Prim’s MinimumSpanning Tree Algorithm

Given a weighted, undirected graph \(G = (V, E) \), such that each edge \((u, v)\) has a non-negative weight \(w(u, v) \), and a starting vertex \(s \), find a minimum spanning tree for \(G \) starting from \(s \). A spanning tree is a tree composed of edges of \(G \) that touches every vertex in \(G \). A minimum spanning tree \(T \) minimizes the sum of its edge weights, i.e.

\[
\sum_{(u,v) \in T} w(u, v).
\]

Prim’s algorithm implements the greedy-choice strategy for minimum spanning tree. Starting with an empty tree (one with no edges), the algorithm repeatedly adds the lowest-weight edge \((u, v)\) in \(G \) such that either \(u \) or \(v \), but not both, is already connected to the tree. Put another way, it adds the lowest-weight edge that would connect a new vertex to the tree without forming a cycle. The tricky part is to decide efficiently which among a potentially large number of edges is the best edge to add to the tree at each step.

Prim’s algorithm, like Dijkstra’s, uses a priority queue \(Q \) to keep track of which edge should be added to the tree next. For each vertex \(v \) not already touched by the tree, it tracks the lowest-weight edge that would connect \(v \) to the tree. If \(Q \) is implemented with a standard binary heap, Prim’s algorithm requires time \(O(m \log n) \); if we instead use a Fibonacci heap (which has amortized constant-time insertion and decreaseKey), the time drops to \(O(n \log n + m) \).
\textbf{PRIM}(G, s)
for $u \in V$ do \\
\hspace{1cm} u.distance $\leftarrow \infty$
\hspace{1cm} u.conn \leftarrow null
\hspace{1cm} Q.insert(u, ∞)
$T \leftarrow \emptyset$

s.distance $\leftarrow 0$
Q.decreaseKey(s, 0)

\textbf{while} Q is not empty \textbf{do}
\hspace{1cm} $u \leftarrow Q$.extractMin()
\hspace{1cm} \textbf{if} u.distance = ∞
\hspace{1cm} \hspace{1cm} \textbf{stop} \\
\hspace{1cm} $T \leftarrow T \cup (u$.conn, u)
\hspace{1cm} \textbf{for} $v \in \text{Adj}[u]$ \textbf{do}
\hspace{1cm} \hspace{1cm} \textbf{if} Q.decreaseKey(v, $w(u, v)$)
\hspace{1cm} \hspace{1cm} \hspace{1cm} v.distance $\leftarrow w(u, v)$
\hspace{1cm} \hspace{1cm} \hspace{1cm} v.conn $\leftarrow u$