1 Constraints of Double Hashing

How does using OA w/double hashing constrain our hash function design?

- Need to avoid bad behavior of slot sequences. For example, suppose $m = 6$, but $h_2(k) = 3$? We only ever touch two slots of table!
- Recall $s_i = (h_1(k) + ih_2(k)) \mod m$.
- For double hashing, want slot sequence to be as long as table size m
- To ensure non-repetition for $i < m$, suffices to require that
 $$s_i \neq s_0, 1 \leq i < m$$
- By definition of our slot sequence, this means
 $$ih_2(k) \not\equiv 0 \pmod{m}, 1 \leq i < m$$
- true iff $\gcd(h_2(k), m) = 1$.
- *One possibility:* make m a prime number – every smaller step size is OK.
- Requires finding suitable primes for a range of possible table sizes, and computing indices modulo these primes (could be expensive!)
- *Alternative:* make m a power of 2, and ensure that $h_2(k)$ is always an odd number!
- Avoids issues with general primes, but reduces the space of step values by half – possibly more collisions.

2 Hashing Performance Model

Worst-case performance of hashing is a dismal $\Theta(n)$. How can we do a more useful performance analysis?

- study *average case* behavior
first, assume we have a “good” hash function

assume **simple uniform hashing**:

1. Suppose hash function \(h(k) \) maps keys to a range \(0 \ldots m - 1 \).
2. Each key is equally likely to map to each slot in the table, independent of all others.
3. That is, for each key \(k \) and slot \(s \),
 \[
 \Pr[k \text{ maps to slot } s] = \frac{1}{m}
 \]

What is a sensible measure of performance for hashing?

• **find is the important operation**; in general, searching the table is what we care about

• time spent searching is proportional to **number of collisions**

• for **chaining**: collisions with key \(k \) determined by length of chain in slot \(h(k) \)

• for **open addressing**: collisions with key \(k \) determined by length of slot sequence for \(k \) until first empty slot found.

What is a sensible average case?

• table holds \(n \) keys

• keys in table were chosen at random from keyspace, so their distribution over slots is as predicted by SUH.

• we search for an arbitrary key (in table or not)

What are limitations of this model? (1) imperfect hash functions are not really uniform; (2) table contents may not be “random.” Can try to improve (1), but nothing to be done about (2) if adversary gets to pick keys to insert, then picks search keys maliciously to maximize running time.

3 Chaining in Particular

• an unsuccessful search always traverses its entire chain

• for a successful search, the record is equally likely to be anywhere in its chain (since chain contents were chosen in a random order)

• **conclude**: average collisions for searches in a chain is \(\Theta(\text{chain length}) \), so average time to search is \(\Theta(1 + \text{chain length}) \).

• Because insertion process chooses keys randomly, and the hash function distributes them uniformly, every chain must have same **average length** (symmetry!).

• **conclude**: for an arbitrary search key, average search time is proportional to **average chain length** in table!

How can we compute average chain length?
4 Probability Background

There are a couple of ways to compute the average chain length in a hash table. I’m going to show you one that uses an important basic analysis trick: \textit{linearity of expectation}. (Review of probability: CLR Appendix C)

- \textbf{Reminder 1: marginal probabilities}
- Let x, y be random variables over sets A, B (need not be independent)
- sample simultaneously from A, B
- Can write \textbf{joint probability} $\Pr(x = a \land y = b)$ for any $a \in A, b \in B$.
- What is \textbf{marginal probability} $\Pr(x = a)$ by itself?
 \[\Pr(x = a) = \sum_{b \in B} \Pr(x = a \land y = b) \]
- Easy to see with diagram:

- \textbf{Reminder 2: definition of expectation}
- Let x be a numerically-valued random variable over set A
- the \textit{expected value} of x, denoted $E[x]$, is given by
 \[E[x] = \sum_{a \in A} a \Pr(x = a) \]
- If every value of x is equiprobable (i.e. prob is $\frac{1}{|A|}$), expectation is just the usual notion of average

These two reminders are sufficient to prove \textit{linearity of expectation}, a very powerful idea.
\textbf{Theorem}: for any two random variables x and y,
\[E[x + y] = E[x] + E[y]. \]
(Note that the variables need not be independent!)
\textbf{Proof}: assume x and y are r.v.'s over sets A, B.

\[
E[x + y] = \sum_{a \in A} \sum_{b \in B} (a + b) \Pr(x = a \land y = b)
\]
\[
= \sum_{a \in A} \sum_{b \in B} a \Pr(x = a \land y = b) + \sum_{a \in A} \sum_{b \in B} b \Pr(x = a \land y = b)
\]
\[
= \sum_{a \in A} a \sum_{b \in B} \Pr(x = a \land y = b) + \sum_{b \in B} b \sum_{a \in A} \Pr(x = a \land y = b)
\]
\[
= \sum_{a \in A} a \Pr(x = a) + \sum_{b \in B} b \Pr(y = b)
\]
\[
= E[x] + E[y] \quad \text{QED.}
\]

5 Average Chain Length

- Let L_s be the length of the chain in slot s of the table
- We want to compute average chain length $E[L_s]$ after adding n randomly chosen keys to table.

We will use the idea of \textit{indicator random variables}. Define

\[
x_{is} = \begin{cases} 1 & \text{if key } i \text{ hashes to slot } s \\ 0 & \text{otherwise.} \end{cases}
\]

Notice that

\[
L_s = \sum_{i=1}^{n} x_{is}.
\]

[stop and explain]

Observe that

\[
E[x_{is}] = \Pr(\text{key } i \text{ hashes to slot } s)
\]
\[
= \frac{1}{m}
\]

by simple uniform hashing assumption.

By linearity of expectation, we have

\[
E[L_s] = E\left[\sum_{i=1}^{n} x_{is}\right]
\]
\[
= \sum_{i=1}^{n} E[x_{is}]
\]
\[
= \sum_{i=1}^{n} \frac{1}{m}
\]
\[
= \frac{n}{m}.
\]
That last expression looks familiar! Remember load factor α for a hash table? We have shown that under simple uniform hashing model,

$$\text{average chain length} = \alpha = \frac{n}{m}.$$

Conclude that if $\alpha = O(1)$ (i.e. table size is multiple of input size n), we do only $\Theta(1)$ work on average per search! Hence, we normally set α to some small constant, e.g. $\frac{1}{2}$.

6 What About Open Addressing?

• Don’t have time to do full analysis (CLR Sec 11.4), but will state result

• Assume simple uniform double hashing – slot sequence for a given key is a random permutation of $0\ldots m - 1$

• Can show that average length of slot sequence for failed search is at most

$$\frac{1}{1 - \alpha}$$

(compare to α records checked on average failure with chaining)

• Can show that average length of slot sequence for successful search is at most

$$\frac{1}{\alpha} \ln \left(\frac{1}{1 - \alpha} \right)$$

• Even though slot sequences can cross, average number of checks is only a bit worse than with chaining for small α.

7 Choosing Good Hash Functions

What are criteria for good hash functions?

• approximate uniform distribution on $0\ldots m - 1$ in average case

• common key sequences should not cause worst-case behavior. E.g., if keys $1, 2, 3\ldots$ might be inserted in the table, they shouldn’t all hash to same slot.

• hash value should depend on entire key

• (aside: can we ever guard against malicious key sequences?)

Two basic kinds of hash function: division and multiplication

• division: for table of size m,

$$h(k) = k \mod m$$

• what happens if m is power of 2?
• slot number ignores high-order bits of key (picture)

• similarly, if m is power of 10, slot number ignores high-order digits.

• much safer to use a modulus that is not close to a common counting base, e.g. a prime number p that is not close to a power of 2, 5, or 10.

Division method isn’t particularly good because arbitrary integer division and modulus are expensive operations on modern computers.

• multiplication: let A be a constant, $0 < A < 1$.

$$h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor$$

(in other words, floor of m times the fractional part of kA).

• low-order bits of truncated multiply are pretty well scrambled

• A should probably not have a lot of repeating structure (e.g. 0.5 is bad, 1/3 is bad)

• Good choice: irrational such as $A = \frac{\sqrt{5}-1}{2}$ [Knuth]

• Choice of A should not be too small – otherwise, all smaller values of k will map to slot 0. (Suggest $A > 0.5$.)

• This method does not (by itself) constrain value of m

• If m is power of 2, can use shift and mask operations instead of multiply and floor to derive $h(k)$.