Today: B-Trees Part Deux

1 B-Tree Search

Finding a key in a B-tree is easy

- Start at root
- If current node contains desired key, return it.
- Otherwise, determine which subtree would have key and recur on it
- Looks at only $O(h)$ nodes

Try it on example tree (find H, S, and A)

2 B-Tree Insert and Splitting

Insertion and deletion in a B-tree are interesting because we must maintain the min- and max-degree invariants.

- What’s natural insert(k)?
- Find leaf where k belongs and put it there
- What’s wrong with simple algorithm? [wait]
- Leaf may already be full ($2t - 1$ keys) – adding another would violate max-degree invariant.

We can try to fix insertion by splitting. Splitting turns a full node into two non-full nodes.

$\text{SPLIT}(x)$

\[k \leftarrow k_t(x) \quad \triangleright \text{median key} \]

create node x_ℓ from keys $k_1(x) \ldots k_{t-1}(x)$
create node x_r from keys $k_{t+1}(x) \ldots k_{2t-1}(x)$
move k into parent of x
place pointers to x_ℓ and x_r to left and right of k
Example of splitting:

Can we always split a node x?

- What if x’s parent is full?
- Would be nowhere to put median key of x! So, let’s ensure this bad case does not happen
- What if x is the root?
- Can create a new root x of size 1 to hold x’s median key
- (B-trees grow up from the root!)
- How do we find x’s parent? (it has no parent pointer)
- Will assume parent is cached at time of split (OK for insert, delete below)

3 Insertion Algorithm

- To avoid complications, want to visit each node on path to insertion point only once.
- Implies only one disk read per node on path, or $O(h)$ total.
- We split *preemptively* to avoid backtracking.
- Algorithm uses recursive subroutine $\text{DOINSERT}(x, k)$
- Will maintain following invariant (*):

 When we call $\text{DOINSERT}(x, k)$, either x is the root, or x’s parent is not full.

\textbf{Insert}(T, k)
\begin{align*}
\text{DoInsert} & (\text{root}[T], k) \\
\text{DoInsert} & (x, k)
\end{align*}

\begin{align*}
\text{if } x \text{ is full} & \\
& m \leftarrow k_t(x) \quad \triangleright \text{median key of } x \\
& \text{split} (x) \quad \triangleright \text{create } x_\ell, x_r \\
\text{if } k < m & \\
& x \leftarrow x_\ell \\
\text{else} & \\
& x \leftarrow x_r \\
\text{if leaf} (x) & \\
& \text{place } k \text{ into } x \\
\text{else} & \\
& y \leftarrow \text{correct child of } x \\
& \text{DoInsert} (y, k)
\end{align*}

\textbf{Examples?} [work from the sheet]

\textbf{Correctness?} Argue inductively that \textit{split never fails}. Conclude that k can be inserted at end of algorithm because we can create a non-full node if needed.

- Prove by induction on number of calls to \text{DoInsert}.
- \textbf{Base}: Invariant (*) holds at first call to \text{DoInsert}, since call is made on root node.
- \textbf{Ind}: Suppose invariant (*) holds after m calls; show that it will hold after $m + 1$.
- Invariant (*) holds at start of \text{DoInsert}, so \text{split} will succeed if it happens (always room for median in parent, or new root created).
- If we call \text{DoInsert}(y, k), y’s parent has been split if it was full, so invariant (*) is maintained.
- When we try to insert k into x, x has just been split if it was full. Hence, x is not full, and insert succeeds. QED

\section{Deletion}

B-tree deletion is cute but difficult to code. We’ll only sketch it here.

- Two problems with removing an arbitrary key k from tree.
- First, what happens to subtrees to left and right of k?
- Second, k’s node might have only $t - 1$ keys – removal could violate min-degree invariant.
- As for insert, will have a recursive \text{DoDelete}(x, k). Initially call \text{DoDelete}$(\text{root}[T], k)$.
- To keep balance, will maintain following invariant (**):
When we call \texttt{DoDelete}(x, k), either x is the root, or x contains at least t keys.

- Invariant (**) implies that when we do remove k from some node, it will be the root or will still have at least $t - 1$ keys after the deletion.

Assume invariant (**) is true when \texttt{DoDelete}(x, k) is called. Must consider three cases:

1. If x is a leaf . . .
 - Simply remove k from x.
 - x has no children, so no subtrees to deal with.
 - Invariant (**) guarantees that x has at least t keys before deleting k.

2. If x contains k (and is not a leaf) . . .
 - Let y and z be left and right child nodes of k in x.
 - (a) If y has at least t keys, replace k with \texttt{pred}(k) (largest key in subtree rooted at y).
 - (b) Else if z has at least t keys, replace k with \texttt{succ}(k) and remove \texttt{succ}(k) from subtree rooted at z.
 - (c) Otherwise, both y and z have exactly $t - 1$ keys.
 - Hence, can \texttt{unsplit} y, z to form a new node w!
 - k becomes median key of w (OK to remove k from x because by invariant (**), x has at least t keys).

- Now, must recursively remove \texttt{pred}(k) – call \texttt{DoDelete}(y, \texttt{pred}(k))
- (b) Else if z has at least t keys, replace k with \texttt{succ}(k) and remove \texttt{succ}(k) from subtree rooted at z.
- (c) Otherwise, both y and z have exactly $t - 1$ keys.
- Hence, can \texttt{unsplit} y, z to form a new node w!
- k becomes median key of w (OK to remove k from x because by invariant (**), x has at least t keys).
• Now recursively DoDELETE(w, k)

3. If \(x \) does not contain \(k \) (and is not a leaf) . . .

• Want to delete \(k \) from appropriate subtree of \(x \), rooted at some node \(z \).
• (a) If \(z \) has at least \(t \) keys, just call DoDELETE(z, k)
• If \(z \) has only \(t - 1 \) keys, how do we maintain invariant (**)?
• (b) If \(z \)'s left neighbor \(y \) has at least \(t \) keys, steal its rightmost key (by rotation), then call DoDELETE(z, k)

• Else if \(z \)'s right neighbor has at least \(t \) keys, steal its leftmost key (by rotation), then call DoDELETE(z, k)
• (c) Else both \(z \) and some neighbor \(y \) have exactly \(t - 1 \) keys.
• Hence, unsplit \(z \) and \(y \) into a new node \(w \) and call DoDELETE(w, k)