Lecture 1: Asymptotic Complexity

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.
Announcements

- Recitation starts this Sunday, 2-3pm Louderman 458
- Stay tuned to Piazza and website for start of TA office hours
- **Studio pre-quiz 1** due tomorrow night 11:59pm (on Canvas)
- **Lab 1** released tomorrow
 - due **Friday, Sep. 13th at 11:59 PM**
 - *(work on your own – it’s a lab)*
- Coding component + writeup
- Please review and follow the eHomework guidelines for this and future lab writeups.
- Read the Gradescope turn-in guide at the bottom of the eHomework guidelines.
- **Verify your submissions** on both Gradescope and GitHub (NOT JUST in Eclipse).
Tool tip: Java debugger in Eclipse

- **Live demo:** right-click
 <repo dir>/coursesupport/timing.examples/Linear.java
 -> Debug as -> Java application
- **Things to note:**
 - Setting breakpoints
 - Running program: observe stop at breakpoints, observe Debug perspective (top right)
 - Debugger toolbar commands: Step over, Step into, Terminate, Resume
 - Inspecting variable/object state in Debug perspective (top right)
 - Switching back to standard Java perspective (button in top right)
Things You Saw in Studio 0

- “Ticks” are a useful way to measure complexity -- count # of times we reach a specific place in the code.

- Growing array by doubling takes time linear in # of elements added.

- (“Naïve approach” took quadratic time!)

- We can reason about the number of ticks (∼ running time) of a program analytically, without actually running it.
Today’s Agenda

- Counting the number of ticks exactly
- Asymptotic complexity
- Big-O notation – being sloppy, but in a very precise way
- Big-Ω notation – the opposite (?) of big-O
- Big-Θ notation – how to say “about a constant times f(n)”
How Many Times Do We Tick?

- Let’s take an example from the studio:

```java
public void run() {
    for (int i=0; i < n; ++i) {
        //
        // Statement below is deemed to take one operation
        //
        this.value = this.value + i;
        ticker.tick();
    }
}
```

How many times do we call `tick()`?
How Many Times Do We Tick?

- Let’s take an example from the studio:

```java
public void run() {
    for (int i=0; i < n; ++i) {
        //
        // Statement below is deemed to take one operation
        this.value = this.value + i;
        ticker.tick();
    }
}
```

“Once for each value of i in the loop”
How Many Times Do We Tick?

- Let’s take an example from the studio:

```java
public void run() {
    for (int i = 0; i < n; ++i) {
        //
        // Statement below is deemed to take one operation
        //
        this.value = this.value + i;
        ticker.tick();
    }
}
```

So, for \(i = 0, 1, 2, \ldots \) ???
How Many Times Do We Tick?

- Let’s take an example from the studio:

```java
public void run() {
    for (int i=0; i < n; ++i) {
        // Statement below is deemed to take one operation
        //
        this.value = this.value + i;
        ticker.tick();
    }
}
```

So, for i = 0, 1, 2, … n-1
How Many Times Do We Tick?

- Let’s take an example from the studio:

```java
public void run() {
    for (int i=0; i < n; ++i) {
        //
        // Statement below is deemed to take one operation
        //
        this.value = this.value + i;
        ticker.tick();
    }
}
```

So, for \(i = 0, 1, 2, \ldots \ n-1 \) \(\text{(not } n, \text{ because } <) \)
Accounting

- One tick per loop iteration.
- Total tick count is therefore

\[\sum_{i=0}^{n-1} (1) \]
Accounting

- One tick per loop iteration.

- Total tick count is therefore

\[\sum_{i=0}^{n-1} (1) = (n - 1) - 0 + 1 = n \]
Accounting

- One tick per loop iteration.
- Total tick count is therefore

\[\sum_{i=0}^{n-1} (1) = (n - 1) - 0 + 1 = n \]

First rule of counting: a loop from \(i = \text{LO} \) to \(i = \text{HI} \) runs

\(\text{HI} - \text{LO} + 1 \) times
Let’s Try a Doubly-Nested Loop

- Now consider this code:

```java
public void run() {
    for (int i=0; i < n; ++i) {
        for (int j=0; j < i; ++j) {
            // Statement below takes one operation
            this.value = this.value + i;
            ticker.tick();
        }
    }
}
```

How many times do we call tick()?
Let’s Work from the Inside Out

- Innermost loop runs for \(j \) from 0 to ... ????

```java
public void run() {
    for (int i=0; i < n; ++i) {
        for (int j=0; j < i; ++j) {
            //
            // Statement below takes one operation
            this.value = this.value + i;
            ticker.tick();
        }
    }
}
```
Let’s Work from the Inside Out

- Inner loop runs for \(j \) from 0 to \(i-1 \)

```java
public void run() {
    for (int i=0; i < n; ++i) {
        for (int j=0; j < i; ++j) {
            //
            // Statement below takes one operation
            this.value = this.value + i;
            ticker.tick();
        }
    }
}
```

Hence, we tick \((i-1) - 0 + 1 = i\) times each time we execute the inner loop.
Let’s Work from the Inside Out

- Outer loop runs for i from 0 to ... ???
Let’s Work from the Inside Out

- Outer loop runs for i from 0 to … n-1

```java
public void run() {
    for (int i=0; i < n; ++i) {
        // i ticks
    }
}
```

But this time, the number of ticks is different for each i!
Accounting

- i ticks per outer loop iteration

- Total tick count is therefore

- $\sum_{i=0}^{n-1} i$
Accounting

- i ticks per outer loop iteration.
- Total tick count is therefore
 \[\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} \]

Remember this from last time? We'll use it a lot!
Accounting

- i ticks per outer loop iteration.
- Total tick count is therefore

\[\sigma_i = n - 1 \]

\[\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} \]

Second rule of counting: when loops are nested, work inside-out and form a summation.
One More Time

- Instead of Java, let’s do *pseudocode*.

```plaintext
for j in 1 \ldots n
  tick()
for k in 0 \ldots j
  tick()
tick()
tick()
tick()
```
One More Time…

- Instead of Java, let’s do pseudocode.

```plaintext
for j in 1 ... n
    tick()
for k in 0 ... j
    tick()
    tick()
    tick()
```

“For j from 1 to n, inclusive”
One More Time

- Instead of Java, let’s do pseudocode.

```
for j in 1 \ldots n
  tick()
  for k in 0 \ldots j
    tick()
    tick()
    tick()
```

Inner loop runs for \(k \) from 0 to \(j \) and ticks 3 times per iteration.
One More Time

- Instead of Java, let’s do pseudocode.

```plaintext
for j in 1 ... n
    tick()
    for k in 0 ... j
        tick()
        tick()
        tick()
```

Inner loop runs $j - 0 + 1 = j+1$ times and ticks 3 times per iteration.
One More Time

- Instead of Java, let’s do pseudocode.

```plaintext
for j in 1 ... n
  tick()

Inner loop runs
j – 0 + 1 = j+1 times
and ticks
3 times per iteration
```

3(j+1) ticks
One More Time

- Instead of Java, let’s do pseudocode.

```
for j in 1 ... n
  tick()

3(j+1) ticks
```

Outer loop runs for \(j \) from 1 to \(n \) and ticks ?? times on iteration \(j \)
One More Time

- Instead of Java, let’s do pseudocode.

```plaintext
for j in 1 ... n
    tick()
    for k = 0 ... j
        tick()
    tick()
```

Outer loop runs for j from 1 to n and ticks $1 + 3(j+1) = 3j+4$ times on iteration j.

3(j+1) ticks
Accounting

- 3j+4 ticks per outer loop iteration.
- Total tick count is therefore

\[\sum_{j=1}^{n} (3j + 4) \]
Accounting

- 3j+4 ticks per outer loop iteration.
- Total tick count is therefore

\[\sigma_j = n (3j + 4) \]

(smite with the power of Mjölnir algebra)
Accounting

- 3j + 4 ticks per outer loop iteration.
- Total tick count is therefore

$$\sum_{j=1}^{n} (3j + 4) = \frac{3n(n+1)}{2} + 4n = \frac{3n^2 + 11n}{2}$$
Do We Really Care?

- Seriously, $\frac{3n^2+11n}{2}$

- Do we need this much detail to understand our code’s running time?
How Do We Actually Use Running Times?

- Predict exact time to complete a task
How Do We Actually Use Running Times?

- Predict exact time to complete a task (yes, we need the precise count for this)
How Do We Actually Use Running Times?

- Predict exact time to complete a task (yes, we need the precise count for this)

- Compare running times of different algorithms
How Do We Actually Use Running Times?

- Predict exact time to complete a task (yes, we need the precise count for this)

- Compare running times of different algorithms

\[1000 \, n \, \log \, n \quad n^2 \quad 3n^2\]
How Do We Actually Use Running Times?

- Predict exact time to complete a task (yes, we need the precise count for this)

- Compare running times of different algorithms

\[1000 \, n \log n \quad n^2 \quad 3n^2 \]

*Difference is a constant factor (solved by using a *bigger* computer)*
How Do We Actually Use Running Times?

- Predict exact time to complete a task (yes, we need the precise count for this)

- Compare running times of different algorithms

\[1000 \, n \, \log n \quad n^2 \quad 3n^2\]

Qualitatively different!
Desirable Properties of Running Time Estimates

- Distinguish “get a bigger computer” vs “qualitatively different”
 → order of growth matters (constant factors don’t)
Desirable Properties of Running Time Estimates

- Distinguish “get a bigger computer” vs “qualitatively different” → **order of growth matters** (constant factors don’t)

- Ignore transient effects for small input sizes n
Desirable Properties of Running Time Estimates

- Distinguish “get a bigger computer” vs “qualitatively different”
 - order of growth matters (constant factors don’t)

- Ignore transient effects for small input sizes n
 - **Standard assumption**: we care what happens as input becomes “large” (grows without bound)
 - In other words, we care about asymptotic behavior of an algorithm’s running time!
"BIG DATA"?

Oh, you must mean asymptotic complexity.
How do we reason about asymptotic behavior?

Running-time Theory Time!
Definition of Big-O Notation

- Let $f(n), g(n)$ be positive functions for $n > 0$.
Definition of Big-O Notation

- Let $f(n)$, $g(n)$ be positive functions for $n > 0$. [e.g. running times!]
Definition of Big-O Notation

- Let $f(n), g(n)$ be positive functions for $n > 0$. [e.g. running times!]

- We say that $f(n) = O(g(n))$ if there exist constants $c > 0, n_0 > 0$ such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.
There exist constants $c > 0$, $n_0 > 0$ such that for all $n \geq n_0$,
$f(n) \leq c \cdot g(n)$.

\[f(n) = O(g(n)) \]
There exist constants $c > 0$, $n_0 > 0$ such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

For small n, $f(n)$ can behave strangely if it wants.
There exist constants $c > 0$, $n_0 > 0$ such that for all $n \geq n_0$,
$f(n) \leq c \cdot g(n)$.

But by some point n_0, $f(n)$ settles down…
There exist constants $c > 0$, $n_0 > 0$ such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

... and it stays $\leq c \cdot g(n)$ forever after.
Does Big-O Have the Properties We Desire?

- Explicitly ignores behavior of functions for small \(n \) (we get to decide what “small” is).
- Allows a constant \(c \) in front of \(g(n) \) for upper bound.
- \textit{Does that make big-O insensitive to constants?}
Big-O Ignores Constants, as Desired

- **Lemma:** If \(f(n) = O(g(n)) \), then \(f(n) = O(a \cdot g(n)) \) for any \(a > 0 \).

- **Pf:**
 \[f(n) = O(g(n)) \rightarrow \text{for some } c > 0, n_0 > 0, \text{ if } n \geq n_0, \]
 \[f(n) \leq c \cdot g(n). \]

- But then for \(n \geq n_0 \),
 \[f(n) \leq \frac{c}{a} \cdot a \cdot g(n). \]

- Conclude that \(f(n) = O(a \cdot g(n)) \). QED
Big-O Ignores Constants, as Desired

- Lemma: If \(f(n) = O(g(n)) \), then \(f(n) = O(a\ g(n)) \) for any \(a > 0 \).

- Pf: \(f(n) = O(g(n)) \Rightarrow \) for some \(c > 0, n_0 > 0 \), if \(n \geq n_0 \), \(f(n) \leq c\ g(n) \).

- But then for \(n \geq n_0 \), \(f(n) \leq c\ a\ g(n) \).

- Conclude that \(f(n) = O(a\ g(n)) \). QED

When specifying running times, never write a constant inside the \(O() \). It is unnecessary.
Does big-O Match our Intuition?

- Which function grows faster, n or \(n^2 \)?
Does big-O Match our Intuition?

- Which function grows faster, n or \(n^2 \)? [quadratic beats linear]
- So does \(n = O(n^2) \)?
- Set \(c = ???, n_0 = ??? \) [many options here]
Does big-O Match our Intuition?

- Which function grows faster, n or n^2? [quadratic beats linear]
- So does $n = O(n^2)$?
- Set $c = 1$, $n_0 = 1$ [many options here]
- When $n \geq 1$, is $1 \cdot n^2 \geq n$?
Does big-O Match our Intuition?

- Which function grows faster, n or n^2? [quadratic beats linear]

- So does $n = O(n^2)$?

- Set $c = 1$, $n_0 = 1$ [many options here]

- When $n \geq 1$, is $1 \cdot n^2 \geq n$?

- Yes! – multiply both sides of “$n \geq 1”$ by n. QED
General Strategy for Proving $f(n) = O(g(n))$

1. Pick $c > 0$, $n_0 > 0$. \([\text{choose to make next steps easier}]\)

2. Write down desired inequality $f(n) \leq c \cdot g(n)$.

3. Prove that the inequality holds whenever $n \geq n_0$.
Another Example

- Does $3n^2 + 11n = O(n^2)$?
Another Example

- Does $3n^2 + 11n = O(n^2)$? [what does your intuition say?]
- Let’s prove it.
- Set $c = ???$, $n_0 = ???$
Another Example

- Does $3n^2 + 11n = O(n^2)$? [what does your intuition say?]

- Let’s prove it.

- Set $c = 33$, $n_0 = 1$ [again, many possible choices]

- For $n \geq 1$, difference
 \[33n^2 - (3n^2 + 11n) = (11n^2 - 3n^2) + (11n^2 - 11n) + (11n^2 - 0) > 0.\]

Conclude that the claim is true. \textit{QED}
Generalization of Previous Proof

- **Thm**: any polynomial of the form $s(n) = \sum_{j=0}^{k} a_j n^j$ is $O(n^k)$.

- **Pf**: pick c to be $k+1$ times the largest (most positive) a_j; pick $n_0 = 1$.

- Write $cn^k - s(n)$ as

$$\sum_{j=0}^{k} \left(\frac{c}{k+1} n^k - a_j n^j \right),$$

each term of which is ≥ 0 for $n \geq 1$. QED
Generalization of Previous Proof

- **Thm**: any polynomial of the form \(s(n) = \sum_{j=0}^{k} a_j n^j \) is \(O(n^k) \).

- **Pf**: pick \(c \) to be \(k+1 \) times the largest \(a_j \), and pick \(n_0 = 1 \).

 When specifying running times, never write lower-order terms inside the \(O() \). It is unnecessary.

 Write \(cn^k - s(n) \) as

 \[\sum_{j=0}^{k} \left(\frac{1}{k+1} n^j n^{k-j} - a_j n^j \right), \]

 each term of which is \(\geq 0 \) for \(n \geq 1 \). QED
Generalization of Previous Proof

- **Thm**: any polynomial of the form $s(n) = \sum_{j=0}^{k} a_j n^j$ is $O(n^k)$.

- **Pf**: pick c to be $k+1$ times the largest a_j, and pick $n_0 = 1$.

- Write $cn^k - s(n)$ as

 $$\frac{3n^2+11n}{2} = O(n^2)$$

 each term of which is ≥ 0 for $n \geq 1$. QED
Generalization of Previous Proof

- **Thm**: any polynomial of the form \(s(n) = \sum_{j=0}^{k} a_j n^j \) is \(O(n^k) \).

- **Pf**: pick \(c \) to be \(k+1 \) times the largest \(a_j \), and pick \(n_0 = 1 \).

- Write \(cn^k - s(n) \) as
 \[
 \sum_{j=0}^{k} \left(\frac{c}{k+1} n^k - a_j n^j \right),
 \]
 each term of which is \(\geq 0 \) for \(n \geq 1 \). QED

Polynomial terms other than the highest do not impact asymptotic complexity!
One More Example

- Does $1000n \log n = O(n^2)$?
One More Example

- Does $1000 \, n \log n = \mathcal{O}(n^2)$?
- Set $c = ???$, $n_0 = ???$
One More Example

- Does $1000 \, n \log n = O(n^2)$?
- Set $c = 1000$, $n_0 = 1$
- When $n = 1$, $1000 \, n^2 - 1000 \, n \log n = 1000 > 0$.
- Moreover, *this difference only grows with increasing $n > 1$.* QED
One More Example

- Does $1000n \log n = O(n^2)$?

- Set $c = 1000$, $n_0 = 1$

- When $n = 1$, $1000n^2 - 1000n \log n = 1000 > 0$.

- Moreover, *this difference only grows with increasing $n > 1$*. QED

(Oh really? Are you sure?)
One More Example

- Well, the derivative of the difference

\[
\frac{d}{dn} [1000 \ n^2 - 1000 \ n \log n] = 2000 \ n - 1000 - 1000 \log n,
\]

which is > 0 for \(n = 1 \). But does it stay that way for \(n > 1 \)?
One More Example

- Well, the derivative of the difference

\[
\frac{d}{dn} [1000 \, n^2 - 1000 \, n \log n] = 2000 \, n - 1000 - 1000 \log n,
\]

which is \(> 0\) for \(n = 1\). *But does it stay that way for \(n > 1\)?*

- Furthermore,

\[
\frac{d^2}{dn^2} [1000n^2 - 1000 \, n \log n] = 2000 - 1000/n,
\]

which is \(> 0\) for \(n \geq 1\). Hence, the derivative remains positive, and so the difference increases for \(n \geq 1\) as claimed.
Moral

- You can use calculus to show that one function remains greater than another past a certain point, even if the functions are not algebraic.

- This is often a crucial step in proving $f(n) = O(g(n))$.

- (Next time, we’ll use this idea to derive a general test for comparing the asymptotic behavior of two functions.)

Big-O makes precise our intuition about when one function effectively upper-bounds another, ignoring constant factors and small input sizes.
Extensions of Big-O Notation: Ω and Θ
More Ways to Bound Running Times

- When comparing numbers, we would not be happy if we could say “$x \leq y$” but not “$x \geq y$” or “$x = y$”

- Big-O is analogous to \leq for functions [upper bound on growth rate]

- What are statements analogous to \geq, $?
More Ways to Bound Running Times

- When comparing numbers, we would *not* be happy if we could say “$x \leq y$” but not “$x \geq y$” or “$x = y$”

- Big-O is analogous to \leq for functions \([upper bound on growth rate]\)

- What are statements analogous to \geq, $=$?

 Ω, Θ
Definition of Big-Ω Notation

- Let $f(n), g(n)$ be positive functions for $n > 0$. [e.g. running times!]

- We say that $f(n) = \Omega(g(n))$ if there exist constants $c > 0, n_0 > 0$
 such that for all $n \geq n_0$,
 $$f(n) \geq c \cdot g(n).$$
Definition of Big-Ω Notation

- Let $f(n)$, $g(n)$ be positive functions for $n > 0$. [e.g. running times!]

- We say that $f(n) = \Omega(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that for all $n \geq n_0$,

 $$f(n) \geq c \cdot g(n).$$
There exist constants $c > 0$, $n_0 > 0$ such that for all $n \geq n_0$, $f(n) \geq c \cdot g(n)$.

$\Omega(g(n))$
How Do You Prove $f(n) = \Omega(g(n))$?

- **Lemma:**

 $f(n) = O(g(n))$ iff $g(n) = \Omega(f(n))$

- So if we want to prove, say,

 $n^2 = \Omega(n \log n)$,

 we just prove

 $n \log n = O(n^2)$.
(Proof of Lemma)

- If \(f(n) = O(g(n)) \), there are \(c > 0, n_0 > 0 \) s.t. for \(n \geq n_0 \), \(f(n) \leq c \ g(n) \).

- Set \(d = 1/c \). Then for \(n \geq n_0 \), \(g(n) \geq d \ f(n) \).

- Conclude that with constants \(d, n_0 \), we have proved \(g(n) = \Omega(f(n)) \).

- A similar argument works to prove the other direction of the iff. QED
Definition of Big-Θ Notation

- Let $f(n), g(n)$ be positive functions for $n > 0$. [e.g. running times!]

- We say that $f(n) = \Theta(g(n))$ if there exist constants $c_1, c_2 > 0$, $n_0 > 0$ such that for all $n \geq n_0$,
 \[c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n). \]
Definition of Big-Θ Notation

- Let \(f(n) \), \(g(n) \) be positive functions for \(n > 0 \). [e.g. running times!]

- We say that \(f(n) = \Theta(g(n)) \) if there exist constants \(c_1, c_2 > 0, n_0 > 0 \) such that for all \(n \geq n_0 \),
 \[
 c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n).
 \]
There exist constants $c_1, c_2 > 0$, $n_0 > 0$ s.t. for all $n \geq n_0$,
$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$.

Upper and lower bounds on $f(n)$ (might not be same constant)
How Do You Prove \(f(n) = \Theta(g(n)) \)?

- **Lemma:**

 \[
 f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))
 \]

- So if we want to prove, say,

 \(3n^2 + 11n = \Theta(n^2) \),

 we just prove

 \(3n^2 + 11n = O(n^2) \text{ and } 3n^2 + 11n = \Omega(n^2) \)
How Do You Prove $f(n) = \Theta(g(n))$?

- **Lemma:**

\[
\begin{align*}
 f(n) = \Theta(g(n)) & \text{ iff } \\
 f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))
\end{align*}
\]

You should be able to prove this lemma from the definitions of O, Ω, and Θ.
Conclusion (so far)

- We now have **precise** way to bound behavior of fcns when \(n \) gets large, ignoring constant factors.

- We can replace ugly precise running times by much simpler expressions with same asymptotic behavior.

- You will see \(O, \Omega, \) and \(\Theta \) frequently for rest of 247!
Next Time...

- Quick, *uniform* proof strategy for O, Ω, and Θ statements
- Review of linked lists for Studio 2
- More practice applying asymptotic complexity