
Lecture 9:

More About

Hashing

1

These slides include material

originally prepared by Dr. Ron
Cytron, Dr. Jeremy Buhler,
and Dr. Steve Cole.

Announcements

2

● Lab 7 – pre-lab due tonight, code/post-lab due Friday
○ Please remember to commit AND push AND check bitbucket.org!

○ Please remove debugging code!

● Exam reschedule requests for Exam 2 and Exam 3
○ Due next Tuesday 11:59 pm

○ Form here on website (will be removed after next Tuesday)

https://classes.engineering.wustl.edu/cse247/main/requests/

Agenda for today

3

● Leftover hash… finish up multiplication hashing

● A second strategy for hash table design – open

addressing

● How to map objects to hashcodes

Flashback to Lecture

7 Slides…

4

Hash Table Design (from Last Time)

● Function b(c) maps hashcode c to bucket index j

● Every key with hashcode c goes into bucket b(c), in a linked list

● On find(k), must walk the list to find key matching k, if any

5

Hash Table with Chaining

6

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }find(axolotl)

Hash Table with Chaining

7

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }b(h(axolotl)) = 1

Hash Table with Chaining

8

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }b(h(axolotl)) = 1

Hash Table Design (from Last Time)

● Function b(c) maps hashcodes c to bucket index j

● Every key with hashcode c goes into bucket b(c), in a linked list

● On find(k), must walk the list to find key matching k, if any

● Quickie quiz: how do I compare key to each element of chain?

9

Hash Table Design (from Last Time)

● Function b(c) maps hashcodes c to bucket index j

● Every key with hashcode c goes into bucket b(c), in a linked list

● On find(k), must walk the list to find key matching k, if any

● Quickie quiz: how do I compare key to each element of chain?

● With equals() or similar – not with hashcodes! Why?
10

Two Main Approaches to Index Mapping

● Division hashing

● Multiplicative hashing

● (Other strategies exist; beyond scope of 247)

11

Multiplicative Hashing

● Let A be a real number in [0, 1).

● 𝒃 𝒄 = 𝒄 ∙ 𝑨 𝒎𝒐𝒅 𝟏.𝟎 ∙ 𝒎

● “x mod 1.0” means “fractional part of x.”

● E.g. 47.2465 mod 1.0 = 0.2465

● cA mod 1.0 is in [0, 1), so b(c) is an integer in [0, m) – an index!

12

Initial Observations

● A should not be too small – would map many hashcodes to 0.

● → Suggest picking A from [0.5, 1)

● If q = cA mod 1.0 is distributed uniformly in [0, 1), then we can use

any value for m and still get uniform indices.

● In particular, we can use m = 2v if we want.

13

Why Is Multiplication a Good Hashing Strategy?

● Mapping c → q = cA mod 1.0 is a diffusing operation

● I.e., most significant digits of q depend (in a complex way) on many

digits of c. (Makes q looks uniform, obscures correlations among c’s.)

● Hence, bin number 𝑞 ∙ 𝑚 looks uniform, uncorrelated with c.

● (Same is true if we replace “digits” by “bits” and work in binary)

14

Example of Diffusion

15

1234

0.6734x

Assumed:

• Integer c has fixed some # of digits

• We use same # of digits of A after decimal

Example of Diffusion

16

1234

0.6734x

.4936

Example of Diffusion

17

1234

0.6734x

.4936

3.7020

Example of Diffusion

18

1234

0.6734x

.4936

3.7020

86.3800

Example of Diffusion

19

1234

0.6734x

.4936

3.7020

86.3800

740.4000

Example of Diffusion

20

1234

0.6734x

.4936

3.7020

86.3800

+740.4000

• First digit after decimal is middle

digit of product

• Middle digits depend on all (or

most) digits of c and all or most

digits of A

• These digits determine bin number

Is Every Choice of A Equally Good?

● Not all A’s have equally good diffusion/complexity properties.

● Fractions with few nonzero digits (e.g. 0.75) or repeating decimals

(e.g. 7/9 = 0.7777777…..) have poor diffusion and/or low complexity.

● Advice: pick an irrational number between 0.5 and 1.

● Ex: 𝑨 =
𝟓−𝟏

𝟐
≈ 0.61803398874989484820458683436564 [Knuth]

21

Multiplication Hashing Without Floating-Point Math

● What if you can’t / don’t want to use floating-point math?

● (May be more expensive than integer math)

● If we know our hashcodes c have at most d digits, we can multiply A by 10d

initially and do everything we need using only integer arithmetic.

● Similarly, if hashcodes have at most w bits, we can multiply A by 2w initially.

● This trick is called “fixed-point arithmetic”.

22

Previous Example, in Fixed-Point Decimal

23

1234

0.6734x

Assumed:

• Integer c has at most 4 digits

• We use same # of digits of A after decimal

Previous Example, in Fixed-Point Decimal

24

1234

6734x ÷ 104 (multiply, but remember how to undo)

Previous Example, in Fixed-Point Decimal

25

1234

6734x

4936

÷ 104

Previous Example, in Fixed-Point Decimal

26

1234

6734x

4936

37020

÷ 104

Previous Example, in Fixed-Point Decimal

27

1234

6734x

4936

37020

863800

÷ 104

Previous Example, in Fixed-Point Decimal

28

1234

6734x

4936

37020

863800

7404000

÷ 104

Previous Example, in Fixed-Point Decimal

29

1234

6734x

4936

37020

863800

+7404000

÷ 104

8309756

We know decimal point goes here

cA mod 1 = 9756 ÷ 104

Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756 ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

30

Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756 ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

31

Again, we know decimal point goes here

Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756 ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

● Hence, 𝒄 ∙ 𝑨 𝒎𝒐𝒅 𝟏. 𝟎 ∙ 𝒎 = 𝟗𝟕

32

Again, we know decimal point goes here

What About Fixed-Point Binary?

● Book presents the binary version.

● It’s also how you would typically implement it on a computer!

● If you have had 132, then the following slides will make more sense
○ If not, follow along as best you can, and look at this again after you’ve had 132

33

For base 2 (let’s assume w = 32)

34

result of .hashCode()

For base 2 (let’s assume w = 32)

35

result of .hashCode()

A shifted left by 32 bits

For base 2 (let’s assume w = 32)

36

result of .hashCode()

A shifted left by 32 bits

The product of two w-bit numbers yields a 2w-bit result

For base 2 (let’s assume w = 32)

37

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

For base 2 (let’s assume w = 32)

38

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A

For base 2 (let’s assume w = 32)

39

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

40

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A
shifted right now by
p bits

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

41

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A
shifted right now by
p bits

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

42

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

43

result of .hashCode()

A shifted left by 32 bits

Assume we use Knuth’s A:

Example (page 264 in text)

44

w = 32

p = 14 → m = 16384

Example (page 264 in text)

45

k = 123456

w = 32

p = 14 → m = 16384

Example (page 264 in text)

46

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

Example (page 264 in text)

47

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

327706022297664 =

Example (page 264 in text)

48

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

Example (page 264 in text)

49

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Example (page 264 in text)

50

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

0
0000

Example (page 264 in text)

51

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01
0000 0001

Example (page 264 in text)

52

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0
0000 0001 0000

Example (page 264 in text)

53

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0C
0000 0001 0000

C = 1100

but we only need the first two bits to
make 14 total bits

Example (page 264 in text)

54

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0C
0000 0001 0000 11

C = 1100

but we only need the first two bits to
make 14 total bits

Example (page 264 in text)

55

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01
0000 0001 0000 11 = 64 + 3 = 67

hashes to bucket 67

A Good Implementation

● Choose m = 2p buckets

● Assume .hashCode() yields 32-bit unsigned integer k [does not exist in Java]

● Pre-compute the constant s = 232 x A

● Assume that if sk overflows 32 bits, we get only lower 32 bits of result

● Index computation on input k is then sk ÷ 232 – p = sk >> (32 – p)

● This is a close relative of the function you saw in Studio 7.

56

New material

57

An Alternative Design – Open Addressing

● A chained hash table needs two data structures: arrays and lists

● Can we get by with just one data structure?

○ Simplicity is good

○ Lists can be slow

● Open addressing: hash tables, unchained

58

An Alternative Design – Open Addressing

● A chained hash table needs two data structures: arrays and lists

● Can we get by with just one data structure?

○ Simplicity is good

○ Lists can be slow

● Open addressing: hash tables, unchained

59

Idea: Open Addressing with Double Hashing

● Define two indexing functions: b(c) “base” and s(c) “step” that

produce indices in [0,m)

● To insert record w/key hashcode c, first compute b(c) and s(c)

● Try to place record in table cell b(c)

● If that cell is full, try again at cell [b(c) + s(c)] mod m

● In general, try [b(c) = j*s(c)] mod m, j = 0,1,2,… until empty cell found
60

Open Addressing Example

● Suppose m = 4, h(k1) = c1, b(c1) = 1, s(c1) = 3

61

0

1

2

3

k1

Open Addressing Example

● Suppose m = 4, h(k1) = c1, b(c1) = 1, s(c1) = 3

62

0

1

2

3

k1

Open Addressing Example

● Suppose m = 4, h(k2) = c2, b(c2) = 0, s(c2) = 1

63

0

1

2

3

k1

k2

Open Addressing Example

● Suppose m = 4, h(k2) = c2, b(c2) = 0, s(c2) = 1

64

0

1

2

3

k1

k2

Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

65

0

1

2

3

k1

k2

k3

Try cell 1… full!

Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

66

0

1

2

3

k1

k2

k3

Try cell (1+3) mod 4 = 0… full!

Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

67

0

1

2

3

k1

k2

k3

Try cell (1+2*3) mod 4 = 3… empty!

Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

68

0

1

2

3

k1

k2

k3

Try cell (1+2*3) mod 4 = 3

Notes on Open Addressing

● Find works similarly to insert – check cells as determined by b(c) and

s(c) until desired key found (success), or an empty cell is found (fail)

● For correct operation:

○ Maintain load factor α<1 (avg search time Θ(1/(1 - α)))

○ Make sure s(c) is relatively prime to m

(e.g., s(c) always odd if m is power of 2) [why?]

69

Open Addressing: the Good

● Does not require linked lists (implicit in sequence of cells)

● Using two hash functions can resolve collisions faster

● If load factor ≤ 1/c, c > 1, all ops still avg Θ(1) time

70

Open Addressing: the Bad

● Table can get full, unlike with chaining (resize!)

● Requires larger array for good performance w/given n

● Deletion is harder – cannot leave empty cells (why?)

71

Open addressing – the Problem with Deletion

● remove(k2)

72

0

1

2

3

k1

k2

k3

Open addressing – the Problem with Deletion

● remove(k2)

73

0

1

2

3

k1

k3

previously

had k2

Open addressing – the Problem with Deletion

● find(k3) → h(k3) = c3, b(c3) = 1, s(c3) = 3

74

0

1

2

3

k1

k3

k3 previously

had k2

Open addressing – the Problem with Deletion

● find(k3) → h(k3) = c3, b(c3) = 1, s(c3) = 3

75

0

1

2

3

k1

k3

k3

Try cell 1… no match!

previously

had k2

Open addressing – the Problem with Deletion

● find(k3) → h(k3) = c3, b(c3) = 1, s(c3) = 3

76

0

1

2

3

k1

k3

k3

Try cell (1+3) mod 4 = 0… empty!

previously

had k2

Open addressing – the Problem with Deletion

● find(k3) → h(k3) = c3, b(c3) = 1, s(c3) = 3

77

0

1

2

3

k1

k3

k3

Returns “not found”. Uh oh…

previously

had k2

Open Addressing: the Bad

● Table can get full, unlike with chaining (resize!)

● Requires larger array for good performance w/given n

● Deletion is harder – cannot leave empty cells

● (Deletion must leave behind a “deleted” marker so find

does not stop prematurely.)

78

And now, back to

hash function

design…

79

Hash Function Pipeline – Two Steps

80

Objects

(keys k)

Integers

(hashcodes c)

Buckets

(indices j)

c = h(k) j = b(c)

Hash Function Pipeline – Two Steps

81

Objects

(keys k)

Integers

(hashcodes c)

Buckets

(indices j)

c = h(k) j = b(c)

Last weekToday

Purpose of Hashcode Generation

● Map objects to integers in some range

● Objects that are equal() must have ??? hashcode

82

Purpose of Hashcode Generation

● Map objects to integers in some range

● Objects that are equal() must have the same hashcode (Studio 7)

● Objects that are not equal() should have ??? hashcodes

83

Purpose of Hashcode Generation

● Map objects to integers in some range

● Objects that are equal() must have the same hashcode (Studio 7)

● Objects that are not equal() should have distinct hashcodes

(but this may not always be possible due to PHP)

● Question: should hashcodes be spread uniformly across range

without obvious correlations?

84

Argument About Hashcode Generation

● Question: should hashcodes be spread uniformly across range

without obvious correlations?

● No: second step (index generation) is responsible for ensuring that

unequal hashcodes are mapped to uniform, uncorrelated indices

● Yes: index generation is not responsible for “fixing” a bad hashcode

generator

85

Argument About Hashcode Generation

● Question: should hashcodes be spread uniformly across range

without obvious correlations?

● No: second step (index generation) is responsible for ensuring that

unequal hashcodes are mapped to uniform, uncorrelated indices

● Yes: index generation is not responsible for “fixing” a bad hashcode

generator

86

Different languages/code libraries

take different sides in this argument.

Java implementation details (e.g.

Color) suggest it thinks that “no,

hashcodes need not be

uniform/uncorrelated”.

Some C++ implementations (e.g. MS

VS 2015) expect uniformity;

some don’t.

Argument About Hashcode Generation

● Question: should hashcodes be spread uniformly across range

without obvious correlations?

● No: second step (index generation) is responsible for ensuring that

unequal hashcodes are mapped to uniform, uncorrelated indices

● Yes: index generation is not responsible for “fixing” a bad hashcode

generator.

87

What assumption does your favorite

language/library make?

And if it doesn’t require uniform hashcodes,

how good is its index generator?

E.g. OpenJDK 8 HashMap:

table size is power of 2,

index = hashcode XOR hashcode/216

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java

An Argument for “Good” Hashcodes, Regardless

● Even if your index generator scrambles the hashcode…

● … if universe of objects is much bigger than # possible hashcodes…

● … then non-uniformity, correlations increase practical likelihood that

you’ll encounter many objects that map to the same hashcode.

● [This was not an issue in Studio 7, because # Color objects = # hashcodes]

88

Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

89

32 bits 32 bits

64-bit quantity

Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

90
32 bits

32 bits

Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

91
32 bits

32 bits

XOR

Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

92

32 bits

Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

93

32 bits

If you also want

uniformity/decorrelation, use

e.g. multiplicative hashing

strategy with m=232 to map

these values to hashcodes.

More Hashcode Ideas for Primitive Types

● Types with limited # of values (e.g. Booleans, enums)?

● Cannot hope to cover entire space of hashcodes

● Either map to small ints & rely on index calc to scramble…

● Or guess a mapping with “nice” properties

● E.g. Boolean: true → 1231, false → 1237 (why?)

94

https://stackoverflow.com/questions/3912303/boolean-hashcode

Hashing Composite Objects

● More complex datatypes come in two flavors

● Sets – collection of objects, no order [e.g. Java Set]:

● {3, 2, 5} = {2, 5, 3} = {5, 3, 2}

● Sequences – collection of objects, order matters [e.g. List, String]:

● [2, 5, 3] ≠ [3, 2, 5]

● “k-tuple” – sequence of k objects [o1…ok] of types [t1…tk]

● (objects of class type with data members)
95

Hashing Sets and Sequences

● Assume we have hashcodes for each element in composite object

● How do we construct a single hashcode for the whole object?

● Sets – must get same result regardless of element order

● E.g., h(c1…ck) = ???

96

Hashing Sets and Sequences

● Assume we have hashcodes for each element in composite object

● How do we construct a single hashcode for the whole object?

● Sets – must get same result regardless of element order

● E.g., h(c1…ck) = σ𝑗 𝑐𝑗 or h(c1…ck) =min
𝑗
𝑐𝑗

● Sequences – hashcode may (should!) depend on element order

97

Aside: Strings are a Kind of Sequence

● Sequence of characters (8- or 16-bit values)

● Must compare using equals() [contents same], not == [memory same]

○ “if key == record.key” might return false when strings are equal!!!

○ Instead, say “if key.equals(record.key)”

98

How Should We Hash a Sequence?

● Need to combine multiple, perhaps variable #, of hashcodes into one

● Order should influence final hashcode

● Example (Java JDK 8, 10):

c  0

For each elt oj in sequence w/code cj

c  c * 31 + cj

99

Do We Like This Function? Why 31?

c  0

For each elt oj in sequence w/code cj

c  c * 31 + cj

● 31 is prime → does not just shift bits of c upward (better diffusion)

● 31 is 25 – 1 → can avoid multiply because “x*31” is same as

“(x << 5) – x” (faster on some processors)

● 31 is small → can add more small hashcodes (e.g. characters)

without overflowing and perhaps losing information 100

Do We Like This Function? Why 31?

c  0

For each elt oj in sequence w/code cj

c  c * 31 + cj

● But… it’s easy to find many short sequences that map to same

hashcode!

● Why might this matter?

● Probably should not rely on this fcn alone for decorrelation.

101

Example Alternative: Fowler-Noll-Vo Hashing

c  2166136261

For each elt oj in sequence w/code cj

c  (c XOR cj)*16777619

● Similar in spirit, but designed to scramble correlations in input

● 16777619 = 224 + 28 + 147, so still pretty fast to multiply

● Original work assumes each cj is one byte, e.g. English strings (oj = cj)

● [MANY other strategies to hash sequences can be found online] 102

https://tools.ietf.org/html/draft-eastlake-fnv-15
https://en.wikipedia.org/wiki/List_of_hash_functions

Philosophical Musings

● Hashcode computation trades off efficiency vs scrambling

● How paranoid are you about input uniformity and correlations?

● (In Studio 9, we’ll be extra-paranoid – malicious adversary)

● Ultimately, must test hash fcns empirically, assess risks vs benefits

● Language/library defaults aren’t always what you’d like.

103

End of Lecture 9

104

