Today: a new idea – **hashing**!

1 Collections

- **Collection**: a data structure that stores a bunch of objects (aka *records*).
- each object has a *key* k that identifies it (plus some other data maybe) [draw picture]
- The world is full of collections:
 - shopping list
 - student registration database
 - table of courses, etc.
 - [ask students to think of some others]

Dynamic collections have some common methods:

- **insert**(x) – insert record x into collection
- **delete**(x) – delete record x from collection
- **find**(k) – locate a record with key k in collection, or fail (e.g. return NULL) if no such record exists

Note: **insert** and **delete** take references to records. If you want to delete a record with key k, you must first **find** the record, then **delete** it.

2 Basic Collections

Some common collections are *lists* (assume doubly linked) and *arrays*. They can be sorted or unsorted.

Let n be number of elements currently in a collection.

<table>
<thead>
<tr>
<th>structure</th>
<th>insert</th>
<th>delete</th>
<th>find</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted list</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>sorted list</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>sorted array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

Among these choices, we can trade off between fast insert/delete and fast search. [Ask students: any other collection types?]
3 Directly Addressed Tables

- Suppose we know that records can have only a small finite set of keys, e.g., $0 \ldots r - 1$ for some small r.
- Let’s allocate an array of r pointers (or references). These are the table’s slots.
- If input record has key k, put it in slot k of array.
- Empty slots are null pointers.

What are the costs of direct table?

<table>
<thead>
<tr>
<th>structure</th>
<th>insert</th>
<th>delete</th>
<th>find</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct table</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(r)$</td>
</tr>
</tbody>
</table>

Conclude: used space ($r \geq n$) to save time! Space is independent of number of elements.

4 Why Hashing is Needed

What if r is big? Let \mathcal{U} be the universe of all keys.

- social security #’s: $|\mathcal{U}| \approx 10^9$
- IP addresses: $|\mathcal{U}| \approx 4 \times 10^9$ (IPv6: 10^{38})
- UNIX passwords: $|\mathcal{U}| \approx 10^{15}$

In many applications, $n \ll r$. Do you really want to spend space proportional to r for these kinds of sets?

Want to get direct table-like performance without direct table-like space.
5 Hashing Definition

Hash tables are a variant on the idea of direct-addressed tables. They use \(\Theta(n) \) space but can give \(\Theta(1) \) *average* performance for all basic operations.

- Let’s fix a table size \(m \) independent of \# records \(n \).
- Now define a hash function \(h(k) \) that maps any key to numbers in the range \(0 \ldots m - 1 \).
 \[
h(k) : \mathcal{U} \rightarrow [0 \ldots m - 1]
\]
- A record with key \(k \) goes in slot \(h(k) \) of the table.
- Slots with no record are “null”.

[sketch a picture of table with several keys in the universe mapping to slots in it.]

- **Question**: can two distinct keys hash to the same slot?
- **Yes**: if \(m < r \), it must be possible by Pigeonhole Principle.
- When two keys hash to the same slot, we call this a collision. [add a collision to the diagram]
- What can we do to resolve collisions?
6 Collision Resolution by Chaining

Chaining lets multiple records share a single slot.

- Every record that hashes to a given slot \(s \) gets added to an unsorted list whose head is linked to \(s \).
- a slot with no records has an empty list
- \(T.\text{insert}(x) \): add \(x \) to head of list \(h(x.\text{key}) \)
- \(T.\text{find}(k) \): checks every record in list \(h(k) \) until we find one whose key equals \(k \) (success) or exhaust list (failure).
- \(T.\text{delete}(x) \): remove \(x \) from its list

[Example of Building and Searching a Chained Table]

Defn: if \(m \) is number of slots in table, and \(n \) is number of records in table, then table’s load factor \(\alpha \) is defined by

\[
\alpha = \frac{n}{m}
\]

What is load factor of example table?
In chaining table, how big can load factor get? [arbitrarily large – can handle any number of records]

7 Collision Resolution by Open Addressing

Sometimes, we don’t want to maintain linked lists outside the table. We can resolve collisions internally through open addressing.
• Each key k in \mathcal{O} maps to a sequence of slots $s_0(k), s_1(k), s_2(k) \ldots s_{m-1}(k)$

• Distinct keys map to distinct (but possibly overlapping) sequences of slots (also called probe sequences)

• If all of slots $s_1(k) \ldots s_i(k)$ are full, try to put record in slot $s_{i+1}(k)$.

• Slots may be full, empty, or “deleted”

Slot sequences for a given key can be derived many ways, but a good one in practice is double hashing.

• define two different hash functions $h_1(k), h_2(k)$

• define $s_i(k) = (h_1(k) + i \cdot h_2(k)) \mod m$

• ex: $s_0(k) = h_1(k), s_1(k) = (h_1(k) + h_2(k)) \mod m$, etc.

• Note: in real code, you should write $s_{i+1}(k) = (s_i(k) + \lfloor h_2(k) \rfloor \mod m) \mod m$

 to avoid integer overflow problems. (Assumes $2m < \text{max integer}$)

What do the three basic operations look like now?

• T.insert(x):
 1. find first slot $s^* = s_j(x$.key) in table that is not full (i.e. empty or “deleted”)
 2. Put x in $T[s^*]$

 (Does a free slot always exist? No: we may fail if table is full! (or if slot sequence fails to cover all slots)

• T.find(k): check each slot $s_j(k)$ in k’s slot sequence until either
 1. we find that $T[s_j(k)]$ holds a record with key k (success!)
 2. we find that $T[s_j(k)]$ is empty (failure!)

 (Cannot stop at a “deleted” cell; we’ll see why shortly)

• T.delete(x): If x is in slot s of T, $T[s] \leftarrow \text{“deleted”}$

 (We want deletion to take constant time, which is not possible if we have to move up to cn other elements in x’s slot sequence to fill the deleted slot.)

[Example of Building and Searching an OA Table]