/* cgroupns_child_exec.c This program is based on the original userns_child_exec.c, which was retrieved for Washington University's CSE 522S course on January 23, 2021, from the original listing at https://lwn.net/Articles/539940/ posted February 27, 2013 by mkerrisk Details for userns_child_exec.c: Copyright 2013, Michael Kerrisk Licensed under GNU General Public License v2 or later Create a child process that executes a shell command in new namespace(s); allow UID and GID mappings to be specified when creating a user namespace. Note that the mappings are irrelevant if not creating a new user namespace. Uses a pipe to synchronize parent and child, ensuring that any mappings occur before child exec's a new program This program adds an additional flag to create a cgroups namespace. If that flag is specified, the program reads in an additional command-line argument, which specifies a cgroup.procs file, into which it will place itself before the call to clone(). */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include /* A simple error-handling function: print an error message based on the value in 'errno' and terminate the calling process */ #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \ } while (0) struct child_args { char **argv; /* Command to be executed by child, with arguments */ int pipe_fd[2]; /* Pipe used to synchronize parent and child */ }; static int verbose; /* Displays usage information if command-line arguments are not entered correctly. */ static void usage(char *pname) { fprintf(stderr, "Usage: %s [options] cmd [arg...]\n\n", pname); fprintf(stderr, "Create a child process that executes a shell command " "in a new user namespace,\n" "and possibly also other new namespace(s).\n\n"); fprintf(stderr, "Options can be:\n\n"); #define fpe(str) fprintf(stderr, " %s", str); fpe("-i New IPC namespace\n"); fpe("-m New mount namespace\n"); fpe("-n New network namespace\n"); fpe("-p New PID namespace\n"); fpe("-u New UTS namespace\n"); fpe("-C New cgroups namespace\n"); fpe("-U New user namespace\n"); fpe("-M uid_map Specify UID map for user namespace\n"); fpe("-G gid_map Specify GID map for user namespace\n"); fpe(" If -M or -G is specified, -U is required\n"); fpe("-v Display verbose messages\n"); fpe("\n"); fpe("Map strings for -M and -G consist of records of the form:\n"); fpe("\n"); fpe(" ID-inside-ns ID-outside-ns len\n"); fpe("\n"); fpe("A map string can contain multiple records, separated by commas;\n"); fpe("the commas are replaced by newlines before writing to map files.\n"); exit(EXIT_FAILURE); } /* Update the mapping file 'map_file', with the value provided in 'mapping', a string that defines a UID or GID mapping. A UID or GID mapping consists of one or more newline-delimited records of the form: ID_inside-ns ID-outside-ns length Requiring the user to supply a string that contains newlines is of course inconvenient for command-line use. Thus, we permit the use of commas to delimit records in this string, and replace them with newlines before writing the string to the file. */ static void update_map(char *mapping, char *map_file) { int fd, j; size_t map_len; /* Length of 'mapping' */ /* Replace commas in mapping string with newlines */ map_len = strlen(mapping); for (j = 0; j < map_len; j++) if (mapping[j] == ',') mapping[j] = '\n'; fd = open(map_file, O_RDWR); if (fd == -1) { fprintf(stderr, "open %s: %s\n", map_file, strerror(errno)); exit(EXIT_FAILURE); } if (write(fd, mapping, map_len) != map_len) { fprintf(stderr, "write %s: %s\n", map_file, strerror(errno)); exit(EXIT_FAILURE); } close(fd); } static void setgroups_deny(char * setgroups_file) { int fd; const char * deny = "deny"; fd = open(setgroups_file, O_RDWR); if (fd == -1) { fprintf(stderr, "open %s: %s\n", setgroups_file, strerror(errno)); exit(EXIT_FAILURE); } if (write(fd, deny, strlen(deny)) != strlen(deny)) { fprintf(stderr, "write %s: %s\n", setgroups_file, strerror(errno)); exit(EXIT_FAILURE); } close(fd); } static void joinCgroup(const char * path) { int pid, fd, len, ret; /* Get PID and format as string */ const int pid_len = 16; char pidstr[pid_len]; pid = getpid(); len = snprintf(pidstr, pid_len, "%d", pid); /* Open cgroup.procs file specified in path */ fd = open(path, O_WRONLY); if (fd == -1) { fprintf(stderr, "Failure in child: could not open %s for writing\n", path); errExit(""); } /* Write PID into cgroup.procs file */ printf("Writing %s into %s\n", pidstr, path); ret = write(fd, pidstr, len); if (ret < len) { fprintf(stderr, "Failure in child: could not write PID %s to file %s\n", pidstr, path); errExit(""); } close(fd); } static int /* Start function for cloned child */ childFunc(void *arg) { struct child_args *args = (struct child_args *) arg; char ch; /* Wait until the parent has updated the UID and GID mappings. See the comment in main(). We wait for end of file on a pipe that will be closed by the parent process once it has updated the mappings. */ close(args->pipe_fd[1]); /* Close our descriptor for the write end of the pipe so that we see EOF when parent closes its descriptor */ if (read(args->pipe_fd[0], &ch, 1) != 0) { fprintf(stderr, "Failure in child: read from pipe returned != 0\n"); exit(EXIT_FAILURE); } /* Execute a shell command */ execvp(args->argv[0], args->argv); errExit("execvp"); } #define STACK_SIZE (1024 * 1024) static char child_stack[STACK_SIZE]; /* Space for child's stack */ int main(int argc, char *argv[]) { int flags, opt; pid_t child_pid; struct child_args args; char *uid_map, *gid_map; char map_path[PATH_MAX], setgroups_path[PATH_MAX]; /* Parse command-line options. The initial '+' character in the final getopt() argument prevents GNU-style permutation of command-line options. That's useful, since sometimes the 'command' to be executed by this program itself has command-line options. We don't want getopt() to treat those as options to this program. */ flags = 0; verbose = 0; gid_map = NULL; uid_map = NULL; while ((opt = getopt(argc, argv, "+imnpuUCM:G:v")) != -1) { switch (opt) { case 'i': flags |= CLONE_NEWIPC; break; case 'm': flags |= CLONE_NEWNS; break; case 'n': flags |= CLONE_NEWNET; break; case 'p': flags |= CLONE_NEWPID; break; case 'u': flags |= CLONE_NEWUTS; break; case 'C': flags |= CLONE_NEWCGROUP; break; case 'v': verbose = 1; break; case 'M': uid_map = optarg; break; case 'G': gid_map = optarg; break; case 'U': flags |= CLONE_NEWUSER; break; default: usage(argv[0]); } } /* -M or -G without -U is nonsensical */ if ((uid_map != NULL || gid_map != NULL) && !(flags & CLONE_NEWUSER)) usage(argv[0]); /* If joining cgroups namespace*/ if ( flags & CLONE_NEWCGROUP ) { joinCgroup(argv[optind]); optind++; } args.argv = &argv[optind]; /* We use a pipe to synchronize the parent and child, in order to ensure that the parent sets the UID and GID maps before the child calls execve(). This ensures that the child maintains its capabilities during the execve() in the common case where we want to map the child's effective user ID to 0 in the new user namespace. Without this synchronization, the child would lose its capabilities if it performed an execve() with nonzero user IDs (see the capabilities(7) man page for details of the transformation of a process's capabilities during execve()). */ if (pipe(args.pipe_fd) == -1) errExit("pipe"); /* Create the child in new namespace(s) */ child_pid = clone(childFunc, child_stack + STACK_SIZE, flags | SIGCHLD, &args); if (child_pid == -1) errExit("clone"); /* Parent falls through to here */ if (verbose) printf("%s: PID of child created by clone() is %ld\n", argv[0], (long) child_pid); /* Update the UID and GID maps in the child */ if (uid_map != NULL) { snprintf(map_path, PATH_MAX, "/proc/%ld/uid_map", (long) child_pid); update_map(uid_map, map_path); } if (gid_map != NULL) { snprintf(map_path, PATH_MAX, "/proc/%ld/gid_map", (long) child_pid); snprintf(setgroups_path, PATH_MAX, "/proc/%ld/setgroups", (long) child_pid); setgroups_deny(setgroups_path); update_map(gid_map, map_path); } /* Close the write end of the pipe, to signal to the child that we have updated the UID and GID maps */ close(args.pipe_fd[1]); if (waitpid(child_pid, NULL, 0) == -1) /* Wait for child */ errExit("waitpid"); if (verbose) printf("%s: terminating\n", argv[0]); exit(EXIT_SUCCESS); }