
Lecture 9:

More About 

Hashing
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These slides include material 

originally prepared by Dr. Ron 
Cytron, Dr. Jeremy Buhler, 
and Dr. Steve Cole.



Announcements
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● Lab 7 – pre-lab due tonight, code/post-lab due Friday
○ Please remember to commit AND push AND check bitbucket.org!

○ Please remove debugging code!

● Exam reschedule requests for Exam 2 and Exam 3
○ Due next Tuesday 11:59 pm

○ Form here on website (will be removed after next Tuesday)

https://classes.engineering.wustl.edu/cse247/main/requests/


Agenda for today
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● Leftover hash… finish up multiplication hashing

● A second strategy for hash table design – open 

addressing

● How to map objects to hashcodes



Flashback to Lecture 

7 Slides…
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Hash Table Design (from Last Time)

● Function b(c) maps hashcode c to bucket index j

● Every key with hashcode c goes into bucket b(c), in a linked list

● On find(k), must walk the list to find key matching k, if any
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Hash Table with Chaining
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{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }find(axolotl)



Hash Table with Chaining
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{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }b(h(axolotl)) = 1



Hash Table with Chaining
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{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }b(h(axolotl)) = 1



Hash Table Design (from Last Time)

● Function b(c) maps hashcodes c to bucket index j

● Every key with hashcode c goes into bucket b(c), in a linked list

● On find(k), must walk the list to find key matching k, if any

● Quickie quiz: how do I compare key to each element of chain?
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Hash Table Design (from Last Time)

● Function b(c) maps hashcodes c to bucket index j

● Every key with hashcode c goes into bucket b(c), in a linked list

● On find(k), must walk the list to find key matching k, if any

● Quickie quiz: how do I compare key to each element of chain?

● With equals() or similar – not with hashcodes!  Why?
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Two Main Approaches to Index Mapping

● Division hashing

● Multiplicative hashing

● (Other strategies exist; beyond scope of 247)
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Multiplicative Hashing

● Let A be a real number in [0, 1).

● 𝒃 𝒄 = 𝒄 ∙ 𝑨 𝒎𝒐𝒅 𝟏.𝟎 ∙ 𝒎

● “x mod 1.0” means “fractional part of x.”        

● E.g. 47.2465 mod 1.0 = 0.2465

● cA mod 1.0 is in [0, 1), so b(c) is an integer in [0, m) – an index!
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Initial Observations

● A should not be too small – would map many hashcodes to 0.

● → Suggest picking A from [0.5, 1)

● If q = cA mod 1.0 is distributed uniformly in [0, 1), then we can use 

any value for m and still get uniform indices.

● In particular, we can use m = 2v if we want.
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Why Is Multiplication a Good Hashing Strategy?

● Mapping c → q = cA mod 1.0 is a diffusing operation

● I.e., most significant digits of q depend (in a complex way) on many 

digits of c.  (Makes q looks uniform, obscures correlations among c’s.)

● Hence, bin number 𝑞 ∙ 𝑚 looks uniform, uncorrelated with c.

● (Same is true if we replace “digits” by “bits” and work in binary)
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Example of Diffusion
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1234

0.6734x

Assumed: 

• Integer c has fixed some # of digits

• We use same # of digits of A after decimal



Example of Diffusion

16

1234

0.6734x

.4936



Example of Diffusion
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1234

0.6734x

.4936

3.7020



Example of Diffusion
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1234

0.6734x

.4936

3.7020

86.3800



Example of Diffusion
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1234

0.6734x

.4936

3.7020

86.3800

740.4000



Example of Diffusion
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1234

0.6734x

.4936

3.7020

86.3800

+740.4000

• First digit after decimal is middle 

digit of product

• Middle digits depend on all (or 

most) digits of c and all or most 

digits of A

• These digits determine bin number



Is Every Choice of A Equally Good?

● Not all A’s have equally good diffusion/complexity properties.

● Fractions with few nonzero digits (e.g. 0.75) or repeating decimals            

(e.g. 7/9 = 0.7777777…..) have poor diffusion and/or low complexity.

● Advice: pick an irrational number between 0.5 and 1.

● Ex: 𝑨 =
𝟓−𝟏

𝟐
≈ 0.61803398874989484820458683436564  [Knuth]
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Multiplication Hashing Without Floating-Point Math

● What if you can’t / don’t want to use floating-point math?

● (May be more expensive than integer math)

● If we know our hashcodes c have at most d digits, we can multiply A by 10d

initially and do everything we need using only integer arithmetic.

● Similarly, if hashcodes have at most w bits, we can multiply A by 2w initially.

● This trick is called “fixed-point arithmetic”.
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Previous Example, in Fixed-Point Decimal
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1234

0.6734x

Assumed: 

• Integer c has at most 4 digits

• We use same # of digits of A after decimal



Previous Example, in Fixed-Point Decimal
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1234

6734x ÷ 104 (multiply, but remember how to undo)



Previous Example, in Fixed-Point Decimal
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1234

6734x

4936

÷ 104



Previous Example, in Fixed-Point Decimal
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1234

6734x

4936

37020

÷ 104



Previous Example, in Fixed-Point Decimal
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1234

6734x

4936

37020

863800

÷ 104



Previous Example, in Fixed-Point Decimal
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1234

6734x

4936

37020

863800

7404000

÷ 104



Previous Example, in Fixed-Point Decimal
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1234

6734x

4936

37020

863800

+7404000

÷ 104

8309756

We know decimal point goes here 

cA mod 1 = 9756  ÷ 104



Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756  ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102
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Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756  ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

31

Again, we know decimal point goes here 



Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756  ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

● Hence, 𝒄 ∙ 𝑨 𝒎𝒐𝒅 𝟏. 𝟎 ∙ 𝒎 = 𝟗𝟕
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Again, we know decimal point goes here 



What About Fixed-Point Binary?

● Book presents the binary version.

● It’s also how you would typically implement it on a computer!

● If you have had 132, then the following slides will make more sense
○ If not, follow along as best you can, and look at this again after you’ve had 132
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For base 2 (let’s assume w = 32)

34

result of .hashCode()



For base 2 (let’s assume w = 32)

35

result of .hashCode()

A shifted left by 32 bits



For base 2 (let’s assume w = 32)

36

result of .hashCode()

A shifted left by 32 bits

The product of two w-bit numbers yields a 2w-bit result



For base 2 (let’s assume w = 32)

37

result of .hashCode()

A shifted left by 32 bits

The binary point 

belongs here, with the 
result shifted right by 
32 bits



For base 2 (let’s assume w = 32)

38

result of .hashCode()

A shifted left by 32 bits

The binary point 

belongs here, with the 
result shifted right by 
32 bits

So this is the 

fractional part of k x A



For base 2 (let’s assume w = 32)

39

result of .hashCode()

A shifted left by 32 bits

The binary point 

belongs here, with the 
result shifted right by 
32 bits

So this is the 

fractional part of k x A

If m = 2p then 

multiplying the 
fractional part by m 
yields these p bits



For base 2 (let’s assume w = 32)

40

result of .hashCode()

A shifted left by 32 bits

The binary point 

belongs here, with the 
result shifted right by 
32 bits

So this is the 

fractional part of k x A
shifted right now by 
p bits

If m = 2p then 

multiplying the 
fractional part by m 
yields these p bits



For base 2 (let’s assume w = 32)

41

result of .hashCode()

A shifted left by 32 bits

The binary point 

belongs here, with the 
result shifted right by 
32 bits

So this is the 

fractional part of k x A
shifted right now by 
p bits

If m = 2p then 

multiplying the 
fractional part by m 
yields these p bits



For base 2 (let’s assume w = 32)

42

result of .hashCode()

A shifted left by 32 bits

The binary point 

belongs here, with the 
result shifted right by 
32 bits

If m = 2p then 

multiplying the 
fractional part by m 
yields these p bits



For base 2 (let’s assume w = 32)
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result of .hashCode()

A shifted left by 32 bits

Assume we use Knuth’s A:



Example (page 264 in text)
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w = 32

p = 14 → m = 16384



Example (page 264 in text)
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k = 123456

w = 32

p = 14 → m = 16384



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

327706022297664 =



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

0
0000 



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 
0000 0001



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0
0000 0001 0000 



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0C
0000 0001 0000 

C = 1100

but we only need the first two bits to 
make 14 total bits



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0C
0000 0001 0000 11

C = 1100

but we only need the first two bits to 
make 14 total bits



Example (page 264 in text)
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k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 
0000 0001 0000 11   = 64 + 3 = 67

hashes to bucket 67



A Good Implementation

● Choose m = 2p buckets

● Assume .hashCode() yields 32-bit unsigned integer k [does not exist in Java]

● Pre-compute the constant s = 232 x A

● Assume that if sk overflows 32 bits, we get only lower 32 bits of result

● Index computation on input k is then sk ÷ 232 – p = sk >> (32 – p)

● This is a close relative of the function you saw in Studio 7.
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New material
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An Alternative Design – Open Addressing

● A chained hash table needs two data structures: arrays and lists

● Can we get by with just one data structure?

○ Simplicity is good

○ Lists can be slow

● Open addressing:  hash tables, unchained
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An Alternative Design – Open Addressing

● A chained hash table needs two data structures: arrays and lists

● Can we get by with just one data structure?

○ Simplicity is good

○ Lists can be slow

● Open addressing:  hash tables, unchained
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Idea: Open Addressing with Double Hashing

● Define two indexing functions: b(c) “base” and s(c) “step” that 

produce indices in [0,m)

● To insert record w/key hashcode c, first compute b(c) and s(c)

● Try to place record in table cell b(c)

● If that cell is full, try again at cell [b(c) + s(c)] mod m

● In general, try [b(c) = j*s(c)] mod m,  j = 0,1,2,… until empty cell found
60



Open Addressing Example

● Suppose m = 4, h(k1) = c1, b(c1) = 1, s(c1) = 3

61

0

1

2

3

k1



Open Addressing Example

● Suppose m = 4, h(k1) = c1, b(c1) = 1, s(c1) = 3

62

0

1

2

3

k1



Open Addressing Example

● Suppose m = 4, h(k2) = c2, b(c2) = 0, s(c2) = 1

63

0

1

2

3

k1

k2



Open Addressing Example

● Suppose m = 4, h(k2) = c2, b(c2) = 0, s(c2) = 1

64

0

1

2

3

k1

k2



Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

65

0

1

2

3

k1

k2

k3

Try cell 1… full!



Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

66

0

1

2

3

k1

k2

k3

Try cell (1+3) mod 4 = 0… full!



Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

67

0

1

2

3

k1

k2

k3

Try cell (1+2*3) mod 4 = 3… empty!



Open Addressing Example

● Suppose m = 4, h(k3) = c3, b(c3) = 1, s(c3) = 3

68

0

1

2

3

k1

k2

k3

Try cell (1+2*3) mod 4 = 3



Notes on Open Addressing

● Find works similarly to insert – check cells as determined by b(c) and 

s(c) until desired key found (success), or an empty cell is found (fail)

● For correct operation:

○ Maintain load factor α<1 (avg search time Θ(1/(1 - α)))

○ Make sure s(c) is relatively prime to m 

(e.g., s(c) always odd if m is power of 2) [why?]
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Open Addressing: the Good

● Does not require linked lists (implicit in sequence of cells)

● Using two hash functions can resolve collisions faster

● If load factor ≤ 1/c, c > 1, all ops still avg Θ(1) time
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Open Addressing: the Bad

● Table can get full, unlike with chaining (resize!)

● Requires larger array for good performance w/given n

● Deletion is harder – cannot leave empty cells (why?)
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Open addressing – the Problem with Deletion

● remove(k2)

72

0

1

2

3

k1

k2

k3



Open addressing – the Problem with Deletion

● remove(k2)

73

0

1

2

3

k1

k3

previously

had k2



Open addressing – the Problem with Deletion

● find(k3)  → h(k3) = c3, b(c3) = 1, s(c3) = 3

74

0

1

2

3

k1

k3

k3 previously

had k2



Open addressing – the Problem with Deletion

● find(k3)  → h(k3) = c3, b(c3) = 1, s(c3) = 3

75

0

1

2

3

k1

k3

k3

Try cell 1… no match!

previously

had k2



Open addressing – the Problem with Deletion

● find(k3)  → h(k3) = c3, b(c3) = 1, s(c3) = 3

76

0

1

2

3

k1

k3

k3

Try cell (1+3) mod 4 = 0… empty!

previously

had k2



Open addressing – the Problem with Deletion

● find(k3)  → h(k3) = c3, b(c3) = 1, s(c3) = 3

77

0

1

2

3

k1

k3

k3

Returns “not found”.  Uh oh…

previously

had k2



Open Addressing: the Bad

● Table can get full, unlike with chaining (resize!)

● Requires larger array for good performance w/given n

● Deletion is harder – cannot leave empty cells

● (Deletion must leave behind a “deleted” marker so find 

does not stop prematurely.)
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And now, back to 

hash function 

design…
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Hash Function Pipeline – Two Steps

80

Objects

(keys k)

Integers

(hashcodes c)

Buckets

(indices j)

c = h(k) j = b(c)



Hash Function Pipeline – Two Steps
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Objects

(keys k)

Integers

(hashcodes c)

Buckets

(indices j)

c = h(k) j = b(c)

Last weekToday



Purpose of Hashcode Generation

● Map objects to integers in some range

● Objects that are equal() must have ??? hashcode
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Purpose of Hashcode Generation

● Map objects to integers in some range

● Objects that are equal() must have the same hashcode (Studio 7)

● Objects that are not equal() should have ??? hashcodes

83



Purpose of Hashcode Generation

● Map objects to integers in some range

● Objects that are equal() must have the same hashcode (Studio 7)

● Objects that are not equal() should have distinct hashcodes

(but this may not always be possible due to PHP)

● Question: should hashcodes be spread uniformly across range 

without obvious correlations?
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Argument About Hashcode Generation

● Question: should hashcodes be spread uniformly across range 

without obvious correlations?

● No: second step (index generation) is responsible for ensuring that 

unequal hashcodes are mapped to uniform, uncorrelated indices

● Yes: index generation is not responsible for “fixing” a bad hashcode

generator

85



Argument About Hashcode Generation

● Question: should hashcodes be spread uniformly across range 

without obvious correlations?

● No: second step (index generation) is responsible for ensuring that 

unequal hashcodes are mapped to uniform, uncorrelated indices

● Yes: index generation is not responsible for “fixing” a bad hashcode

generator

86

Different languages/code libraries 

take different sides in this argument.

Java implementation details (e.g. 

Color) suggest it thinks that “no, 

hashcodes need not be 

uniform/uncorrelated”. 

Some C++ implementations (e.g. MS 

VS 2015) expect uniformity;         

some don’t.



Argument About Hashcode Generation

● Question: should hashcodes be spread uniformly across range 

without obvious correlations?

● No: second step (index generation) is responsible for ensuring that 

unequal hashcodes are mapped to uniform, uncorrelated indices

● Yes: index generation is not responsible for “fixing” a bad hashcode

generator.

87

What assumption does your favorite 

language/library make? 

And if it doesn’t require uniform hashcodes, 

how good is its index generator?

E.g. OpenJDK 8 HashMap: 

table size is power of 2,

index = hashcode XOR hashcode/216

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java


An Argument for “Good” Hashcodes, Regardless 

● Even if your index generator scrambles the hashcode…

● … if universe of objects is much bigger than # possible hashcodes…

● … then non-uniformity, correlations increase practical likelihood that 

you’ll encounter many objects that map to the same hashcode.

● [This was not an issue in Studio 7, because # Color objects = # hashcodes]
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Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

89

32 bits 32 bits

64-bit quantity



Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

90
32 bits

32 bits



Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

91
32 bits

32 bits

XOR



Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

92

32 bits



Hashcode Ideas for Primitive Types [from JDK8]

● (Arbitrary) 32-bit integers – use unchanged

● 32-bit floating point – use underlying bits as integer (floatToIntBits())

● 64-bit long (including double-precision float via doubleToLongBits()) –

hashcode = [value XOR (value / 232)] mod 232

93

32 bits

If you also want 

uniformity/decorrelation, use 

e.g. multiplicative hashing 

strategy with m=232 to map 

these values to hashcodes.



More Hashcode Ideas for Primitive Types

● Types with limited # of values (e.g. Booleans, enums)?

● Cannot hope to cover entire space of hashcodes

● Either map to small ints & rely on index calc to scramble…

● Or guess a mapping with “nice” properties 

● E.g. Boolean: true → 1231, false → 1237 (why?)

94

https://stackoverflow.com/questions/3912303/boolean-hashcode


Hashing Composite Objects

● More complex datatypes come in two flavors

● Sets – collection of objects, no order [e.g. Java Set]:

● {3, 2, 5} = {2, 5, 3} = {5, 3, 2}

● Sequences – collection of objects, order matters [e.g. List, String]:

● [2, 5, 3] ≠ [3, 2, 5]

● “k-tuple” – sequence of k objects [o1…ok] of types [t1…tk]

● (objects of class type with data members)
95



Hashing Sets and Sequences

● Assume we have hashcodes for each element in composite object

● How do we construct a single hashcode for the whole object?

● Sets – must get same result regardless of element order

● E.g., h(c1…ck) = ???
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Hashing Sets and Sequences

● Assume we have hashcodes for each element in composite object

● How do we construct a single hashcode for the whole object?

● Sets – must get same result regardless of element order

● E.g., h(c1…ck) = σ𝑗 𝑐𝑗 or      h(c1…ck) =min
𝑗
𝑐𝑗

● Sequences – hashcode may (should!) depend on element order 
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Aside: Strings are a Kind of Sequence

● Sequence of characters (8- or 16-bit values)

● Must compare using equals() [contents same], not == [memory same]

○ “if key == record.key” might return false when strings are equal!!!

○ Instead, say “if key.equals(record.key)”
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How Should We Hash a Sequence?

● Need to combine multiple, perhaps variable #, of hashcodes into one

● Order should influence final hashcode

● Example (Java JDK 8, 10):

c  0

For each elt oj in sequence w/code cj

c  c * 31 + cj
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Do We Like This Function? Why 31?

c  0

For each elt oj in sequence w/code cj

c  c * 31 + cj

● 31 is prime → does not just shift bits of c upward (better diffusion)

● 31 is 25 – 1 → can avoid multiply because “x*31” is same as             

“(x << 5) – x” (faster on some processors)

● 31 is small → can add more small hashcodes (e.g. characters) 

without overflowing and perhaps losing information 100



Do We Like This Function? Why 31?

c  0

For each elt oj in sequence w/code cj

c  c * 31 + cj

● But… it’s easy to find many short sequences that map to same 

hashcode!

● Why might this matter?

● Probably should not rely on this fcn alone for decorrelation.
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Example Alternative: Fowler-Noll-Vo Hashing

c  2166136261

For each elt oj in sequence w/code cj

c  (c XOR cj)*16777619

● Similar in spirit, but designed to scramble correlations in input

● 16777619 = 224 + 28 + 147, so still pretty fast to multiply

● Original work assumes each cj is one byte, e.g. English strings (oj = cj)

● [MANY other strategies to hash sequences can be found online] 102

https://tools.ietf.org/html/draft-eastlake-fnv-15
https://en.wikipedia.org/wiki/List_of_hash_functions


Philosophical Musings

● Hashcode computation trades off efficiency vs scrambling

● How paranoid are you about input uniformity and correlations?

● (In Studio 9, we’ll be extra-paranoid – malicious adversary)

● Ultimately, must test hash fcns empirically, assess risks vs benefits

● Language/library defaults aren’t always what you’d like.
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End of Lecture 9
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