Difference between revisions of "Syllabus"
From CSE260M Wiki
Jump to navigationJump to search(One intermediate revision by the same user not shown) | |||
Line 181: | Line 181: | ||
|NOV 13 | |NOV 13 | ||
|The Difference Engine in RSRC Assembly Language<br />RSRC Instruction Fetch RTN<br />ADD RTN<br />Datapath Refinement<br />RSRC Control FSM VHDL | |The Difference Engine in RSRC Assembly Language<br />RSRC Instruction Fetch RTN<br />ADD RTN<br />Datapath Refinement<br />RSRC Control FSM VHDL | ||
− | |[[media:The_Really_Simple_RISC_Computer.pdf|The Really Simple RISC Computer (RSRC)]] | + | |[[media:The_Really_Simple_RISC_Computer.pdf|The Really Simple RISC Computer (RSRC)]]<br />[[media:RSRC_Abstract_RTN.pdf|RSRC Abstract RTN]] |
| | | | ||
| | | | ||
Line 189: | Line 189: | ||
|NOV 15 | |NOV 15 | ||
|Displacement-Based Addressing<br />Branch Instruction Datapath Refinement<br />Shift Instruction Datapath Refinement | |Displacement-Based Addressing<br />Branch Instruction Datapath Refinement<br />Shift Instruction Datapath Refinement | ||
− | |[[media:The_Really_Simple_RISC_Computer.pdf|The Really Simple RISC Computer (RSRC)]] | + | |[[media:The_Really_Simple_RISC_Computer.pdf|The Really Simple RISC Computer (RSRC)]]<br />[[media:DISPLACEMENT.pdf|RSRC/SRC Displacement-Based Addressing]] |
|Homework 8 | |Homework 8 | ||
|Homework 7 | |Homework 7 |
Latest revision as of 20:09, 9 May 2017
LECTURE | DATE | TOPICS | PREPARATION | ASSIGNED | DUE |
1 | AUG 28 | Course Introduction Number Systems Base Conversion Arithmetic Operations Codes |
Course Introduction Chapter 1 The Reflected Binary (Gray) Code |
Homework 1 | |
2 | AUG 30 | Boolean Algebra DeMorgan's Theorem The Consensus Theorem Introduction to K-Maps |
Chapter 2 | ||
3 | SEPT 6 | Standard Forms: POS Notation Two-Level Circuit Optimization Using K-Maps Proving Identities Using K-Maps The XOR Gate The Half Adder The Full Adder The Ripple-Carry Adder |
Chapter 2 Chapter 3 |
Homework 2 | Homework 1 |
4 | SEPT 11 | Essential Prime Implicants and Optimized Expressions Standard Forms: SOP Notation Five- and Six-Variable K-Maps Don’t cares Gate propagation delay The 74LS04 Inverter The Mux The Decoder Implementing Circuits Using Muxes |
Chapter 2 Chapter 3 74LS04 Datasheet |
||
5 | SEPT 13 | Standard Cell Implementation of Logic Circuits VHDL: VHSIC Hardware Description Language VHDL Constructs: IF, WHEN, SELECT Xilnix Vivado Tool Suite Boole's Expansion Theorem (First Pass) |
Standard Cell Circuit VHDL Tutorial Vivado Simulation Tutorial 1 Full Vivado Tutorial Boole's Expansion Theorem |
Homework 3 | Homework 2 |
6 | SEPT 18 | Boole's Expansion Theorem (Second Pass) Introduction to Xilinx 7-Series FPGAs USING LUTs to Implement Logic (LUT = Storage + MUX) |
Chapter 5 Xilinx 7-Series FPGAs Overview Xilinx 7-Series CLB User Guide |
||
7 | SEPT 20 | Digilent Nexys4 DDR Development Board Digilent Nexys4 DDR Board Schematic (LEDs, Switches) Concepts of VCCIO and Core Voltage |
Digilent Nexys4 DDR Manual Digilent Nexys4 DDR Schematics |
Lab 1 | Homework 3 |
8 | SEPT 25 | Implementing Functions with NAND and NOR Gates Implementing Functions with Decoders The Priority Encoder The 4-bit Adder as a 2-Level Circuit Addition and Subtraction of 2s Complement Numbers Incrementing (The Incrementer Circuit) Multiplication by Constants |
Chapter 3 | ||
9 | SEPT 27 | Gate Propogation Delay Races and Hazards Review |
Chapter 2 | Lab 1 | |
10 | OCT 2 | EXAM 1 | |||
11 | OCT 4 | Oscillators and Clock Distribution Flip-Flop as a Black Box A First Counter (Incrementer + FFs) The Difference Engine (DE) VHDL for FFs, Registers, Counters, and The DE Setup Time Hold Time Clock-to-Output Time Introduction to Metastability |
Chapter 4 Oscillators and Clock Distribution First Counter Using Babbage's Difference Engine to Introduce Computer Architecture VHDL Tutorial Anomalous Behavior of Synchronizer and Arbiter Circuits Measured Flip-Flop Responses to Marginal Triggering |
Homework 4 | |
12 | OCT 9 | Latches NOR SR Latch VHDL Flip-Flops 74LS74/74S74 Flip-Flop Formal Definition of Mealy- and Moore-Model FSMs State Tables Second Counter: FSM Design Example Clocks in VHDL |
Chapter 4 NOR SR Latch VHDL 74LS74 Datasheet Second Counter Vivado Simulation Tutorial 2 (Forcing a Clock) |
||
13 | OCT 11 | Sequence Recognizer FSMs in VHDL One-Hot FSM Implementation Recognizing Character Sequences (Packet Sniffing) |
Chapter 4 VHDL Tutorial |
Homework 5 Lab 2 |
Homework 4 |
OCT 16 | Fall Break | ||||
14 | OCT 18 | FSM Timging/Max Clock Rate Path Analysis and Slack Equivalent States Minimizing Complete Specified Machines Combination Mealy/Moore Machines |
Chapter 4 Vivado Clock Constraints Tutorial Definitions and Theorems for Sequential Machines Minimizing Completely Specified Machines |
||
15 | OCT 23 | Digital Systems = Datapath + Control Register Transfers Tri-State Buffers Pull-ups/Pull-downs The Bus-Based Difference Engine |
Chapter 6 The Really Simple RISC Computer (RSRC) |
Homework 6 Lab 3 |
Homework 5 Lab 2 |
16 | OCT 25 | The Bus-Based Difference Engine Datapath VHDL Shift Registers Parallel-to-Serial Conversion Serial-to-Parallel Conversion Ripple Counters |
Chapter 6 The Really Simple RISC Computer (RSRC) |
||
17 | OCT 30 | The Bus-Based Difference Engine Control FSM VHDL |
The Really Simple RISC Computer (RSRC) | Homework 6 | |
18 | NOV 1 | Review | Lab 3 | ||
19 | NOV 6 | Exam 2 | |||
20 | NOV 8 | The Really Simple RISC Computer Simple Synchronous Static RAM Introduction to Assembly Language and Hand Assembly |
The Really Simple RISC Computer (RSRC) 1Kx32 RSRC Memory Subsystem RSRC/SRC SIMULATOR |
Homework 7 | |
21 | NOV 13 | The Difference Engine in RSRC Assembly Language RSRC Instruction Fetch RTN ADD RTN Datapath Refinement RSRC Control FSM VHDL |
The Really Simple RISC Computer (RSRC) RSRC Abstract RTN |
||
22 | NOV 15 | Displacement-Based Addressing Branch Instruction Datapath Refinement Shift Instruction Datapath Refinement |
The Really Simple RISC Computer (RSRC) RSRC/SRC Displacement-Based Addressing |
Homework 8 | Homework 7 |
23 | NOV 20 | R[rc] Multiplexor Design RSRC ALU VHDL 1Kx32 RSRC Memory Subsystem Memory: 6T SRAM Cell DRAM Cell |
Chapter 7 The Really Simple RISC Computer (RSRC) 1Kx32 RSRC Memory Subsystem |
||
24 | NOV 27 | A Commercial SRAM A Commercial DRAM A Commercial EPROM RSRC VHDL and Simulation Testbench |
Cypress 32Kx8 SRAM Micron 4Mx16 EDO DRAM AMD 32Kx8 EPROM Datasheet The Really Simple RISC Computer (RSRC) RSRC VHDL Supplied by the Instructor |
Homework 9 | Homework 8 |
25 | NOV 29 | 1-Bus vs. 2-Bus vs. 3-Bus RSRC 3-Bus RSRC Register File Intel 8086 Bus Architecture RSRC Instruction Set Review RSRC Architecture Review |
1-Bus SRC Block Diagram (From Heuring and Jordan) 2-Bus SRC Block Diagram (From Heuring and Jordan) 3-Bus SRC Block Diagram (From Heuring and Jordan) 3-Bus SRC Register File (From Heuring and Jordan) Intel 8086 Block Diagram The Really Simple RISC Computer (RSRC) |
||
26 | DEC 4 | Difference Engine in C (x86) w/Assembly Review |
Difference Engine in C (x86) | Homework 9 | |
27 | DEC 6 | Exam 3 |