
CSE 241 Algorithms and Data Structures 11/4/2015

Binary Heaps

A binary heap Q is an implementation of the priority queue data type. It supports the following

operations:

• Q.insert(k) – insert a key k into the heap

• Q.min() – return the smallest key in the heap

• Q.extractMin(k) – remove the smallest key from the heap

The above operations (and the rest of this handout) are defined for a min-first heap. A max-first heap

supports Q.max() and Q.extractMax(k). Binary heaps can support either min or max operations, but not

both. Not surprisingly, the above ops can be generalized to work on records with key values, rather than

just the keys alone.

Heap operations are designed to maintain the heap property (which is best described in the tree view

rather than the array view)

For any node x in a min-first heap, every node in the subtree rooted at x must have a key ≥ x’s

key.

A heap of size n supports insert and extractMin in time O(log n) and min in constant time. Heaps

do not support efficient (sub-linear) search or fast successor/predecessor operations.

One additional important heap operation is decreaseKey(i, k). This operation replaces the ith key Q[i]

in a heap with the value k if Q[i] > k. You can think of the value i as being a pointer to a heap element.

Lab 4 shows how to keep track of this pointer for heap applications.

The decreaseKey operation can run in time O(log n). Using this operation, we can implement deletion

of any element of a heap in time O(log n).

The following pages give pseudocode for the major heap operations (except for decreaseKey), assuming

that the heap is stored as an array A[1 . . . n]. In such an array, the children of the element A[i] are A[2i]

and A[2i + 1], while the parent of A[i] is A[bi/2c]. A[1] is the root of the heap, while A[0] remains unused.

1



The following operations are all given for a min-first heap. Finding the minimum is trivial:

Min(A)

return A[1]

Insertion starts at the bottom of the heap and works its way up, trying to find the right place to insert the

new key k. If the current key A[i] is smaller than the new key k, the heap property demands that we move

A[i] below k.

Insert(A, k)

A.length + +

i← A.length

while i > 1 and k < A[bi/2c] do
A[i]← A[bi/2c]
i← bi/2c

A[i]← k

(Notice that if we start the insertion loop in the middle of the heap rather than at the end, it’s a very short

step to DecreaseKey!)

Extracting the minimum key from a heap in the array representation requires that we put a new key in

A[1] without leaving any empty cells in the middle of A. We achieve this goal by moving the last element of

the heap into A[1], then fixing up the heap (using the Heapify procedure shown below) to make sure the

heap property is maintained.

ExtractMin(A)

k ← A[1]

A[1]← A[length]

A.length−−
Heapify(A, 1)

return k

Heapify(A, i)

if i ≤ bA.length/2c . i not a leaf

j ← index of A[i]’s smallest child

if A[j] < A[i]

swap(A[i], A[j])

Heapify(A, j)

2


