
CSE 241 Class 6

Jeremy Buhler

September 16, 2015

Today: a new idea – hashing!

1 Collections

• Collection: a data structure that stores a bunch of objects (aka records).

• each object has a key k that identifies it (plus some other data maybe) [draw picture]

• The world is full of collections:

– shopping list

– student registration database

– table of courses, etc.

– [ask students to think of some others]

Dynamic collections have some common methods:

• insert(x) – insert record x into collection

• delete(x) – delete record x from collection

• find(k) – locate a record with key k in collection, or fail (e.g. return NULL) if no
such record exists

Note: insert and delete take references to records. If you want to delete a record
with key k, you must first find the record, then delete it.

2 Basic Collections

Some common collections are lists (assume doubly linked) and arrays. They can be sorted
or unsorted.

Let n be number of elements currently in a collection.
structure insert delete find space

unsorted list Θ(1) Θ(1) Θ(n) Θ(n)
sorted list Θ(n) Θ(1) Θ(n) Θ(n)
sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

Among these choices, we can trade off between fast insert/delete and fast search.
[Ask students: any other collection types?]

1

3 Directly Addressed Tables

• Suppose we know that records can have only a small finite set of keys, e.g.,
0 . . . r − 1 for some small r.

• Let’s allocate an array of r pointers (or references). These are the table’s slots.

• If input record has key k, put it in slot k of array.

• Empty slots are null pointers.

[draw an example of size 5 with a few records in it]

What are the costs of direct table?
structure insert delete find space

direct table Θ(1) Θ(1) Θ(1) Θ(r)
Conclude: used space (r ≥ n) to save time! Space is independent of number of

elements.

4 Why Hashing is Needed

What if r is big? Let f be the universe of all keys.

• social security #’s: |f| ≈ 109

• IP addresses: |f| ≈ 4× 109 (IPv6: 1038)

• UNIX passwords: |f| ≈ 1015

In many applications, n� r. Do you really want to spend space proportional
to r for these kinds of sets?

Want to get direct table-like performance without direct table-like
space.

2

5 Hashing Definition

Hash tables are a variant on the idea of direct-addressed tables. They use Θ(n) space
but can give Θ(1) average performance for all basic operations.

• Let’s fix a table size m independent of # records n.

• Now define a hash function h(k) that maps any key to numbers in the range 0 . . .m−
1.

h(k) : f→ [0 . . .m− 1]

• A record with key k goes in slot h(k) of the table.

• Slots with no record are “null”.

[sketch a picture of table with several keys in the universe mapping to slots
in it.]

• Question: can two distinct keys hash to the same slot?

• Yes: if m < r, it must be possible by Pigeonhole Principle.

• When two keys hash to the same slot, we call this a collision. [add a collision to
the diagram]

• What can we do to resolve collisions?

3

6 Collision Resolution by Chaining

Chaining lets multiple records share a single slot.

• Every record that hashes to a given slot s gets added to an unsorted list whose head
is linked to s.

• a slot with no records has an empty list

• T .insert(x): add x to head of list h(x.key)

• T .find(k): checks every record in list h(k) until we find one whose key equals k
(success) or exhaust list (failure).

• T .delete(x): remove x from its list

[Example of Building and Searching a Chained Table]

Defn: if m is number of slots in table, and n is number of records in table, then table’s
load factor α is defined by

α =
n

m

What is load factor of example table?
In chaining table, how big can load factor get? [arbitrarily large – can handle

any number of records]

7 Collision Resolution by Open Addressing

Sometimes, we don’t want to maintain linked lists outside the table. We can resolve
collisions internally through open addressing.

4

• Each key k in f maps to a sequence of slots s0(k), s1(k), s2(k) . . . sm−1(k)

• Distinct keys map to distinct (but possibly overlapping) sequences of slots (also
called probe sequences)

• If all of slots s1(k) . . . si(k) are full, try to put record in slot si+1(k).

• Slots may be full, empty, or “deleted”

Slot sequences for a given key can be derived many ways, but a good one in practice
is double hashing.

• define two different hash functions h1(k), h2(k)

• define si(k) = (h1(k) + i · h2(k)) mod m

• ex: s0(k) = h1(k), s1(k) = (h1(k) + h2(k)) mod m, etc.

• Note: in real code, you should write

si+1(k) = (si(k) + [h2(k)] mod m) mod m

to avoid integer overflow problems. (Assumes 2m < max integer)

What do the three basic operations look like now?

• T .insert(x):

1. find first slot s∗ = sj(x.key) in table that is not full (i.e. empty or “deleted”)

2. Put x in T [s∗]

(Does a free slot always exist? No: we may fail if table is full! (or if slot sequence
fails to cover all slots)

• T .find(k): check each slot sj(k) in k’s slot sequence until either

1. we find that T [sj(k)] holds a record with key k (success!)

2. we find that T [sj(k)] is empty (failure!)

(Cannot stop at a “deleted” cell; we’ll see why shortly)

• T .delete(x): If x is in slot s of T , T [s]← “deleted”

(We want deletion to take constant time, which is not possible if we have to move
up to cn other elements in x’s slot sequence to fill the deleted slot.)

[Example of Building and Searching an OA Table]

5

