1 Why Depth-First Search?

Previously, we saw BFS, which measured distance of each vertex from some starting point. The “opposite” of BFS is DFS.

- DFS visits every node in G
- Purpose is to mark each vertex in G with a “visit time” – creates a depth-first ordering of vertices G.
- Ordering useful for, e.g., topological sort
- Can also detect and mark cycles in G

2 Pseudocode

- Given directed graph $G = (V, E)$, execute DFS starting from every vertex in V. (In some sequential order, not in parallel.)
- Each vertex v has a “start time” $s[v]$ and a “finish time” $f[v]$ (both > 0)
- Time is incremented globally whenever we start or finish working on a vertex.
- vertex states
 - undiscovered: $s[v] = 0$
 - in-progress: $s[v] > 0, f[v] = 0$
 - finished: $f[v] > 0$
- vertices processed in LIFO (stack) order; will implement via recursion
- Top-level procedure forces all vertices in G to be visited, even if not connected.

```
DFS(G)
   for $u \in V$ do
      $s[u] \leftarrow 0$
      $f[u] \leftarrow 0$
      parent[$u$] $\leftarrow$ null
```
time ← 1
for $u \in V$ do
 if $s[u] = 0$
 \triangleright undiscovered
 DFSVisit(G, u)
end

- Recursive DFSVisit takes care of an entire connected component.

DFSVisit(G, u)
 $s[u] \leftarrow$ time
 time++
 \triangleright start u
 for $v \in Adj[u]$ do
 if $s[v] = 0$
 \triangleright v not visited yet
 parent[v] $\leftarrow u$
 DFSVisit(G, v)
 \triangleright recur before continuing adj list
 end
 end
 $f[u] \leftarrow$ time
 time++
 \triangleright finish u
3 Example

Here’s a quick example of DFS so you can see how it works.

Notice that we explore as far as possible from each vertex, rather than going one step at a time as in BFS.

- **Cost**: \(\Theta(n) \) to initialize
- DFSVisit is called once per vertex (when first discovered): \(\Theta(n) \)
- As with BFS, every edge out of each vertex is checked once (during its processing): \(\Theta(m) \)
- Total cost: \(\Theta(n + m) \)

4 What the Heck is the Point?

We’ll look at a couple of DFS applications.

- Given a directed graph \(G \), how can you tell if \(G \) has a cycle?
- “Looking” at \(G \) is not enough – not automated!
- Cycle could be as long as \(n - 1 \) edges
- Fortunately, DFS has built-in cycle detection!

Thm: a digraph \(G \) is cyclic iff DFSVisit finds an in-progress node (start > 0, finish = 0) in its for loop.

- **First**, argue that if in-progress node found, cycle exists.
- Suppose that, while expanding \(u \), we find some in-progress vertex \(v \in \text{Adj}[u] \)
 - Obviously, edge \((u, v)\) exists.
 - Claim there must also be a path from \(v \) to \(u \). Why?
 - Current search path must start from \(v \) (since \(v \) is in-progress), and it has reached \(u \).
- **Second**, argue that if cycle exists, in-progress node will be found
• Some vertex \(v \) in cycle is discovered first (at lowest time).

• Subsequent search from \(v \) will visit every other vertex in cycle for first time before \(v \) is finished (all reachable from \(v \), none seen yet)

• Let \(u \) be predecessor of \(v \) in cycle; in particular, \(u \) will be discovered before \(v \) is finished.

• Hence, traversing edge \((u, v)\) will find \(v \) while it is still in progress. QED

5 Topological Sort

An extension of cycle detection does something useful even when there’s no cycle.

• If \(G \) is cyclic, report it.

• Otherwise (\(G \) is a DAG), find an ordering for the vertices in \(G \) s.t. if \((u, v) \in E\), then \(u \) is ordered before \(v \).

• (Ordering may not be unique!)

Here’s the algorithm:

1. Run DFS on \(G \)
2. If DFS finds a cycle, report “cyclic”
3. Else, output vertices of \(G \) in order from largest to smallest finishing time \(f[v] \).

Example: CS courses

Why does topological sort work?

• Thm: Let \(G \) be a DAG. If \(G \) contains an edge \(u \to v \), then after running DFS, \(f[v] < f[u] \).
• (Transitively, this means that all vertices are correctly ordered by reverse finishing time.)

• For every edge \((u, v)\), when DFS traverses this edge . . .

• If \(v\) is undiscovered, it will be started and finished before returning to \(u\), so \(f[v] < f[u]\).

• If \(v\) is finished, it was finished before we started to expand \(u\), so \(f[v] < f[u]\).

• If \(v\) is in-progress, we have a cycle! Won’t happen in a DAG. QED