
Lecture 7:

Efficient

Collections via

Hashing

1

These slides include material originally

prepared by Dr. Ron Cytron, Dr. Jeremy
Buhler, and Dr. Steve Cole.

Announcements

● Lab 6 due Friday

● Lab 7 out tomorrow – all about hashing!

● Pre-lab due 3/19; code and post-lab due 3/22

● Spring Break hours
○ No official course communication from 3/8 evening (Friday) until

3/18 morning (Monday)

■ Please be patient on Piazza: instructor and TAs are on break

too :-)

2

Let’s Talk About Dictionaries

3

Let’s Talk About Dictionaries

4

No, not that kind…

Dictionary ADT

● A dictionary is a data structure that stores a collection of objects

● Each object is associated with a key

● Objects can be dynamically inserted and removed

● Can efficiently find an object in the dictionary by its key

5

Dictionary Operations (One of Several Versions)

● insert(Record r) – add r to the dictionary

● find(Key k) – return one/some/all records whose key matches k, if

any

● remove(Key k) – remove all records whose key matches k, if any

6

Dictionary Operations (One of Several Versions)

● insert(Record r) – add r to the dictionary

● find(Key k) – return one/some/all records whose key matches k, if

any

● remove(Key k) – remove all records whose key matches k, if any

● Other versions are possible, e.g. remove() might take a Record to

remove, rather than a key

7

Dictionary Operations (One of Several Versions)

● insert(Record r) – add r to the dictionary

● find(Key k) – return one/some/all records whose key matches k, if

any

● remove(Key k) – remove all records whose key matches k, if any

● Other ops may exist, e.g. isEmpty(), size(), iterator()

8

Dictionary Examples

● An actual dictionary – a collection that maps words to definitions

● Class list – a set of students, with name (or possibly ID) as key

● DMV database – a collection of cars accessed by license plate

number

● …

9

Some Questions about Dictionary Variants

● Can multiple records exist in dictionary with same key?

● What happens if find() does not find a record with a specified key?

● Is key the entire record (as in Java Set interface), is it internal to the record

(as in Lab 7), or is it external (as in Java Map interface)?

10

How to Build a Dictionary

● Conceptually, it’s just “bag of records”

● What concrete data structure do we

use to implement it?

● Must support efficient dynamic

add/remove and find

11

How to Build a Dictionary

● Conceptually, it’s just “bag of records”

● What concrete data structure do we

use to implement it?

● Must support efficient dynamic

add/remove and find

● insert

12

1

How to Build a Dictionary

● Conceptually, it’s just “bag of records”

● What concrete data structure do we

use to implement it?

● Must support efficient dynamic

add/remove and find

● insert

13

1

8

How to Build a Dictionary

● Conceptually, it’s just “bag of records”

● What concrete data structure do we

use to implement it?

● Must support efficient dynamic

add/remove and find

● insert

14

1

8

5

How to Build a Dictionary

● Conceptually, it’s just “bag of records”

● What concrete data structure do we

use to implement it?

● Must support efficient dynamic

add/remove and find

● find(8)

15

1

8

5

How to Build a Dictionary

● Conceptually, it’s just “bag of records”

● What concrete data structure do we

use to implement it?

● Must support efficient dynamic

add/remove and find

● delete(1)

16

8

5

How to Build a Dictionary

● Conceptually, it’s just “bag of records”

● What concrete data structure do we

use to implement it?

● Must support efficient dynamic

add/remove and find

● find(1) → “not found”

17

8

5

● Time complexities for dictionary operations

Some bad implementations

18

Structure insert delete find space

unsorted list Θ(?) Θ(?) Θ(?) Θ(?)

sorted list Θ(?) Θ(?) Θ(?) Θ(?)

sorted array Θ(?) Θ(?) Θ(?) Θ(?)

min-heap Θ(?) Θ(?) Θ(?) Θ(?)

● Time complexities for dictionary operations

Some bad implementations

19

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(?)

sorted list Θ(?) Θ(?) Θ(?) Θ(?)

sorted array Θ(?) Θ(?) Θ(?) Θ(?)

min-heap Θ(?) Θ(?) Θ(?) Θ(?)

● Time complexities for dictionary operations

Some bad implementations

20

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(?)

sorted list Θ(?) Θ(?) Θ(?) Θ(?)

sorted array Θ(?) Θ(?) Θ(?) Θ(?)

min-heap Θ(?) Θ(?) Θ(?) Θ(?)

● What assumption is being made about delete ? Any other assumptions here?

● Time complexities for dictionary operations

Some bad implementations

21

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(?)

sorted list Θ(n) Θ(n) Θ(n) Θ(?)

sorted array Θ(?) Θ(?) Θ(?) Θ(?)

min-heap Θ(?) Θ(?) Θ(?) Θ(?)

● Time complexities for dictionary operations

Some bad implementations

22

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(?)

sorted list Θ(n) Θ(n) Θ(n) Θ(?)

sorted array Θ(n) Θ(n) Θ(log n) Θ(?)

min-heap Θ(?) Θ(?) Θ(?) Θ(?)

● Time complexities for dictionary operations

Some bad implementations

23

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(?)

sorted list Θ(n) Θ(n) Θ(n) Θ(?)

sorted array Θ(n) Θ(n) Θ(log n) Θ(?)

min-heap Θ(log n) XXX XXX Θ(?)

Heaps don’t support these ops

(but find would be Θ(n))

● Time complexities for dictionary operations

Some bad implementations

24

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(?)

sorted list Θ(n) Θ(n) Θ(n) Θ(?)

sorted array Θ(n) Θ(n) Θ(log n) Θ(?)

min-heap Θ(log n) XXX XXX Θ(?)

None of these structures achieve sublinear time complexity for all three ops

● Time complexities for dictionary operations

Some bad implementations

25

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(?)

sorted list Θ(n) Θ(n) Θ(n) Θ(?)

sorted array Θ(n) Θ(n) Θ(log n) Θ(?)

min-heap Θ(log n) XXX XXX Θ(?)

● Time complexities for dictionary operations

Some bad implementations

26

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

min-heap Θ(log n) XXX XXX Θ(n)

● Time complexities for dictionary operations

Some bad implementations

27

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

min-heap Θ(log n) XXX XXX Θ(n)

All these structures take space proportional to # of records stored

Key Question

● Is it possible to implement a dictionary with sublinear time for all

of insert, find, and remove?

28

Key Question

● Is it possible to implement a dictionary with sublinear time for all

of insert, find, and remove?

● We’ll show that the answer is yes…

29

Key Question

● Is it possible to implement a dictionary with sublinear time for all

of insert, find, and remove?

● We’ll show that the answer is yes…

● …depending on what you mean by “sublinear time”.

● (Guarantees will not be worst-case)

30

Idea: Direct-Addressed Table

● Let U be the set (“universe”) of all possible keys

● Allocate an array of size |U|

● If we get a record with key k, put it in k’s array cell.

31

Direct-Addressed Tables

32

value

Fig 11.2

Direct-Addressed Tables

33

Key space is a

compact index of small,
nonnegative integers

value

Fig 11.2

Direct-Addressed Tables

34

Key space is a

compact index of small,
nonnegative integers

Darkened cells are all
null

value

Fig 11.2

Direct-Addressed Tables

35

Key space is a

compact index of small,
nonnegative integers

Darkened cells are all
null

value

Fig 11.2

True

True

False

False Example:

record whether
each key is
divisible by 2

● Time complexities for dictionary operations

A Less Bad Implementation?

36

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

direct table Θ(???) Θ(???) Θ(???) Θ(???)

● Time complexities for dictionary operations

A Less Bad Implementation?

37

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

direct table Θ(1) Θ(1) Θ(1) Θ(???)

We can look up any entry in the table in constant time, given its key

● Time complexities for dictionary operations

A Less Bad Implementation?

38

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

direct table Θ(1) Θ(1) Θ(1) Θ(|U|)

But the space cost is |U|, no matter how small n (# of records) is.

Problems with Direct-Addressed Tables

● Challenge #1: What if |U| >> n?

● ex. IPv6 (~1038), Unix passwords (~1015)

Problems with Direct-Addressed Tables

● Challenge #1: What if |U| >> n?

● ex. IPv6 (~1038), Unix passwords (~1015)

● Challenge #2: What if keys aren’t integers?

● What does T[blue] mean? T[5.7281934]? T[“hello world”]?

● How do you index an array using an arbitrary object type?

Idea: Hash Functions

● A hash function h maps keys k of some type to integers

h(k) in a fixed range [0, N)

● The integer h(k) is the key’s hashcode under h

● If N = |U|, h could map every key to a distinct integer,

giving us a way to index our direct table.

41

What if our key is not Integer?

42

value

Fig 11.2

“dog”

“cat”

“fossa”

Hash

Function

What if our key is not Integer?

43

value

Fig 11.2

“dog”

“cat”

“fossa”

Hash

Function

I can turn a String into an Integer

Can you think of some ways this could be done?

What if our key is not Integer?

44

value

Fig 11.2

“dog”

“cat”

“fossa”

Hash

Function

arf

What if our key is not Integer?

45

value

Fig 11.2

“dog”

“cat”

“fossa”

Hash

Function

meow

What if our key is not Integer?

46

value

Fig 11.2

“dog”

“cat”

“fossa”

Hash

Function

this

http://www.fossapedia.zaxtor.net/Angry_fossa03.wav

But What About Sparsity?

● We often can’t afford to store a table of size |U|.

● What if our hash function mapped keys to a smaller

space, i.e. [0, m) for m << |U|?

● We’d need a table of size only m.

● This smaller table is called a hash table.

47

The Good…

48

“dog”

“cat”

“fossa”

Hash

Function

2

0

1

m = 3

A hash table

lets us allocate

arrays much

smaller than |U|

The Bad…

49

“dog”

“cat”

“fossa” Hash

Function

2

0

1

m = 3

“okapi” 1

Uh oh…

The Bad…

50

“dog”

“cat”

“fossa” Hash

Function

2

0

1

m = 3

“okapi” 1

Oh dear…

“duiker” 1

“axolotl” 1

“coypu” 1

When Worlds Keys Collide

● What happens if multiple keys hash to same table cell?

● This must happen if m < |U| -- pigeonhole principle

● When two keys hash to same cell, we say they collide.

● A hash table must work even in presence of collisions.

51

A Simple Strategy: Chaining

● Each table cell becomes a bucket that can hold multiple records

● A bucket holds a list of all records whose keys map to it.

● find(k) must traverse bucket h(k)’s list, looking for a record with key k

● Analogous extensions for insert(), remove()

52

Hash Table with Chaining

53

“dog”

“cat”

“fossa”

2

0

1

“okapi” 1

“duiker” 1

“axolotl” 1

“coypu” 1

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }

Hash Table with Chaining

54

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }find(axolotl)

Hash Table with Chaining

55

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(axolotl) = 1

Hash Table with Chaining

56

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(axolotl) = 1

Hash Table with Chaining

57

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(axolotl) = 1

Hash Table with Chaining

58

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(axolotl) = 1

Hash Table with Chaining

59

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(axolotl) = 1

Hash Table with Chaining

60

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }find(potrzebie)

Hash Table with Chaining

61

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(potrzebie) = 1

Hash Table with Chaining

62

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(potrzebie) = 1

Hash Table with Chaining

63

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(potrzebie) = 1

Hash Table with Chaining

64

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(potrzebie) = 1

Hash Table with Chaining

65

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(potrzebie) = 1

Hash Table with Chaining

66

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(potrzebie) = 1

Hash Table with Chaining

67

{ dog }

{ cat }

{ fossa }, { okapi }, { duiker }, { axolotl }, { coypu }h(potrzebie) = 1

NOT FOUND

What is Performance of a Hash Table?

● “Performance” = “cost to do a find()”

● (remove, and maybe insert, similarly traverse list for some bucket)

68

What is Performance of a Hash Table?

● “Performance” = “cost to do a find()”

● (remove, and maybe insert, similarly traverse list for some bucket)

○ Insert traverses list if we must check for duplicates

69

What is Performance of a Hash Table?

● “Performance” = “cost to do a find()”

● (remove, and maybe insert, similarly traverse list for some bucket)

● Suppose table holds n records

● In worst case, all n records hash to one bucket

● Searching this bucket takes time ???

70

What is Performance of a Hash Table?

● “Performance” = “cost to do a find()”

● (remove, and maybe insert, similarly traverse list for some bucket)

● Suppose table holds n records

● In worst case, all n records hash to one bucket

● Searching this bucket takes time Θ(n)

71

● Time complexities for dictionary operations

Cost of Hash Table (Worst-Case)

72

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

hash table Θ(n) Θ(n) Θ(n) Θ(m+n)

I thought the point was to get sublinear-time ops!

A Weaker Performance Estimate

● Assume that, given a key k in U, hash function h is equally likely to map k to

each value in [0, m), independent of all other keys.

● This assumption is called Simple Uniform Hashing.

● Now suppose we hash n keys k1…kn from U into the table, then call find(k*)

for some key k*.

● What is the average [over choice of keys] cost to search the table for k*?

73

Average Cost of Search

● Total of n elements distributed over m slots

● Average size of bucket is therefore…

74

Average Cost of Search

● Total of n elements distributed over m slots

● Average size of bucket is therefore… n/m

75

Average Cost of Search

● Total of n elements distributed over m slots

● Average size of bucket is therefore… n/m

● Suppose k* is not in the table.

● Cost of find(k*) is Θ(1) to compute h(k*), plus Θ(bucket size) to search

● h(k*) equally likely to be any bucket, so average cost of unsuccessful

find is Θ(1 + n/m).
76

Average Cost of Search

● Total of n elements distributed over m slots

● Average size of bucket is therefore… n/m

● Suppose k* is not in the table.

● Cost of find(k*) is Θ(1) to compute h(k), plus Θ(bucket size) to search

● h(k*) equally likely to be any bucket, so average cost of unsuccessful

find is Θ(1 + n/m).
77

Follows from Simple

Uniform Hashing

Average Cost of Search

● Average cost of unsuccessful find is Θ(1 + n/m).

● Similar arguments from SUH show that average cost of successful

find is also Θ(1 + n/m).

● Defn: α = n/m is called the load factor of the hash table.

78

● Time complexities for dictionary operations

Cost of Hash Table (Average Under SUH)

79

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

hash table Θ(1 + α) Θ(1 + α) Θ(1 + α) Θ(m+n)

Load factor determines performance of hash table

Controlling the Load Factor

● If we know that the table will hold at most n records…

● We can make # of buckets m proportional to n, say m=cn. (e.g. c=0.75)

● This choice makes our load factor n/m a constant (called α).

● Ex: if we set m = n/4, load factor α is 4.

● But then expected search cost is Θ(1 + α) = Θ(1).

80

● Time complexities for dictionary operations

Cost of Hash Table (Average Under SUH, m = cn)

81

Structure insert delete find space

unsorted list Θ(1) Θ(n) Θ(n) Θ(n)

sorted list Θ(n) Θ(n) Θ(n) Θ(n)

sorted array Θ(n) Θ(n) Θ(log n) Θ(n)

hash table Θ(1) Θ(1) Θ(1) Θ(n)

Hashing gives expected constant-time dictionary ops in linear space!

How Do We Approach Ideal Performance?

● Hash function h(k) must approximate SUH assumptions

● Must distribute keys equally, independently across range [0, m)

● [We need to talk about how to design a good hash function h(k)!]

● Moreover, input keys we see must have “average” behavior

● (Alternative: attacker with knowledge of h(k) chooses keys so as to

elicit worst-case behavior from your table!)
82

And Now, Some

Hash Function

Design

83

Hash Function Pipeline – Two Steps

84

Objects

(keys k)

Integers

(hashcodes c)

Buckets

(indices j)

c = h(k) j = b(c)

Hash Function Pipeline – Two Steps

85

Objects

(keys k)

Integers

(hashcodes c)

Buckets

(indices j)

c = h(k) j = b(c)

TodayNext week

Assumptions

● Objects to be hashed have been converted to integer hashcodes

● Hashcodes are in range [0, N)

● Need to convert hashcodes to indices in [0, m) m = table size

86

Assumptions

● Objects to be hashed have been converted to integer hashcodes

● Hashcodes are in range [0, N)

● Need to convert hashcodes to indices in [0, m) m = table size

87

NB: Java hashcodes can be

positive or negative. May need

to take absolute value or

otherwise make ≥ 0!

Goals for Mapping to Indices (from SUH)

● Each hashcode should be about equally likely to map to any value in

[0, m).

● Mappings for different hashcodes should be independent, hence

uncorrelated – knowing the mapping for one should give little or no

information about the mapping for another.

88

Two Main Approaches to Index Mapping

● Division hashing

● Multiplicative hashing

● (Other strategies exist; beyond scope of 247)

89

Division Hashing

● b(c) = c mod m

● “bucket index = hashcode modulo table-size”

● Very easy to implement (mod in Java is %)

● Result is surely in range [0, m) (if c is non-negative!)

90

The Perils of Division Hashing

● Does every choice of m yield SUH-like behavior?

● Ex: Suppose that m is divisible by a small integer d.

● Claim: if j = c mod m, then j mod d = c mod d

● So what?

91

The Perils of Division Hashing

● Ex: Suppose that m is divisible by a small integer d.

● Claim: if j = c mod m, then j mod d = c mod d

● E.g., if d = 2, then even hashcodes map to even indices.

● “Natural” subsets of all hashcodes do not map uniformly

across the entire table → not SUH behavior!

92

The Perils of Division Hashing (Proof)

● Claim: if j = c mod m, then j mod d = c mod d

● Pf: Suppose c = x + ym.

● Since d | m, c = x + zd for some z.

● Hence c mod d = x = (c mod m) mod d = j mod d. QED

93

A Particularly Bad Case

● Ex: Suppose that m = 2v

● Hashcodes with same v low-order bits map to same index

94

10011010111101100101111000010101

32-bit hashcode c

A Particularly Bad Case

● Ex: Suppose that m = 2v

● Hashcodes with same v low-order bits map to same index

95

10011010111101100101111000010101

32-bit hashcode c

v = 10

(m = 1024)

c mod m

A Particularly Bad Case

● Ex: Suppose that m = 2v

● Hashcodes with same v low-order bits map to same index

96

10011010111101100101111000010101

32-bit hashcode c

v = 10

(m = 1024)

These bits are ignored!

c mod m

Advice on Division Hashing

● Table size m should be chosen so that

○ No (obvious) correlations between hashcode bit pattern and index

○ Index depends on all bits of hashcode, not just some

● Idea: make m a prime number (no small factors)

● Avoid choices of m close to powers of 2 or 10

97

What’s Wrong with m Near Power of 2 or 10?

● Ex: Suppose m = 2v – 1

● If c = c0 + 2vc1 + 22vc2 + 23vc3 + ….

● c mod m = c0 + c1 + c2 + c3 + …. mod m

● Could permute chunks of v bits in c and get same index!

● (Think about strings encoded using v bits per character)

98

Other Thoughts on Division Hashing

● The operation “c mod m” is expensive on most computers

● (unless m is a constant known at compile time)

● Modulo op is most efficient when m is a power of 2… but

this is a poor choice for division hashing!

99

Two Main Approaches to Index Mapping

● Division hashing

● Multiplicative hashing

● (Other strategies exist; beyond scope of 247)

100

Multiplicative Hashing

● Let A be a real number in [0, 1).

● 𝒃 𝒄 = 𝒄 ∙ 𝑨 𝒎𝒐𝒅 𝟏.𝟎 ∙ 𝒎

● “x mod 1.0” means “fractional part of x.”

● E.g. 47.2465 mod 1.0 = 0.2465

● cA mod 1.0 is in [0, 1), so b(c) is an integer in [0, m) – an index!

101

Initial Observations

● A should not be too small – would map many hashcodes to 0.

● → Suggest picking A from [0.5, 1)

● If q = cA mod 1.0 is distributed uniformly in [0, 1), then we can use

any value for m and still get uniform indices.

● In particular, we can use m = 2v if we want.

102

Why Is Multiplication a Good Hashing Strategy?

● Mapping c → q = cA mod 1.0 is a diffusing operation

● I.e., most significant digits of q depend (in a complex way) on many

digits of c. (Makes q looks uniform, obscures correlations among c’s.)

● Hence, bin number 𝑞 ∙ 𝑚 looks uniform, uncorrelated with c.

● (Same is true if we replace “digits” by “bits” and work in binary)

103

Example of Diffusion

104

1234

0.6734x

Assumed:

• Integer c has fixed some # of digits

• We use same # of digits of A after decimal

Example of Diffusion

105

1234

0.6734x

.4936

Example of Diffusion

106

1234

0.6734x

.4936

3.7020

Example of Diffusion

107

1234

0.6734x

.4936

3.7020

86.3800

Example of Diffusion

108

1234

0.6734x

.4936

3.7020

86.3800

740.4000

Example of Diffusion

109

1234

0.6734x

.4936

3.7020

86.3800

+740.4000

• First digit after decimal is middle

digit of product

• Middle digits depend on all (or

most) digits of c and all or most

digits of A

• These digits determine bin number

Is Every Choice of A Equally Good?

● Not all A’s have equally good diffusion/complexity properties.

● Fractions with few nonzero digits (e.g. 0.75) or repeating decimals

(e.g. 7/9 = 0.7777777…..) have poor diffusion and/or low complexity.

● Advice: pick an irrational number between 0.5 and 1.

● Ex: 𝑨 =
𝟓−𝟏

𝟐
≈ 0.61803398874989484820458683436564 [Knuth]

110

Multiplication Hashing Without Floating-Point Math

● What if you can’t / don’t want to use floating-point math?

● (May be more expensive than integer math)

● If we know our hashcodes c have at most d digits, we can multiply A by 10d

initially and do everything we need using only integer arithmetic.

● Similarly, if hashcodes have at most w bits, we can multiply A by 2w initially.

● This trick is called “fixed-point arithmetic”.

111

Previous Example, in Fixed-Point Decimal

112

1234

0.6734x

Assumed:

• Integer c has at most 4 digits

• We use same # of digits of A after decimal

Previous Example, in Fixed-Point Decimal

113

1234

6734x ÷ 104 (multiply, but remember how to undo)

Previous Example, in Fixed-Point Decimal

114

1234

6734x

4936

÷ 104

Previous Example, in Fixed-Point Decimal

115

1234

6734x

4936

37020

÷ 104

Previous Example, in Fixed-Point Decimal

116

1234

6734x

4936

37020

863800

÷ 104

Previous Example, in Fixed-Point Decimal

117

1234

6734x

4936

37020

863800

7404000

÷ 104

Previous Example, in Fixed-Point Decimal

118

1234

6734x

4936

37020

863800

+7404000

÷ 104

8309756

We know decimal point goes here

cA mod 1 = 9756 ÷ 104

Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756 ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

119

Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756 ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

120

Again, we know decimal point goes here

Index Computation in Fixed-Point Decimal

● Suppose m = 100 = 102.

● (cA mod 1) m = 9756 ÷ 104 x 102

● = 9756 ÷ 104-2

● = 9756 ÷ 102

● Hence, 𝒄 ∙ 𝑨 𝒎𝒐𝒅 𝟏. 𝟎 ∙ 𝒎 = 𝟗𝟕

121

Again, we know decimal point goes here

What About Fixed-Point Binary?

● Book presents the binary version.

● It’s also how you would typically implement it on a computer!

● If you have had 132, then the following slides will make more sense
○ If not, follow along as best you can, and look at this again after you’ve had 132

122

For base 2 (let’s assume w = 32)

123

result of .hashCode()

For base 2 (let’s assume w = 32)

124

result of .hashCode()

A shifted left by 32 bits

For base 2 (let’s assume w = 32)

125

result of .hashCode()

A shifted left by 32 bits

The product of two w-bit numbers yields a 2w-bit result

For base 2 (let’s assume w = 32)

126

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

For base 2 (let’s assume w = 32)

127

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A

For base 2 (let’s assume w = 32)

128

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

129

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A
shifted right now by
p bits

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

130

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

So this is the

fractional part of k x A
shifted right now by
p bits

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

131

result of .hashCode()

A shifted left by 32 bits

The binary point

belongs here, with the
result shifted right by
32 bits

If m = 2p then

multiplying the
fractional part by m
yields these p bits

For base 2 (let’s assume w = 32)

132

result of .hashCode()

A shifted left by 32 bits

Assume we use Knuth’s A:

Example (page 264 in text)

133

w = 32

p = 14 → m = 16384

Example (page 264 in text)

134

k = 123456

w = 32

p = 14 → m = 16384

Example (page 264 in text)

135

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

Example (page 264 in text)

136

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

327706022297664 =

Example (page 264 in text)

137

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

Example (page 264 in text)

138

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Example (page 264 in text)

139

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

0
0000

Example (page 264 in text)

140

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01
0000 0001

Example (page 264 in text)

141

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0
0000 0001 0000

Example (page 264 in text)

142

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0C
0000 0001 0000

C = 1100

but we only need the first two bits to
make 14 total bits

Example (page 264 in text)

143

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01 0C
0000 0001 0000 11

C = 1100

but we only need the first two bits to
make 14 total bits

Example (page 264 in text)

144

k = 123456

A x 232 = 2654435769

w = 32

p = 14 → m = 16384

76300 x 232 + 17612864

32 bit representation for 17612864 is

01 0C C0 40

Top 14 bits

01
0000 0001 0000 11 = 64 + 3 = 67

hashes to bucket 67

A Good Implementation

● Choose m = 2p buckets

● Assume .hashCode() yields 32-bit unsigned integer k [does not exist in Java]

● Pre-compute the constant s = 232 x A

● Assume that if sk overflows 32 bits, we get only lower 32 bits of result

● Index computation on input k is then sk ÷ 232 – p = sk >> (32 – p)

● This is a close relative of the function you’ll play with in Studio 7.

145

End of Lecture 7

146

