1 More Perspectives on Greedy

- We’re now going to look at some more examples of greedy algorithms.
- There are other strategies besides “greedy stays ahead” to prove optimality, which we’ll see.
- First, let’s continue with our investigation of scheduling with a new variation.
- Wash U. needs to schedule final exams for n classes.
- Each exam i occupies a time interval $[s_i, e_i]$.
- The university has a large number of rooms in which to schedule exams; only one exam may use a room at a time.

Problem: schedule all n exams using as few rooms as possible.

- (This problem is sometimes called “interval graph coloring.”)

Before we try to solve the problem, how well could we possibly do?

- Is there a natural *lower* bound on the number of rooms needed for a solution?
- Sure – if k exams are in progress simultaneously at some point in time, we need to use at least k rooms.
- In general, let the *depth* $d(R)$ of a problem instance R be the maximum number of simultaneous exams, i.e.

$$d(R) = \max_{\text{time } t} \left| \{ r \in R \mid r \text{ overlaps } t \} \right| .$$

- No algorithm can schedule R using fewer than $d(R)$ rooms.
- If an algorithm uses *only* $d(R)$ rooms, its solution is definitely optimal.

So, can we find an algorithm that achieves the bound $d(R)$?

- Assume rooms are numbered in some total order 1, 2, 3...
- Sort the exams by starting time.
• For each exam i in this order...
• Let \(C_i \) be the list of all rooms assigned to exams \(j < i \) s.t. \(j \) conflicts with \(i \).
• Assign \(i \) to the lowest-numbered room not in \(C_i \).
• **Claim**: this algorithm produces a feasible schedule for any problem instance \(R \) with optimal depth \(d(R) \).
• **Pf**: first, observe that the algorithm never assigns two conflicting intervals \(j < i \) to the same room, because \(j \) appears in \(C_i \) by definition. Hence, the solution is feasible.
• Second, suppose the algorithm assigns an interval \(i \) to room \(k \). Then \(C_i \) must contain conflicting intervals for all \(k' < k \).
• All \(k - 1 \) of these conflicting intervals started before \(i \), so they all overlap time \(s_i \).
• Conclude that \(d(R) \geq k \).
• Hence, the algorithm always returns a solution that uses \(\leq d(R) \) rooms, and so it is optimal. QED

Our algorithm is in some sense “greedy” – it blindly assigns each exam to the lowest available room. Optimality is proved by showing a lower bound on the value of the solution, regardless of how it is obtained, and then showing that the greedy algorithm achieves it.

2 Network Design with Minimum Spanning Trees

Let’s talk about a well-studied problem in network building that admits greedy algorithms.

• We are given a collection of cities \(v_1 \ldots v_n \).
• We can connect pairs of cities by railroad lines.
• It costs \(c(v_i, v_j) \) to lay track between cities \(v_i \) and \(v_j \).
• We seek to build enough railroad lines so that a passenger starting in any city can travel to any other city in one or more hops.
• To save money, we want to build a set \(T \) of railroad lines of minimum total cost \(\sum_{(v_i, v_j) \in T} c(v_i, v_j) \).
• More abstractly, we are given a graph over a collection \(V \) of vertices.
• We wish to find a set \(T \subseteq V \times V \) of (undirected) edges between vertices.
• For any two vertices \(v_i, v_j \), \(T \) must contain a path of edges connecting \(v_i \) to \(v_j \).
• We say that \(T \) spans the vertex set \(V \).
• We wish to find a spanning edge set \(T \) for \(V \) of minimum total cost.

What can we say about the edge set \(T \)?
• Suppose that every edge has \(c(v_i, v_j) > 0 \).

• Can \(T \) contain a cycle, that is, a path of one or more edges from a vertex back to itself?

• **Claim**: A spanning edge set of minimum cost *cannot* contain a cycle.

• **Pf**: Suppose \(T \) contains a cycle \(U \) of vertices \(u_1, u_2, \ldots, u_{\ell-1}, u_\ell \), with \(u_\ell = u_1 \).

• We claim that we can remove any one edge from \(U \) and still have a set of edges that spans \(V \).

• Indeed, suppose we remove edge \((u_i, u_{i+1})\).

• Any path through \(V \) that uses this edge can instead follow the alternate path \(u_i, u_{i-1}, \ldots, u_1 = u_\ell, u_{\ell-1}, \ldots, u_{i+1} \).

• But the removed edge has non-zero cost, so the resulting spanning edge set has lower cost than \(T \), which we assumed to have minimum cost! \(\rightarrow \leftarrow \)

• Conclude that \(T \) cannot have any cycles. QED

• Because \(T \) is acyclic, it is a *tree* on \(V \).

• In particular, we call \(T \) a *minimum spanning tree* (MST) for \(V \).

3 Efficient Minimum Spanning Tree Construction

Let’s look at a couple of greedy algorithms for building MSTs.

• The following algorithm is due to Joseph Kruskal (1956).

• Initially, let \(T = \emptyset \).

• While \(T \) does not span \(V \)...

• Let \(e_i \) be the lowest-cost edge such that \(T \cup \{e_i\} \) does not contain a cycle.

• Add \(e_i \) to \(T \) and continue.

• (A spanning tree on \(n \) vertices contains exactly \(n - 1 \) edges, so this algorithm terminates after \(n - 1 \) steps.)

• A closely related algorithm is was published by Prim and Dijkstra (1957), though Jarnik (1930) discovered it first.

• Initially, let \(T = \emptyset \).

• While \(T \) does not span \(V \)...
• Let e_i be the lowest-cost edge connecting some vertex v touched by T to some vertex u not touched by T.
• Add e_i to T and continue.
• (Prim’s algo ensures that at any point in the algorithm, T is always a tree on some subset of V. Kruskal’s algorithm maintains a forest that only eventually becomes a single tree.)

These algorithms are both greedy. Why are they correct?
• First, neither algorithm’s greedy choice ever connects two vertices that are already connected by a path in T.
• Hence, the final T from each algorithm is a tree.
• Moreover, the algorithms output a connected graph T that spans V (obvious for Prim, mostly so for Kruskal).
• The key question is, why are the algorithms’ spanning trees minimum?
• We’re going to prove a key property of the two algorithms now, and then turn it into a proof of optimality later.
• **Lemma**: let S be a nonempty, proper subset of V (sometimes called a “cut” of V).
• Let (v, u) be an edge of minimum cost connecting some $v \in S$ to some $u \in V - S$.
• Then there exists an MST for V that contains edge (v, u).
• *(Note: we don’t need (v, u) to be the unique edge of minimum cost.)*
• **Pf**: Let T be an MST for V. Let S be a cut of V, and let (v, u) be a minimum-cost edge crossing S.
• If T contains (v, u), we are done.
• Suppose instead that T does not contain edge (v, u).
• Because T spans V, it must contain some *other* path p from u to v.
• Now $v \in S$ and $u \in V - S$, so at some point, path p crosses from S to $V - S$.
• In particular, suppose it crosses at edge (v', u'):
• Let $\tilde{T} = T - \{(v', u')\} \cup \{(v, u)\}.$

• (That is, we throw out edge (v', u') and replace it with $(v, u).$)

• We claim that \tilde{T} still spans $V.$

• Indeed, any path that uses edge (v', u') can be rerouted through (v, u) instead, so \tilde{T} still spans $V.$

• Moreover, \tilde{T} is still a tree.

• Adding (v, u) to T can create at most a single cycle. If $T \cup \{(v, u)\}$ had two cycles, both must pass through (v, u) (since T was a tree).

• But then the union of these two cycles, minus $(v, u),$ form a cycle in $T!$ →←

• The single cycle in $T \cup \{(v, u)\}$ can be broken by removing any one of its edges, including $(v', u').$

• One more claim: \tilde{T} has total cost \leq that of $T.$

• This follows immediately because (v, u) is a lowest-cost edge connecting S to $V - S,$ so $c(v, u) \leq c(v', u').$ Hence, exchanging (v', u') for (v, u) cannot increase the cost of the tree.

• Conclude that \tilde{T} is an MST that contains edge $(v, u).$ QED

What did we do here?

• Given any optimal feasible solution T (MST) for a graph, and a cut $S,$ we can exchange some edge $(v', u') \in T$ crossing from S to $V - S$ for our greedily chosen lowest-cost crossing edge $(v, u).$

• Doing so gives us a new feasible solution \tilde{T} that is no worse than the original $T,$ so also optimal.

• Therefore, selecting (v, u) must be consistent with some optimal feasible solution.

• We’ll see that this “exchange argument” technique is the basis of a quite general strategy for finding proofs of optimality for greedy algorithms.

So what does this exchange argument have to do with Prim’s and Kruskal’s algos?
• Both Prim and Kruskal identify a certain cut of V at each step and pick a lowest-cost edge crossing that cut.

• For Prim, the cut is between the vertices already in the tree T and those outside it.

• For Kruskal, the cut is between some connected component in T and the rest of the graph.

More next time...