1 Paradigms of Algorithm Development

- We’ve seen one example of an algorithm, with attendant correctness and efficiency arguments.
- We could keep studying individual algorithms pretty much forever... [perhaps you can name a few of your favorites]
- But this course is not just about building a toolbox of standalone methods.
- We need some structure – are there general design principles that can be used to obtain efficient algorithms for many different problems?
- In the coming weeks, we’re going to look at three such principles:
 1. divide-and-conquer
 2. greedy algorithms
 3. dynamic programming
- Today, we’ll get a taste of divide-and-conquer.
- You may have seen this principle used previously in, e.g., merge sorting a list of numbers, or in binary search of a sorted array.

2 Matrix Multiply

Let’s think about matrices!

- Consider taking a matrix product $A \times B = C$.
- Assume A is an $n \times p$ matrix, and B is a $p \times m$ matrix.
- Then C has size (wait for it) $n \times m$.
- More specifically, the i, jth entry in C is computed as
 \[C(i, j) = \sum_{k=1}^{p} A(i, k) \cdot B(k, j). \]
- So how many arithmetic operations are needed to compute C from A and B?
• There are \(nm \) entries in \(C \).
• Each entry of \(C \) needs \(p \) multiplies and \(p - 1 \) adds.
• Hence, total cost of computation is \(\Theta(npm) \) operations.
• If \(n = p = m \), we may say that matrix multiply is a \(\Theta(n^3) \) algorithm.
• (Compare to only \(\Theta(n^2) \) operations to add two \(n \times n \) matrices.)

Hrmph. That kind of sucks. Can we do better?

• Suppose for simplicity that \(n \) is a power of 2, and \(A, B \) have size \(n \times n \).
• What if we break \(A \) and \(B \) into four chunks of size \(n/2 \times n/2 \)?
• (BTW, these chunks are called “minors” of the matrix.)
• We can write \(A, B, \) and \(C \) as \(2 \times 2 \) matrices of four chunks, like this:

Now we can express the product \(C = A \times B \) in terms of the products on the chunks:

\[
\begin{align*}
C^{11} &= A^{11} \times B^{11} + A^{12} \times B^{21} \\
C^{12} &= A^{11} \times B^{12} + A^{12} \times B^{22} \\
C^{21} &= A^{21} \times B^{11} + A^{22} \times B^{21} \\
C^{22} &= A^{21} \times B^{12} + A^{22} \times B^{22}.
\end{align*}
\]

• This approach uses a total of 4 additions and 8 multiplications on matrices of size \(n/2 \times n/2 \).
• We can recursively break each of the 8 smaller matrix products into operations on matrices of size \(n/4 \times n/4 \).
• In general, we can recursively break the matrix product into smaller and smaller products, until we bottom out doing scalar multiplies.
• This general approach – break a big problem into one or more smaller subproblems of the same shape, solve them, and put the solutions back together – is what we call divide and conquer.
• The hope is that, since it is cheaper to solve each of the small problems than the full problem, divide and conquer might be faster than just brute-forcing the full problem.

So what does the D&C algorithm actually cost?

• We have a technique to compute that – recurrences!
• Suppose it costs $T(n)$ to multiply two $n \times n$ matrices by our recursive method.
• Adding two matrices of size $n/2 \times n/2$ takes time $\Theta(n^2)$.
• Hence, we have that the recursive approach takes time

\[T(n) \leq 8T(n/2) + cn^2 \]

for some constant c.
• Assume each base case takes constant time c_0.
• We can solve this recurrence to get a closed-form asymptotic expression for $T(n)$, using, e.g., the recursion tree method or the Master Method.
• For fun, let’s do the recursion tree...

\[T(n) = c_0 n^3 + \sum_{i=0}^{\log(n)-1} 2^i cn^2, \text{ which works out to } \Theta(n^3). \]

Rats – subdividing didn’t solve the problem asymptotically faster than the naive algorithm. Why not?

3 A Delicate Balancing Act

• When we try to break up a problem recursively, we do three kinds of work:
 1. dividing the problem into smaller subproblems, and combining the sub-solutions to get the final solution;
 2. recurring on smaller subproblems;
 3. work done for the base case whenever the recursion bottoms out.
• The first level of dividing and combining on the original problem instance is “top-of-tree” work – it happens once, at the root of the recursion tree.
• The base case work, which is usually constant-time each time it happens, is “bottom-of-tree” work – it happens at each of the bottom-most nodes of the recursion tree.

• Everything else is “middle-of-tree” work.

• In our matrix multiplication recursion, the top-of-tree work is Θ\(n^2\) (the four chunk-wise adds), but the bottom-of-tree work is Θ\(n^3\)!

• The \(n^3\) arises because we subdivide into 8 subproblems of size \(n/2\), so there are a total of \(8^{\log_2 n} = n^3\) base-case calls, each of which needs at least a few instructions to discover that it is a base case (if nothing else).

• Because of this bottom-of-tree work, we can’t possibly run asymptotically faster than the naive Θ\(n^3\) algorithm so long as we use 8 subproblems of size \(n/2\).

• **Principle**: to obtain a faster divide-and-conquer solution to a problem, the top-of-tree and bottom-of-tree work must both cost asymptotically less than the naive, non-recursive approach.

• In our case, the bottom-of-tree work killed us.

• The top-of-tree work is only Θ\(n^2\), so it is not a limiting factor.

NB: the Master Method for recurrences is a great quick-and-dirty way to check whether your strategy for subdividing a problem could improve on the naive algorithm. If the top- or bottom-of-tree work dominates, the MM’s solution will be the cost of this work.

4 A Better Way: Strassen’s Algorithm

• Can we repair our divide-and-conquer matrix multiply to run faster than Θ\(n^3\)?

• Suppose I could magically compute the solution from using only *seven* recursive multiplies of size \(n/2 \times n/2\), instead of the eight we used above.

• Now what does the algorithm cost?

• The only change to the recursion tree is that we have \(7^i\) nodes at level \(i\), rather than \(8^i\).

• Hence, the bottom-of-tree work is now \(c_07^{\log_2 n} = n^{\log_2 7}\), or about Θ\(n^{2.81}\).

• The top-of-tree work is still Θ\(n^2\).

• Have we improved the overall running time?
• Doing the accounting, the total work for the whole tree is now

\[
T(n) = c_0 n^{\log_2 7} + \sum_{i=0}^{\log(n)-1} cn^2 \cdot (7/4)^i
\]

\[
= c_0 n^{\log_2 7} + cn^2 \left(\frac{7}{4}\right)^{\log_2 n} - 1
\]

\[
= c_0 n^{\log_2 7} + 4c/3n^2(n^{\log_2(7)/4} - 1)
\]

\[
= c' n^{\log_2(7)} - 4c/3n^2
\]

\[
= \Theta(n^{\log_2 7}).
\]

• (We could have gotten this result a lot faster via the Master Method.)

• So yes, this change would make the algorithm asymptotically faster!

OK, bring on the magic!

• Volker Strassen (1969) came up with the following equivalences.

• Let

\[
P_1 = A^{11}(B^{12} - B^{22})
\]

\[
P_2 = (A^{11} + A^{12})B^{22}
\]

\[
P_3 = (A^{21} + A^{22})B^{11}
\]

\[
P_4 = A^{22}(B^{21} - B^{11})
\]

\[
P_5 = (A^{11} + A^{22})(B^{11} + B^{22})
\]

\[
P_6 = (A^{12} - A^{22})(B^{21} + B^{22})
\]

\[
P_7 = (A^{11} - A^{21})(B^{11} + B^{12}).
\]

• Then one can prove that

\[
C^{11} = P_5 + P_4 - P_2 + P_6
\]

\[
C^{12} = P_1 + P_2
\]

\[
C^{21} = P_3 + P_4
\]

\[
C^{22} = P_5 + P_1 - P_3 - P_7
\]

• (Feel free to plug in the definitions of the \(P\)'s and check these four equivalences.)

• There are only seven multiplies on chunks of size \(n/2 \times n/2\) required to compute \(P_1\) through \(P_7\).

• This is just as we analyzed above.

• Of course, there are 10 submatrix additions needed to set up these seven multiplies, and a further 8 additions needed to derive \(C\) from the \(P\)'s.

• Still, each addition is \(\Theta(n^2)\), so any constant number of adds doesn’t change the asymptotic complexity of the algorithm!
Hence, Strassen’s algorithm is still $\Theta(n^{2.81})$ – better than brute force!

Algorithm design is a little bit structured and a little bit magic. I’m teaching structural principles (i.e. divide-and-conquer, and what to shoot for in your recurrence). The magic specific to each problem is what makes algorithms hard/fun.

5 A Little More History

- Strassen’s $n^{2.81}$ result (1969) was the first nontrivial improvement on $\Theta(n^3)$ matrix multiplication.

- Subsequently, Coppersmith and Winograd (1990) came up with a different approach that improved the cost to $\Theta(n^{2.375})$ (again, the exponent is approximate – the actual value is not a rational number).

- Subsequent work by Stothers (2010), Williams (2011), and Le Gall (2014) got this down to about $\Theta(n^{2.373})$.

- Matrix multiply by any algorithm costs $\Omega(n^2)$, since we need to look at all $\Theta(n^2)$ values in the input matrices to do it.

- But we don’t know whether there exists an algorithm that can get us closer to n^2.

This is the state of the theory. What about practice?

- Nobody actually uses Coppersmith-Winograd or its improvements.

- The constant factors are too big to yield a practical improvement except for ridiculously huge matrices.

- Strassen’s algorithm, if carefully implemented, can be a practical improvement on the naive algorithm if your matrices have n around a thousand.

- A good practical strategy for big matrices is to do a couple of Strassen iterations to get the subproblem size down a lot, then switch to the naive algorithm when the constant factors start to favor it.