These slides include materi:
originally prepared by Dr. F
Cytron, Dr. Jeremy Buhler,
and Dr. Steve Cole.



Announcements

e Lab 7 — pre-lab due tonight, code/post-lab due Friday

O Please remember to commit AND push AND check bitbucket.org!
O Please remove debugging code!

e Exam reschedule requests for Exam 2 and Exam 3

o Due next Tuesday 11:59 pm
o Form here on website (will be removed after next Tuesday)



https://classes.engineering.wustl.edu/cse247/main/requests/

Agenda for today

o Leftover hash... finish up multiplication hashing

e A second strategy for hash table design — open
addressing

o How to map objects to hashcodes



Flashback to Lecture
[ Slides...



Hash Table Design (from Last Time)

e Function b(c) maps hashcode c to bucketindex |
e Every key with hashcode ¢ goes into bucket b(c), in a linked list

e On find(k), must walk the list to find key matching k, if any



Hash Table with Chaining

{cat}

find(axolotl) { fossa }, { okapi }, { duiker }, { axolotl }, { coypu }

{ dog }




Hash Table with Chaining

{cat}

b(h(axolotl)) =1 — { fossa}, { okapi }, { duiker }, { axolotl }, { coypu }

{ dog }




Hash Table with Chaining

{cat}

b(h(axolotl)) =1 — { fossa}, { okapi }, { duiker }, { axolotl }, { coypu }

{ dog }




Hash Table Design (from Last Time)

e Function b(c) maps hashcodes c to bucket index |
e Every key with hashcode ¢ goes into bucket b(c), in a linked list

e On find(k), must walk the list to find key matching k, if any

e Quickiequiz:howdolcomparekey to each element of chain?



Hash Table Design (from Last Time)

Function b(c) maps hashcodes c to bucket index |
Every key with hashcode ¢ goes into bucket b(c), in a linked list

On find(k), must walk the list to find key matching k, if any

Quickiequiz: howdo I comparekey to each element of chain?

With equals() or similar — not with hashcodes! Why?

10



Two Main Approaches to Index Mapping

e Division hashing

o Multiplicative hashing

11



Multiplicative Hashing

Let A be a real number in [0, 1).

b(c) = |((c-A) mod 1.0) - m|

“x mod 1.0” means “fractional part of x.”
E.g. 47.2465mod 1.0 = 0.2465

cAmod 1.0isin [0, 1), so b(c) is an integer in [0, m) — an index!

12



Initial Observations

e A should not be too small — would map many hashcodesto O.
e —> Suggest picking A from [0.5, 1)

e Ifg=cAmod 1.0is distributed uniformlyin [0, 1), then we can use
any value for m and still get uniform indices.

e In particular, we can use m = 2V if we want.

13



Why Is Multiplication a Good Hashing Strategy?

e Mappingc 2> g=cA mod 1.0 is a diffusing operation

e |.e., mostsignificant digits of q depend (in a complex way) on many
digits of c. (Makes g looks uniform, obscures correlations among c’s.)

e Hence, bin number |g - m| looks uniform, uncorrelated with c.

e (Same is true if we replace “digits” by “bits” and work in binary)

14



Example of Diffusion

1234
x0.6734

Assumed:
* Integer c has fixed some # of digits
 We use same # of digits of A after decimal

15



Example of Diffusion

1234
x0.6734

. 49306

16



Example of Diffusion

1234
x0.6734

.49306
3.7020

17



Example of Diffusion

1234

.0734

.4936
. 7020
. 3800

18



Example of Diffusion

1234

.0734

.4936

86.
740.

. 7020

3800
4000

19



Example of Diffusion

1234
x0.6734  Firstdigit after decimal is middle
digit of product
14936
317020 « Middle digits depend on all (or
8613800 most) digits of ¢ and all or most

* These digits determine bin number

20



Is Every Choice of A Equally Good?

Not all A’s have equally good diffusion/complexity properties.

Fractions with few nonzero digits (e.g. 0.75) or repeating decimals
(e.g.7/9=0.7777777.....) have poor diffusion and/orlow complexity.

Advice: pick an irrational number between 0.5and 1.

Ex: A= WST* ~ 0.61803398874989484820458683436564 [Knuth]

21



Multiplication Hashing Without Floating-Point Math

e What if you can’t / don’t want to use floating-point math?
e (May be more expensive than integer math)

e If we know our hashcodes ¢ have at most d digits, we can multiply A by 10d
initially and do everything we need using only integer arithmetic.

e Similarly, if hashcodes have at most w bits, we can multiply A by 2% initially.

e This trick is called “fixed-point arithmetic”.

22



Previous Example, in Fixed-Point Decimal

1234 Assumed:
x0.6734 * Integer c has at most 4 digits
 We use same # of digits of A after decimal

23



Previous Example, in Fixed-Point Decimal

1234
X 6734 ~ 104 (multiply, but remember how to undo)

24



Previous Example, in Fixed-Point Decimal

1234
x 6734 + 104

4936

25



Previous Example, in Fixed-Point Decimal

1234
x 6734 + 104

4936
37020

26



Previous Example, in Fixed-Point Decimal

1234
x 6734 + 104

4936
37020
863800

27



Previous Example, in Fixed-Point Decimal

1234
x 0734 + 104

4936
37020
863800
7404000



Previous Example, in Fixed-Point Decimal

1234
x 6734

4936
37020
863800
7404000

830?75

We know decimal point goes here 29

Y
4

E— cAmod1l=9756 + 104



Index Computation in Fixed-Point Decimal
e Supposem =100 = 102
e (CAmod1) m=9756 =+ 104 x 10?2

° = 9756 + 1042
° = 9756 + 102

30



Index Computation in Fixed-Point Decimal
e Supposem =100 = 102

e (CAmod1) m=9756 =+ 104 x 10?2

o = 9756 + 10%?
o = 9756+ 10°
|

Again, we know decimal point goes here

31



Index Computation in Fixed-Point Decimal
e Supposem =100 = 102

e (CAmod1l) m=9756 =+ 10%x 10

o = 9756 + 10%?
o = 9756|+ 107
|

Again, we know decimal point goes here

e Hence, |((c-A) mod 1.0)-m| =97

32



What About Fixed-Point Binary?

e Book presents the binary version.
e |t's also how you would typically implement it on a computer!

e If you have had 132, then the following slides will make more sense
o Ifnot, followalong as bestyou can, and look at this again after you've had 132

33



For base 2 (let's assume w = 32)

w bits

result of .hashCode ()

34



For base 2 (let's assume w = 32)

w bits

result of .hashCode ()

A shifted left by 32 bits

35



For base 2 (let's assume w = 32)

w bits

< The product of two w-bit numbers yields a 2w-bit result >

result of .hashCode ()

A shifted left by 32 bits

36



For base 2 (let's assume w = 32)

w bits

k —————— result of .hashCode ()

X s=A-2% ———— A shifted left by 32 bits

The binary point
belongs here, with the
result shifted right by

32 bits
37



For base 2 (let's assume w = 32)

So this is the
fractional part of k x A

k —————— result of .hashCode ()

s=A-2% ————— A shifted left by 32 bits

The binary point
belongs here, with the
result shifted right by

32 bits
38



For base 2 (let's

So this is the
fractional part of k x A

assume w = 32)

result of .hashCode ()

A shifted left by 32 bits

The binary point
belongs here, with the
result shifted right by

32 bits

If m = 2P then
multiplying the

fractional part by m
yields these p bits



For base 2 (let's assume w = 32)

w bits

So this is the —

fractional part of k x A k ———————— result of .hashCode ()
shifted right now by

bit
P OIS s=A-2v —————— A shifted left by 32 bits
TN
Fo
.|=>
- extract p bits

If m = 2P then
multiplying the

fractional part by m
yields these p bits

The binary point
belongs here, with the
result shifted right by

32 bits



For base 2 (let's assume w = 32)

w bits

So this is the —

fractional part of k x A k ———————— result of .hashCode ()
shifted right now by

bit
P DS s=A-2v —————— A shifted left by 32 bits
TN
Fo
[ ]
- extract p bits

If m = 2P then
multiplying the

fractional part by m
yields these p bits

The binary point
belongs here, with the
result shifted right by

32 bits



For base 2 (let's assume w = 32)

w bits
,--"'_'_-—__-_._F#\ﬁ_-_-__—'_"“‘-—«.
k —————— result of .hashCode ()
X s=A-2% ———— A shifted left by 32 bits

If m = 2P then
multiplying the

fractional part by m
yields these p bits

The binary point
belongs here, with the
result shifted right by

32 bits

42



Assume we use Knuth's A:

vH—1
2

For base 2 (let's assume w =

~ 0.6180339887 . ..

k .hashCode ()
X s =(A 2% ————— A shifted left by 32 bits
1 o
——— extract p bits
h(k)

43



Example (page 264 in text)

w bits

w =32
p=14 > m=16384

a4



Example (page 264 in text)

w bits

w =32
p=14 > m=16384

k=123456

45



w =32

Example (page 264 in text) p=14—m = 16384
w bits
,__H___________._._rr'\q_._____________‘_‘—\
k ———— k=123456
X s=A-2% ——————— A X232 =2654435769
I I'o
——— extract p bits
h(k)

46



w =32

Example (page 264 in text) p=14—m = 16384
w bits
,.-—-—-—'—'—__'_'_F#\‘_H_'__—‘_‘-—--_\
k ———— k=123456
X s=A-2% ——————— A X232 =2654435769
327706022297664 =
——— extract p bits
h(k)

47



w =32

Example (page 264 in text) p=14—m = 16384
w bits
,.-—-—-—'—'—__'_'_F#\‘_H_'__—‘_‘-—--_\
k ———— k=123456
X s=A-2% ——————— A X232 =2654435769
76300 x 232 + 17612864
——— extract p bits
h(k)

48



w =32

Example (page 264 in text) p=14—m = 16384

w bits

,--'-'_'_'—__-_._'—HAH_-_'_-__—'_‘_‘-'-—\
k ————— k = 123456

s=A-2% ——————— A X232 =2654435769

76300 x 232 +

17612864

32 bit representationfor 17612864 is
010CC040

49



w =32

Example (page 264 Iin text) p=14—m=16384
w bits
,--'-'_'_'—__-_._'—FFM‘_'_-__—'_‘_‘-'-—\
k ———————— k = 123456
X s=A-2% —————— A X 232 = 2654435769
76300 x 232 + 17612864
——— extract p bits
h(k)
Top 14 bits 32 bit representationfor 17612864 is
0 010CC040

0000



w =32

Example (page 264 Iin text) p=14—m=16384
w bits
,--'-'_'_'—__-_._'—FFM‘_'_-__—'_‘_‘-'-—\
k ———————— k = 123456
X s=A-2% —————— A X 232 = 2654435769
76300 x 232 + 17612864
——— extract p bits
h(k)
Top 14 bits 32 bit representationfor 17612864 is
01 010CC040

00000001



w =32

Example (page 264 Iin text) p=14—m=16384
w bits
,--'-'_'_'—__-_._'—FFM‘_'_-__—'_‘_‘-'-—\
k ———————— k = 123456
X s=A-2% —————— A X 232 = 2654435769
76300 x 232 + 17612864
——— extract p bits
h(k)
Top 14 bits 32 bit representationfor 17612864 is
010 010CC040

00000001 0000



w =32

Example (page 264 in text) p=14—m = 16384

C=1100
k=123456

but we only need the first two bits to
make 14 total bits A x 232 = 2654435769

76300 x 232 + / 17612864
——— extract p bits
h(k)
Top 14 bits 32 bit representationfor 17612864 is
01 0C| 01 0C CO0 40
00000001 0000

53



w =32

Example (page 264 in text) p=14—m = 16384

C=1100
k=123456

but we only need the first two bits to
make 14 total bits A x 232 = 2654435769

76300x 232 + / 17612864
——— extract p bits
h(k)
Top 14 bits 32 bit representationfor17612864 is
01 0C| 01 0C CO 40
00000001 000011

54



w =32

Example (page 264 Iin text) p=14—m=16384
w bits
,""_'_-—__-_._FFFN"_‘_-_-—_—-_'_"‘"—\.
k k =123456
X s=A-2% A x 232 = 2654435769
76300x 2% + Lo 2d6t hashes to bucket 67
———— extract p bits
h(k)
Top 14 bits 32 bit representationfor 17612864 is
01 010CC040

00000001 000011 =64+3 =67



A Good Implementation

e Choose m = 2P buckets

e Assume .hashCode() yields 32-bit unsigned integer k [does not exist in Java]
e Pre-compute the constant s = 232 x A

e Assume that if sk overflows 32 bits, we get only lower 32 bits of result

e Index computation on inputk is then sk + 232-p=sk >> (32 — p)

e Thisis a close relative of the function you saw in Studio 7.

56



New material

o7



An Alternative Design — Open Addressing

e A chained hash table needs two data structures: arrays and lists

e Can we get by with just one data structure?
o Simplicity is good
o Lists can be slow

e Open addressing: hash tables, unchained

58



59



ldea: Open Addressing with Double Hashing

Define two indexing functions: b(c) “base” and s(c) “step” that
produce indices in [0,m)

To insert record w/key hashcode c, first compute b(c) and s(c)
Try to place record in table cell b(c)
If that cell is full, try again at cell [b(c) + s(c)] mod m

In general, try [b(c) =j*s(c)] mod m, j=0,1,2,... until empty cell found
60



Open Addressing Example

e Supposem =4, h(k;)=cq, b(cy))=1,s(cy)=3

)

61



Open Addressing Example

e Supposem =4, h(k;)=cq, b(cy)=1,s(cy)=3

62



Open Addressing Example

e Supposem =4, h(k,)=c, b(c,)=0,s(c,)=1

()

63



Open Addressing Example

e Supposem =4, h(k,) =c, b(c,)=0,s(c,)=1

64



Open Addressing Example

e Supposem =4, h(k;)=c3 b(cg)=1,s(cy)=3

)

Try cell1... full!

».

65



Open Addressing Example

e Supposem =4, h(k;)=c3, b(cy)=1,s(cz)=3

Try cell (1+3) mod 4 = 0... full!

>I

66



Open Addressing Exa

e Supposem =4, h(k;)=c3, b(cy)=1,s(cz)=3

mple

)

Try cell (1+2*3) mod 4 -

= 3... empty!

67



Open Addressing Example

e Supposem =4, h(k;)=c3, b(cy)=1,s(cy)=3

Try cell (1+2*3) mod 4 =3

68



Notes on Open Addressing

e Find works similarly to insert — check cells as determined by b(c) and
s(c) until desired key found (success), or an empty cell is found (fail)

e [or correct operation:

- Maintain load factor a<1 (avg search time ©(1/(1 - a)))
- Make sure s(c) is relatively prime to m

(e.g., s(c) always odd if m is power of 2) [why?]

69



Open Addressing: the Good

e Does not require linked lists (implicit in sequence of cells)
e Using two hash functions can resolve collisions faster

o Ifload factor < 1/c, ¢ > 1, all ops still avg ©(1) time

70



Open Addressing: the Bad

e Table can get full, unlike with chaining (resize!)
e Requires larger array for good performance w/given n

e Deletion is harder — cannot leave empty cells (why?)

71



Open addressing — the Problem with Deletion

e remove(k,)

72



Open addressing — the Problem with Deletion

e remove(k,)

0 previously
had k,
@ 1
2

73



Open addressing — the Problem with Deletion

e find(k;) = h(ks)=c3 b(cy)=1,s(c3) =3

@ 0 previously
had k,

74



Open addressing — the Problem with Deletion

e find(ks) & h(ks)=cs, b(cs)=1,s(cs) =3

)

Try cell1... no match!

1

©

previously

had k,

75



Open addressing — the Problem with Deletion

e find(k;) = h(ks)=c3 b(cy)=1,s(c3) =3

k3 | i
previously
Q > 0 had k,

Try cell (1+3) mod 4 = 0... empty!

76



Open addressing — the Problem with Deletion

e find(k;) = h(ks)=c3 b(cy)=1,s(c3) =3

@ 0 previously
had k,

Returns “not found”. Uh oh...

77



Open Addressing: the Bad

o Table can get full, unlike with chaining (resize!)
o Requires larger array for good performance w/given n
o Deletion is harder — cannot leave empty cells

e (Deletion must leave behind a “deleted” marker so find
does not stop prematurely.)

78



And now, back to
hash function
design...



Hash Function Pipeline — Two Steps

Objects Integers Buckets
(keys k) (hashcodes c) (indices|)

80



Hash Function Pipeline — Two Steps

Last week

Objects Integers Buckets
(keys k) (hashcodes c) (indices|)

81



Purpose of Hashcode Generation

e Map objects to integers in some range

e Objectsthat are equal() must have ??? hashcode

82



Purpose of Hashcode Generation

e Map objectsto integers in some range
e Objectsthat are equal() must have the same hashcode (Studio 7)

e Objects that are not equal() should have ??? hashcodes

83



Purpose of Hashcode Generation

e Map objectsto integers in some range

e Objectsthat are equal() must have the same hashcode (Studio 7)

e Objectsthat are not equal() should have distinct hashcodes
(but this may not always be possible due to PHP)

e Question: should hashcodes be spread uniformly across range
without obvious correlations?

84



Argument About Hashcode Generation

e Question: should hashcodes be spread uniformly across range
without obvious correlations?

e NoO:second step (index generation) is responsible for ensuring that
unequal hashcodes are mapped to uniform, uncorrelated indices

e Yes: index generation is not responsible for “fixing” a bad hashcode
generator

85



Different languages/code libraries
take different sides in this argument.

Java implementation details (e.g.
Color) suggest it thinks that “no,

hashcodes need not be
uniform/uncorrelated”.

Some C++ implementations (e.g. MS
VS 2015) expect uniformity;
some don't.

range

ring that
ndices

hashcode

86



What assumption does your favorite
language/library make?

And if it doesn’t require uniform hashcodes,

how good Is its index generator?

E.g. OpenJDK 8 HashMap:
table size is power of 2,



http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java

An Argument for “Good” Hashcodes, Regardless

e Even if yourindex generator scrambles the hashcode...
e ... if universe of objects is much bigger than # possible hashcodes...

e ... then non-uniformity, correlations increase practical likelihood that
you'll encounter many objects that map to the same hashcode.

e [This was not an issue in Studio 7, because # Color objects = # hashcodes]

88



Hashcode Ideas for Primitive Types [from JDKS]

e (Arbitrary) 32-bit integers — use unchanged
e 32-bit floating point — use underlying bits as integer (floatTolntBits())

e 64-bit long (including double-precision float via doubleTolLongBits()) —
hashcode = [value XOR (value / 232)] mod 232

32 bits 32 bits

< 64-bit quantity > 89




Hashcode Ideas for Primitive Types [from JDKS]

e (Arbitrary) 32-bit integers — use unchanged
e 32-bit floating point — use underlying bits as integer (floatTolntBits())

e 64-bit long (including double-precision float via doubleToLongBits()) —
hashcode = [value XOR (value / 232)] mod 232

32 bits

32 bit
its 90



Hashcode Ideas for Primitive Types [from JDKS]

e (Arbitrary) 32-bit integers — use unchanged
e 32-bit floating point — use underlying bits as integer (floatTolntBits())

e 64-bit long (including double-precision float via doubleToLongBits()) —
hashcode = [value XOR (value / 232)] mod 232

32 bits

XOR

32 bit
its o1



Hashcode Ideas for Primitive Types [from JDKS]

e (Arbitrary) 32-bit integers — use unchanged
e 32-bit floating point — use underlying bits as integer (floatTolntBits())

e 64-bit long (including double-precision float via doubleTolLongBits()) —
hashcode = [value XOR (value / 232)] mod 232

32 bits I

92



Hashcode Ideas for Primitive Types [from JDKS]

e (Arbitrary) 32-ki-

e 32-bit floatin | If_you also Wa_nt floatTolntBits())
uniformity/decorrelation, use

o 64-bitlong (i - of dutlieliEEiiE iES e HeTolLongBits() —
e Strategy with m=232to map

these values to hashcodes.

93



More Hashcode Ideas for Primitive Types

o Types with limited # of values (e.g. Booleans, enums)?

o Cannot hope to cover entire space of hashcodes

o Either map to small ints & rely on index calc to scramble...
e Or guess a mapping with “nice” properties

e E.g. Boolean: true - 1231, false - 1237 (why?)

94


https://stackoverflow.com/questions/3912303/boolean-hashcode

Hashing Composite Objects

e More complex datatypes come in two flavors

e Sets — collection of objects, no order [e.g. Java Set].
o {3,2,5}=4{2,5,3}={5, 3, 2}

e Sequences — collection of objects, order matters [e.g. List, String]:
o [2,95, 3] #[3, 2, 9]

e “k-tuple”— sequence of k objects [0,...0,] of types [t;...t,]
e (Objects of class type with data members)

95



Hashing Sets and Sequences

e Assume we have hashcodes for each element in composite object
e How do we construct a single hashcode for the whole object?

e Sets — must get same result regardless of element order

e E.Q.,N(cy...c)=777

96



Hashing Sets and Sequences

Assume we have hashcodes for each element in composite object
How do we construct a single hashcode for the whole object?

Sets — must get same result regardless of element order

E.g., h(c;...c)=2;¢; or h(c...cy :mjincj

Sequences — hashcode may (should!) depend on element order

97



Aside: Strings are a Kind of Sequence

e Sequence of characters (8- or 16-bit values)

e Mustcompare using equals() [contents same], not == [memory same]
o “if key == record.key” might return false when strings are equal!!!

o Instead, say “if key.equals(record.key)”

98



How Should We Hash a Sequence?

e Need to combine multiple, perhaps variable #, of hashcodes into one
e Order should influence final hashcode

e Example (Java JDK 8, 10):

c €0

For each elt o; in sequence w/code C;
c € c * 31 + c;

99



Do We Like This Function? Why 317
c €0

For each elt o; in sequence w/code c;
c € c* 31 + ¢y

e 31lis prime > does not just shift bits of c upward (better diffusion)

e 31lis 2°—1 - can avoid multiply because “x*31” is same as
“(x << 5) — X’ (faster on some processors)

e 31lissmall 2> can add more small hashcodes (e.g. characters)
without overflowing and perhaps losing information 100



Do We Like This Function? Why 317

c €0

For each elt o, in sequence w/code c;
c € c * 31 + c;

e But... it's easy to find many short sequences that map to same
hashcode!

e Why might this matter?

e Probably should not rely on this fcn alone for decorrelation.
101



Example Alternative: Fowler-Noll-Vo Hashing

c € 2166136261
For each elt o, in sequence w/code c;
c € (c XOR c;)*16777619

e Similar in spirit, but designed to scramble correlations in input
e 16777619 =224+ 28 + 147, so still pretty fast to multiply
e Original work assumes each c; is one byte, e.g. English strings (o, = ¢;)

e [MANY other strategies to hash sequences can be found online] 102


https://tools.ietf.org/html/draft-eastlake-fnv-15
https://en.wikipedia.org/wiki/List_of_hash_functions

Philosophical Musings

e Hashcode computation trades off efficiency vs scrambling

e How paranoid are you about input uniformity and correlations?

e (/In Studio 9, we'll be extra-paranoid — malicious adversary)

e Ultimately, must test hash fcns empirically, assess risks vs benefits

e Language/library defaults aren’t always what you’d like.

103



End of Lecture 9

104



