
Reference Materials

1. RTN Description of SRC

Unified RTN for SRC

Below is the entire RTN description for SRC with reset and exceprion handling in-
tegrated into it.

Memory

Processor state

PC〈31..0〉: program counter (address of the next instruction)

IR〈31..0〉: instruction register

Run: one bit run/halt indicator

Strt: start and hard reset signal

Rst: soft reset signal

R[0..31]〈31..0〉: general purpose registers

Processor interrupt mechanism

ireq: interrupt request signal

iack: interrupt acknowledge signal

IE: one bit interrupt enable flag

IPC〈31..0〉: storage for PC saved upon interrupt

II〈31..0〉: interrupt info.: about source of last interrupt

Isrc_info〈15..0〉: information from interrupt source

Isrc_vect〈7..0〉: type code from interrupt source

Ivect〈31..0〉:= 20@0#Isrc_vect〈7..0〉#4@0:

Main memory state

Mem[0..232 - 1]〈7..0〉: 232 addressable bytes of memory

M[x]〈31..0〉 := Mem[x]#Mem[x+1]#Mem[x+2]#Mem[x+3]:

Formats

Instruction formats

op〈4..0〉 := IR〈31..27〉: operation code field

ra〈4..0〉 := IR〈26..22〉: target register field

rb〈4..0〉 := IR〈21..17〉: operand, address index, or branch target

rc〈4..0〉 := IR〈16..12〉: 2nd operand, conditional test, or shift count

c1〈21..0〉 := IR〈21..0〉: long displacement field

c2〈16..0〉 := IR〈16..0〉: short displacement or immediate field

c3〈11..0〉 := IR〈11..0〉: count or modifier field

Branch condition format

cond := (c3〈2..0〉=0 → 0: never

c3〈2..0〉=1 → 1: always

c3〈2..0〉=2 → R[rc]=0: if register is zero

c3〈2..0〉=3 → R[rc]≠0: if register is nonzero

c3〈2..0〉=4 → R[rc]〈31〉=0: if register is positive or zero

c3〈2..0〉=5 → R[rc]〈31〉=1): if register is negative

Shift count format

n := ((c3〈4..0〉=0) → R[rc]〈4..0〉: shift count is register or

 (c3〈4..0〉≠0) → c3〈4..0〉): constant field of instruction

Effective address calculations

disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign extend}: disp.

(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's complement}): addr.

rel〈31..0〉 := PC〈31..0〉 + c1〈21..0〉 {sign extend, 2’s comp.}: rel. adr.

Instruction interpretation

instruction_interpretation :=

(¬Run∧Strt → (Run ← 1: PC, R[0..31] ← 0; Hard reset

instruction_interpretation):

Run∧Rst → (Rst ← 0: IE ← 0: PC ← 0; Soft reset

instruction_interpretation):

Run∧¬Rst∧(ireq∧IE) → (IPC ← PC〈31..0〉: Interrupt

II〈15..0〉 ← Isrc_info〈15..0〉:
IE ← 0: PC ← Ivect〈31..0〉:
 iack ← 1; iack ← 0;

instruction_interpretation):

Run∧¬Rst∧¬(ireq∧IE)→ (IR ← M[PC]: Normal fetch

PC ← PC + 4; instruction_execution):

Instruction execution instruction_execution := (

Load and store instructions

ld (:= op= 1) → R[ra] ← M[disp]: load register

ldr (:= op= 2) → R[ra] ← M[rel]: load register relative

st (:= op= 3) → M[disp] ← R[ra]: store register

str (:= op= 4) → M[rel] ← R[ra]: store register relative

la (:= op= 5) → R[ra] ← disp: load displacement address

lar (:= op= 6) → R[ra] ← rel: load relative address

Branch instructions

br (:= op= 8) → (cond → PC ← R[rb]): cond. branch

brl (:= op= 9) → (R[ra] ← PC: cond → (PC ← R[rb])): branch & link

Arithmetic instructions (assumed to be 2’s complement arithmetic)

add (:= op= 12) → R[ra] ← R[rb] + R[rc]:

addi (:= op= 13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp. sign ext.}:

sub (:= op= 14) → R[ra] ← R[rb] - R[rc]:

neg (:= op= 15) → R[ra] ← -R[rc]:

and (:= op= 20) → R[ra] ← R[rb] ∧ R[rc]:

andi (:= op= 21) → R[ra] ← R[rb] ∧ c2〈16..0〉 {sign extend}:

or (:= op= 22) → R[ra] ← R[rb] ∨ R[rc]:

ori (:= op= 23) → R[ra] ← R[rb] ∨ c2〈16..0〉 {sign extend}:

not (:= op= 24) → R[ra] ← ¬R[rc]:

Shift instructions

shr (:= op= 26) → R[ra]〈31..0〉 ← (n @ 0) # R[rb]〈31..n〉: right

shra (:= op= 27) → R[ra]〈31..0〉 ← (n @ R[rb]〈31〉) # R[rb]〈31..n〉: arith.

shl (:= op= 28) → R[ra]〈31..0〉← R[rb]〈31-n..0〉#(n @ 0): left

shc (:= op= 29) → R[ra]〈31..0〉← R[rb]〈31-n..0〉#R[rb]〈31..32-n〉: circ.

Interrupt instructions

een (:= op = 10) → (IE ← 1): exception enable

edi (:= op = 11) → (IE ← 0): exception disable

rfi (:= op = 30) → (PC ← IPC: IE ← 1): return from interrupt

svi (:= op = 16) → (R[ra]〈15..0〉 ← II〈15..0〉: R[rb] ← IPC〈31..0〉):save interrupt state

ri (:= op = 17) → (II〈15..0〉 ← R[ra]〈15..0〉 : IPC〈31..0〉 ← R[rb]):restore interrupt state

Miscellaneous instructions

nop (:= op= 0) → : No operation

stop (:= op= 31) → Run ← 0 Stop instruction
); End of instruction_execution

 instruction_interpretation.

 A.19 RegisterTransfer Notation - RTN

← Register transfer: register on LHS stores value from RHS.

[] Word index: selects word or range from a named memory.

〈 〉 Bit index: selects bit or bit range from named register.

n..m Index range: from left index n to right index m; can be decreasing.

→ If-then: true condition on left yields value and/or action on right.

:= Definition: text substitution with dummy variables.

Concatenation: bits on right appended to bits on left.

: Parallel separator: actions or evaluations carried out simultaneously.

; Sequential separator: RHS evaluated and/or performed after LHS.

@ Replication: LHS repetitions of RHS are concatenated.

{ } Operation modifier: describes type of preceding operation.

() Nested grouping of operations or values: operators or separators.

= ≠ < ≤ > ≥ Comparisons: produce 0 or 1 (true or false) logical value.

+ − × ÷ Arithmetic operators: also  ,  , and mod.

∧ ∨ ¬ ⊕ ≡ Logical operators: and, or, not, exclusive or, equivalence.

Notes:

Expressions can be values and/or actions. Actions can be considered side effects if a value is
present.

A list of conditional expressions need not have disjoint conditions. Right hand sides of condi-
tionals are evaluated for all conditions which are true. No sequencing is implied unless there
are sequential separators between conditional expressions. There is no else equivalent.

Pseudo-operations.

Values are assumed to be decimal unless terminated by B (binary) or H (hexadecimal).

.org Value Load the program starting at address Value.

.equ Value Define the Label symbol to be the constant Value.

.dc Value [,Value] Allocate memory words and set to the 32 bit Values.

.dcb Value [,Value] Allocate bytes and load them with the 8 bit Values.

.dch Value [,Value] Allocate halfwords and load with the 16 bit Values.

.db Count Allocate storage for Count bytes.

.dh Count Allocate storage fot Count 16 bit halfwords.

.dw Count Allocate storage for Count 32 bit words.

Table A.1 SRC assembly language pseudo operations

SRC Instruction Mnemonics1. MC68000 Reference Materials

ld ra, c2 Load from absolute address. rb is register 0.

ld ra, c2(rb) Load from displacement address.

ldr ra, c1 Load from relative address.

st ra, c2 Store into absolute address. rb is register 0.

st ra, c2(rb) Store into displacement address.

str ra, c1 Store into relative address.

la ra, c2 Load value of absolute address into ra. rb is reg. 0.

la ra, c2(rb) Load value of displacement address into ra.

lar ra, c1 Load value of relative address into ra.

add ra, rb, rc Add rb to rc and put result in ra.

addi ra, rb, c2 Add rb to immediate constant and put result in ra.

sub ra, rb, rc Subtract rc from rb and put result in ra.

neg ra, rc Place two’s complement negative of rc into ra.

or ra, rb, rc OR rb and rc and put result in ra.

ori ra, rb, c2 OR rb and immediate constant and put result in ra.

and ra, rb, rc AND rb and rc and put result in ra.

andi ra, rb, c2 AND rb and immediate constant and put result in ra.

not ra, rc Place logical NOT of rc into ra.

shr ra, rb, c3 Shift rb right into ra by constant shift count c3 ≤ 31.

shr ra, rb, rc Shift rb right into ra by count in rc. c3 is 0.

shra ra, rb, c3 Shift rb right with sign extend into ra by constant c3.

shra ra, rb, rc Shift rb right with sign extend into ra by count in rc.

shl ra, rb, c3 Shift rb left into ra by constant c3.

shl ra, rb, rc Shift rb left into ra by count in rc. c3 is 0.

shc ra, rb, c3 Shift rb left circularly into ra by constant c3.

shc ra, rb, rc Shift rb left circularly into ra by count in rc. c3 is 0.

br rb, rc, c3 Branch to target in rb if c3 satisfies condition c3.

brl ra,rb,rc,c3 Branch to rb if rc satisfies c3 and save PC in ra.

br rb Branch unconditionally to rb.

brl ra, rb Branch unconditionally to rb and save PC in ra.

brlnv ra Do not branch, but save PC in ra.

brzr rb, rc Branch to rb if rc is zero.

brlzr ra, rb, rc Branch to rb if rc is zero and save PC in ra.

brnz rb, rc Branch to rb if rc is non-zero.

brlnz ra, rb, rc Branch to rb if rc is non-zero and save PC in ra.

brpl rb, rc Branch to rb if rc is positive or zero (sign is plus).

brlpl ra, rb, rc Branch to rb if rc is positive and save PC in ra.

Table A.2 SRC instructions—assembly language form

‡ When the 6-bit field specifies the dst (destination) operand of a MOVE instruction, the mode and
reg fields are reversed.

* An and Dn denote one of the 8 address or data registers respectively
WS = word size in bytes: 1, 2, or 4.
disp8 and disp16 are 8- and 16-bit displacements.
Xn is one of D0-D7, or A0-A7.
XnLo is the low order 16 bits of register Xn, sign extended to 32 bits.
All values smaller than 32 bits are sign extended to 32 bits before addition.
data is an 8-, 16- or 32-bit value as indicated by .B, .W, or .L in the instruction.

brmi rb, rc Branch to rb if rc is negative (sign is minus).

brlmi ra, rb, rc Branch to rb if rc is negative and save PC in ra.

nop No operation. Used to insert pipeline bubble.

stop Set Run to zero, halting the machine.

een Exception enable. Set overall exception enable bit.

edi Exception disable. Clear overall exception enable.

rfi Return from interrupt. PC ←IPC; enable exceptions.

svi ra, rb Save II and IPC in ra and rb, respectively.

ri ra, rb Restore II and IPC from ra and rb, respectively.

 ‡

Addressing mode
Name

Mode
#

Reg
#

Notation* Extra
Word

Operand location

Data register direct 0 0-7 Dn 0 Dn

Address register direct 1 0-7 An 0 An

Address register indirect 2 0-7 (An) 0 Mem[An]

Autoincrement 3 0-7 (An)+ 0 Mem[An]; An ←An+WS

Autodecrement 4 0-7 -(An) 0 An ←An-WS; Mem[An]

Based 5 0-7 disp16 (An) 1 Mem[An + disp16]

Based indexed short 6 0-7 disp8(An, XnLo) 1 Mem[An + XnLo + disp8]

Based indexed long 6 0-7 disp8(An, Xn) 1 Mem[An + Xn + disp8]

Absolute short 7 0 addr16 1 Mem[addr16]

Absolute long 7 1 addr32 2 Mem[addr32]

Relative 7 2 disp16(PC) 1 Mem[PC + disp16]

Relative indexed short 7 3 disp8 (PC, XnLo) 1 Mem[PC + XnLo + disp8]

Relative indexed long 7 3 disp8(PC, Xn) 1 Mem[PC + Xn + disp8]

Immediate 7 4 #data 1-2 no location, data is value

Motorola MC68000 addressing modes

Table A.2 SRC instructions—assembly language form

 5 4 3 2 1 0
Mode Reg

‡ Notes:
EAs: Source EA–any addressing mode, except cannot move byte to address register
EAd: Destination EA–any addressing mode except immediate or relative.
EAc:Control EA–all modes except register, auto increment, autodecrement, or immediate
ssssss, dddddd = src and dst addressing mode specifiers. see Table top.
rrr, yyy = one of eight registers.
aaa = one of the eight address registers
An, Dn, one of the eight address or data registers, respectively.
mmmmm = mode field: 01000-exchange data regs.; 01001-exchange address regs.; 10001-exchange

data and addr regs., where xxx specifies the data reg., and yyy specifies the address reg.
Condition codes: - = unchgd. from previous value, x = chgd. by the operation. 0, 1 = value.

‡ Notes: rrr is a D register number.
mmm is a 3-bit mode field specifying the dst as EA or Dn, and operands as b, w, or l:
Byte Word Long Destination
000 001 010 Dn
100 101 110 EA

EA is an effective address.
aaaaaa is a 6-bit address specifier. Not all modes are available to all instructions.

See the manufacturer’s literature for details.
ww is a word-size specifier field: 00-byte; 01-word; 10-long.
CMPI is followed by one or two words containing the immediate data to compare.

Mnemonic Operands Opcode Word‡ XNZVC Operation Operand Size

MOVE.B EAs,EAd 0001ddddddssssss -xx00 dst ← src byte

MOVE.W EAs,EAd 0011ddddddssssss -xx00 dst ← src word

MOVE.L EAs,EAd 0010ddddddssssss -xx00 dst ← src long

MOVEA.W EAs,An 0011rrr001ssssss ----- An ← src word

MOVEA.L EAs,An 0010rrr001ssssss ----- An ← src long

LEA.L EAc,An 0100aaa111ssssss ----- An ← EAc Addr.

EXG Dx, Dy 1100rrr1mmmmmyyy ----- Dx ↔ Dy long

MC68000 Data movement instructions

Mnemonic Operands Opcode word XNZVC Operation Oprnd size

ADD EA,Dn 1101rrrmmmaaaaaa xxxxx dst ← dst+src b,w,l

SUB EA,Dn 1001rrrmmmaaaaaa xxxxx dst ← dst-src b,w,l

CMP EA,Dn 1011rrrmmmaaaaaa -xxxx dst-src b,w,l

CMPI #dat,EA 00001100wwaaaaaa -xxxx dst-immed.data b,w,l

MULS EA,Dn 1100rrr111aaaaaa -xx00 Dn ← Dn*src l ← w*w

DIVS EA,Dn 1000rrr111aaaaaa -xxx0 Dn ← Dn/src l ← l/w

AND EA,Dn 1100rrrmmmaaaaaa -xx00 dst ← dst∧src b,w,l

OR EA,Dn 1000rrrmmmaaaaaa -xx00 dst ← dst∨src b,w,l

EOR EA,Dn 1011rrrmmmaaaaaa -xx00 dst ← dst⊕src b,w,l

CLR EAs 01000010wwaaaaaa -0100 dst ← 0 b,w,l

NEG EAs 01000100wwaaaaaa xxxxx dst ← 0-dst b,w,l

TST EAs 01001010wwaaaaaa -xx00 dst-0 b,w,l

NOT EA 01000110wwaaaaaa -xx00 dst ← ¬dst b,w,l

MC68000 Integer arithmetic and logic instructions‡

‡ Notes:
rrr is one of An
If 8-bit displacement dddddddd is zero, then displacement is DDDDDDDDDDDDDDDD.
EA is an effective address.
aaaaaa is a 6-bit effective address specifier. Not all addressing modes are available to

all instructions. See the manufacturer’s literature for details.
ww is a word-size field: 00-byte; 01-word; 10-long.
cccc is defined in the Table below:

Mnemonic Operands Opcode Word‡ Operation

Conditional instructions

Bcc disp 0110ccccdddddddd
DDDDDDDDDDDDDDDD

if (cond) then
PC ←PC+ disp

DBcc Dn,disp 0101cccc11001rrr
DDDDDDDDDDDDDDDD

if ¬(cond) then (Dn ← Dn-1
if Dn ≠ −1 then PC ←PC+ disp)

else PC ←PC+ 2

Scc EA 0101cccc11aaaaaa if (cond) then (EA) ←FFH
else (EA) ←00H

Unconditional instructions

BRA disp 01100000dddddddd
DDDDDDDDDDDDDDDD

PC ←PC+ disp

BSR disp 01100001dddddddd
DDDDDDDDDDDDDDDD

-(SP) ← PC; PC ←PC+ disp

JMP EA 0100111011aaaaaa PC ← EA

JSR EA 0100111010aaaaaa -(SP) ← PC; PC ← EA

Subroutine return instructions

RTR 0100111001110111 CC ← (SP)+; PC ← (SP)+

RTS 0100111001110101 PC ← (SP)+

MC68000 Program control instructions

Name Meaning Code Logic Name Meaning Code Logic

T true 0000 1 F false 0001 0

CC carry clear 0100 C LS low or same 0011 C+Z

CS carry set 0101 C LT less than 1101 N·V+N·V

EQ equal 0111 Z MI minus 1011 N

GE greater or equal 1100 N·V+N·V NE not equal 0110 Z

GT greater than 1110 N·V·Z+N·V·Z PL plus 1010 N

HI high 0010 C·Z VC overflow clear 1000 V

LE less or equal 1111 N·V+N·V+Z VS overflow set 1001 V

MC68000 Conditions

