
CSE 241 Algorithms and Data Structures Fall Semester 2015

Homework 1

Assigned: 8/31/2015 Due Date: 9/16/2015

This homework must be completed and submitted electronically. Formatting standards, submission

procedures, and (optional) document templates for homeworks may be found at

http://classes.engineering.wustl.edu/cse241/ehomework/ehomework-guide.html

Advice on how to compose homeworks electronically, with links to relevant documentation for several dif-

ferent composition tools, may be found at

http://classes.engineering.wustl.edu/cse241/ehomework/composing-tips.html

Please remember to

• typeset (do not hand-write) your homework’s text;

• create a separate PDF file for each problem;

• include a header with your name, WUSTL key, and the homework number at the top of

each page of each solution;

• include any figures (typewritten or hand-drawn) inline or as floats;

• upload and submit your PDFs to Blackboard before class time on the due date.

Always show your work.

http://classes.engineering.wustl.edu/cse241/ehomework/ehomework-guide.html
http://classes.engineering.wustl.edu/cse241/ehomework/composing-tips.html


The approximate weights of each problem (out of 100%) are given in parentheses, but things that come

up in the course of grading may cause these weights to be adjusted. Note that you need only do any four

problems out of five to get full credit for this homework, though you may do all five for extra credit.

Unless otherwise noted, all occurrences of “log” refer to the base-2 logarithm.

1. (25%) Professor Powerball is an obsessive Lotto player who is always looking for an edge. He has

collected all the “Pick Six” results for the past forty years and is trying to group them into clusters of

similar results to look “hot” patterns of numbers that come up unusually often.

The professor has a list of n results S1 . . . Sn. Each result contains six 2-digit integer values. The

distance d(Si, Sj) between two results is the number of values present in one set but not both. The

professor’s clustering scheme requires computing the matrix of all pairwise distances d(Si, Sj) for

1 ≤ i ≤ j ≤ n.

The professor has three algorithms at his disposal to compute all the distances. The first algorithm,

A, simply computes all the distances directly and has a running time 0.03n2 seconds on an input of

size n. The second algorithm, B, uses a fancy sorting scheme to speed up the computation and runs

in time 0.15n log n + 0.00001n2 seconds. The third algorithm, C, uses an even fancier hashing scheme

and runs in time n + 0.00001n2 seconds.

(a) What is the smallest problem size n0 such that algorithm B is (strictly) faster than algorithm A

for all n ≥ n0? (Hint: I don’t know of an analytical solution to this problem, so try solving it

numerically.)

(b) What is the smallest problem size n1 such that algorithm C is (strictly) faster than algorithm B

for all n ≥ n1?

(c) Describe how to construct a distance computing algorithm that always achieves the best running

time of any of algorithms A, B, and C on its input.

(d) Professor Nikrasch suggests processing the Lotto results using a different clustering algorithm

altogether, one which avoids computing distances between results. This new algorithm runs in

n1.2 seconds on an input of size n. Is this algorithm ever faster than the fastest of A, B, or C? If

so, for what value of n does it start to win?

2. (25%) Compute precise statement counts for the following code fragments. Show your work, including

for each loop how many times its body executes per iteration of the next outermost loop. S1 and S2

below represent single constant-time statements.

(a) j ← 1

while j < n do

S1

k ← n

while k > j do

S2

k−−
j++



(b) j ← 0

while j ≤ n do

k ← 0

while k < j do

S1

k++

j++

(c) j ← 1

while j ≤ n do

k ← 1

while k < j × j do

S1

k++

j++

3. (25%) Consider the following generic divide-and-conquer algorithm:

DivAndConq(n)

if n ≤ 1

DoBaseCase

else

DivAndConq(n/2)

MungeBytes(n)

DivAndConq(n/2)

MungeBytes includes both the divide and combine steps and is assumed to run in time cn. Assume

that DoBaseCase takes constant time c0. This algorithm behaves very much like the fast closest-pair

algorithm we saw in class, except that the base case is only for n = 1, not for n = 2.

Suppose we modify this algorithm so that, instead of recurring on two subproblems of size n/2, it

recurs on five subproblems of size n/5. We saw that dividing the problem in half can speed up the

computation, so perhaps dividing into it more pieces is even better? If it makes you feel better, you

may assume in this problem that n is an exact power of five.

(a) Write a recurrence for the running time T (n) of the modified algorithm.

(b) Sketch the recursion tree for your recurrence and compute an exact expression for its solution.

(c) Dash our hopes for a faster algorithm by showing that the expression in part (b) is still Θ(n log n).

(d) In general, what happens if you try to recur on m subproblems of size n/m when dividing and

combining take total time cn? You don’t need to work out all the details again – a brief argument

in words is fine.

4. (25%) Answer each of the following questions. Justify your answers using either the definitions of O,

Ω, and Θ or the techniques shown in class (along with basic math).

(a) Does (n + 1)2 = Ω(n log n)?

(b) Does 39 logn+log logn = Ω(n3)?

(c) Does n log5 n = Θ(n lnn)?



(d) Does (n− 2)2 = Θ(n log n)?

(e) Does n61/60 = O(n log n)?

(f) Let f(n) and g(n) be non-negative functions of n.

If f(n) = O(g(n)), does f(n) + g(n) = Θ(g(n))?

(g) Let f(n) and g(n) be non-negative functions of n.

If f(n) = Θ(g(n)), does f(n)/g(n) = Θ(1)?

5. (25%) An unusual feature of the fast closest-pair algorithm discussed in class is that it requires sup-

plying the input points sorted in two different orders: by x and by y. Professor Uitsmijter proposes

to simplify the algorithm as follows.

The input points are sorted only by x-coordinate; that is, there is a ptsByX array, but no ptsByY array.

To create the yStrip array in the combine stage, the algorithm makes a single linear-time pass over

ptsByX to select the points in yStrip, then sorts these points by y-coordinate before continuing with

the combining algorithm. Since there can be Θ(n) selected points in the worse case, and the point

coordinates are arbitrary real numbers, this sort requires worst-case time Θ(n log n).

(a) Write a recurrence for the running time of the modified closest-pair algorithm, in terms of the

number of input points n.

(b) Sketch the recursion tree for this recurrence and derive a non-recursive (but not necessarily closed-

form) exact expression for its solution.

(c) Show that the expression you got in part (b) is Θ(n log2 n). Hint : recall that

log(n/m) = log n− logm.

(d) Professor Strammermax claims that the running time of the new algorithm can be reduced to

Θ(n log n). The key idea is to reconstruct the sorted ptsByY array dynamically inside the algo-

rithm.

Suppose that the two recursive calls in the algorithm are modified to return both the closest pairs

on left and right and two arrays containing all the left and right points, respectively, each sorted

by y-coordinate. (Clearly, we can compute such a sorted array in constant time when n ≤ 2.)

Describe in pseudocode how to combine these two arrays in time Θ(n) to produce an array of all

input points sorted by y. Justify the correctness and running time of your solution.


