
Lecture 6:
How Fast Can

We Sort?

1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

https://www.bloomberg.com/graphics/2017-fast-and-furious/

Announcements

● Exam 1 graded

2

Announcements

● Exam 1 graded

○ Regrade requests due by 3/3

● Lab 6

○ Out Wednesday, due 3/8

○ Practice with recurrences, sorting, searching

○ Will not have a coding portion or pre-lab (wait for Lab 7)

3

What Do We Know About Sorting?

● We know a couple of worst-case Θ(n log n) algorithms

● HeapSort

○ Insert all inputs into a heap

○ Extract in sorted order

○ Lab 3 unit test did this

● MergeSort (Thursday’s studio!)
● Based on linear merge of two sorted arrays

● Divide-and-conquer algorithm

4

What Other Sorting Algorithms Exist?

● BubbleSort – Θ(n2)

● InsertionSort – Θ(n2)

● ShellSort – Θ(n2), or Θ(n4/3), or Θ(n log2 n), or … [many different

variants]

● QuickSort – Θ(n log n) [if we work at it; see 347]

● …

● See "The Sounds of Sorting" website for audio/visual intuition 5

http://www.caseyrule.com/projects/sounds-of-sorting/

How Fast Can We Sort?

● Multiple worst-case Θ(n log n) time algorithms

● All the others we listed are slower!

● Is there a faster sorting algorithm?

6

To answer, we need to be

more precise about what

“sorting algorithm” means…

What is a Sorting Algorithm Allowed to Do?

● Computers are not infinitely powerful…

● They can do only limited work in constant time.

● In particular, they can make limited decisions

about their inputs in constant time.

7

What is a Sorting Algorithm Allowed to Do?

● Computers are not infinitely powerful…

● They can do only limited work in constant time.

● In particular, they can make limited decisions

about their inputs in constant time.

8

“Model of Computation” –

which operations can your

computer do in constant

time?

Limited Decisions for Sorting

● All the sorting algorithms we listed work on any

Comparable data type.

● The only way they inspect the input is by comparing pairs

of elements to each other!

● Can answer “Is x > y?” in constant time.

9

Limited Decisions for Sorting

● All the sorting algorithms we listed work on any

Comparable data type.

● The only way they inspect the input is by comparing two

elements to each other!

● Can answer “Is x > y?” in constant time.

10

Any sorting algorithm that

inspects its input only via

pairwise comparisons is

called a “comparison sort.”

An Aside on Comparisons

● If we can test “x > y”…

● We can also test “x ≤ y” (NOT x > y)

● Hence, we can test “x = y” (x ≤ y AND y ≤ x),

“x ≥ y” (x = y OR x > y), and “x < y” (NOT x ≥ y)

We can implement all ordered comparisons in O(1) >’s.

11

Reformulating the Question

● How many comparisons do we need to sort an input

array of size n?

● If each comparison takes constant time, and comparison

is the dominant cost of sorting…

● …then # of comparisons gives time complexity of sorting.

12

What We Know

● We know of algorithms that use Θ(n log n) comparisons to

sort an array of size n.

● Hence, # of required comparisons for fastest possible

algorithm is ???(n log n)

13

What We Know

● We know of algorithms that use Θ(n log n) comparisons to

sort an array of size n.

● Hence, # of required comparisons for fastest possible

algorithm is O(n log n)

14

What We Know

● We know of algorithms that use Θ(n log n) comparisons to

sort an array of size n.

● Hence, # of required comparisons for fastest possible

algorithm is O(n log n)

● Any fixed sorting algorithm gives upper bound on cost of

fastest possible algorithm.

15

What We Want

● Is there an f(n) for which every comparison sort requires

Ω(f(n)) comparisons to sort an array of size n?

● That is, can we find an asymptotic lower bound on cost

of any comparison sort?

16

A Trivial Lower Bound

● Claim: every comparison sort takes time Ω(n).

17

A Trivial Lower Bound

● Claim: every comparison sort takes time Ω(n).

● Pf: a correct sorting algorithm must inspect every element

of its input array at least once.

18

3 1 7 2 5 9 ?

A Trivial Lower Bound

● Claim: every comparison sort takes time Ω(n).

● Pf: a correct sorting algorithm must inspect every element

of its input array at least once.

19

1 2 3 5 7 9 ?

A Trivial Lower Bound

● Claim: every comparison sort takes time Ω(n).

● Pf: a correct sorting algorithm must inspect every element

of its input array at least once.

20

1 2 3 5 7 9 ?

We have no idea what this

value is, so cannot determine

correct place for it in order.

A Trivial Lower Bound

● Claim: every comparison sort takes time Ω(n).

● Pf: a correct sorting algorithm must inspect every element

of its input array at least once.

● Each comparison inspects only 2 elements, so we need at

least ??? comparisons.

21

A Trivial Lower Bound

● Claim: every comparison sort takes time Ω(n).

● Pf: a correct sorting algorithm must inspect every element

of its input array at least once.

● Each comparison inspects only 2 elements, so we need at

least n/2 comparisons. QED

22

Can We Improve This Lower Bound?

● Yes, but it will take a bit more work.

● Need a way to represent any possible comparison sort

23

Can We Improve This Lower Bound?

● Yes, but it will take a bit more work.

● Need a way to represent any possible comparison sort

● (Even algorithms we have never imagined!)

● Will use properties of representation to prove bound.

24

A New Way to Represent Algorithms

● Given an input array of size n….

● Any fixed sorting algorithm compares elements according

to some logic.

● Choice of later comparisons might depend on results of

earlier ones.

● Will use a tree to encode logic of comparison sequence.
25

Decision tree for sorting using comparisons

26

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

One Possible decision tree for sorting using

comparisons

27

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

Decision tree for sorting using comparisons

28

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

Decision tree for sorting using comparisons

29

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

Decision tree for sorting using comparisons

30

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

Decision tree for sorting using comparisons

31

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

Decision tree for sorting using comparisons

32

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

33

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

34

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

35

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

36

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

We cannot figure this out with just one

comparison

Decision tree for sorting using comparisons

37

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

We cannot figure this out with just one

comparison

Try to do

it with just
one

Decision tree for sorting using comparisons

38

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

39

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

40

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

41

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

42

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

43

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

This

leaves 3
places 50
could go

Decision tree for sorting using comparisons

44

Sorting 3 elements (Figure 8.1 from text)

i : j

Does element i

belong before
element j

?

Yes No

75 99 50

We find

our
answer

here

How to Read a Decision Tree

● For fixed input size n…

● Start at root

● Do specified operation at each internal node and follow

edge based on outcome

● Leaf reached represents answer

45

Decision trees → Sorting Algorithms

● For any comparison sort, we can construct its decision tree on inputs

of size n

● (Just trace what the code does for every possible input of size n)

● For any decision tree representing a correct comparison sort, we can

derive equivalent code.

● (Follow the tree as shown above.)

46

Decision trees → Sorting Algorithms

● For any comparison sort, we can construct its decision tree on inputs

of size n

● (Just trace what the code does for every possible input of size n)

● For any decision tree representing a correct comparison sort, we can

derive equivalent code.

● (Follow the tree as shown above.)

47

Hence, a lower bound on

running time for all decision

trees holds for all comparison

sorts, and vice versa.

What’s the Running Time of a Decision Tree?

● As many comparisons as it takes to get from root to leaf…

● … in the worst case → maximum depth

● Hence, running time of a decision tree is its height.

48

Decision tree for sorting using comparisons

49

Sorting 3 elements (Figure 8.1 from text)

height = 3

Generic Lower Bound Argument

● Suppose every decision tree for a problem of size n has

at least t(n) leaves.

● Moreover, the operation labeling each internal node has

at most w possible outcomes.

● Claim: the problem requires at least logw t(n) operations

to solve.

50

Generic Lower Bound Argument

● Claim: the problem requires at least logw t(n) operations

to solve.

● Pf: Tree starts with one root

● Every level of tree increases # nodes by a factor ≤ w

51

Generic Lower Bound Argument

● Claim: the problem requires at least logw t(n) operations

to solve.

● Pf: Tree starts with one root

● Every level of tree increases # nodes by a factor ≤ w

● Need enough levels h s.t. wh ≥ t(n).

52

Generic Lower Bound Argument

● Claim: the problem requires at least logw t(n) operations

to solve.

● Pf: Tree starts with one root

● Every level of tree increases # nodes by a factor ≤ w

● Need enough levels h s.t. wh ≥ t(n).

● Hence, h ≥ logw t(n). QED

53

Application to Comparison Sorting

● Every node of the tree is a comparison using >.

● Hence, w = ???.

54

Application to Comparison Sorting

● Every node of the tree is a comparison using >.

● Hence, w = 2. [# of outcomes for “Is x > y?”]

● Every leaf of the tree is a possible sorted order of n

elements.

● Hence, t(n) = ???

55

Application to Comparison Sorting

● Every node of the tree is a comparison using >.

● Hence, w = 2. [# of outcomes for “Is x > y?”]

● Every leaf of the tree is a possible sorted order of n

elements.

● Hence, t(n) = n! [Really?]

56

t(n) = n!

● When n = 1, only one sorted order.

57

t(n) = n!

● When n = 1, only one sorted order.

● For n > 1, assume all elements of input distinct.

58

t(n) = n!

● When n = 1, only one sorted order.

● For n > 1, assume all elements of input distinct.

● n possibilities for which element goes first in output.

59

t(n) = n!

● When n = 1, only one sorted order.

● For n > 1, assume all elements of input distinct.

● n possibilities for which element goes first in output.

● Given 1st choice, # of orders of remaining n-1 elts is (n-1)!

60

t(n) = n!

● When n = 1, only one sorted order.

● For n > 1, assume all elements of input distinct.

● n possibilities for which element goes first in output.

● Given 1st choice, # of orders of remaining n-1 elts is (n-1)!

61

We applied the

inductive hypothesis.

t(n) = n!

● When n = 1, only one sorted order.

● For n > 1, assume all elements of input distinct.

● n possibilities for which element goes first in output.

● Given 1st choice, # of orders of remaining n-1 elts is (n-1)!

● Hence, n x (n-1)! = n! possible orders of n elements. QED62

Summary

● For comparison sorting, w = 2, t(n) = n!

● Hence, by our general theorem, sorting an array of size n

requires at least log2 n! comparisons in the worst case.

63

Summary

● For comparison sorting, w = 2, t(n) = n!

● Hence, by our general theorem, sorting an array of size n

requires at least log2 n! comparisons in the worst case.

● Wait, how big is log n! ???

64

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

65

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log n + log (n-1) + log (n-2) + … + log(2) + log(1)

66

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≤ log (n) + log (n) + log (n) + … + log (n) + log (n)

67

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≤ log (n) + log (n) + log (n) + … + log (n) + log (n)

= n log (n)

68

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≤ log (n) + log (n) + log (n) + … + log (n) + log (n)

= n log (n)

So log(n!) = O(n log n) <-- Upper Bound

69

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≤ log (n) + log (n) + log (n) + … + log (n) + log (n)

= n log (n)

So log(n!) = O(n log n) <-- Upper Bound

--look familiar? bound on n heap operations!

70

Bounding log(n!): lower bound*

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

71
* proof written by WUSTL student Aidan Kelley

Bounding log(n!): lower bound

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≥ log (n) + log (n-1) + … + log(n/2 + 1) <-- first n/2 terms

72

Bounding log(n!): lower bound

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≥ log (n) + log (n-1) + … + log(n/2 + 1) <-- first n/2 terms

≥ log (n/2) + log (n/2) + … + log(n/2) <-- l.b. on each term

73

Bounding log(n!): lower bound

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≥ log (n) + log (n-1) + … + log(n/2 + 1) <-- first n/2 terms

≥ log (n/2) + log (n/2) + … + log(n/2) <-- l.b. on each term

= (n/2) log (n/2)

74

Bounding log(n!): lower bound

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≥ log (n) + log (n-1) + … + log(n/2 + 1) <-- first n/2 terms

≥ log (n/2) + log (n/2) + … + log(n/2) <-- l.b. on each term

= (n/2) log (n/2)

= (n/2)(log n – log 2)

75

Bounding log(n!): lower bound

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≥ log (n) + log (n-1) + … + log(n/2 + 1) <-- first n/2 terms

≥ log (n/2) + log (n/2) + … + log(n/2) <-- l.b. on each term

= (n/2) log (n/2)

= (n/2)(log n – log 2)

= (n log n / 2) - (n/2)

76

Bounding log(n!): lower bound

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

≥ log (n) + log (n-1) + … + log(n/2 + 1) <-- first n/2 terms

≥ log (n/2) + log (n/2) + … + log(n/2) <-- l.b. on each term

= (n/2) log (n/2)

= (n/2)(log n – log 2)

= (n log n / 2) - (n/2)

So log(n!) = Ω(n log n) <-- Lower bound 77
* proof written by WUSTL student Aidan Kelley

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

log(n!) = O(n log n) <-- Upper bound

log(n!) = Ω(n log n) <-- Lower bound

78

Bounding log(n!)

● log(n!) = log(n x (n-1) x (n-2) x ... x 1)

= log (n) + log (n-1) + log (n-2) + … + log(2) + log(1)

log(n!) = O(n log n) <-- Upper bound

log(n!) = Ω(n log n) <-- Lower bound

log(n!) = Θ(n log n)

79

Summary

● For comparison sorting, w = 2, t(n) = n!

● Hence, by our general theorem, sorting an array of size n

requires at least log2 n! comparisons in the worst case.

80

Summary

● For comparison sorting, w = 2, t(n) = n!

● Hence, by our general theorem, sorting an array of size n

requires Ω(n log n) comparisons in the worst case.

● → MergeSort and HeapSort are asymptotically optimal

comparison sorts!

81

OK, so it’s impossible

to sort in time less

than n log n…

82

OK, so it’s impossible

to sort in time less

than n log n… using

comparisons

83

Next, let's see how we

can sort in time less

than n log n.

84

Breaking the n log n barrier

● Our lower bound is for comparison sorts, which work on

items from any totally ordered set.

● To sort faster, we need to be able to inspect input using

ops other than comparisons.

● Will limit attention to sorting integers.

85

Counting Sort

● Assume our inputs are n integers in range [0, k).

● Count how often each value occurs in input.

● Write that many values to output.

86

Counting Sort (k = 5)

87

[1 4 2 0 1 3 0 1 2 3]

Value Count

0

1

2

3

4

Counting Sort (k = 5)

88

[1 4 2 0 1 3 0 1 2 3]

Value Count

0

1 1

2

3

4

Counting Sort (k = 5)

89

[1 4 2 0 1 3 0 1 2 3]

Value Count

0

1 1

2

3

4 1

Counting Sort (k = 5)

90

[1 4 2 0 1 3 0 1 2 3]

Value Count

0

1 1

2 1

3

4 1

Counting Sort (k = 5)

91

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 1

1 1

2 1

3

4 1

Counting Sort (k = 5)

92

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 1

1 2

2 1

3

4 1

Counting Sort (k = 5)

93

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 1

1 2

2 1

3 1

4 1

Counting Sort (k = 5)

94

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 2

2 1

3 1

4 1

Counting Sort (k = 5)

95

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 1

3 1

4 1

Counting Sort (k = 5)

96

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 1

4 1

Counting Sort (k = 5)

97

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1

Counting Sort (k = 5)

98

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1
[]

Counting Sort (k = 5)

99

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1
[0 0]

Counting Sort (k = 5)

100

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1
[0 0 1 1 1]

Counting Sort (k = 5)

101

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1
[0 0 1 1 1 2 2]

Counting Sort (k = 5)

102

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1
[0 0 1 1 1 2 2 3 3]

Counting Sort (k = 5)

103

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1
[0 0 1 1 1 2 2 3 3 4]

Counting Sort (k = 5)

104

[1 4 2 0 1 3 0 1 2 3]

Value Count

0 2

1 3

2 2

3 2

4 1
[0 0 1 1 1 2 2 3 3 4]

Cost = Θ(n + k)

Fun Facts About Counting Sort

● Counting sort is a “linear-time” sort (in n)

○ Still depends on k

● Can extend to sort arbitrary items with integer keys

● Highly efficient when max value k is small vs n

105

Fun Facts About Counting Sort

● Counting sort is a “linear-time” sort (in n)

○ Still depends on k

● Can extend to sort arbitrary items with integer keys

● Highly efficient when max value k is small vs n

● But what if k is large?
106

Radix Sort

● Divide each input integer into d digits

● Digits may be in any base k; we’ll use base 10 in example

● Sort using d successive passes of counting sort

● jth pass uses jth digit of each input as sorting key

107

Radix Sort – Key Requirements

● Sort using d successive passes of counting sort.

● We sort by least significant digit first.

● Sort in each pass must be stable – never inverts order of

two inputs with the same key.

108

2 3 2 1 1 2 2 3

Radix Sort – Key Requirements

● Sort using d successive passes of counting sort.

● We sort by least significant digit first.

● Sort in each pass must be stable – never inverts order of

two inputs with the same key.

109

2 3 2 1 1 2 2 3

NOT

STABLE!

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

110

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

111

329

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

112

457 329

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

113

457

657

329

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

114

457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

115

436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

116

720 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

117

720 355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

118

720 355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

We next recreate the list by sweeping the bins

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

119

720 355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

We next recreate the list by sweeping the bins

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

120

355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

121

355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

122

355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

123

355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

124

355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

125

355 436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

126

436 457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

127

457

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

128

657

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

129

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

130

329

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

131

839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

132

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

133

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

134

720

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

135

720 355

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

136

720 436 355

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

137

720 436 355

457

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

138

720 436 355

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

139

720

329

436 355

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

140

720

329

436

839

355

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

141

329

436

839

355

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

142

436

839

355

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

143

839

355

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

144

355

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

145

457
657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

146

657

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

147

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

148

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

149

720

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

150

329 720

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

151

329 436 720

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

152

329 436 720 839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

153

329

355

436 720 839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

154

329

355

436 720 839

0 1 2 4 5 6 7 83 9

These end up in the right

order because….

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

155

329

355

436 720 839

0 1 2 4 5 6 7 83 9

These end up in the right

order because….

The sort is stable:

the original order
of elements is

preserved within a

bin

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

156

329

355

436 720 839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

157

329

355

436

457

720 839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

158

329

355

436

457

657 720 839

0 1 2 4 5 6 7 83 9

Radix Sort

● From least significant digit to most significant digit j
○ Consider each element e in its current order

■ Let ej represent the value of e in digit position j

■ Append e into the items currently in bucket ej

159

329

355

436

457

657 720 839

0 1 2 4 5 6 7 83 9

Radix Sort

● Alternative visualization: Radix sort on the playground

160

https://www.youtube.com/watch?v=ibtN8rY7V5k

Why Does Radix Sort Work?

● Invariant – after j sorting passes, input is sorted by its jth

least significant digits. [Prove inductively on j]

● Stability is needed to show that invariant holds for inputs

with equal-valued jth digits.

● (Proof left as exercise – see Lab 6.)

161

What Does Radix Sort Cost?

● d passes of counting sort

● Each pass takes time Θ(n + k)

○ Why?

● Hence, total time is Θ(d(n+k))

162

Application: Sorting Punch Cards

163https://en.wikipedia.org/wiki/Computer_programming_in_the_punched_card_era

Whoops! We Dropped our Deck!

164

Application: Sorting Punch Cards

165https://en.wikipedia.org/wiki/IBM_card_sorter

Sorting

End of notes

166

