AMDK6®

- .25µ process
- Lower Power
- Higher Speeds

- .35µ process
- MMX™ Technology Enhanced

AMD-K6-2

- .25µ process
- 100 MHz Bus
- 100 MHz Frontside L2
- Superscalar MMX Technology
- 3DNow!™ Technology

- .25µ process
- On-chip, Full Speed Backside L2
- 100 MHz Frontside L3
- Superscalar MMX Technology
- 3DNow! Technology

Sharptooth µP
Forum ‘98

1H’97 2H’97 1H’98 2H’98 1H’99

AMD-K7™
AMD-K7™ Processor Overview

- Superior 7th Generation CPU Design
- Leading Performance in Integer, Floating point, and Multimedia
- Operating Frequencies of 500 MHz+ using 0.25μm Technology
- High-speed Alpha™ EV6 Bus Technology
- High-speed Backside Level 2 Cache Controller
- Scalable Multiprocessing Architecture for Workstation and Server Markets
- Processor Module for Standard Motherboard Form Factors
- Optimized Chipsets, Motherboards and BIOS
AMD-K7™ Processor Architecture

- Three Parallel x86 Instruction Decoders
- 9-issue Superscalar Microarchitecture Optimized for High Frequency
- Dynamic Scheduling with Speculative, Out-of-Order Execution
- 2048-entry Branch Prediction Table & 12-entry Return Stack
- 3 Superscalar, Out-of-Order Integer Pipelines each Containing:
 - Integer Execution Unit
 - Address Generation Unit
- 3 Superscalar, Out-of-Order Multimedia Pipelines with 1-cycle throughput
 - FADD (4 cyc latency), MMX ALU (2 cyc latency), 3DNow!
 - FMUL (4 cyc latency), MMX ALU (includes Mul & MAC), 3DNow!
 - FSTORE
- Level 1 64K I-Cache & 64K D-Cache, each 2-way Set Associative
- Multi-level TLB (24/256-Entry I, 32/256-Entry D)
 AMD-K7™ Processor Architecture (Con’t)

- Two General Purpose 64-bit Load/Store Ports into D-Cache
 - 3-Cycle Load Latency
 - Multi-banking Allows Concurrent Access by 2 Load/Stores

- High-speed 64-bit Backside L2 Cache Controller
 - Supports Sizes of 512KB to 8MB
 - Programmable Interface Speeds

- High-speed 64-bit System Interface
 - First Mainstream Systems to have a 200MHz Bus
 - Significant Headroom for Future

- Deep Internal Buffering to Support Pipelines and External Interfaces
 - Up to 72 x86 instructions in-flight
 - 32 outstanding load misses
 - 15-entry integer scheduler
 - 36-entry floating point scheduler
Microarchitecture Terminology

- x86 Instructions are sent to one of two Decoding Pipelines:
 - DirectPath: Decodes common x86 instructions (1-15 byte lengths)
 - VectorPath: Decodes uncommon, complex x86 instructions

- Decoding Pipelines can dispatch 3 MacroOps to Execution Unit Schedulers

- Each MacroOp consists of one or two Operations (OPs)

- OPs are issued to the execution units

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD EAX, EBX</td>
<td>1 DirectPath MacroOp</td>
<td>- 1 OP (ADD)</td>
</tr>
<tr>
<td>XOR EAX, [EBX+8]</td>
<td>1 DirectPath MacroOp</td>
<td>- 1 OP (LOAD) - 1 OP (XOR)</td>
</tr>
<tr>
<td>AND [EBX], EAX</td>
<td>1 DirectPath MacroOp</td>
<td>- 1 OP (LOAD/STORE) - 1 OP (AND)</td>
</tr>
</tbody>
</table>
Microarchitecture Pipeline

Integer Pipeline

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fetch</td>
</tr>
<tr>
<td>2</td>
<td>Scan</td>
</tr>
<tr>
<td>3</td>
<td>Align1</td>
</tr>
<tr>
<td>4</td>
<td>Align2</td>
</tr>
<tr>
<td>5</td>
<td>EDec</td>
</tr>
<tr>
<td>6</td>
<td>Idec</td>
</tr>
<tr>
<td>7</td>
<td>Sched</td>
</tr>
<tr>
<td>8</td>
<td>EX</td>
</tr>
<tr>
<td>9</td>
<td>Addr</td>
</tr>
<tr>
<td>10</td>
<td>DC</td>
</tr>
</tbody>
</table>

Floating Point Pipeline

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Stk Rename</td>
</tr>
<tr>
<td>8</td>
<td>Reg Rename</td>
</tr>
<tr>
<td>9</td>
<td>Wr. Sched</td>
</tr>
<tr>
<td>10</td>
<td>Sched</td>
</tr>
<tr>
<td>11</td>
<td>Freg</td>
</tr>
<tr>
<td>12</td>
<td>FX0</td>
</tr>
<tr>
<td>13</td>
<td>FX1</td>
</tr>
<tr>
<td>14</td>
<td>FX2</td>
</tr>
<tr>
<td>15</td>
<td>FX3</td>
</tr>
</tbody>
</table>
AMD-K7™ Processor Block Diagram

- 2-way, 64KB Instruction Cache
 - 24-entry L1 TLB/256-entry L2 TLB
- Predecode Cache
- Branch Prediction Table
- Fetch/Decode Control
- 3-Way x86 Instruction Decoders
- Instruction Control Unit (72-entry)
- Integer Scheduler (15-entry)
- FPU Stack Map / Rename
- FPU Scheduler (36-entry)
- FPU Register File (88-entry)
- FStore
- FADD MMX 3DNow!
- FMUL MMX 3DNow!
- IEU
- AGU
- IEU
- AGU
- IEU
- AGU

Load / Store Queue Unit
- 2-way, 64KB Data Cache
 - 32-entry L1 TLB/256-entry L2 TLB

Bus Interface Unit
L2 Cache Controller
System Interface
L2 SRAMs
x86 Instruction Decoders
Integer Execution Units

- Three Integer Execution Units (IEU)
- Three Address Generation Unit (AGU)
- 15-entry Integer Scheduler
- Full Out-of-Order Speculative Execution
- Multiplier
Superscalar Multimedia Execution Units

- Three Superscalar Multimedia Execution Units
- 3-issue, Out-of-Order, Fully Pipelined Design
- Separate Register File
Load-Store Unit and Data Cache

◆ Load Store Unit (LSU)
 - 44-entry Load/Store queue
 - Data forwarding from stores to dependent loads

◆ 2-way, 64KB Dual-Ported Data Cache
 - MOESI coherency, 64 byte line size
 - 32-entry L1 DTLB and 4-way, 256-entry L2 DTLB
 - 3 sets of data cache tags
System Interface Controller Internals
System and L2 Cache Interfaces

- Alpha EV6 Bus Protocol
- Point-to-Point Topology with Clock Forwarding
- Decoupled Address and Data Busses
 - 72-bit Data Bus w/ ECC
 - Independent Address/Request Bus
 - Independent Snoop Bus
- Up to 20 Outstanding Transactions per Processor
- Scalable Multiprocessing
- L2 Cache Interface
 - 512KB to 8MB using Industry-Standard SRAMs
 - Programmable Interface Speeds
- Low-voltage Signaling
Chipsets
- Performance-optimized AMD-K7 chipsets are planned from both AMD and leading third-party vendors in 1999

Motherboards
- High quality, performance-optimized AMD-K7 motherboards are planned from leading vendors at launch in 1H99

BIOS
- Production BIOS are planned from all leading suppliers including AMI, Award and Phoenix

Mechanical
- The AMD-K7 processor will utilize existing industry-standard physical/mechanical infrastructure components including cases, power supplies, fans, heat sinks, etc.
AMD-K7™ Processor Summary

- Superior 7th Generation Processor Architecture
 - Advanced Processor Core Design
 - Leading Edge Frequencies: 500MHz+ using 0.25μm Technology
 - High Performance System Interface with low-voltage swing Point-to-Point Topology and Clock Forwarding Technology
 - Scalable Multiprocessing Architecture

- AMD-K7 Processor Module, Chipsets, Motherboards

- Leading Edge Silicon Technology

- Fab 25 and Fab 30 Provide Volume Production Capacity