1 3-SAT is Still Hard

We noted last time that general SAT is NP-complete. How hard is SAT if we restrict its inputs to only 3-CNF formulas?

- Will consider the 3-CNF-SAT, or just 3-SAT, problem.
- Given a 3-CNF formula ϕ, is there a satisfying assignment to ϕ?
- Is 3-CNF-SAT NP-complete?
- If we can solve SAT, we can trivially solve 3-CNF-SAT.
- But this only shows 3-CNF-SAT \leq_p SAT.
- “Soln to a hard problem can be used to solve an easy problem” – duh.
- We need to prove the other direction.

Claim: 3-CNF-SAT is NP-complete.

- **Pf:** first, must show that 3-CNF-SAT is in NP.
- I’ll just reuse NP-ness proof for SAT; same certificate and verification scheme works.
- Still must show NP-hardness.
- Will prove that SAT \leq_p 3-CNF-SAT.
- Given a formula ϕ, we will construct a 3-CNF formula $\psi = f(\phi)$.
- Will show that ψ is satisfiable iff ϕ is satisfiable.

OK, here’s the reduction, given ϕ.

- **Step 1:** push all \negs to inside to create an equivalent formula ϕ_1 using only ands, ors, and literals.
- **Example:** if $\phi = (x \land y) \lor \neg(x \land z)$, then
 $$\phi_1 = (x \land y) \lor (\neg x \lor \neg z).$$
- (Takes $O(|\phi|)$ transformations, each in time $O(|\phi|)$)
• **Step 2**: construct a *parse tree* for ϕ_1.

• **Example:**

- Each leaf of parse tree contains a literal.
- Each internal node contains a binary connective.
- At most as many internal nodes as leaves, so tree has $O(|\phi|)$ nodes.
- Number all nodes of tree; for each node j, assign a variable v_j.

• **Draw y’s on above parse tree**

• **Step 3**: construct a formula ψ_0 from parse tree as follows.

- If node j is a leaf with literal ℓ, set
 \[C_j = (v_j \leftrightarrow \ell). \]

- If node j connects nodes p and q with connective \otimes, set
 \[C_j = (v_j \leftrightarrow v_p \otimes v_q). \]

- Finally, if v_1 labels the root of parse tree T, set
 \[\psi_0(T) = v_1 \land \bigwedge_j C_j. \]

• **Example:**

- (Note that $\psi_0(T)$ has size linear in $|T|$, and hence linear in $|\phi_1|$.)

• **Claim**: ψ_0 is satisfiable iff ϕ_1 is satisfiable.

• **Pf** (sketch): suppose assignment A satisfies ψ_0.

• Can show inductively on structure of T that A makes v_j true iff A's assignment to literals satisfies subformula of ϕ_1 corresponding to subtree rooted at node j.
• Since A makes v_1 true, the whole formula ϕ_1 must be satisfiable.
• Conversely, if assignment A satisfies ϕ_1, construct assignment A' for ψ_0 from A by setting each v_j in bottom-up fashion to make its C_j true. QED

We now want to turn ψ_0 into an equivalent 3-CNF formula.

• Each subformula C_j has at most 3 variables but is not necessarily CNF.
• **Step 4**: turn each C_j into equivalent CNF formula α_j of at most constant size.

 First, write down the truth table for C_j.

 Then, build an equivalent *disjunctive* formula giving all the 0s of C_j.

 Finally, negate the result to achieve a CNF formula for C_j.
• **Example**: suppose we have formula $\neg(x \oplus y)$ (\oplus means “exclusive-or”).

• Transformation turns C_j into at most 2^3 clauses, each with at most 3 variables.
• Hence, $|\alpha_j|$ is $O(1)$.
• Let $\psi_1 = \bigwedge_j \alpha_j$.
• Observe that $|\psi_1| = O(|\psi_0|)$, and that ψ_1 is satisfiable iff ψ_0 is.

Almost done.

• Formally, a 3-CNF formula must have *exactly* three literals per clause.
• Our ψ_1 might have only 1 or 2 literals.
• **Step 5**: transform each α_j into a valid 3-CNF formula.

 Let p and q be dummy variables.

 Replace each 2-literal clause $\ell_1 \lor \ell_2$ by

 \[(p \lor \ell_1 \lor \ell_2) \land (\neg p \lor \ell_1 \lor \ell_2)\]

 Above is logically eqv to $(p \land \neg p) \lor (\ell_1 \lor \ell_2)$, so is satisfied precisely when $\ell_1 \lor \ell_2$ is satisfied (for any p).
• Replace each 1-literal clause ℓ by

$$(\neg p \lor \neg q \lor \ell) \land (\neg p \lor q \lor \ell) \land (p \lor \neg q \lor \ell) \land (p \lor q \lor \ell)$$

• Above is logically eqv to $(p \land \neg p) \lor (q \land \neg q) \lor \ell$, so is satisfied precisely when ℓ is satisfied (for any p, q).

• Let ψ be formula obtained by ψ_1 by above transformation.

• Each clause of ψ_1 expands to at most 4 clauses, so $|\psi| = O(|\psi_1|)$.

• Moreover, ψ is logically equivalent to ψ_1.

• Hence, ψ is satisfied iff ϕ is satisfied!

• Moreover, $|\psi| = O(|\phi|)$, and ψ can be built from ϕ in time $O(|\phi|^2)$.

• Conclude that SAT \leq_p 3-CNF-SAT! QED

2 Another Hard Problem – SUBSET-SUM

Because 3SAT is NP-complete, we now know from reductions that we’ve seen that INDEPENDENT-SET (and hence VERTEX-COVER), which are clearly in NP, are also NP-complete. Now, let’s study yet another hard problem!

• **Input**: a set S of positive integers, and a target t

• **Problem**: does S contain subset S' whose members add to exactly t?

• This is called the SUBSET-SUM problem.

• **Ex**: $S = \{2, 5, 3, 6, 9\}$: true for $(S, 14)$, but not for $(S, 4)$.

Well, that doesn’t seem hard, does it?

• **Lemma**: SUBSET-SUM is NP-complete.

• **Pf**: First, will show it’s in NP.

• Given instance (S, t), cert is subset S'.

• Surely, $|S'| \leq |S|$.

• Moreover, can check in time $O(|S||S'|)$ that all elts of S' are in S, and that their sum is t.

So far, so good. But what about NP-hardness?

• Will reduce from 3-SAT (i.e. prove 3-SAT \leq_p SUBSET-SUM)!

• Given a 3-CNF formula ϕ, will construct an instance (S, t) of SUBSET-SUM.

• Will show that S has subset with sum t iff ϕ is satisfiable.
• WLOG, will assume ϕ does not contain any clause with both literals x and $\neg x$.
• (Any such clause is trivially satisfiable, so transducer function f can delete it.)

Yikes! What’s the construction?

• Suppose ϕ has n variables and m clauses.
• Set S will contain base-10 integers, each with $n + m$ digits.
• Label the digit positions $p_1 \ldots p_n, q_1 \ldots q_m$.
• For variable x_i, define integers v_i and \bar{v}_i as follows:
 1. Digit p_i of both v_i and \bar{v}_i is 1.
 2. All other digits $p_j, j \neq i$, are 0 for both v_i and \bar{v}_i.
 3. Digit q_k of v_i is 1 iff x_i appears in clause C_k of ϕ.
 4. Digit q_k of \bar{v}_i is 1 iff $\neg x_i$ appears in clause C_k of ϕ.
• For each clause C_k, define integers y_k and z_k as follows:
 1. All digits p_j of both y_k and z_k are zero.
 2. Digit q_k of y_k is 1; digit q_k of z_k is 2.
 3. All other digits $q_\ell, \ell \neq k$, of both y_k and z_k are zero.
• Finally, define target t as follows:
 1. Every digit p_j of t is 1.
 2. Every digit q_k of t is 4.
• Example:

That’s really funky (but at least it’s polynomial-time). Why does it work?

• Observation 0: S really is a set – v_i and \bar{v}_i differ because x_i and $\neg x_i$ do not occur together in any clause, and all other numbers are pairwise different.
• Observation 1: if we add up any subset of values in S, no digit position causes a carry.
• (No position \(p_j \) exceeds 2, and no position \(q_k \) exceeds 6.)
• Hence, we can consider each position separately.
• **Claim 1**: If \(\phi \) is satisfiable, \((S,t)\) is solvable.
 • **Pf**: let \(A \) be a satisfying assignment to \(\phi \).
 • Construct \(S' \) as follows.
 • If \(A \) makes variable \(x_i \) true, add \(v_i \) to \(S' \); otherwise, add \(\bar{v}_i \).
 • This alone guarantees that posn \(p_i \) sums to 1 for \(1 \leq i \leq n \).
 • For clause \(C_k \), let \(a_k \) be the sum in posn \(q_k \) of all values in \(S' \) so far.
 • Note that \(a_k \) must be at least 1 (since \(\phi \) is satisfied) and at most 3.
 - If \(a_k \) is 3, add \(y_k \) to \(S' \).
 - If \(a_k \) is 2, add \(z_k \) to \(S' \).
 - If \(a_k \) is 1, add both \(y_k \) and \(z_k \) to \(S' \).
 • This ensures that position \(q_k \) sums to 4 over \(S' \).
• Conclude that total of all values in \(S' \) is exactly \(t \).

Halfway there...

• **Claim 2**: If \((S,t)\) is solvable, \(\phi \) is satisfiable.
 • **Pf**: Let \(S' \) be a valid solution to \((S,t)\).
 • Construct assignment \(A \) for \(\phi \) as follows:
 - If \(v_i \in S' \), set \(x_i \) true.
 - If \(\bar{v}_i \in S' \), set \(x_i \) false.
 • Note first that every valid solution to \((S,t)\) includes exactly one of \(v_i \) and \(\bar{v}_i \).
 • (Only way to make sum in posn \(p_i \) equal to 1.)
 • Hence, \(A \) assigns every \(x_i \) a unique truth value.
 • Suppose clause \(C_k \) contains literals \(\ell_1 \), \(\ell_2 \), and \(\ell_3 \).
 • **Notn**: for a literal \(\ell \), let \(v(\ell) \) be the value in \(S \) corresponding to \(\ell \).
 • Every valid solution to \((S,t)\) must contain at least one of the values \(v(\ell_1) \), \(v(\ell_2) \), \(v(\ell_3) \).
 • (We cannot make 4 in posn \(q_k \) using only \(y_k \) and \(z_k \).)
 • But then \(A \) makes at least one of the three literals true!
 • Conclude that \(A \) satisfies every clause of \(\phi \). QED