Now for randomized QuickSort!

1 Fixing Quicksort

- worst-case complexity is bad $\Theta(n^2)$
- worst case may be common (array already sorted!)
- yet it has benefits (simple, in-place)

What could we do to fix it?

- Choose some other array element consistently?
- No good, still an easy way to force $\Theta(n^2)$ performance
- Can we argue that QUICKSORT behaves nicely on “average” inputs? Seems hard to model “average” array
 - Better idea: randomize the algorithm, not the inputs!

2 Randomized Algorithms

Defn: a randomized algorithm uses random numbers, independent of the input, in computing its answer.

- running time of algorithm depends on random choices
- can run for different times on same input
- always produces right answer (eventually)
- (such algorithms are called “Las Vegas” (vs “Monte Carlo” algs that can always finish quickly but can fail to return correct answer)
- poor performance occurs with only small probability, no matter what the input
3 Randomized Quicksort

Quicksort \((A, p, r)\)

\[
\begin{align*}
&\text{if } p < r \\
&\quad x \leftarrow \text{RANDOM}(p, r) \\
&\quad \text{swap}(A[x], A[r]) \\
&\quad z \leftarrow \text{Partition}(A, p, r) \\
&\quad \text{Quicksort}(A, p, z - 1) \\
&\quad \text{Quicksort}(A, z + 1, r)
\end{align*}
\]

- partitions around element chosen uniformly at random
- Let \(n = r - p + 1\)
- \(\Pr(\text{partitions around } A[j]) = \frac{1}{n}, p \leq j \leq r\)

4 Analysis of Randomized Quicksort

- Will measure expected performance
- expectation is over all sets of random choices, *not* over inputs
- for simplicity, assume all array elements distinct
- Let \(T(n)\) be expected running time of quicksort.
- **Defn:** rank of an element \(A[x]\) is \(#\) of posns \(y\) such that \(A[y] < A[x]\). (rank 0 is smallest elt)
- With probability \(\frac{1}{n}\), a randomly chosen element has rank \(k\), for each \(0 \leq k \leq n - 1\).
- If partition element has rank \(k\), we partition array into parts of sizes \(k\) and \(n - k - 1\) (plus part elt itself).

<table>
<thead>
<tr>
<th>rank</th>
<th>low part</th>
<th>high part</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(n - 2)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(n - 3)</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>(n - 1)</td>
<td>(n - 1)</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclude that

\[\begin{align*}
T(n) &= E_k \text{ [time with } k : n - k - 1 \text{ split]} \\
&= E_k [T(k) + T(n - k - 1) + cn] \\
&= E_k[T(k)] + E_k[T(n - k - 1)] + E_k[cn] \\
&= \sum_{k=0}^{n-1} \frac{1}{n} T(k) + \sum_{k=0}^{n-1} \frac{1}{n} T(n - k - 1) + cn \\
&= \frac{1}{n} \left(\sum_{k=0}^{n-1} T(k) \right) + \frac{1}{n} \left(\sum_{k'=0}^{n-1} T(k') \right) + cn \\
&= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + cn
\end{align*} \]

5 Solving This Weird Recurrence

\[T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + cn \]

How do we solve this wacky recurrence? Even a recursion tree is confusing. Any ideas?

- When in doubt, guess!
- I’m going to guess that \(T(n) = \Theta(n \log n) \)
- To get an answer, will need some base cases. Assume \(T(0) = T(1) = 1 \) (constant > 0 does not matter).
- Will show \(T(n) = O(n \log n) \); \(\Omega \) proof similar

Inductive proof idea:

- Will use induction on \(n \), as usual
- **First cut at i.h.**: show that \(T(n) \leq c'n \log n \) for some \(c' \) and every \(n \geq 0 \).
- Doesn’t work in base case! Requires that \(T(0), T(1) \leq 0 \).
- **Second cut at i.h.**: show that \(T(n) \leq c'n \log n + 1 \) for some \(c' \) and every \(n \geq 0 \).
- Works in base case: \(T(0) = T(1) = 0 + 1 = 1 \).
- (Note: we could also start at some larger input size, but adding lower-order terms is a more common workaround.)
Ind: assume i.h. true for \(k < n \).

\[
T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + cn \\
\leq \frac{2}{n} \sum_{k=0}^{n-1} (c'k \log k + 1) + cn \\
= \frac{2c}{n} \sum_{k=0}^{n-1} k \log k + \frac{2}{n} \sum_{k=0}^{n-1} 1 + cn \\
= \frac{2c}{n} \sum_{k=0}^{n-1} k \log k + 2 + cn
\]

We need a fancy summation formula! Can show that

\[
\sum_{k=0}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2.
\]

Conclude that

\[
T(n) \leq 2 + cn + \frac{2c}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) \\
= 2 + cn + c'n \log n - \frac{c'}{4} n \\
= c'n \log n + 1 + \left(cn - \frac{c'}{4} n + 1 \right)
\]

Need to choose \(c' \) so that, for \(n \geq 2 \),

\[
n \left(c - \frac{c'}{4} \right) + 1 \leq 0.
\]

Set \(c' = 4(c + 1) \), and it works! With this \(c' \), i.h. goes through. QED