Problem 7-1. We can consider optimization problems based on subset sum. Here is one we will call MAX-SUBSET-SUM: you are given a set of \(n \) non-negative integers \(X \) and a target \(t \), find a subset \(X' \) of \(X \) with the largest sum \(\leq t \).

(a) Give a dynamic program for calculating the exact answer and analyze it. The dynamic program will have running time pseudopolynomial — that is it will depend on the target \(t \).

(b) Here is a heuristic for this problem. First, let \(X_2 \subseteq X \) be the subset of elements of \(X \) that are \(> t/2 \). Let \(S \) be the set consisting of the largest element of \(X_2 \) if it is nonempty, or the empty set otherwise. Now sort the remaining elements of \(X - X_2 \) in non-increasing order. For each element in this list, add it to \(S \) if doing so would not cause \(S \)’s sum to exceed \(t \). Show that the above heuristic is a \(\frac{1}{2} \)-approximation for MAX-SUBSET-SUM.

(b) Show how to extend this heuristic into a \(\frac{k}{k+1} \)-approximation for any \(k \geq 2 \). What is the running time of your method for a given \(k \)?

Problem 7-2. K&T Chapter 11, Problem 10.