1 Weighted Version of Shortest Paths

- BFS solves unweighted shortest path problem
- Every edge traversed adds one to path length
- What if edges have nonuniform weights? Let \(w(u, v) \) be weight of edge \((u, v)\)

Some intuition...

- BFS finds closest set of vertices \((d = 1)\) to source, then next closest set \((d = 2)\), and so on
- IOW, repeatedly process vertices closest to source.
- Tricky part was proving that every vertex is reached via a shortest path.
- Can we use the same idea in weighted case?

2 Dijkstra’s Algorithm

Here is an algorithm that works when \(w(u, v) \geq 0 \) for all edges \((u, v)\).

- Uses min-first priority queue \(Q \) of vertices
- key is estimated distance from \(s \) to each vertex
- Initially, \(Q \) contains all vertices in \(G \), but distances are unknown \((\infty)\)
- Repeatedly extract vertex \(x \) that is closest to \(s \)
- As in BFS, knowing distance from \(s \) to \(x \) tells us something about distance to \(x \)’s neighbors.
- Decrease the key of every vertex \(y \) in Adj[\(x \)] to at most \(d(x) + w(x, y) \).

Example
3 Pseudocode

Given graph $G = (V, E)$, starting vertex s. (Note: does not show handle manipulation)

\begin{verbatim}
Dijkstra(G, s)
 for u ∈ V do ▷ initialize
 u.distance ← ∞
 u.parent ← null
 Q.insert(u, ∞)

 s.distance ← 0
 Q.decreaseKey(s, 0)

 while Q is not empty do
 u ← Q.extractMin()
 if u.distance = ∞ ▷ cannot reach any more vertices from s
 stop

 for v ∈ Adj[u] do
 if Q.decreaseKey(v, u.distance + w(u, v))
 v.distance ← u.distance + w(u, v)
 v.parent ← u
\end{verbatim}

4 Running Time

- cost dominated by priority queue ops (queue size n)
- initialization: one insert per vertex (n)
- outer loop: one extractMin per vertex (n)
- inner loop: one decreaseKey per edge out of each u (m)

Hence, can write

$$T(m, n) = nT_{\text{insert}}(n) + nT_{\text{extractMin}}(n) + mT_{\text{decreaseKey}}(n)$$

- Cost depends on priority queue implementation!
- For binary heaps, all queue ops are $O(\log n)$, so
 $$T(m, n) = (2n + m)O(\log n) = O(m \log n)$$
- For a Fibonacci heap, insert and decreaseKey are amortized $O(1)$
- Hence, revised run time would be
 $$T(m, n) = nO(1) + nO(\log n) + mO(1) = O(n \log n + m)$$
- Is this an improvement? Yes, if graph is dense.
5 Correctness

As before, we need to show that every vertex receives its correct shortest-path distance from \(s \). Note that \(u \).distance never changes after \(u \) is removed from the priority queue.

Theorem: when vertex \(u \) is removed from the queue, \(u \).distance is length of a shortest path from \(s \) to \(u \).

- Proceed by induction on order of removal from queue.
- **Bas**: \(s \) is removed first from queue, and it has correct distance 0.
- **Ind**: Assume that vertex \(u \) is next to be dequeued, but it does not have its shortest-path distance.
- Consider a shortest path \(p \) connecting \(s \) to \(u \).

- \(s \) has been dequeued and \(u \) has not, so there is some last vertex \(x \) on this path that *has* already been dequeued.
- By IH, \(x \) has its correct shortest-path distance.
- Let \(y \) be \(x \)'s successor on path \(p \) (which has not been dequeued yet), and let \(p' \) be the prefix of \(p \) connecting \(s \) to \(y \).
- **Prefix \(p' \) is shortest path from \(s \) to \(y \)**. Otherwise, could replace it with a shorter path \(p'' \), which would give a shorter path than \(p \) from \(s \) to \(u \).
- Hence, \(y \) received its correct shortest-path distance when \(x \) was processed, since edge \(x \rightarrow y \) was explored.
- To finish up, two possibilities:
 1. If \(y = u \), then \(u \) has its correct shortest-path distance, which contradicts our assumption that this distance is wrong.
 2. If \(y \) precedes \(u \), then \(y \)'s shortest-path distance is \(\leq u \)'s shortest-path distance. Hence, \(y \)'s s-p distance is strictly less than \(u \)'s current (non-s-p) distance. Conclude that \(y \) will be dequeued before \(u \), which contradicts our assumption that \(u \) is next vertex to be dequeued.
- Conclude that \(u \) must have its correct shortest-path distance. QED
6 Other Ways to Get Shortest Paths

Remember, Dijkstra’s algorithm has an important limitation!

- Requires that \(w(u, v) \geq 0 \) for all edges \((u, v)\)
- **Problem:** assumes that no prefix of a path \(p \) can have length > \(p \).
- If edge weights can be negative, this assumption is violated.
- Hence, can end up dequeueing a vertex before path of least total weight is found.

- How could this happen? “Shortest” path could be measured in terms other than distance.
- For example, suppose that on each edge \((u, v)\) you may be charged a fee \((w(u, v) > 0) \) or paid a bonus \((w(u, v) < 0) \). Goal is to find path with smallest total cost!
- In this case, you want an algorithm that deals with negative-weight edges.
- **Bellman-Ford** algorithm can do it.
- Also can detect cycles of negative weight (causes paths with arbitrarily low weight, so no “shortest”).
- Cost is \(O(nm) \), which is worse than Dijkstra in general.
- **Special case:** if graph is a DAG, can reduce cost to \(\Theta(m + n) \).
- Finally, suppose you need to know the shortest paths from ALL vertices to ALL vertices in \(G \).
- If
 - you can negative-weight edges;
 - you cannot have negative-weight cycles (use Bellman-Ford on an augmented version of \(G \) to check!)

 there is a \(\Theta(n^3) \) algorithm for this problem due to Floyd and Warshall. Unless your graph is sparse, this is asymptotically faster than running Bellman-Ford once per starting vertex.
- Another algorithm for the same problem, due to Johnson, takes time \(O(n^2 \log n + nm) \) when implemented with a Fibonacci heap – same as Floyd-Warshall for dense graphs, but faster for non-dense graphs.