In the coming weeks, we’re going to look at three general design principles for algorithmic design:

1. divide-and-conquer
2. greedy algorithms
3. dynamic programming

Today, we’ll get a taste of divide-and-conquer. You may have seen this principle used previously in, e.g., merge sorting a list of numbers, or in binary search of a sorted array.

1 Matrix Multiply

Consider taking a matrix product $A \times B = C$. Assume A is an $n \times p$ matrix, and B is a $p \times m$ matrix.

Then C has size $n \times m$. More specifically, the i, jth entry in C is computed as

$$C(i, j) = \sum_{k=1}^{p} A(i, k) \cdot B(k, j).$$

So how many arithmetic operations are needed to compute C from A and B?

- There are nm entries in C.
- Each entry of C needs p multiplies and $p - 1$ adds.
- Hence, total cost of computation is $\Theta(npm)$ operations.

If $n = p = m$, we may say that matrix multiply is a $\Theta(n^3)$ algorithm. (Compare to only $\Theta(n^2)$ operations to add two $n \times n$ matrices.) Can we do better? Suppose for simplicity that n is a power of 2, and A, B have size $n \times n$.

We break A and B into four chunks of size $n/2 \times n/2$? (BTW, these chunks are called “minors” of the matrix.) We can write $A, B,$ and C as 2×2 matrices of four chunks, like this:
Now we can express the product \(C = A \times B \) in terms of the products on the chunks:

\[
\begin{align*}
C^{11} &= A^{11} \times B^{11} + A^{12} \times B^{21} \\
C^{12} &= A^{11} \times B^{12} + A^{12} \times B^{22} \\
C^{21} &= A^{21} \times B^{11} + A^{22} \times B^{21} \\
C^{22} &= A^{21} \times B^{12} + A^{22} \times B^{22}.
\end{align*}
\]

This suggests a straightforward divide and conquer algorithm. You can compute all 8 parts in parallel and then add them. This approach uses a total of 4 additions and 8 multiplications on matrices of size \(n/2 \times n/2 \). We can recursively break each of the 8 smaller matrix products into operations on matrices of size \(n/4 \times n/4 \). In general, we can recursively break the matrix product into smaller and smaller products, until we bottom out doing scalar multiplies.

\[
\text{MM}(C, A, B, n)
\]

1. \textbf{if} \(n = 1 \)
2. \textbf{then} \(c_{11} \leftarrow a_{11}b_{11} \) \textbf{return}
3. partition \(A, B, \) and \(C, \) into 4 submatrices
4. create \(T, \) a temporary \(n \times n \) matrix
5. \text{MM}(\(C^{11}, A^{11}, B^{11}, n/2 \))
6. \text{MM}(\(C^{12}, A^{11}, B^{12}, n/2 \))
7. \text{MM}(\(C^{21}, A^{21}, B^{11}, n/2 \))
8. \text{MM}(\(C^{22}, A^{21}, B^{12}, n/2 \))
9. \text{MM}(\(T_{11}, A_{11}, B_{21}, n/2 \))
10. \text{MM}(\(T_{12}, A_{12}, B_{22}, n/2 \))
11. \text{MM}(\(T_{21}, A_{22}, B_{21}, n/2 \))
12. \text{MM}(\(T_{22}, A_{22}, B_{22}, n/2 \))

13. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \)
14. \hspace{1em} \textbf{do} \(j \leftarrow 1 \) \textbf{to} \(n \)
15. \hspace{2em} \textbf{do} \(c_{ij} \leftarrow c_{ij} + t_{ij} \)

\textbf{Exercise 1} This approach uses a lot of extra space since we have to create the matrix \(T \) at every level of recursion. Can you modify this algorithm to multiply matrices without creating any additional matrices? Analyze your algorithm using recurrences.

This general approach – break a big problem into one or more smaller subproblems of the same shape, solve them, and put the solutions back together – is what we call \textit{divide and conquer}.

2
1.1 Analyzing D&C Algorithms

We have a technique to compute that – recurrences!

\[T(n) \leq 8T(n/2) + cn^2 \]

for some constant \(c \). Assume each base case takes constant time \(c_0 \).

We can solve this recurrence to get a closed-form asymptotic expression for \(T(n) \), using, e.g., the recursion tree method or the Master Method. For fun, let’s do the recursion tree...

Conclude that \(T(n) = c_0 n^3 + \sum_{i=0}^{\log(n)-1} 2^i cn^2 \), which works out to \(\Theta(n^3) \). Rats – subdividing didn’t solve the problem asymptotically faster than the naive algorithm. Why not?

2 A Delicate Balancing Act

When we try to break up a problem recursively, we do three kinds of work:

1. dividing the problem into smaller subproblems, and combining the sub-solutions to get the final solution;

2. recurring on smaller subproblems;

3. work done for the base case whenever the recursion bottoms out.

- The first level of dividing and combining on the original problem instance is “top-of-tree” work – it happens once, at the root of the recursion tree.

- The base case work, which is usually constant-time each time it happens, is “bottom-of-tree” work – it happens at each of the bottom-most nodes of the recursion tree.
• Everything else is “middle-of-tree” work.

In our matrix multiplication recursion, the top-of-tree work is $\Theta(n^2)$ (the four chunkwise adds), but the bottom-of-tree work is $\Theta(n^3)$! The n^3 arises because we subdivide into 8 subproblems of size $n/2$, so there are a total of $8^{\log_2 n} = n^3$ base-case calls, each of which needs at least a few instructions to discover that it is a base case (if nothing else). Because of this bottom-of-tree work, we can’t possibly run asymptotically faster than the naive $\Theta(n^3)$ algorithm so long as we use 8 subproblems of size $n/2$.

Principle: to obtain a faster divide-and-conquer solution to a problem, the top-of-tree and bottom-of-tree work must both cost asymptotically less than the naive, non-recursive approach.

In our case, the bottom-of-tree work killed us. The top-of-tree work is only $\Theta(n^2)$, so it is not a limiting factor.

NB: the Master Method for recurrences is a great quick-and-dirty way to check whether your strategy for subdividing a problem could improve on the naive algorithm. If the top- or bottom-of-tree work dominates, the MM’s solution will be the cost of this work.

Strassen’s method

Can we repair our divide-and-conquer matrix multiply to run faster than $\Theta(n^3)$?

Suppose I could magically compute the solution from using only seven recursive multiplies of size $n/2 \times n/2$, instead of the eight we used above. Now what does the algorithm cost? The only change to the recursion tree is that we have 7^i nodes at level i, rather than 8^i. Hence, the bottom-of-tree work is now $c_07^{\log_2 n} = n^{\log_2 7}$, or about $\Theta(n^{2.81})$. The top-of-tree work is still $\Theta(n^2)$.

Doing the accounting, the total work for the whole tree is now

$$T(n) = c_0n^{\log_2 7} + \sum_{i=0}^{\log(n)-1} cn^2 \cdot (7/4)^i$$

$$= c_0n^{\log_2 7} + cn^2 \cdot (7/4)^{\log_2 n} - \frac{1}{7/4 - 1}$$

$$= c_0n^{\log_2 7} + 4c/3n^2(n^{\log_2 7/4} - 1)$$

$$= c'n^{\log_2 7} - 4c/3n^2$$

$$= \Theta(n^{\log_2 7}).$$

So yes, this change would make the algorithm asymptotically faster!

Volker Strassen (1969) came up with the following equivalences.
Let

\[
 P_1 = A^{11}(B^{12} - B^{22}) \\
 P_2 = (A^{11} + A^{12})B^{22} \\
 P_3 = (A^{21} + A^{22})B^{11} \\
 P_4 = A^{22}(B^{21} - B^{11}) \\
 P_5 = (A^{11} + A^{22})(B^{11} + B^{22}) \\
 P_6 = (A^{12} - A^{22})(B^{21} + B^{22}) \\
 P_7 = (A^{11} - A^{21})(B^{11} + B^{12}).
\]

Then one can prove that

\[
 C^{11} = P_5 + P_4 - P_2 + P_6 \\
 C^{12} = P_1 + P_2 \\
 C^{21} = P_3 + P_4 \\
 C^{22} = P_5 + P_1 - P_3 - P_7
\]

There are only seven multiplies on chunks of size \(n/2 \times n/2\) required to compute \(P_1\) through \(P_7\).

Of course, there are 10 submatrix additions needed to set up these seven multiplies, and a further 8 additions needed to derive \(C\) from the \(P\)’s. Still, each addition is \(\Theta(n^2)\), so any constant number of adds doesn’t change the asymptotic complexity of the algorithm! Hence, Strassen’s algorithm is still \(\Theta(n^{2.81})\) – better than brute force!

Algorithm design is a little bit structured and a little big magic. I’m teaching structural principles (i.e. divide-and-conquer, and what to shoot for in your recurrence). The magic specific to each problem is what makes algorithms hard/fun.

3 A Little More History

- Strassen’s \(n^{2.81}\) result (1969) was the first nontrivial improvement on \(\Theta(n^3)\) matrix multiplication.

- Subsequently, Coppersmith and Winograd (1990) came up with a different approach that improved the cost to \(\Theta(n^{2.375})\) (again, the exponent is approximate – the actual value is not a rational number).

- Subsequent work by Stothers (2010), Williams (2011), and Le Gall (2014) got this down to about \(\Theta(n^{2.373})\).
• Matrix multiply by any algorithm costs $\Omega(n^2)$, since we need to look at all $\Theta(n^2)$ values in the input matrices to do it.

• But we don’t know whether there exists an algorithm that can get us closer to n^2.

This is the state of the theory. What about practice?

• Nobody actually uses Coppersmith-Winograd or its improvements.

• The constant factors are too big to yield a practical improvement except for ridiculously huge matrices.

• Strassen’s algorithm, if carefully implemented, can be a practical improvement on the naive algorithm if your matrices have n around a thousand.

• A good practical strategy for big matrices is to do a couple of Strassen iterations to get the subproblem size down a lot, then switch to the naive algorithm when the constant factors start to favor it.