1. In lecture, we saw how to choose hash functions that satisfy a stronger property than universality, **pairwise independence**: that is, for a hash function h_a chosen uniformly at random from the family \mathcal{H}, for any two elements x and y in the universe and any two values w and z in the range $(0, \ldots, m-1)$, $Pr_a[h_a(x) = w \text{ and } h_a(y) = z] = 1/m^2$.

Here is an application of pairwise independent hash functions in message authentication: suppose that Alice and Bob secretly agree on a member of $h_a \in \mathcal{H}$. Then, when Alice wishes to send a message x to Bob, she sends x attached to $w = h_a(x)$. Bob then checks that the pair (x, w) he receives satisfies $w = h_a(x)$, and if so, accepts x as genuine. (Otherwise he rejects the message.)

Show that for a suitable choice of m, no adversary who intercepts (x, w) can corrupt it to some (y, z) for $y \neq x$ that Bob will accept as genuine except with probability at most δ, even if the adversary knows what family \mathcal{H} Alice and Bob are using and can spend unlimited computational resources crafting (y, z) from (x, w). How large does m (and hence, the tag w) need to be?

2. Recall the algorithm **insertion sort**:

   ```
   input : Array $A$ of $n$ integers
   begin
   for $i = 1, \ldots, n$ do
     for $j = i, \ldots, 1$ until $A[j-1] \leq A[j]$ do
     end
   end
   end
   ```

 Suppose A contains n integers in a uniformly chosen random order. What is the average (expected) running time of insertion sort?

3. **Kleinberg & Tardos** Chapter 8, question 32