1. Kleinberg & Tardos Chapter 11, question 4

2. As with satisfiability, we can also consider optimization problems based on subset sum. Here is one we will call MAX-SUBSET-SUM: you are given a set of non-negative integers \(X \) and a target \(t \), find a subset \(X' \) of \(X \) with the largest sum \(\leq t \).

Here is a heuristic for this problem. First, let \(X_2 \subseteq X \) be the subset of elements of \(X \) that are \(> t/2 \). Let \(S \) be the set consisting of the largest element of \(X_2 \) if it is nonempty, or the empty set otherwise. Now sort the remaining elements of \(X - X_2 \) in non-increasing order.

For each element in this list, add it to \(S \) if doing so would not cause \(S \)'s sum to exceed \(t \).

(a) Show that the above heuristic is a \(\frac{1}{2} \)-approximation for MAX-SUBSET-SUM.

(b) Show how to extend this heuristic into a \(\frac{k}{k+1} \)-approximation for any \(k \geq 2 \). What is the running time of your method for a given \(k \)?

3. A self-organizing data structure is reorganized during execution in response to a sequence of operations, with the goal of achieving good performance on the actual, initially unknown, sequence. Often, the majority of operations concern a small number of elements, and so optimizing the access time to these elements can improve performance overall. In this problem, we will analyze a simple self-organizing linked list. In this linked list, whenever we access a list node, we move that node to the head of the list (pushing the rest of the elements back one position). We’ll say that it costs one operation (\$1, if you like) to access a node of the list and check its value, so that walking a list to access the \(k \)th element of that list costs \(k \) operations.

(a) Consider some arbitrary list containing \(n \) distinct elements, and suppose we have used the self-organizing algorithm when accessing \(k \) out of the \(n \) elements. For each of the remaining \(n - k \) elements, exactly how many more operations would it take to access that element in the self-organizing list than in the original list?

(b) Now, show that for our arbitrary list containing \(n \) distinct elements, and any sequence of \(T \) accesses to the list elements, the self-organizing algorithm uses at most twice as many operations as if we had kept the list order static.

(c) Finally, show that for every possible static ordering of the \(n \) distinct elements and sequence of \(T \) accesses, if these accesses cost \(C \) operations in total, then the self-organizing algorithm uses at most \(2C + n^2 \) operations in total, for a competitive ratio of at most \(2 + \frac{n^2}{T} \) as \(T \to \infty \) against all static lists.