CSE 241 Class 6

Jeremy Buhler

September 16, 2015

Today: a new idea — hashing!

1 Collections

e Collection: a data structure that stores a bunch of objects (aka records).
e cach object has a key k that identifies it (plus some other data maybe) [draw picture]
e The world is full of collections:

— shopping list

student registration database

table of courses, etc.

— [ask students to think of some others]
Dynamic collections have some common methods:

e insert(z) — insert record x into collection
e delete(x) — delete record z from collection

e find(k) — locate a record with key k in collection, or fail (e.g. return NULL) if no
such record exists

Note: insert and delete take references to records. If you want to delete a record
with key k, you must first £ind the record, then delete it.

2 Basic Collections

Some common collections are lists (assume doubly linked) and arrays. They can be sorted
or unsorted.
Let n be number of elements currently in a collection.
structure ‘ insert delete find ‘ space
unsorted list | ©(1) O(1) O(n) O(n)
sorted list ©(n) O(1) O(n) O(n)
sorted array | O(n) ©(n) ©O(logn) | O(n)
Among these choices, we can trade off between fast insert/delete and fast search.
[Ask students: any other collection types?]

3 Directly Addressed Tables

e Suppose we know that records can have only a small finite set of keys, e.g.,
0...r —1 for some small r.

e Let’s allocate an array of r pointers (or references). These are the table’s slots.
e If input record has key k, put it in slot k£ of array.

e Empty slots are null pointers.

[draw an example of size 5 with a few records in it]

What are the costs of direct table?
structure ‘ insert delete find ‘ space

direct table | ©(1) o) o) | o)
Conclude: used space (r > n) to save time! Space is independent of number of
elements.

4 Why Hashing is Needed

What if r is big? Let U be the universe of all keys.
e social security #’s: |U| ~ 10°
e IP addresses: |U] ~ 4 x 10° (IPv6: 10%)

e UNIX passwords: |U| ~ 10'5

In many applications, n < r. Do you really want to spend space proportional
to r for these kinds of sets?

Want to get direct table-like performance without direct table-like
space.

5 Hashing Definition

Hash tables are a variant on the idea of direct-addressed tables. They use ©(n) space
but can give O(1) average performance for all basic operations.

e Let’s fix a table size m independent of # records n.

e Now define a hash function h(k) that maps any key to numbers in the range 0...m—
1.
h(k) : 0 —10...m—1]

e A record with key k goes in slot h(k) of the table.

e Slots with no record are “null”.

[sketch a picture of table with several keys in the universe mapping to slots
in it.]

Question: can two distinct keys hash to the same slot?

Yes: if m < r, it must be possible by Pigeonhole Principle.

e When two keys hash to the same slot, we call this a collision. [add a collision to
the diagram]

e What can we do to resolve collisions?

6 Collision Resolution by Chaining
Chaining lets multiple records share a single slot.

e Every record that hashes to a given slot s gets added to an unsorted list whose head
is linked to s.

e a slot with no records has an empty list
e T.insert(z): add x to head of list h(x.key)

e T.find(k): checks every record in list h(k) until we find one whose key equals k
(success) or exhaust list (failure).

e T.delete(x): remove x from its list

[Example of Building and Searching a Chained Table]

Defn: if m is number of slots in table, and n is number of records in table, then table’s
load factor « is defined by

a=—
m

What is load factor of example table?
In chaining table, how big can load factor get? [arbitrarily large — can handle
any number of records]

7 Collision Resolution by Open Addressing

Sometimes, we don’t want to maintain linked lists outside the table. We can resolve
collisions internally through open addressing.

Each key k in U maps to a sequence of slots so(k), s1(k), s2(k) ... sm—1(k)

Distinct keys map to distinct (but possibly overlapping) sequences of slots (also
called probe sequences)

If all of slots s1(k)...s;(k) are full, try to put record in slot s;;1(k).

Slots may be full, empty, or “deleted”

Slot sequences for a given key can be derived many ways, but a good one in practice
is double hashing.

e define two different hash functions hq(k), ha(k)
e define s;(k) = (hi(k) + i - ha(k)) mod m
o ex: so(k) = hi(k), s1(k) = (h1(k) + ha(k)) mod m, etc.
e Note: in real code, you should write
si+1(k) = (si(k) + [h2(k)] mod m) mod m
to avoid integer overflow problems. (Assumes 2m < max integer)

What do the three basic operations look like now?

e T.insert(z):

1. find first slot s* = s;(z.key) in table that is not full (i.e. empty or “deleted”)
2. Put z in T'[s*]

(Does a free slot always exist? No: we may fail if table is full! (or if slot sequence
fails to cover all slots)

e T.find(k): check each slot s;(k) in k’s slot sequence until either

1. we find that T'[s;(k)] holds a record with key k (success!)
2. we find that T'[s;(k)] is empty (failure!)

(Cannot stop at a “deleted” cell; we’ll see why shortly)

e T.delete(z): If x is in slot s of T, T'[s] + “deleted”

(We want deletion to take constant time, which is not possible if we have to move
up to cn other elements in z’s slot sequence to fill the deleted slot.)

[Example of Building and Searching an OA Table]

