P

R13

| [v

R12 RO3

4-BIT MULTIPLIER USING FULL ADDERS/RIPPLE CARRY ADDERS

RIl1 RO2

|

RI0 ROl

||

A B
Cout Cin

A B
Cout Cin

F

A B
Cout Cin

F

A B
Cout Cin

F

R22

R21

R20

A B
Cout Cin

F

R31

A B
Cout Cin

F

A B
Cout Cin

F

R30

o) Rij
16 AND Gates
R23
A B
Cout Cin
F
R33 R32
A B A B
Cout Cin Cout Cin
F F
PG P5

A B
Cout Cin
F

A B
Cout Cin

F

l

P4

l

P3

Pl

ROO

4-BIT MULTIPLIER USING CARRY SAVE ADDERS/3-to-2 ROW REDUCTION UNITS (RRUs)

R23 R22 RI3 R21 R12 RO3 R20 RI1l RO2 RI0 ROl ROO
A] =] || BRCAR
] :)7 Rl '
. 1) A B A B A B A B A B
Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin
16 AND Gates
F |V F F F F
R33 R32 R31 R30 |
A B A B A B A B A B
-~ Cout Cin |~ Cout Cin Cout Cin | Cout Cin |— Cout Cin —
F l F ‘ F l F ’ F
A B A B A B A B 1
Cout Cin Cout Cin b Cout Cin Cout Cin . 1
F F F F —97 : : -
l l l l’ Y Y

S -

P7 P6 P5 P4 P3 P2 Pl

4-BIT MULTIPLIER USING CARRY SAVE ADDERS/3-t0-2 ROW REDUCTION UNITS (RRUs)

R23 R22 RI13 RrR21 RI12 RO3 R20 RIi RO2 R10 RO1 ROO

! — R, . _ | 6
B, — L A B A B A B A B
Cout Cin Cout Cin Cout Cin Cout Cin
16 AND Gates l %l I ' .
F F F __F__

R33 R32 R31 R30
A B A B A B A B
Cout Cin Cout Cin — Cout Cin Cout Cin —
A B| A B A B A B
Cout Cin Cout Cin Cout Cin Cout Cin
F F F F %
J’ l l l Y Y Y

P P6 P35 P4 P3 P2 Pl PO

“This approach allows the time delay of each (intermediate) stage to reduce to 2 gate delays!
The idea of "saving" the carry to the next stage gives rise to the name "carry save adder," or CSA.
A CSA is no different than a FA, it’s just the way we use it!
The carrys must be added - this approach just puts it off to the last stage where it’s done by a CPA
(carry propagate adder).

The CSA can be thought of as a 3 row-to-2 row reduction device:

R, ,R

2% Rix’ and R

0x (rows) are reduced to two "rows:"

—= The row of F outputs and the row of carrys
—= These two rows must be added to get the sum of the first 3 partial products

The second CSA row again does a 3-to-2 reduction, and the CPA adds these two rows to get
the final result (product). Note that the addition of the final two rows could be done using an
adder with carry lookahead as discussed previously!

The CSA functions as a 3-to-2 row reduction unit, but other forms are possible: 7-to-3
15-to-4
31-to-5

3(_1 -to-k

Theoretically, each of these RRUs could be implemented in 2-level logic so that the delay per
reduction stage was simply 2 gate delays.

—> A 7-t0-3 RRU has a 128-line truth table and over 140 minterms in the 3 output equations!
—= The "middle" bit has 42 product terms, for example, in the SOP implementation!

Let’s look at the FA/CSA as a row reduction unit (RRU): \L ¢/ \L

A 7-to-3 would be represented as: ABC

bty

32-BIT MULTIPLIER ARCHITECTURE USING ROW REDUCTION TECHNIQUES

0 pu—

1 pu—
—7-to-3
— 7-to-3
N] 7-to-3 3-to-2 3-t0-2 CPA
— 7-to-3
— 7-to-3
—1 7-to-3
— 7-to-3

31

1\— These wires represent partial product rows, not single bits! Be careful!

Dividend . Remainder Dy R
———— = Quotient+ ——— . — =Q+ —
Divisor Divisor D D,

1010 <=—Q

D_~ oo0101 | 111000 <D

101
100
000
1001
101
1000
101
11 =—R
D,
s D 4
R
000101 000000 IlllOlO
Q Register
B A
ALU (SUBTRACT)
A-B

Division Procedure: If (A-B) > 0, load (A-B) into R and prepare a ’1’ for the
Q register.

Then, shift Q and R.

D,=B R =A Dy
000101 000000 111010 | O (A-B)<0
000001 110100 shift
000001 110100 | O (A-B)<0
000011 101000 shift
000011 101000 | O (A-B)<0
000111 010000 shift
000010 010000 | 1 (A-B)>0,R <- (A-B)
000100 100001 shift
000100 100001 | O (A-B)<0
001001 000010 shift
000100 000010 | 1 (A-B)>0,R <- (A-B)
001000 000101 shift
000011 000101 | O (A-B)<0
000110 001010 shift

R Q

0e 4 (@)*R)Fh))

Dy (@) *£)*))

If we pick fi 5o that (D) * §)) * £)) = 1, then
Q= (D) *) *) o)

How do we pick fi? One solution, for I} and Dy being normalized fractions:

Dy=1-x,x<1
Pick{j =(1+x)->DFfg=01-x)(1+x)=1-x 2

which is closer to 1 than 1-x.
Pick f = (1+ %) > ¢ f)=(x Klox P=1-x
which is closer to 1 than l-x.2
ETC....
f0=1+x=1+(1-DS)= 2-D g

) =1-Dg*fo)
fl=1+xX=1+(1-Dg*fg)=2-D ¢f

ETC....

Thus, fi is the "2’s complement” of the denominator result to that point!
Example: If D= 0.100, the 2’s complement is 1.100

When the denominator gets close enough to 1, we’re done!
-= Usually do a fixed number of iterations
= A fixed number of iterations usually requires that we start with a better
"seed" than (2 - D 9; this can be done using a ROM.

We could implement division using microcode on a machine that only had
a hardware multiplier with enough registers, logic, and microcode states!

Division almost always takes longer on a machine than multiplications (3X-5X).

Division can also be done using an "iterative" hardware approach:

X

X

X

2-Dg—=| OOO

X

b

X

X

_9(2

]

Dy

X

