1 A New Problem: SAT

- Consider the set of all propositional Boolean formulas ϕ over the connectives \land, \lor, and \neg.
- **Example:**
 \[\phi = (x \land y) \lor (\neg x \land z) \]
 - Each propositional variable may be assigned a value of true or false.
 - Depending on values assigned to vars, a formula may be true or false.
 - If assignment A of values to variables makes formula ϕ true, we say that A satisfies ϕ.
- **Example:** if $x = \text{false}$, $y = \text{false}$, and $z = \text{true}$, then ϕ is true.
- Not every formula has a satisfying assignment!
- **Example:**
 \[\psi = ((x \land y) \lor (\neg x \land z)) \land \neg(y \lor z) \]
 is unsatisfiable.
- **Problem** (SAT): given a Boolean formula ϕ on variable set $X = \{x_1 \ldots x_n\}$, does there exist an assignment to X that satisfies ϕ?

We can consider restricted versions of the SAT problem in which the formula has a special form.

- A formula is in *conjunctive normal form* (CNF) if it is written as an “and” of a bunch of *clauses*, which are “or”’s of *literals* (a variable or its complement).
- **Example** (four clauses, three literals per clause):
 \[\phi = (x \lor y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor w) \land (x \lor y \lor \neg w) \]
- We can further restrict CNF formulas by specifying how many literals are in each clause.
- In particular, a 3CNF formula has exactly three literals per clause.
- 3SAT is the restriction of the SAT problem in which the input is a 3CNF formula.
2 3SAT Is No Harder Than INDEPENDENT-SET

SAT and 3SAT are classic “hard problems,” as we’ll discuss. I suggested earlier that INDEPENDENT-SET is also a hard problem. Are they related?

* Theorem: 3SAT \leq_p INDEPENDENT-SET

* Proof: Let ϕ be a 3CNF formula. Given ϕ, we construct a graph G as follows.

 - For each literal ℓ in ϕ, create a vertex v_{ℓ}.
 - Hence, if ϕ has k clauses, G has $3k$ vertices.
 - Now, for any two literals ℓ_i and ℓ_j, we connect their vertices by an edge in G iff
 1. ℓ_i and ℓ_j are in the same clause, or
 2. ℓ_i is the logical inverse of ℓ_j (i.e. $\ell_i = \neg \ell_j$).

* Example:

 - Clearly, if ϕ has a total of m literals, we can build G in time $O(m^2)$, so this construction requires time polynomial in $|\phi|$.
 - Claim: Suppose ϕ has k clauses. ϕ is satisfiable iff G contains an independent set of size $\geq k$.
 - In what follows, we leverage the fact that a truth assignment to ϕ is satisfying iff it makes at least one literal in every clause of ϕ (hence, at least k total literals) true.
 - (\Rightarrow) let A be a satisfying assignment for ϕ.
 - In each clause C_s of ϕ, $1 \leq s \leq k$, A makes at least one literal ℓ_i^s true.
 - Now consider two true literals ℓ_i^s and ℓ_j^t from distinct clauses.
 - No truth assignment makes both ℓ and $\neg \ell$ true, so ℓ_i^s and ℓ_j^t are not logical inverses.
 - Hence, their vertices do not have an edge between them.
 - Conclude that picking one true literal under A from each of ϕ’s k clauses forms an independent set of size k in G.
 - (\Leftarrow) Conversely, suppose G has an independent set of size $\geq k$. Then it has such a set X of size exactly k.
 - No two vertices in X are generated from the same clause of ϕ, since all such pairs have an edge between them.
 - Hence, X contains one vertex v_s generated from each clause C_s of ϕ.
Moreover, no two vertices in X correspond to logically inverse literals in ϕ, since again all such pairs would be connected by an edge.

Conclude that some truth assignment A can simultaneously make all the literals corresponding to vertices in X true.

But A makes at least one literal true in each clause, hence satisfies ϕ. QED

This kind of construction is called a gadget reduction – we build a “gadget” graph to model the logical relationships among variables in the formula, so that we can solve satisfiability by solving a graph problem.

3 A General Theory of Hardness

I’ve suggested that several problems are known to be “hard” in practice. Can we formalize this vague statement?

- Let S be a computational decision problem.
- We say that S is in the class P if there exists an algorithm to decide any instance s of S in time $O(\text{poly}(|s|))$.
- Hence, P is the set of (decision) problems solvable in polynomial time.
- Now, let’s consider a weaker property than fast decidability.
- Suppose I gave you a formula ϕ and claimed it was satisfiable.
- How could I prove that claim to you?
- Idea: show a satisfying assignment A.
- You can plug A into ϕ and evaluate it in time... well, definitely $O(|\phi|^2)$, to check that A does indeed satisfy ϕ.
- Similarly, I could prove that a graph G has an independent set of size k by showing you the set.
- You can check that the set does indeed lack an edge between any two of its vertices in time $O(|G|^2)$.
- Even for problems that I don’t know how to solve quickly, I can often verify a solution for them quickly!

We’re going to formalize the idea of “quick verification.”

- Defn: Let S be a decision problem. A certificate for an instance s of S is a piece of information sufficient to prove that s is a “true” instance.
- (We just saw two examples of certificates.)
- Defn: a verifier for S is an algorithm V that takes in an instance s of S and a certificate c for s and checks that s is a “true” instance.
• (Again, we just saw two examples of verifier algorithms.)

• **Defn:** a problem S is in the class NP if there exists a scheme for creating certificates for true instances of S, and a verifier V that takes an instance s and certificate c generated according to this scheme, such that

 – For any true $s \in S$, there exists a certificate of size $O(\text{poly}(|s|))$.

 – The verifier $V(s,c)$ runs in time $O(\text{poly}(|s|)\text{poly}(|c|))$.

• Informally, a problem is in NP if there exists a proof for each true instance, such that we can check that proof in time polynomial in the instance’s size.

How are the classes P and NP related?

• First, I claim that every problem in P is also in NP; that is, $P \subseteq NP$.

• Indeed, suppose that a problem S has some algorithm A that decides it in polynomial time.

• If you give me an instance s that you claim to be true, I can simply apply A to check that it is true.

• In other words, the required certificate is *the empty string*, and the verifier is “discard the certificate and run A on s."

• Hence, S is in NP.

• **Important Question:** does the opposite inclusion hold? That is, is every problem in NP also in P?

• Intuitively, you would probably say “No way!” It’s much easier to check a proof (e.g. grade your homework) than to come up with one in the first place (e.g. write your homework).

• Formally, however, *we don’t know whether or not $NP \subseteq P$* (and hence whether $P = NP$).

• In 50+ years of trying, nobody has been able to prove this inclusion one way or the other.

• This is this famous P vs NP question!

4 **The Hardest Problems in NP**

We can leverage the practical difficulty of settling the equivalence of P and NP to show that other problems are practically hard.

• Let S be a decision problem.

• We say that S is NP-hard if, for every problem T in NP, $T \leq_p S$.

• If we could solve S efficiently, then we could solve every problem in NP efficiently.
• Hence, S is “at least as hard” as every problem in NP.
• If S itself is also in NP, we say that S is NP-complete.
• NP-complete problems are thus “the hardest problems in NP.”
• **Lemma**: if any NP-complete problem is in P, then $P = NP$.
• **Pf**: Let S be an NP-complete problem, and suppose S is in P.
• Let A be an algorithm to decide S in polynomial time.
• For any other problem T in NP, $T \leq_p S$.
• Hence, to decide an instance t of T, we can use the implied reduction to convert t to an instance s of S in time $O(poly(|t|))$, then apply A to decide s.
• Conclude that T is also in P. QED

Consequences?

• Proving whether or not $P = NP$ is (practically speaking) really, really hard.
• If we know that a problem S is NP-complete, then finding a polynomial-time algorithm for S is equivalent to proving that $P = NP$, so it must also be really, really hard.
• That doesn’t mean that such an algorithm doesn’t exist... but we would be shocked if we found one, and it’s not likely that you or I would be able to do so.
• So, showing that a problem is NP-complete is basically a way to say “don’t expect me to find a polytime algorithm for this problem!”
• Moreover, NP-completeness is transferable from one problem to another.
• **Lemma**: Let S be an NP-complete problem, and suppose that $T \in NP$. If $S \leq_p T$, then T is also NP-complete.
• **Pf**: Because S is NP-complete, for any problem $U \in NP$, we can reduce U to S in polynomial time.
• But if $S \leq_p T$, then we can reduce S to T in polynomial time.
• Hence, we can reduce U to T in two steps, each of which requires only polynomial time, and so $U \leq_p T$.
• Conclude that T is NP-complete. QED

Wait... is there such a thing as an NP-complete problem?

• **Theorem** (Cook-Levin): SAT is an NP-complete problem.
• We’re not going to prove this, because the proof is too hairy.
• Roughly, Cook and Levin showed that Boolean formulas are powerful enough to compactly describe the behavior of an arbitrary algorithm.
• Hence, given a problem S in NP, which therefore has a small certificate scheme and a fast verifier $V(s, c)$, we can write a small formula ϕ_V to describe the behavior of V given s and c.

• For a fixed s, formula ϕ_V is satisfiable iff there exists certificate c that proves that s is true; i.e. iff s is a true instance of S.

• For a careful proof of this theorem, take CSE 547.

• Pretty much all known NP-complete problems (and there are lots!) were proved by reductions starting from SAT.

• In particular, one can prove that SAT \leq_p 3SAT, and so this restricted form of satisfiability is also NP-complete.

• From there, we just showed that INDEPENDENT-SET is NP-complete by reduction from 3SAT, and that VERTEX-COVER is NP-complete by reduction from INDEPENDENT-SET.

• You’ll get to practice finding reductions of your own on your homework.