration of the accompanying
instruction

Volume 4: Base IA-32 Instruction Reference 4:273

LOCK—Assert LOCK# Signal Prefix (Continued)

Real Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

Virtual 8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

4:274 Volume 4: Base IA-32 Instruction Reference

LODS/LODSB/LODSW/LODSD—Load String Operand

Description

Load a byte, word, or doubleword from the source operand into the AL, AX, or EAX
register, respectively. The source operand is a memory location at the address DS:ESI.
(When the operand-size attribute is 16, the SI register is used as the source-index
register.) The DS segment may be overridden with a segment override prefix.

The LODSB, LODSW, and LODSD mnemonics are synonyms of the byte, word, and
doubleword versions of the LODS instructions. (For the LODS instruction, “DS:ESI”
must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location into the AL,
AX, or EAX register, the ESI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
ESI register is incremented; if the DF flag is 1, the ESI register is decremented.) The
ESI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these
instructions are used within a LOOP construct, because further processing of the data
moved into the register is usually necessary before the next transfer can be made. See
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337 for a
description of the REP prefix.

Operation

IF (byte load)
THEN

AL SRC; (* byte load *)
THEN IF DF = 0

THEN (E)SI 1;
ELSE (E)SI -1;

FI;
ELSE IF (word load)

THEN
AX SRC; (* word load *)

THEN IF DF = 0
THEN SI 2;
ELSE SI -2;

FI;
ELSE (* doubleword transfer *)

EAX SRC; (* doubleword load *)

Opcode Instruction Description

AC LODS DS:(E)SI Load byte at address DS:(E)SI into AL

AD LODS DS:SI Load word at address DS:SI into AX

AD LODS DS:ESI Load doubleword at address DS:ESI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:SI into AX

AD LODSD Load doubleword at address DS:ESI into EAX

Volume 4: Base IA-32 Instruction Reference 4:275

LODS/LODSB/LODSW/LODSD—Load String Operand (Continued)

THEN IF DF = 0
THEN ESI 4;
ELSE ESI -4;

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:276 Volume 4: Base IA-32 Instruction Reference

LOOP/LOOPcc—Loop According to ECX Counter

Description

Performs a loop operation using the ECX or CX register as a counter. Each time the
LOOP instruction is executed, the count register is decremented, then checked for 0. If
the count is 0, the loop is terminated and program execution continues with the
instruction following the LOOP instruction. If the count is not zero, a near jump is
performed to the destination (target) operand, which is presumably the instruction at
the beginning of the loop. If the address-size attribute is 32 bits, the ECX register is
used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). This offset is generally
specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit immediate value, which is added to the instruction pointer. Offsets of -128
to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for
terminating the loop before the count reaches zero. With these forms of the instruction,
a condition code (cc) is associated with each instruction to indicate the condition being
tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF flag;
the ZF flag is changed by other instructions in the loop.

All branches are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

Operation

IF AddressSize = 32
THEN

Count is ECX;
ELSE (* AddressSize = 16 *)

Count is CX;
FI;
Count Count - 1;

IF instruction is not LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN

IF (ZF =1) AND (Count 0)
THEN BranchCond 1;
ELSE BranchCond 0;

FI;
FI;

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count 0

E1 cb LOOPE rel8 Decrement count; jump short if count 0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count 0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count 0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count 0 and ZF=0

Volume 4: Base IA-32 Instruction Reference 4:277

LOOP/LOOPcc—Loop According to ECX Counter (Continued)

IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
THEN

IF (ZF =0) AND (Count 0)
THEN BranchCond 1;
ELSE BranchCond 0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count 0)

THEN BranchCond 1;
ELSE BranchCond 0;

FI;
FI;
IF BranchCond = 1

THEN
 EIP EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP EIP AND 0000FFFFH;
FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

ELSE
Terminate loop and continue program execution at EIP;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

4:278 Volume 4: Base IA-32 Instruction Reference

LSL—Load Segment Limit

Description

Loads the unscrambled segment limit from the segment descriptor specified with the
second operand (source operand) into the first operand (destination operand) and sets
the ZF flag in the EFLAGS register. The source operand (which can be a register or a
memory location) contains the segment selector for the segment descriptor being
accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can compare the segment limit with the offset of a
pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of
byte 6 of the segment descriptor. If the descriptor has a byte granular segment limit
(the granularity flag is set to 0), the destination operand is loaded with a byte granular
value (byte limit). If the descriptor has a page granular segment limit (the granularity
flag is set to 1), the LSL instruction will translate the page granular limit (page limit)
into a byte limit before loading it into the destination operand. The translation is
performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-order 12 bits
with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination
operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however,
the upper 16 bits are truncated and only the low-order 16 bits are loaded into the
destination operand.

This instruction performs the following checks before it loads the segment limit into the
destination register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed.

• Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LSL instruction. The
valid special segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, the instruction checks that the
specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL of
the segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no value is loaded in the destination operand.

Opcode Instruction Description

0F 03 /r LSL r16,r/m16 Load: r16 segment limit, selector r/m16

0F 03 /r LSL r32,r/m32 Load: r32 segment limit, selector r/m32)

Volume 4: Base IA-32 Instruction Reference 4:279

LSL—Load Segment Limit (Continued)

Operation
IF SRC(Offset) > descriptor table limit

THEN ZF 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF 0

ELSE
temp SegmentLimit([SRC]);
IF (G = 1)

THEN
temp ShiftLeft(12, temp) OR 00000FFFH;

FI;
IF OperandSize = 32

THEN
DEST temp;

ELSE (*OperandSize = 16*)
DEST temp AND FFFFH;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared
to 0.

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate No

5 16-bit/32-bit task gate No

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate No

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No

4:280 Volume 4: Base IA-32 Instruction Reference

LSL—Load Segment Limit (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The LSL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LSL instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:281

LSS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

4:282 Volume 4: Base IA-32 Instruction Reference

LTR—Load Task Register

Description

Loads the source operand into the segment selector field of the task register. The
source operand (a general-purpose register or a memory location) contains a segment
selector that points to a task state segment (TSS). After the segment selector is loaded
in the task register, the processor uses to segment selector to locate the segment
descriptor for the TSS in the global descriptor table (GDT). It then loads the segment
limit and base address for the TSS from the segment descriptor into the task register.
The task pointed to by the task register is marked busy, but a switch to the task does
not occur.

The LTR instruction is provided for use in operating-system software; it should not be
used in application programs. It can only be executed in protected mode when the CPL
is 0. It is commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LTR);
IF SRC(Offset) > descriptor table limit OR IF SRC(type) global

THEN #GP(segment selector);
FI;
Reat segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy) 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) SRC;
TaskRegister(SegmentDescriptor) TSSSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

Opcode Instruction Description

0F 00 /3 LTR r/m16 Load r/m16 into TR

Volume 4: Base IA-32 Instruction Reference 4:283

LTR—Load Task Register (Continued)

#GP(selector) If the source selector points to a segment that is not a TSS or to one
for a task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LTR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LTR instruction is not recognized in virtual 8086 mode.

4:284 Volume 4: Base IA-32 Instruction Reference

MOV—Move

Notes:
*The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where 8, 16,

and 32 refer to the size of the data. The address-size attribute of the instruction determines the size of the
offset, either 16 or 32 bits.

**In 32-bit mode, the assembler may require the use of the 16-bit operand size prefix (a byte with the value 66H
preceding the instruction).

Description

Copies the second operand (source operand) to the first operand (destination operand).
The source operand can be an immediate value, general-purpose register, segment
register, or memory location; the destination register can be a general-purpose register,
segment register, or memory location. Both operands must be the same size, which can
be a byte, a word, or a doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results
in an invalid opcode exception (#UD). To load the CS register, use the RET instruction.

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to r/m8

89 /r MOV r/m16,r16 Move r16 to r/m16

89 /r MOV r/m32,r32 Move r32 to r/m32

8A /r MOV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16 to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8C /r MOV r/m16,Sreg** Move segment register to r/m16

8E /r MOV Sreg,r/m16 Move r/m16 to segment register

A0 MOV AL,moffs8* Move byte at (seg:offset) to AL

A1 MOV AX,moffs16* Move word at (seg:offset) to AX

A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX

A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

B0+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16 to r16

B8+ rd MOV r32,imm32 Move imm32 to r32

C6 /0 MOV r/m8,imm8 Move imm8 to r/m8

C7 /0 MOV r/m16,imm16 Move imm16 to r/m16

C7 /0 MOV r/m32,imm32 Move imm32 to r/m32

Volume 4: Base IA-32 Instruction Reference 4:285

MOV—Move (Continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector. In protected mode, moving a segment
selector into a segment register automatically causes the segment descriptor
information associated with that segment selector to be loaded into the hidden
(shadow) part of the segment register. While loading this information, the segment
selector and segment descriptor information is validated (see the “Operation” algorithm
below). The segment descriptor data is obtained from the GDT or LDT entry for the
specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS
registers without causing a protection exception. However, any subsequent attempt to
reference a segment whose corresponding segment register is loaded with a null value
causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all external interrupts
and traps until after the execution of the next instruction in the IA-32 System
Environment. For the Itanium System Environment, MOV to SS results in a
IA-32_Intercept(SystemFlag) trap after the instruction completes. This
operation allows a stack pointer to be loaded into the ESP register with the next
instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When moving data in 32-bit mode between a segment register and a 32-bit
general-purpose register, the Pentium Pro processor does not require the use of a
16-bit operand size prefix; however, some assemblers do require this prefix. The
processor assumes that the sixteen least-significant bits of the general-purpose register
are the destination or source operand. When moving a value from a segment selector
to a 32-bit register, the processor fills the two high-order bytes of the register with
zeros.

Operation
DEST SRC;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL CPL
OR segment is not a writable data segment
OR DPL CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

4:286 Volume 4: Base IA-32 Instruction Reference

MOV—Move (Continued)

SS segment selector;
SS segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister segment selector;
SegmentRegister segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister null segment selector;
SegmentRegister null segment descriptor;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept trap for Move to SS
Itanium Reg Faults NaT Register Consumption Abort.
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.
If the destination operand is in a nonwritable segment.
If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL and
the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is not a data or readable code segment.

Volume 4: Base IA-32 Instruction Reference 4:287

MOV—Move (Continued)

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is a data or nonconforming code segment, but both the
RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#UD If attempt is made to load the CS register.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If attempt is made to load the CS register.

4:288 Volume 4: Base IA-32 Instruction Reference

MOV—Move to/from Control Registers

Description

Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose
register or vice versa. The operand size for these instructions is always 32 bits,
regardless of the operand-size attribute. (See the Intel Architecture Software
Developer’s Manual, Volume 3 for a detailed description of the flags and fields in the
control registers.)

When loading a control register, a program should not attempt to change any of the
reserved bits; that is, always set reserved bits to the value previously read.

At the opcode level, the reg field within the ModR/M byte specifies which of the control
registers is loaded or read. The 2 bits in the mod field are always 11B. The r/m field
specifies the general-purpose register loaded or read.

These instructions have the following side effects:

• When writing to control register CR3, all non-global TLB entries are flushed (see the
Intel Architecture Software Developer’s Manual, Volume 3.

• When modifying any of the paging flags in the control registers (PE and PG in
register CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed,
including global entries. This operation is implementation specific for the Pentium
Pro processor. Software should not depend on this functionality in future Intel
architecture processors.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1
(to enable the physical address extension mode), the pointers (PDPTRs) in the
page-directory pointers table will be loaded into the processor (into internal,
non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3
will cause the PDPTRs to be reloaded into the processor.

• If the PAE flag is set to 1 and control register CR0 is written to set the PG flag, the
PDPTRs are reloaded into the processor.

Operation

IF Itanium System Environment AND Move To CR Form THEN IA-32_Intercept(INST,MOVCR);

DEST SRC;

Opcode Instruction Description

0F 22 /r MOV CR0,r32 Move r32 to CR0

0F 22 /r MOV CR2,r32 Move r32 to CR2

0F 22 /r MOV CR3,r32 Move r32 to CR3

0F 22 /r MOV CR4,r32 Move r32 to CR4

0F 20 /r MOV r32,CR0 Move CR0 to r32

0F 20 /r MOV r32,CR2 Move CR2 to r32

0F 20 /r MOV r32,CR3 Move CR3 to r32

0F 20 /r MOV r32,CR4 Move CR4 to r32

Volume 4: Base IA-32 Instruction Reference 4:289

MOV—Move to/from Control Registers (Continued)

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

IA-32_Intercept Move To CR#, Mandatory Instruction Intercept.

Move From CR#, read the virtualized control register values,
CR0{15:6} return zeros.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write reserved bits in the page-directory
pointers table (used in the extended physical addressing mode)
when the PAE flag in control register CR4 and the PG flag in control
register CR0 are set to 1.

Real Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

Virtual 8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual 8086 mode.

4:290 Volume 4: Base IA-32 Instruction Reference

MOV—Move to/from Debug Registers

Description

Moves the contents of two or more debug registers (DR0 through DR3, DR4 and DR5,
or DR6 and DR7) to a general-purpose register or vice versa. The operand size for these
instructions is always 32 bits, regardless of the operand-size attribute. (See the Intel
Architecture Software Developer’s Manual, Volume 3 for a detailed description of the
flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate
on debug registers in a manner that is compatible with Intel386™ and Intel486
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7,
respectively. When the DE set in CR4 is set, attempts to reference DR4 and DR5 result
in an undefined opcode (#UD) exception.

At the opcode level, the reg field within the ModR/M byte specifies which of the debug
registers is loaded or read. The two bits in the mod field are always 11. The r/m field
specifies the general-purpose register loaded or read.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,MOVDR);

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction
is executed involving DR4 or DR5.

Opcode Instruction Description

0F 21/r MOV r32, DR0-DR3 Move debug registers to r32

0F 21/r MOV r32, DR4-DR5 Move debug registers to r32

0F 21/r MOV r32, DR6-DR7 Move debug registers to r32

0F 23 /r MOV DR0-DR3, r32 Move r32 to debug registers

0F 23 /r MOV DR4-DR5, r32 Move r32 to debug registers

0F 23 /r MOV DR6-DR7,r32 Move r32 to debug registers

Volume 4: Base IA-32 Instruction Reference 4:291

MOV—Move to/from Debug Registers (Continued)

#DB If any debug register is accessed while the GD flag in debug register
DR7 is set.

Real Address Mode Exceptions

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction
is executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register
DR7 is set.

Virtual 8086 Mode Exceptions

#GP(0) The debug registers cannot be loaded or read when in virtual 8086
mode.

4:292 Volume 4: Base IA-32 Instruction Reference

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Description

Moves the byte, word, or doubleword specified with the second operand (source
operand) to the location specified with the first operand (destination operand). The
source operand specifies the memory location at the address DS:ESI and the
destination operand specifies the memory location at address ES:EDI. (When the
operand-size attribute is 16, the SI and DI register are used as the source-index and
destination-index registers, respectively.) The DS segment may be overridden with a
segment override prefix, but the ES segment cannot be overridden.

The MOVSB, MOVSW, and MOVSD mnemonics are synonyms of the byte, word, and
doubleword versions of the MOVS instructions. They are simpler to use, but provide no
type or segment checking. (For the MOVS instruction, “DS:ESI” and “ES:EDI” must be
explicitly specified in the instruction.)

After the transfer, the ESI and EDI registers are incremented or decremented
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the ESI and EDI register are incremented; if the DF flag is 1, the ESI and EDI
registers are decremented.) The registers are incremented or decremented by 1 for
byte operations, by 2 for word operations, or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP
prefix (see “REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation” on
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337) for
block moves of ECX bytes, words, or doublewords.

Operation

DEST SRC;
IF (byte move)

THEN IF DF = 0
THEN (E)DI 1;
ELSE (E)DI -1;

FI;
ELSE IF (word move)

THEN IF DF = 0
THEN DI 2;
ELSE DI -2;

Opcode Instruction Description

A4 MOVS ES:(E)DI, DS:(E)SI Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVS ES:DI,DS:SI Move word at address DS:SI to address ES:DI

A5 MOVS ES:EDI, DS:ESI Move doubleword at address DS:ESI to address ES:EDI

A4 MOVSB Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVSW Move word at address DS:SI to address ES:DI

A5 MOVSD Move doubleword at address DS:ESI to address ES:EDI

Volume 4: Base IA-32 Instruction Reference 4:293

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
(Continued)

FI;
ELSE (* doubleword move*)

THEN IF DF = 0
THEN EDI 4;
ELSE EDI -4;

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:294 Volume 4: Base IA-32 Instruction Reference

MOVSX—Move with Sign-Extension

Description

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and sign extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

Operation

DEST SignExtend(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F BE /r MOVSX r16,r/m8 Move byte to word with sign-extension

0F BE /r MOVSX r32,r/m8 Move byte to doubleword, sign-extension

0F BF /r MOVSX r32,r/m16 Move word to doubleword, sign-extension

Volume 4: Base IA-32 Instruction Reference 4:295

MOVZX—Move with Zero-Extend

Description

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and sign extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and zero extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

Operation

DEST ZeroExtend(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

0F B6 /r MOVZX r16,r/m8 Move byte to word with zero-extension

0F B6 /r MOVZX r32,r/m8 Move byte to doubleword, zero-extension

0F B7 /r MOVZX r32,r/m16 Move word to doubleword, zero-extension

4:296 Volume 4: Base IA-32 Instruction Reference

MOVZX—Move with Zero-Extend (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:297

MUL—Unsigned Multiplication of AL, AX, or EAX

Description

Performs an unsigned multiplication of the first operand (destination operand) and the
second operand (source operand) and stores the result in the destination operand. The
destination operand is an implied operand located in register AL, AX or EAX (depending
on the size of the operand); the source operand is located in a general-purpose register
or a memory location. The action of this instruction and the location of the result
depends on the opcode and the operand size as shown in the following table.

:

The AH, DX, or EDX registers (depending on the operand size) contain the high-order
bits of the product. If the contents of one of these registers are 0, the CF and OF flags
are cleared; otherwise, the flags are set.

Operation

IF byte operation
THEN

AX AL SRC
ELSE (* word or doubleword operation *)

IF OperandSize = 16
THEN

DX:AX AX SRC
ELSE (* OperandSize = 32 *)

EDX:EAX EAX SRC
FI;

FI;

Flags Affected

The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they
are set to 1. The SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX AL r/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX AX r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX EAX r/m32)

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

4:298 Volume 4: Base IA-32 Instruction Reference

MUL—Unsigned Multiplication of AL, AX, or EAX (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:299

NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement. The
destination operand is located in a general-purpose register or a memory location.

Operation

IF DEST = 0
THEN CF 0
ELSE CF 1;

FI;
DEST - (DEST)

Flags Affected

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF,
ZF, AF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate r/m8

F7 /3 NEG r/m16 Two's complement negate r/m16

F7 /3 NEG r/m32 Two's complement negate r/m32

4:300 Volume 4: Base IA-32 Instruction Reference

NEG—Two's Complement Negation (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:301

NOP—No Operation

Description

Performs no operation. This instruction is a one-byte instruction that takes up space in
the instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction performs no operation, no registers are accessed and no
faults are generated.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

90 NOP No operation

4:302 Volume 4: Base IA-32 Instruction Reference

NOT—One's Complement Negation

Description

Performs a bitwise NOT operation (1’s complement) on the destination operand and
stores the result in the destination operand location. The destination operand can be a
register or a memory location.

Operation

DEST NOT DEST;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

F6 /2 NOT r/m8 Reverse each bit of r/m8

F7 /2 NOT r/m16 Reverse each bit of r/m16

F7 /2 NOT r/m32 Reverse each bit of r/m32

Volume 4: Base IA-32 Instruction Reference 4:303

NOT—One's Complement Negation (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:304 Volume 4: Base IA-32 Instruction Reference

OR—Logical Inclusive OR

Description

Performs a bitwise OR operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand
can be an immediate, a register, or a memory location; the destination operand can be
a register or a memory location.

Operation

DEST DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0C ib OR AL,imm8 AL OR imm8

0D iw OR AX,imm16 AX OR imm16

0D id OR EAX,imm32 EAXOR imm32

80 /1 ib OR r/m8,imm8 r/m8 OR imm8

81 /1 iw OR r/m16,imm16 r/m16 OR imm16

81 /1 id OR r/m32,imm32 r/m32 OR imm32

83 /1 ib OR r/m16,imm8 r/m16 OR imm8

83 /1 ib OR r/m32,imm8 r/m32 OR imm8

08 /r OR r/m8,r8 r/m8 OR r8

09 /r OR r/m16,r16 r/m16 OR r16

09 /r OR r/m32,r32 r/m32 OR r32

0A /r OR r8,r/m8 r8 OR r/m8

0B /r OR r16,r/m16 r16 OR r/m16

0B /r OR r32,r/m32 r32 OR r/m32

Volume 4: Base IA-32 Instruction Reference 4:305

OR—Logical Inclusive OR (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:306 Volume 4: Base IA-32 Instruction Reference

OUT—Output to Port

Description

Copies the value from the second operand (source operand) to the I/O port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the
DX register as a source operand allows I/O ports from 0 to 65,535 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing
a 16- and 32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports.
Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize TLBs in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing OUT instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* Real-address mode or protected mode with CPL IOPL *)

Opcode Instruction Description

E6 ib OUT imm8, AL Output byte AL to imm8 I/O port address

E7 ib OUT imm8, AX Output word AX to imm8 I/O port address

E7 ib OUT imm8, EAX Output doubleword EAX to imm8 I/O port address

EE OUT DX, AL Output byte AL to I/O port address in DX

EF OUT DX, AX Output word AX to I/O port address in DX

EF OUT DX, EAX Output doubleword EAX to I/O port address in DX

Volume 4: Base IA-32 Instruction Reference 4:307

OUT—Output to Port (Continued)

(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)
FI;
IF (Itanium_System_Environment) THEN

DEST_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
DEST_PA = translate(DEST_VA);
[DEST_PA] SRC; (* Writes to selected I/O port *)

FI;

memory_fence();
[DEST_PA] SRC; (* Writes to selected I/O port *)
memory_fence();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 and when CFLG.io is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

4:308 Volume 4: Base IA-32 Instruction Reference

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Description

Copies data from the second operand (source operand) to the I/O port specified with
the first operand (destination operand). The source operand is a memory location at the
address DS:ESI. (When the operand-size attribute is 16, the SI register is used as the
source-index register.) The DS register may be overridden with a segment override
prefix.

The destination operand must be the DX register, allowing I/O port addresses from 0 to
65,535 to be accessed. When accessing an 8-bit I/O port, the opcode determines the
port size; when accessing a 16- and 32-bit I/O port, the operand-size attribute
determines the port size.

The OUTSB, OUTSW and OUTSD mnemonics are synonyms of the byte, word, and
doubleword versions of the OUTS instructions. (For the OUTS instruction, “DS:ESI”
must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location to the I/O
port, the ESI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI register is
incremented; if the DF flag is 1, the EDI register is decremented.) The ESI register is
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4
for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix
for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” on page 4:337 for a description of the REP
prefix.

After an OUTS, OUTSB, OUTSW, or OUTSD instruction is executed, the processor waits
for the acknowledgment of the OUT transaction before beginning to execute the next
instruction. Note that the next instruction may be prefetched, even if the OUT
transaction has not completed.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

Opcode Instruction Description

6E OUTS DX, DS:(E)SI Output byte at address DS:(E)SI to I/O port in DX

6F OUTS DX, DS:SI Output word at address DS:SI to I/O port in DX

6F OUTS DX, DS:ESI Output doubleword at address DS:ESI to I/O port in DX

6E OUTSB Output byte at address DS:(E)SI to I/O port in DX

6F OUTSW Output word at address DS:SI to I/O port in DX

6F OUTSD Output doubleword at address DS:ESI to I/O port in DX

Volume 4: Base IA-32 Instruction Reference 4:309

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize TLBs in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing OUTS instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* I/O operation is allowed *)

FI;

IF (Itanium_System_Environment) THEN
DEST_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
DEST_PA = translate(DEST_VA);
[DEST_PA] SRC; (* Writes to selected I/O port *)

FI;
memory_fence();
[DEST_PA] SRC; (* Writes to selected I/O port *)
memory_fence();

IF (byte operation)
THEN IF DF = 0

THEN (E)DI 1;
ELSE (E)DI -1;

FI;
ELSE IF (word operation)

THEN IF DF = 0
THEN DI 2;
ELSE DI -2;

FI;
ELSE (* doubleword operation *)

THEN IF DF = 0
THEN EDI 4;
ELSE EDI -4;

FI;
FI;

FI;
FI;

4:310 Volume 4: Base IA-32 Instruction Reference

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 and when CFLG.io is 1.

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segments
is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:311

POP—Pop a Value from the Stack

Description

Loads the value from the top of the procedure stack to the location specified with the
destination operand and then increments the stack pointer. The destination operand
can be a general-purpose register, memory location, or segment register.

The current address-size attribute for the stack segment and the operand-size attribute
determine the amount the stack pointer is incremented (see the “Operation” below).
For example, if 32-bit addressing and operands are being used, the ESP register (stack
pointer) is incremented by 4 and, if 16-bit addressing and operands are being used, the
SP register (stack pointer for 16-bit addressing) is incremented by 2. The B flag in the
stack segment’s segment descriptor determines the stack’s address-size attribute.

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the descriptor
information associated with that segment selector to be loaded into the hidden
(shadow) part of the segment register and causes the selector and the descriptor
information to be validated (see the “Operation” below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a null value causes a
general protection exception (#GP). In this situation, no memory reference occurs and
the saved value of the segment register is null.

The POP instruction cannot pop a value into the CS register. To load the CS register, use
the RET instruction.

A POP SS instruction inhibits all external interrupts, including the NMI interrupt, and
traps until after execution of the next instruction. in the IA-32 System Environment.
For the Itanium System Environment, POP SS results in an
IA-32_Intercept(SystemFlag) trap after the instruction completes.This
operation allows a stack pointer to be loaded into the ESP register with the next
instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer

4:312 Volume 4: Base IA-32 Instruction Reference

POP—Pop a Value from the Stack (Continued)

This action allows sequential execution of POP SS and MOV ESP, EBP instructions
without the danger of having an invalid stack during an interrupt. However, use of the
LSS instruction is the preferred method of loading the SS and ESP registers.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instructions computes the effective address of the operand after it
increments the ESP register.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST SS:ESP; (* copy a doubleword *)
ESP ESP + 4;

ELSE (* OperandSize = 16*)
DEST SS:ESP; (* copy a word *)

ESP ESP + 2;
FI;

ELSE (* StackAddrSize = 16*)
IF OperandSize = 16

THEN
DEST SS:SP; (* copy a word *)
SP SP + 2;

ELSE (* OperandSize = 32 *)
DEST SS:SP; (* copy a doubleword *)
SP SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL CPL
OR segment is not a writable data segment
OR DPL CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS segment selector;
SS segment descriptor;

Volume 4: Base IA-32 Instruction Reference 4:313

POP—Pop a Value from the Stack (Continued)

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister segment selector;
SegmentRegister segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister null segment selector;
SegmentRegister null segment descriptor;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept trap for POP SS

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and
the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
nonwritable data segment.

4:314 Volume 4: Base IA-32 Instruction Reference

POP—Pop a Value from the Stack (Continued)

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is a data or nonconforming code segment, but both the
RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking
is enabled.

Volume 4: Base IA-32 Instruction Reference 4:315

POPA/POPAD—Pop All General-Purpose Registers

Description

Pops doublewords (POPAD) or words (POPA) from the procedure stack into the
general-purpose registers. The registers are loaded in the following order: EDI, ESI,
EBP, EBX, EDX, ECX, and EAX (if the current operand-size attribute is 32) and DI, SI,
BP, BX, DX, CX, and AX (if the operand-size attribute is 16). (These instructions reverse
the operation of the PUSHA/PUSHAD instructions.) The value on the stack for the ESP
or SP register is ignored. Instead, the ESP or SP register is incremented after each
register is loaded (see the “Operation” below).

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode.
The POPA instruction is intended for use when the operand-size attribute is 16 and the
POPAD instruction for when the operand-size attribute is 32. Some assemblers may
force the operand size to 16 when POPA is used and to 32 when POPAD is used. Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting of
the operand-size attribute to determine the size of values to be popped from the stack,
regardless of the mnemonic used.

Operation

IF OperandSize = 32 (* instruction = POPAD *)
THEN

EDIPop();
ESIPop();
EBPPop();
increment ESP by 4 (* skip next 4 bytes of stack *)
EBXPop();
EDXPop();
ECXPop();
EAXPop();

ELSE (* OperandSize = 16, instruction = POPA *)
DIPop();
SIPop();
BPPop();
increment ESP by 2 (* skip next 2 bytes of stack *)
BXPop();
DXPop();
CXPop();
AXPop();

FI;

Flags Affected

None.

Opcode Instruction Description

61 POPA Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX

4:316 Volume 4: Base IA-32 Instruction Reference

POPA/POPAD—Pop All General-Purpose Registers (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Volume 4: Base IA-32 Instruction Reference 4:317

POPF/POPFD—Pop Stack into EFLAGS Register

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register or pops a word from the top
of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits of the
EFLAGS register. (These instructions reverse the operation of the PUSHF/PUSHFD
instructions.)

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is 16
and the POPFD instruction for when the operand-size attribute is 32. Some assemblers
may force the operand size to 16 when POPF is used and to 32 when POPFD is used.
Others may treat these mnemonics as synonyms (POPF/POPFD) and use the current
setting of the operand-size attribute to determine the size of values to be popped from
the stack, regardless of the mnemonic used.

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly,
depending on the mode of operation of the processor. When the processor is operating
in protected mode at privilege level 0 (or in real-address mode, which is equivalent to
privilege level 0), all the non-reserved flags in the EFLAGS register except the VIP and
VIF flags can be modified. The VIP and VIF flags are cleared.

When operating in protected mode, but with a privilege level greater an 0, all the flags
can be modified except the IOPL field and the VIP and VIF flags. Here, the IOPL flags
are masked and the VIP and VIF flags are cleared.

When operating in virtual-8086 mode, the I/O privilege level (IOPL) must be equal to 3
to use POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are masked. If
the IOPL is less than 3, the POPF/POPFD instructions cause a general protection
exception (#GP).

The IOPL is altered only when executing at privilege level 0. The interrupt flag is altered
only when executing at a level at least as privileged as the IOPL. (Real-address mode is
equivalent to privilege level 0.) If a POPF/POPFD instruction is executed with insufficient
privilege, an exception does not occur, but the privileged bits do not change.

Operation

OLD_IF <- IF; OLD_AC <- AC; OLD_TF <- TF;

IF CR0.PE = 0 (*Real Mode *)

THEN
IF OperandSize = 32;

THEN
EFLAGS Pop();
(* All non-reserved flags except VM, RF, VIP and VIF can be modified; *)
ELSE (* OperandSize = 16 *)
EFLAGS[15:0] Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (*In Protected Mode *)

Opcode Instruction Description

9D POPF Pop top of stack into EFLAGS

9D POPFD Pop top of stack into EFLAGS

4:318 Volume 4: Base IA-32 Instruction Reference

POPF/POPFD—Pop Stack into EFLAGS Register (Continued)

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF CPL=0
THEN

IF OperandSize = 32;
THEN

EFLAGS Pop();
(* All non-reserved flags except VM, RF, VIP and VIF can be *)
(* modified; *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32;
THEN

EFLAGS Pop()
(* All non-reserved bits except IOPL, RF, VM, VIP, and VIF can *)
(* be modified; *)
(* IOPL is masked *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] Pop();
(* All non-reserved bits except IOPL can be modified; IOPL is

masked *)
FI;

FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN

IF OperandSize=32
THEN

EFLAGS Pop()
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF *)
(* can be modified; VM, RF, IOPL, VIP, and VIF are masked*)

ELSE
EFLAGS[15:0] Pop()
(* All non-reserved bits except IOPL can be modified; IOPL is *)

(* masked *)
FI;

ELSE (* IOPL < 3 *)
IF CR4.VME = 0

THEN #GP(0);
ELSE

IF ((OperandSize = 32) OR (STACK.TF = 1) OR (EFLAGS.VIP = 1
AND STACK.IF = 1)
THEN #GP(0);
ELSE

TempFlags <- pop();
FLAGS <- TempFlags; (*IF and IOPL bits are unchanged*)
EFLAGS.VIF <- TempFlags.IF;

FI;
FI;

FI;

Volume 4: Base IA-32 Instruction Reference 4:319

POPF/POPFD—Pop Stack into EFLAGS Register (Continued)

FI;
FI;

IF(Itanium System Environment AND (AC, TF != OLD_AC, OLD_TF)
THEN IA-32_Intercept(System_Flag,POPF);

IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF
THEN IA-32_Intercept(System_Flag,POPF);

Flags Affected

All flags except the reserved bits.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes
state or if the AC, RF or TF changes state.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with
an operand-size override prefix.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

4:320 Volume 4: Base IA-32 Instruction Reference

PUSH—Push Word or Doubleword Onto the Stack

Description

Decrements the stack pointer and then stores the source operand on the top of the
procedure stack. The current address-size attribute for the stack segment and the
operand-size attribute determine the amount the stack pointer is decremented (see the
“Operation” below). For example, if 32-bit addressing and operands are being used, the
ESP register (stack pointer) is decremented by 4 and, if 16-bit addressing and operands
are being used, the SP register (stack pointer for 16-bit addressing) is decremented by
2. Pushing 16-bit operands when the stack address-size attribute is 32 can result in a
misaligned the stack pointer (that is, the stack pointer not aligned on a doubleword
boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the
instruction was executed. Thus, if a PUSH instruction uses a memory operand in which
the ESP register is used as a base register for computing the operand address, the
effective address of the operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

ESP ESP 4;
SS:ESP SRC; (* push doubleword *)

ELSE (* OperandSize = 16*)
ESP ESP 2;
SS:ESP SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16*)

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS

Volume 4: Base IA-32 Instruction Reference 4:321

PUSH—Push Word or Doubleword Onto the Stack (Continued)

IF OperandSize = 16
THEN

SP SP 2;
 SS:SP SRC; (* push word *)

ELSE (* OperandSize = 32*)
SP SP 4;
SS:SP SRC; (* push doubleword *)

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

If the new value of the SP or ESP register is outside the stack
segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

4:322 Volume 4: Base IA-32 Instruction Reference

PUSH—Push Word or Doubleword Onto the Stack (Continued)

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

For Intel architecture processors from the Intel 286 on, the PUSH ESP instruction
pushes the value of the ESP register as it existed before the instruction was executed.
(This is also true in the real-address and virtual-8086 modes.) For the Intel 8086
processor, the PUSH SP instruction pushes the new value of the SP register (that is the
value after it has been decremented by 2).

Volume 4: Base IA-32 Instruction Reference 4:323

PUSHA/PUSHAD—Push All General-Purpose Registers

Description

Push the contents of the general-purpose registers onto the procedure stack. The
registers are stored on the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP
(original value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX,
CX, DX, BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16).
(These instructions perform the reverse operation of the POPA/POPAD instructions.)
The value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of values
to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the
PUSHA/PUSHAD instruction is executed, the processor shuts down due to a lack of
stack space. No exception is generated to indicate this condition.

Operation

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Opcode Instruction Description

60 PUSHA Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI, and EDI

4:324 Volume 4: Base IA-32 Instruction Reference

PUSHA/PUSHAD—Push All General-Purpose Registers (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual 8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

Volume 4: Base IA-32 Instruction Reference 4:325

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Description

Decrement the stack pointer by 4 (if the current operand-size attribute is 32) and push
the entire contents of the EFLAGS register onto the procedure stack or decrement the
stack pointer by 2 (if the operand-size attribute is 16) push the lower 16 bits of the
EFLAGS register onto the stack. (These instructions reverse the operation of the
POPF/POPFD instructions.)

When copying the entire EFLAGS register to the stack, bits 16 and 17, called the VM
and RF flags, are not copied. Instead, the values for these flags are cleared in the
EFLAGS image stored on the stack.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to
determine the size of values to be pushed from the stack, regardless of the mnemonic
used.

When the I/O privilege level (IOPL) is less than 3 in virtual-8086 mode, the
PUSHF/PUSHFD instructions causes a general protection exception (#GP). The IOPL is
altered only when executing at privilege level 0. The interrupt flag is altered only when
executing at a level at least as privileged as the IOPL. (Real-address mode is equivalent
to privilege level 0.) If a PUSHF/PUSHFD instruction is executed with insufficient
privilege, an exception does not occur, but the privileged bits do not change.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the
PUSHA/PUSHAD instruction is executed, the processor shuts down due to a lack of
stack space. No exception is generated to indicate this condition.

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF OperandSize = 32
THEN

push(EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack*)

ELSE
push(EFLAGS); (* Lower 16 bits only *)

FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN

IF OperandSize = 32

Opcode Instruction Description

9C PUSHF Push EFLAGS

9C PUSHFD Push EFLAGS

4:326 Volume 4: Base IA-32 Instruction Reference

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack (Continued)

THEN push(EFLAGS AND 0FCFFFFH);
(* VM and RF EFLAGS bits are cleared in image stored on the stack*)
ELSE push(EFLAGS); (* Lower 16 bits only *)

FI;
ELSE (*IOPL < 3*)

IF OperandSize =32 OR CR$.VME=0
THEN #GP(0); (* Trap to virtual-8086 monitor *)
ELSE

TempFlags <- FLAGS OR 3000H; (*Set IOPL bits to 11B or IOPL 3 *)
TempFlags.IF <- EFLAGS.VIF;
push(TempFlags);

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment
boundary.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3.

Volume 4: Base IA-32 Instruction Reference 4:327

RCL/RCR/ROL/ROR-—Rotate

Opcode Instruction Description

D0 /2 RCL r/m8,1 Rotate 9 bits (CF,r/m8) left once

D2 /2 RCL r/m8,CL Rotate 9 bits (CF,r/m8) left CL times

C0 /2 ib RCL r/m8,imm8 Rotate 9 bits (CF,r/m8) left imm8 times

D1 /2 RCL r/m16,1 Rotate 17 bits (CF,r/m16) left once

D3 /2 RCL r/m16,CL Rotate 17 bits (CF,r/m16) left CL times

C1 /2 ib RCL r/m16,imm8 Rotate 17 bits (CF,r/m16) left imm8 times

D1 /2 RCL r/m32,1 Rotate 33 bits (CF,r/m32) left once

D3 /2 RCL r/m32,CL Rotate 33 bits (CF,r/m32) left CL times

C1 /2 ib RCL r/m32,imm8 Rotate 33 bits (CF,r/m32) left imm8 times

D0 /3 RCR r/m8,1 Rotate 9 bits (CF,r/m8) right once

D2 /3 RCR r/m8,CL Rotate 9 bits (CF,r/m8) right CL times

C0 /3 ib RCR r/m8,imm8 Rotate 9 bits (CF,r/m8) right imm8 times

D1 /3 RCR r/m16,1 Rotate 17 bits (CF,r/m16) right once

D3 /3 RCR r/m16,CL Rotate 17 bits (CF,r/m16) right CL times

C1 /3 ib RCR r/m16,imm8 Rotate 17 bits (CF,r/m16) right imm8 times

D1 /3 RCR r/m32,1 Rotate 33 bits (CF,r/m32) right once

D3 /3 RCR r/m32,CL Rotate 33 bits (CF,r/m32) right CL times

C1 /3 ib RCR r/m32,imm8 Rotate 33 bits (CF,r/m32) right imm8 times

D0 /0 ROL r/m8,1 Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8,CL Rotate 8 bits r/m8 left CL times

C0 /0 ib ROL r/m8,imm8 Rotate 8 bits r/m8 left imm8 times

D1 /0 ROL r/m16,1 Rotate 16 bits r/m16 left once

D3 /0 ROL r/m16,CL Rotate 16 bits r/m16 left CL times

C1 /0 ib ROL r/m16,imm8 Rotate 16 bits r/m16 left imm8 times

D1 /0 ROL r/m32,1 Rotate 32 bits r/m32 left once

D3 /0 ROL r/m32,CL Rotate 32 bits r/m32 left CL times

C1 /0 ib ROL r/m32,imm8 Rotate 32 bits r/m32 left imm8 times

D0 /1 ROR r/m8,1 Rotate 8 bits r/m8 right once

D2 /1 ROR r/m8,CL Rotate 8 bits r/m8 right CL times

C0 /1 ib ROR r/m8,imm8 Rotate 8 bits r/m16 right imm8 times

D1 /1 ROR r/m16,1 Rotate 16 bits r/m16 right once

D3 /1 ROR r/m16,CL Rotate 16 bits r/m16 right CL times

C1 /1 ib ROR r/m16,imm8 Rotate 16 bits r/m16 right imm8 times

D1 /1 ROR r/m32,1 Rotate 32 bits r/m32 right once

D3 /1 ROR r/m32,CL Rotate 32 bits r/m32 right CL times

C1 /1 ib ROR r/m32,imm8 Rotate 32 bits r/m32 right imm8 times

4:328 Volume 4: Base IA-32 Instruction Reference

RCL/RCR/ROL/ROR-—Rotate (Continued)

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory location;
the count operand is an unsigned integer that can be an immediate or a value in the CL
register. The processor restricts the count to a number between 0 and 31 by masking
all the bits in the count operand except the 5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate through
carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into the
CF flag. The RCR instruction shifts the CF flag into the most-significant bit and shifts the
least-significant bit into the CF flag. For the ROL and ROR instructions, the original
value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit
that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases. For
left rotates, the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the
most-significant bit of the result. For right rotates, the OF flag is set to the exclusive OR
of the two most-significant bits of the result.

Operation
SIZE OperandSize
CASE (determine count) OF

SIZE = 8: tempCOUNT (COUNT AND 1FH) MOD 9;
SIZE = 16: tempCOUNT (COUNT AND 1FH) MOD 17;
SIZE = 32: tempCOUNT COUNT AND 1FH;

ESAC;
(* ROL instruction operation *)
WHILE (tempCOUNT 0)

DO
tempCF MSB(DEST);
DEST (DEST 2) tempCF;
tempCOUNT tempCOUNT - 1;

OD;
ELIHW;
CF tempCF;
IF COUNT = 1

THEN OF MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* ROR instruction operation *)
WHILE (tempCOUNT 0)

DO
tempCF LSB(SRC);

Volume 4: Base IA-32 Instruction Reference 4:329

RCL/RCR/ROL/ROR-—Rotate (Continued)

DEST (DEST / 2) + (tempCF 2SIZE);
tempCOUNT tempCOUNT - 1;

OD;
IF COUNT = 1

THEN OF MSB(DEST) XOR MSB 1(DEST);
ELSE OF is undefined;

FI;
(* RCL instruction operation *)
WHILE (tempCOUNT 0)

DO
tempCF MSB(DEST);
DEST (DEST 2) tempCF;
tempCOUNT tempCOUNT - 1;

OD;
ELIHW;
CF tempCF;
IF COUNT = 1

THEN OF MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* RCR instruction operation *)
WHILE (tempCOUNT 0)

DO
tempCF LSB(SRC);
DEST (DEST / 2) + (tempCF * 2SIZE);
tempCOUNT tempCOUNT - 1;

OD;
IF COUNT = 1
IF COUNT = 1

THEN OF MSB(DEST) XOR MSB 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF,
ZF, AF, and PF flags are not affected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:330 Volume 4: Base IA-32 Instruction Reference

RCL/RCR/ROL/ROR-—Rotate (Continued)

Protected Mode Exceptions

#GP(0) If the source operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

The 8086 does not mask the rotation count. All Intel architecture processors from the
Intel386™ processor on do mask the rotation count in all operating modes.

Volume 4: Base IA-32 Instruction Reference 4:331

RDMSR—Read from Model Specific Register

Description

Loads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. The EDX register is loaded with the high-order 32 bits
of the MSR and the EAX register is loaded with the low-order 32 bits. If less than 64 bits
are implemented in the MSR being read, the values returned to EDX:EAX in
unimplemented bit locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode;
otherwise, a general protection exception #GP(0) will be generated. Specifying a
reserved or unimplemented MSR address in ECX will also cause a general protection
exception.

The MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors.

The CPUID instruction should be used to determine whether MSRs are supported
(EDX[5]=1) before using this instruction.

See model-specific instructions for all the MSRs that can be written to with this
instruction and their addresses

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,RDMSR);

EDX:EAX MSR[ECX];

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR
address.

Opcode Instruction Description

0F 32 RDMSR Load MSR specified by ECX into EDX:EAX

4:332 Volume 4: Base IA-32 Instruction Reference

RDMSR—Read from Model Specific Register (Continued)

Virtual 8086 Mode Exceptions

#GP(0) The RDMSR instruction is not recognized in virtual 8086 mode.

Intel Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into
the Intel architecture with the Pentium processor. Execution of this instruction by an
Intel architecture processor earlier than the Pentium processor results in an invalid
opcode exception #UD.

Volume 4: Base IA-32 Instruction Reference 4:333

RDPMC—Read Performance-Monitoring Counters

Description

Loads the contents of the N-bit performance-monitoring counter specified in the ECX
register into registers EDX:EAX. The EDX register is loaded with the high-order N-32
bits of the counter and the EAX register is loaded with the low-order 32 bits.

The RDPMC instruction allows application code running at a privilege level of 1, 2, or 3
to read the performance-monitoring counters if the PCE flag in the CR4 register is set
for IA-32 System Environment operation or in the Itanium System Environment if the
performance counters have been configured as user level counters. This instruction is
provided to allow performance monitoring by application code without incurring the
overhead of a call to an operating-system procedure.

The performance-monitoring counters are event counters that can be programmed to
count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads.

The RDPMC instruction does not serialize instruction execution. That is, it does not
imply that all the events caused by the preceding instructions have been completed or
that events caused by subsequent instructions have not begun. If an exact event count
is desired, software must use a serializing instruction (such as the CPUID instruction)
before and/or after the execution of the RDPCM instruction.

The RDPMC instruction can execute in 16-bit addressing mode or virtual 8086 mode;
however, the full contents of the ECX register are used to determine the counter to
access and a full N-bit result is returned (the low-order 32 bits in the EAX register and
the high-order N-32 bits in the EDX register).

Operation

IF (ECX != Implemented Counters) THEN #GP(0)

IF (Itanium System Environment)

THEN

SECURED = PSR.sp || CR4.pce==0;

IF ((PSR.cpl ==0) || (PSR.cpl!=0 && ~PMC[ECX].pm && ~SECURED)))
THEN

EDX:EAX PMD[ECX+4];
ELSE

#GP(0)
FI;

ELSE

IF ((CR4.PCE = 1 OR ((CR4.PCE = 0) AND (CPL=0)))
THEN

EDX:EAX PMD[ECX+4];
ELSE (* CR4.PCE is 0 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

Opcode Instruction Description

0F 33 RDPMC Read performance-monitoring counter specified by ECX into
EDX:EAX

4:334 Volume 4: Base IA-32 Instruction Reference

RDPMC—Read Performance-Monitoring Counters (Continued)

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

#GP(0) If the current privilege level is not 0 and the selected PMD register’s
PM bit is 1, or if PSR.sp is 1.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4
register is clear
/*In IA-32 System Environment*/.

If the value in the ECX register does not match an implemented
performance counter.

Real Address Mode Exceptions

#GP If the PCE flag in the CR4 register is clear. /*In the IA-32 System
Environment*/

If the value in the ECX register does not match an implemented
performance counter.

Virtual 8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear. /*In the IA-32 System
Environment*/

If the value in the ECX register does not match an implemented
performance counter.

Volume 4: Base IA-32 Instruction Reference 4:335

RDTSC—Read Time-Stamp Counter

Description

Loads the current value of the processor’s time-stamp counter into the EDX:EAX
registers. The time-stamp counter is contained in a 64-bit MSR. The high-order 32 bits
of the MSR are loaded into the EDX register, and the low-order 32 bits are loaded into
the EAX register. The processor increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset.

In the IA-32 System Environment, the time stamp disable (TSD) flag in register CR4
restricts the use of the RDTSC instruction. When the TSD flag is clear, the RDTSC
instruction can be executed at any privilege level; when the flag is set, the instruction
can only be executed at privilege level 0. The time-stamp counter can also be read with
the RDMSR instruction.

In the Itanium System Environment, PSR.si and CR4.TSD restricts the use of the
RDTSC instruction. When PSR.si is clear and CR4.TSD is clear, the RDTSC instruction
can be executed at any privilege level; when PSR.si is set or CR4.TSD is set, the
instruction can only be executed at privilege level 0.

The RDTSC instruction is not serializing instruction. Thus, it does not necessarily wait
until all previous instructions have been executed before reading the counter. Similarly,
subsequent instructions may begin execution before the read operation is performed.

This instruction was introduced into the Intel architecture in the Pentium processor.

Operation

IF (IA-32 System Environement)

IF (CR4.TSD = 0) OR ((CR4.TSD = 1) AND (CPL=0))
THEN

EDX:EAX TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

ELSE /*Itanium System Environment*/

SECURED = PSR.si || CR4.TSD;

IF (!SECURED) OR (SECURED AND (CPL=0))
THEN

EDX:EAX TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

FI;

Flags Affected

None.

Opcode Instruction Description

0F 31 RDTSC Read time-stamp counter into EDX:EAX

4:336 Volume 4: Base IA-32 Instruction Reference

RDTSC—Read Time-Stamp Counter (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

#GP(0) If PSR.si is 1 or CR4.TSD is 1 and the CPL is greater than 0.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
/*For the IA-32 System Environment only*/

Real Address Mode Exceptions

#GP If the TSD flag in register CR4 is set. /*For the IA-32 System
Environment only*/

Virtual 8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set. /*For the IA-32 System
Environment only*/

Volume 4: Base IA-32 Instruction Reference 4:337

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix

Description

Repeats a string instruction the number of times specified in the count register (ECX) or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of the
string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS, and
STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be added to
the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synonymous forms
of the REPE and REPNE prefixes, respectively.) The behavior of the REP prefix is
undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct.

F3 6C REP INS r/m8, DX Input ECX bytes from port DX into ES:[EDI]

F3 6D REP INS r/m16,DX Input ECX words from port DX into ES:[EDI]

F3 6D REP INS r/m32,DX Input ECX doublewords from port DX into ES:[EDI]

F3 A4 REP MOVS m8,m8 Move ECX bytes from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m16,m16 Move ECX words from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m32,m32 Move ECX doublewords from DS:[ESI] to ES:[EDI]

F3 6E REP OUTS DX,r/m8 Output ECX bytes from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m16 Output ECX words from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m32 Output ECX doublewords from DS:[ESI] to port DX

F3 AC REP LODS AL Load ECX bytes from DS:[ESI] to AL

F3 AD REP LODS AX Load ECX words from DS:[ESI] to AX

F3 AD REP LODS EAX Load ECX doublewords from DS:[ESI] to EAX

F3 AA REP STOS m8 Fill ECX bytes at ES:[EDI] with AL

F3 AB REP STOS m16 Fill ECX words at ES:[EDI] with AX

F3 AB REP STOS m32 Fill ECX doublewords at ES:[EDI] with EAX

F3 A6 REPE CMPS m8,m8 Find nonmatching bytes in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m16,m16 Find nonmatching words in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m32,m32 Find nonmatching doublewords in ES:[EDI] and DS:[ESI]

F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[EDI]

F3 AF REPE SCAS m16 Find non-AX word starting at ES:[EDI]

F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[EDI]

F2 A6 REPNE CMPS m8,m8 Find matching bytes in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m16,m16 Find matching words in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m32,m32 Find matching doublewords in ES:[EDI] and DS:[ESI]

F2 AE REPNE SCAS m8 Find AL, starting at ES:[EDI]

F2 AF REPNE SCAS m16 Find AX, starting at ES:[EDI]

F2 AF REPNE SCAS m32 Find EAX, starting at ES:[EDI]

4:338 Volume 4: Base IA-32 Instruction Reference

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

All of these repeat prefixes cause the associated instruction to be repeated until the
count in register ECX is decremented to 0 (see the following table). The REPE, REPNE,
REPZ, and REPNZ prefixes also check the state of the ZF flag after each iteration and
terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined
either by testing the ECX register with a JECXZ instruction or by testing the ZF flag with
a JZ, JNZ, and JNE instruction.

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according
to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this
happens, the state of the registers is preserved to allow the string operation to be
resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a page fault occurs during CMPS or SCAS instructions that are prefixed with
REPNE, the EFLAGS value may NOT be restored to the state prior to the execution of
the instruction. Since SCAS and CMPS do not use EFLAGS as an input, the processor
can resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle
the rate at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

Operation

IF AddressSize = 16
THEN

use CX for CountReg;
ELSE (* AddressSize = 32 *)

use ECX for CountReg;
FI;
WHILE CountReg 0

DO
service pending interrupts (if any);
execute associated string instruction;
CountReg CountReg - 1;

Table 2-17. Repeat Conditions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=0 None

REPE/REPZ ECX=0 ZF=0

REPNE/REPNZ ECX=0 ZF=1

Volume 4: Base IA-32 Instruction Reference 4:339

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

IF CountReg = 0
THEN exit WHILE loop

FI;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)

THEN exit WHILE loop
FI;

OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS
register.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is
associated with.

4:340 Volume 4: Base IA-32 Instruction Reference

RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made to
the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to release
parameters from the stack that were passed to the called procedure and are no longer
needed.

The RET instruction can be used to execute three different types of returns:

• Near return – A return to a calling procedure within the current code segment (the
segment currently pointed to by the CS register), sometimes referred to as an
intrasegment return.

• Far return – A return to a calling procedure located in a different segment than the
current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return – A far return to a different privilege level than that
of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode.

When executing a near return, the processor pops the return instruction pointer (offset)
from the top of the procedure stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the
top of the procedure stack into the EIP register, then pops the segment selector from
the top of the stack into the CS register. The processor then begins program execution
in the new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of the
code and stack segments being returned to determine if the control transfer is allowed
to be made. The DS, ES, FS, and GS segment registers are cleared by the RET
instruction during an inter-privilege-level return if they refer to segments that are not
allowed to be accessed at the new privilege level. Since a stack switch also occurs on an
inter-privilege level return, the ESP and SS registers are loaded from the stack.

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from
stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from stack

Volume 4: Base IA-32 Instruction Reference 4:341

RET—Return from Procedure (Continued)

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP Pop();
tempEIP tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP tempEIP;

FI;
IF instruction has immediate operand

THEN IF StackAddressSize=32
THEN

ESP ESP + SRC;
ELSE (* StackAddressSize=16 *)

SP SP + SRC;
FI;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) OR (PE = 1 AND VM = 1)) AND instruction = far return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP Pop();
CS Pop(); (* 32-bit pop, high-order 16-bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits THEN #SS(0); FI;
tempEIP Pop();
tempEIP tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP tempEIP;
CS Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand THEN SP SP + (SRC AND FFFFH); FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

(* Protected mode, not virtual 8086 mode *)
IF (PE = 1 AND VM = 0) AND instruction = far RET

THEN
IF OperandSize = 32

THEN

4:342 Volume 4: Base IA-32 Instruction Reference

RET—Return from Procedure (Continued)

IF second doubleword on stack is not within stack limits THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits THEN #SS(0); FI;
FI;

IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond diescriptor table limit

THEN GP(selector; FI;
Obtain descriptor to which return code segment selector points from descriptor table
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
if return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is condorming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within ther return code segment limit

THEN #GP(0);
FI;
IF OperandSize=32

THEN
EIP Pop();
CS Pop(); (* 32-bit pop, high-order 16-bits discarded *)
ESP ESP + SRC;

ELSE (* OperandSize=16 *)
EIP Pop();
EIP EIP AND 0000FFFFH;
CS Pop(); (* 16-bit pop *)
ESP ESP + SRC;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize=32)

OR top (8 + SRC) bytes of stack are not within stack limits (OperandSize=16)
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL RPL of the return code segment selector

OR stack segment is not a writable data segment
OR stack segment descriptor DPL RPL of the return code segment selector

THEN #GP(selector); FI;

Volume 4: Base IA-32 Instruction Reference 4:343

RET—Return from Procedure (Continued)

IF stack segment not present THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit THEN #GP(0); FI:
 CPL ReturnCodeSegmentSelector(RPL);
IF OperandSize=32

THEN
EIP Pop();
CS Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
CS(RPL) CPL;
ESP ESP + SRC;
tempESP Pop();
tempSS Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
ESP tempESP;
SS tempSS;

ELSE (* OperandSize=16 *)
EIP Pop();
EIP EIP AND 0000FFFFH;
CS Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) CPL;
ESP ESP + SRC;
tempESP Pop();
tempSS Pop(); (* 16-bit pop; segment descriptor information also loaded *)
 (* segment descriptor information also loaded *)
ESP tempESP;
SS tempSS;

FI;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector/Descriptor 0; (* null segment selector *)

FI;
OD;

For each of ES, FS, GS, and DS
DO

IF segment descriptor indicates the segment is not a data or
readable code segment

OR if the segment is a data or non-conforming code segment and the segment
descriptor’s DPL < CPL or RPL of code segment’s segment selector
THEN

segment selector register null selector;
OD;

Flags Affected

None.

4:344 Volume 4: Base IA-32 Instruction Reference

RET—Return from Procedure (Continued)

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector null.
If the return instruction pointer is not within the return code
segment limit

#GP(selector) If the RPL of the return code segment selector is less then the CPL.
If the return code or stack segment selector index is not within its
descriptor table limits.
If the return code segment descriptor does not indicate a code
segment.
If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s segment
selector
If the return code segment is conforming and the segment selector’s
DPL greater than the RPL of the code segment’s segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of the
return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and

alignment checking is enabled.

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code
segment limit

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code
segment limit

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

Volume 4: Base IA-32 Instruction Reference 4:345

ROL/ROR—Rotate

See entry for RCL/RCR/ROL/ROR.

4:346 Volume 4: Base IA-32 Instruction Reference

RSM—Resume from System Management Mode

Description

Returns program control from system management mode (SMM) to the application
program or operating system procedure that was interrupted when the processor
received an SSM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause a
shutdown:

• Any reserved bit of CR4 is set to 1.

• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and
CD=0).

• (Intel Pentium and Intel486 only.) The value stored in the state dump base field is
not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

See Chapter 9 in the Intel Architecture Software Developer’s Manual, Volume 3 for
more information about SMM and the behavior of the RSM instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,RSM);

ReturnFromSSM;
ProcessorState Restore(SSMDump);

Flags Affected

All.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor
is not in SMM.

Real Address Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor
is not in SMM.

Virtual 8086 Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor
is not in SMM.

Opcode Instruction Description

0F AA RSM Resume operation of interrupted program

Volume 4: Base IA-32 Instruction Reference 4:347

SAHF—Store AH into Flags

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and
5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS registers are set as shown in the “Operation” below

Operation

EFLAGS(SF:ZF:0:AF:0:PF:1:CF) AH;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are set to 1, 0, and 0, respectively.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Clocks Description

9E SAHF 2 Loads SF, ZF, AF, PF, and CF from AH into
EFLAGS register

4:348 Volume 4: Base IA-32 Instruction Reference

SAL/SAR/SHL/SHR—Shift Instructions

Note:
*Not the same form of division as IDIV; rounding is toward negative infinity.

Opcode Instruction Description

D0 /4 SAL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SAL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SAL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SAL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SAL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SAL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SAL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SAL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SAL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /7 SAR r/m8,1 Signed divide* r/m8 by 2, once

D2 /7 SAR r/m8,CL Signed divide* r/m8 by 2, CL times

C0 /7 ib SAR r/m8,imm8 Signed divide* r/m8 by 2, imm8 times

D1 /7 SAR r/m16,1 Signed divide* r/m16 by 2, once

D3 /7 SAR r/m16,CL Signed divide* r/m16 by 2, CL times

C1 /7 ib SAR r/m16,imm8 Signed divide* r/m16 by 2, imm8 times

D1 /7 SAR r/m32,1 Signed divide* r/m32 by 2, once

D3 /7 SAR r/m32,CL Signed divide* r/m32 by 2, CL times

C1 /7 ib SAR r/m32,imm8 Signed divide* r/m32 by 2, imm8 times

D0 /4 SHL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SHL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SHL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SHL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SHL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SHL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SHL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SHL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SHL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /5 SHR r/m8,1 Unsigned divide r/m8 by 2, once

D2 /5 SHR r/m8,CL Unsigned divide r/m8 by 2, CL times

C0 /5 ib SHR r/m8,imm8 Unsigned divide r/m8 by 2, imm8 times

D1 /5 SHR r/m16,1 Unsigned divide r/m16 by 2, once

D3 /5 SHR r/m16,CL Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16,imm8 Unsigned divide r/m16 by 2, imm8 times

D1 /5 SHR r/m32,1 Unsigned divide r/m32 by 2, once

D3 /5 SHR r/m32,CL Unsigned divide r/m32 by 2, CL times

C1 /5 ib SHR r/m32,imm8 Unsigned divide r/m32 by 2, imm8 times

Volume 4: Base IA-32 Instruction Reference 4:349

SAL/SAR/SHL/SHR—Shift Instructions (Continued)

Description

Shift the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond the
destination operand boundary are first shifted into the CF flag, then discarded. At the
end of the shift operation, the CF flag contains the last bit shifted out of the destination
operand.

The destination operand can be a register or a memory location. The count operand can
be an immediate value or register CL. The count is masked to 5 bits, which limits the
count range to from 0 to 31. A special opcode encoding is provide for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same
operation; they shift the bits in the destination operand to the left (toward more
significant bit locations). For each shift count, the most significant bit of the destination
operand is shifted into the CF flag, and the least significant bit is cleared.

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of
the destination operand to the right (toward less significant bit locations). For each shift
count, the least significant bit of the destination operand is shifted into the CF flag, and
the most significant bit is either set or cleared depending on the instruction type. The
SHR instruction clears the most significant bit; the SAR instruction sets or clears the
most significant bit to correspond to the sign (most significant bit) of the original value
in the destination operand. In effect, the SAR instruction fills the empty bit position’s
shifted value with the sign of the unshifted value.

The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded toward
zero, whereas the “quotient” of the SAR instruction is rounded toward negative infinity.
This difference is apparent only for negative numbers. For example, when the IDIV
instruction is used to divide -9 by 4, the result is -2 with a remainder of -1. If the SAR
instruction is used to shift -9 right by two bits, the result is -3 and the “remainder” is
+3; however, the SAR instruction stores only the most significant bit of the remainder
(in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is cleared to 0 if
the most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR
instruction, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag
is set to the most-significant bit of the original operand.

Operation

tempCOUNT COUNT;
tempDEST DEST;
WHILE (tempCOUNT 0)
DO

4:350 Volume 4: Base IA-32 Instruction Reference

SAL/SAR/SHL/SHR—Shift Instructions (Continued)

IF instruction is SAL or SHL
THEN

CF MSB(DEST);
ELSE (* instruction is SAR or SHR *)

CF LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN
DEST DEST 2;

ELSE
IF instruction is SAR

THEN
DEST DEST 2 (*Signed divide, rounding toward negative infinity*);

ELSE (* instruction is SHR *)
DEST DEST 2 ; (* Unsigned divide *);

FI;
FI;
temp temp - 1;

OD;
(* Determine overflow for the various instructions *)
IF COUNT = 1

THEN
IF instruction is SAL or SHL

THEN
OF MSB(DEST) XORCF;

ELSE
IF instruction is SAR

THEN
OF 0;

ELSE (* instruction is SHR *)
OF MSB(tempDEST);

FI;
FI;

ELSE
OF undefined;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is
undefined for SHL and SHR instructions count is greater than or equal to the size of the
destination operand. The OF flag is affected only for 1-bit shifts (see “Description”
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the
result. If the count is 0, the flags are not affected.

Volume 4: Base IA-32 Instruction Reference 4:351

SAL/SAR/SHL/SHR—Shift Instructions (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

The 8086 does not mask the shift count. All Intel architecture processors from the
Intel386 processor on do mask the rotation count in all operating modes.

4:352 Volume 4: Base IA-32 Instruction Reference

SBB—Integer Subtraction with Borrow

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. The state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a borrow in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction
in which a SUB instruction is followed by a SBB instruction.

Operation

DEST DEST - (SRC + CF);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Opcode Instruction Description

1C ib SBB AL,imm8 Subtract with borrow imm8 from AL

1D iw SBB AX,imm16 Subtract with borrow imm16 from AX

1D id SBB EAX,imm32 Subtract with borrow imm32 from EAX

80 /3 ib SBB r/m8,imm8 Subtract with borrow imm8 from r/m8

81 /3 iw SBB r/m16,imm16 Subtract with borrow imm16 from r/m16

81 /3 id SBB r/m32,imm32 Subtract with borrow imm32 from r/m32

83 /3 ib SBB r/m16,imm8 Subtract with borrow sign-extended imm8 from r/m16

83 /3 ib SBB r/m32,imm8 Subtract with borrow sign-extended imm8 from r/m32

18 /r SBB r/m8,r8 Subtract with borrow r8 from r/m8

19 /r SBB r/m16,r16 Subtract with borrow r16 from r/m16

19 /r SBB r/m32,r32 Subtract with borrow r32 from r/m32

1A /r SBB r8,r/m8 Subtract with borrow r/m8 from r8

1B /r SBB r16,r/m16 Subtract with borrow r/m16 from r16

1B /r SBB r32,r/m32 Subtract with borrow r/m32 from r32

Volume 4: Base IA-32 Instruction Reference 4:353

SBB—Integer Subtraction with Borrow (Continued)

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:354 Volume 4: Base IA-32 Instruction Reference

SCAS/SCASB/SCASW/SCASD—Scan String Data

Description

Compares the byte, word, or double word specified with the source operand with the
value in the AL, AX, or EAX register, respectively, and sets the status flags in the
EFLAGS register according to the results. The source operand specifies the memory
location at the address ES:EDI. (When the operand-size attribute is 16, the DI register
is used as the source-index register.) The ES segment cannot be overridden with a
segment override prefix.

The SCASB, SCASW, and SCASD mnemonics are synonyms of the byte, word, and
doubleword versions of the SCAS instructions. They are simpler to use, but provide no
type or segment checking. (For the SCAS instruction, “ES:EDI” must be explicitly
specified in the instruction.)

After the comparison, the EDI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
EDI register is incremented; if the DF flag is 1, the EDI register is decremented.) The
EDI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix
for block comparisons of ECX bytes, words, or doublewords. More often, however, these
instructions will be used in a LOOP construct that takes some action based on the
setting of the status flags before the next comparison is made. See
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337 for a
description of the REP prefix.

Operation

IF (byte cmparison)
THEN

temp AL SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI 1;
ELSE (E)DI -1;

FI;
ELSE IF (word comparison)

THEN
temp AX SRC;
SetStatusFlags(temp)

THEN IF DF = 0

Opcode Instruction Description

AE SCAS ES:(E)DI Compare AL with byte at ES:(E)DI and set status flags

AF SCAS ES:DI Compare AX with word at ES:DI and set status flags

AF SCAS ES:EDI Compare EAX with doubleword at ES:EDI and set status flags

AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:DI and set status flags

AF SCASD Compare EAX with doubleword at ES:EDI and set status flags

Volume 4: Base IA-32 Instruction Reference 4:355

SCAS/SCASB/SCASW/SCASD—Scan String Data (Continued)

THEN DI 2;
ELSE DI -2;

FI;
ELSE (* doubleword comparison *)

temp EAX SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN EDI 4;
ELSE EDI -4;

FI;
FI;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the
comparison.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segment is
given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:356 Volume 4: Base IA-32 Instruction Reference

SETcc—Set Byte on Condition

Description

Set the destination operand to the value 0 or 1, depending on the settings of the status
flags (CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to
a byte register or a byte in memory. The condition code suffix (cc) indicates the
condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the
relationship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Opcode Instruction Description

0F 97 SETA r/m8 Set byte if above (CF=0 and ZF=0)

0F 93 SETAE r/m8 Set byte if above or equal (CF=0)

0F 92 SETB r/m8 Set byte if below (CF=1)

0F 96 SETBE r/m8 Set byte if below or equal (CF=1 or (ZF=1)

0F 92 SETC r/m8 Set if carry (CF=1)

0F 94 SETE r/m8 Set byte if equal (ZF=1)

0F 9F SETG r/m8 Set byte if greater (ZF=0 and SF=OF)

0F 9D SETGE r/m8 Set byte if greater or equal (SF=OF)

0F 9C SETL r/m8 Set byte if less (SF<>OF)

0F 9E SETLE r/m8 Set byte if less or equal (ZF=1 or SF<>OF)

0F 96 SETNA r/m8 Set byte if not above (CF=1 or ZF=1)

0F 92 SETNAE r/m8 Set byte if not above or equal (CF=1)

0F 93 SETNB r/m8 Set byte if not below (CF=0)

0F 97 SETNBE r/m8 Set byte if not below or equal (CF=0 and ZF=0)

0F 93 SETNC r/m8 Set byte if not carry (CF=0)

0F 95 SETNE r/m8 Set byte if not equal (ZF=0)

0F 9E SETNG r/m8 Set byte if not greater (ZF=1 or SF<>OF)

0F 9C SETNGE r/m8 Set if not greater or equal (SF<>OF)

0F 9D SETNL r/m8 Set byte if not less (SF=OF)

0F 9F SETNLE r/m8 Set byte if not less or equal (ZF=0 and SF=OF)

0F 91 SETNO r/m8 Set byte if not overflow (OF=0)

0F 9B SETNP r/m8 Set byte if not parity (PF=0)

0F 99 SETNS r/m8 Set byte if not sign (SF=0)

0F 95 SETNZ r/m8 Set byte if not zero (ZF=0)

0F 90 SETO r/m8 Set byte if overflow (OF=1)

0F 9A SETP r/m8 Set byte if parity (PF=1)

0F 9A SETPE r/m8 Set byte if parity even (PF=1)

0F 9B SETPO r/m8 Set byte if parity odd (PF=0)

0F 98 SETS r/m8 Set byte if sign (SF=1)

0F 94 SETZ r/m8 Set byte if zero (ZF=1)

Volume 4: Base IA-32 Instruction Reference 4:357

SETcc—Set Byte on Condition (Continued)

Many of the SETcc instruction opcodes have alternate mnemonics. For example, the
SETG (set byte if greater) and SETNLE (set if not less or equal) both have the same
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alternate
mnemonics are provided to make code more intelligible.

Some languages represent a logical one as an integer with all bits set. This
representation can be arrived at by choosing the mutually exclusive condition for the
SETcc instruction, then decrementing the result. For example, to test for overflow, use
the SETNO instruction, then decrement the result.

Operation

IF condition
THEN DEST 1
ELSE DEST 0;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

4:358 Volume 4: Base IA-32 Instruction Reference

SETcc—Set Byte on Condition (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:359

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register

Description

Stores the contents of the global descriptor table register (GDTR) or the interrupt
descriptor table register (IDTR) in the destination operand. The destination operand is a
pointer to 6-byte memory location. If the operand-size attribute is 32 bits, the 16-bit
limit field of the register is stored in the lower 2 bytes of the memory location and the
32-bit base address is stored in the upper 4 bytes. If the operand-size attribute is 16
bits, the limit is stored in the lower 2 bytes and the 24-bit base address is stored in the
third, fourth, and fifth byte, with the sixth byte is filled with 0s.

The SGDT and SIDT instructions are useful only in operating-system software; however,
they can be used in application programs.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,SGDT/SIDT);

IF instruction is IDTR
THEN

IF OperandSize = 16
THEN

DEST[0:15] IDTR(Limit);
DEST[16:39] IDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] 0;

ELSE (* 32-bit Operand Size *)
DEST[0:15] IDTR(Limit);
DEST[16:47] IDTR(Base); (* full 32-bit base address loaded *)

FI;
ELSE (* instruction is SGDT *)

IF OperandSize = 16
THEN

DEST[0:15] GDTR(Limit);
DEST[16:39] GDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] 0;

ELSE (* 32-bit Operand Size *)
DEST[0:15] GDTR(Limit);
DEST[16:47] GDTR(Base); (* full 32-bit base address loaded *)

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Instruction Intercept for SIDT and SGDT.

Opcode Instruction Description

0F 01 /0 SGDT m Store GDTR to m

0F 01 /1 SIDT m Store IDTR to m

4:360 Volume 4: Base IA-32 Instruction Reference

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register (Continued)

Protected Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and
alignment checking is enabled.

Real Address Mode Exceptions

#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

Intel Architecture Compatibility

The 16-bit forms of the SGDT and SIDT instructions are compatible with the Intel 286
processor, if the upper 8 bits are not referenced. The Intel 286 processor fills these bits
with 1s; the Pentium Pro processor fills these bits with 0s.

Volume 4: Base IA-32 Instruction Reference 4:361

SHL/SHR—Shift Instructions

See entry for SAL/SAR/SHL/SHR.

4:362 Volume 4: Base IA-32 Instruction Reference

SHLD—Double Precision Shift Left

Description

Shifts the first operand (destination operand) to the left the number of bits specified by
the third operand (count operand). The second operand (source operand) provides bits
to shift in from the right (starting with bit 0 of the destination operand). The destination
operand can be a register or a memory location; the source operand is a register. The
count operand is an unsigned integer that can be an immediate byte or the contents of
the CL register. Only bits 0 through 4 of the count are used, which masks the count to a
value between 0 and 31. If the count is greater than the operand size, the result in the
destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand. For a 1-bit shift, the OF flag is set if a sign change occurred;
otherwise, it is cleared. If the count operand is 0, the flags are not affected.

The SHLD instruction is useful for multi-precision shifts of 64 bits or more.

Operation

COUNT COUNT MOD 32;
SIZE OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF BIT[DEST, SIZE - COUNT];
(* Last bit shifted out on exit *)
FOR i SIZE - 1 DOWNTO COUNT
DO

Bit(DEST, i) Bit(DEST, i - COUNT);
OD;
FOR i COUNT - 1 DOWNTO 0

Opcode Instruction Description

0F A4 SHLD r/m16,r16,imm8 Shift r/m16 to left imm8 places while shifting bits from r16 in
from the right

0F A5 SHLD r/m16,r16,CL Shift r/m16 to left CL places while shifting bits from r16 in from
the right

0F A4 SHLD r/m32,r32,imm8 Shift r/m32 to left imm8 places while shifting bits from r32 in
from the right

0F A5 SHLD r/m32,r32,CL Shift r/m32 to left CL places while shifting bits from r32 in from
the right

Volume 4: Base IA-32 Instruction Reference 4:363

SHLD—Double Precision Shift Left (Continued)

DO
BIT[DEST, i] BIT[SRC, i - COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:364 Volume 4: Base IA-32 Instruction Reference

SHRD—Double Precision Shift Right

Description

Shifts the first operand (destination operand) to the right the number of bits specified
by the third operand (count operand). The second operand (source operand) provides
bits to shift in from the left (starting with the most significant bit of the destination
operand). The destination operand can be a register or a memory location; the source
operand is a register. The count operand is an unsigned integer that can be an
immediate byte or the contents of the CL register. Only bits 0 through 4 of the count
are used, which masks the count to a value between 0 and 31. If the count is greater
than the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand. For a 1-bit shift, the OF flag is set if a sign change occurred;
otherwise, it is cleared. If the count operand is 0, the flags are not affected.

The SHRD instruction is useful for multiprecision shifts of 64 bits or more.

Operation

COUNT COUNT MOD 32;
SIZE OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF BIT[DEST, COUNT - 1]; (* last bit shifted out on exit *)
FOR i 0 TO SIZE - 1 - COUNT

DO
BIT[DEST, i] BIT[DEST, i - COUNT];

OD;
FOR i SIZE - COUNT TO SIZE - 1

DO
BIT[DEST,i] BIT[inBits,i+COUNT - SIZE];

OD;
FI;

FI;

Opcode Instruction Description

0F AC SHRD r/m16,r16,imm8 Shift r/m16 to right imm8 places while shifting bits from r16 in
from the left

0F AD SHRD r/m16,r16,CL Shift r/m16 to right CL places while shifting bits from r16 in from
the left

0F AC SHRD r/m32,r32,imm8 Shift r/m32 to right imm8 places while shifting bits from r32 in
from the left

0F AD SHRD r/m32,r32,CL Shift r/m32 to right CL places while shifting bits from r32 in from
the left

Volume 4: Base IA-32 Instruction Reference 4:365

SHRD—Double Precision Shift Right (Continued)

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:366 Volume 4: Base IA-32 Instruction Reference

SIDT—Store Interrupt Descriptor Table Register

See entry for SGDT/SIDT.

Volume 4: Base IA-32 Instruction Reference 4:367

SLDT—Store Local Descriptor Table Register

Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the LDT.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied
into the lower 16 bits of the register and the upper 16 bits of the register are cleared to
0s. With the destination operand is a memory location, the segment selector is written
to memory as a 16-bit quantity, regardless of the operand size.

The SLDT instruction is only useful in operating-system software; however, it can be
used in application programs. Also, this instruction can only be executed in protected
mode.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,SLDT);

DEST LDTR(SegmentSelector);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept SLDT results in an IA-32 Intercept

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F 00 /0 SLDT r/m16 Stores segment selector from LDTR in r/m16

0F 00 /0 SLDT r/m32 Store segment selector from LDTR in low-order 16 bits of r/m32;
high-order 16 bits are undefined

4:368 Volume 4: Base IA-32 Instruction Reference

SLDT—Store Local Descriptor Table Register (Continued)

Real Address Mode Exceptions

#UD The SLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The SLDT instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:369

SMSW—Store Machine Status Word

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the
destination operand. The destination operand can be a 16-bit general-purpose register
or a memory location.

When the destination operand is a 32-bit register, the low-order 16 bits of register CR0
are copied into the low-order 16 bits of the register and the upper 16 bits of the register
are undefined. With the destination operand is a memory location, the low-order 16 bits
of register CR0 are written to memory as a 16-bit quantity, regardless of the operand
size.

The SMSW instruction is only useful in operating-system software; however, it is not a
privileged instruction and can be used in application programs.

This instruction is provided for compatibility with the Intel 286 processor; programs and
procedures intended to run on processors more recent than the Intel 286 should use
the MOV (control registers) instruction to load the machine status word.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,SMSW);

DEST CR0[15:0]; (* MachineStatusWord *);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F 01 /4 SMSW r32/m16 Store machine status word in low-order 16 bits of r32/m16;
high-order 16 bits of r32 are undefined

4:370 Volume 4: Base IA-32 Instruction Reference

SMSW—Store Machine Status Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:371

STC—Set Carry Flag

Description

Sets the CF flag in the EFLAGS register.

Operation

CF 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F9 STC Set CF flag

4:372 Volume 4: Base IA-32 Instruction Reference

STD—Set Direction Flag

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

Operation

DF 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Operation

DF 1;

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FD STD Set DF flag

Volume 4: Base IA-32 Instruction Reference 4:373

STI—Set Interrupt Flag

Description

Sets the interrupt flag (IF) in the EFLAGS register. In the IA-32 System
Environment, after the IF flag is set, the processor begins responding to external
maskable interrupts after the next instruction is executed. If the STI instruction is
followed by a CLI instruction (which clears the IF flag) the effect of the STI instruction is
negated. In the Itanium System Environment, the processor will immediately
respond do interrupts after STI, unless execution of STI results in a trap or
intercept. External interrupts are enabled for IA-32 instructions if PSR.i and
(~CFLG.if or EFLAG.if).

The IF flag and the STI and CLI instruction have no affect on the generation of
exceptions and NMI interrupts.

The following decision table indicates the action of the STI instruction (bottom of the
table) depending on the processor’s mode of operating and the CPL and IOPL of the
currently running program or procedure (top of the table).

Notes:
XDon't care.
NAction in Column 1 not taken.
YAction in Column 1 taken.

Operation

OLD_IF <- IF;

IF PE=0 (* Executing in real-address mode *)
THEN

IF 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM=0 (* Executing in protected mode*)
THEN

IF CR4.PVI = 0
THEN

IF CPL <= IOPL
THEN IF <- 1
ELSE #GP(0);
FI;

ELSE (*PVI is 1 *)

Opcode Instruction Description

FB STI Set interrupt flag; interrupts enabled at the end of the next
instruction

PE = 0 1 1 1

VM = X 0 0 1

CPL X IOPL > IOPL =3

IOPL X X X =3

IF 1 Y Y N Y

#GP(0) N N Y N

4:374 Volume 4: Base IA-32 Instruction Reference

STI—Set Interrupt Flag (Continued)

IF CPL = 3
THENSTI—Set Interrupt Flag (Continued)

IF IOPL < 3
THEN

IF VIP = 0
THEN VIF <- 1;
ELSE #GP(0);
FI;

ELSE (*IOPL = 3 *)
IF <- 1;

FI;
ELSE (*CPL < 3*)

IF IOPL < CPL THEN #GP(0); FI;
IF IOPL>=CPL OR IOPL=3 THEN IF <-1; FI;

FI;
FI;

ELSE (*Executing in Virtual-8086 Mode*)
IF IOPL = 3

THEN IF <- 1;
ELSE

IF CR4.VME = 0
THEN #GP(0);
ELSE

IF VIP = 1 (*virtual interrupt is pending*)
THEN #GP(0);
ELSE VIF <- 1;
FI;

FI;
FI;

FI;
FI;

FI;

IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF
THEN IA-32_Intercept(System_Flag,STI);

Flags Affected

The IF flag is set to 1.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes
state.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Volume 4: Base IA-32 Instruction Reference 4:375

STI—Set Interrupt Flag (Continued)

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

4:376 Volume 4: Base IA-32 Instruction Reference

STOS/STOSB/STOSW/STOSD—Store String Data

Description

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into
the destination operand. The destination operand is a memory location at the address
ES:EDI. (When the operand-size attribute is 16, the DI register is used as the
source-index register.) The ES segment cannot be overridden with a segment override
prefix.

The STOSB, STOSW, and STOSD mnemonics are synonyms of the byte, word, and
doubleword versions of the STOS instructions. They are simpler to use, but provide no
type or segment checking. (For the STOS instruction, “ES:EDI” must be explicitly
specified in the instruction.)

After the byte, word, or doubleword is transfer from the AL, AX, or EAX register to the
memory location, the EDI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
EDI register is incremented; if the DF flag is 1, the EDI register is decremented.) The
EDI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these
instructions are used within a LOOP construct, because data needs to be moved into the
AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ/REPNE /REPNZ—
Repeat String Operation Prefix” on page 4:337 for a description of the REP prefix.

Operation

IF (byte store)
THEN

DEST AL;
THEN IF DF = 0

THEN (E)DI 1;
ELSE (E)DI -1;

FI;
ELSE IF (word store)

THEN
DEST AX;

THEN IF DF = 0
THEN DI 2;
ELSE DI -2;

FI;
ELSE (* doubleword store *)

Opcode Instruction Description

AA STOS ES:(E)DI Store AL at address ES:(E)DI

AB STOS ES:DI Store AX at address ES:DI

AB STOS ES:EDI Store EAX at address ES:EDI

AA STOSB Store AL at address ES:(E)DI

AB STOSW Store AX at address ES:DI

AB STOSD Store EAX at address ES:EDI

Volume 4: Base IA-32 Instruction Reference 4:377

STOS/STOSB/STOSW/STOSD—Store String Data (Continued)

DEST EAX;
THEN IF DF = 0

THEN EDI 4;
ELSE EDI -4;

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:378 Volume 4: Base IA-32 Instruction Reference

STR—Store Task Register

Description

Stores the segment selector from the task register (TR) in the destination operand. The
destination operand can be a general-purpose register or a memory location. The
segment selector stored with this instruction points to the task state segment (TSS) for
the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied
into the lower 16 bits of the register and the upper 16 bits of the register are cleared to
0s. With the destination operand is a memory location, the segment selector is written
to memory as a 16-bit quantity, regardless of operand size.

The STR instruction is useful only in operating-system software. It can only be executed
in protected mode.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,STR);

DEST TR(SegmentSelector);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a
nonwritable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The STR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The STR instruction is not recognized in virtual 8086 mode.

Opcode Instruction Description

0F 00 /1 STR r/m16 Stores segment selector from TR in r/m16

Volume 4: Base IA-32 Instruction Reference 4:379

SUB—Integer Subtraction

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand can
be a register or a memory location; the source operand can be an immediate, register,
or memory location. When an immediate value is used as an operand, it is
sign-extended to the length of the destination operand format.

The SUB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a borrow in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

Operation

DEST DEST - SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

2C ib SUB AL,imm8 Subtract imm8 from AL

2D iw SUB AX,imm16 Subtract imm16 from AX

2D id SUB EAX,imm32 Subtract imm32 from EAX

80 /5 ib SUB r/m8,imm8 Subtract imm8 from r/m8

81 /5 iw SUB r/m16,imm16 Subtract imm16 from r/m16

81 /5 id SUB r/m32,imm32 Subtract imm32 from r/m32

83 /5 ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16

83 /5 ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32

28 /r SUB r/m8,r8 Subtract r8 from r/m8

29 /r SUB r/m16,r16 Subtract r16 from r/m16

29 /r SUB r/m32,r32 Subtract r32 from r/m32

2A /r SUB r8,r/m8 Subtract r/m8 from r8

2B /r SUB r16,r/m16 Subtract r/m16 from r16

2B /r SUB r32,r/m32 Subtract r/m32 from r32

4:380 Volume 4: Base IA-32 Instruction Reference

SUB—Integer Subtraction (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:381

TEST—Logical Compare

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second
operand (source 2 operand) and sets the SF, ZF, and PF status flags according to the
result. The result is then discarded.

Operation

TEMP SRC1 AND SRC2;
SF MSB(TEMP);
IF TEMP = 0

THEN ZF 0;
ELSE ZF 1;

FI:
PF BitwiseXNOR(TEMP[0:7]);
CF 0;
OF 0;
(*AF is Undefined*)

Flags Affected

The OF and CF flags are cleared to 0. The SF, ZF, and PF flags are set according to the
result (see “Operation” above). The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

A8 ib TEST AL,imm8 AND imm8 with AL; set SF, ZF, PF according to result

A9 iw TEST AX,imm16 AND imm16 with AX; set SF, ZF, PF according to result

A9 id TEST EAX,imm32 AND imm32 with EAX; set SF, ZF, PF according to result

F6 /0 ib TEST r/m8,imm8 AND imm8 with r/m8; set SF, ZF, PF according to result

F7 /0 iw TEST r/m16,imm16 AND imm16 with r/m16; set SF, ZF, PF according to result

F7 /0 id TEST r/m32,imm32 AND imm32 with r/m32; set SF, ZF, PF according to result

84 /r TEST r/m8,r8 AND r8 with r/m8; set SF, ZF, PF according to result

85 /r TEST r/m16,r16 AND r16 with r/m16; set SF, ZF, PF according to result

85 /r TEST r/m32,r32 AND r32 with r/m32; set SF, ZF, PF according to result

4:382 Volume 4: Base IA-32 Instruction Reference

TEST—Logical Compare (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:383

UD2—Undefined Instruction

Description

Generates an invalid opcode. This instruction is provided for software testing to
explicitly generate an invalid opcode. The opcode for this instruction is reserved for this
purpose.

Other than raising the invalid opcode exception, this instruction is the same as the NOP
instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,0F0B);

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Exceptions (All Operating Modes)

#UD Instruction is guaranteed to raise an invalid opcode exception in all
operating modes).

Opcode Instruction Description

0F 0B UD2 Raise invalid opcode exception

4:384 Volume 4: Base IA-32 Instruction Reference

VERR, VERW—Verify a Segment for Reading or Writing

Description

Verifies whether the code or data segment specified with the source operand is
readable (VERR) or writable (VERW) from the current privilege level (CPL). The source
operand is a 16-bit register or a memory location that contains the segment selector for
the segment to be verified. If the segment is accessible and readable (VERR) or
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments
are never verified as writable. This check cannot be performed on system segments.

To set the ZF flag, the following conditions must be met:

• The segment selector is not null.

• The selector must denote a descriptor within the bounds of the descriptor table
(GDT or LDT).

• The selector must denote the descriptor of a code or data segment (not that of a
system segment or gate).

• For the VERR instruction, the segment must be readable; the VERW instruction, the
segment must be a writable data segment.

• If the segment is not a conforming code segment, the segment’s DPL must be
greater than or equal to (have less or the same privilege as) both the CPL and the
segment selector's RPL.

The validation performed is the same as if the segment were loaded into the DS, ES,
FS, or GS register, and the indicated access (read or write) were performed. The
selector's value cannot result in a protection exception, enabling the software to
anticipate possible segment access problems.

Operation

IF SRC(Offset) > (GDTR(Limit) OR (LDTR(Limit))
THEN

ZF 0
Read segment descriptor;
IF SegmentDescriptor(DescriptorType) = 0 (* system segment *)

OR (SegmentDescriptor(Type) conforming code segment)
AND (CPL > DPL) OR (RPL > DPL)

THEN
ZF 0

ELSE
IF ((Instruction = VERR) AND (segment = readable))

OR ((Instruction = VERW) AND (segment = writable))
THEN

ZF 1;
FI;

FI;

Opcode Instruction Description

0F 00 /4 VERR r/m16 Set ZF=1 if segment specified with r/m16 can be read

0F 00 /5 VERW r/m16 Set ZF=1 if segment specified with r/m16 can be written

Volume 4: Base IA-32 Instruction Reference 4:385

VERR, VERW—Verify a Segment for Reading or Writing (Continued)

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable
(VERW); otherwise, it is cleared to 0.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal
addressing of the source operand.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real address
mode.

Virtual 8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual 8086
mode.

4:386 Volume 4: Base IA-32 Instruction Reference

WAIT/FWAIT—Wait

Description

Causes the processor to check for and handle pending unmasked floating-point
exceptions before proceeding. (FWAIT is an alternate mnemonic for the WAIT).

This instruction is useful for synchronizing exceptions in critical sections of code. Coding
a WAIT instruction after a floating-point instruction insures that any unmasked
floating-point exceptions the instruction may raise are handled before the processor
can modify the instruction’s results.

Operation
CheckPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Protected Mode Exceptions

#NM MP and TS in CR0 is set.

Real Address Mode Exceptions

#NM MP and TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM MP and TS in CR0 is set.

Opcode Instruction Description

9B WAIT Check pending unmasked floating-point exceptions.

9B FWAIT Check pending unmasked floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:387

WBINVD—Write-Back and Invalidate Cache

Description

Writes back all modified cache lines in the processor’s internal cache to main memory,
invalidates (flushes) the internal caches, and issues a special-function bus cycle that
directs external caches to also write back modified data.

After executing this instruction, the processor does not wait for the external caches to
complete their write-back and flushing operations before proceeding with instruction
execution. It is the responsibility of hardware to respond to the cache write-back and
flush signals.

The WBINVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also a serializing instruction.

In situations where cache coherency with main memory is not a concern, software can
use the INVD instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,WBINVD);

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Opcode Instruction Description

0F 09 WBINVD Write-back and flush Internal caches; initiate writing-back and
flushing of external caches.

4:388 Volume 4: Base IA-32 Instruction Reference

WBINVD—Write-Back and Invalidate Cache (Continued)

Virtual 8086 Mode Exceptions

#GP(0) The WBINVD instruction cannot be executed at the virtual 8086
mode.

Intel Architecture Compatibility

The WDINVD instruction implementation-dependent; its function may be implemented
differently on future Intel architecture processors. The instruction is not supported on
Intel architecture processors earlier than the Intel486 processor.

Volume 4: Base IA-32 Instruction Reference 4:389

WRMSR—Write to Model Specific Register

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR)
specified in the ECX register. The high-order 32 bits are copied from EDX and the
low-order 32 bits are copied from EAX. Always set undefined or reserved bits in an MSR
to the values previously read.

This instruction must be executed at privilege level 0 or in real-address mode;
otherwise, a general protection exception #GP(0) will be generated. Specifying a
reserved or unimplemented MSR address in ECX will also cause a general protection
exception.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated,
including the global entries see the Intel Architecture Software Developer’s Manual,
Volume 3).

The MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors. See model-specific instructions for all the MSRs that can be
written to with this instruction and their addresses.

The WRMSR instruction is a serializing instruction.

The CPUID instruction should be used to determine whether MSRs are supported
(EDX[5]=1) before using this instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,WRMSR);

MSR[ECX] EDX:EAX;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR
address.

Opcode Instruction Description

0F 30 WRMSR Write the value in EDX:EAX to MSR specified by ECX

4:390 Volume 4: Base IA-32 Instruction Reference

WRMSR—Write to Model Specific Register (Continued)

Virtual 8086 Mode Exceptions

#GP(0) The WRMSR instruction is not recognized in virtual 8086 mode.

Intel Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into
the Intel architecture with the Pentium processor. Execution of this instruction by an
Intel architecture processor earlier than the Pentium processor results in an invalid
opcode exception #UD.

Volume 4: Base IA-32 Instruction Reference 4:391

XADD—Exchange and Add

Description

Exchanges the first operand (destination operand) with the second operand (source
operand), then loads the sum of the two values into the destination operand. The
destination operand can be a register or a memory location; the source operand is a
register.

This instruction can be used with a LOCK prefix.

Operation

IF Itanium System Environment AND External_Bus_Lock_Required AND DCR.lc
THEN IA-32_Intercept(LOCK,XADD);

TEMP SRC + DEST
SRC DEST
DEST TEMP

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result stored in the
destination operand.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F C0/r XADD r/m8,r8 Exchange r8 and r/m8; load sum into r/m8.

0F C1/r XADD r/m16,r16 Exchange r16 and r/m16; load sum into r/m16.

0F C1/r XADD r/m32,r32 Exchange r32 and r/m32; load sum into r/m32.

4:392 Volume 4: Base IA-32 Instruction Reference

XADD—Exchange and Add (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

Intel architecture processors earlier than the Intel486 processor do not recognize this
instruction. If this instruction is used, you should provide an equivalent code sequence
that runs on earlier processors.

Volume 4: Base IA-32 Instruction Reference 4:393

XCHG—Exchange Register/Memory with Register

Description

Exchanges the contents of the destination (first) and source (second) operands. The
operands can be two general-purpose registers or a register and a memory location.
When the operands are two registers, one of the registers must be the EAX or AX
register. If a memory operand is referenced, the LOCK# signal is automatically asserted
for the duration of the exchange operation, regardless of the presence or absence of
the LOCK prefix or of the value of the IOPL.

This instruction is useful for implementing semaphores or similar data structures for
process synchronization. (See Chapter 5, Processor Management and Initialization, in
the Intel Architecture Software Developer’s Manual, Volume 3 for more information on
bus locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit
operands.

Operation
IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK,XCHG);

TEMP DEST
DEST SRC
SRC TEMP

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

90+rw XCHG AX,r16 Exchange r16 with AX

90+rw XCHG r16,AX Exchange r16 with AX

90+rd XCHG EAX,r32 Exchange r32 with EAX

90+rd XCHG r32,EAX Exchange r32 with EAX

86 /r XCHG r/m8,r8 Exchange byte register with EA byte

86 /r XCHG r8,r/m8 Exchange byte register with EA byte

87 /r XCHG r/m16,r16 Exchange r16 with EA word

87 /r XCHG r16,r/m16 Exchange r16 with EA word

87 /r XCHG r/m32,r32 Exchange r32 with EA doubleword

87 /r XCHG r32,r/m32 Exchange r32 with EA doubleword

4:394 Volume 4: Base IA-32 Instruction Reference

XCHG—Exchange Register/Memory with Register (Continued)

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If either operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:395

XLAT/XLATB—Table Look-up Translation

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a
table index, then copies the contents of the table entry back into the AL register. The
index in the AL register is treated as unsigned integer. The XLAT and XLATB instructions
get the base address of the table in memory from the DS:EBX registers (or the DS:BX
registers when the address-size attribute of 16 bits.) The XLAT instruction allows a
different segment register to be specified with a segment override. When assembled,
the XLAT and XLATB instructions produce the same machine code.

Operation

IF AddressSize = 16
THEN

AL (DS:BX + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)

AL (DS:EBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

D7 XLAT m8 Set AL to memory byte DS:[(E)BX + unsigned AL]

D7 XLATB Set AL to memory byte DS:[(E)BX + unsigned AL]

4:396 Volume 4: Base IA-32 Instruction Reference

XLAT/XLATB—Table Look-up Translation (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:397

XOR—Logical Exclusive OR

Description

Performs a bitwise exclusive-OR (XOR) operation on the destination (first) and source
(second) operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location.

Operation

DEST DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

34 ib XOR AL,imm8 AL XOR imm8

35 iw XOR AX,imm16 AX XOR imm16

35 id XOR EAX,imm32 EAX XOR imm32

80 /6 ib XOR r/m8,imm8 r/m8 XOR imm8

81 /6 iw XOR r/m16,imm16 r/m16 XOR imm16

81 /6 id XOR r/m32,imm32 r/m32 XOR imm32

83 /6 ib XOR r/m16,imm8 r/m16 XOR imm8

83 /6 ib XOR r/m32,imm8 r/m32 XOR imm8

30 /r XOR r/m8,r8 r/m8 XOR r8

31 /r XOR r/m16,r16 r/m16 XOR r16

31 /r XOR r/m32,r32 r/m32 XOR r32

32 /r XOR r8,r/m8 r8 XOR r/m8

33 /r XOR r16,r/m16 r8 XOR r/m8

33 /r XOR r32,r/m32 r8 XOR r/m8

4:398 Volume 4: Base IA-32 Instruction Reference

XOR—Logical Exclusive OR (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

§

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:399

IA-32 Intel® MMX™ Technology Instruction
Reference 3

This section lists the IA-32 MMX technology instructions designed to increase
performance of multimedia intensive applications.

4:400 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

EMMS—Empty MMX State

Description

Sets the values of all the tags in the FPU tag word to empty (all ones). This operation
marks the MMX technology registers as available, so they can subsequently be used by
floating-point instructions. (See Figure 7-11 in the Intel Architecture Software
Developer’s Manual, Volume 1, for the format of the FPU tag word.) All other MMX
technology instructions (other than the EMMS instruction) set all the tags in FPU tag
word to valid (all zeros).

The EMMS instruction must be used to clear the MMX technology state at the end of all
MMX technology routines and before calling other procedures or subroutines that may
execute floating-point instructions. If a floating-point instruction loads one of the
registers in the FPU register stack before the FPU tag word has been reset by the EMMS
instruction, a floating-point stack overflow can occur that will result in a floating-point
exception or incorrect result.

Operation

FPUTagWord FFFFH;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Opcode Instruction Description

0F 77 EMMS Set the FP tag word to empty.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:401

MOVD—Move 32 Bits

Description

Copies doubleword from the source operand (second operand) to the destination
operand (first operand). Source and destination operands can be MMX technology
registers, memory locations, or 32-bit general-purpose registers; however, data cannot
be transferred from an MMX technology register to an MMX technology register, from
one memory location to another memory location, or from one general-purpose register
to another general-purpose register.

When the destination operand is an MMX technology register, the 32-bit source value is
written to the low-order 32 bits of the 64-bit MMX technology register and
zero-extended to 64 bits (see Figure 3-1). When the source operand is an MMX
technology register, the low-order 32 bits of the MMX technology register are written to
the 32-bit general-purpose register or 32-bit memory location selected with the
destination operand.

Operation

IF DEST is MMX register
THEN

DEST ZeroExtend(SRC);
ELSE (* SRC is MMX register *)

DEST LowOrderDoubleword(SRC);

Opcode Instruction Description

0F 6E /r MOVD mm, r/m32 Move doubleword from r/m32 to mm.

0F 7E /r MOVD r/m32, mm Move doubleword from mm to r/m32.

Figure 3-1. Operation of the MOVD Instruction

3006010

MOVD m32, mm

MOVD mm, r32
63

31 0

32 31

mm

m32

15 0

0
00000000

b b b b r32

b b b b

63

mm

0
xxxxxxxx b b b

b b

b b

W

W

32 31

3 2 1 0

3

01

2 N+1

N+1

3 2 1 0

b3 2 1 0

4:402 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

MOVD—Move 32 Bits (continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:403

MOVQ—Move 64 Bits

Description

Copies quadword from the source operand (second operand) to the destination operand
(first operand). (See Figure 3-2.) A source or destination operand can be either an MMX
technology register or a memory location; however, data cannot be transferred from
one memory location to another memory location. Data can be transferred from one
MMX technology register to another MMX technology register.

Operation

DEST SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F 6F /r MOVQ mm, mm/m64 Move quadword from mm/m64 to mm.

0F 7F /r MOVQ mm/m64, mm Move quadword from mm to mm/m64.

Figure 3-2. Operation of the MOVQ Instruction

3006013

MOVQ mm, m64
63 48 47 32 31

mm

m64

15 0

1615 0
b7 b6 b5 b4 b3 b2 b1 b0

b7 b6

b5 b4

b3 b2

b1

W

W

W

Wb0
N+1

N+2

N+3

N+0

4:404 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

MOVQ—Move 64 Bits (continued)

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:405

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Description

Packs and saturates signed words into bytes (PACKSSWB) or signed doublewords into
words (PACKSSDW). The PACKSSWB instruction packs 4 signed words from the
destination operand (first operand) and 4 signed words from the source operand
(second operand) into 8 signed bytes in the destination operand. If the signed value of
a word is beyond the range of a signed byte (that is, greater than 7FH or less than
80H), the saturated byte value of 7FH or 80H, respectively, is stored into the
destination.

The PACKSSDW instruction packs 2 signed doublewords from the destination operand
(first operand) and 2 signed doublewords from the source operand (second operand)
into 4 signed words in the destination operand (see Figure 3-3). If the signed value of a
doubleword is beyond the range of a signed word (that is, greater than 7FFFH or less
than 8000H), the saturated word value of 7FFFH or 8000H, respectively, is stored into
the destination.

The destination operand for either the PACKSSWB or PACKSSDW instruction must be an
MMX technology register; the source operand may be either an MMX technology
register or a quadword memory location.

Operation

IF instruction is PACKSSWB
THEN

DEST(7..0) SaturateSignedWordToSignedByte DEST(15..0);
DEST(15..8) SaturateSignedWordToSignedByte DEST(31..16);
DEST(23..16) SaturateSignedWordToSignedByte DEST(47..32);
DEST(31..24) SaturateSignedWordToSignedByte DEST(63..48);
DEST(39..32) SaturateSignedWordToSignedByte SRC(15..0);
DEST(47..40) SaturateSignedWordToSignedByte SRC(31..16);
DEST(55..48) SaturateSignedWordToSignedByte SRC(47..32);
DEST(63..56) SaturateSignedWordToSignedByte SRC(63..48);

Opcode Instruction Description

0F 63 /r PACKSSWB mm,
mm/m64

Packs and saturate pack 4 signed words from mm and 4
signed words from mm/m64 into 8 signed bytes in mm.

0F 6B /r PACKSSDW mm,
mm/m64

Pack and saturate 2 signed doublewords from mm and 2
signed doublewords from mm/m64 into 4 signed words in mm.

Figure 3-3. Operation of the PACKSSDW Instruction

mm/m64

mm

D C B A

D’ C’ B’ A’

mm

PACKSSDW mm, mm/m64

4:406 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PACKSSWB/PACKSSDW—Pack with Signed Saturation (continued)

ELSE (* instruction is PACKSSDW *)
DEST(15..0) SaturateSignedDoublewordToSignedWord DEST(31..0);
DEST(31..16) SaturateSignedDoublewordToSignedWord DEST(63..32);
DEST(47..32) SaturateSignedDoublewordToSignedWord SRC(31..0);
DEST(63..48) SaturateSignedDoublewordToSignedWord SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:407

PACKSSWB/PACKSSDW—Pack with Signed Saturation (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:408 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PACKUSWB—Pack with Unsigned Saturation

Description

Packs and saturates 4 signed words from the destination operand (first operand) and 4
signed words from the source operand (second operand) into 8 unsigned bytes in the
destination operand (see Figure 3-4). If the signed value of a word is beyond the range
of an unsigned byte (that is, greater than FFH or less than 00H), the saturated byte
value of FFH or 00H, respectively, is stored into the destination.

The destination operand must be an MMX technology register; the source operand may
be either an MMX technology register or a quadword memory location.

Operation

DEST(7..0) SaturateSignedWordToUnsignedByte DEST(15..0);
DEST(15..8) SaturateSignedWordToUnsignedByte DEST(31..16);
DEST(23..16) SaturateSignedWordToUnsignedByte DEST(47..32);
DEST(31..24) SaturateSignedWordToUnsignedByte DEST(63..48);
DEST(39..32) SaturateSignedWordToUnsignedByte SRC(15..0);
DEST(47..40) SaturateSignedWordToUnsignedByte SRC(31..16);
DEST(55..48) SaturateSignedWordToUnsignedByte SRC(47..32);
DEST(63..56) SaturateSignedWordToUnsignedByte SRC(63..48);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F 67 /r PACKUSWB mm, mm/m64 Pack and saturate 4 signed words from mm and 4 signed
words from mm/m64 into 8 unsigned bytes in mm.

Figure 3-4. Operation of the PACKUSWB Instruction

3006014

PACKUSWB mm, mm/m64
mm/m64 mm

mm

H

G

F

E

H'

G'

F'

E'

D'

C'

B'

A'

D

C

B

A

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:409

PACKUSWB—Pack with Unsigned Saturation (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:410 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDB/PADDW/PADDD—Packed Add

Description

Adds the individual data elements (bytes, words, or doublewords) of the source
operand (second operand) to the individual data elements of the destination operand
(first operand). (See Figure 3-5.) If the result of an individual addition exceeds the
range for the specified data type (overflows), the result is wrapped around, meaning
that the result is truncated so that only the lower (least significant) bits of the result are
returned (that is, the carry is ignored).

The destination operand must be an MMX technology register; the source operand can
be either an MMX technology register or a quadword memory location.

The PADDB instruction adds the bytes of the source operand to the bytes of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 8 bits, the lower 8 bits of the result
are written to the destination operand and therefore the result wraps around.

The PADDW instruction adds the words of the source operand to the words of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 16 bits, the lower 16 bits of the result
are written to the destination operand and therefore the result wraps around.

The PADDD instruction adds the doublewords of the source operand to the doublewords
of the destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 32 bits, the lower 32 bits of the result
are written to the destination operand and therefore the result wraps around.

Opcode Instruction Description

0F FC /r PADDB mm, mm/m64 Add packed bytes from mm/m64 to packed bytes in mm.

0F FD /r PADDW mm, mm/m64 Add packed words from mm/m64 to packed words in mm.

0F FE /r PADDD mm, mm/m64 Add packed doublewords from mm/m64 to packed
doublewords in mm.

Figure 3-5. Operation of the PADDW Instruction

3006015

PADDW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

0111111111111111 1001011000111111

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:411

PADDB/PADDW/PADDD—Packed Add (continued)

Note that like the integer ADD instruction, the PADDB, PADDW, and PADDD instructions
can operate on either unsigned or signed (two's complement notation) packed integers.
Unlike the integer instructions, none of the MMX technology instructions affect the
EFLAGS register. With MMX technology instructions, there are no carry or overflow flags
to indicate when overflow has occurred, so the software must control the range of
values or else use the “with saturation” MMX technology instructions.

Operation

IF instruction is PADDB
THEN

DEST(7..0) DEST(7..0) + SRC(7..0);
DEST(15..8) DEST(15..8) + SRC(15..8);
DEST(23..16) DEST(23..16)+ SRC(23..16);
DEST(31..24) DEST(31..24) + SRC(31..24);
DEST(39..32) DEST(39..32) + SRC(39..32);
DEST(47..40) DEST(47..40)+ SRC(47..40);
DEST(55..48) DEST(55..48) + SRC(55..48);
DEST(63..56) DEST(63..56) + SRC(63..56);

ELSEIF instruction is PADDW
THEN

DEST(15..0) DEST(15..0) + SRC(15..0);
DEST(31..16) DEST(31..16) + SRC(31..16);
DEST(47..32) DEST(47..32) + SRC(47..32);
DEST(63..48) DEST(63..48) + SRC(63..48);

ELSE (* instruction is PADDD *)
DEST(31..0) DEST(31..0) + SRC(31..0);
DEST(63..32) DEST(63..32) + SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:412 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDB/PADDW/PADDD—Packed Add (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:413

PADDSB/PADDSW—Packed Add with Saturation

Description

Adds the individual signed data elements (bytes or words) of the source operand
(second operand) to the individual signed data elements of the destination operand
(first operand). (See Figure 3-6.) If the result of an individual addition exceeds the
range for the specified data type, the result is saturated. The destination operand must
be an MMX technology register; the source operand can be either an MMX technology
register or a quadword memory location.

The PADDSB instruction adds the signed bytes of the source operand to the signed
bytes of the destination operand and stores the results to the destination operand.
When an individual result is beyond the range of a signed byte (that is, greater than
7FH or less than 80H), the saturated byte value of 7FH or 80H, respectively, is written
to the destination operand.

The PADDSW instruction adds the signed words of the source operand to the signed
words of the destination operand and stores the results to the destination operand.
When an individual result is beyond the range of a signed word (that is, greater than
7FFFH or less than 8000H), the saturated word value of 7FFFH or 8000H, respectively,
is written to the destination operand.

Operation

IF instruction is PADDSB
THEN

DEST(7..0) SaturateToSignedByte(DEST(7..0) + SRC (7..0)) ;
DEST(15..8) SaturateToSignedByte(DEST(15..8) + SRC(15..8));
DEST(23..16) SaturateToSignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24) SaturateToSignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32) SaturateToSignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40) SaturateToSignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48) SaturateToSignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56) SaturateToSignedByte(DEST(63..56) + SRC(63..56));

Opcode Instruction Description

0F EC /r PADDSB mm, mm/m64 Add signed packed bytes from mm/m64 to signed packed
bytes in mm and saturate.

0F ED /r PADDSW mm, mm/m64 Add signed packed words from mm/m64 to signed packed
words in mm and saturate.

Figure 3-6. Operation of the PADDSW Instruction

3006016

PADDSW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

1000000000000000 0111111111111111

4:414 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDSB/PADDSW—Packed Add with Saturation (continued)

ELSE { (* instruction is PADDSW *)
DEST(15..0) SaturateToSignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16) SaturateToSignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32) SaturateToSignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48) SaturateToSignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:415

PADDSB/PADDSW—Packed Add with Saturation (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:416 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation

Description

Adds the individual unsigned data elements (bytes or words) of the packed source
operand (second operand) to the individual unsigned data elements of the packed
destination operand (first operand). (See Figure 3-7.) If the result of an individual
addition exceeds the range for the specified unsigned data type, the result is saturated.
The destination operand must be an MMX technology register; the source operand can
be either an MMX technology register or a quadword memory location.

The PADDUSB instruction adds the unsigned bytes of the source operand to the
unsigned bytes of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of an unsigned byte (that is,
greater than FFH), the saturated unsigned byte value of FFH is written to the
destination operand.

The PADDUSW instruction adds the unsigned words of the source operand to the
unsigned words of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of an unsigned word (that is,
greater than FFFFH), the saturated unsigned word value of FFFFH is written to the
destination operand.

Opcode Instruction Description

0F DC /r PADDUSB mm, mm/m64 Add unsigned packed bytes from mm/m64 to unsigned
packed bytes in mm and saturate.

0F DD /r PADDUSW mm, mm/m64 Add unsigned packed words from mm/m64 to unsigned
packed words in mm and saturate.

Figure 3-7. Operation of the PADDUSB Instruction

3006017

PADDUSB mm, mm/m64

mm

mm/m64

mm

10000000 01111111 00111000

11111111 00010111 00000111

11111111 10010110 00111111

+ ++ + + ++ +

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:417

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation (continued)

Operation

IF instruction is PADDUSB
THEN

DEST(7..0) SaturateToUnsignedByte(DEST(7..0) + SRC (7..0));
DEST(15..8) SaturateToUnsignedByte(DEST(15..8) + SRC(15..8));
DEST(23..16) SaturateToUnsignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24) SaturateToUnsignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32) SaturateToUnsignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40) SaturateToUnsignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48) SaturateToUnsignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56) SaturateToUnsignedByte(DEST(63..56) + SRC(63..56));

ELSE { (* instruction is PADDUSW *)
DEST(15..0) SaturateToUnsignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16) SaturateToUnsignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32) SaturateToUnsignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48) SaturateToUnsignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:418 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation (continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:419

PAND—Logical AND

Description

Performs a bitwise logical AND operation on the quadword source (second) and
destination (first) operands and stores the result in the destination operand location
(see Figure 3-8). The source operand can be an MMX technology register or a quadword
memory location; the destination operand must be an MMX technology register. Each
bit of the result of the PAND instruction is set to 1 if the corresponding bits of the
operands are both 1; otherwise it is made zero

Operation

DEST DEST AND SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F DB /r PAND mm, mm/m64 AND quadword from mm/m64 to quadword in mm.

Figure 3-8. Operation of the PAND Instruction

3006019

PAND mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

0001000011011000000000000000000100010100100010000001010100010101

&

4:420 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PAND—Logical AND (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:421

PANDN—Logical AND NOT

Description

Performs a bitwise logical NOT on the quadword destination operand (first operand).
Then, the instruction performs a bitwise logical AND operation on the inverted
destination operand and the quadword source operand (second operand). (See
Figure 3-9.) Each bit of the result of the AND operation is set to one if the
corresponding bits of the source and inverted destination bits are one; otherwise it is
set to zero. The result is stored in the destination operand location.

The source operand can be an MMX technology register or a quadword memory
location; the destination operand must be an MMX technology register.

Operation

DEST (NOT DEST) AND SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F DF /r PANDN mm, mm/m64 AND quadword from mm/m64 to NOT quadword in mm.

Figure 3-9. Operation of the PANDN Instruction

~

&
m/m64

mm

mm 11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

PANDN mm, mm/m64

4:422 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PANDN—Logical AND NOT (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:423

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal

Description

Compares the individual data elements (bytes, words, or doublewords) in the
destination operand (first operand) to the corresponding data elements in the source
operand (second operand). (See Figure 3-10.) If a pair of data elements are equal, the
corresponding data element in the destination operand is set to all ones; otherwise, it is
set to all zeros. The destination operand must be an MMX technology register; the
source operand may be either an MMX technology register or a 64-bit memory location.

The PCMPEQB instruction compares the bytes in the destination operand to the
corresponding bytes in the source operand, with the bytes in the destination operand
being set according to the results.

The PCMPEQW instruction compares the words in the destination operand to the
corresponding words in the source operand, with the words in the destination operand
being set according to the results.

The PCMPEQD instruction compares the doublewords in the destination operand to the
corresponding doublewords in the source operand, with the doublewords in the
destination operand being set according to the results.

Opcode Instruction Description

0F 74 /r PCMPEQB mm, mm/m64 Compare packed bytes in mm/m64 with packed bytes in mm for
equality.

0F 75 /r PCMPEQW mm, mm/m64 Compare packed words in mm/m64 with packed words in mm for
equality.

0F 76 /r PCMPEQD mm, mm/m64 Compare packed doublewords in mm/m64 with packed
doublewords in mm for equality.

Figure 3-10. Operation of the PCMPEQW Instruction

3006020

PCMPEQW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

1111111111111111

0000000000000001

0000000000000000

0000000000000000

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

1111111111111111

True TrueFalse False

== ==== ==

4:424 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal (continued)

Operation

IF instruction is PCMPEQB
THEN

IF DEST(7..0) = SRC(7..0)
THEN DEST(7 0) FFH;
ELSE DEST(7..0) 0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) = SRC(63..56)

THEN DEST(63..56) FFH;
ELSE DEST(63..56) 0;

ELSE IF instruction is PCMPEQW
THEN

IF DEST(15..0) = SRC(15..0)
THEN DEST(15..0) FFFFH;
ELSE DEST(15..0) 0;

* Continue comparison of second and third words in DEST and SRC *
IF DEST(63..48) = SRC(63..48)

THEN DEST(63..48) FFFFH;
ELSE DEST(63..48) 0;

ELSE (* instruction is PCMPEQD *)
IF DEST(31..0) = SRC(31..0)

THEN DEST(31..0) FFFFFFFFH;
ELSE DEST(31..0) 0;

IF DEST(63..32) = SRC(63..32)
THEN DEST(63..32) FFFFFFFFH;
ELSE DEST(63..32) 0;

FI;

Flags Affected

None:

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:425

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal (continued)

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:426 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than

Description

Compare the individual signed data elements (bytes, words, or doublewords) in the
destination operand (first operand) to the corresponding signed data elements in the
source operand (second operand). (See Figure 3-11.) If a data element in the
destination operand is greater than its corresponding data element in the source
operand, the data element in the destination operand is set to all ones; otherwise, it is
set to all zeros. The destination operand must be an MMX technology register; the
source operand may be either an MMX technology register or a 64-bit memory location.

The PCMPGTB instruction compares the signed bytes in the destination operand to the
corresponding signed bytes in the source operand, with the bytes in the destination
operand being set according to the results.

The PCMPGTW instruction compares the signed words in the destination operand to the
corresponding signed words in the source operand, with the words in the destination
operand being set according to the results.

The PCMPGTD instruction compares the signed doublewords in the destination operand
to the corresponding signed doublewords in the source operand, with the doublewords
in the destination operand being set according to the results.

Opcode Instruction Description

0F 64 /r PCMPGTB mm, mm/m64 Compare packed bytes in mm with packed bytes in mm/m64
for greater value.

0F 65 /r PCMPGTW mm, mm/m64 Compare packed words in mm with packed words in
mm/m64 for greater value.

0F 66 /r PCMPGTD mm, mm/m64 Compare packed doublewords in mm with packed
doublewords in mm/m64 for greater value.

Figure 3-11. Operation of the PCMPGTW Instruction

3006021

PCMPGTW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

0000000000000000

0000000000000001

0000000000000000

1111111111111111

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

0000000000000000

False FalseTrue False

> >> >

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:427

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than
(continued)

Operation

IF instruction is PCMPGTB
THEN

IF DEST(7..0) > SRC(7..0)
THEN DEST(7 0) FFH;
ELSE DEST(7..0) 0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) > SRC(63..56)

THEN DEST(63..56) FFH;
ELSE DEST(63..56) 0;

ELSE IF instruction is PCMPGTW
THEN

IF DEST(15..0) > SRC(15..0)
THEN DEST(15..0) FFFFH;
ELSE DEST(15..0) 0;

* Continue comparison of second and third bytes in DEST and SRC *
IF DEST(63..48) > SRC(63..48)

THEN DEST(63..48) FFFFH;
ELSE DEST(63..48) 0;

ELSE { (* instruction is PCMPGTD *)
IF DEST(31..0) > SRC(31..0)

THEN DEST(31..0) FFFFFFFFH;
ELSE DEST(31..0) 0;

IF DEST(63..32) > SRC(63..32)
THEN DEST(63..32) FFFFFFFFH;
ELSE DEST(63..32) 0;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:428 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than
(continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:429

PMADDWD—Packed Multiply and Add

Description

Multiplies the individual signed words of the destination operand by the corresponding
signed words of the source operand, producing four signed, doubleword results (see
Figure 3-12). The two doubleword results from the multiplication of the high-order
words are added together and stored in the upper doubleword of the destination
operand; the two doubleword results from the multiplication of the low-order words are
added together and stored in the lower doubleword of the destination operand. The
destination operand must be an MMX technology register; the source operand may be
either an MMX technology register or a 64-bit memory location.

The PMADDWD instruction wraps around to 80000000H only when all four words of
both the source and destination operands are 8000H.

Operation

DEST(31..0) (DEST(15..0) SRC(15..0)) + (DEST(31..16) SRC(31..16));
DEST(63..32) (DEST(47..32) SRC(47..32)) + (DEST(63..48) SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F F5 /r PMADDWD mm, mm/m64 Multiply the packed words in mm by the packed words in
mm/m64. Add the 32-bit pairs of results and store in mm
as doubleword

Figure 3-12. Operation of the PMADDWD Instruction

* * **

01110001110001110111000111000111

1000000000000000 0000010000000000

1100100011100011 1001110000000000

+ +

mm

PMADDWD mm, mm/m64

mm/m64

mm

4:430 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PMADDWD—Packed Multiply and Add (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:431

PMULHW—Packed Multiply High

Description

Multiplies the four signed words of the source operand (second operand) by the four
signed words of the destination operand (first operand), producing four signed,
doubleword, intermediate results (see Figure 3-13). The high-order word of each
intermediate result is then written to its corresponding word location in the destination
operand. The destination operand must be an MMX technology register; the source
operand may be either an MMX technology register or a 64-bit memory location.

Operation

DEST(15..0) HighOrderWord(DEST(15..0) SRC(15..0));
DEST(31..16) HighOrderWord(DEST(31..16) SRC(31..16));
DEST(47..32) HighOrderWord(DEST(47..32) SRC(47..32));
DEST(63..48) HighOrderWord(DEST(63..48) SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F E5 /r PMULHW mm, mm/m64 Multiply the signed packed words in mm by the signed
packed words in mm/m64, then store the high-order word
of each doubleword result in mm.

Figure 3-13. Operation of the PMULHW Instruction

3006022

PMULHW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100011100011100

0111000111000111

0000010000000000

0000000111000111

High Order High OrderHigh Order High Order

* ** *

4:432 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PMULHW—Packed Multiply High (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:433

PMULLW—Packed Multiply Low

Description

Multiplies the four signed or unsigned words of the source operand (second operand)
with the four signed or unsigned words of the destination operand (first operand),
producing four doubleword, intermediate results (see Figure 3-14). The low-order word
of each intermediate result is then written to its corresponding word location in the
destination operand. The destination operand must be an MMX technology register; the
source operand may be either an MMX technology register or a 64-bit memory location.

Operation

DEST(15..0) LowOrderWord(DEST(15..0) SRC(15..0));
DEST(31..16) LowOrderWord(DEST(31..16) SRC(31..16));
DEST(47..32) LowOrderWord(DEST(47..32) SRC(47..32));
DEST(63..48) LowOrderWord(DEST(63..48) SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F D5 /r PMULLW mm,
mm/m64

Multiply the packed words in mm with the packed words in
mm/m64, then store the low-order word of each doubleword
result in mm.

Figure 3-14. Operation of the PMULLW Instruction

3006025

PMULLW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1000000000000000

0111000111000111

0000010000000000

0001110000000000

Low Order Low OrderLow Order Low Order

* ** *

4:434 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PMULLW—Packed Multiply Low (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:435

POR—Bitwise Logical OR

Description

Performs a bitwise logical OR operation on the quadword source (second) and
destination (first) operands and stores the result in the destination operand location
(see Figure 3-15). The source operand can be an MMX technology register or a
quadword memory location; the destination operand must be an MMX technology
register. Each bit of the result is made 0 if the corresponding bits of both operands are
0; otherwise the bit is set to 1.

Operation

DEST DEST OR SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F EB /r POR mm, mm/m64 OR quadword from mm/m64 to quadword in mm.

Figure 3-15. Operation of the POR Instruction.

3006024

POR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1111111111111001010100000011010110111111111011110111011111110111

4:436 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

POR—Bitwise Logical OR (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:437

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the
destination operand (first operand) to the left by the number of bits specified in the
unsigned count operand (second operand). (See Figure 3-16.) The result of the shift
operation is written to the destination operand. As the bits in the data elements are
shifted left, the empty low-order bits are cleared (set to zero). If the value specified by
the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX technology register; the count operand can
be either an MMX technology register, a 64-bit memory location, or an 8-bit immediate.

The PSLLW instruction shifts each of the four words of the destination operand to the
left by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the two doublewords of the destination operand; and the PSLLQ instruction
shifts the 64-bit quadword in the destination operand. As the individual data elements
are shifted left, the empty low-order bit positions are filled with zeros.

Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift words in mm left by amount specified in mm/m64, while
shifting in zeros.

0F 71 /6, ib PSLLW mm, imm8 Shift words in mm left by imm8, while shifting in zeros.

0F F2 /r PSLLD mm, mm/m64 Shift doublewords in mm left by amount specified in mm/m64,
while shifting in zeros.

0F 72 /6 ib PSLLD mm, imm8 Shift doublewords in mm by imm8, while shifting in zeros.

0F F3 /r PSLLQ mm, mm/m64 Shift mm left by amount specified in mm/m64, while shifting in
zeros.

0F 73 /6 ib PSLLQ mm, imm8 Shift mm left by Imm8, while shifting in zeros.

Figure 3-16. Operation of the PSLLW Instruction

3006026

PSLLW mm, 2

mm

mm

1111111111111100

1111111111110000

0001000111000111

0100011100011100

shift left

shift left shift left shift left

4:438 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (continued)

Operation

IF instruction is PSLLW
THEN

DEST(15..0) DEST(15..0) << COUNT;
DEST(31..16) DEST(31..16) << COUNT;
DEST(47..32) DEST(47..32) << COUNT;
DEST(63..48) DEST(63..48) << COUNT;

ELSE IF instruction is PSLLD
THEN {

DEST(31..0) DEST(31..0) << COUNT;
DEST(63..32) DEST(63..32) << COUNT;

ELSE (* instruction is PSLLQ *)
DEST DEST << COUNT;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:439

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:440 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSRAW/PSRAD—Packed Shift Right Arithmetic

Description

Shifts the bits in the data elements (words or doublewords) in the destination operand
(first operand) to the right by the amount of bits specified in the unsigned count
operand (second operand). (See Figure 3-17.) The result of the shift operation is
written to the destination operand. The empty high-order bits of each element are filled
with the initial value of the sign bit of the data element. If the value specified by the
count operand is greater than 15 (for words) or 31 (for doublewords), each destination
data element is filled with the initial value of the sign bit of the element.

The destination operand must be an MMX technology register; the count operand
(source operand) can be either an MMX technology register, a 64-bit memory location,
or an 8-bit immediate.

The PSRAW instruction shifts each of the four words in the destination operand to the
right by the number of bits specified in the count operand; the PSRAD instruction shifts
each of the two doublewords in the destination operand. As the individual data
elements are shifted right, the empty high-order bit positions are filled with the sign
value.

Opcode Instruction Description

0F E1 /r PSRAW mm, mm/m64 Shift words in mm right by amount specified in mm/m64 while
shifting in sign bits.

0F 71 /4 ib PSRAW mm, imm8 Shift words in mm right by imm8 while shifting in sign bits

0F E2 /r PSRAD mm, mm/m64 Shift doublewords in mm right by amount specified in mm/m64
while shifting in sign bits.

0F 72 /4 ib PSRAD mm, imm8 Shift doublewords in mm right by imm8 while shifting in sign
bits.

Figure 3-17. Operation of the PSRAW Instruction

3006048

PSRAW mm, 2

mm

mm

1111111111111100

1111111111111111

1101000111000111

1111010001110001

shift right shift rightshift right shift right

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:441

PSRAW/PSRAD—Packed Shift Right Arithmetic (continued)

Operation
IF instruction is PSRAW

THEN
DEST(15..0) SignExtend (DEST(15..0) >> COUNT);
DEST(31..16) SignExtend (DEST(31..16) >> COUNT);
DEST(47..32) SignExtend (DEST(47..32) >> COUNT);
DEST(63..48) SignExtend (DEST(63..48) >> COUNT);

ELSE { (*instruction is PSRAD *)
DEST(31..0) SignExtend (DEST(31..0) >> COUNT);
DEST(63..32) SignExtend (DEST(63..32) >> COUNT);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

4:442 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSRAW/PSRAD—Packed Shift Right Arithmetic (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:443

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the
destination operand (first operand) to the right by the number of bits specified in the
unsigned count operand (second operand). (See Figure 3-18.) The result of the shift
operation is written to the destination operand. As the bits in the data elements are
shifted right, the empty high-order bits are cleared (set to zero). If the value specified
by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX technology register; the count operand can
be either an MMX technology register, a 64-bit memory location, or an 8-bit immediate.

The PSRLW instruction shifts each of the four words of the destination operand to the
right by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the two doublewords of the destination operand; and the PSRLQ instruction
shifts the 64-bit quadword in the destination operand. As the individual data elements
are shifted right, the empty high-order bit positions are filled with zeros.

Opcode Instruction Description

0F D1 /r PSRLW mm, mm/m64 Shift words in mm right by amount specified in mm/m64
while shifting in zeros.

0F 71 /2 ib PSRLW mm, imm8 Shift words in mm right by imm8.

0F D2 /r PSRLD mm, mm/m64 Shift doublewords in mm right by amount specified in
mm/m64 while shifting in zeros.

0F 72 /2 ib PSRLD mm, imm8 Shift doublewords in mm right by imm8.

0F D3 /r PSRLQ mm, mm/m64 Shift mm right by amount specified in mm/m64 while
shifting in zeros.

0F 73 /2 ib PSRLQ mm, imm8 Shift mm right by imm8 while shifting in zeros.

Figure 3-18. Operation of the PSRLW Instruction

3006027

PSRLW mm, 2

mm

mm

1111111111111100

0011111111111111

0001000111000111

0000010001110001

shift right shift rightshift right shift right

4:444 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (continued)

Operation

IF instruction is PSRLW
THEN {

DEST(15..0) DEST(15..0) >> COUNT;
DEST(31..16) DEST(31..16) >> COUNT;
DEST(47..32) DEST(47..32) >> COUNT;
DEST(63..48) DEST(63..48) >> COUNT;

ELSE IF instruction is PSRLD
THEN {

DEST(31..0) DEST(31..0) >> COUNT;
DEST(63..32) DEST(63..32) >> COUNT;

ELSE (* instruction is PSRLQ *)
DEST DEST >> COUNT;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:445

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:446 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBB/PSUBW/PSUBD—Packed Subtract

Description

Subtracts the individual data elements (bytes, words, or doublewords) of the source
operand (second operand) from the individual data elements of the destination operand
(first operand). (See Figure 3-19.) If the result of a subtraction exceeds the range for
the specified data type (overflows), the result is wrapped around, meaning that the
result is truncated so that only the lower (least significant) bits of the result are
returned (that is, the carry is ignored).

The destination operand must be an MMX technology register; the source operand can
be either an MMX technology register or a quadword memory location.

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 8 bits, the lower 8 bits of the result
are written to the destination operand and therefore the result wraps around.

The PSUBW instruction subtracts the words of the source operand from the words of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 16 bits, the lower 16 bits of the result
are written to the destination operand and therefore the result wraps around.

The PSUBD instruction subtracts the doublewords of the source operand from the
doublewords of the destination operand and stores the results to the destination
operand. When an individual result is too large to be represented in 32 bits, the lower
32 bits of the result are written to the destination operand and therefore the result
wraps around.

Opcode Instruction Description

0F F8 /r PSUBB mm, mm/m64 Subtract packed bytes in mm/m64 from packed bytes in mm.

0F F9 /r PSUBW mm, mm/m64 Subtract packed words inmm/m64 from packed words in mm.

0F FA /r PSUBD mm, mm/m64 Subtract packed doublewords in mm/m64 from packed
doublewords in mm.

Figure 3-19. Operation of the PSUBW Instruction

3006028

PSUBW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

0111111111111111

0111111100111000

1110100011111001

1001011000111111

– –– –

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:447

PSUBB/PSUBW/PSUBD—Packed Subtract (continued)

Note that like the integer SUB instruction, the PSUBB, PSUBW, and PSUBD instructions
can operate on either unsigned or signed (two's complement notation) packed integers.
Unlike the integer instructions, none of the MMX technology instructions affect the
EFLAGS register. With MMX technology instructions, there are no carry or overflow flags
to indicate when overflow has occurred, so the software must control the range of
values or else use the “with saturation” MMX technology instructions.

Operation

IF instruction is PSUBB
THEN

DEST(7..0) DEST(7..0) - SRC(7..0);
DEST(15..8) DEST(15..8) - SRC(15..8);
DEST(23..16) DEST(23..16) - SRC(23..16);
DEST(31..24) DEST(31..24) - SRC(31..24);
DEST(39..32) DEST(39..32) - SRC(39..32);
DEST(47..40) DEST(47..40) - SRC(47..40);
DEST(55..48) DEST(55..48) - SRC(55..48);
DEST(63..56) DEST(63..56) - SRC(63..56);

ELSEIF instruction is PSUBW
THEN

DEST(15..0) DEST(15..0) - SRC(15..0);
DEST(31..16) DEST(31..16) - SRC(31..16);
DEST(47..32) DEST(47..32) - SRC(47..32);
DEST(63..48) DEST(63..48) - SRC(63..48);

ELSE { (* instruction is PSUBD *)
DEST(31..0) DEST(31..0) - SRC(31..0);
DEST(63..32) DEST(63..32) - SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:448 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBB/PSUBW/PSUBD—Packed Subtract (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:449

PSUBSB/PSUBSW—Packed Subtract with Saturation

Description

Subtracts the individual signed data elements (bytes or words) of the source operand
(second operand) from the individual signed data elements of the destination operand
(first operand). (See Figure 3-20.) If the result of a subtraction exceeds the range for
the specified data type, the result is saturated. The destination operand must be an
MMX technology register; the source operand can be either an MMX technology register
or a quadword memory location.

The PSUBSB instruction subtracts the signed bytes of the source operand from the
signed bytes of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of a signed byte (that is,
greater than 7FH or less than 80H), the saturated byte value of 7FH or 80H,
respectively, is written to the destination operand.

The PSUBSW instruction subtracts the signed words of the source operand from the
signed words of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of a signed word (that is,
greater than 7FFFH or less than 8000H), the saturated word value of 7FFFH or 8000H,
respectively, is written to the destination operand.

Opcode Instruction Description

0F E8 /r PSUBSB mm, mm/m64 Subtract signed packed bytes in mm/m64 from signed
packed bytes in mm and saturate.

0F E9 /r PSUBSW mm, mm/m64 Subtract signed packed words in mm/m64 from signed
packed words in mm and saturate.

Figure 3-20. Operation of the PSUBSW Instruction

3006029

PSUBSW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

1000000000000000

0111111100111000

1110100011111001

0111111111111111

– –– –

4:450 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBSB/PSUBSW—Packed Subtract with Saturation (continued)

Operation

IF instruction is PSUBSB
THEN

DEST(7..0) SaturateToSignedByte(DEST(7..0) - SRC (7..0));
DEST(15..8) SaturateToSignedByte(DEST(15..8) - SRC(15..8));
DEST(23..16) SaturateToSignedByte(DEST(23..16) - SRC(23..16));
DEST(31..24) SaturateToSignedByte(DEST(31..24) - SRC(31..24));
DEST(39..32) SaturateToSignedByte(DEST(39..32) - SRC(39..32));
DEST(47..40) SaturateToSignedByte(DEST(47..40) - SRC(47..40));
DEST(55..48) SaturateToSignedByte(DEST(55..48) - SRC(55..48));
DEST(63..56) SaturateToSignedByte(DEST(63..56) - SRC(63..56))

ELSE (* instruction is PSUBSW *)
DEST(15..0) SaturateToSignedWord(DEST(15..0) - SRC(15..0));
DEST(31..16) SaturateToSignedWord(DEST(31..16) - SRC(31..16));
DEST(47..32) SaturateToSignedWord(DEST(47..32) - SRC(47..32));
DEST(63..48) SaturateToSignedWord(DEST(63..48) - SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:451

PSUBSB/PSUBSW—Packed Subtract with Saturation (continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:452 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation

Description

Subtracts the individual unsigned data elements (bytes or words) of the source operand
(second operand) from the individual unsigned data elements of the destination
operand (first operand). (See Figure 3-21.) If the result of an individual subtraction
exceeds the range for the specified unsigned data type, the result is saturated. The
destination operand musts be an MMX technology register; the source operand can be
either an MMX technology register or a quadword memory location.

The PSUBUSB instruction subtracts the unsigned bytes of the source operand from the
unsigned bytes of the destination operand and stores the results to the destination
operand. When an individual result is less than zero (a negative value), the saturated
unsigned byte value of 00H is written to the destination operand.

The PSUBUSW instruction subtracts the unsigned words of the source operand from the
unsigned words of the destination operand and stores the results to the destination
operand. When an individual result is less than zero (a negative value), the saturated
unsigned word value of 0000H is written to the destination operand.

Opcode Instruction Description

0F D8 /r PSUBUSB mm, mm/m64 Subtract unsigned packed bytes in mm/m64 from
unsigned packed bytes in mm and saturate.

0F D9 /r PSUBUSW mm,
mm/m64

Subtract unsigned packed words in mm/m64 from
unsigned packed words in mm and saturate.

Figure 3-21. Operation of the PSUBUSB Instruction

3006030

PSUBUSB mm, mm/m64

mm

mm/m64

mm

10000000

11111111

00000000

01111111

00010111

01101000

11111000

00000111

11110001

– –––––– –

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:453

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation
(continued)

Operation

IF instruction is PSUBUSB
THEN

DEST(7..0) SaturateToUnsignedByte (DEST(7..0 - SRC (7..0));
DEST(15..8) SaturateToUnsignedByte (DEST(15..8) - SRC(15..8));
DEST(23..16) SaturateToUnsignedByte (DEST(23..16) - SRC(23..16));
DEST(31..24) SaturateToUnsignedByte (DEST(31..24) - SRC(31..24));
DEST(39..32) SaturateToUnsignedByte (DEST(39..32) - SRC(39..32));
DEST(47..40) SaturateToUnsignedByte (DEST(47..40) - SRC(47..40));
DEST(55..48) SaturateToUnsignedByte (DEST(55..48) - SRC(55..48));
DEST(63..56) SaturateToUnsignedByte (DEST(63..56) - SRC(63..56));

ELSE { (* instruction is PSUBUSW *)
DEST(15..0) SaturateToUnsignedWord (DEST(15..0) - SRC(15..0));
DEST(31..16) SaturateToUnsignedWord (DEST(31..16) - SRC(31..16));
DEST(47..32) SaturateToUnsignedWord (DEST(47..32) - SRC(47..32));
DEST(63..48) SaturateToUnsignedWord (DEST(63..48) - SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:454 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation
(continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:455

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed
Data

Description

Unpacks and interleaves the high-order data elements (bytes, words, or doublewords)
of the destination operand (first operand) and source operand (second operand) into
the destination operand (see Figure 3-22). The low-order data elements are ignored.
The destination operand must be an MMX technology register; the source operand may
be either an MMX technology register or a 64-bit memory location. When the source
data comes from a memory operand, the full 64-bit operand is accessed from memory,
but the instruction uses only the high-order 32 bits.

The PUNPCKHBW instruction interleaves the four high-order bytes of the source
operand and the four high-order bytes of the destination operand and writes them to
the destination operand.

The PUNPCKHWD instruction interleaves the two high-order words of the source
operand and the two high-order words of the destination operand and writes them to
the destination operand.

The PUNPCKHDQ instruction interleaves the high-order doubleword of the source
operand and the high-order doubleword of the destination operand and writes them to
the destination operand.

If the source operand is all zeros, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the
destination operand. With the PUNPCKHBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned words), and with the PUNPCKHWD
instruction, the high-order words are zero extended (unpacked into unsigned
doublewords).

Opcode Instruction Description

0F 68 /r PUNPCKHBW mm, mm/m64 Interleave high-order bytes from mm and mm/m64 into mm.

0F 69 /r PUNPCKHWD mm,
mm/m64

Interleave high-order words from mm and mm/m64 into mm.

0F 6A /r PUNPCKHDQ mm, mm/m64 Interleave high-order doublewords from mm and mm/m64 into
mm.

Figure 3-22. High-order Unpacking and Interleaving of Bytes with the
PUNPCKHBW Instruction

3006031

PUNPCKHBW mm, mm/m64
mm/m64 mm

1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

mm
2 1 2 1 2 1 2 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 7 6 6 5 5 4 4

4:456 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed Data
(continued)

Operation

IF instruction is PUNPCKHBW
THEN

DEST(7..0) DEST(39..32);
DEST(15..8) SRC(39..32);
DEST(23..16) DEST(47..40);
DEST(31..24) SRC(47..40);
DEST(39..32) DEST(55..48);
DEST(47..40) SRC(55..48);
DEST(55..48) DEST(63..56);
DEST(63..56) SRC(63..56);

ELSE IF instruction is PUNPCKHW
THEN

DEST(15..0) DEST(47..32);
DEST(31..16) SRC(47..32);
DEST(47..32) DEST(63..48);
DEST(63..48) SRC(63..48);

ELSE (* instruction is PUNPCKHDQ *)
DEST(31..0) DEST(63..32)
DEST(63..32) SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:457

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed Data
(continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:458 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data

Description

Unpacks and interleaves the low-order data elements (bytes, words, or doublewords) of
the destination and source operands into the destination operand (see Figure 3-23).
The destination operand must be an MMX technology register; the source operand may
be either an MMX technology register or a memory location. When source data comes
from an MMX technology register, the upper 32 bits of the register are ignored. When
the source data comes from a memory, only 32-bits are accessed from memory.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand
and the four low-order bytes of the destination operand and writes them to the
destination operand.

The PUNPCKLWD instruction interleaves the two low-order words of the source operand
and the two low-order words of the destination operand and writes them to the
destination operand.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source
operand and the low-order doubleword of the destination operand and writes them to
the destination operand.

If the source operand is all zeros, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the
destination operand. With the PUNPCKLBW instruction the low-order bytes are zero
extended (that is, unpacked into unsigned words), and with the PUNPCKLWD
instruction, the low-order words are zero extended (unpacked into unsigned
doublewords).

Opcode Instruction Description

0F 60 /r PUNPCKLBW mm,
mm/m32

Interleave low-order bytes from mm and mm/m64 into
mm.

0F 61 /r PUNPCKLWD mm,
mm/m32

Interleave low-order words from mm and mm/m64 into
mm.

0F 62 /r PUNPCKLDQ mm, mm/m32 Interleave low-order doublewords from mm and mm/m64
into mm.

Figure 3-23. Low-order Unpacking and Interleaving of Bytes with the
PUNPCKLBW Instruction

3006032

PUNPCKLBW mm, mm/m32
mm/m32 mm

1 1 1 1 1 1 1 12 2 2 2

mm
2 1 2 1 2 1 2 13 3 2 2 1 1 0 0

3 2 1 0 7 6 5 4 3 2 1 0

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:459

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data
(continued)

Operation

IF instruction is PUNPCKLBW
THEN

DEST(63..56) SRC(31..24);
DEST(55..48) DEST(31..24);
DEST(47..40) SRC(23..16);
DEST(39..32) DEST(23..16);
DEST(31..24) SRC(15..8);
DEST(23..16) DEST(15..8);
DEST(15..8) SRC(7..0);
DEST(7..0) DEST(7..0);

ELSE IF instruction is PUNPCKLWD
THEN

DEST(63..48) SRC(31..16);
DEST(47..32) DEST(31..16);
DEST(31..16) SRC(15..0);
DEST(15..0) DEST(15..0);

ELSE (* instruction is PUNPCKLDQ *)
DEST(63..32) SRC(31..0);
DEST(31..0) DEST(31..0);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:460 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data
(continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:461

PXOR—Logical Exclusive OR

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the quadword source
(second) and destination (first) operands and stores the result in the destination
operand location (see Figure 3-24). The source operand can be an MMX technology
register or a quadword memory location; the destination operand must be an MMX
technology register. Each bit of the result is 1 if the corresponding bits of the two
operands are different; each bit is 0 if the corresponding bits of the operands are the
same.

Operation

DEST DEST XOR SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F EF /r PXOR mm, mm/m64 XOR quadword from mm/m64 to quadword in mm.

Figure 3-24. Operation of the PXOR Instruction

3006033

PXOR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1110111100100001010100000011010010101011011001110110001011100010

^

4:462 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PXOR—Logical Exclusive OR (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

§

Volume 4: IA-32 SSE Instruction Reference 4:463

IA-32 SSE Instruction Reference 4

4.1 IA-32 SSE Instructions

This section lists the IA-32 SSE instructions designed to increase performance of IA-32
3D and floating-point intensive applications. For details on SSE please refer to the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

4.2 About the Intel® SSE Architecture

The Intel SSE architecture accelerates performance of 3D graphics applications over the
current P6 generation of the Pentium Pro, Pentium II and Pentium III processors. The
programming model is similar to the MMX technology model except that instructions
now operate on new packed floating-point data types which contain four
single-precision floating-point numbers.

The Intel SSE architecture introduces new general purpose floating-point instructions,
which operate on a new set of eight 128-bit SSE registers. This gives the programmer
the ability to develop algorithms that can finely mix packed single-precision
floating-point and integer using both SSE and MMX technology instructions respectively.
In addition to these instructions, the Intel SSE architecture also provides new
instructions to control cacheability of all MMX technology data types. These include
ability to stream data into and from the processor while minimizing pollution of the
caches and the ability to prefetch data before it is actually used. The main focus of
packed floating-point instructions is the acceleration of 3D geometry. The new definition
also contains additional SIMD Integer instructions to accelerate 3D rendering and video
encoding and decoding. Together with the cacheability control instruction, this
combination enables the development of new algorithms that can significantly
accelerate 3D graphics.

The new SSE state requires OS support for saving and restoring the new state during a
context switch. A new set of extended FSAVE/FRSTOR instructions will permit
saving/restoring new and existing state for applications and OS. To make use of these
new instructions, an application must verify that the processor supports the Intel SSE
architecture and the operating system supports this new extension. If both the
extension and support is enabled, then the software application can use the new
features.

The SSE instruction set is fully compatible with all software written for Intel architecture
microprocessors. All existing software continues to run correctly, without modification,
on microprocessors that incorporate the Intel SSE architecture, as well as in the
presence of existing and new applications that incorporate this technology.

4:464 Volume 4: IA-32 SSE Instruction Reference

4.3 Single Instruction Multiple Data

The Intel SSE architecture uses the Single Instruction Multiple Data (SIMD) technique.
This technique speeds up software performance by processing multiple data elements
in parallel, using a single instruction. The Intel SSE architecture supports operations on
packed single-precision floating-point data types, and the additional SIMD Integer
instructions support operations on packed quadrate data types (byte, word, or
double-word). This approach was chosen because most 3D graphics and DSP
applications have the following characteristics:

• Inherently parallel

• Wide dynamic range, hence floating-point based

• Regular and re-occurring memory access patterns

• Localized re-occurring operations performed on the data

• Data independent control flow

The Intel SSE architecture is 100% compatible with the IEEE Standard 754 for Binary
Floating-point Arithmetic. The SSE instructions are accessible from all IA execution
modes: Protected mode, Real address mode, and Virtual 8086 mode.New Features

The Intel SSE architecture provides the following new features, while maintaining
backward compatibility with all existing Intel architecture microprocessors, IA
applications and operating systems.

• New data type

• Eight SSE registers

• Enhanced instruction set

The Intel SSE architecture can enhance the performance of applications that use these
features.

4.4 New Data Types

The principal data type of the Intel SSE architecture is a packed single-precision
floating-point operand, specifically:

• Four 32-bit single-precision (SP) floating-point numbers (Figure 4-1).

The SIMD Integer instructions will operate on the packed byte, word or doubleword
data types. The prefetch instruction works on typeless data of size 32 bytes or greater.

Figure 4-1. Packed Single-FP Data Type

Packed Single-FP

127 96 95 65 63 32 31 0

Volume 4: IA-32 SSE Instruction Reference 4:465

4.5 SSE Registers

The Intel SSE architecture provides eight 128-bit general purpose registers, each of
which can be directly addressed. These registers are new state, and require support
from the operating system to use them.

The SSE registers can hold packed 128-bit data. The SSE instructions access the SSE
registers directly using the registers names XMM0 to XMM7 (Figure 4-2).

SSE registers can be used to perform calculation on data. They cannot be used to
address memory; addressing is accomplished by using the integer registers and
existing IA addressing modes.

The contents of SSE registers are cleared upon reset.

There is a new control/status register MXCSR which is used to mask/unmask numerical
exception handling, to set rounding modes, to set flush-to-zero mode, and to view
status flags.

4.6 Extended Instruction Set

The Intel SSE architecture supplies a rich set of instructions that operate on either all or
the least significant pairs of packed data operands, in parallel. The packed instructions
operate on a pair of operands as shown in Figure 4-3 while scalar instructions always
operate on the least significant pair of the two operands as shown in Figure 4-4; for
scalar operations, the three upper components from the first operand are passed
through to the destination. In general, the address of a memory operand has to be
aligned on a 16-byte boundary for all instructions, except for unaligned loads and
stores.

Figure 4-2. SSE Register Set

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMM0

4:466 Volume 4: IA-32 SSE Instruction Reference

4.6.1 Instruction Group Review

4.6.1.1 Arithmetic Instructions

Packed/Scalar Addition and Subtraction
The ADDPS (Add packed single-precision floating-point) and SUBPS (Subtract packed
single-precision floating-point) instructions add or subtract four pairs of packed
single-precision floating-point operands.

The ADDSS (Add scalar single-precision floating-point) and SUBSS (Subtract scalar
single-precision floating-point) instructions add or subtract the least significant pair of
packed single-precision floating-point operands; the upper three fields are passed
through from the source operand.

Packed/Scalar Multiplication and Division
The MULPS (Multiply packed single-precision floating-point) instruction multiplies four
pairs of packed single-precision floating-point operands.

The MULSS (Multiply scalar single-precision floating-point) instruction multiplies the
least significant pair of packed single-precision floating-point operands; the upper three
fields are passed through from the source operand.

Figure 4-3. Packed Operation

Figure 4-4. Scalar Operation

X1 (SP) X2 (SP) X3 (SP) X4 (SP)

Y1 (SP) Y2 (SP) Y3 (SP) Y4 (SP)

X1 op Y1 (SP) X2 op Y2 (SP) X3 op Y3 (SP) X4 op Y4 (SP)

OPOPOPOP

X1 (SP) X2 (SP) X3 (SP) X4 (SP)

Y1 (SP) Y2 (SP) Y3 (SP) Y4 (SP)

X1 (SP) X2 (SP) X3 (SP) X4 op Y4 (SP)

OP

Volume 4: IA-32 SSE Instruction Reference 4:467

The DIVPS (Divide packed single-precision floating-point) instruction divides four pairs
of packed single-precision floating-point operands.

The DIVSS (Divide scalar single-precision floating-point) instruction divides the least
significant pair of packed single-precision floating-point operands; the upper three
fields are passed through from the source operand.

Packed/Scalar Square Root
The SQRTPS (Square root packed single-precision floating-point) instruction returns the
square root of the packed four single-precision floating-point numbers from the source
to a destination register.

The SQRTSS (Square root scalar single-precision floating-point) instruction returns the
square root of the least significant component of the packed single-precision
floating-point numbers from source to a destination register; the upper three fields are
passed through from the source operand.

Packed Maximum/Minimum
The MAXPS (Maximum packed single-precision floating-point) instruction returns the
maximum of each pair of packed single-precision floating-point numbers into the
destination register.

The MAXSS (Maximum scalar single-precision floating-point) instructions returns the
maximum of the least significant pair of packed single-precision floating-point numbers
into the destination register; the upper three fields are passed through from the source
operand, to the destination register.

The MINPS (Minimum packed single-precision floating-point) instruction returns the
minimum of each pair of packed single-precision floating-point numbers into the
destination register.

The MINSS (Minimum scalar single-precision floating-point) instruction returns the
minimum of the least significant pair of packed single-precision floating-point numbers
into the destination register; the upper three fields are passed through from the source
operand, to the destination register

4.6.1.2 Logical Instructions

The ANDPS (Bit-wise packed logical AND for single-precision floating-point) instruction
returns a bitwise AND between the two operands.

The ANDNPS (Bit-wise packed logical AND NOT for single-precision floating-point)
instruction returns a bitwise AND NOT between the two operands.

The ORPS (Bit-wise packed logical OR for single-precision floating-point) instruction
returns a bitwise OR between the two operands.

The XORPS (Bit-wise packed logical XOR for single-precision floating-point) instruction
returns a bitwise XOR between the two operands.

4:468 Volume 4: IA-32 SSE Instruction Reference

4.6.1.3 Compare Instructions

The CMPPS (Compare packed single-precision floating-point) instruction compares four
pairs of packed single-precision floating-point numbers using the immediate operand as
a predicate, returning per SP field an all “1” 32-bit mask or an all “0” 32-bit mask as a
result. The instruction supports a full set of 12 conditions: equal, less than, less than
equal, greater than, greater than or equal, unordered, not equal, not less than, not less
than or equal, not greater than, not greater than or equal, ordered.

The CMPSS (Compare scalar single-precision floating-point) instruction compares the
least significant pairs of packed single-precision floating-point numbers using the
immediate operand as a predicate (same as CMPPS), returning per SP field an all “1”
32-bit mask or an all “0” 32-bit mask as a result.

The COMISS (Compare scalar single-precision floating-point ordered and set EFLAGS)
instruction compares the least significant pairs of packed single-precision floating-point
numbers and sets the ZF,PF,CF bits in the EFLAGS register (the OF, SF and AF bits are
cleared).

The UCOMISS (Unordered compare scalar single-precision floating-point ordered and
set EFLAGS) instruction compares the least significant pairs of packed single-precision
floating-point numbers and sets the ZF,PF,CF bits in the EFLAGS register as described
above (the OF, SF and AF bits are cleared).

4.6.1.4 Shuffle Instructions

The SHUFPS (Shuffle packed single-precision floating-point) instruction is able to
shuffle any of the packed four single-precision floating-point numbers from one source
operand to the lower two destination fields; the upper two destination fields are
generated from a shuffle of any of the four SP FP numbers from the second source
operand (Figure 4-5). By using the same register for both sources, SHUFPS can return
any combination of the four SP FP numbers from this register.

The UNPCKHPS (Unpacked high packed single-precision floating-point) instruction
performs an interleaved unpack of the high-order data elements of first and second
packed single-precision floating-point operands. It ignores the lower half part of the

Figure 4-5. Packed Shuffle Operation

X4 X3 X2 X1

Y4 Y3 Y2 Y1

{Y4 ... Y1} {Y4 ... Y1} {X4 ... X1} {X4 ... X1}

Volume 4: IA-32 SSE Instruction Reference 4:469

sources (Figure 4-6). When unpacking from a memory operand, the full 128-bit
operand is accessed from memory but only the high order 64 bits are utilized by the
instruction.

The UNPCKLPS (Unpacked low packed single-precision floating-point) instruction
performs an interleaved unpack of the low-order data elements of first and second
packed single-precision floating-point operands. It ignores the higher half part of the
sources (Figure 4-7). When unpacking from a memory operand, the full 128-bit
operand is accessed from memory but only the low order 64 bits are utilized by the
instruction.

4.6.1.5 Conversion Instructions

These instructions support packed and scalar conversions between 128-bit SSE
registers and either 64-bit integer MMX technology registers or 32-bit integer IA-32
registers. The packed versions behave identically to original MMX technology
instructions, in the presence of x87-FP instructions, including:

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

• Use of EMMS for transition from MMX technology to x87-FP.

Figure 4-6. Unpack High Operation

Figure 4-7. Unpack Low Operation

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y4 X4 Y3 X3

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y2 X2 Y1 X1

4:470 Volume 4: IA-32 SSE Instruction Reference

The CVTPI2PS (Convert packed 32-bit integer to packed single-precision floating-point)
instruction converts two 32-bit signed integers in a MMX technology register to the two
least significant single-precision floating-point numbers; when the conversion is
inexact, the rounded value according to the rounding mode in MXCSR is returned. The
upper two significant numbers in the destination register are retained.

The CVTSI2SS (Convert scalar 32-bit integer to scalar single-precision floating-point)
instruction converts a 32-bit signed integer in a MMX technology register to the least
significant single-precision floating-point number; when the conversion is inexact, the
rounded value according to the rounding mode in MXCSR is returned. The upper three
significant numbers in the destination register are retained.

The CVTPS2PI (Convert packed single-precision floating-point to packed 32-bit integer)
instruction converts the two least significant single-precision floating-point numbers to
two 32-bit signed integers in a MMX technology register; when the conversion is
inexact, the rounded value according to the rounding mode in MXCSR is returned. The
CVTTPS2PI (Convert truncate packed single-precision floating-point to packed 32-bit
integer) instruction is similar to CVTPS2PI except if the conversion is inexact, in which
case the truncated result is returned.

The CVTSS2SI (Convert scalar single-precision floating-point to a 32-bit integer)
instruction converts the least significant single-precision floating-point number to a
32-bit signed integer in an Intel architecture 32-bit integer register; when the
conversion is inexact, the rounded value according to the rounding mode in MXCSR is
returned.The CVTTSS2SI (Convert truncate scalar single-precision floating-point to
scalar 32-bit integer) instruction is similar to CVTSS2SI except if the conversion is
inexact, the truncated result is returned.

4.6.1.6 Data Movement Instructions

The MOVAPS (Move aligned packed single-precision floating-point) instruction transfers
128-bits of packed data from memory to SSE registers and vice versa, or between SSE
registers. The memory address is aligned to 16-byte boundary; if not then a general
protection exception will occur.

The MOVUPS (Move unaligned packed single-precision floating-point) instruction
transfers 128-bits of packed data from memory to SSE registers and vice versa, or
between SSE registers. No assumption is made for alignment.

The MOVHPS (Move aligned high packed single-precision floating-point) instruction
transfers 64-bits of packed data from memory to the upper two fields of a SSE register
and vice versa. The lower field is left unchanged.

The MOVLPS (Move aligned low packed single-precision floating-point) instruction
transfers 64-bits of packed data from memory to the lower two fields of a SSE register
and vice versa. The upper field is left unchanged.

The MOVMSKPS (Move mask packed single-precision floating-point) instruction
transfers the most significant bit of each of the four packed single-precision
floating-point number to an IA integer register. This 4-bit value can then be used as a
condition to perform branching.

Volume 4: IA-32 SSE Instruction Reference 4:471

The MOVSS (Move scalar single-precision floating-point) instruction transfers a single
32-bit floating-point number from memory to a SSE register or vice versa, and between
registers.

4.6.1.7 State Management Instructions

The LDMXCSR (Load SSE Control and Status Register) instruction loads the SSE control
and status register from memory. STMXCSR (Store SSE Control and Status Register)
instruction stores the SSE control and status word to memory.

The FXSAVE instruction saves FP and MMX technology state and SSE state to memory.
Unlike FSAVE, FXSAVE does not clear the x87-FP state. FXRSTOR loads FP and MMX
technology state and SSE state from memory.

4.6.1.8 Additional SIMD Integer Instructions

Similar to the conversions instructions discussed in Section 4.6.1.5, “Conversion
Instructions” on page 4:469, these SIMD Integer instructions also behave identically to
original MMX technology instructions, in the presence of x87-FP instructions.

The PAVGB/PAVGW (Average unsigned source sub-operands, without incurring a loss in
precision) instructions add the unsigned data elements of the source operand to the
unsigned data elements of the destination register. The results of the add are then each
independently right shifted right by one bit position. The high order bits of each
element are filled with the carry bits of the sums. To prevent cumulative round-off
errors, an averaging is performed. The low order bit of each final shifted result is set to
1 if at least one of the two least significant bits of the intermediate unshifted shifted
sum is 1.

The PEXTRW (Extract 16-bit word from MMX technology register) instruction moves the
word in a MMX technology register selected by the two least significant bits of the
immediate operand to the lower half of a 32-bit integer register; the upper word in the
integer register is cleared.

The PINSRW (Insert 16-bit word into MMX technology register) instruction moves the
lower word in a 32-bit integer register or 16-bit word from memory into one of the four
word locations in a MMX technology register, selected by the two least significant bits of
the immediate operand.

The PMAXUB/PMAXSW (Maximum of packed unsigned integer bytes or signed integer
words) instruction returns the maximum of each pair of packed elements into the
destination register.

The PMINUB/PMINSW (Minimum of packed unsigned integer bytes or signed integer
words) instructions returns the minimum of each pair of packed data elements into the
destination register.

The PMOVMSKB (Move Byte Mask from MMX technology register) instruction returns an
8-bit mask formed of the most significant bits of each byte of its source operand in a
MMX technology register to an IA integer register.

4:472 Volume 4: IA-32 SSE Instruction Reference

The PMULHUW (Unsigned high packed integer word multiply in MMX technology
register) instruction performs an unsigned multiply on each word field of the two source
MMX technology registers, returning the high word of each result to a MMX technology
register.

The PSADBW (Sum of absolute differences) instruction computes the absolute
difference for each pair of sub-operand byte sources and then accumulates the 8
differences into a single 16-bit result.

The PSHUFW (Shuffle packed integer word in MMX technology register) instruction
performs a full shuffle of any source word field to any result word field, using an 8-bit
immediate operand.

4.6.1.9 Cacheability Control Instructions

Data referenced by a programmer can have temporal (data will be used again) or
spatial (data will be in adjacent locations, e.g. same cache line) locality. Some
multimedia data types, such as the display list in a 3D graphics application, are
referenced once and not reused in the immediate future. We will refer to this data type
as non-temporal data. Thus the programmer does not want the application’s cached
code and data to be overwritten by this non-temporal data. The cacheability control
instructions enable the programmer to control caching so that non-temporal accesses
will minimize cache pollution.

In addition, the execution engine needs to be fed such that it does not become stalled
waiting for data. SSE instructions allow the programmer to prefetch data long before
it’s final use. These instructions are not architectural since they do not update any
architectural state, and are specific to each implementation. The programmer may have
to tune his application for each implementation to take advantage of these instructions.
These instructions merely provide a hint to the hardware, and they will not generate
exceptions or faults. Excessive use of prefetch instructions may be throttled by the
processor.

The following four instructions provide hints to the cache hierarchy which enables the
data to be prefetched to different levels of the cache hierarchy and avoid polluting
cache with non-temporal data.

The MASKMOVQ (Non-temporal byte mask store of packed integer in a MMX technology
register) instruction stores data from a MMX technology register to the location
specified by the EDI register. The most significant bit in each byte of the second MMX
technology mask register is used to selectively write the data of the first register on a
per-byte basis. The instruction is implicitly weakly-ordered, with all of the
characteristics of the WC memory type; successive non-temporal stores may not write
memory in program-order, do not write-allocate (i.e. the processor will not fetch the
corresponding cache line into the cache hierarchy, prior to performing the store), write
combine/collapse, and minimize cache pollution.

The MOVNTQ (Non-temporal store of packed integer in a MMX technology register)
instruction stores data from a MMX technology register to memory. The instruction is
implicitly weakly-ordered, does not write-allocate and minimizes cache pollution.

Volume 4: IA-32 SSE Instruction Reference 4:473

The MOVNTPS (Non-temporal store of packed single-precision floating-point)
instruction stores data from a SSE register to memory. The memory address must be
aligned to a 16-byte boundary; if it is not aligned, a general protection exception will
occur. The instruction is implicitly weakly-ordered, does not write-allocate and
minimizes cache pollution.

The main difference between a non-temporal store and a regular cacheable store is in
the write-allocation policy. The memory type of the region being written to can override
the non-temporal hint, leading to the following considerations:

• If the programmer specifies a non-temporal store to uncacheable memory, then the
store behaves like an uncacheable store; the non-temporal hint is ignored and the
memory type for the region is retained. Uncacheable as referred to here means that
the region being written to has been mapped with either a UC or WP memory type.
If the memory region has been mapped as WB, WT or WC, the non-temporal store
will implement weakly-ordered (WC) semantic behavior.

• If the programmer specifies a non-temporal store to cacheable memory, two cases
may result:

• If the data is present in the cache hierarchy, the instruction will ensure
consistency. A given processor may choose different ways to implement this;
some examples include: updating data in-place in the cache hierarchy while
preserving the memory type semantics assigned to that region, or evicting the
data from the caches and writing the new non-temporal data to memory (with
WC semantics).

• If the data is not present in the cache hierarchy, and the destination region is
mapped as WB, WT or WC, the transaction will be weakly ordered, and is
subject to all WC memory semantics. The non-temporal store will not write
allocate. Different implementations may choose to collapse and combine these
stores.

• In general, WC semantics require software to ensure coherence, with respect to
other processors and other system agents (such as graphics cards). Appropriate
use of synchronization and a fencing operation (see SFENCE, below) must be
performed for producer-consumer usage models. Fencing ensures that all system
agents have global visibility of the stored data; for instance, failure to fence may
result in a written cache line staying within a processor, and the line would not be
visible to other agents. For processors which implement non-temporal stores by
updating data in-place that already resides in the cache hierarchy, the destination
region should also be mapped as WC. Otherwise if mapped as WB or WT, there is
the potential for speculative processor reads to bring the data into the caches; in
this case, non-temporal stores would then update in place, and data would not be
flushed from the processor by a subsequent fencing operation.

• The memory type visible on the bus in the presence of memory type aliasing is
implementation specific. As one possible example, the memory type written to the
bus may reflect the memory type for the first store to this line, as seen in program
order; other alternatives are possible. This behavior should be considered reserved,
and dependency on the behavior of any particular implementation risks future
incompatibility.

The PREFETCH (Load 32 or greater number of bytes) instructions load either
non-temporal data or temporal data in the specified cache level. This access and the
cache level are specified as a hint. The prefetch instructions do not affect functional
behavior of the program and will be implementation specific.

4:474 Volume 4: IA-32 SSE Instruction Reference

The SFENCE (Store Fence) instruction guarantees that every store instruction that
precedes the store fence instruction in program order is globally visible before any store
instruction which follows the fence. The SFENCE instruction provides an efficient way of
ensuring ordering between routines that produce weakly-ordered results and routines
that consume this data.

4.7 IEEE Compliance

SSE floating-point computation is IEEE-754 compliant except when the control word is
set to flush to zero mode. IEEE-754 compliance includes support for single-precision
signed infinities, QNaNs, SNaNs, integer indefinite, signed zeros, denormals, masked
and unmasked exceptions. single-precision floating-point values are represented
identically both internally and in memory, and are of the following form:

This is a change from x87 floating-point which internally represents all numbers in
80-bit extended format. This change implies that x87-FP libraries re-written to use SSE
instructions may not produce results that are identical to the those of the x87-FP
implementation.Real Numbers and Floating-point Formats.

This section describes how real numbers are represented in floating-point format in the
processor. It also introduces terms such as normalized numbers, denormalized
numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar
with floating-point processing techniques and the IEEE standards may wish to skip this
section.

4.7.1 Real Number System

As shown in Figure 4-8, the real-number system comprises the continuum of real
numbers from minus infinity () to plus infinity (+).

Sign Exponent Significand

31 30...23 22...0

Volume 4: IA-32 SSE Instruction Reference 4:475

Because the size and number of registers that any computer can have is limited, only a
subset of the real-number continuum can be used in real-number calculations. As
shown at the bottom of Figure 4-1, the subset of real numbers that a particular
processor supports represents an approximation of the real number system. The range
and precision of this real-number subset is determined by the format that the processor
uses to represent real numbers.

4.7.1.1 Floating-point Format

To increase the speed and efficiency of real-number computations, computers typically
represent real numbers in a binary floating-point format. In this format, a real number
has three parts: a sign, a significand, and an exponent. Figure 4-9 shows the binary
floating-point format that SSE data uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative
(1). The significand has two parts: a 1-bit binary integer (also referred to as the J-bit)
and a binary fraction. The J-bit is often not represented, but instead is an implied value.
The exponent is a binary integer that represents the base-2 power that the significand
is raised to.

Figure 4-8. Binary Real Number System

Binary Real Number System

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format.

+10

10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.

VV VV

-100 -10 -1 0 1 10 100

VV VV

-100 -10 -1 0 1 10 100

4:476 Volume 4: IA-32 SSE Instruction Reference

Table 4-1 shows how the real number 178.125 (in ordinary decimal format) is stored in
floating-point format. The table lists a progression of real number notations that leads
to the format that the processor uses. In this format, the binary real number is
normalized and the exponent is biased.

4.7.1.2 Normalized Numbers

In most cases, the processor represents real numbers in normalized form. This means
that except for zero, the significand is always made up of an integer of 1 and the
following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated,
the exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits
that can be accommodated in a significand of a given width. To summarize, a
normalized real number consists of a normalized significand that represents a real
number between 1 and 2 and an exponent that specifies the number’s binary point.

4.7.1.3 Biased Exponent

The processor represents exponents in a biased form. This means that a constant is
added to the actual exponent so that the biased exponent is always a positive number.
The value of the biasing constant depends on the number of bits available for
representing exponents in the floating-point format being used. The biasing constant is
chosen so that the smallest normalized number can be reciprocated without overflow.

Figure 4-9. Binary Floating-point Format

Table 4-1. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 10110010001E210000110

Single Format (Normalized) Sign Biased Exponent Significand

0 10000110 01100100010000000000000
1 (Implied)

Sign

Integer or J-Bit

Exponent Significand

Fraction

Volume 4: IA-32 SSE Instruction Reference 4:477

4.7.1.4 Real Number and Non-Number Encodings

A variety of real numbers and special values can be encoded in the processor’s
floating-point format. These numbers and values are generally divided into the
following classes:

• Signed zeros

• Denormalized finite numbers

• Normalized finite numbers

• Signed infinities

• NaNs

• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-10 shows how the encodings for these numbers and non-numbers fit into the
real number continuum. The encodings shown here are for the IEEE single-precision
(32-bit) format, where the term “S” indicates the sign bit, “E” the biased exponent, and
“F” the fraction. (The exponent values are given in decimal.)

The processor can operate on and/or return any of these values, depending on the type
of computation being performed. The following sections describe these number and
non-number classes.

4.7.1.5 Signed Zeros

Zero can be represented as a +0 or a 0 depending on the sign bit. Both encodings are
equal in value. The sign of a zero result depends on the operation being performed and
the rounding mode being used. Signed zeros have been provided to aid in
implementing interval arithmetic. The sign of a zero may indicate the direction from
which underflow occurred, or it may indicate the sign of an that has been
reciprocated.

4.7.1.6 Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized.
The normalized finite numbers comprise all the non-zero finite values that can be
encoded in a normalized real number format between zero and . In the format shown
in Figure 4-10, this group of numbers includes all the numbers with biased exponents
ranging from 1 to 25410 (unbiased, the exponent range is from 12610 to +12710).

4:478 Volume 4: IA-32 SSE Instruction Reference

When real numbers become very close to zero, the normalized-number format can no
longer be used to represent the numbers. This is because the range of the exponent is
not large enough to compensate for shifting the binary point to the right to eliminate
leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making
the integer bit (and perhaps other leading bits) of the significand zero. The numbers in
this range are called denormalized (or tiny) numbers. The use of leading zeros with
denormalized numbers allows smaller numbers to be represented. However, this
denormalization causes a loss of precision (the number of significant bits in the fraction
is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally
operates on normalized numbers and produces normalized numbers as results.
Denormalized numbers represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow.
Table 4-2 gives an example of gradual underflow in the denormalization process. Here
the single-real format is being used, so the minimum exponent (unbiased) is 12610.
The true result in this example requires an exponent of 12910 in order to have a
normalized number. Since 12910 is beyond the allowable exponent range, the result
is denormalized by inserting leading zeros until the minimum exponent of 12610 is
reached.

Figure 4-10. Real Numbers and NaNs

Table 4-2. Denormalization Process

Operation Sign Exponenta Significand

True Result 0 129 1.01011100000...00

Denormalize 0 128 0.10101110000...00

Denormalize 0 127 0.01010111000...00

1 0 0
S E F

-0

1 0 -Denormalized
Finite

NaN

1 1...254 Any Value -Normalized
Finite

1 255 0 -

255 1.0XX2 -SNaN

255 1.1XX -QNaN

Notes
1. Sign bit ignored
2. Fractions must be non-zero

0 0 0
S E F

0 0

NaN

0 1...254 Any Value

0 255 0

X1 255 1.0XX2

255 1.1XX

+0

+Denormalized
Finite

+Normalized
Finite

+

+SNaN

+QNaN X1

X1

X1

Real Number and NaN Encodings For 32-bit Floating-point Format

-Denormalized Finite

-Normalized Finite -0- +
+Denormalized Finite

+Normalized Finite+0

0.XXX2 0.XXX2

Volume 4: IA-32 SSE Instruction Reference 4:479

In the extreme case, all the significant bits are shifted out to the right by leading zeros,
creating a zero result.

The processor deals with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to detect
cases when denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for
computations.

4.7.1.7 Signed Infinities

The two infinities, + and , represent the maximum positive and negative real
numbers, respectively, that can be represented in the floating-point format. Infinity is
always represented by a zero significand (fraction and integer bit) and the maximum
biased exponent allowed in the specified format (for example, 25510 for the single-real
format).

The signs of infinities are observed, and comparisons are possible. Infinities are always
interpreted in the affine sense; that is, - is less than any finite number and +is
greater than any finite number. Arithmetic on infinities is always exact. Exceptions are
generated only when the use of an infinity as a source operand constitutes an invalid
operation.

Whereas denormalized numbers represent an underflow condition, the two infinity
numbers represent the result of an overflow condition. Here, the normalized result of a
computation has a biased exponent greater than the largest allowable exponent for the
selected result format.

4.7.1.8 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-10,
the encoding space for NaNs in the processor floating-point formats is shown above the
ends of the real number line. This space includes any value with the maximum
allowable biased exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two classes of NaN: quiet NaNs (QNaNs) and signaling NaNs
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN
with the most significant fraction bit clear. QNaNs are allowed to propagate through
most arithmetic operations without signaling an exception. SNaNs generally signal an
invalid-operation exception whenever they appear as operands in arithmetic operations.
Exceptions, as well as detailed information on how the processor handles NaNs, are
discussed in Section 4.7.2, “Operating on NaNs”.

Denormalize 0 126 0.00101011100...00

Denormal Result 0 126 0.00101011100...00

a. Expressed as an unbiased, decimal number.

Table 4-2. Denormalization Process

Operation Sign Exponenta Significand

4:480 Volume 4: IA-32 SSE Instruction Reference

4.7.1.9 Indefinite

In response to a masked invalid-operation floating-point exceptions, the indefinite
value QNAN is produced. The integer indefinite, which can be produced during
conversion from single-precision floating-point to 32-bit integer, is defined to be
80000000H.

4.7.2 Operating on NaNs

As was described in Section 4.7.1.8, “NaNs” on page 4:479, the Intel SSE architecture
supports two types of NaNs: SNaNs and QNaNs. An SNaN is any NaN value with its
most-significant fraction bit set to 0 and at least one other fraction bit set to 1. (If all
the fraction bits are set to 0, the value is an .) A QNaN is any NaN value with the
most-significant fraction bit set to 1. The sign bit of a NaN is not interpreted.

As a general rule, when a QNaN is used in one or more arithmetic floating-point
instructions, it is allowed to propagate through a computation. An SNaN on the other
hand causes a floating-point invalid-operation exception to be signaled. SNaNs are
typically used to trap or invoke an exception handler.

The invalid operation exception has a flag and a mask bit associated with it in MXCSR.
The mask bit determines how the an SNaN value is handled. If the invalid operation
mask bit is set, the SNaN is converted to a QNaN by setting the most-significant
fraction bit of the value to 1. The result is then stored in the destination operand and
the invalid operation flag is set. If the invalid operation mask is clear, an invalid
operation fault is signaled and no result is stored in the destination operand.

When a real operation or exception delivers a QNaN result, the value of the result
depends on the source operands, as shown in Table 4-3. The exceptions to the behavior
described in Table 4-3 are the MINPS and MAXPS instructions. If only one source is a
NaN for these instructions, the Src2 operand (either NaN or real value) is written to the
result; this differs from the behavior for other instructions as defined in Table 4-3,
which is to always write the NaN to the result, regardless of which source operand
contains the NaN. This approach for MINPS/MAXPS allows NaN data to be screened out
of the bounds-checking portion of an algorithm. If instead of this behavior, it is required
that the NaN source operand be returned, the min/max functionality can be emulated
using a sequence of instructions: comparison followed by AND, ANDN and OR.

In general Src1 and Src2 relate to an SSE instruction as follows:

ADDPS Src1, Src2/m128

Except for the rules given at the beginning of this section for encoding SNaNs and
QNaNs, software is free to use the bits in the significand of a NaN for any purpose. Both
SNaNs and QNaNs can be encoded to carry and store data, such as diagnostic
information.

Volume 4: IA-32 SSE Instruction Reference 4:481

4.8 Data Formats

4.8.1 Memory Data Formats

The Intel SSE architecture introduces a new packed 128-bit data type which consists of
4 single-precision floating-point numbers. The 128 bits are numbered 0 through 127.
Bit 0 is the least significant bit (LSB), and bit 127 is the most significant bit (MSB).

Bytes in the new data type format have consecutive memory addresses. The ordering is
always little endian, that is, the bytes with the lower addresses are less significant than
the bytes with the higher addresses.

4.8.2 SSE Register Data Formats

Values in SSE registers have the same format as a 128-bit quantity in memory. They
have two data access modes: 128-bit access mode and 32-bit access mode. The data
type corresponds directly to the single-precision format in the IEEE standard. Table 4-4
gives the precision and range of this data type. Only the fraction part of the significand
is encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized
finite numbers. The exponent of the single-precision data type is encoded in biased
format. The biasing constant is 127 for the single-precision format.

Table 4-3. Results of Operations with NAN Operands

Source Operands
NaN Result

(invalid operation exception is masked)

An SNaN and a QNaN. Src1 NaN (converted to QNaN if Src1 is an SNaN).

Two SNaNs. Src1 NaN (converted to QNaN)

Two QNaNs. Src1 QNaN

An SNaN and a real value. The SNaN converted into a QNaN.

A QNaN and a real value. The QNaN source operand.

An SNaN/QNaN value (for instructions
which take only one operand i.e.
RCPPS, RCPSS, RSQRTPS,
RSQRTSS)

The SNaN converted into a QNaN/the source QNaN.

Neither source operand is a NaN and a
floating-point invalid-operation
exception is signaled.

The default QNaN real indefinite.

Figure 4-11. Four Packed FP Data in Memory (at address 1000H)

02 16 34579 813 10111215 14

Byte 0

Memory Address 1000dMemory Address 1016d

Byte 15

4:482 Volume 4: IA-32 SSE Instruction Reference

Table 4-5 shows the encodings for all the classes of real numbers (that is, zero,
denormalized-finite, normalized-finite, and) and NaNs for the single-real data-type. It
also gives the format for the real indefinite value, which is a QNaN encoding that is
generated by several SSE instructions in response to a masked floating-point
invalid-operation exception.

When storing real values in memory, single-real values are stored in 4 consecutive
bytes in memory. The 128-bit access mode is used for 128-bit memory accesses,
128-bit transfers between SSE registers, and all logical, unpack and arithmetic
instructions.The 32-bit access mode is used for 32-bit memory access, 32-bit transfers
between SSE registers, and all arithmetic instructions.

There are sixty-eight new instructions in SSE instruction set. This chapter describes the
packed and scalar floating-point instructions in alphabetical order, with a full description
of each instruction. The last two sections of this chapter describe the SIMD Integer
instructions and the cacheability control instructions.

Table 4-4. Precision and Range of SSE Datatype

Data Type Length
Precision

(Bits)

Approximate Normalized Range

Binary Decimal

Single-precision 32 24 2-126 to 2127 1.18 10-38 to 3.40 1038

Table 4-5. Real Number and NaN Encodings

Class Sign Biased Exponent
Significand

Integer1 Fraction

Positive + 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
 .
 .

00..01

1
.
.
1

11..11
 .
 .

00..00

+Denormals 0
.
.
0

00..00
 .
 .

00..00

0
.
.
0

11.11
 .
 .

00..01

+Zero 0 00..00 0 00..00

Negative Zero 1 00..00 0 00..00

Denormals 1
.
.
1

00..00
 .
 .

00..00

0
.
.
0

00..01
 .
 .

11..11

Normals 1
.
.
1

00..01
 .
 .

11..10

1
.
.
1

00..00
 .
 .

11..11

- 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

Real Indefinite
(QNaN)

1 11..11 1 10..00

Single 8 Bits 23 Bits

Volume 4: IA-32 SSE Instruction Reference 4:483

4.9 Instruction Formats

The nature of the Intel SSE architecture allows the use of existing instruction formats.
Instructions use the ModR/M format and are preceded by the 0F prefix byte. In general,
operations are not duplicated to provide two directions (i.e. separate load and store
variants).

4.10 Instruction Prefixes

The SSE instructions use prefixes as specified in Table 4-6, Table 4-7, and Table 4-8.
The effect of multiple prefixes (more than one prefix from a group) is unpredictable and
may vary from processor to processor.

Applying a prefix, in a manner not defined in this document, is considered reserved
behavior. For example, Table 4-6 shows general behavior for most SSE instructions;
however, the application of a prefix (Repeat, Repeat NE, Operand Size) is reserved for
the following instructions:

ANDPS, ANDNPS, COMISS, FXRSTOR, FXSAVE, ORPS, LDMXCSR, MOVAPS, MOVHPS,
MOVLPS, MOVMSKPS, MOVNTPS, MOVUPS, SHUFPS, STMXCSR, UCOMISS, UNPCKHPS,
UNPCKLPS, XORPS.

Table 4-6. SSE Instruction Behavior with Prefixes

Prefix Type Effect on SSE Instructions
Address Size Prefix (67H) Affects SSE instructions with memory operand

Ignored by SSE instructions without memory operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects SSE instructions with mem.operand
Ignored by SSE instructions without mem operand

Repeat Prefix (F3H) Affects SSE instructions

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates invalid opcode exception.

Table 4-7. SIMD Integer Instructions – Behavior with Prefixes

Prefix Type Effect on Intel® MMX™ Technology Instructions

Address Size Prefix (67H) Affects Intel MMX technology instructions with mem. operand
Ignored by Intel MMX technology instructions without mem. operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects Intel MMX technology instructions with mem. operand
Ignored by Intel MMX technology instructions without mem operand

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates invalid opcode exception.

Table 4-8. Cacheability Control Instruction Behavior with Prefixes

Prefix Type Effect on SSE Instructions

Address Size Prefix (67H) Affects cacheability control instruction with a mem. operand
Ignored by cacheability control instruction w/o a mem. operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

4:484 Volume 4: IA-32 SSE Instruction Reference

4.11 Reserved Behavior and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved.
When bits are marked as reserved, it is essential for compatibility with future
processors that software treat these bits as having a future, though unknown, effect.
The behavior of reserved bits should be regarded as not only reserved, but
unpredictable. In general, reserved behavior may also be applied in other areas.
Software should follow these guidelines in dealing with reserved behavior:

• Do not depend on the states of any reserved fields when testing the values of
registers which contain such bits. Mask out the reserved fields before testing.

• Do not depend on the states of any reserved fields when storing to memory or to a
register.

• Do not depend on the ability to retain information written into any reserved fields.

• When loading a register, always load the reserved fields with the values indicated in
the documentation, if any, or reload them with values previously read from the
same register.

Note: Avoid any software dependency upon the reserved state/behavior. Depending
upon reserved behavior will make the software dependent upon the unspecified
manner in which the processor handles this behavior and risks incompatibility
with future processors.

4.12 Notations

Besides opcodes, two kinds of notations are found which both describe information
found in the ModR/M byte:

1. /digit: (digit between 0 and 7) indicates that the instruction uses only the r/m
(register and memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

2. /r: indicates that the ModR/M byte of an instruction contains both a register
operand and an r/m operand.

In addition, the following abbreviations are used:

• r32: Intel architecture 32-bit integer register.

• xmm/m128:Indicates a 128-bit multimedia register or a 128-bit memory location.

• xmm/m64: Indicates a 128-bit multimedia register or a 64-bit memory location.

• xmm/m32: Indicates a 128-bit multimedia register or a 32-bit memory location.

• mm/m64: Indicates a 64-bit multimedia register or a 64-bit memory location.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects cacheability control instructions with mem. operand
Ignored by cacheability control instruction without mem operand

Repeat Prefix(F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates an invalid opcode exception for all cacheability
instructions.

Table 4-8. Cacheability Control Instruction Behavior with Prefixes

Prefix Type Effect on SSE Instructions

Volume 4: IA-32 SSE Instruction Reference 4:485

• imm8: Indicates an immediate 8-bit operand.

• ib: Indicates that an immediate byte operand follows the opcode,
ModR/M byte or

scaled-indexing byte.

When there is ambiguity, xmm1 indicates the first source operand and xmm2 the
second source operand.

Table 4-9 describes the naming conventions used in the SSE instruction mnemonics.

Table 4-9. Key to SSE Naming Convention

Mnemonic Description

PI Packed integer qword (e.g. mm0)

PS Packed single FP (e.g. xmm0)

SI Scalar integer (e.g. eax)

SS Scalar single-FP (e.g. low 32 bits of xmm0)

4:486 Volume 4: IA-32 SSE Instruction Reference

ADDPS: Packed Single-FP Add

Operation: xmm1[31-0] = xmm1[31-0] + xmm2/m128[31-0];

xmm1[63-32] = xmm1[63-32] + xmm2/m128[63-32];

xmm1[95-64] = xmm1[95-64] + xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] + xmm2/m128[127-96];

Description: The ADDPS instruction adds the packed SP FP numbers of both their operands.

Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0)

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,58,/r ADDPS xmm1, xmm2/m128 Add packed SP FP numbers from XMM2/Mem to XMM1.

Volume 4: IA-32 SSE Instruction Reference 4:487

ADDSS: Scalar Single-FP Add

Operation: xmm1[31-0] = xmm1[31-0] + xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The ADDSS instruction adds the lower SP FP numbers of both their operands; the upper
3 fields are passed through from xmm1.

FP Exceptions: None.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,58, /r ADDSS xmm1, xmm2/m32 Add the lower SP FP number from XMM2/Mem to XMM1.

4:488 Volume 4: IA-32 SSE Instruction Reference

ANDNPS: Bit-wise Logical And Not for Single-FP

Operation: xmm1[127-0] = ~(xmm1[127-0]) & xmm2/m128[127-0];

Description: The ANDNPS instructions returns a bit-wise logical AND between the complement of
XMM1 and XMM2/Mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ANDNPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with ANDNPS
risks incompatibility with future processors.

Opcode Instruction Description

0F,55,/r ANDNPS xmm1, xmm2/m128 Invert the 128 bits in XMM1and then AND the result with 128
bits from XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:489

ANDPS: Bit-wise Logical And for Single-FP

Operation: xmm1[127-0] &= xmm2/m128[127-0];

Description: The ANDPS instruction returns a bit-wise logical AND between XMM1 and XMM2/Mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ANDPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with ANDPS
risks incompatibility with future processors.

Opcode Instruction Description

0F,54,/r ANDPS xmm1, xmm2/m128 Logical AND of 128 bits from XMM2/Mem to XMM1 register.

4:490 Volume 4: IA-32 SSE Instruction Reference

CMPPS: Packed Single-FP Compare

Operation: switch (imm8) {

case eq: op = eq;

case lt: op = lt;

case le: op = le;

case unord: op = unord;

case neq: op = neq;

case nlt: op = nlt;

case nle: op = nle;

case ord: op = ord;

default: Reserved;

}

cmp0 = op(xmm1[31-0],xmm2/m128[31-0]);

cmp1 = op(xmm1[63-32],xmm2/m128[63-32]);

cmp2 = op(xmm1[95-64],xmm2/m128[95-64]);

cmp3 = op(xmm1[127-96],xmm2/m128[127-96]);

xmm1[31-0] = (cmp0) ? 0xffffffff : 0x00000000;

xmm1[63-32] = (cmp1) ? 0xffffffff : 0x00000000;

xmm1[95-64] = (cmp2) ? 0xffffffff : 0x00000000;

xmm1[127-96] = (cmp3) ? 0xffffffff : 0x00000000;

Description: For each individual pairs of SP FP numbers, the CMPPS instruction returns an all “1”
32-bit mask or an all “0” 32-bit mask, using the comparison predicate specified by
imm8; note that a subsequent computational instruction which uses this mask as an
input operand will not generate a fault, since a mask of all “0’s” corresponds to a FP
value of +0.0 and a mask of all “1’s” corresponds to a FP value of -qNaN. Some of the
comparisons can be achieved only through software emulation. For these comparisons
the programmer must swap the operands, copying registers when necessary to protect
the data that will now be in the destination, and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in under the
heading “Emulation.” The following table shows the different comparison types:

Opcode Instruction Description

0F,C2,/r,ib CMPPS xmm1, xmm2/m128,
imm8

Compare packed SP FP numbers from XMM2/Mem to
packed SP FP numbers in XMM1 register using imm8 as
predicate.

Volume 4: IA-32 SSE Instruction Reference 4:491

CMPPS: Packed Single-FP Compare (Continued)

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid if sNaN operand, invalid if qNaN and predicate as listed in above table,
denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Predicate Descriptiona

a. The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not directly implemented
in hardware.

Relation Emulation
imm8

Encoding

Result if
NaN

Operand

QNaN
Operand
Signals
Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap, protect, lt False Yes

greater-than-or-equal xmm1 >= xmm2 swap protect, le False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-equal !(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap, protect, nlt True Yes

not-greater-than-or-equal !(xmm1 >= xmm2) swap, protect, nle True Yes

ord ordered !(xmm1 ? xmm2) 111B False No

4:492 Volume 4: IA-32 SSE Instruction Reference

CMPPS: Packed Single-FP Compare (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Compilers and assemblers should implement the following 2-operand pseudo-ops in
addition to the 3-operand CMPPS instruction:

The greater-than relations not implemented in hardware require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the
corresponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them
differently. Usage of these bits risks incompatibility with future processors.

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1,xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1,xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1,xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1,xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1,xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1,xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1,xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1,xmm2, 7

Volume 4: IA-32 SSE Instruction Reference 4:493

CMPSS: Scalar Single-FP Compare

Operation: switch (imm8) {

case eq: op = eq;

case lt: op = lt;

case le: op = le;

case unord: op = unord;

case neq: op = neq;

case nlt: op = nlt;

case nle: op = nle;

case ord: op = ord;

default: Reserved;

}

cmp0 = op(xmm1[31-0],xmm2/m32[31-0]);

xmm1[31-0] = (cmp0) ? 0xffffffff : 0x00000000;

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: For the lowest pair of SP FP numbers, the CMPSS instruction returns an all “1” 32-bit
mask or an all “0” 32-bit mask, using the comparison predicate specified by imm8; the
values for the upper three pairs of SP FP numbers are not compared. Note that a
subsequent computational instruction which uses this mask as an input operand will not
generate a fault, since a mask of all “0’s” corresponds to a FP value of +0.0 and a mask
of all “1’s” corresponds to a FP value of -qNaN. Some of the comparisons can be
achieved only through software emulation. For these comparisons the programmer
must swap the operands, copying registers when necessary to protect the data that will
now be in the destination, and then perform the compare using a different predicate.
The predicate to be used for these emulations is listed in under the heading
“Emulation.” The following table shows the different comparison types:

Opcode Instruction Description

F3,0F,C2,/r,ib CMPSS xmm1, xmm2/m32,
imm8

Compare lowest SP FP number from XMM2/Mem to lowest
SP FP number in XMM1 register using imm8 as predicate.

4:494 Volume 4: IA-32 SSE Instruction Reference

CMPSS: Scalar Single-FP Compare (Continued)

FP Exceptions: None.

Numeric Exceptions: Invalid if sNaN operand, invalid if qNaN and predicate as listed in above table,
denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true (CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Predicate Descriptiona

a. The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not directly implemented
in hardware.

Relation Emulation
imm8

Encoding

Result if
NaN

Operand

qNaN
OperandSig
nals Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap, protect, lt False Yes

greater-than-or-equal xmm1 >= xmm2 swap protect, le False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-
equal

!(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap, protect, nlt True Yes

not-greater-than-or-equal !(xmm1 >= xmm2) swap, protect, nle True Yes

ord ordered !(xmm1 ? xmm2) 111B False No

Volume 4: IA-32 SSE Instruction Reference 4:495

CMPSS: Scalar Single-FP Compare (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Compilers and assemblers should implement the following 2-operand pseudo-ops in
addition to the 3-operand CMPSS instruction:

The greater-than relations not implemented in hardware require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the
corresponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them
differently. Usage of these bits risks incompatibility with future processors.

Pseudo-Op Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1,xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1,xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1,xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1,xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1,xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1,xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1,xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1,xmm2, 7

4:496 Volume 4: IA-32 SSE Instruction Reference

COMISS: Scalar Ordered Single-FP Compare and set EFLAGS

Operation: switch (xmm1[31-0] <> xmm2/m32[31-0]) {

OF,SF,AF = 000;

case UNORDERED: ZF,PF,CF = 111;

case GREATER_THAN: ZF,PF,CF = 000;

case LESS_THAN: ZF,PF,CF = 001;

case EQUAL: ZF,PF,CF = 100;

}

Description: The COMISS instructions compare two SP FP numbers and sets the ZF,PF,CF bits in the
EFLAGS register as described above. Although the data type is packed single-FP, only
the lower SP numbers are compared. In addition, the OF, SF and AF bits in the EFLAGS
register are zeroed out. The unordered predicate is returned if either source operand is
a NaN (qNaN or sNaN).

FP Exceptions: None.

Numeric Exceptions: Invalid (if SNaN or QNaN operands), Denormal. Integer EFLAGS values will not be
updated in the presence of unmasked numeric exceptions.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

0F,2F,/r COMISS xmm1, xmm2/m32 Compare lower SP FP number in XMM1 register with lower
SP FP number in XMM2/Mem and set the status flags
accordingly

Volume 4: IA-32 SSE Instruction Reference 4:497

COMISS: Scalar Ordered Single-FP Compare and set EFLAGS (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: COMISS differs from UCOMISS in that it signals an invalid numeric exception when a
source operand is either a qNaN or sNaN; UCOMISS signals invalid only if a source
operand is an sNaN.

The usage of Repeat (F2H, F3H) and Operand-Size (66H) prefixes with COMISS is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with COMISS risks incompatibility with future processors.

4:498 Volume 4: IA-32 SSE Instruction Reference

CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion

Operation: xmm[31-0] = (float) (mm/m64[31-0]);

xmm[63-32] = (float) (mm/m64[63-32]);

xmm[95-64] = xmm[95-64];

xmm[127-96] = xmm[127-96];

Description: The CVTPI2PS instruction converts signed 32-bit integers to SP FP numbers; when the
conversion is inexact, rounding is done according to MXCSR.

FP Exceptions: None.

Numeric Exceptions: Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference; #AC for unaligned memory reference.
To enable #AC exceptions, three conditions must be true(CR0.AM is set; EFLAGS.AC is
set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception; #AC for unaligned memory reference; #XM for an unmasked
SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,2A,/r CVTPI2PS xmm, mm/m64 Convert two 32-bit signed integers from MM/Mem to two SP
FP.

Volume 4: IA-32 SSE Instruction Reference 4:499

CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
(Continued)

Comments: This instruction behaves identically to original MMX technology instructions, in the
presence of x87-FP instructions:

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

However, the use of a memory source operand with this instruction will not result in the
above transition from x87-FP to MMX technology.

Prioritization for fault and assist behavior for CVTPI2PS is as follows:

Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #SS or #GP, for limit violation

4. #PF, page fault

5. SSE numeric fault (i.e. precision)

Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. SSE numeric fault (i.e. precision)

4:500 Volume 4: IA-32 SSE Instruction Reference

CVTPS2PI: Packed Single-FP to Packed INT32 Conversion

Operation: mm[31-0] = (int) (xmm/m64[31-0]);

mm[63-32] = (int) (xmm/m64[63-32]);

Description: The CVTPS2PI instruction converts the lower 2 SP FP numbers in xmm/m64 to signed
32-bit integers in mm; when the conversion is inexact, the value rounded according to
the MXCSR is returned. If the converted result(s) is/are larger than the maximum
signed 32 bit value, the Integer Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3); #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception; #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: This instruction behaves identically to original MMX technology instructions, in the
presence of x87-FP instructions, including:

Opcode Instruction Description

0F,2D,/r CVTPS2PI mm, xmm/m64 Convert lower 2 SP FP from XMM/Mem to 2 32-bit signed
integers in MM using rounding specified by MXCSR.

Volume 4: IA-32 SSE Instruction Reference 4:501

CVTPS2PI: Packed Single-FP to Packed INT32 Conversion (Continued)

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

Prioritization for fault and assist behavior for CVTPS2PI is as follows:

 Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. #SS or #GP, for limit violation

6. #PF, page fault

7. SSE numeric fault (i.e. invalid, precision)

 Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. SSE numeric fault (i.e. precision)

4:502 Volume 4: IA-32 SSE Instruction Reference

CVTSI2SS: Scalar signed INT32 to Single-FP Conversion

Operation: xmm[31-0] = (float) (r/m32);

xmm[63-32] = xmm[63-32];

xmm[95-64] = xmm[95-64];

xmm[127-96] = xmm[127-96];

Description: The CVTSI2SS instruction converts a signed 32-bit integer from memory or from a
32-bit integer register to a SP FP number; when the conversion is inexact, rounding is
done according to the MXCSR.

FP Exceptions: None.

Numeric Exceptions: Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2A,/r CVTSI2SS xmm, r/m32 Convert one 32-bit signed integer from Integer Reg/Mem to
one SP FP.

Volume 4: IA-32 SSE Instruction Reference 4:503

CVTSS2SI: Scalar Single-FP to Signed INT32 Conversion

Operation: r32 = (int) (xmm/m32[31-0]);

Description: The CVTSS2SI instruction converts a SP FP number to a signed 32-bit integer and
returns it in the 32-bit integer register; when the conversion is inexact, the rounded
value according to the MXCSR is returned. If the converted result is larger than the
maximum signed 32 bit integer, the Integer Indefinite value (0x80000000) will be
returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT = 0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2D,/r CVTSS2SI r32, xmm/m32 Convert one SP FP from XMM/Mem to one 32 bit signed
integer using rounding mode specified by MXCSR, and move
the result to an integer register.

4:504 Volume 4: IA-32 SSE Instruction Reference

CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion
(truncate)

Operation: mm[31-0] = (int) (xmm/m64[31-0]);

mm[63-32] = (int) (xmm/m64[63-32]);

Description: The CVTTPS2PI instruction converts the lower 2 SP FP numbers in xmm/m64 to 2 32-bit
signed integers in mm; if the conversion is inexact, the truncated result is returned. If
the converted result(s) is/are larger than the maximum signed 32 bit value, the Integer
Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3); #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception; #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,2C,/r CVTTPS2PI mm, xmm/m64 Convert lower 2 SP FP from XMM/Mem to 2 32-bit signed
integers in MM using truncate.

Volume 4: IA-32 SSE Instruction Reference 4:505

CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion (truncate)
(Continued)

Comments: This instruction behaves identically to original MMX technology instructions, in the
presence of x87-FP instructions, including:

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

Prioritization for fault and assist behavior for CVTTPS2PI is as follows:

 Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. #SS or #GP, for limit violation

6. #PF, page fault

7. SSE numeric fault (i.e. invalid, precision)

 Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. SSE numeric fault (i.e. precision)

4:506 Volume 4: IA-32 SSE Instruction Reference

CVTTSS2SI: Scalar Single-FP to signed INT32 Conversion (truncate)

Operation: r32 = (int) (xmm/m32[31-0]);

Description: The CVTTSS2SI instruction converts a SP FP number to a signed 32-bit integer and
returns it in the 32-bit integer register; if the conversion is inexact, the truncated result
is returned. If the converted result is larger than the maximum signed 32 bit value, the
Integer Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3; #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2C,/r CVTTSS2SI r32, xmm/m32 Convert lowest SP FP from XMM/Mem to one 32 bit signed
integer using truncate, and move the result to an integer
register.

Volume 4: IA-32 SSE Instruction Reference 4:507

DIVPS: Packed Single-FP Divide

Operation: xmm1[31-0] = xmm1[31-0] / (xmm2/m128[31-0]);

xmm1[63-32] = xmm1[63-32] / (xmm2/m128[63-32]);

xmm1[95-64] = xmm1[95-64] / (xmm2/m128[95-64]);

xmm1[127-96] = xmm1[127-96] / (xmm2/m128[127-96]);

Description: The DIVPS instruction divides the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,5E,/r DIVPS xmm1, xmm2/m128 Divide packed SP FP numbers in XMM1 by XMM2/Mem

4:508 Volume 4: IA-32 SSE Instruction Reference

DIVSS: Scalar Single-FP Divide

Operation: xmm1[31-0] = xmm1[31-0] / (xmm2/m32[31-0]);

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The DIVSS instructions divide the lowest SP FP numbers of both operands; the upper 3
fields are passed through from xmm1.

FP Exceptions: None.

Numeric Exceptions: Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,5E,/r DIVSS xmm1, xmm2/m32 Divide lower SP FP numbers in XMM1 by XMM2/Mem

Volume 4: IA-32 SSE Instruction Reference 4:509

FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE
State

Operation: FP and MMX technology state and SSE state = m512byte;

Description: The FXRSTOR instruction reloads the FP and MMX technology state and SSE state
(environment and registers) from the memory area defined by m512byte. This data
should have been written by a previous FXSAVE.

The FP and MMX technology and SSE environment and registers consist of the following
data structure (little-endian byte order as arranged in memory, with byte offset into
row described by right column):

Opcode Instruction Description

0F,AE,/1 FXRSTOR
m512byte

Load FP/Intel MMX technology and SSE state from m512byte.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

Reserved MXCSR Rsrvd DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

4:510 Volume 4: IA-32 SSE Instruction Reference

Three fields in the floating-point save area contain reserved bits that are not indicated
in the table:

• FOP: The lower 11-bits contain the opcode, upper 5-bits are reserved.

• IP & DP:32-bit mode: 32-bit IP-offset.

• 16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

If the MXCSR state contains an unmasked exception with corresponding status flag also
set, loading it will not result in a floating-point error condition being asserted; only the
next occurrence of this unmasked exception will result in the error condition being
asserted.

Some bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared;
attempting to write a non-zero value to these bits will result in a general protection
exception.

FXRSTOR does not flush pending x87-FP exceptions, unlike FRSTOR. To check and raise
exceptions when loading a new operating environment, use FWAIT after FXRSTOR.

The SSE fields in the save image (XMM0-XMM7 and MXCSR) may not be loaded into the
processor if the CR4.OSFXSR bit is not set. This CR4 bit must be set in order to enable
execution of SSE instructions.

FP Exceptions: If #AC exception detection is disabled, a general protection exception is signalled if the
address is not aligned on 16-byte boundary. Note that if #AC is enabled (and CPL is 3),
signalling of #AC is not guaranteed and may vary with implementation; in all
implementations where #AC is not signalled, a general protection fault will instead be
signalled. In addition, the width of the alignment check when #AC is enabled may also
vary with implementation; for instance, for a given implementation #AC might be
signalled for a 2-byte misalignment, whereas #GP might be signalled for all other
misalignments (4/8/16-byte). Invalid opcode exception if instruction is preceded by a
LOCK override prefix. General protection fault if reserved bits of MXCSR are loaded with
non-zero values

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set.

Reserved 464

Reserved 480

Reserved 496

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

Volume 4: IA-32 SSE Instruction Reference 4:511

FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE State
(Continued)

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Notes: State saved with FXSAVE and restored with FRSTOR (and vice versa) will result in
incorrect restoration of state in the processor. The address size prefix will have the
usual effect on address calculation but will have no effect on the format of the FXRSTOR
image.

The use of Repeat (F2H, F3H) and Operand Size (66H) prefixes with FXRSTOR is
reserved. Different processor implementations may handle this prefix differently. Use of
this prefix with FXRSTOR risks incompatibility with future processors.

4:512 Volume 4: IA-32 SSE Instruction Reference

FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State

Operation: m512byte = FP and MMX technology state and SSE state;

Description: The FXSAVE instruction writes the current FP and MMX technology state and SSE state
(environment and registers) to the specified destination defined by m512byte. It does
this without checking for pending unmasked floating-point exceptions, similar to the
operation of FNSAVE. Unlike the FSAVE/FNSAVE instructions, the processor retains the
contents of the FP and MMX technology state and SSE state in the processor after the
state has been saved. This instruction has been optimized to maximize floating-point
save performance. The save data structure is as follows (little-endian byte order as
arranged in memory, with byte offset into row described by right column):

Opcode Instruction Description

0F,AE,/0 FXSAVE
m512byte

Store FP and Intel MMX technology state and SSE state to m512byte.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

Reserved MXCSR Rsrvd DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Volume 4: IA-32 SSE Instruction Reference 4:513

Three fields in the floating-point save area contain reserved bits that are not indicated
in the table:

• FOP: The lower 11-bits contain the opcode, upper 5-bits are reserved.

• IP & DP: 32-bit mode: 32-bit IP-offset.

• 16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

The FXSAVE instruction is used when an operating system needs to perform a context
switch or when an exception handler needs to use the FP and MMX technology and SSE
units. It cannot be used by an application program to pass a “clean” FP state to a
procedure, since it retains the current state. An application must explicitly execute an
FINIT instruction after FXSAVE to provide for this functionality.

All of the x87-FP fields retain the same internal format as in FSAVE except for FTW.

Unlike FSAVE, FXSAVE saves only the FTW valid bits rather than the entire x87-FP FTW
field. The FTW bits are saved in a non-TOS relative order, which means that FR0 is
always saved first, followed by FR1, FR2 and so forth. As an example, if TOS=4 and
only ST0, ST1 and ST2 are valid, FSAVE saves the FTW field in the following format:

ST3 ST2 ST1 ST0 ST7 ST6 ST5 ST4 (TOS=4)
FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0
11 xx xx xx 11 11 11 11

where xx is one of (00, 01, 10). (11) indicates an empty stack elements, and the 00,
01, and 10 indicate Valid, Zero, and Special, respectively. In this example, FXSAVE
would save the following vector:

FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0
0 1 1 1 0 0 0 0

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored
80-bit FP data (assuming the stored data was not the contents of MMX technology
registers) using the following table:

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

4:514 Volume 4: IA-32 SSE Instruction Reference

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the
significand. The M-bit is defined to be the most significant bit of the fractional portion of
the significand (i.e. the bit immediately to the right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it
must be 0 if the fraction is all 0’s.

If the FXSAVE instruction is immediately preceded by an FP instruction which does not
use a memory operand, then the FXSAVE instruction does not write/update the DP
field, in the FXSAVE image.

MXCSR holds the contents of the SSE Control/Status Register. See the LDMXCSR
instruction for a full description of this field.

The fields XMM0-XMM7 contain the content of registers XMM0-XMM7 in exactly the
same format as they exist in the registers.

The SSE fields in the save image (XMM0-XMM7 and MXCSR) may not be loaded into the
processor if the CR4.OSFXSR bit is not set. This CR4 bit must be set in order to enable
execution of SSE instructions.

The destination m512byte is assumed to be aligned on a 16-byte boundary. If
m512byte is not aligned on a 16-byte boundary, FXSAVE generates a general protection
exception.

FP Exceptions: If #AC exception detection is disabled, a general protection exception is signalled if the
address is not aligned on 16-byte boundary. Note that if #AC is enabled (and CPL is 3),
signalling of #AC is not guaranteed and may vary with implementation; in all
implementations where #AC is not signalled, a general protection fault will instead be
signalled. In addition, the width of the alignment check when #AC is enabled may also
vary with implementation; for instance, for a given implementation #AC might be
signalled for a 2-byte misalignment, whereas #GP might be signalled for all other
misalignments (4/8/16-byte). Invalid opcode exception if instruction is preceded by a
LOCK override prefix.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3).

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above 0 Empty 11

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit x87 FTW

Volume 4: IA-32 SSE Instruction Reference 4:515

FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State
(Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Notes: State saved with FXSAVE and restored with FRSTOR (and vice versa) will result in
incorrect restoration of state in the processor. The address size prefix will have the
usual effect on address calculation but will have no effect on the format of the FXSAVE
image.

If there is a pending unmasked FP exception at the time FXSAVE is executed, the
sequence of FXSAVE-FWAIT-FXRSTOR will result in incorrect state in the processor. The
FWAIT instruction causes the processor to check and handle pending unmasked FP
exceptions. Since the processor does not clear the FP state with FXSAVE (unlike
FSAVE), the exception is handled but that fact is not reflected in the saved image.
When the image is reloaded using FXRSTOR, the exception bits in FSW will be
incorrectly reloaded.

The use of Repeat (F2H, F3H) and Operand Size (66H) prefixes with FXSAVE is
reserved. Different processor implementations may handle this prefix differently. Use of
these prefixes with FXSAVE risks incompatibility with future processors.

4:516 Volume 4: IA-32 SSE Instruction Reference

LDMXCSR: Load SSE Control/Status

Operation: MXCSR = m32;

Description: The MXCSR control/status register is used to enable masked/unmasked exception
handling, to set rounding modes, to set flush-to-zero mode, and to view exception
status flags. The following figure shows the format and encoding of the fields in MXCSR.

31-16 15 10 5
0

Bits 5-0 indicate whether an SSE numerical exception has been detected. They are
“sticky” flags, and can be cleared by using the LDMXCSR instruction to write zeroes to
these fields. If a LDMXCSR instruction clears a mask bit and sets the corresponding
exception flag bit, an exception will not be immediately generated. The exception will
occur only upon the next SSE instruction to cause this type of exception. The Intel SSE
architecture uses only one exception flag for each exception. There is no provision for
individual exception reporting within a packed data type. In situations where multiple
identical exceptions occur within the same instruction, the associated exception flag is
updated and indicates that at least one of these conditions happened. These flags are
cleared upon reset.

Bits 12-7 configure numerical exception masking; an exception type is masked if the
corresponding bit is set and it is unmasked if the bit is clear. These enables are set upon
reset, meaning that all numerical exceptions are masked.

Bits 14-13 encode the rounding-control, which provides for the common
round-to-nearest mode, as well as directed rounding and true chop. Rounding control
affects the arithmetic instructions and certain conversion instructions. The encoding for
RC is as follows:

The rounding-control is set to round to nearest upon reset.

Opcode Instruction Description

0F,AE,/2 LDMXCSR m32 Load SSE control/status word from m32.

Reserved FZ RC RC PM UM OM ZM DM IM Rsvd PE UE OE ZE DE IE

Rounding Mode RC Field Description

Round to nearest (even) 00B Rounded result is the closest to the infinitely
precise result. If two values are equally
close, the result is the even value (that is,
the one with the least-significant bit of zero).

Round down (to minus infinity) 01B Rounded result is close to but no greater
than the infinitely precise result

Round up (toward positive infinity) 10B Rounded result is close to but no less than
the infinitely precise result.

Round toward zero (truncate) 11B Rounded result is close to but no greater in
absolute value than the infinitely precise
result.

Volume 4: IA-32 SSE Instruction Reference 4:517

LDMXCSR: Load SSE Control/Status (Continued)

Bit 15 (FZ) is used to turn on the Flush To Zero mode (bit is set). Turning on the Flush
To Zero mode has the following effects during underflow situations:

• Zero results are returned with the sign of the true result.

• Precision and underflow exception flags are set.

The IEEE mandated masked response to underflow is to deliver the denormalized result
(i.e. gradual underflow); consequently, the flush to zero mode is not compatible with
IEEE Std. 754. It is provided primarily for performance reasons. At the cost of a slight
precision loss, faster execution can be achieved for applications where underflows are
common. Unmasking the underflow exception takes precedence over Flush To Zero
mode; this means that an exception handler will be invoked for a SSE instruction that
generates an underflow condition while this exception is unmasked, regardless of
whether flush to zero is enabled.

The other bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared;
attempting to write a non-zero value to these bits, using either the FXRSTOR or
LDMXCSR instructions, will result in a general protection exception.

The linear address corresponds to the address of the least-significant byte of the
referenced memory data.

FP Exceptions: General protection fault if reserved bits are loaded with non-zero values.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. #AC for
unaligned memory reference.

4:518 Volume 4: IA-32 SSE Instruction Reference

LDMXCSR: Load SSE Control/Status (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults NaT Register Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with LDMXCSR is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with LDMXCSR risks incompatibility with future processors.

Volume 4: IA-32 SSE Instruction Reference 4:519

MAXPS: Packed Single-FP Maximum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

(xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] > xmm2/m128[31-0]) ? xmm1[31-0] ?
xmm2/m128[31-0];

xmm1[63-32] = (xmm1[63-32] == NAN) ? xmm2[63-32] :

(xmm2[63-32] == NAN) ? xmm2[63-32] :

 (xmm1[63-32] > xmm2/m128[63-32]) ? xmm1[63-32] ?
xmm2/m128[63-32];

xmm1[95-64] = (xmm1[95-64] == NAN) ? xmm2[95-64] :

(xmm2[95-64] == NAN) ? xmm2[95-64] :

 (xmm1[95-64] > xmm2/m128[95-64]) ? xmm1[95-64] ?
xmm2/m128[95-64];

xmm1[127-96] = (xmm1[127-96] == NAN) ? xmm2[127-96] :

(xmm2[127-96] == NAN) ? xmm2[127-96] :

 (xmm1[127-96] > xmm2/m128[127-96]) ? xmm1[127-96] ?
xmm2/m128[127-96];

Description: The MAXPS instruction returns the maximum SP FP numbers from XMM1 and
XMM2/Mem. If the values being compared are both zeros, source2 (xmm2/m128)
would be returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded
unchanged to the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Opcode Instruction Description

0F,5F,/r MAXPS xmm1, xmm2/m128 Return the maximum SP FP numbers between XMM2/Mem
and XMM1.

4:520 Volume 4: IA-32 SSE Instruction Reference

MAXPS: Packed Single-FP Maximum (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. This approach for MAXPS allows
compilers to use the MAXPS instruction for common C conditional constructs. If instead
of this behavior, it is required that the NaN source operand be returned, the min/max
functionality can be emulated using a sequence of instructions: comparison followed by
AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:521

MAXSS: Scalar Single-FP Maximum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

 (xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] > xmm2/m32[31-0]) ? xmm1[31-0] : xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MAXSS instruction returns the maximum SP FP number from the lower SP FP
numbers of XMM1 and XMM2/Mem; the upper 3 fields are passed through from xmm1.
If the values being compared are both zeros, source2 (xmm2/m128) would be
returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded unchanged to
the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: None

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

F3,0F,5F,/r MAXSS xmm1, xmm2/m32 Return the maximum SP FP number between the lower SP
FP numbers from XMM2/Mem and XMM1.

4:522 Volume 4: IA-32 SSE Instruction Reference

MAXSS: Scalar Single-FP Maximum (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. The upper three operands are
still bypassed from the src1 operand, as in all other scalar operations. This approach for
MAXSS allows compilers to use the MAXSS instruction for common C conditional
constructs. If instead of this behavior, it is required that the NaN source operand be
returned, the min/max functionality can be emulated using a sequence of instructions:
comparison followed by AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:523

MINPS: Packed Single-FP Minimum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

(xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] < xmm2/m128[31-0]) : xmm1[31-0] ?
xmm2/m128[31-0];

xmm1[63-32] = (xmm1[63-32] == NAN) ? xmm2[63-32] :

(xmm2[63-32] == NAN) ? xmm2[63-32] :

 (xmm1[63-32] < xmm2/m128[63-32]) : xmm1[63-32] ?
xmm2/m128[63-32];

xmm1[95-64] = (xmm1[95-64] == NAN) ? xmm2[95-64] :

(xmm2[95-64] == NAN) ? xmm2[95-64] :

 (xmm1[95-64] < xmm2/m128[95-64]) : xmm1[95-64] ?
xmm2/m128[95-64];

xmm1[127-96] = (xmm1[127-96] == NAN) ? xmm2[127-96] :

(xmm2[127-96] == NAN) ? xmm2[127-96] :

 (xmm1[127-96] < xmm2/m128[127-96]) : xmm1[127-96] ?
xmm2/m128[127-96];

Description: The MINPS instruction returns the minimum SP FP numbers from XMM1 and
XMM2/Mem. If the values being compared are both zeros, source2 (xmm2/m128)
would be returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded
unchanged to the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Opcode Instruction Description

0F,5D,/r MINPS xmm1, xmm2/m128 Return the minimum SP numbers between XMM2/Mem and
XMM1.

4:524 Volume 4: IA-32 SSE Instruction Reference

MINPS: Packed Single-FP Minimum (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. This approach for MINPS allows
compilers to use the MINPS instruction for common C conditional constructs. If instead
of this behavior, it is required that the NaN source operand be returned, the min/max
functionality can be emulated using a sequence of instructions: comparison followed by
AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:525

MINSS: Scalar Single-FP Minimum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

 (xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] < xmm2/m32[31-0]) ? xmm1[31-0] : xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MINSS instruction returns the minimum SP FP number from the lower SP FP
numbers from XMM1 and XMM2/Mem; the upper 3 fields are passed through from
xmm1.If the values being compared are both zeros, source2 (xmm2/m128) would be
returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded unchanged to
the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: None

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory references.

Opcode Instruction Description

F3,0F,5D,/r MINSS xmm1, xmm2/m32 Return the minimum SP FP number between the lowest SP
FP numbers from XMM2/Mem and XMM1.

4:526 Volume 4: IA-32 SSE Instruction Reference

MINSS: Scalar Single-FP Minimum (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. The upper three operands are
still bypassed from the src1 operand, as in all other scalar operations. This approach for
MINSS allows compilers to use the MINSS instruction for common C conditional
constructs. If instead of this behavior, it is required that the NaN source operand be
returned, the min/max functionality can be emulated using a sequence of instructions:
comparison followed by AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:527

MOVAPS: Move Aligned Four Packed Single-FP

Operation: if (destination == xmm1) {

if (source == m128) {

// load instruction

xmm1[127-0] = m128;

}

else {

// move instruction

xmm1[127=0] = xmm2[127-0];

}

}

else {

if (destination == m128) {

// store instruction

m128 = xmm1[127-0];

}

else {

// move instruction

xmm2[127-0] = xmm1[127-0];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data at
memory location m128 are loaded or stored. When the register-register form of this
operation is used, the content of the 128-bit source register is copied into 128-bit
destination register.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Opcode Instruction Description

0F,28,/r

0F,29,/r

MOVAPS xmm1, xmm2/m128

MOVAPS xmm2/m128, xmm1

Move 128 bits representing 4 packed SP data from
XMM2/Mem to XMM1 register.
Move 128 bits representing 4 packed SP from XMM1 register
to XMM2/Mem.

4:528 Volume 4: IA-32 SSE Instruction Reference

MOVAPS: Move Aligned Four Packed Single-FP (Continued)

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: MOVAPS should be used when dealing with 16-byte aligned SP FP numbers. If the data
is not known to be aligned, MOVUPS should be used instead of MOVAPS. The usage of
this instruction should be limited to the cases where the aligned restriction is easy to
meet. Processors that support the Intel SSE architecture will provide optimal aligned
performance for the MOVAPS instruction.

The usage of Repeat Prefixes (F2H, F3H) with MOVAPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVAPS
risks incompatibility with future processors.

Volume 4: IA-32 SSE Instruction Reference 4:529

MOVHLPS: Move High to Low Packed Single-FP

Operation: // move instruction

xmm1[127-64] = xmm1[127-64];

xmm1[63-0] = xmm2[127-64];

Description: The upper 64-bits of the source register xmm2 are loaded into the lower 64-bits of the
128-bit register xmm1 and the upper 64-bits of xmm1 are left unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with MOVHLPS is
reserved. Different processor implementations may handle these prefixes differently.
Usage of these prefixes with MOVHLPS risks incompatibility with future processors.

Opcode Instruction Description

0F,12,/r MOVHLPS xmm1, xmm2 Move 64 bits representing higher two SP operands from
XMM2 to lower two fields of XMM1 register.

4:530 Volume 4: IA-32 SSE Instruction Reference

MOVHPS: Move High Packed Single-FP

Operation: if (destination == xmm) {

// load instruction

xmm[127-64] = m64;

xmm[31-0] = xmm[31-0];

xmm[63-32] = xmm[63-32];

}

else {

// store instruction

m64 = xmm[127-64];

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When the load form of this operation is used, m64 is loaded
into the upper 64-bits of the 128-bit register xmm and the lower 64-bits are left
unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Opcode Instruction Description

0F,16,/r

0F,17,/r

MOVHPS xmm, m64

MOVHPS m64, xmm

Move 64 bits representing two SP operands from Mem to
upper two fields of XMM register.
Move 64 bits representing two SP operands from upper two
fields of XMM register to Mem.

Volume 4: IA-32 SSE Instruction Reference 4:531

MOVHPS: Move High Packed Single-FP (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVHPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVHPS
risks incompatibility with future processors.

4:532 Volume 4: IA-32 SSE Instruction Reference

MOVLHPS: Move Low to High Packed Single-FP

Operation: // move instruction

xmm1[127-64] = xmm2[63-0];

xmm1[63-0] = xmm1[63-0];

Description: The lower 64-bits of the source register xmm2 are loaded into the upper 64-bits of the
128-bit register xmm1 and the lower 64-bits of xmm1 are left unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments:

Example: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with MOVLHPS is
reserved. Different processor implementations may handle these prefixes differently.
Usage of these prefixes with MOVLHPS risks incompatibility with future processors.

Opcode Instruction Description

0F,16,/r MOVLHPS xmm1, xmm2 Move 64 bits representing lower two SP operands from XMM2
to upper two fields of XMM1 register.

Volume 4: IA-32 SSE Instruction Reference 4:533

MOVLPS: Move Low Packed Single-FP

Operation: if (destination == xmm) {

// load instruction

xmm[63-0] = m64;

xmm[95-64] = xmm[95-64];

xmm[127-96] = xmm[127-96];

}

else {

// store instruction

m64 = xmm[63-0];

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When the load form of this operation is used, m64 is loaded
into the lower 64-bits of the 128-bit register xmm and the upper 64-bits are left
unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Opcode Instruction Description

0F,12,/r

0F,13,/r

MOVLPS xmm, m64

MOVLPS m64, xmm

Move 64 bits representing two SP operands from Mem to
lower two fields of XMM register.
Move 64 bits representing two SP operands from lower two
fields of XMM register to Mem.

4:534 Volume 4: IA-32 SSE Instruction Reference

MOVLPS: Move Low Packed Single-FP (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVLPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVLPS
risks incompatibility with future processors.

Volume 4: IA-32 SSE Instruction Reference 4:535

MOVMSKPS: Move Mask to Integer

Operation: r32[3] = xmm[127]; r32[2] = xmm[95];

r32[1] = xmm[63]; r32[0] = xmm[31];

r32[7-4] = 0x0; r32[15-8] = 0x00;

r32[31-16] = 0x0000;

Description: The MOVMSKPS instruction returns to the integer register r32 a 4-bit mask formed of
the most significant bits of each SP FP number of its operand.

FP Exceptions: None

Numeric Exceptions: None.

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set.; #UD if CRCR4.OSFXSR(bit 9) = 0;
#UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVMSKPS is reserved. Different
processor implementations may handle this prefix differently. Usage of this prefix with
MOVMSKPS risks incompatibility with future processors.

Opcode Instruction Description

0F,50,/r MOVMSKPS r32, xmm Move the single mask to r32.

4:536 Volume 4: IA-32 SSE Instruction Reference

MOVSS: Move Scalar Single-FP

Operation: if (destination == xmm1) {

if (source == m32) {

// load instruction

xmm1[31-0] = m32;

xmm1[63-32] = 0x00000000;

xmm1[95-64] = 0x00000000;

xmm1[127-96] = 0x00000000;

}

else {

// move instruction

xmm1[31-0] = xmm2[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

}

}

else {

if (destination == m32) {

// store instruction

m32 = xmm1[31-0];

}

else {

// move instruction

xmm2[31-0] = xmm1[31-0]

xmm2[63-32] = xmm2[63-32];

xmm2[95-64] = xmm2[95-64];

Opcode Instruction Description

F3,0F,10,/r

F3,0F,11,/r

MOVSS xmm1, xmm2/m32

MOVSS xmm2/m32, xmm1

Move 32 bits representing one scalar SP operand from
XMM2/Mem to XMM1 register.
Move 32 bits representing one scalar SP operand from XMM1
register to XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:537

MOVSS: Move Scalar Single-FP (Continued)

xmm2[127-96] = xmm2[127-96];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 4 bytes of data at
memory location m32 are loaded or stored. When the load form of this operation is
used, the 32-bits from memory are copied into the lower 32 bits of the 128-bit register
xmm, the 96 most significant bits being cleared.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:538 Volume 4: IA-32 SSE Instruction Reference

MOVUPS: Move Unaligned Four Packed Single-FP

Operation: if (destination == xmm1) {

if (source == m128) {

// load instruction

xmm1[127-0] = m128;

}

else {

// move instruction

xmm1[127-0] = xmm2[127-0];

}

}

else {

if (destination == m128) {

// store instruction

m128 = xmm1[127-0];

}

else {

// move instruction

xmm2[127-0] = xmm1[127-0];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data at
memory location m128 are loaded to the 128-bit multimedia register xmm or stored
from the 128-bit multimedia register xmm. When the register-register form of this
operation is used, the content of the 128-bit source register is copied into 128-bit
register xmm. No assumption is made about alignment.

FP Exceptions: None

Numeric Exceptions: None

Opcode Instruction Description

0F,10,/r

0F,11,/r

MOVUPS xmm1, xmm2/m128

MOVUPS xmm2/m128, xmm1

Move 128 bits representing four SP data from XMM2/Mem to
XMM1 register.
Move 128 bits representing four SP data from XMM1 register to
XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:539

MOVUPS: Move Unaligned Four Packed Single-FP (Continued)

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #AC for unaligned memory reference if the current privilege
level is 3; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVUPS should be used with SP FP numbers when that data is known to be
unaligned.The usage of this instruction should be limited to the cases where the aligned
restriction is hard or impossible to meet. SSE implementations guarantee optimum
unaligned support for MOVUPS. Efficient SSE applications should mainly rely on
MOVAPS, not MOVUPS, when dealing with aligned data.

The usage of Repeat-NE Prefix (F2H) and Operand Size Prefix (66H) with MOVUPS is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with MOVUPS risks incompatibility with future processors.

A linear address of the 128 bit data access, while executing in 16-bit mode, that
overlaps the end of a 16-bit segment is not allowed and is defined as reserved behavior.
Different processor implementations may/may not raise a GP fault in this case if the
segment limit has been exceeded; additionally, the address that spans the end of the
segment may/may not wrap around to the beginning of the segment.

4:540 Volume 4: IA-32 SSE Instruction Reference

MULPS: Packed Single-FP Multiply

Operation: xmm1[31-0] = xmm1[31-0] * xmm2/m128[31-0];

xmm1[63-32] = xmm1[63-32] * xmm2/m128[63-32];

xmm1[95-64] = xmm1[95-64] * xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] * xmm2/m128[127-96];

Description: The MULPS instructions multiply the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0).

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,59,/r MULPS xmm1, xmm2/m128 Multiply packed SP FP numbers in XMM2/Mem to XMM1.

Volume 4: IA-32 SSE Instruction Reference 4:541

MULSS: Scalar Single-FP Multiply

xmm1[31-0] = xmm1[31-0] * xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MULSS instructions multiply the lowest SP FP numbers of both their operands; the
upper 3 fields are passed through from xmm1.

FP Exceptions: None

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0).

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,59,/r MULSS xmm1 xmm2/m32 Multiply the lowest SP FP number in XMM2/Mem to XMM1.

4:542 Volume 4: IA-32 SSE Instruction Reference

ORPS: Bit-wise Logical OR for Single-FP Data

Operation: xmm1[127-0] |= xmm2/m128[127-0];

Description: The ORPS instructions return a bit-wise logical OR between xmm1 and xmm2/mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ORPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with ORPS risks
incompatibility with future processors.

Opcode Instruction Description

0F,56,/r ORPS xmm1, xmm2/m128 OR 128 bits from XMM2/Mem to XMM1 register.

Volume 4: IA-32 SSE Instruction Reference 4:543

RCPPS: Packed Single-FP Reciprocal

Operation: xmm1[31-0] = approx (1.0/(xmm2/m128[31-0]));

xmm1[63-32] = approx (1.0/(xmm2/m128[63-32]));

xmm1[95-64] = approx (1.0/(xmm2/m128[95-64]));

xmm1[127-96] = approx (1.0/(xmm2/m128[127-96]));

Description: RCPPS returns an approximation of the reciprocal of the SP FP numbers from
xmm2/m128. The relative error for this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: RCPPS is not affected by the rounding control in MXCSR. Denormal inputs are treated
as zeros (of the same sign) and tiny results are always flushed to zero, with the sign of
the operand.

Results are guaranteed not to be tiny, and therefore not flushed to zero, for input
values x which satisfy

|x| <= 1.11111111110100000000000B×2125

Opcode Instruction Description

0F,53,/r RCPPS xmm1, xmm2/m128 Return a packed approximation of the reciprocal of
XMM2/Mem.

4:544 Volume 4: IA-32 SSE Instruction Reference

RCPPS: Packed Single-FP Reciprocal (Continued)

For input values x which satisfy

1.11111111110100000000001B×2125 <= |x| <=
1.00000000000110000000000B×2126

flush-to-zero might or might not occur, depending on the implementation (this interval
contains 6144 + 3072 = 9216 single precision floating-point numbers).

Results are guaranteed to be tiny, and therefore flushed to zero, for input values x
which satisfy

|x| <= 1.00000000000110000000001B×2126

The decimal approximations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 ~= 8.5039437×1037

1.11111111110100000000001B×2125 ~= 8.5039443×1037

1.00000000000110000000000B×2126 ~= 4.2550872×1037

1.00000000000110000000001B×2126 ~= 4.2550877×1037

The hexadecimal representations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 = 0x7e7fe800

1.11111111110100000000001B×2125 = 0x7e7fe801

1.00000000000110000000000B×2126 = 0x7e800c00

1.00000000000110000000001B×2126 = 0x7e800c01

Volume 4: IA-32 SSE Instruction Reference 4:545

RCPSS: Scalar Single-FP Reciprocal

Operation: xmm1[31-0] = approx (1.0/(xmm2/m32[31-0]));

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: RCPSS returns an approximation of the reciprocal of the lower SP FP number from
xmm2/m32; the upper 3 fields are passed through from xmm1. The relative error for
this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #AC for unaligned memory reference if the current privilege
level is 3; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: RCPSS is not affected by the rounding control in MXCSR. Denormal inputs are treated
as zeros (of the same sign) and tiny results are always flushed to zero, with the sign of
the operand.

Results are guaranteed not to be tiny, and therefore not flushed to zero, for input
values x which satisfy

|x| <= 1.11111111110100000000000B×2125

Opcode Instruction Description

F3,0F,53,/r RCPSS xmm1, xmm2/m32 Return an approximation of the reciprocal of the lower SP FP
number in XMM2/Mem.

4:546 Volume 4: IA-32 SSE Instruction Reference

RCPSS: Scalar Single-FP Reciprocal (Continued)

For input values x which satisfy

1.11111111110100000000001B×2125 <= |x| <=
1.00000000000110000000000B×2126

flush-to-zero might or might not occur, depending on the implementation (this interval
contains 6144 + 3072 = 9216 single precision floating-point numbers).

Results are guaranteed to be tiny, and therefore flushed to zero, for input values x
which satisfy

|x| <= 1.00000000000110000000001B×2126

The decimal approximations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 ~= 8.5039437×1037

1.11111111110100000000001B×2125 ~= 8.5039443×1037

1.00000000000110000000000B×2126 ~= 4.2550872×1037

1.00000000000110000000001B×2126 ~= 4.2550877×1037

The hexadecimal representations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 = 0x7e7fe800

1.11111111110100000000001B×2125 = 0x7e7fe801

1.00000000000110000000000B×2126 = 0x7e800c00

1.00000000000110000000001B×2126 = 0x7e800c01

Volume 4: IA-32 SSE Instruction Reference 4:547

RSQRTPS: Packed Single-FP Square Root Reciprocal

Operation: xmm1[31-0] = approx (1.0/sqrt(xmm2/m128[31-0]));

xmm1[63-32] = approx (1.0/sqrt(xmm2/m128[63-32]));

xmm1[95-64] = approx (1.0/sqrt(xmm2/m128[95-64]));

xmm1[127-96] = approx (1.0/sqrt(xmm2/m128[127-96]));

Description: RSQRTPS returns an approximation of the reciprocal of the square root of the SP FP
numbers from xmm2/m128. The relative error for this approximation is Error, which
satisfies:

|Error| <= 1.5x2-12

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: RSQRTPS is not affected by the rounding control in MXCSR. Denormal inputs are
treated as zeros (of the same sign).

Opcode Instruction Description

0F,52,/r RSQRTPS xmm1, xmm2/m128 Return a packed approximation of the square root of the
reciprocal of XMM2/Mem.

4:548 Volume 4: IA-32 SSE Instruction Reference

RSQRTSS: Scalar Single-FP Square Root Reciprocal

Operation: xmm1[31-0] = approx (1.0/sqrt(xmm2/m32[31-0]));

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: RSQRTSS returns an approximation of the reciprocal of the square root of the lowest SP
FP number from xmm2/m32; the upper 3 fields are passed through from xmm1. The
relative error for this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments:

Example: RSQRTSS is not affected by the rounding control in MXCSR. Denormal inputs are
treated as zeros (of the same sign).

Opcode Instruction Description

F3,0F,52,/r RSQRTSS xmm1, xmm2/m32 Return an approximation of the square root of the reciprocal of
the lowest SP FP number in XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:549

SHUFPS: Shuffle Single-FP

Operation: fp_select = (imm8 >> 0) & 0x3;

xmm1[31-0] = (fp_select == 0) ? xmm1[31-0] :

 (fp_select == 1) ? xmm1[63-32] :

 (fp_select == 2) ? xmm1[95-64] :

 xmm1[127-96];

fp_select = (imm8 >> 2) & 0x3;

xmm1[63-32] = (fp_select == 0) ? xmm1[31-0] :

 (fp_select == 1) ? xmm1[63-32] :

 (fp_select == 2) ? xmm1[95-64] :

 xmm1[127-96];

fp_select = (imm8 >> 4) & 0x3;

xmm1[95-64] = (fp_select == 0) ? xmm2/m128[31-0] :

 (fp_select == 1) ? xmm2/m128[63-32] :

 (fp_select == 2) ? xmm2/m128[95-64] :

 xmm2/m128[127-96];

fp_select = (imm8 >> 6) & 0x3;

xmm1[127-96] = (fp_select == 0) ? xmm2/m128[31-0] :

 (fp_select == 1) ? xmm2/m128[63-32] :

 (fp_select == 2) ? xmm2/m128[95-64] :

 xmm2/m128[127-96];

Description: The SHUFPS instruction is able to shuffle any of the four SP FP numbers from xmm1 to
the lower 2 destination fields; the upper 2 destination fields are generated from a
shuffle of any of the four SP FP numbers from xmm2/m128. By using the same register
for both sources, SHUFPS can return any combination of the four SP FP numbers from
this register. Bits 0 and 1 of the immediate field are used to select which of the four
input SP FP numbers will be put in the first SP FP number of the result; bits 3 and 2 of
the immediate field are used to select which of the four input SP FP will be put in the
second SP FP number of the result; etc.

Opcode Instruction Description

0F,C6,/r, ib SHUFPS xmm1, xmm2/m128, imm8 Shuffle Single.

4:550 Volume 4: IA-32 SSE Instruction Reference

SHUFPS: Shuffle Single-FP (Continued)

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with SHUFPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with SHUFPS
risks incompatibility with future processors.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

{Y4 ... Y1} {Y4 ... Y1} {X4 ... X1} {X4 ... X1}

xmm1

xmm2/m128

xmm1

Volume 4: IA-32 SSE Instruction Reference 4:551

SQRTPS: Packed Single-FP Square Root

Operation: xmm1[31-0] = sqrt (xmm2/m128[31-0]);

xmm1[63-32] = sqrt (xmm2/m128[63-32]);

xmm1[95-64] = sqrt (xmm2/m128[95-64]);

xmm1[127-96] = sqrt (xmm2/m128[127-96]);

Description: The SQRTPS instruction returns the square root of the packed SP FP numbers from
xmm2/m128.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,51,/r SQRTPS xmm1, xmm2/m128 Square Root of the packed SP FP numbers in XMM2/Mem.

4:552 Volume 4: IA-32 SSE Instruction Reference

SQRTSS: Scalar Single-FP Square Root

Operation: xmm1[31-0] = sqrt (xmm2/m32[31-0]);

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The SQRTSS instructions return the square root of the lowest SP FP numbers of their
operand.

FP Exceptions: None

Numeric Exceptions: Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,51,/r SQRTSS xmm1, xmm2/m32 Square Root of the lower SP FP number in XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:553

STMXCSR: Store SSE Control/Status

Operation: m32 = MXCSR;

Description: The MXCSR control/status register is used to enable masked/unmasked exception
handling, to set rounding modes, to set flush-to-zero mode, and to view exception
status flags. Refer to LDMXCSR for a description of the format of MXCSR. The linear
address corresponds to the address of the least-significant byte of the referenced
memory data. The reserved bits in the MXCSR are stored as zeroes.

FP Exceptions: None.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. #AC for
unaligned memory reference.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults NaT Register Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with STMXCSR is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with STMXCSR risks incompatibility with future processors.

Opcode Instruction Description

0F,AE,/3 STMXCSR m32 Store SSE control/status word to m32.

4:554 Volume 4: IA-32 SSE Instruction Reference

SUBPS: Packed Single-FP Subtract

Operation: xmm1[31-0] = xmm1[31-0] - xmm2/m128[31-0];

xmm1[63-32] = xmm1[63-32] - xmm2/m128[63-32];

xmm1[95-64] = xmm1[95-64] - xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] - xmm2/m128[127-96];

Description: The SUBPS instruction subtracts the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault;.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,5C,/r SUBPS xmm1 xmm2/m128 Subtract packed SP FP numbers in XMM2/Mem from XMM1.

Volume 4: IA-32 SSE Instruction Reference 4:555

SUBSS: Scalar Single-FP Subtract

Operation: xmm1[31-0] = xmm1[31-0] - xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The SUBSS instruction subtracts the lower SP FP numbers of both their operands.

FP Exceptions: None.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,5C, /r SUBSS xmm1, xmm2/m32 Subtract the lower SP FP numbers in XMM2/Mem from
XMM1.

4:556 Volume 4: IA-32 SSE Instruction Reference

UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS

Operation: switch (xmm1[31-0] <> xmm2/m32[31-0]) {

OF,SF,AF = 000;

case UNORDERED: ZF,PF,CF = 111;

case GREATER_THAN: ZF,PF,CF = 000;

case LESS_THAN: ZF,PF,CF = 001;

case EQUAL: ZF,PF,CF = 100;

}

Description: The UCOMISS instructions compare the two lowest scalar SP FP numbers and sets the
ZF,PF,CF bits in the EFLAGS register as described above. In addition, the OF, SF and AF
bits in the EFLAGS register are zeroed out. The unordered predicate is returned if either
source operand is a NaN (qNaN or sNaN).

FP Exceptions: None.

Numeric Exceptions: Invalid (if SNaN operands), Denormal. Integer EFLAGS values will not be updated
in the presence of unmasked numeric exceptions.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

0F,2E,/r UCOMISS xmm1, xmm2/m32 Compare lower SP FP number in XMM1 register with lower
SP FP number in XMM2/Mem and set the status flags
accordingly.

Volume 4: IA-32 SSE Instruction Reference 4:557

UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS
(Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: UCOMISS differs from COMISS in that it signals an invalid numeric exception when a
source operand is an sNaN; COMISS signals invalid if a source operand is either a qNaN
or an sNaN.

The usage of Repeat (F2H, F3H) and Operand-Size prefixes with UCOMISS is reserved.
Different processor implementations may handle this prefix differently. Usage of this
prefix with UCOMISS risks incompatibility with future processors.

4:558 Volume 4: IA-32 SSE Instruction Reference

UNPCKHPS: Unpack High Packed Single-FP Data

Operation: xmm1[31-0] = xmm1[95-64];

xmm1[63-32] = xmm2/m128[95-64];

xmm1[95-64] = xmm1[127-96];

xmm1[127-96] = xmm2/m128[127-96];

Description: The UNPCKHPS instruction performs an interleaved unpack of the high-order data
elements of XMM1 and XMM2/Mem. It ignores the lower half of the sources.

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Opcode Instruction Description

0F,15,/r UNPCKHPS xmm1, xmm2/m128 Interleaves SP FP numbers from the high halves of XMM1
and XMM2/Mem into XMM1 register.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y4 X4 Y3 X3

xmm1

xmm2/m128

xmm1

Volume 4: IA-32 SSE Instruction Reference 4:559

UNPCKHPS: Unpack High Packed Single-FP Data (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: When unpacking from a memory operand, an implementation may decide to fetch only
the appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking
will still be enforced.

The usage of Repeat Prefixes (F2H, F3H) with UNPCKHPS is reserved. Different
processor implementations may handle this prefix differently. Usage of this prefix with
UNPCKHPS risks incompatibility with future processors.

4:560 Volume 4: IA-32 SSE Instruction Reference

UNPCKLPS: Unpack Low Packed Single-FP Data

Operation: xmm1[31-0] = xmm1[31-0];

xmm1[63-32] = xmm2/m128[31-0];

xmm1[95-64] = xmm1[63-32];

xmm1[127-96] = xmm2/m128[63-32];

Description: The UNPCKLPS instruction performs an interleaved unpack of the low-order data
elements of XMM1 and XMM2/Mem. It ignores the upper half part of the sources.

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Opcode Instruction Description

0F,14,/r UNPCKLPS xmm1, xmm2/m128 Interleaves SP FP numbers from the low halves of XMM1
and XMM2/Mem into XMM1 register.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y2 X2 Y1 X1

xmm1

xmm2/m128

xmm1

Volume 4: IA-32 SSE Instruction Reference 4:561

UNPCKLPS: Unpack Low Packed Single-FP Data (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: When unpacking from a memory operand, an implementation may decide to fetch only
the appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking
will still be enforced.

The usage of Repeat Prefixes (F2H, F3H) with UNPCKLPS is reserved. Different
processor implementations may handle this prefix differently. Usage of this prefix with
UNPCKLPS risks incompatibility with future processors.

4:562 Volume 4: IA-32 SSE Instruction Reference

XORPS: Bit-wise Logical Xor for Single-FP Data

Operation: xmm[127-0] ^= xmm/m128[127-0];

Description: The XORPS instruction returns a bit-wise logical XOR between XMM1 and XMM2/Mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments:

The usage of Repeat Prefixes (F2H, F3H) with XORPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with XORPS
risks incompatibility with future processors.

4.13 SIMD Integer Instruction Set Extensions

Additional new SIMD Integer instructions have been added to accelerate the
performance of 3D graphics, video decoding and encoding and other applications.
These instructions operate on the MMX technology registers and on 64-bit memory
operands.

Opcode Instruction Description

0F,57,/r XORPS xmm1, xmm2/m128 XOR 128 bits from XMM2/Mem to XMM1 register.

Volume 4: IA-32 SSE Instruction Reference 4:563

PAVGB/PAVGW: Packed Average

Operation: if (instruction == PAVGB) {

x[0] = mm1[7-0] y[0] = mm2/m64[7-0];

x[1] = mm1[15-8] y[1] = mm2/m64[15-8];

x[2] = mm1[23-16] y[2] = mm2/m64[23-16];

x[3] = mm1[31-24] y[3] = mm2/m64[31-24];

x[4] = mm1[39-32] y[4] = mm2/m64[39-32];

x[5] = mm1[47-40] y[5] = mm2/m64[47-40];

x[6] = mm1[55-48] y[6] = mm2/m64[55-48];

x[7] = mm1[63-56] y[7] = mm2/m64[63-56];

for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

res[i] = (temp[i] +1) >> 1;

}

mm1[7-0] = res[0];

...

mm1[63-56] = res[7];

}

else if (instruction == PAVGW){

x[0] = mm1[15-0] y[0] = mm2/m64[15-0];

x[1] = mm1[31-16] y[1] = mm2/m64[31-16];

x[2] = mm1[47-32] y[2] = mm2/m64[47-32];

x[3] = mm1[63-48] y[3] = mm2/m64[63-48];

for (i = 0; i < 4; i++) {

Opcode Instruction Description

0F,E0, /r PAVGB mm1,mm2/m64 Average with rounding packed unsigned bytes from
MM2/Mem to packed bytes in MM1 register.

0F,E3, /r PAVGW mm1, mm2/m64 Average with rounding packed unsigned words from
MM2/Mem to packed words in MM1 register.

4:564 Volume 4: IA-32 SSE Instruction Reference

PAVGB/PAVGW: Packed Average (Continued)

temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

res[i] = (temp[i] +1) >> 1;

}

mm1[15-0] = res[0];

...

mm1[63-48] = res[3];

}

Description: The PAVG instructions add the unsigned data elements of the source operand to the
unsigned data elements of the destination register, along with a carry-in. The results of
the add are then each independently right shifted by one bit position. The high order
bits of each element are filled with the carry bits of the corresponding sum.

The destination operand is a MMX technology register. The source operand can either
be a MMX technology register or a 64-bit memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction
operates on packed unsigned words.

Numeric Exceptions: None.

Protected Mode Exceptions:

 #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory references (if the current privilege level is 3).

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Volume 4: IA-32 SSE Instruction Reference 4:565

PEXTRW: Extract Word

Operation: sel = imm8 & 0x3;

mm_temp = (mm >> (sel * 16)) & 0xffff;

r[15-0] = mm_temp[15-0];

r[31-16] = 0x0000;

Description: The PEXTRW instruction moves the word in MM selected by the two least significant bits
of imm8 to the lower half of a 32-bit integer register.

Numeric Exceptions: None.

Protected Mode Exceptions:

 #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a pending FPU
exception.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Opcode Instruction Description

0F,C5, /r, ib PEXTRW r32, mm, imm8 Extract the word pointed to by imm8 from MM and move it to a
32-bit integer register.

4:566 Volume 4: IA-32 SSE Instruction Reference

 PINSRW: Insert Word

Operation: sel = imm8 & 0x3;

mask = (sel == 0)? 0x000000000000ffff :

 (sel == 1)? 0x00000000ffff0000 :

 (sel == 2)? 0x0000ffff00000000 :

 0xffff000000000000;

mm = (mm & ~mask) | ((m16/r32[15-0] << (sel * 16)) & mask);

Description: The PINSRW instruction loads a word from the lower half of a 32-bit integer register (or
from memory) and inserts it in the MM destination register at a position defined by the
two least significant bits of the imm8 constant. The insertion is done in such a way that
the three other words from the destination register are left untouched.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,C4,/r,ib PINSRW mm, r32/m16, imm8 Insert the word from the lower half of r32 or from Mem16 into
the position in MM pointed to by imm8 without touching the
other words.

Volume 4: IA-32 SSE Instruction Reference 4:567

PMAXSW: Packed Signed Integer Word Maximum

Operation: mm1[15-0] = (mm1[15-0] > mm2/m64[15-0]) ? mm1[15-0] : mm2/m64[15-0];

mm1[31-16] = (mm1[31-16] > mm2/m64[31-16]) ? mm1[31-16] : mm2/m64[31-16];

mm1[47-32] = (mm1[47-32] > mm2/m64[47-32]) ? mm1[47-32] : mm2/m64[47-32];

mm1[63-48] = (mm1[63-48] > mm2/m64[63-48]) ? mm1[63-48] : mm2/m64[63-48];

Description: The PMAXSW instruction returns the maximum between the four signed words in MM1
and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,EE, /r PMAXSW mm1, mm2/m64 Return the maximum words between MM2/Mem and MM1.

4:568 Volume 4: IA-32 SSE Instruction Reference

PMAXUB: Packed Unsigned Integer Byte Maximum

Operation: mm1[7-0] = (mm1[7-0] > mm2/m64[7-0]) ? mm1[7-0] : mm2/m64[7-0];

mm1[15-8] = (mm1[15-8] > mm2/m64[15-8]) ? mm1[15-8] : mm2/m64[15-8];

mm1[23-16] = (mm1[23-16] > mm2/m64[23-16]) ? mm1[23-16] : mm2/m64[23-16];

mm1[31-24] = (mm1[31-24] > mm2/m64[31-24]) ? mm1[31-24] : mm2/m64[31-24];

mm1[39-32] = (mm1[39-32] > mm2/m64[39-32]) ? mm1[39-32] : mm2/m64[39-32];

mm1[47-40] = (mm1[47-40] > mm2/m64[47-40]) ? mm1[47-40] : mm2/m64[47-40];

mm1[55-48] = (mm1[55-48] > mm2/m64[55-48]) ? mm1[55-48] : mm2/m64[55-48];

mm1[63-56] = (mm1[63-56] > mm2/m64[63-56]) ? mm1[63-56] : mm2/m64[63-56];

Description: The PMAXUB instruction returns the maximum between the eight unsigned words in
MM1 and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,DE, /r PMAXUB mm1, mm2/m64 Return the maximum bytes between MM2/Mem and MM1.

Volume 4: IA-32 SSE Instruction Reference 4:569

PMINSW: Packed Signed Integer Word Minimum

Operation: mm1[15-0] = (mm1[15-0] < mm2/m64[15-0]) ? mm1[15-0] : mm2/m64[15-0];

mm1[31-16] = (mm1[31-16] < mm2/m64[31-16]) ? mm1[31-16] : mm2/m64[31-16];

mm1[47-32] = (mm1[47-32] < mm2/m64[47-32]) ? mm1[47-32] : mm2/m64[47-32];

mm1[63-48] = (mm1[63-48] < mm2/m64[63-48]) ? mm1[63-48] : mm2/m64[63-48];

Description: The PMINSW instruction returns the minimum between the four signed words in MM1
and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception#AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,EA, /r PMINSW mm1, mm2/m64 Return the minimum words between MM2/Mem and MM1.

4:570 Volume 4: IA-32 SSE Instruction Reference

PMINUB: Packed Unsigned Integer Byte Minimum

Operation: mm1[7-0] = (mm1[7-0] < mm2/m64[7-0]) ? mm1[7-0] : mm2/m64[7-0];

mm1[15-8] = (mm1[15-8] < mm2/m64[15-8]) ? mm1[15-8] : mm2/m64[15-8];

mm1[23-16] = (mm1[23-16] < mm2/m64[23-16]) ? mm1[23-16] : mm2/m64[23-16];

mm1[31-24] = (mm1[31-24] < mm2/m64[31-24]) ? mm1[31-24] : mm2/m64[31-24];

mm1[39-32] = (mm1[39-32] < mm2/m64[39-32]) ? mm1[39-32] : mm2/m64[39-32];

mm1[47-40] = (mm1[47-40] < mm2/m64[47-40]) ? mm1[47-40] : mm2/m64[47-40];

mm1[55-48] = (mm1[55-48] < mm2/m64[55-48]) ? mm1[55-48] : mm2/m64[55-48];

mm1[63-56] = (mm1[63-56] < mm2/m64[63-56]) ? mm1[63-56] : mm2/m64[63-56];

Description: The PMINUB instruction returns the minimum between the eight unsigned words in
MM1 and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,DA, /r PMINUB mm1, mm2/m64 Return the minimum bytes between MM2/Mem and MM1.

Volume 4: IA-32 SSE Instruction Reference 4:571

PMOVMSKB: Move Byte Mask To Integer

Operation: r32[7] = mm[63]; r32[6] = mm[55];

r32[5] = mm[47]; r32[4] = mm[39];

r32[3] = mm[31]; r32[2] = mm[23];

r32[1] = mm[15]; r32[0] = mm[7];

r32[31-8] = 0x000000;

Description: The PMOVMSKB instruction returns a 8-bit mask formed of the most significant bits of
each byte of its source operand.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Opcode Instruction Description

0F,D7,/r PMOVMSKB r32, mm Move the byte mask of MM to r32.

4:572 Volume 4: IA-32 SSE Instruction Reference

PMULHUW: Packed Multiply High Unsigned

Operation: mm1[15-0] = (mm1[15-0] * mm2/m64[15-0])[31-16];

mm1[31-16] = (mm1[31-16] * mm2/m64[31-16])[31-16];

mm1[47-32] = (mm1[47-32] * mm2/m64[47-32])[31-16];

mm1[63-48] = (mm1[63-48] * mm2/m64[63-48])[31-16];

Description: The PMULHUW instruction multiplies the four unsigned words in the destination operand
with the four unsigned words in the source operand. The high-order 16 bits of the
32-bit intermediate results are written to the destination operand.

Numeric Exceptions: None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,E4,/r PMULHUW mm1, mm2/m64 Multiply the packed unsigned words in MM1 register
with the packed unsigned words in MM2/Mem, then
store the high-order 16 bits of the results in MM1.

Volume 4: IA-32 SSE Instruction Reference 4:573

PSADBW: Packed Sum of Absolute Differences

Operation: temp1 = ABS(mm1[7-0] - mm2/m64[7-0]);

temp2 = ABS(mm1[15-8] - mm2/m64[15-8]);

temp3 = ABS(mm1[23-16] - mm2/m64[23-16]);

temp4 = ABS(mm1[31-24] - mm2/m64[31-24]);

temp5 = ABS(mm1[39-32] - mm2/m64[39-32]);

temp6 = ABS(mm1[47-40] - mm2/m64[47-40]);

temp7 = ABS(mm1[55-48] - mm2/m64[55-48]);

temp8 = ABS(mm1[63-56] - mm2/m64[63-56]);

mm1[15:0] = temp1 + temp2 + temp3 + temp4 + temp5 + temp6 + temp7 + temp8;

mm1[31:16] = 0x00000000;

mm1[47:32] = 0x00000000;

mm1[63:48] = 0x00000000;

Description: The PSADBW instruction computes the absolute value of the difference of unsigned
bytes for mm1 and mm2/m64. These differences are then summed to produce a word
result in the lower 16-bit field; the upper 3 words are cleared.

The destination operand is a MMX technology register. The source operand can either
be a MMX technology register or a 64-bit memory operand.

Numeric Exceptions: None

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Opcode Instruction Description

0F,F6, /r PSADBW mm1,mm2/m64 Absolute difference of packed unsigned bytes from MM2
/Mem and MM1; these differences are then summed to
produce a word result.

4:574 Volume 4: IA-32 SSE Instruction Reference

PSADBW: Packed Sum of Absolute Differences (Continued)

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Volume 4: IA-32 SSE Instruction Reference 4:575

PSHUFW: Packed Shuffle Word

Operation: mm1[15-0] = (mm2/m64 >> (imm8[1-0] * 16))[15-0]

mm1[31-16] = (mm2/m64 >> (imm8[3-2] * 16))[15-0]

mm1[47-32] = (mm2/m64 >> (imm8[5-4] * 16))[15-0]

mm1[63-48] = (mm2/m64 >> (imm8[7-6] * 16))[15-0]

Description: The PSHUF instruction uses the imm8 operand to select which of the four words in
MM2/Mem will be placed in each of the words in MM1. Bits 1 and 0 of imm8 encode the
source for destination word 0 (MM1[15-0]), bits 3 and 2 encode for word 1, bits 5 and 4
encode for word 2, and bits 7 and 6 encode for word 3 (MM1[63-48]). Similarly, the two
bit encoding represents which source word is to be used, e.g. an binary encoding of 10
indicates that source word 2 (MM2/Mem[47-32]) will be used.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

4.14 Cacheability Control Instructions

This section describes the cacheability control instructions which enable an application
writer to minimize data access latency and cache pollution.

Opcode Instruction Description

0F,70,/r,ib PSHUFW mm1, mm2/m64, imm8 Shuffle the words in MM2/Mem based on the
encoding in imm8 and store in MM1.

4:576 Volume 4: IA-32 SSE Instruction Reference

MASKMOVQ: Byte Mask Write

Operation: if (mm2[7]) m64[edi] = mm1[7-0];

if (mm2[15]) m64[edi+1] = mm1[15-8];

if (mm2[23]) m64[edi+2] = mm1[23-16];

if (mm2[31]) m64[edi+3] = mm1[31-24];

if (mm2[39]) m64[edi+4] = mm1[39-32];

if (mm2[47]) m64[edi+5] = mm1[47-40];

if (mm2[55]) m64[edi+6] = mm1[55-48];

if (mm2[63]) m64[edi+7] = mm1[63-56];

Description: Data is stored from the mm1 register to the location specified by the di/edi register
(using DS segment). The size of the store address depends on the address-size
attribute. The most significant bit in each byte of the mask register mm2 is used to
selectively write the data (0 = no write, 1 = write), on a per-byte basis. Behavior with a
mask of all zeroes is as follows:

• No data will be written to memory. However, transition from FP to MMX technology
state (if necessary) will occur, irrespective of the value of the mask.

• For memory references, a zero byte mask does not prevent addressing faults (i.e.
#GP, #SS) from being signalled.

• Signalling of page faults (#PF) is implementation specific.

• #UD, #NM, #MF, and #AC faults are signalled irrespective of the value of the mask.

• Signalling of breakpoints (code or data) is not guaranteed; different processor
implementations may signal or not signal these breakpoints.

• If the destination memory region is mapped as UC or WP, enforcement of
associated semantics for these memory types is not guaranteed (i.e. is reserved)
and is implementation specific. Dependency on the behavior of a specific
implementation in this case is not recommended, and may lead to future
incompatibility.

The Mod field of the ModR/M byte must be 11, or an Invalid Opcode Exception will
result.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Opcode Instruction Description

0F,F7,/r MASKMOVQ mm1, mm2 Move 64-bits representing integer data from MM1 register to
memory location specified by the edi register, using the byte
mask in MM2 register.

Volume 4: IA-32 SSE Instruction Reference 4:577

MASKMOVQ: Byte Mask Write (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments: MASKMOVQ can be used to improve performance for algorithms which need to merge
data on a byte granularity.MASKMOVQ should not cause a read for ownership; doing so
generates unnecessary bandwidth since data is to be written directly using the
byte-mask without allocating old data prior to the store. Similar to the SSE
non-temporal store instructions, MASKMOVQ minimizes pollution of the cache
hierarchy. MASKMOVQ implicitly uses weakly-ordered, write-combining stores (WC).
See Section 4.6.1.9, “Cacheability Control Instructions” for further information about
non-temporal stores.

As a consequence of the resulting weakly-ordered memory consistency model, a
fencing operation such as SFENCE should be used if multiple processors may use
different memory types to read/write the same memory location specified by edi.

This instruction behaves identically to MMX technology instructions, in the presence of
x87-FP instructions: transition from x87-FP to MMX technology (TOS=0, FP valid bits
set to all valid).

MASMOVQ ignores the value of CR4.OSFXSR. Since it does not affect the new SSE
state, they will not generate an invalid exception if CR4.OSFXSR = 0.

4:578 Volume 4: IA-32 SSE Instruction Reference

MOVNTPS: Move Aligned Four Packed Single-FP Non-temporal

Operation: m128 = xmm;

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. This store instruction minimizes cache pollution.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVTNPS should be used when dealing with 16-byte aligned single-precision FP
numbers. MOVNTPS minimizes pollution in the cache hierarchy. As a consequence of
the resulting weakly-ordered memory consistency model, a fencing operation should be
used if multiple processors may use different memory types to read/write the memory
location. See Section 4.6.1.9, “Cacheability Control Instructions” for further information
about non-temporal stores.

The usage of Repeat Prefixes(F2H, F3H) with MOVNTPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVNTPS
risks incompatibility with future processors.

Opcode Instruction Description

0F,2B, /r MOVNTPS m128, xmm Move 128 bits representing four packed SP FP data from XMM
register to Mem, minimizing pollution in the cache hierarchy.

Volume 4: IA-32 SSE Instruction Reference 4:579

MOVNTQ: Move 64 Bits Non-temporal

Operation: m64 = mm;

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. This store instruction minimizes cache pollution.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVNTQ minimizes pollution in the cache hierarchy. As a consequence of the resulting
weakly-ordered memory consistency model, a fencing operation should be used if
multiple processors may use different memory types to read/write the memory
location. See Section 4.6.1.9, “Cacheability Control Instructions” for further information
about non-temporal stores.

MOVNTQ ignores the value of CR4.OSFXSR. Since it does not affect the new SSE state,
they will not generate an invalid exception if CR4.OSFXSR = 0.

Opcode Instruction Description

0F,E7,/r MOVNTQ m64, mm Move 64 bits representing integer operands (8b, 16b, 32b) from
MM register to memory, minimizing pollution within cache
hierarchy.

4:580 Volume 4: IA-32 SSE Instruction Reference

PREFETCH: Prefetch

Operation: fetch (m8);

Description: If there are no excepting conditions, the prefetch instruction fetches the line containing
the addresses byte to a location in the cache hierarchy specified by a locality hint. If the
line is already present in the cache hierarchy at a level closer to the processor, no data
movement occurs. The bits 5:3 of the ModR/M byte specify locality hints as follows:

• Temporal data(t0) - prefetch data into all cache levels.

• Temporal with respect to first level cache (t1) – prefetch data in all cache levels
except 0th cache level.

• Temporal with respect to second level cache (t2) – prefetch data in all cache levels,
except 0th and 1st cache levels.

• Non-temporal with respect to all cache levels (nta) – prefetch data into
non-temporal cache structure.

Locality hints do not affect the functional behavior of the program. They are
implementation dependent, and can be overloaded or ignored by an implementation.
The prefetch instruction does not cause any exceptions (except for code breakpoints),
does not affect program behavior and may be ignored by the implementation. The
amount of data prefetched is implementation dependent. It will however be a minimum
of 32 bytes. Prefetches to uncacheable memory (UC or WC memory types) will be
ignored. Additional ModRM encodings, besides those specified above, are defined to be
reserved and the use of reserved encodings risks future incompatibility.

Numeric Exceptions: None

Protected Mode Exceptions: None

Real Address Mode Exceptions: None

Virtual 8086 Mode Exceptions: None

Additional Itanium System Environment Exceptions: None

Comments: This instruction is merely a hint.If executed, this instruction moves data closer to the
processor in anticipation of future use. The performance of these instructions in
application code can be implementation specific. To achieve maximum speedup, code
tuning might be necessary for each implementation. The non temporal hint also
minimizes pollution of useful cache data.

PREFETCH instructions ignore the value of CR4.OSFXSR. Since they do not affect the
new SSE state, they will not generate an invalid exception if CR4.OSFXSR = 0.

Opcode Instruction Description

0F,18,/1

0F,18,/2

0F,18,/3

0F,18,/0

PREFETCHT0 m8

PREFETCHT1 m8

PREFETCHT2 m8

PREFETCHNTA m8

Move data specified by address closer to the processor using
the t0 hint.
Move data specified by address closer to the processor using
the t1 hint.
Move data specified by address closer to the processor using
the t2 hint.
Move data specified by address closer to the processor using
the nta hint.

Volume 4: IA-32 SSE Instruction Reference 4:581

SFENCE: Store Fence

Operation: while (!(preceding_stores_globally_visible)) wait();

Description: Weakly ordered memory types can enable higher performance through such techniques
as out-of-order issue, write-combining, and write-collapsing. Memory ordering issues
can arise between a producer and a consumer of data and there are a number of
common usage models which may be affected by weakly ordered stores: (1) library
functions, which use weakly ordered memory to write results (2) compiler-generated
code, which also benefit from writing weakly-ordered results, and (3) hand-written
code. The degree to which a consumer of data knows that the data is weakly ordered
can vary for these cases. As a result, the SFENCE instruction provides a
performance-efficient way of ensuring ordering between routines that produce
weakly-ordered results and routines that consume this data.

SFENCE uses the following ModRM encoding:

Mod (7:6) = 11B

Reg/Opcode (5:3) = 111B

R/M (2:0) = 000B

All other ModRM encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

Numeric Exceptions: None

Protected Mode Exceptions: None

Real Address Mode Exceptions: None

Virtual 8086 Mode Exceptions: None

Additional Itanium System Environment Exceptions: None

Comments: SFENCE ignores the value of CR4.OSFXSR. SFENCE will not generate an invalid
exception if CR4.OSFXSR = 0

Opcode Instruction Description

0F AE /7 SFENCE Guarantees that every store instruction that precedes in
program order the store fence instruction is globally visible
before any store instruction which follows the fence is globally
visible.

4:582 Volume 4: IA-32 SSE Instruction Reference

Index Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Index

Index Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Index for Volumes 1, 2, 3 and 4 Index:1

INDEX FOR VOLUMES 1, 2, 3 AND 4

A
AAA Instruction 4:21
AAD Instruction 4:22
AAM Instruction 4:23
AAS Instruction 4:24
Aborts 2:95, 2:538
ACPI 2:631

P-states 2:315, 2:637
Acquire Semantics 2:507
ADC Instruction 4:25, 4:26
ADD Instruction 4:27, 4:28
add Instruction 3:14
addp4 Instruction 3:15
ADDPS Instruction 4:486
Address Space Model 2:561
ADDSS Instruction 4:487
Advanced Load 1:153, 1:154
Advanced Load Address Table (ALAT) 1:64
Advanced Load Check 1:154
ALAT (Advanced Load Address Table) 1:64

Coherency 2:554
Data Speculation 1:17

alloc Instruction 3:16
AND Instruction 4:29, 4:30
and Instruction 3:18
andcm Instruction 3:19
ANDNPS Instruction 4:488
ANDPS Instruction 4:489
Application Architecture Guide 1:1
Application Memory Addressing Model 1:36
Application Register (AR) 1:23, 1:28, 1:140
AR (Application Register) 1:28, 1:140
Arithmetic Instructions 1:51
ARPL Instruction 4:31, 4:32

B
Backing Store 2:133
Banked General Registers 2:42
Bit Field and Shift Instructions 1:52
Bit Strings 1:84
Boot Sequence 2:13
BOUND Instruction 4:33
BR (Branch Register) 1:26, 1:140
br Instruction 3:20

br.ia 1:112, 2:596
Branch Hints 1:78, 1:176
Branch Instructions 1:74, 1:145
Branch Register (BR) 1:19, 1:26, 1:140
break Instruction 2:556, 3:29
Break Instruction Fault 2:151
brl Instruction 3:30
brp Instruction 3:32
BSF Instruction 4:35
BSP (RSE Backing Store Pointer Register) 1:29
BSPSTORE (RSE Backing Store Pointer for Memory

Stores Register) 1:30
BSR Instruction 4:37
bsw Instruction 3:34
BSWAP Instruction 4:39
BT Instruction 4:40
BTC Instruction 4:42
BTR Instruction 4:44
BTS Instruction 4:46
Bundle Format 1:38
Bundles 1:38, 1:141
Byte Ordering 1:36

C
CALL Instruction 4:48
CBW Instruction 4:57
CCV (Compare and Exchange Value Register) 1:30
CDQ Instruction 4:85
CFM (Current Frame Marker) 1:27
Character Strings 1:83
Check Code 1:161
Check Load 1:154
chk Instruction 3:35
CLC Instruction 4:59
CLD Instruction 4:60
CLI Instruction 4:61
clrrrb Instruction 3:37
CLTS Instruction 4:63
clz Instruction 3:38
CMC (Corrected Machine Check) 2:350
CMC Instruction 4:64
CMCV (Corrected Machine Check Vector) 2:126
CMP Instruction 4:69
cmp Instruction 3:39
cmp4 Instruction 3:43
CMPPS Instruction 4:490
CMPS Instruction 4:71
CMPSB Instruction 4:71
CMPSD Instruction 4:71
CMPSS Instruction 4:493
CMPSW Instruction 4:71
CMPXCHG Instruction 4:74
cmpxchg Instruction 2:508, 3:46
CMPXCHG8B Instruction 4:76
Coalescing Attribute 2:78
COMISS Instruction 4:496
Compare and Exchange Value Register (CCV) 1:30
Compare and Store Data Register (CSD) 1:30
Compare Types 1:55
Context Management 2:549
Context Switching 2:557

Operating System Kernel 2:558
User-Level 2:557

Control Dependencies 1:148
Control Registers 2:29
Control Speculation 1:16, 1:60, 1:142, 1:151,

INDEX

Index:2 Index for Volumes 1, 2, 3 and 4

1:155, 2:579
Control Speculative Load 1:156
Corrected Error 2:350
Corrected Machine Check Vector (CMCV) 2:126
cover Instruction 3:48
CPUID (Processor Identification Register) 1:34
CPUID Instruction 4:78
Cross-modifying Code 2:533
CSD (Compare and Store Data Register) 1:30
Current Frame Marker (CFM) 1:27
CVTPI2PS Instruction 4:498
CVTPS2PI Instruction 4:500
CVTSI2SS Instruction 4:502
CVTSS2SI Instruction 4:503
CVTTPS2PI Instruction 4:504
CVTTSS2SI Instruction 4:506
CWD Instruction 4:85
CWDE Instruction 4:57, 4:86
czx Instruction 3:49

D
DAA Instruction 4:87
DAS Instruction 4:88
Data Arrangement 1:81
Data Breakpoint Register (DBR) 2:151, 2:152
Data Debug Faults 2:152
Data Dependencies 1:149, 1:150, 3:371
Data Poisoning 2:302
Data Prefetch Hint 1:148
Data Serialization 2:18
Data Speculation 1:17, 1:63, 1:143, 1:151, 2:579
Data Speculative Load 1:154
DBR (Data Breakpoint Register) 2:151, 2:152
DCR (Default Control Register) 2:31
Debugging 2:151
DEC Instruction 4:89
Default Control Register (DCR) 2:31
Dekker’s Algorithm 2:529
dep Instruction 3:51
DIV Instruction 4:91
DIVPS Instruction 4:507
DIVSS Instruction 4:508

E
EC (Epilog Count Register) 1:33
EFLAG (IA-32 EFLAG Register) 1:123
EMMS Instruction 4:400
End of External Interrupt Register (EOI) 2:124
Endian 1:36
ENTER Instruction 4:94
EOI (End of External Interrupt Register) 2:124
epc Instruction 2:555, 3:53
Epilog Count Register (EC) 1:33
Explicit Prefetch 1:70
External Controller Interrupts 2:96

External Interrupt 2:96, 2:538
External Interrupt Control Registers (CR64-81)

2:42
External Interrupt Request Registers (IRR0-3)

2:125
External Interrupt Vector Register (IVR) 2:123
External Task Priority Cycle (XTP) 2:130
External Task Priority Register (XTPR) 2:605
ExtINT (External Controller Interrupt) 2:96
extr Instruction 3:54

F
F2XM1 Instruction 4:97
FABS Instruction 4:99
fabs Instruction 3:55
FADD Instruction 4:100
fadd Instruction 3:56
FADDP Instruction 4:100
famax Instruction 3:57
famin Instruction 3:58
fand Instruction 3:59
fandcm Instruction 3:60
Fatal Error 2:350
Fault Handlers 2:583
Faults 2:96, 2:537
FBLD Instruction 4:103
FBSTP Instruction 4:105
fc Instruction 3:61
fchkf Instruction 3:63
FCHS Instruction 4:108
fclass Instruction 3:64
FCLEX Instruction 4:109
fclrf Instruction 3:66
FCMOI Instruction 4:115
FCMOVcc Instruction 4:110
fcmp Instruction 3:67
FCOM Instruction 4:112
FCOMIP Instruction 4:115
FCOMP Instruction 4:112
FCOMPP Instruction 4:112
FCOS Instruction 4:118
FCR (IA-32 Floating-point Control Register) 1:126
fcvt Instruction

fcvt.fx 3:70
fcvt.xf 3:72
fcvt.xuf 3:73

FDECSTP Instruction 4:120
FDIV Instruction 4:121
FDIVP Instruction 4:121
FDIVR Instruction 4:124
FDIVRP Instruction 4:124
Fence Semantics 2:508
fetchadd Instruction 2:508, 3:74
FFREE Instruction 4:127
FIADD Instruction 4:100

Index for Volumes 1, 2, 3 and 4 Index:3

INDEX

FICOM Instruction 4:128
FICOMP Instruction 4:128
FIDIV Instruction 4:121
FIDIVR Instruction 4:124
FILD Instruction 4:130
FIMUL Instruction 4:145
FINCSTP Instruction 4:132
Firmware 1:7, 2:623
Firmware Address Space 2:283
Firmware Entrypoint 2:281, 2:350
Firmware Interface Table (FIT) 2:287
FIST Instruction 4:134
FISTP Instruction 4:134
FISUB Instruction 4:182, 4:183
FISUBR Instruction 4:185
FIT (Firmware Interface Table) 2:287
FLD Instruction 4:137
FLD1 Instruction 4:139
FLDCW Instruction 4:141
FLDENV Instruction 4:143
FLDL2E Instruction 4:139
FLDL2T Instruction 4:139
FLDLG2 Instruction 4:139
FLDLN2 Instruction 4:139
FLDPI Instruction 4:139
FLDZ Instruction 4:139
Floating-point Architecture 1:19, 1:85, 1:205
Floating-point Exception Fault 1:102
Floating-point Instructions 1:91
Floating-point Register (FR) 1:139
Floating-point Software Assistance Exception

Handler (FPSWA) 2:587
Floating-point Status Register (FPSR) 1:31, 1:88
flushrs Instruction 3:76
fma Instruction 1:210, 3:77
fmax Instruction 3:79
fmerge Instruction 3:80
fmin Instruction 3:82
fmix Instruction 3:83
fmpy Instruction 3:85
fms Instruction 3:86
FMUL Instruction 4:145
FMULP Instruction 4:145
FNCLEX Instruction 4:109
fneg Instruction 3:88
fnegabs Instruction 3:89
FNINIT Instruction 4:133
fnma Instruction 3:90
fnmpy Instruction 3:92
FNOP Instruction 4:148
fnorm Instruction 3:93
FNSAVE Instruction 4:162
FNSTCW Instruction 4:176
FNSTENV Instruction 4:178
FNSTSW Instruction 4:180
for Instruction 3:94

fpabs Instruction 3:95
fpack Instruction 3:96
fpamax Instruction 3:97
fpamin Instruction 3:99
FPATAN Instruction 4:149
fpcmp Instruction 3:101
fpcvt Instruction 3:104
fpma Instruction 3:107
fpmax Instruction 3:109
fpmerge Instruction 3:111
fpmin Instruction 3:113
fpmpy Instruction 3:115
fpms Instruction 3:116
fpneg Instruction 3:118
fpnegabs Instruction 3:119
fpnma Instruction 3:120
fpnmpy Instruction 3:122
fprcpa Instruction 3:123
FPREM Instruction 4:151
FPREM1 Instruction 4:154
fprsqrta Instruction 3:126
FPSR (Floating-point Status Register) 1:31, 1:88
FPSWA (Floating-point Software Assistance

Handler) 2:587
FPTAN Instruction 4:157
FR (Floating-point Register) 1:139
frcpa Instruction 3:128
FRNDINT Instruction 4:159
frsqrta Instruction 3:131
FRSTOR Instruction 4:160
FSAVE Instruction 4:162
FSCALE Instruction 4:165
fselect Instruction 3:134
fsetc Instruction 3:135
FSIN Instruction 4:167
FSINCOS Instruction 4:169
FSQRT Instruction 4:171
FSR (IA-32 Floating-point Status Register) 1:126
FST Instruction 4:173
FSTCW Instruction 4:176
FSTENV Instruction 4:178
FSTP Instruction 4:173
FSTSW Instruction 4:180
FSUB Instruction 4:182, 4:183
fsub Instruction 3:136
FSUBP Instruction 4:182, 4:183
FSUBR Instruction 4:185
FSUBRP Instruction 4:185
fswap Instruction 3:137
fsxt Instruction 3:139
FTST Instruction 4:188
FUCOM Instruction 4:190
FUCOMI Instruction 4:115
FUCOMIP Instruction 4:115
FUCOMP Instruction 4:190
FUCOMPP Instruction 4:190

INDEX

Index:4 Index for Volumes 1, 2, 3 and 4

FWAIT Instruction 4:386
fwb Instruction 3:141
FXAM Instruction 4:193
FXCH Instruction 4:195
fxor Instruction 3:142
FXRSTOR Instruction 4:509
FXSAVE Instruction 4:512, 4:515
FXTRACT Instruction 4:197
FYL2X Instruction 4:199
FYL2XP1 Instruction 4:201

G
General Register (GR) 1:25, 1:139
getf Instruction 3:143
GR (General Register) 1:139

H
hint Instruction 3:145
HLT Instruction 4:203

I
I/O Architecture 2:615
IA-32

IA-32 Application Execution 1:109
IA-32 Applications 2:239, 2:595
IA-32 Architecture 1:7, 1:21
IA-32 Current Privilege Level (PSR.cpl) 2:243
IA-32 EFLAG Register 1:123, 2:243
IA-32 Exception

Alignment Check Fault 2:229
Code Breakpoint Fault 2:215
Data Breakpoint, Single Step, Taken

Branch Trap 2:216
Device Not Available Fault 2:221
Divide Fault 2:214
Double Fault 2:222
General Protection Fault 2:226
INT 3 Trap 2:217
Invalid Opcode Fault 2:220
Invalid TSS Fault 2:223
Machine Check 2:230
Overflow Trap 2:218
Page Fault 2:227
Pending Floating-point Error 2:228
Segment Not Present Fault 2:224
SSE Numeric Error Fault 2:231
Stack Fault 2:225

IA-32 Execution Layer 1:109
IA-32 Floating-point Control Registers 1:126
IA-32 Instruction Reference 4:11
IA-32 Instruction Set 2:253
IA-32 Intel® MMX™ Technology 1:129
IA-32 Intercept

Gate Intercept Trap 2:235
Instruction Intercept Fault 2:233

Locked Data Reference Fault 2:237
System Flag Trap 2:236

IA-32 Interrupt
Software Trap 2:232

IA-32 Interruption 2:111
IA-32 Interruption Vector Definitions 2:213
IA-32 Interruption Vector Descriptions 2:213
IA-32 Memory Ordering 2:265
IA-32 Physical Memory References 2:262
IA-32 SSE Extensions 1:20, 1:130
IA-32 System Registers 2:246
IA-32 System Segment Registers 2:241
IA-32 Trap Code 2:213
IA-32 Virtual Memory References 2:261

IBR (Index Breakpoint Register) 2:151, 2:152
IDIV Instruction 4:204
IFA (interuption Faulting Address) 2:541
IFS (Interruption Function State) 2:541
IHA (Interruption Hash Address) 2:41, 2:541
IIB0 (Interruption Instruction Bundle 0) 2:541
IIB1 (Interruption Instruction Bundle 1) 2:541
IIM (Interruption Immediate) 2:541
IIP (Interruption Instruction Pointer) 2:541
IIPA (Interruption Instruction Previous Address)

2:541
Implicit Prefetch 1:70
IMUL Instruction 4:207
IN Instruction 4:210
INC Instruction 4:212
In-flight Resources 2:19
INIT (Initialization Event) 2:96, 2:306, 2:635
Initialization Event (INIT) 2:96
INS Instruction 4:214
INSB Instruction 4:214
INSD Instruction 4:214
Instruction Breakpoint Register (IBR) 2:151,

2:152
Instruction Debug Faults 2:151
Instruction Dependencies 1:148
Instruction Encoding 1:38
Instruction Formats 3:293

SSE 4:483
Instruction Group 1:40
Instruction Level Parallelism 1:15
Instruction Pointer (IP) 1:27, 1:140
Instruction Scheduling 1:148, 1:150, 1:164
Instruction Serialization 2:18
Instruction Set Architecture (ISA) 1:7
Instruction Set Modes 1:110
Instruction Set Transition 1:14
Instruction Set Transitions 2:239, 2:596
Instruction Slot Mapping 1:38
Instruction Slots 1:38
INSW Instruction 4:214
INT (External Interrupt) 2:96
INT3 Instruction 4:217

Index for Volumes 1, 2, 3 and 4 Index:5

INDEX

INTA (Interrupt Acknowledge) 2:130
Inter-processor Interrupt (IPI) 2:127
Interrupt Acknowledge Cycle 2:130
Interruption Control Registers (CR16-27) 2:36
Interruption Handler 2:537
Interruption Handling 2:543
Interruption Hash Address 2:41
Interruption Instruction Bundle Registers (IIB0-1)

2:42
Interruption Processor Status Register (IPSR) 2:36
Interruption Register State 2:540
Interruption Registers 2:538
Interruption Status Register (ISR) 2:36
Interruption Vector 2:165

Alternate Data TLB 2:178
Alternate Instruction TLB 2:177
Break Instruction 2:185
Data Access Rights 2:191
Data Access-Bit 2:184
Data Key Miss 2:181
Data Nested TLB 2:179
Data TLB 2:176
Debug 2:200
Dirty-Bit 2:182
Disabled FP-Register 2:195
External Interrupt 2:186
Floating-point Fault 2:203
Floating-point Trap 2:204
General Exception 2:192
IA-32 Exception 2:210
IA-32 Intercept 2:211
IA-32 Interrupt 2:212
Instruction Access Rights 2:190
Instruction Access-Bit 2:183
Instruction Key Miss 2:180
Instruction TLB 2:175
Key Permission 2:189
Lower-Privilege Transfer Trap 2:205
NaT Consumption 2:196
Page Not Present 2:188
Single Step Trap 2:208
Speculation 2:198
Taken Branch Trap 2:207
Unaligned Reference 2:201
Unsupported Data Reference 2:202
Virtual External Interrupt 2:187
Virtualization 2:209

Interruption Vector Address 2:35, 2:538
Interruption Vector Table 2:538
Interruptions 2:95, 2:537
Interrupts 2:96, 2:114

External Interrupt Architecture 2:603
Interval Time Counter (ITC) 1:31
Interval Timer Match Register (ITM) 2:32
Interval Timer Offset (ITO) 2:34
Interval Timer Vector (ITV) 2:125

INTn Instruction 4:217
INTO Instruction 4:217
invala Instruction 3:146
INVD instructions 4:228
INVLPG Instruction 4:230
IP (Instruction Pointer) 1:27, 1:140
IPI (Inter-processor Interrupt) 2:127
IPSR (Interruption Processor Status Register)

2:36, 2:541
IRET Instruction 4:231
IRETD Instruction 4:231
IRR (External Interrupt Request Registers) 2:125
ISR (Interruption Status Register) 2:36, 2:165,

2:541
Itanium Architecture 1:7
Itanium Instruction Set 1:21
Itanium System Architecture 1:20
Itanium System Environment 1:7, 1:21
ITC (Interval Time Counter) 1:31, 2:32
itc Instruction 3:147
ITIR (Interruption TLB Insertion Register) 2:541
ITM (Interval Time Match Register) 2:32
ITO (Interval Timer Offset) 2:34
itr Instruction 3:149
ITV (Interval Timer Vector) 2:125
IVA (Interruption Vector Address) 2:35, 2:538
IVA-based interruptions 2:95, 2:537
IVR (External Interrupt Vector Register) 2:123

J
Jcc Instruction 4:239
JMP Instruction 4:243
JMPE Instruction 1:111, 2:597, 4:249

K
Kernel Register (KR) 1:29
KR (Kernel Register) 1:29

L
LAHF Instruction 4:251
Lamport’s Algorithm 2:530
LAR Instruction 4:252
Large Constants 1:53
LC (Loop Count Register) 1:33
ld Instruction 3:151
ldf Instruction 3:157
ldfp Instruction 3:161
LDMXCSR Instruction 4:516
LDS Instruction 4:255
LEA Instruction 4:258
LEAVE Instruction 4:260
LES Instruction 4:255
lfetch Instruction 3:164
LFS Instruction 4:255
LGDT Instruction 4:264

INDEX

Index:6 Index for Volumes 1, 2, 3 and 4

LGS Instruction 4:255
LIDT Instruction 4:264
LLDT Instruction 4:267
LMSW Instruction 4:270
Load Instructions 1:58
loadrs Instruction 3:167
Loads from Memory 1:147
Local Redirection Registers (LRR0-1) 2:126
Locality Hints 1:70
LOCK Instruction 4:272
LODS Instruction 4:274
LODSB Instruction 4:274
LODSD Instruction 4:274
LODSW Instruction 4:274
Logical Instructions 1:51
Loop Count Register (LC) 1:33
LOOP Instruction 4:276
Loop Optimization 1:160, 1:181
LOOPcc Instruction 4:276
Lower Privilege Transfer Trap 2:151
LRR (Local Redirection Registers) 2:126
LSL Instruction 4:278
LSS Instruction 4:255
LTR Instruction 4:282

M
Machine Check (MC) 2:95, 2:296, 2:351
Machine Check Abort (MCA) 2:632
MASKMOVQ Instruction 4:576
MAXPS Instruction 4:519
MAXSS Instruction 4:521
MC (Machine Check) 2:351
MCA (Machine Check Abort) 2:95, 2:296, 2:632
Memory 1:36

Cacheable Page 2:77
Memory Access 1:142
Memory Access Ordering 1:73
Memory Attribute Transition 2:88
Memory Attributes 2:75, 2:524
Memory Consistency 1:72
Memory Fences 2:510
Memory Instructions 1:57
Memory Management 2:561
Memory Ordering 2:507, 2:510

IA-32 2:525
Memory Reference 1:147
Memory Regions 2:561
Memory Synchronization 2:526

mf Instruction 2:510, 2:526, 3:168
mf.a 2:615

MINPS Instruction 4:523
MINSS Instruction 4:525
mix Instruction 3:169
MMX technology 1:20
MOV Instruction 4:284
mov Instruction 3:172

MOVAPS Instruction 4:527
MOVD Instruction 4:401
MOVHLPS Instruction 4:529
MOVHPS Instruction 4:530
movl Instruction 3:187
MOVLHPS Instruction 4:532
MOVLPS Instruction 4:533
MOVMSKPS Instruction 4:535
MOVNTPS Instruction 4:578
MOVNTQ Instruction 4:579
MOVQ Instruction 4:403
MOVS Instruction 4:292
MOVSB Instruction 4:292
MOVSD Instruction 4:292
MOVSS Instruction 4:536
MOVSW Instruction 4:292
MOVSX Instruction 4:294
MOVUPS Instruction 4:538
MOVZX Instruction 4:295
MP Coherence 2:507
mpy4 Instruction 3:188
mpyshl4 Instruction 3:189
MUL Instruction 4:297
MULPS Instruction 4:540
MULSS Instruction 4:541
Multimedia Instructions 1:79
Multimedia Support 1:20
Multi-threading 1:177
Multiway Branches 1:173
mux Instruction 3:190

N
NaT (Not a Thing) 1:155
NaTPage (Not a Thing Attribute) 2:86
NaTVal (Not a Thing Value) 1:26
NEG Instruction 4:299
NMI (Non-Maskable Interrupt) 2:96
Non-Maskable Interrupt (NMI) 2:96
NOP Instruction 4:301
nop Instruction 3:193
Not A Thing (NaT) 1:155
Not a Thing Attribute (NaTPage) 2:86
Not a Thing Value (NatVal) 1:26
NOT Instruction 4:302

O
OLR (On Line Replacement) 2:351
Operating Environments 1:14
Operating System - See OS (Operating System)
OR Instruction 4:304
or Instruction 3:194
ORPS Instruction 4:542
OS (Operating System)

Boot Flow Sample Code 2:639
Boot Sequence 2:625
FPSWA handler 2:587

Index for Volumes 1, 2, 3 and 4 Index:7

INDEX

Illegal Dependency Fault 2:584
Long Branch Emulation 2:585
Multiple Address Spaces 1:20, 2:562
OS_BOOT Entrypoint 2:283
OS_INIT Entrypoint 2:283
OS_MCA Entrypoint 2:283
OS_RENDEZ Entrypoint 2:283
Performance Monitoring Support 2:620
Single Address Space 1:20, 2:565
Unaligned Reference Handler 2:583
Unsupported Data Reference Handler 2:584

OUT Instruction 4:306
OUTS Instruction 4:308
OUTSB Instruction 4:308
OUTSD Instruction 4:308
OUTSW Instruction 4:308

P
pack Instruction 3:195
PACKSSDW Instruction 4:405
PACKSSWB Instruction 4:405
PACKUSWB Instruction 4:408
padd Instruction 3:197
PADDB Instruction 4:410
PADDD Instruction 4:410
PADDSB Instruction 4:413
PADDSW Instruction 4:413
PADDUSB Instruction 4:416
PADDUSW Instruction 4:416
PADDW Instruction 4:410
Page Access Rights 2:56
Page Sizes 2:57
Page Table Address 2:35
PAL (Processor Abstraction Layer) 1:7, 1:21,

2:279, 2:351
PAL Entrypoints 2:282
PAL Initialization 2:306
PAL Intercepts 2:351
PAL Intercepts in Virtual Environment 2:332
PAL Procedure Calls 2:628
PAL Procedures 2:353
PAL Self-test Control Word 2:295
PAL Virtualization 2:324
PAL Virtualization Optimizations 2:335
PAL Virtualization Services 2:486
PAL Virtuallization Disables 2:346
PAL_A 2:283
PAL_B 2:283
PAL_BRAND_INFO 2:366
PAL_BUS_GET_FEATURES 2:367
PAL_BUS_SET_FEATURES 2:369
PAL_CACHE_FLUSH 2:370
PAL_CACHE_INFO 2:374
PAL_CACHE_INIT 2:376
PAL_CACHE_LINE_INIT 2:377
PAL_CACHE_PROT_INFO 2:378

PAL_CACHE_READ 2:380
PAL_CACHE_SHARED_INFO 2:382
PAL_CACHE_SUMMARY 2:384
PAL_CACHE_WRITE 2:385
PAL_COPY_INFO 2:388
PAL_COPY_PAL 2:389
PAL_DEBUG_INFO 2:390
PAL_FIXED_ADDR 2:391
PAL_FREQ_BASE 2:392
PAL_FREQ_RATIOS 2:393
PAL_GET_HW_POLICY 2:394
PAL_GET_PSTATE 2:320, 2:396, 2:637
PAL_HALT 2:314
PAL_HALT_INFO 2:401
PAL_HALT_LIGHT 2:314, 2:403
PAL_LOGICAL_TO_PHYSICAL 2:404
PAL_MC_CLEAR_LOG 2:407
PAL_MC_DRAIN 2:408
PAL_MC_DYNAMIC_STATE 2:409
PAL_MC_ERROR_INFO 2:410
PAL_MC_ERROR_INJECT 2:421
PAL_MC_EXPECTED 2:434
PAL_MC_HW_TRACKING 2:432
PAL_MC_RESUME 2:436
PAL_MEM_ATTRIB 2:437
PAL_MEMORY_BUFFER 2:438
PAL_PERF_MON_INFO 2:440
PAL_PLATFORM_ADDR 2:442
PAL_PMI_ENTRYPOINT 2:443
PAL_PREFETCH_VISIBILITY 2:444
PAL_PROC_GET_FEATURES 2:446
PAL_PROC_SET_FEATURES 2:450
PAL_PSTATE_INFO 2:319, 2:451
PAL_PTCE_INFO 2:453
PAL_REGISTER_INFO 2:454
PAL_RSE_INFO 2:455
PAL_SET_HW_POLICY 2:456
PAL_SET_PSTATE 2:319, 2:458, 2:637
PAL_SHUTDOWN 2:460
PAL_TEST_INFO 2:461
PAL_TEST_PROC 2:462
PAL_VERSION 2:465
PAL_VM_INFO 2:466
PAL_VM_PAGE_SIZE 2:467
PAL_VM_SUMMARY 2:468
PAL_VM_TR_READ 2:470
PAL_VP_CREATE 2:471
PAL_VP_ENV_INFO 2:473
PAL_VP_EXIT_ENV 2:475
PAL_VP_INFO 2:476
PAL_VP_INIT_ENV 2:478
PAL_VP_REGISTER 2:481
PAL_VP_RESTORE 2:483
PAL_VP_SAVE 2:484
PAL_VP_TERMINATE 2:485
PAL_VPS_RESTORE 2:499

INDEX

Index:8 Index for Volumes 1, 2, 3 and 4

PAL_VPS_RESUME_HANDLER 2:492
PAL_VPS_RESUME_NORMAL 2:489
PAL_VPS_SAVE 2:500
PAL_VPS_SET_PENDING_INTERRUPT 2:495
PAL_VPS_SYNC_READ 2:493
PAL_VPS_SYNC_WRITE 2:494
PAL_VPS_THASH 2:497
PAL_VPS_TTAG 2:498
PAL-based Interruptions 2:95, 2:537
PALE_CHECK 2:282, 2:296
PALE_INIT 2:282, 2:306
PALE_PMI 2:282, 2:310
PALE_RESET 2:282, 2:289

PAND Instruction 4:419
PANDN Instruction 4:421
Parallel Arithmetic 1:79
Parallel Compares 1:172
Parallel Shifts 1:81
pavg Instruction 3:201
PAVGB Instruction 4:563
pavgsub Instruction 3:204
PAVGW Instruction 4:563
pcmp Instruction 3:206
PCMPEQB Instruction 4:423
PCMPEQD Instruction 4:423
PCMPEQW Instruction 4:423
PCMPGTB Instruction 4:426
PCMPGTD Instruction 4:426
PCMPGTW Instruction 4:426
Performance Monitor Data Register (PMD) 1:33
Performance Monitor Events 2:162
Performance Monitoring 2:155, 2:619
Performance Monitoring Vector 2:126
PEXTRW Instruction 4:565
PFS (Previous Function State Register) 1:32
Physical Addressing 2:73
PIB (Processor Interrupt Block) 2:127
PINSRW Instruction 4:566
PKR (Protection Key Register) 2:564
Platform Management Interrupt (PMI) 2:96,

2:310, 2:538, 2:637
PMADDWD Instruction 4:429
pmax Instruction 3:209
PMAXSW Instruction 4:567
PMAXUB Instruction 4:568
PMC (Performance Monitor Configuration) 2:155
PMD (Performance Monitor Data Register) 1:33
PMD (Performance Monitor Data) 2:155
PMI (Platform Management Interrupt) 2:96,

2:310, 2:538, 2:637
pmin Instruction 3:211
PMINSW Instruction 4:569
PMINUB Instruction 4:570
PMOVMSKB Instruction 4:571
pmpy Instruction 3:213
pmpyshr Instruction 3:214

PMULHUW Instruction 4:572
PMULHW Instruction 4:431
PMULLW Instruction 4:433
PMV (Performance Monitoring Vector) 2:126
POP Instruction 4:311
POPA Instruction 4:315
POPAD Instruction 4:315
popcnt Instruction 3:216
POPF Instruction 4:317
POPFD Instruction 4:317
POR Instruction 4:435
Power Management 2:313
Power-on Event 2:351
PR (Predicate Register) 1:26, 1:140
Predicate Register (PR) 1:26, 1:140
Predication 1:17, 1:54, 1:143, 1:163, 1:164
Prefetch Hints 1:176
PREFETCH Instruction 4:580
Preserved Values 2:351
Previous Function State (PFS) 1:32
Privilege Level Transfer 1:84
Privilege Levels 2:17
probe Instruction 3:217
Procedure Calls 2:549
Processor Abstraction Layer - See PAL (Processor

Abstraction Layer)
Processor Abstraction Layer (PAL) 2:279
Processor Boot Flow 2:623
Processor Identification Registers (CPUID) 1:34
Processor Interrupt Block (PIB) 2:127
Processor Min-state Save Area 2:302
Processor Reset 2:95
Processor State Parameter (PSP) 2:299, 2:308
Processor Status Register (PSR) 2:23
Programmed I/O 2:534
Protection Keys 2:59, 2:564
psad Instruction 3:220
PSADBW Instruction 4:573
Pseudo-Code Functions 3:281
pshl Instruction 3:222
pshladd Instruction 3:223
pshr Instruction 3:224
pshradd Instruction 3:226
PSHUFW Instruction 4:575
PSLLD Instruction 4:437
PSLLQ Instruction 4:437
PSLLW Instruction 4:437
PSP (Processor State Parameter) 2:308
PSR (Processor Status Register) 2:23
PSRAD Instruction 4:440
PSRAW Instruction 4:440
PSRLD Instruction 4:443
PSRLQ Instruction 4:443
PSRLW Instruction 4:443
psub Instruction 3:227
PSUBB Instruction 4:446

Index for Volumes 1, 2, 3 and 4 Index:9

INDEX

PSUBD Instruction 4:446
PSUBSB Instruction 4:449
PSUBSW Instruction 4:449
PSUBUSB Instruction 4:452
PSUBUSW Instruction 4:452
PSUBW Instruction 4:446
PTA (Page Table Address Register) 2:35
ptc Instruction

ptc.e 2:569, 3:230
ptc.g 2:570, 3:231
ptc.ga 2:570, 3:231
ptc.l 2:568, 3:233

ptr Instruction 3:234
PUNPCKHBW Instruction 4:455
PUNPCKHDQ Instruction 4:455
PUNPCKHWD Instruction 4:455
PUNPCKLBW Instruction 4:458
PUNPCKLDQ Instruction 4:458
PUNPCKLWD Instruction 4:458
PUSH Instruction 4:320
PUSHA Instruction 4:323
PUSHAD Instruction 4:323
PUSHF Instruction 4:325
PUSHFD Instruction 4:325
PXOR Instruction 4:461

R
RAW Dependency 1:149
RCL Instruction 4:327
RCPPS Instruction 4:543
RCPSS Instruction 4:545
RCR Instruction 4:327
RDMSR Instruction 4:331
RDPMC Instruction 4:333
RDTSC Instruction 4:335
Read-after-write Dependency 1:149
Recoverable Error 2:351
Recovery Code 1:153, 1:154, 1:156
Region Identifier (RID) 2:561
Region Register (RR) 2:58, 2:561
Register File Transfers 1:82
Register Rotation 1:19, 1:185
Register Spill and Fill 1:62
Register Stack 1:18, 1:47
Register Stack Configuration Register (RSC) 1:29
Register Stack Engine (RSE) 1:144, 2:133
Register State 2:549
Release Semantics 2:507
Rendezvous 2:301
REP Instruction 4:337
REPE Instruction 4:337
REPNE Instruction 4:337
REPNZ Instruction 4:337
REPZ Instruction 4:337
Reserved Variables 2:351
Reset Event 2:95, 2:351

Resource Utilization Counter (RUC) 1:31, 2:33
RET Instruction 4:340
rfi Instruction 2:543, 3:236
RID (Region Identifier) 2:561
RNAT(RSE NaT Collection Register) 1:30
ROL Instruction 4:327
ROR Instruction 4:327
Rotating Registers 1:145
RR (Region Register) 2:58, 2:561
RSC (Register Stack Configuration Register) 1:29
RSE (Register Stack Engine) 2:133
RSE Backing Store Pointer (BSP) 1:29
RSE Backing Store Pointer for Memory Stores

(BSPSTORE) 1:30
RSE NaT Collection Register (RNAT) 1:30
RSM Instruction 4:346
rsm Instruction 3:239
RSQRTPS Instruction 4:547
RSQRTSS Instruction 4:548
RUC (Resource Utilization Counter) 1:31, 2:33
rum Instruction 3:241

S
SAHF Instruction 4:347
SAL (System Abstraction Layer) 1:7, 1:21, 2:352,

2:630
SAL_B 2:283
SALE_ENTRY 2:282, 2:291, 2:305
SALE_PMI 2:282, 2:310

SAL Instruction 4:348
SAR Instruction 4:348
SBB Instruction 4:352
SCAS Instruction 4:354
SCASB Instruction 4:354
SCASD Instruction 4:354
SCASW Instruction 4:354
Scratch Register 2:352
Self Test State Parameter 2:293
Self-modifying Code 2:532
Semaphore Instructions 1:59
Semaphores 2:508
Serialization 2:17, 2:537
SETcc Instruction 4:356
setf Instruction 3:242
SFENCE Instruction 4:581
SGDT Instruction 4:359
SHL Instruction 4:348
shl Instruction 3:244
shladd Instruction 3:245
shladdp4 Instruction 3:246
SHLD Instruction 4:362
SHR Instruction 4:348
shr Instruction 3:247
SHRD Instruction 4:364
shrp Instruction 3:248
SHUFPS Instruction 4:549

INDEX

Index:10 Index for Volumes 1, 2, 3 and 4

SIDT Instruction 4:359
Single Step Trap 2:151
SLDT Instruction 4:367
SMSW Instruction 4:369
Software Pipelining 1:19, 1:75, 1:145, 1:181
Speculation 1:16, 1:142, 1:151

Control Speculation 1:16
Data Speculation 1:17
Recovery Code 1:17, 2:580
Speculation Check 1:156

SQRTPS Instruction 4:551
SQRTSS Instruction 4:552
srlz Instruction 3:249
SSE Instructions 4:463
ssm Instruction 3:250
st Instruction 3:251
Stacked Calling Convention 2:352
Stacked General Registers 2:550
Stacked Registers 1:144
Static Calling Convention 2:352
Static General Registers 2:550
STC Instruction 4:371
STD Instruction 4:372
stf Instruction 3:254
STI Instruction 4:373
STMXCSR Instruction 4:553
Stops 1:38
Store Instructions 1:59
Stores to Memory 1:147
STOS Instruction 4:376
STOSB Instruction 4:376
STOSD Instruction 4:376
STOSW Instruction 4:376
STR Instruction 4:378
SUB Instruction 4:379
sub Instruction 3:256
SUBPS Instruction 4:554
SUBSS Instruction 4:555
sum Instruction 3:257
sxt Instruction 3:258
sync Instruction 3:259

sync.i 2:526
System Abstraction Layer - See SAL (System

Abstraction Layer)
System Architecture 1:20
System Environment 2:13
System Programmer’s Guide 2:501
System State 2:20

T
tak Instruction 3:260
Taken Branch trap 2:151
Task Priority Register (TPR) 2:123, 2:605
tbit Instruction 3:261
TC (Translation Cache) 2:49, 2:567

Template Field Encoding 1:38
Templates 1:141
TEST Instruction 4:381
tf Instruction 3:263
thash Instruction 3:265
TLB (Translation Lookaside Buffer) 2:47, 2:565
tnat Instruction 3:266
tpa Instruction 3:268
TPR (Task Priority Register) 2:123, 2:605
TR (Translation Register) 2:48, 2:566
Translation Cache (TC) 2:49, 2:567

purge 2:568
Translation Instructions 2:60
Translation Lookaside Buffer (TLB) 2:47, 2:565
Translation Register (TR) 2:48, 2:566
Traps 2:96, 2:537
ttag Instruction 3:269

U
UCOMISS Instruction 4:556
UD2 Instruction 4:383
UEFI (Unified Extensible Firmware Interface)

2:630
UM (User Mask Register) 1:33
UNAT (User NaT Collection Register) 1:31, 1:156
Uncacheable Page 2:77
Unchanged Register 2:352
Unordered Semantics 2:507
unpack Instruction 3:270
UNPCKHPS Instruction 4:558
UNPCKLPS Instruction 4:560
User Mask (UM) 1:33
User NaT Collection Register (UNAT) 1:31, 1:156

V
VERR Instruction 4:384
VERW Instruction 4:384
VHPT (Virtual Hash Page Table) 2:61, 2:571
VHPT Translation Vector 2:173
Virtual Addressing 2:45
Virtual Hash Page Table (VHPT) 2:61, 2:571
Virtual Machine Monitor (VMM) 2:352
Virtual Processor Descriptor (VPD) 2:325, 2:352
Virtual Processor State 2:352
Virtual Processor Status Register (VPSR) 2:327
Virtual Region Number (VRN) 2:561
Virtualization 2:44, 2:324
Virtualization Acceleration Control (vac) 2:329
Virtualization Disable Control (vdc) 2:329
VMM (Virtual Machine Monitor) 2:352
vmsw Instruction 3:273
VPD (Virtual Processor Descriptor) 2:325, 2:352
VPSR (Virtual Processor Status Register) 2:327
VRN (Virtual Region Number) 2:561

Index for Volumes 1, 2, 3 and 4 Index:11

INDEX

W
WAIT Instruction 4:386
WAR Dependency 1:149
WAW Dependency 1:149
WBINVD Instruction 4:387
Write-after-read Dependency 1:149
Write-after-write Dependency 1:149
WRMSR Instruction 4:389

X
XADD Instruction 4:391
XCHG Instruction 4:393
xchg Instruction 2:508, 3:274
XLAT Instruction 4:395
XLATB Instruction 4:395
xma Instruction 3:276
xmpy Instruction 3:278
XOR Instruction 4:397
xor Instruction 3:279
XORPS Instruction 4:562
XTP (External Task Priority Cycle) 2:130
XTPR (External Task Priority Register) 2:605

Z
zxt Instruction 3:280

INDEX

Index:12 Index for Volumes 1, 2, 3 and 4

	Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture
	Part I: Application Architecture Guide
	About this Manual 1
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference
	1.4 Overview of Volume 4: IA-32 Instruction Set Reference
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	Introduction to the Intel® Itanium® Architecture 2
	2.1 Operating Environments
	2.2 Instruction Set Transition Model Overview
	2.3 Intel® Itanium® Instruction Set Features
	2.4 Instruction Level Parallelism
	2.5 Compiler to Processor Communication
	2.6 Speculation
	2.6.1 Control Speculation
	2.6.2 Data Speculation
	2.6.3 Predication

	2.7 Register Stack
	2.8 Branching
	2.9 Register Rotation
	2.10 Floating-point Architecture
	2.11 Multimedia Support
	2.12 Intel® Itanium® System Architecture Features
	2.12.1 Support for Multiple Address Space Operating Systems
	2.12.2 Support for Single Address Space Operating Systems
	2.12.3 System Performance and Scalability
	2.12.4 System Security and Supportability

	2.13 Terminology

	Execution Environment 3
	3.1 Application Register State
	3.1.1 Reserved and Ignored Registers and Fields
	3.1.2 General Registers
	3.1.3 Floating-point Registers
	3.1.4 Predicate Registers
	3.1.5 Branch Registers
	3.1.6 Instruction Pointer
	3.1.7 Current Frame Marker
	3.1.8 Application Registers
	3.1.8.1 Kernel Registers (KR 0-7 - AR 0-7)
	3.1.8.2 Register Stack Configuration Register (RSC - AR 16)
	3.1.8.3 RSE Backing Store Pointer (BSP - AR 17)
	3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE - AR 18)
	3.1.8.5 RSE NaT Collection Register (RNAT - AR 19)
	3.1.8.6 Compare and Store Data register (CSD - AR 25)
	3.1.8.7 Compare and Exchange Value Register (CCV - AR 32)
	3.1.8.8 User NaT Collection Register (UNAT - AR 36)
	3.1.8.9 Floating-point Status Register (FPSR - AR 40)
	3.1.8.10 Interval Time Counter (ITC - AR 44)
	3.1.8.11 Resource Utilization Counter (RUC - AR 45)
	3.1.8.12 Previous Function State (PFS - AR 64)
	3.1.8.13 Loop Count Register (LC - AR 65)
	3.1.8.14 Epilog Count Register (EC - AR 66)

	3.1.9 Performance Monitor Data Registers (PMD)
	3.1.10 User Mask (UM)
	3.1.11 Processor Identification Registers

	3.2 Memory
	3.2.1 Application Memory Addressing Model
	3.2.2 Addressable Units and Alignment
	3.2.3 Byte Ordering

	3.3 Instruction Encoding Overview
	3.4 Instruction Sequencing Considerations
	3.4.1 RAW Dependency Special Cases
	3.4.2 WAW Dependency Special Cases
	3.4.3 WAR Dependency Special Cases
	3.4.4 Processor Behavior on Dependency Violations

	3.5 Undefined Behavior

	Application Programming Model 4
	4.1 Register Stack
	4.1.1 Register Stack Operation
	4.1.2 Register Stack Instructions

	4.2 Integer Computation Instructions
	4.2.1 Arithmetic Instructions
	4.2.2 Logical Instructions
	4.2.3 32-bit Addresses and Integers
	4.2.4 Bit Field and Shift Instructions
	4.2.5 Large Constants

	4.3 Compare Instructions and Predication
	4.3.1 Predication
	4.3.2 Compare Instructions
	4.3.3 Compare Types
	4.3.4 Predicate Register Transfers

	4.4 Memory Access Instructions
	4.4.1 Load Instructions
	4.4.2 Store Instructions
	4.4.3 Semaphore Instructions
	4.4.4 Control Speculation
	4.4.4.1 Control Speculation Concepts
	4.4.4.2 Control Speculation and Instructions
	4.4.4.3 Control Speculation and Compares
	4.4.4.4 Control Speculation without Recovery
	4.4.4.5 Operating System Control over Exception Deferral
	4.4.4.6 Register Spill and Fill

	4.4.5 Data Speculation
	4.4.5.1 Data Speculation Concepts
	4.4.5.2 Data Speculation and Instructions
	4.4.5.3 Detailed Functionality of the ALAT and Related Instructions
	4.4.5.3.1 Allocating and Checking ALAT Entries
	4.4.5.3.2 Invalidating ALAT Entries

	4.4.5.4 Combining Control and Data Speculation
	4.4.5.5 Instruction Completers for ALAT Management

	4.4.6 Memory Hierarchy Control and Consistency
	4.4.6.1 Hierarchy Control and Hints
	4.4.6.2 Memory Consistency

	4.4.7 Memory Access Ordering

	4.5 Branch Instructions
	4.5.1 Modulo-scheduled Loop Support
	4.5.2 Branch Prediction Hints
	4.5.3 Branch Predict Instructions

	4.6 Multimedia Instructions
	4.6.1 Parallel Arithmetic
	4.6.2 Parallel Shifts
	4.6.3 Data Arrangement

	4.7 Register File Transfers
	4.8 Character and Bit Strings
	4.8.1 Character Strings
	4.8.2 Bit Strings

	4.9 Privilege Level Transfer

	Floating-point Programming Model 5
	5.1 Data Types and Formats
	5.1.1 Real Types
	5.1.2 Floating-point Register Format
	5.1.3 Representation of Values in Floating-point Registers

	5.2 Floating-point Status Register
	5.3 Floating-point Instructions
	5.3.1 Memory Access Instructions
	5.3.2 Floating-point Register to/from General Register Transfer Instructions
	5.3.3 Arithmetic Instructions
	5.3.4 Non-arithmetic Instructions
	5.3.5 Floating-point Status Register (FPSR) Status Field Instructions
	5.3.6 Integer Multiply and Add Instructions

	5.4 Additional IEEE Considerations
	5.4.1 Floating-point Interruptions
	5.4.1.1 Disabled Floating-point Register Fault
	5.4.1.2 Floating-point Exception Fault
	5.4.1.3 Floating-point Exception Trap

	5.4.2 Definition of Overflow
	5.4.3 Definition of Tininess, Inexact and Underflow
	5.4.4 Integer Invalid Operations
	5.4.5 Definition of Arithmetic Operations
	5.4.6 Definition and Propagation of NaNs
	5.4.7 IEEE Standard Mandated Operations Deferred to Software
	5.4.8 Additions beyond the IEEE Standard

	IA-32 Application Execution Model in an Intel® Itanium® System Environment 6
	6.1 IA-32 Execution Layer
	6.2 Hardware-based IA-32 Application Execution
	6.2.1 Instruction Set Modes
	6.2.1.1 Instruction Set Execution in the Intel® Itanium® Architecture
	6.2.1.2 IA-32 Instruction Set Execution
	6.2.1.3 Instruction Set Transitions
	6.2.1.3.1 JMPE Instruction
	6.2.1.3.2 Branch to IA Instruction

	6.2.1.4 IA-32 Operating Mode Transitions

	6.2.2 IA-32 Application Register State Model
	6.2.2.1 IA-32 General Purpose Registers
	6.2.2.2 IA-32 Instruction Pointer
	6.2.2.3 IA-32 Segment Registers
	6.2.2.3.1 Data and Code Segments
	6.2.2.3.2 Segment Descriptor and Environment Integrity
	6.2.2.3.3 IA-32 Environment Runtime Integrity Checks

	6.2.2.4 IA-32 Application EFLAG Register
	6.2.2.5 IA-32 Floating-point Registers
	6.2.2.5.1 IA-32 Floating-point Stack
	6.2.2.5.2 Special Cases
	6.2.2.5.3 IA-32 Floating-point Control Registers
	6.2.2.5.4 IA-32 Floating-point Environment

	6.2.2.6 IA-32 Intel® MMX™ Technology Registers
	6.2.2.7 IA-32 SSE Registers

	6.2.3 Memory Model Overview
	6.2.3.1 Memory Endianess
	6.2.3.2 IA-32 Segmentation
	6.2.3.3 Self Modifying Code
	6.2.3.4 Memory Ordering Interactions

	6.2.4 IA-32 Usage of Intel® Itanium® Registers
	6.2.4.1 Register Stack Engine
	6.2.4.2 ALAT
	6.2.4.3 NaT/NaTVal Response for IA-32 Instructions

	Part II: Optimization Guide for the Intel® Itanium® Architecture
	About the Optimization Guide 1
	1.1 Overview of the Optimization Guide

	Introduction to Programming for the Intel® Itanium® Architecture 2
	2.1 Overview
	2.2 Registers
	2.3 Using Intel® Itanium® Instructions
	2.3.1 Format
	2.3.2 Expressing Parallelism
	2.3.3 Bundles and Templates

	2.4 Memory Access and Speculation
	2.4.1 Functionality
	2.4.2 Speculation
	2.4.3 Control Speculation
	2.4.4 Data Speculation

	2.5 Predication
	2.6 Architectural Support for Procedure Calls
	2.6.1 Stacked Registers
	2.6.2 Register Stack Engine

	2.7 Branches and Hints
	2.7.1 Branch Instructions
	2.7.2 Loops and Software Pipelining
	2.7.3 Rotating Registers

	2.8 Summary

	Memory Reference 3
	3.1 Overview
	3.2 Non-speculative Memory References
	3.2.1 Stores to Memory
	3.2.2 Loads from Memory
	3.2.3 Data Prefetch Hint

	3.3 Instruction Dependencies
	3.3.1 Control Dependencies
	3.3.1.1 Instruction Scheduling and Control Dependencies

	3.3.2 Data Dependencies
	3.3.2.1 Basics of Data Dependency
	3.3.2.2 Data Dependency in the Intel® Itanium® Architecture
	3.3.2.3 Instruction Scheduling and Data Dependencies

	3.4 Using Speculation in the Intel® Itanium® Architecture to Overcome Dependencies
	3.4.1 Speculation Model in the Intel® Itanium® Architecture
	3.4.2 Using Data Speculation in the Intel® Itanium® Architecture
	3.4.2.1 Advanced Load Example
	3.4.2.2 Recovery Code Example
	3.4.2.3 Terminology Review

	3.4.3 Using Control Speculation in the Intel® Itanium® Architecture
	3.4.3.1 The NaT Bit
	3.4.3.2 Control Speculation Example
	3.4.3.3 Spills, Fills and the UNAT Register
	3.4.3.4 Terminology Review

	3.4.4 Combining Data and Control Speculation

	3.5 Optimization of Memory References
	3.5.1 Speculation Considerations
	3.5.2 Data Interference
	3.5.3 Optimizing Code Size
	3.5.4 Using Post-increment Loads and Stores
	3.5.5 Loop Optimization
	3.5.6 Minimizing Check Code

	3.6 Summary

	Predication, Control Flow, and Instruction Stream 4
	4.1 Overview
	4.2 Predication
	4.2.1 Performance Costs of Branches
	4.2.1.1 Prediction Resources
	4.2.1.2 Instruction Scheduling

	4.2.2 Predication in the Intel® Itanium® Architecture
	4.2.3 Optimizing Program Performance Using Predication
	4.2.3.1 Applying if-Conversion
	4.2.3.2 Off-path Predication
	4.2.3.3 Upward Code Motion
	4.2.3.4 Downward Code Motion
	4.2.3.5 Cache Pollution Reduction

	4.2.4 Predication Considerations
	4.2.4.1 Unbalanced Execution Paths
	4.2.4.2 Case 1
	4.2.4.3 Case 2
	4.2.4.4 Case 3
	4.2.4.5 Overlapping Resource Usage
	4.2.4.6 Case 1

	4.2.5 Guidelines for Removing Branches

	4.3 Control Flow Optimizations
	4.3.1 Reducing Critical Path with Parallel Compares
	4.3.2 Reducing Critical Path with Multiway Branches
	4.3.3 Selecting Multiple Values for One Variable or Register with Predication
	4.3.3.1 Selecting One of Several Values
	4.3.3.2 Reducing Register Usage

	4.3.4 Improving Instruction Stream Fetching
	4.3.4.1 Instruction Stream Alignment

	4.4 Branch and Prefetch Hints
	4.5 Hints for Controlling Multi-threading
	4.5.1 Wait Loops
	4.5.2 Idle Loops
	4.5.3 Critical Sections

	4.6 Summary

	Software Pipelining and Loop Support 5
	5.1 Overview
	5.2 Loop Terminology and Basic Loop Support
	5.3 Optimization of Loops
	5.3.1 Loop Unrolling
	5.3.2 Software Pipelining

	5.4 Loop Support Features in the Intel® Itanium® Architecture
	5.4.1 Register Rotation
	5.4.2 Note on Initializing Rotating Predicates
	5.4.3 Software-pipelined Loop Branches
	5.4.3.1 Counted Loop Branches
	5.4.3.2 Counted Loop Example
	5.4.3.3 While Loop Branches

	5.4.4 Terminology Review

	5.5 Optimization of Loops in the Intel® Itanium® Architecture
	5.5.1 While Loops
	5.5.2 Loops with Predicated Instructions
	5.5.3 Multiple-exit Loops
	5.5.3.1 Converting Multiple Exit Loops to Single Exit Loops
	5.5.3.2 Pipelining with Explicit Multiple Exits

	5.5.4 Software Pipelining Considerations
	5.5.5 Software Pipelining and Advanced Loads
	5.5.5.1 Capacity Limitations
	5.5.5.2 Conflicts in the ALAT

	5.5.6 Loop Unrolling Prior to Software Pipelining
	5.5.7 Implementing Reductions
	5.5.8 Explicit Prolog and Epilog
	5.5.9 Redundant Load Elimination in Loops

	5.6 Summary

	Floating-point Applications 6
	6.1 Overview
	6.2 FP Application Performance Limiters
	6.2.1 Execution Latency
	6.2.2 Execution Bandwidth
	6.2.3 Memory Latency
	6.2.4 Memory Bandwidth

	6.3 Floating-point Features in the Intel® Itanium® Architecture
	6.3.1 Large and Wide Floating-point Register Set
	6.3.1.1 Notes on FP Precision

	6.3.2 Multiply-Add Instruction
	6.3.3 Software Divide/Square Root Sequence
	6.3.3.1 Double Precision - Divide
	6.3.3.2 Double Precision - Square Root

	6.3.4 Computational Models
	6.3.5 Multiple Status Fields
	6.3.6 Other Features
	6.3.6.1 Operand Screening Support
	6.3.6.2 Min/Max/AMin/AMax
	6.3.6.3 Integer/Floating-point Conversion
	6.3.6.4 FP Subfield Handling

	6.3.7 Memory Access Control
	6.3.7.1 Load-pair Instructions
	6.3.7.2 Data Prefetch
	6.3.7.3 Allocation Control

	6.4 Summary

	Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture
	Part I: System Architecture Guide
	About this Manual 1
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference
	1.4 Overview of Volume 4: IA-32 Instruction Set Reference
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	Intel® Itanium® System Environment 2
	2.1 Processor Boot Sequence
	2.2 Intel® Itanium® System Environment Overview

	System State and Programming Model 3
	3.1 Privilege Levels
	3.2 Serialization
	3.2.1 Instruction Serialization
	3.2.2 Data Serialization
	3.2.3 Definition of In-flight Resources

	3.3 System State
	3.3.1 System State Overview
	3.3.2 Processor Status Register (PSR)
	3.3.3 Control Registers
	3.3.4 Global Control Registers
	3.3.4.1 Default Control Register (DCR - CR0)
	3.3.4.2 Interval Time Counter and Match Register (ITC - AR44 and ITM - CR1)
	3.3.4.3 Resource Utilization Counter (RUC - AR45)
	3.3.4.4 Interval Timer Offset (ITO - CR4)
	3.3.4.5 Interruption Vector Address (IVA - CR2)
	3.3.4.6 Page Table Address (PTA - CR8)

	3.3.5 Interruption Control Registers
	3.3.5.1 Interruption Processor Status Register (IPSR - CR16)
	3.3.5.2 Interruption Status Register (ISR - CR17)
	3.3.5.3 Interruption Instruction Bundle Pointer (IIP - CR19)
	3.3.5.4 Interruption Faulting Address (IFA - CR20)
	3.3.5.5 Interruption TLB Insertion Register (ITIR - CR21)
	3.3.5.6 Interruption Instruction Previous Address (IIPA - CR22)
	3.3.5.7 Interruption Function State (IFS - CR23)
	3.3.5.8 Interruption Immediate (IIM - CR24)
	3.3.5.9 Interruption Hash Address (IHA - CR25)
	3.3.5.10 Interruption Instruction Bundle Registers (IIB0-1 - CR26, 27)

	3.3.6 External Interrupt Control Registers
	3.3.7 Banked General Registers

	3.4 Processor Virtualization

	Addressing and Protection 4
	4.1 Virtual Addressing
	4.1.1 Translation Lookaside Buffer (TLB)
	4.1.1.1 Translation Registers (TR)
	4.1.1.2 Translation Cache (TC)
	4.1.1.3 Unified Translation Lookaside Buffers
	4.1.1.4 Purge Behavior of TLB Inserts and Purges
	4.1.1.5 Translation Insertion Format
	4.1.1.6 Page Access Rights
	4.1.1.7 Page Sizes

	4.1.2 Region Registers (RR)
	4.1.3 Protection Keys
	4.1.4 Translation Instructions
	4.1.5 Virtual Hash Page Table (VHPT)
	4.1.5.1 VHPT Configuration
	4.1.5.2 VHPT Searching
	4.1.5.3 Region-based VHPT Short Format
	4.1.5.4 VHPT Long Format

	4.1.6 VHPT Hashing
	4.1.6.1 Region-based VHPT Short-format Index
	4.1.6.2 Long-format VHPT Hash

	4.1.7 VHPT Environment
	4.1.8 Translation Searching
	4.1.9 32-bit Virtual Addressing
	4.1.10 Virtual Aliasing

	4.2 Physical Addressing
	4.3 Unimplemented Address Bits
	4.3.1 Unimplemented Physical Address Bits
	4.3.2 Unimplemented Virtual Address Bits
	4.3.3 Instruction Behavior with Unimplemented Addresses

	4.4 Memory Attributes
	4.4.1 Virtual Addressing Memory Attributes
	4.4.2 Physical Addressing Memory Attributes
	4.4.3 Cacheability and Coherency Attribute
	4.4.4 Cache Write Policy Attribute
	4.4.5 Coalescing Attribute
	4.4.6 Speculation Attributes
	4.4.6.1 Limited Speculation and the WBL Physical Addressing Attribute

	4.4.7 Sequentiality Attribute and Ordering
	4.4.8 Not a Thing Attribute (NaTPage)
	4.4.9 Effects of Memory Attributes on Memory Reference Instructions
	4.4.10 Effects of Memory Attributes on Advanced/Check Loads
	4.4.11 Memory Attribute Transition
	4.4.11.1 Virtual Addressing Memory Attribute Transition
	4.4.11.2 Physical Addressing Attribute Transition - Disabling Prefetch/Speculation and Removing Cacheability
	4.4.11.3 Memory OLD Attribute Transition Sequence

	4.5 Memory Datum Alignment and Atomicity

	Interruptions 5
	5.1 Interruption Definitions
	5.2 Interruption Programming Model
	5.3 Interruption Handling during Instruction Execution
	5.4 PAL-based Interruption Handling
	5.5 IVA-based Interruption Handling
	5.5.1 Efficient Interruption Handling
	5.5.2 Non-access Instructions and Interruptions
	5.5.3 Single Stepping
	5.5.4 Single Instruction Fault Suppression
	5.5.5 Deferral of Speculative Load Faults

	5.6 Interruption Priorities
	5.6.1 IA-32 Interruption Priorities and Classes

	5.7 IVA-based Interruption Vectors
	5.8 Interrupts
	5.8.1 Interrupt Vectors and Priorities
	5.8.2 Interrupt Enabling and Masking
	5.8.2.1 Re-enabling External Interrupt Delivery
	5.8.2.2 External Interrupt Sampling
	5.8.2.3 Disabling of External Interrupt Delivery and rsm

	5.8.3 External Interrupt Control Registers
	5.8.3.1 Local ID (LID - CR64)
	5.8.3.2 External Interrupt Vector Register (IVR - CR65)
	5.8.3.3 Task Priority Register (TPR - CR66)
	5.8.3.4 End of External Interrupt Register (EOI - CR67)
	5.8.3.5 External Interrupt Request Registers (IRR0-3 - CR68,69,70,71)
	5.8.3.6 Interval Timer Vector (ITV - CR72)
	5.8.3.7 Performance Monitoring Vector (PMV - CR73)
	5.8.3.8 Corrected Machine Check Vector (CMCV - CR74)
	5.8.3.9 Local Redirection Registers (LRR0-1 - CR80,81)

	5.8.4 Processor Interrupt Block
	5.8.4.1 Inter-processor Interrupt Messages
	5.8.4.2 Interrupt and IPI Ordering
	5.8.4.3 Interrupt Acknowledge (INTA) Cycle
	5.8.4.4 External Task Priority (XTP) Cycle

	5.8.5 Edge- and Level-sensitive Interrupts

	Register Stack Engine 6
	6.1 RSE and Backing Store Overview
	6.2 RSE Internal State
	6.3 Register Stack Partitions
	6.4 RSE Operation
	6.5 RSE Control
	6.5.1 Register Stack Configuration Register
	6.5.2 Register Stack NaT Collection Register
	6.5.3 Backing Store Pointer Application Registers
	6.5.4 RSE Control Instructions
	6.5.5 Bad PFS used by Branch Return

	6.6 RSE Interruptions
	6.7 RSE Behavior on Interruptions
	6.8 RSE Behavior with an Incomplete Register Frame
	6.9 RSE and ALAT Interaction
	6.10 Backing Store Coherence and Memory Ordering
	6.11 RSE Backing Store Switches
	6.11.1 Switch from Interrupted Context
	6.11.2 Return to Interrupted Context
	6.11.3 Synchronous Backing Store Switch

	6.12 RSE Initialization

	Debugging and Performance Monitoring 7
	7.1 Debugging
	7.1.1 Data and Instruction Breakpoint Registers
	7.1.2 Debug Address Breakpoint Match Conditions

	7.2 Performance Monitoring
	7.2.1 Generic Performance Counter Registers
	7.2.2 Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])
	7.2.3 Performance Monitor Events
	7.2.4 Implementation-independent Performance Monitor Code Sequences
	7.2.4.1 Performance Monitor Interrupt Service Routine
	7.2.4.2 Performance Monitor Context Switch

	Interruption Vector Descriptions 8
	8.1 Interruption Vector Descriptions
	8.2 ISR Settings
	8.3 Interruption Vector Definition
	Name VHPT Translation vector (0x0000)
	Name Instruction TLB vector (0x0400)
	Name Data TLB vector (0x0800)
	Name Alternate Instruction TLB vector (0x0c00)
	Name Alternate Data TLB vector (0x1000)
	Name Data Nested TLB vector (0x1400)
	Name Instruction Key Miss vector (0x1800)
	Name Data Key Miss vector (0x1c00)
	Name Dirty-Bit vector (0x2000)
	Name Instruction Access-Bit vector (0x2400)
	Name Data Access-Bit vector (0x2800)
	Name Break Instruction vector (0x2c00)
	Name External Interrupt vector (0x3000)
	Name Virtual External Interrupt vector (0x3400)
	Name Page Not Present vector (0x5000)
	Name Key Permission vector (0x5100)
	Name Instruction Access Rights vector (0x5200)
	Name Data Access Rights vector (0x5300)
	Name General Exception vector (0x5400)
	Name Disabled FP-Register vector (0x5500)
	Name NaT Consumption vector (0x5600)
	Name Speculation vector (0x5700)
	Name Debug vector (0x5900)
	Name Unaligned Reference vector (0x5a00)
	Name Unsupported Data Reference vector (0x5b00)
	Name Floating-point Fault vector (0x5c00)
	Name Floating-point Trap vector (0x5d00)
	Name Lower-Privilege Transfer Trap vector (0x5e00)
	Name Taken Branch Trap vector (0x5f00)
	Name Single Step Trap vector (0x6000)
	Name Virtualization vector (0x6100)
	Name IA-32 Exception vector (0x6900)
	Name IA-32 Intercept vector (0x6a00)
	Name IA-32 Interrupt vector (0x6b00)

	IA-32 Interruption Vector Descriptions 9
	9.1 IA-32 Trap Code
	9.2 IA-32 Interruption Vector Definitions
	Name IA_32_Exception (Divide) - Divide Fault
	Name IA_32_Exception (Debug) - Code Breakpoint Fault
	Name IA_32_Exception (Debug) - Data Breakpoint, Single Step, Taken Branch Trap
	Name IA_32_Exception (Break) - INT 3 Trap
	Name IA_32_Exception (Overflow) - Overflow Trap
	Name IA_32_Exception (Bound) - Bounds Fault
	Name IA_32_Exception (InvalidOpcode) - Invalid Opcode Fault
	Name IA_32_Exception (DNA) - Device Not Available Fault
	Name Double Fault
	Name Invalid TSS Fault
	Name IA_32_Exception (NotPresent) - Segment Not Present Fault
	Name IA_32_Exception (StackFault) - Stack Fault
	Name IA_32_Exception (GPFault) - General Protection Fault
	Name Page Fault
	Name IA_32_Exception (FPError) - Pending Floating-point Error
	Name IA_32_Exception (AlignmentCheck) - Alignment Check Fault
	Name Machine Check
	Name IA_32_Exception (StreamingSIMD) - SSE Numeric Error Fault
	Name IA_32_Interrupt (Vector #N) - Software Trap
	Name IA_32_Intercept (Instruction) - Instruction Intercept Fault
	Name IA_32_Intercept (Gate) - Gate Intercept Trap
	Name IA_32_Intercept (SystemFlag) - System Flag Trap
	Name IA_32_Intercept (Lock) - Locked Data Reference Fault

	Itanium® Architecture-based Operating System Interaction Model with IA-32 Applications 10
	10.1 Instruction Set Transitions
	10.2 System Register Model
	10.3 IA-32 System Segment Registers
	10.3.1 IA-32 Current Privilege Level
	10.3.2 IA-32 System EFLAG Register
	10.3.2.1 Virtualized Interrupt Flag

	10.3.3 IA-32 System Registers
	10.3.3.1 IA-32 Control Registers
	10.3.3.2 IA-32 Debug Registers
	10.3.3.3 IA-32 Memory Type Range Registers (MTRRs)
	10.3.3.4 IA-32 Model Specific and Test Registers
	10.3.3.5 IA-32 Performance Monitor Registers
	10.3.3.6 IA-32 Machine Check Registers

	10.4 Register Context Switch Guidelines for IA-32 Code
	10.4.1 Entering IA-32 Processes
	10.4.2 Exiting IA-32 Processes

	10.5 IA-32 Instruction Set Behavior Summary
	10.6 System Memory Model
	10.6.1 Virtual Memory References
	10.6.2 IA-32 Virtual Memory References
	10.6.3 IA-32 TLB Forward Progress Requirements
	10.6.4 Multiprocessor TLB Coherency
	10.6.5 IA-32 Physical Memory References
	10.6.6 Supervisor Accesses
	10.6.7 Memory Alignment
	10.6.8 Atomic Operations
	10.6.9 Multiprocessor Instruction Cache Coherency
	10.6.10 IA-32 Memory Ordering
	10.6.10.1 Instruction Set Transitions
	10.6.10.1.1 Transitions from Intel® Itanium® Instruction Set to IA-32 Instruction Set
	10.6.10.1.2 Transitions from IA-32 Instruction Set to Intel® Itanium® Instruction Set

	10.7 I/O Port Space Model
	10.7.1 Virtual I/O Port Addressing
	10.7.2 Physical I/O Port Addressing
	10.7.2.1 I/O Port Addressing Restrictions

	10.7.3 IA-32 IN/OUT instructions
	10.7.4 I/O Port Accesses by Loads and Stores

	10.8 Debug Model
	10.8.1 Data Breakpoint Register Matching
	10.8.2 Instruction Breakpoint Register Matching

	10.9 Interruption Model
	10.9.1 Interruption Summary
	10.9.2 IA-32 Numeric Exception Model

	10.10 Processor Bus Considerations for IA-32 Application Support
	10.10.1 IA-32 Compatible Bus Transactions

	Processor Abstraction Layer 11
	11.1 Firmware Model
	11.1.1 Processor Abstraction Layer (PAL) Overview
	11.1.2 Firmware Entrypoints
	11.1.3 PAL Entrypoints
	11.1.4 SAL Entrypoints
	11.1.5 OS Entrypoints
	11.1.6 Firmware Address Space

	11.2 PAL Power On/Reset
	11.2.1 PALE_RESET
	11.2.2 PALE_RESET Exit State
	11.2.2.1 Definition of SALE_ENTRY State Parameter
	11.2.2.2 Definition of Geographically Significant Processor Identifier Parameter
	11.2.2.3 Definition of Self Test State Parameter

	11.2.3 PAL Self-test Control Word

	11.3 Machine Checks
	11.3.1 PALE_CHECK
	11.3.1.1 Resources Required for Machine Check and Initialization Event Recovery

	11.3.2 PALE_CHECK Exit State
	11.3.2.1 Processor State Parameter (GR 18)
	11.3.2.1.1 Using Processor State Parameter to Determine if Software Recovery of a Machine Check is Possible

	11.3.2.2 Multiprocessor Rendezvous Requirements for Handling Machine Checks
	11.3.2.3 Unconsumed Data-Poisoning Event Handling
	11.3.2.4 Processor Min-state Save Area Layout
	11.3.2.5 Definition of SALE_ENTRY State Parameter

	11.3.3 Returning to the Interrupted Process

	11.4 PAL Initialization Events
	11.4.1 PALE_INIT
	11.4.2 PALE_INIT Exit State
	11.4.2.1 Processor State Parameter (GR18)
	11.4.2.2 Definition of SALE_ENTRY State Parameter

	11.5 Platform Management Interrupt (PMI)
	11.5.1 PMI Overview
	11.5.2 PALE_PMI Exit State
	11.5.3 Resume from the PMI Handler

	11.6 Power Management
	11.6.1 Power/Performance States (P-states)
	11.6.1.1 Power Dependency Domains
	11.6.1.2 Platform Power-Cap and P-states
	11.6.1.3 PAL Interfaces for P-states
	11.6.1.4 Variable P-state Performance
	11.6.1.5 Interaction of P-states with HALT State

	11.7 PAL Virtualization Support
	11.7.1 Virtual Processor Descriptor (VPD)
	11.7.1.1 Virtualization Controls

	11.7.2 Interruption Handling in a Virtual Environment
	11.7.3 PAL Intercepts in Virtual Environment
	11.7.3.1 PAL Virtualization Intercept Handoff State

	11.7.4 Virtualization Optimizations
	11.7.4.1 Global Virtualization Optimizations
	11.7.4.1.1 Virtualization Opcode Optimization
	11.7.4.1.2 Virtualization Cause Optimization
	11.7.4.1.3 Guest MOV-from-AR.ITC Optimization

	11.7.4.2 Virtualization Accelerations
	11.7.4.2.1 Virtual External Interrupt Optimization
	11.7.4.2.2 Interruption Control Register Read Optimization
	11.7.4.2.3 Interruption Control Register Write Optimization
	11.7.4.2.4 MOV-from-PSR Optimization
	11.7.4.2.5 MOV-from-CPUID Optimization
	11.7.4.2.6 Cover Optimization
	11.7.4.2.7 Bank Switch Optimization
	11.7.4.2.8 Probe Instruction Virtualization
	11.7.4.2.9 Test Feature Optimization
	11.7.4.2.10 Interruption Collection and User Mask Optimization

	11.7.4.3 Virtualization Disables
	11.7.4.3.1 Disable VMSW Instruction
	11.7.4.3.2 Disable External Interrupt Control Register Virtualization
	11.7.4.3.3 Disable Breakpoint Register Virtualization
	11.7.4.3.4 Disable PMC Virtualization
	11.7.4.3.5 Disable MOV-to-PMD Virtualization
	11.7.4.3.6 Disable ITM Virtualization
	11.7.4.3.7 Disable PSR Interrupt-bit Virtualization

	11.7.4.4 Virtualization Optimization Combinations
	11.7.4.4.1 Virtual External Interrupt Optimization and Interruption Collection and User Mask Optimization

	11.7.4.5 Virtualization Synchronizations

	11.8 PAL Glossary
	11.9 PAL Code Memory Accesses and Restrictions
	11.10 PAL Procedures
	11.10.1 PAL Procedure Summary
	11.10.2 PAL Calling Conventions
	11.10.2.1 Overview of Calling Conventions
	11.10.2.1.1 Static Registers Only
	11.10.2.1.2 Stacked Registers
	11.10.2.1.3 Making PAL Procedure Calls in Physical or Virtual Mode
	11.10.2.1.4 Dependence on the PAL Memory Buffer

	11.10.2.2 Processor State
	11.10.2.2.1 Definition of Terms
	11.10.2.2.2 System Registers
	11.10.2.2.3 General Registers
	11.10.2.2.4 Floating-point Registers
	11.10.2.2.5 Predicate Registers
	11.10.2.2.6 Branch Registers
	11.10.2.2.7 Application Registers

	11.10.2.3 Return Buffers
	11.10.2.4 Invalid Arguments

	11.10.3 PAL Procedure Specifications

	PAL_BRAND_INFO - Provides Processor Branding Information (274)
	PAL_BUS_GET_FEATURES - Get Processor Bus Dependent Configuration Features (9)
	PAL_BUS_SET_FEATURES - Set Processor Bus Dependent Configuration Features (10)
	PAL_CACHE_FLUSH - Flush Data or Instruction Caches (1)
	PAL_CACHE_INFO - Get Detailed Cache Information (2)
	PAL_CACHE_INIT - Initialize Caches (3)
	PAL_CACHE_LINE_INIT - Initialize a Data Cache Line (31)
	PAL_CACHE_PROT_INFO - Get Detailed Cache Protection Information (38)
	PAL_CACHE_READ - Read Values from the Processor Cache (259)
	PAL_CACHE_SHARED_INFO - Get Information on Caches Shared by Logical Processors (43)
	PAL_CACHE_SUMMARY - Get Cache Hierarchy Summary (4)
	PAL_CACHE_WRITE - Write Values into the Processor Cache (260)
	PAL_COPY_INFO - Return Parameters to Copy PAL Code to Memory (30)
	PAL_COPY_PAL - Copy PAL Code to Memory (256)
	PAL_DEBUG_INFO - Get Debug Registers Information (11)
	PAL_FIXED_ADDR - Get Fixed Geographical Address of Processor (12)
	PAL_FREQ_BASE - Get Processor Base Frequency (13)
	PAL_FREQ_RATIOS - Get Processor Frequency Ratios (14)
	PAL_GET_HW_POLICY - Retrieve Current Hardware Resource Sharing Policy (48)
	PAL_GET_PSTATE - Return Information on the Performance Index of the Processor (262)
	PAL_HALT - Halt Processor (28)
	PAL_HALT_INFO - Get Halt State Information for Power Management (257)
	PAL_HALT_LIGHT - Cause Processor to Enter Coherent Halt State (29)
	PAL_LOGICAL_TO_PHYSICAL - Get Information on Logical to Physical Processor Mappings (42)
	PAL_MC_CLEAR_LOG - Clear Processor Error Logging Registers (21)
	PAL_MC_DRAIN - Complete Outstanding Transactions (22)
	PAL_MC_DYNAMIC_STATE - Returns Dynamic Processor State (24)
	PAL_MC_ERROR_INFO - Get Processor Error Information (25)
	PAL_MC_ERROR_INJECT - Inject Processor Error (276)
	PAL_MC_HW_TRACKING - Query which hardware structures are performing hardware status tracking (51)
	PAL_MC_EXPECTED - Set/Reset Expected Machine Check Indicator (23)
	PAL_MC_REGISTER_MEM - Register Memory with PAL for Machine Check and Init (27)
	PAL_MC_RESUME - Restore Minimal Architected State and Return (26)
	PAL_MEM_ATTRIB - Get Memory Attributes (5)
	PAL_MEMORY_BUFFER - Allocate a cacheable memory buffer for exclusive PAL usage (277)
	PAL_PERF_MON_INFO - Get Processor Performance Monitor Information (15)
	PAL_PLATFORM_ADDR - Set Processor Interrupt Block Address and I/O Port Space Address (16)
	PAL_PMI_ENTRYPOINT - Setup SAL PMI Entrypoint in Memory (32)
	PAL_PREFETCH_VISIBILITY - Make Processor Prefetches Visible (41)
	PAL_PROC_GET_FEATURES - Get Processor Dependent Features (17)
	PAL_PROC_SET_FEATURES - Set Processor Dependent Features (18)
	PAL_PSTATE_INFO - Get Information for Power/Performance States (44)
	PAL_PTCE_INFO - Get PTCE Purge Loop Information (6)
	PAL_REGISTER_INFO - Return Information about Implemented Processor Registers (39)
	PAL_RSE_INFO - Get RSE Information (19)
	PAL_SET_HW_POLICY - Set Current Hardware Resource Sharing Policy (49)
	PAL_SET_PSTATE - Request Processor to Enter Power/Performance State (263)
	PAL_SHUTDOWN - Shutdown the Processor (45)
	PAL_TEST_INFO - Information for Processor Self-test (37)
	PAL_TEST_PROC - Perform a Processor Self-test (258)
	PAL_VERSION - Get PAL Version Number Information (20)
	PAL_VM_INFO - Get Virtual Memory Information (7)
	PAL_VM_PAGE_SIZE - Get Virtual Memory Page Size Information (34)
	PAL_VM_SUMMARY - Get Virtual Memory Summary Information (8)
	PAL_VM_TR_READ - Read a Translation Register (261)
	PAL_VP_CREATE - PAL Create New Virtual Processor (265)
	PAL_VP_ENV_INFO - PAL Virtual Environment Information (266)
	PAL_VP_EXIT_ENV - PAL Exit Virtual Environment (267)
	PAL_VP_INFO - PAL Virtual Processor Information (50)
	PAL_VP_INIT_ENV - PAL Initialize Virtual Environment (268)
	PAL_VP_REGISTER - PAL Register Virtual Processor (269)
	PAL_VP_RESTORE - PAL Restore Virtual Processor (270)
	PAL_VP_SAVE - PAL Save Virtual Processor (271)
	PAL_VP_TERMINATE - PAL Terminate Virtual Processor (272)
	11.11 PAL Virtualization Services
	11.11.1 PAL Virtualization Service Invocation Convention
	11.11.2 PAL Virtualization Service Specifications

	PAL_VPS_RESUME_NORMAL - Resume Virtual Processor Normal (0x0000)
	PAL_VPS_RESUME_HANDLER - Resume Virtual Processor Handler (0x0400)
	PAL_VPS_SYNC_READ - Synchronize VPD State for Reads (0x0800)
	PAL_VPS_SYNC_WRITE - Synchronize VPD State for Writes (0x0c00)
	PAL_VPS_SET_PENDING_INTERRUPT - Register Highest Priority Pending Interrupt (0x1000)
	PAL_VPS_THASH - Compute Long Format VHPT Entry Address (0x1400)
	PAL_VPS_TTAG - Compute Translated Hashed Entry Tag (0x1800)
	PAL_VPS_RESTORE - Fast Restore Virtual Processor State (0x1c00)
	PAL_VPS_SAVE - Fast Save Virtual Processor State (0x2000)

	Part II: System Programmer’s Guide
	About the System Programmer’s Guide 1
	1.1 Overview of the System Programmer’s Guide
	1.2 Related Documents

	MP Coherence and Synchronization 2
	2.1 An Overview of Intel® Itanium® Memory Access Instructions
	2.1.1 Memory Ordering of Cacheable Memory References
	2.1.2 Loads and Stores
	2.1.3 Semaphores
	2.1.3.1 Considerations for using Semaphores
	2.1.3.2 Behavior of Uncacheable and Misaligned Semaphores

	2.1.4 Memory Fences

	2.2 Memory Ordering in the Intel® Itanium® Architecture
	2.2.1 Memory Ordering Executions
	2.2.1.1 Assumptions and Notation
	2.2.1.2 The Intel® Itanium® Architecture Provides a Relaxed Ordering Model
	2.2.1.3 Enforcing Basic Ordering
	2.2.1.4 Allow Loads to Pass Stores to Different Locations
	2.2.1.5 Preventing Loads from Passing Stores to Different Locations
	2.2.1.6 Data Dependency Does Not Establish MP Ordering
	2.2.1.7 Data Dependency Establishes Local Ordering
	2.2.1.8 Store Buffers May Satisfy Local Loads
	2.2.1.9 Preventing Store Buffers from Satisfying Local Loads
	2.2.1.10 Semaphores Do Not Locally Bypass
	2.2.1.11 Ordered Cacheable Operations are Seen in the Same Order by All Observers
	2.2.1.12 Obeying Causality

	2.2.2 Memory Attributes
	2.2.3 Understanding Other Ordering Models: Sequential Consistency and IA-32

	2.3 Where the Intel® Itanium® Architecture Requires Explicit Synchronization
	2.4 Synchronization Code Examples
	2.4.1 Spin Lock
	2.4.2 Simple Barrier Synchronization
	2.4.3 Dekker’s Algorithm
	2.4.4 Lamport’s Algorithm

	2.5 Updating Code Images
	2.5.1 Self-modifying Code
	2.5.2 Cross-modifying Code
	2.5.3 Programmed I/O
	2.5.4 DMA

	2.6 References

	Interruptions and Serialization 3
	3.1 Terminology
	3.2 Interruption Vector Table
	3.3 Interruption Handlers
	3.3.1 Execution Environment
	3.3.2 Interruption Register State
	3.3.3 Resource Serialization of Interrupted State
	3.3.4 Resource Serialization upon rfi

	3.4 Interruption Handling
	3.4.1 Lightweight Interruptions
	3.4.2 Heavyweight Interruptions
	3.4.3 Nested Interruptions

	Context Management 4
	4.1 Preserving Register State across Procedure Calls
	4.1.1 Preserving General Registers
	4.1.2 Preserving Floating-point Registers

	4.2 Preserving Register State in the OS
	4.2.1 Preservation of Stacked Registers in the OS
	4.2.2 Preservation of Floating-point State in the OS

	4.3 Preserving ALAT Coherency
	4.4 System Calls
	4.4.1 epc/Demoting Branch Return
	4.4.2 break/rfi
	4.4.3 NaT Checking for NaTs in System Calls

	4.5 Context Switching
	4.5.1 User-level Context Switching
	4.5.1.1 Non-local Control Transfers (setjmp/longjmp)
	4.5.1.2 User-level Co-routines

	4.5.2 Context Switching in an Operating System Kernel
	4.5.2.1 Thread Switch within the Same Address Space
	4.5.2.2 Address Space Switching

	Memory Management 5
	5.1 Address Space Model
	5.1.1 Regions
	5.1.1.1 RID Management
	5.1.1.2 Multiple Address Space Operating Systems
	5.1.1.3 Cross-address Space Copies in a MAS OS

	5.1.2 Protection Keys
	5.1.2.1 Single Address Space Operating Systems

	5.2 Translation Lookaside Buffers (TLBs)
	5.2.1 Translation Registers (TRs)
	5.2.1.1 TR Insertion
	5.2.1.2 TR Purge

	5.2.2 Translation Caches (TCs)
	5.2.2.1 TC Insertion
	5.2.2.2 TC Purge
	5.2.2.2.1 ptc.l
	5.2.2.2.2 ptc.e
	5.2.2.2.3 ptc.g, ptc.ga

	5.3 Virtual Hash Page Table
	5.3.1 Short Format
	5.3.2 Long Format
	5.3.3 VHPT Updates

	5.4 TLB Miss Handlers
	5.4.1 Data/Instruction TLB Miss Vectors
	5.4.2 VHPT Translation Vector
	5.4.3 Alternate Data/Instruction TLB Miss Vectors
	5.4.4 Data Nested TLB Vector
	5.4.5 Dirty Bit Vector
	5.4.6 Data/Instruction Access Bit Vector
	5.4.7 Page Not Present Vector
	5.4.8 Data/Instruction Access Rights Vector

	5.5 Subpaging

	Runtime Support for Control and Data Speculation 6
	6.1 Exception Deferral of Control Speculative Loads
	6.1.1 Hardware-only Deferral
	6.1.2 Combined Hardware/Software Deferral
	6.1.3 Software-only Deferral

	6.2 Speculation Recovery Code Requirements
	6.3 Speculation Related Exception Handlers
	6.3.1 Unaligned Handler

	Instruction Emulation and Other Fault Handlers 7
	7.1 Unaligned Reference Handler
	7.2 Unsupported Data Reference Handler
	7.3 Illegal Dependency Fault
	7.4 Long Branch

	Floating-point System Software 8
	8.1 Floating-point Exceptions in the Intel® Itanium® Architecture
	8.1.1 Software Assistance Exceptions (Faults and Traps)
	8.1.1.1 SWA Faults
	8.1.1.2 SWA Traps
	8.1.1.3 Approximation Instructions and Architecturally Mandated SWA Faults

	8.1.2 The IEEE Floating-point Exception Filter
	8.1.2.1 Invalid Operation Exception (Fault)
	8.1.2.2 Divide by Zero Exception (Fault)
	8.1.2.3 Denormal/Unnormal Operand Exception (Fault)
	8.1.2.4 Overflow Exception (Trap)
	8.1.2.5 Underflow Exception (Trap)
	8.1.2.6 Inexact Exception (Trap)

	8.2 IA-32 Floating-point Exceptions

	IA-32 Application Support 9
	9.1 Transitioning between Intel® Itanium® and IA-32 Instruction Sets
	9.1.1 IA-32 Code Execution Environments
	9.1.2 br.ia
	9.1.3 JMPE
	9.1.4 Procedure Calls between Intel® Itanium® and IA-32 Instruction Sets
	9.1.4.1 Itanium® Architecture-based Caller to IA-32 Callee
	9.1.4.2 IA-32 Caller to Itanium® Architecture-based Callee

	9.2 IA-32 Architecture Handlers
	9.3 Debugging IA-32 and Itanium®Architecture-based Code
	9.3.1 Instruction Breakpoints
	9.3.2 Data Breakpoints
	9.3.3 Single Step Traps
	9.3.4 Taken Branch Traps

	External Interrupt Architecture 10
	10.1 External Interrupt Basics
	10.2 Configuration of External Interrupt Vectors
	10.3 External Interrupt Masking
	10.3.1 PSR.i
	10.3.2 IVR Reads and EOI Writes
	10.3.3 Task Priority Register (TPR)
	10.3.4 External Task Priority Register (XTPR)

	10.4 External Interrupt Delivery
	10.5 Interrupt Control Register Usage Examples
	10.5.1 Notation
	10.5.2 TPR and XPTR Usage Example
	10.5.3 EOI Usage Example
	10.5.4 IRR Usage Example
	10.5.5 Interval Timer Usage Example
	10.5.6 Resource Utilization Counter Usage Example
	10.5.7 Local Redirection Example
	10.5.8 Inter-processor Interrupts Layout and Example
	10.5.9 INTA Example

	I/O Architecture 11
	11.1 Memory Acceptance Fence (mf.a)
	11.2 I/O Port Space

	Performance Monitoring Support 12
	12.1 Architected Performance Monitoring Mechanisms
	12.2 Operating System Support

	Firmware Overview 13
	13.1 Processor Boot Flow Overview
	13.1.1 Firmware Boot Flow
	13.1.2 Operating System Boot Steps

	13.2 Runtime Procedure Calls
	13.2.1 PAL Procedure Calls
	13.2.1.1 Making a Static PAL Call
	13.2.1.2 Making a Stacked PAL Call
	13.2.1.3 PAL Procedure Calls and Performance

	13.2.2 SAL Procedure Calls
	13.2.3 UEFI Procedure Calls
	13.2.4 ACPI Control Methods
	13.2.5 Physical and Virtual Addressing Mode Considerations
	13.2.5.1 SAL Procedures that Invoke PAL Procedures

	13.3 Event Handling in Firmware
	13.3.1 Machine Check Abort (MCA) Flows
	13.3.1.1 Machine Check Handling in PAL
	13.3.1.2 Machine Check Handling in SAL
	13.3.1.3 Machine Check Abort Handling in OS

	13.3.2 INIT Flows
	13.3.3 PMI Flows
	13.3.4 P-state Feedback Mechanism Flow Diagram

	Code Examples A
	A.1 OS Boot Flow Sample Code

	Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Intel® Itanium® Instruction Set Reference
	About this Manual 1
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference
	1.4 Overview of Volume 4: IA-32 Instruction Set Reference
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	Instruction Reference 2
	2.1 Instruction Page Conventions
	2.2 Instruction Descriptions
	add - Add
	addp4 - Add Pointer
	alloc - Allocate Stack Frame
	and - Logical And
	andcm - And Complement
	br - Branch
	break - Break
	brl - Branch Long
	brp - Branch Predict
	bsw - Bank Switch
	chk - Speculation Check
	clrrrb - Clear RRB
	clz - Count Leading Zeros
	cmp - Compare
	cmp4 - Compare 4 Bytes
	cmpxchg - Compare and Exchange
	cover - Cover Stack Frame
	czx - Compute Zero Index
	dep - Deposit
	epc - Enter Privileged Code
	extr - Extract
	fabs - Floating-point Absolute Value
	fadd - Floating-point Add
	famax - Floating-point Absolute Maximum
	famin - Floating-point Absolute Minimum
	fand - Floating-point Logical And
	fandcm - Floating-point And Complement
	fc - Flush Cache
	fchkf - Floating-point Check Flags
	fclass - Floating-point Class
	fclrf - Floating-point Clear Flags
	fcmp - Floating-point Compare
	fcvt.fx - Convert Floating-point to Integer
	fcvt.xf - Convert Signed Integer to Floating-point
	fcvt.xuf - Convert Unsigned Integer to Floating-point
	fetchadd - Fetch and Add Immediate
	flushrs - Flush Register Stack
	fma - Floating-point Multiply Add
	fmax - Floating-point Maximum
	fmerge - Floating-point Merge
	fmin - Floating-point Minimum
	fmix - Floating-point Mix
	fmpy - Floating-point Multiply
	fms - Floating-point Multiply Subtract
	fneg - Floating-point Negate
	fnegabs - Floating-point Negate Absolute Value
	fnma - Floating-point Negative Multiply Add
	fnmpy - Floating-point Negative Multiply
	fnorm - Floating-point Normalize
	for - Floating-point Logical Or
	fpabs - Floating-point Parallel Absolute Value
	fpack - Floating-point Pack
	fpamax - Floating-point Parallel Absolute Maximum
	fpamin - Floating-point Parallel Absolute Minimum
	fpcmp - Floating-point Parallel Compare
	fpcvt.fx - Convert Parallel Floating-point to Integer
	fpma - Floating-point Parallel Multiply Add
	fpmax - Floating-point Parallel Maximum
	fpmerge - Floating-point Parallel Merge
	fpmin - Floating-point Parallel Minimum
	fpmpy - Floating-point Parallel Multiply
	fpms - Floating-point Parallel Multiply Subtract
	fpneg - Floating-point Parallel Negate
	fpnegabs - Floating-point Parallel Negate Absolute Value
	fpnma - Floating-point Parallel Negative Multiply Add
	fpnmpy - Floating-point Parallel Negative Multiply
	fprcpa - Floating-point Parallel Reciprocal Approximation
	fprsqrta - Floating-point Parallel Reciprocal Square Root Approximation
	frcpa - Floating-point Reciprocal Approximation
	frsqrta - Floating-point Reciprocal Square Root Approximation
	fselect - Floating-point Select
	fsetc - Floating-point Set Controls
	fsub - Floating-point Subtract
	fswap - Floating-point Swap
	fsxt - Floating-point Sign Extend
	fwb - Flush Write Buffers
	fxor - Floating-point Exclusive Or
	getf - Get Floating-point Value or Exponent or Significand
	hint - Performance Hint
	invala - Invalidate ALAT
	itc - Insert Translation Cache
	itr - Insert Translation Register
	ld - Load
	ldf - Floating-point Load
	ldfp - Floating-point Load Pair
	lfetch - Line Prefetch
	loadrs - Load Register Stack
	mf - Memory Fence
	mix - Mix
	mov - Move Application Register
	mov - Move Branch Register
	mov - Move Control Register
	mov - Move Floating-point Register
	mov - Move General Register
	mov - Move Immediate
	mov - Move Indirect Register
	mov - Move Instruction Pointer
	mov - Move Predicates
	mov - Move Processor Status Register
	mov - Move User Mask
	movl - Move Long Immediate
	mpy4 - Unsigned Integer Multiply
	mpyshl4 - Unsigned Integer Shift Left and Multiply
	mux - Mux
	nop - No Operation
	or - Logical Or
	pack - Pack
	padd - Parallel Add
	pavg - Parallel Average
	pavgsub - Parallel Average Subtract
	pcmp - Parallel Compare
	pmax - Parallel Maximum
	pmin - Parallel Minimum
	pmpy - Parallel Multiply
	pmpyshr - Parallel Multiply and Shift Right
	popcnt - Population Count
	probe - Probe Access
	psad - Parallel Sum of Absolute Difference
	pshl - Parallel Shift Left
	pshladd - Parallel Shift Left and Add
	pshr - Parallel Shift Right
	pshradd - Parallel Shift Right and Add
	psub - Parallel Subtract
	ptc.e - Purge Translation Cache Entry
	ptc.g, ptc.ga - Purge Global Translation Cache
	ptc.l - Purge Local Translation Cache
	ptr - Purge Translation Register
	rfi - Return From Interruption
	rsm - Reset System Mask
	rum - Reset User Mask
	setf - Set Floating-point Value, Exponent, or Significand
	shl - Shift Left
	shladd - Shift Left and Add
	shladdp4 - Shift Left and Add Pointer
	shr - Shift Right
	shrp - Shift Right Pair
	srlz - Serialize
	ssm - Set System Mask
	st - Store
	stf - Floating-point Store
	sub - Subtract
	sum - Set User Mask
	sxt - Sign Extend
	sync - Memory Synchronization
	tak - Translation Access Key
	tbit - Test Bit
	tf - Test Feature
	thash - Translation Hashed Entry Address
	tnat - Test NaT
	tpa - Translate to Physical Address
	ttag - Translation Hashed Entry Tag
	unpack - Unpack
	vmsw - Virtual Machine Switch
	xchg - Exchange
	xma - Fixed-Point Multiply Add
	xmpy - Fixed-Point Multiply
	xor - Exclusive Or
	zxt - Zero Extend

	Pseudo-Code Functions 3
	Instruction Formats 4
	4.1 Format Summary
	4.2 A-Unit Instruction Encodings
	4.2.1 Integer ALU
	4.2.1.1 Integer ALU - Register-Register
	4.2.1.2 Shift Left and Add
	4.2.1.3 Integer ALU - Immediate8-Register
	4.2.1.4 Add Immediate14
	4.2.1.5 Add Immediate22

	4.2.2 Integer Compare
	4.2.2.1 Integer Compare - Register-Register
	4.2.2.2 Integer Compare to Zero - Register
	4.2.2.3 Integer Compare - Immediate-Register

	4.2.3 Multimedia
	4.2.3.1 Multimedia ALU
	4.2.3.2 Multimedia Shift and Add

	4.3 I-Unit Instruction Encodings
	4.3.1 Multimedia and Variable Shifts
	4.3.1.1 Multimedia Multiply and Shift
	4.3.1.2 Multimedia Multiply/Mix/Pack/Unpack
	4.3.1.3 Multimedia Mux1
	4.3.1.4 Multimedia Mux2
	4.3.1.5 Shift Right - Variable
	4.3.1.6 Multimedia Shift Right - Fixed
	4.3.1.7 Shift Left - Variable
	4.3.1.8 Multimedia Shift Left - Fixed
	4.3.1.9 Bit Strings

	4.3.2 Integer Shifts
	4.3.2.1 Shift Right Pair
	4.3.2.2 Extract
	4.3.2.3 Zero and Deposit
	4.3.2.4 Zero and Deposit Immediate8
	4.3.2.5 Deposit Immediate1
	4.3.2.6 Deposit

	4.3.3 Test Bit
	4.3.3.1 Test Bit
	4.3.3.2 Test NaT

	4.3.4 Miscellaneous I-Unit Instructions
	4.3.4.1 Nop/Hint (I-Unit)
	4.3.4.2 Break (I-Unit)
	4.3.4.3 Integer Speculation Check (I-Unit)

	4.3.5 GR/BR Moves
	4.3.5.1 Move to BR
	4.3.5.2 Move from BR

	4.3.6 GR/Predicate/IP Moves
	4.3.6.1 Move to Predicates - Register
	4.3.6.2 Move to Predicates - Immediate44
	4.3.6.3 Move from Predicates/IP

	4.3.7 GR/AR Moves (I-Unit)
	4.3.7.1 Move to AR - Register (I-Unit)
	4.3.7.2 Move to AR - Immediate8 (I-Unit)
	4.3.7.3 Move from AR (I-Unit)

	4.3.8 Sign/Zero Extend/Compute Zero Index
	4.3.9 Test Feature

	4.4 M-Unit Instruction Encodings
	4.4.1 Loads and Stores
	4.4.1.1 Integer Load
	4.4.1.2 Integer Load - Increment by Register
	4.4.1.3 Integer Load - Increment by Immediate
	4.4.1.4 Integer Store
	4.4.1.5 Integer Store - Increment by Immediate
	4.4.1.6 Floating-point Load
	4.4.1.7 Floating-point Load - Increment by Register
	4.4.1.8 Floating-point Load - Increment by Immediate
	4.4.1.9 Floating-point Store
	4.4.1.10 Floating-point Store - Increment by Immediate
	4.4.1.11 Floating-point Load Pair
	4.4.1.12 Floating-point Load Pair - Increment by Immediate

	4.4.2 Line Prefetch
	4.4.2.1 Line Prefetch
	4.4.2.2 Line Prefetch - Increment by Register
	4.4.2.3 Line Prefetch - Increment by Immediate

	4.4.3 Semaphores
	4.4.3.1 Exchange/Compare and Exchange
	4.4.3.2 Fetch and Add - Immediate

	4.4.4 Set/Get FR
	4.4.4.1 Set FR
	4.4.4.2 Get FR

	4.4.5 Speculation and Advanced Load Checks
	4.4.5.1 Integer Speculation Check (M-Unit)
	4.4.5.2 Floating-point Speculation Check
	4.4.5.3 Integer Advanced Load Check
	4.4.5.4 Floating-point Advanced Load Check

	4.4.6 Cache/Synchronization/RSE/ALAT
	4.4.6.1 Sync/Fence/Serialize/ALAT Control
	4.4.6.2 RSE Control
	4.4.6.3 Integer ALAT Entry Invalidate
	4.4.6.4 Floating-point ALAT Entry Invalidate
	4.4.6.5 Flush Cache

	4.4.7 GR/AR Moves (M-Unit)
	4.4.7.1 Move to AR - Register (M-Unit)
	4.4.7.2 Move to AR - Immediate8 (M-Unit)
	4.4.7.3 Move from AR (M-Unit)

	4.4.8 GR/CR Moves
	4.4.8.1 Move to CR
	4.4.8.2 Move from CR

	4.4.9 Miscellaneous M-Unit Instructions
	4.4.9.1 Allocate Register Stack Frame
	4.4.9.2 Move to PSR
	4.4.9.3 Move from PSR
	4.4.9.4 Break (M-Unit)

	4.4.10 System/Memory Management
	4.4.10.1 Probe - Register
	4.4.10.2 Probe - Immediate2
	4.4.10.3 Probe Fault - Immediate2
	4.4.10.4 Translation Cache Insert
	4.4.10.5 Move to Indirect Register/Translation Register Insert
	4.4.10.6 Move from Indirect Register
	4.4.10.7 Set/Reset User/System Mask
	4.4.10.8 Translation Purge
	4.4.10.9 Translation Access
	4.4.10.10 Purge Translation Cache Entry

	4.4.11 Nop/Hint (M-Unit)

	4.5 B-Unit Instruction Encodings
	4.5.1 Branches
	4.5.1.1 IP-Relative Branch
	4.5.1.2 IP-Relative Counted Branch
	4.5.1.3 IP-Relative Call
	4.5.1.4 Indirect Branch
	4.5.1.5 Indirect Call

	4.5.2 Branch Predict/Nop/Hint
	4.5.2.1 IP-Relative Predict
	4.5.2.2 Indirect Predict

	4.5.3 Miscellaneous B-Unit Instructions
	4.5.3.1 Miscellaneous (B-Unit)
	4.5.3.2 Break/Nop/Hint (B-Unit)

	4.6 F-Unit Instruction Encodings
	4.6.1 Arithmetic
	4.6.1.1 Floating-point Multiply Add
	4.6.1.2 Fixed-point Multiply Add

	4.6.2 Parallel Floating-point Select
	4.6.3 Compare and Classify
	4.6.3.1 Floating-point Compare
	4.6.3.2 Floating-point Class

	4.6.4 Approximation
	4.6.4.1 Floating-point Reciprocal Approximation
	4.6.4.2 Floating-point Reciprocal Square Root Approximation

	4.6.5 Minimum/Maximum and Parallel Compare
	4.6.6 Merge and Logical
	4.6.7 Conversion
	4.6.7.1 Convert Floating-point to Fixed-point
	4.6.7.2 Convert Fixed-point to Floating-point

	4.6.8 Status Field Manipulation
	4.6.8.1 Floating-point Set Controls
	4.6.8.2 Floating-point Clear Flags
	4.6.8.3 Floating-point Check Flags

	4.6.9 Miscellaneous F-Unit Instructions
	4.6.9.1 Break (F-Unit)
	4.6.9.2 Nop/Hint (F-Unit)

	4.7 X-Unit Instruction Encodings
	4.7.1 Miscellaneous X-Unit Instructions
	4.7.1.1 Break (X-Unit)
	X1

	4.7.2 Move Long Immediate64
	X2

	4.7.3 Long Branches
	4.7.3.1 Long Branch
	X3

	4.7.3.2 Long Call
	X4

	4.7.4 Nop/Hint (X-Unit)
	X5

	4.8 Immediate Formation

	Resource and Dependency Semantics 5
	5.1 Reading and Writing Resources
	5.2 Dependencies and Serialization
	5.3 Resource and Dependency Table Format Notes
	5.3.1 Special Case Instruction Rules
	5.3.2 RAW Dependency Table
	5.3.3 WAW Dependency Table
	5.3.4 WAR Dependency Table
	5.3.5 Listing of Rules Referenced in Dependency Tables

	5.4 Support Tables

	Intel® Itanium® Architecture Software Developer’s Manual, Volume 4: IA-32 Instruction Set Reference
	About this Manual 1
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference
	1.4 Overview of Volume 4: IA-32 Instruction Set Reference
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	Base IA-32 Instruction Reference 2
	2.1 Additional Intel® Itanium® Faults
	2.2 Interpreting the IA-32 Instruction Reference Pages
	2.2.1 IA-32 Instruction Format
	2.2.1.1 Opcode Column
	2.2.1.2 Instruction Column
	2.2.1.3 Description Column
	2.2.1.4 Description

	2.2.2 Operation
	2.2.3 Flags Affected
	2.2.4 FPU Flags Affected
	2.2.5 Protected Mode Exceptions
	2.2.6 Real-address Mode Exceptions
	2.2.7 Virtual-8086 Mode Exceptions
	2.2.8 Floating-point Exceptions

	2.3 IA-32 Base Instruction Reference
	AAA-ASCII Adjust After Addition
	AAD-ASCII Adjust AX Before Division
	AAM-ASCII Adjust AX After Multiply
	AAS-ASCII Adjust AL After Subtraction
	ADC-Add with Carry
	ADD-Add
	AND-Logical AND
	ARPL-Adjust RPL Field of Segment Selector
	BOUND-Check Array Index Against Bounds
	BSF-Bit Scan Forward
	BSR-Bit Scan Reverse
	BSWAP-Byte Swap
	BT-Bit Test
	BTC-Bit Test and Complement
	BTR-Bit Test and Reset
	BTS-Bit Test and Set
	CALL-Call Procedure
	CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword
	CDQ-Convert Double to Quad
	CLC-Clear Carry Flag
	CLD-Clear Direction Flag
	CLI-Clear Interrupt Flag
	CLTS-Clear Task-Switched Flag in CR0
	CMC-Complement Carry Flag
	CMOVcc-Conditional Move
	CMP-Compare Two Operands
	CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands
	CMPXCHG-Compare and Exchange
	CMPXCHG8B-Compare and Exchange 8 Bytes
	CPUID-CPU Identification
	CWD/CDQ-Convert Word to Doubleword/Convert Doubleword to Quadword
	CWDE-Convert Word to Doubleword
	DAA-Decimal Adjust AL after Addition
	DAS-Decimal Adjust AL after Subtraction
	DEC-Decrement by 1
	DIV-Unsigned Divide
	ENTER-Make Stack Frame for Procedure Parameters
	F2XM1-Compute 2x-1
	FABS-Absolute Value
	FADD/FADDP/FIADD-Add
	FBLD-Load Binary Coded Decimal
	FBSTP-Store BCD Integer and Pop
	FCHS-Change Sign
	FCLEX/FNCLEX-Clear Exceptions
	FCMOVcc-Floating-point Conditional Move
	FCOM/FCOMP/FCOMPP-Compare Real
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP-Compare Real and Set EFLAGS
	FCOS-Cosine
	FDECSTP-Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV-Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide (Continued)
	FFREE-Free Floating-point Register
	FICOM/FICOMP-Compare Integer
	FILD-Load Integer
	FINCSTP-Increment Stack-Top Pointer
	FINIT/FNINIT-Initialize Floating-point Unit
	FIST/FISTP-Store Integer
	FLD-Load Real
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant (Continued)
	FLDCW-Load Control Word
	FLDENV-Load FPU Environment
	FMUL/FMULP/FIMUL-Multiply
	FNOP-No Operation
	FPATAN-Partial Arctangent
	FPREM-Partial Remainder
	FPREM1-Partial Remainder
	FPTAN-Partial Tangent
	FRNDINT-Round to Integer
	FRSTOR-Restore FPU State
	FSAVE/FNSAVE-Store FPU State
	FSCALE-Scale
	FSIN-Sine
	FSINCOS-Sine and Cosine
	FSQRT-Square Root
	FST/FSTP-Store Real
	FSTCW/FNSTCW-Store Control Word
	FSTENV/FNSTENV-Store FPU Environment
	FSTSW/FNSTSW-Store Status Word
	FSUB/FSUBP/FISUB-Subtract
	FSUBR/FSUBRP/FISUBR-Reverse Subtract
	FTST-TEST
	FUCOM/FUCOMP/FUCOMPP-Unordered Compare Real
	FWAIT-Wait
	FXAM-Examine
	FXCH-Exchange Register Contents
	FXTRACT-Extract Exponent and Significand
	FYL2X-Compute y ¥ log2x
	FYL2XP1-Compute y * log2(x +1)
	HLT-Halt
	IDIV-Signed Divide
	IMUL-Signed Multiply
	IN-Input from Port
	INC-Increment by 1
	INS/INSB/INSW/INSD-Input from Port to String
	INTn/INTO/INT3-Call to Interrupt Procedure
	INVD-Invalidate Internal Caches
	INVLPG-Invalidate TLB Entry
	IRET/IRETD-Interrupt Return
	Jcc-Jump if Condition Is Met
	JMP-Jump
	JMPE-Jump to Intel® Itanium® Instruction Set
	LAHF-Load Status Flags into AH Register
	LAR-Load Access Rights Byte
	LDS/LES/LFS/LGS/LSS-Load Far Pointer
	LEA-Load Effective Address
	LEAVE-High Level Procedure Exit
	LES-Load Full Pointer
	LFS-Load Full Pointer
	LGDT/LIDT-Load Global/Interrupt Descriptor Table Register
	LGS-Load Full Pointer
	LLDT-Load Local Descriptor Table Register
	LIDT-Load Interrupt Descriptor Table Register
	LMSW-Load Machine Status Word
	LOCK-Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD-Load String Operand
	LOOP/LOOPcc-Loop According to ECX Counter
	LSL-Load Segment Limit
	LSS-Load Full Pointer
	LTR-Load Task Register
	MOV-Move
	MOV-Move to/from Control Registers
	MOV-Move to/from Debug Registers
	MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to String
	MOVSX-Move with Sign-Extension
	MOVZX-Move with Zero-Extend
	MUL-Unsigned Multiplication of AL, AX, or EAX
	NEG-Two's Complement Negation
	NOP-No Operation
	NOT-One's Complement Negation
	OR-Logical Inclusive OR
	OUT-Output to Port
	OUTS/OUTSB/OUTSW/OUTSD-Output String to Port
	POP-Pop a Value from the Stack
	POPA/POPAD-Pop All General-Purpose Registers
	POPF/POPFD-Pop Stack into EFLAGS Register
	PUSH-Push Word or Doubleword Onto the Stack
	PUSHA/PUSHAD-Push All General-Purpose Registers
	PUSHF/PUSHFD-Push EFLAGS Register onto the Stack
	RCL/RCR/ROL/ROR--Rotate
	RDMSR-Read from Model Specific Register
	RDPMC-Read Performance-Monitoring Counters
	RDTSC-Read Time-Stamp Counter
	REP/REPE/REPZ/REPNE /REPNZ-Repeat String Operation Prefix
	RET-Return from Procedure
	ROL/ROR-Rotate
	RSM-Resume from System Management Mode
	SAHF-Store AH into Flags
	SAL/SAR/SHL/SHR-Shift Instructions
	SBB-Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD-Scan String Data
	SETcc-Set Byte on Condition
	SETcc-Set Byte on Condition (Continued)
	SGDT/SIDT-Store Global/Interrupt Descriptor Table Register
	SHL/SHR-Shift Instructions
	SHLD-Double Precision Shift Left
	SHRD-Double Precision Shift Right
	SIDT-Store Interrupt Descriptor Table Register
	SLDT-Store Local Descriptor Table Register
	SMSW-Store Machine Status Word
	STC-Set Carry Flag
	STD-Set Direction Flag
	STI-Set Interrupt Flag
	STOS/STOSB/STOSW/STOSD-Store String Data
	STR-Store Task Register
	SUB-Integer Subtraction
	TEST-Logical Compare
	UD2-Undefined Instruction
	VERR, VERW-Verify a Segment for Reading or Writing
	WAIT/FWAIT-Wait
	WBINVD-Write-Back and Invalidate Cache
	WRMSR-Write to Model Specific Register
	XADD-Exchange and Add
	XCHG-Exchange Register/Memory with Register
	XLAT/XLATB-Table Look-up Translation
	XOR-Logical Exclusive OR

	IA-32 Intel® MMX™ Technology Instruction Reference 3
	EMMS-Empty MMX State
	MOVD-Move 32 Bits
	MOVQ-Move 64 Bits
	PACKSSWB/PACKSSDW-Pack with Signed Saturation
	PACKUSWB-Pack with Unsigned Saturation
	PADDB/PADDW/PADDD-Packed Add
	PADDSB/PADDSW-Packed Add with Saturation
	PADDUSB/PADDUSW-Packed Add Unsigned with Saturation
	PAND-Logical AND
	PANDN-Logical AND NOT
	PCMPEQB/PCMPEQW/PCMPEQD-Packed Compare for Equal
	PCMPGTB/PCMPGTW/PCMPGTD-Packed Compare for Greater Than
	PMADDWD-Packed Multiply and Add
	PMULHW-Packed Multiply High
	PMULLW-Packed Multiply Low
	POR-Bitwise Logical OR
	PSLLW/PSLLD/PSLLQ-Packed Shift Left Logical
	PSRAW/PSRAD-Packed Shift Right Arithmetic
	PSRLW/PSRLD/PSRLQ-Packed Shift Right Logical
	PSUBB/PSUBW/PSUBD-Packed Subtract
	PSUBSB/PSUBSW-Packed Subtract with Saturation
	PSUBUSB/PSUBUSW-Packed Subtract Unsigned with Saturation
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ-Unpack High Packed Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ-Unpack Low Packed Data
	PXOR-Logical Exclusive OR

	IA-32 SSE Instruction Reference 4
	4.1 IA-32 SSE Instructions
	4.2 About the Intel® SSE Architecture
	4.3 Single Instruction Multiple Data
	4.4 New Data Types
	4.5 SSE Registers
	4.6 Extended Instruction Set
	4.6.1 Instruction Group Review
	4.6.1.1 Arithmetic Instructions
	4.6.1.2 Logical Instructions
	4.6.1.3 Compare Instructions
	4.6.1.4 Shuffle Instructions
	4.6.1.5 Conversion Instructions
	4.6.1.6 Data Movement Instructions
	4.6.1.7 State Management Instructions
	4.6.1.8 Additional SIMD Integer Instructions
	4.6.1.9 Cacheability Control Instructions

	4.7 IEEE Compliance
	4.7.1 Real Number System
	4.7.1.1 Floating-point Format
	4.7.1.2 Normalized Numbers
	4.7.1.3 Biased Exponent
	4.7.1.4 Real Number and Non-Number Encodings
	4.7.1.5 Signed Zeros
	4.7.1.6 Normalized and Denormalized Finite Numbers
	4.7.1.7 Signed Infinities
	4.7.1.8 NaNs
	4.7.1.9 Indefinite

	4.7.2 Operating on NaNs

	4.8 Data Formats
	4.8.1 Memory Data Formats
	4.8.2 SSE Register Data Formats

	4.9 Instruction Formats
	4.10 Instruction Prefixes
	4.11 Reserved Behavior and Software Compatibility
	4.12 Notations
	ADDPS: Packed Single-FP Add
	Additional Itanium System Environment Exceptions

	ADDSS: Scalar Single-FP Add
	Additional Itanium System Environment Exceptions

	ANDNPS: Bit-wise Logical And Not for Single-FP
	Additional Itanium System Environment Exceptions

	ANDPS: Bit-wise Logical And for Single-FP
	Additional Itanium System Environment Exceptions

	CMPPS: Packed Single-FP Compare
	Additional Itanium System Environment Exceptions

	CMPSS: Scalar Single-FP Compare
	Additional Itanium System Environment Exceptions

	COMISS: Scalar Ordered Single-FP Compare and set EFLAGS
	Additional Itanium System Environment Exceptions

	CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
	Additional Itanium System Environment Exceptions

	CVTPS2PI: Packed Single-FP to Packed INT32 Conversion
	Additional Itanium System Environment Exceptions

	CVTSI2SS: Scalar signed INT32 to Single-FP Conversion
	Additional Itanium System Environment Exceptions

	CVTSS2SI: Scalar Single-FP to Signed INT32 Conversion
	Additional Itanium System Environment Exceptions

	CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion (truncate)
	Additional Itanium System Environment Exceptions

	CVTTSS2SI: Scalar Single-FP to signed INT32 Conversion (truncate)
	Additional Itanium System Environment Exceptions

	DIVPS: Packed Single-FP Divide
	Additional Itanium System Environment Exceptions

	DIVSS: Scalar Single-FP Divide
	Additional Itanium System Environment Exceptions

	FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE State
	Additional Itanium System Environment Exceptions

	FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State
	Additional Itanium System Environment Exceptions

	LDMXCSR: Load SSE Control/Status
	Additional Itanium System Environment Exceptions

	MAXPS: Packed Single-FP Maximum
	Additional Itanium System Environment Exceptions

	MAXSS: Scalar Single-FP Maximum
	Additional Itanium System Environment Exceptions

	MINPS: Packed Single-FP Minimum
	Additional Itanium System Environment Exceptions

	MINSS: Scalar Single-FP Minimum
	Additional Itanium System Environment Exceptions

	MOVAPS: Move Aligned Four Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVHLPS: Move High to Low Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVHPS: Move High Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVLHPS: Move Low to High Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVLPS: Move Low Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVMSKPS: Move Mask to Integer
	Additional Itanium System Environment Exceptions

	MOVSS: Move Scalar Single-FP
	Additional Itanium System Environment Exceptions

	MOVUPS: Move Unaligned Four Packed Single-FP
	Additional Itanium System Environment Exceptions

	MULPS: Packed Single-FP Multiply
	Additional Itanium System Environment Exceptions

	MULSS: Scalar Single-FP Multiply
	Additional Itanium System Environment Exceptions

	ORPS: Bit-wise Logical OR for Single-FP Data
	Additional Itanium System Environment Exceptions

	RCPPS: Packed Single-FP Reciprocal
	Additional Itanium System Environment Exceptions

	RCPSS: Scalar Single-FP Reciprocal
	Additional Itanium System Environment Exceptions

	RSQRTPS: Packed Single-FP Square Root Reciprocal
	Additional Itanium System Environment Exceptions

	RSQRTSS: Scalar Single-FP Square Root Reciprocal
	Additional Itanium System Environment Exceptions

	SHUFPS: Shuffle Single-FP
	Additional Itanium System Environment Exceptions

	SQRTPS: Packed Single-FP Square Root
	Additional Itanium System Environment Exceptions

	SQRTSS: Scalar Single-FP Square Root
	Additional Itanium System Environment Exceptions

	STMXCSR: Store SSE Control/Status
	Additional Itanium System Environment Exceptions

	SUBPS: Packed Single-FP Subtract
	Additional Itanium System Environment Exceptions

	SUBSS: Scalar Single-FP Subtract
	Additional Itanium System Environment Exceptions

	UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS
	Additional Itanium System Environment Exceptions

	UNPCKHPS: Unpack High Packed Single-FP Data
	Additional Itanium System Environment Exceptions

	UNPCKLPS: Unpack Low Packed Single-FP Data
	Additional Itanium System Environment Exceptions

	XORPS: Bit-wise Logical Xor for Single-FP Data
	Additional Itanium System Environment Exceptions

	4.13 SIMD Integer Instruction Set Extensions
	PAVGB/PAVGW: Packed Average
	Additional Itanium System Environment Exceptions

	PEXTRW: Extract Word
	Additional Itanium System Environment Exceptions

	PINSRW: Insert Word
	Additional Itanium System Environment Exceptions

	PMAXSW: Packed Signed Integer Word Maximum
	Additional Itanium System Environment Exceptions

	PMAXUB: Packed Unsigned Integer Byte Maximum
	Additional Itanium System Environment Exceptions

	PMINSW: Packed Signed Integer Word Minimum
	Additional Itanium System Environment Exceptions

	PMINUB: Packed Unsigned Integer Byte Minimum
	Additional Itanium System Environment Exceptions

	PMOVMSKB: Move Byte Mask To Integer
	Additional Itanium System Environment Exceptions

	PMULHUW: Packed Multiply High Unsigned
	Protected Mode Exceptions
	Real Address Mode Exceptions
	Virtual 8086 Mode Exceptions
	Additional Itanium System Environment Exceptions

	PSADBW: Packed Sum of Absolute Differences
	Protected Mode Exceptions
	Real Address Mode Exceptions
	Virtual 8086 Mode Exceptions
	Additional Itanium System Environment Exceptions

	PSHUFW: Packed Shuffle Word
	Additional Itanium System Environment Exceptions

	4.14 Cacheability Control Instructions
	MASKMOVQ: Byte Mask Write
	Additional Itanium System Environment Exceptions

	MOVNTPS: Move Aligned Four Packed Single-FP Non-temporal
	Additional Itanium System Environment Exceptions

	MOVNTQ: Move 64 Bits Non-temporal
	Additional Itanium System Environment Exceptions

	PREFETCH: Prefetch
	Additional Itanium System Environment Exceptions: None

	SFENCE: Store Fence
	Additional Itanium System Environment Exceptions: None

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

