Digital IC Design and Architecture

Combinational Logic and Circuits

Static CMOS Circuit

- **At every point in time (except during the switching transients) each gate output is connected to either** V_{DD} or V_{ss} via a low-resistive path.
- **The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).**
- **This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.**

Static Complementary CMOS

- ◆ PUN and PDN are dual logic networks
- ◆ PUN and PDN functions are complementary

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal NMOS switch closes when switch control input is high

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS Transistors in Series/Parallel Connection **PMOS switch closes when switch control input is low**

PMOS Transistors pass a "strong" 1 but a "weak" 0

Threshold Drops

PUN – Pull Up Network

PDN – Pull Down Network

Complementary CMOS Logic Style

• PUP is the **DUAL** of PDN (can be shown using DeMorgan's Theorem's)

$$
\overline{A + B} = \overline{A}\overline{B}
$$

$$
\overline{AB} = \overline{A} + \overline{B}
$$

• The complementary gate is inverting

 $AND = NAND + INV$

Example Gate: NAND

PDN: $G = AB \implies$ Conduction to GND PUN: $F = A + B = AB \implies$ Conduction to V_{DD} $G(In_1, In_2, In_3, ...) \equiv F(\overline{In_1}, \overline{In_2}, \overline{In_3}, ...)$

Example Gate: NOR

Complex CMOS Gate

Digital IC Design and Architecture

Combinational Logic: **CMOS** Implementation

CMOS LOGIC GATES

nMOS Net OFF, pMOS Net ON

Symmetrical EQUIV INV

 $k_{\text{peQV}} = k_{\text{neQV}}$ or $k_{\text{peQV}}/k_{\text{neQV}} = 1$ and $V_{\text{Ta}} = |V_{\text{Ta}}| \implies V_{\text{th}}(INV) = V_{\text{nn}}/2$ $V_{th}(NR2) = V_{DD}/2 = > k_p = 4k_p$

PARASITIC CAPS FOR CMOS NR2 (CONSERVATIVE)

WORST CASE for PULL-UP => $V_1 = 0$, $V_2 = V_{DD} \rightarrow 0$ & $V_x = low \rightarrow high$ $C_{\text{load-NR2}} \approx 2C_{\text{dbn}} + 2C_{\text{dbp}} + C_{\text{sbp}} + C_{\text{int}} + C_{\text{e}b} = 2C_{\text{dbn}} + 3C_{\text{dbp}} + C_{\text{int}} + C_{\text{e}b}$

WORST CASE for PULL-DOWN => $V_1 = 0$, $V_2 = 0$ -> V_{DD} & $V_x = high$ -> low $C_{load-NR2} \approx 2C_{dbn} + 2C_{dbp} + C_{sbp} + C_{int} + C_{eb} = 2C_{dbn} + 3C_{dbp} + C_{int} + C_{eb}$ **NRn:** $C_{load\text{-NRn}} \approx nC_{dbn} + (2n-1)C_{dbn} + C_{int} + C_{eb}$

22

CMOS NR DESIGN STRATEGIES

NR2:

1. Symmetric Inverter $V_{ab} = V_{DD}/2$: $V_{\text{th}}(NR2) = V_{\text{DD}}/2 = > k_{\text{o}} = 4k_{\text{o}}$

2. Propogation delay τ_{PHL} or τ_{PHH} . $\tau_{\rm PHL-NR2} \approx \frac{C_{\rm load-NR2}}{2 \text{km}(\text{VDD-VT0n})} \frac{2 V_{\rm T0n}}{V_{\rm DD} - V_{\rm T0n}} + \ln \left(\frac{4 (V_{\rm DD} - V_{\rm T0n})}{V_{\rm DD}} - 1 \right)$ $\tau_{\rm PLH-NR2} \approx \frac{C_{\rm load-NR2}}{\frac{k_P(\text{VDD}-|\text{VTop}|)}{k_P(\text{VDD}-|\text{VTop}|)}} \frac{2|V_{\rm Top}|}{V_{\rm DD}-|V_{\rm Top}|} + \ln \left(\frac{4(V_{\rm DD}-|V_{\rm Top}|)}{V_{\rm DD}} - 1 \right)$ NRn:

1. Symmetric Inverter $V_{th} = V_{DD}/2$: $V_{\text{th}}(NRn) = V_{\text{DD}}/2 = > k_{\text{n}} = n^2k_{\text{n}}$ 2. Propogation delay τ_{pH} or τ_{pH} . $\tau_{\text{PHL-NRn}} \approx \frac{C_{\text{load-NRn}}}{n k n (\text{VDD-VT0n})} \frac{2 V_{\text{T0n}}}{V_{\text{DD}} - V_{\text{T0n}}} + \ln \left(\frac{4 (V_{\text{DD}} - V_{\text{T0n}})}{V_{\text{DD}}} - 1 \right)$ $\tau_{\rm PLH-NRn} \approx \frac{C_{\rm load-NRn}}{\underline{k_P(\text{VDD-|VTop})}} \frac{2|V_{\rm Top}|}{V_{\rm DD}-|V_{\rm Top}|} + \ln \left(\frac{4(V_{\rm DD}-|V_{\rm Top}|)}{V_{\rm DD}} - 1 \right)$

NDn: $C_{load-NDn} \approx (2n-1)C_{dbn} + nC_{dbp} + C_{int} + C_{gb}$

CMOS ND DESIGN STRATEGIES

ND₂: 1. Symmetric Inverter $V_{th} = V_{DD}/2$: $V_{\text{th}}(ND2) = V_{\text{DD}}/2 = > k_{\text{n}} = 4k_{\text{n}}$ 2. Propogation delay τ_{PHL} or τ_{PLH} : $\tau_{\text{PHL-ND2}} \approx \frac{C_{\text{load}-\text{ND2}}}{\frac{\text{kn}(\text{VDD-Vron})}{V_{\text{DD}} - V_{\text{TOn}}} + \ln\left(\frac{4(V_{\text{DD}} - V_{\text{TOn}})}{V_{\text{DD}} - 1}\right)}$ $\tau_{\rm PLH-ND2} \approx \frac{C_{\rm load-ND2}}{2{\rm k}_p({\rm VDD-|V\rm Top}|)} \frac{2\big|{\rm V_{\rm TOp}}\big|}{\rm V_{\rm DD}-|V_{\rm T\rm On}|} + \ln \Bigg(\frac{4\big({\rm V_{\rm DD}} - \big|{\rm V_{\rm TOp}}\big|\big)}{\rm V_{\rm DD}} - 1\Bigg)\Bigg]$ NDn:

1. Symmetric Inverter $V_{th} = V_{DD}/2$: $V_{\text{th}}(NDn) = V_{\text{DD}}/2 = > k_{\text{n}} = n^2k_{\text{o}}$

2. Propogation delay $\tau_{\text{p}_{\text{H}}}$ or $\tau_{\text{p}_{\text{H}}}$.

$$
\tau_{\rm PHL-NDn} \approx \frac{C_{load-NDn}}{\frac{k_n(\text{VDD-Vron})}{n}} \left[\frac{2V_{\text{TDD}}}{V_{\text{DD}} - V_{\text{TOn}}} + \ln \left(\frac{4(V_{\text{DD}} - V_{\text{TOn}})}{V_{\text{DD}}} - 1 \right) \right]
$$

$$
\tau_{\rm PHH-NDn} \approx \frac{C_{load-NDn}}{\frac{k_n(\text{VDD-VTop})}{k_p(\text{VDD}-|\text{VDp}|}} \left[\frac{2|V_{\text{TOp}}|}{V_{\text{DD}} - |V_{\text{TOp}}|} + \ln \left(\frac{4(V_{\text{DD}} - |V_{\text{TOp}}|)}{V_{\text{DD}}} - 1 \right) \right]
$$

TYPICAL CMOS NAND AND NOR DELAYS Delays for a Family of NAND & NOR gates

- 1. $W_n = 6.4 \mu m$, $L_n = 1 \mu m$, and $W_p = 12.8 \mu m$, $L_p = 1 \mu m$.
- 2. $t_{\text{input-rise/fall}} = 0.1 \text{ ns} \text{ and } C_{\text{load}} = 0 \text{ -} 1 \text{ pF}.$

NR2 Layout Example

ND2 Layout Example

COMPLEX LOGIC GATES

$$
Z = \overline{A(D + E) + BC}
$$

"OR" OPS PERFORMED BY PARALLEL CONECTED DRIVERS. "AND" OPS PERFORMED BY SERIES CONNECTED DRIVERS. "INVERSION" IS PROVIDED BY NATURE OF MOS CIRCUIT OP.

EQV INVERTER (for case G4 where $A = B = C = D = E = 1$)

ALGORYTHYM FOR LINE OF GATES LAYOUT STYLE

- 1. Find all Euler paths that cover the graph.
- 2. Find common $n-$ and $p-$ Euler paths.
- 3. If no Euler paths are found in step 2, break the gate in the minimum number of places that to achieve step 2 with separate common Euler paths.

FULL CMOS XOR GATE

AOI & OAI GATES

AOI -> AND-OR-INVERT (for SUM - of - PRODUCTS Realization) OAI -> OR-AND-INVERT (for PRODUCT - of - SUMS Realization)

OAI -> OR-AND-INVERT (for PRODUCT - of - SUMS Realization)

Pseudo-nMOS OAI Realization

CMOS Transmission Gates (TGs) & TG Logic

SYMBOLS

SWITCH CHARACTERISTICS

Output Input \bullet - b Strong 0 a. Ω

 $\circ \rightarrow \circ -$ b Strong 1 1 $a -$

REGION 1:
$$
R_{eqn} = \frac{2(V_{DD} - V_{out})}{k_n(V_{DD} - V_{out} - V_{Tn})^2}
$$

\nnMOS: SAT
\npMOS: SAT
\n
$$
R_{eqp} = \frac{2(V_{DD} - V_{out})}{k_p(V_{DD} - V_{Tp})^2}
$$

\nREGION 2
\nnMOS: SAT
\n
$$
R_{eqn} = \frac{2(V_{DD} - V_{out})}{k_n(V_{DD} - V_{out} - V_{Tn})^2}
$$

\n
$$
R_{eqn} = \frac{2(V_{DD} - V_{out})}{k_p[2(V_{DD} - V_{Tp})](V_{DD} - V_{out}) - (V_{DD} - V_{out})^2]}
$$

\n
$$
= \frac{2}{k_p[2(V_{DD} - V_{Tp})] - (V_{DD} - V_{out})]}
$$

\nREGION 3
\nnMOS: OFF
\n
$$
R_{eqn} = \infty
$$

\npMOS: LIN
\n
$$
R_{eqn} = \frac{2}{k_p[2(V_{DD} - V_{Tp})] - (V_{DD} - V_{out})]}
$$

2-INPUT MULTIPLEXER

 $\overline{\mathsf{s}}$

XOR (COMPLEMENTARY PASS-TRANSISTOR LOGIC OR CPL)

SOME OF THE FUNCTIONS REALIZED BY THE **BOOLEAN FUNCTION UNIT (CPL)**

