Lecture 6:

How Fast Can
We Sort?

https:/Mww.bloomberg.com/graphics/2017-fast-and-furious/

1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

e Exam 1 graded

I T T T
0 10 20 30

MINIMUM MEDIAN

45.0 89.0

T
40

MAXIMUM

100.0

1
50

I
60

70

MEAN

86.62

80

90

STD DEV

10.06

10C

Announcements

e Exam 1 graded

o Regrade requests due by 3/3
e Lab 6

o Out Wednesday, due 3/8
o Practice with recurrences, sorting, searching

o Willnot have a coding portion or pre-lab (wait for Lab 7)

What Do We Know About Sorting?

e Weknow a couple of worst-case ©(n log n) algorithms

e HeapSort
o Insertall inputsinto a heap
o Extract in sorted order
o Lab 3 unit test did this

e MergeSort (Thursday’s studio!)
e Based on linear merge of two sorted arrays
e Divide-and-conquer algorithm

What Other Sorting Algorithms Exist?

e BubbleSort— 0(n?)
e InsertionSort—©(n?)

e ShellSort — ©(n?), or ©(n*3), or ©(n log? n), or ... [many different
variants]

e QuickSort—0O(n log n) [if we work at it; see 347]

e See "The Sounds of Sorting" website for audio/visual intuition

http://www.caseyrule.com/projects/sounds-of-sorting/

How Fast Can We Sort?

o Multiple worst-case ©(n log n) time algorithms
o All the others we listed are slower!

e Is there a faster sorting algorithm?

To answer, we need to be
more precise about what
“sorting algorithm” means...

What is a Sorting Algorithm Allowed to Do?

o Computers are not infinitely powerful...
« They can do only limited work In constant time.

 In particular, they can make limited decisions
about their inputs In constant time.

What is a Sorting Algorithm Allowed to Do?

“Model of Computation” —

: : time.
which operations can your

computer do In constant
time?

Limited Decisions for Sorting

o All the sorting algorithms we listed work on any
Comparable data type.

o The only way they inspect the input is by comparing pairs
of elements to each other!

« Can answer “Is x > y?” in constant time.

Limited Decisions for Sorting

- Any sorting algorithm that

SN Inspects Its input only via
gl pairwise comparisons is
called a “comparison sort.”

g two

10

An Aside on Comparisons

e Ifwe cantest“x>y"...
e Wecan also test “x<y” (NOT x >y)

e Hence, we can test “x=y" (x <y AND y < x),
X2y (x=yORx>y),and “x<y’ (NOT x2vy)

We can implement all ordered comparisons in O(1) >’s.

11

Reformulating the Question

e How many comparisons do we need to sort an input
array of size n?

e If each comparison takes constant time, and comparison
IS the dominant cost of sorting...

e ...then # of comparisons gives time complexity of sorting.

12

What We Know

o« We know of algorithms that use ©(n log n) comparisons to
sort an array of size n.

e Hence, # of required comparisons for fastest possible
algorithm is ???(n log n)

13

What We Know

o« We know of algorithms that use ©(n log n) comparisons to
sort an array of size n.

e Hence, # of required comparisons for fastest possible
algorithm is O(n log n)

14

What We Know

o« We know of algorithms that use ©(n log n) comparisons to
sort an array of size n.

e Hence, # of required comparisons for fastest possible
algorithm is O(n log n)

e Any fixed sorting algorithm gives upper bound on cost of
fastest possible algorithm.

15

What We Want

e Is there an f(n) for which every comparison sort requires
Q(f(n)) comparisons to sort an array of size n?

e That is, can we find an asymptotic |lower bound on cost
of any comparison sort?

16

A Trivial Lower Bound

o Claim: every comparison sort takes time Q(n).

17

A Trivial Lower Bound

o Claim: every comparison sort takes time Q(n).

o Pf: acorrect sorting algorithm must inspect every element
of Its input array at least once.

18

A Trivial Lower Bound

o Claim: every comparison sort takes time Q(n).

o Pf: acorrect sorting algorithm must inspect every element
of Its input array at least once.

19

A Trivial Lower By

o Claim:every comi /o ie s
value IS, so cannot determine

o Pf: acorrect sorti -
correct place for it in order.

of Its input array ¢

20

A Trivial Lower Bound

o Claim: every comparison sort takes time Q(n).

e Pf: a correct sorting algorithm must inspect every element
of its input array at least once.

e Each comparison inspects only 2 elements, so we need at
least ??? comparisons.

21

A Trivial Lower Bound

o Claim: every comparison sort takes time Q(n).

e Pf: a correct sorting algorithm must inspect every element
of its input array at least once.

e Each comparison inspects only 2 elements, so we need at
least n/2 comparisons. QED

22

Can We Improve This Lower Bound?

e Yes, but it will take a bit more work.

o« Need a way to represent any possible comparison sort

23

Can We Improve This Lower Bound?

e Yes, but it will take a bit more work.
o« Need a way to represent any possible comparison sort
e (Even algorithms we have never imagined!)

e Willuse properties of representation to prove bound.

24

A New Way to Represent Algorithms

Given an input array of size n....

Any fixed sorting algorithm compares elements according
to some logic.

Choice of later comparisons might depend on results of
earlier ones.

Will use a tree to encode logic of comparison sequence.
25

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text)

Yes No

26

One Possible decision tree for sorting using
comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text)

Yes No

27

Decision tree for sorting using comparisons

Does elementi
belong before

element
?

Sorting 3 elements (Figure 8.1 from text) 75 99 50

Yes No

28

Decision tree for sorting using comparisons

Does elementi
belong before

element
?

Sorting 3 elements (Figure 8.1 from text) 75 99 50

Yes No

29

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text) 75 |99 50

Yes No

30

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text) 75 |99 50

Yes No

31

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text) 75 |99 50

This
leaves 3
places 50
could go

Yes No

32

Sorting 3 elements (Figure 8.1 from text)

Decision tree for sorting using comparisons

Does elementi
belong before

v

/5

99| 50 element;j

?

This
leaves 3
places 50
could go

Yes No

33

Decision tree for sorting using comparisons

v

Sorting 3 elements (Figure 8.1 from text) 75 |99 50

Does elementi
belong before

element]j
?

This
leaves 3
places 50
could go

Yes No

34

Decision tree for sorting using comparisons

v

Sorting 3 elements (Figure 8.1 from text) 75 |99 50

Does elementi
belong before

element]j
?

This
leaves 3
places 50
could go

Yes No

35

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text) 75 99 50

Yes No

We cannot figure this out with just one
comparison

36

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text) 75 99 50

Tryto do
it with just
one

Yes No

We cannot figure this out with just one
comparison

Decision tree for sorting using comparisons

Does elementi
belong before

element
?

Sorting 3 elements (Figure 8.1 from text) 75 99 50

This
leaves 3
places 50
could go

Yes No

38

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text) 75 @l

This
leaves 3
places 50
could go

Yes No

39

Decision tree for sorting using comparisons

Does elementi
belong before

element]j
?

Sorting 3 elements (Figure 8.1 from text) 75 @l

This
leaves 3
places 50
could go

Yes No

40

Decision tree for sorting using comparisons

Does elementi
belong before

element
?

Sorting 3 elements (Figure 8.1 from text) 75 99 50

This
leaves 3
places 50
could go

Yes No

41

Decision tree for sorting using comparisons

Does elementi
belong before

element
?

Sorting 3 elements (Figure 8.1 from text) 75 99 |50

This
leaves 3
places 50
could go

Yes No

42

Decision tree for sorting using comparisons

Does elementi
belong before

element
?

Sorting 3 elements (Figure 8.1 from text) 75 99 |50

This
leaves 3
places 50
could go

Yes No

43

Decision tree for sorting using comparisons

Does elementi
belong before

element
?

Sorting 3 elements (Figure 8.1 from text) 75 99 50

We find
our
answer
here

Yes No

a4

How to Read a Decision Tree

o For fixed input size n...
e Start at root

o Do specified operation at each internal node and follow
edge based on outcome

o Leaf reached represents answer

45

Decision trees €-> Sorting Algorithms

e [or any comparison sort, we can construct its decision tree on inputs
of size n

e (Justtrace what the code does for every possible input of size n)

e [orany decision tree representing a correct comparison sort, we can
derive equivalent code.

e (Followthe tree as shown above.)

46

Decision trees €-> Sorting Algorithms

e Forany eamaaricancartaua cancan itedaaiciantan ON INPULS

Hence, a lower bound on
bl running time for all decision &
e trees holds for all comparison s
derive sorts, and vice versa.

47

What’s the Running Time of a Decision Tree?

o As many comparisons as it takes to get from root to leaf...
e ... Inthe worst case =2 maximum depth

e Hence, running time of a decision tree is its height.

48

Decision tree for sorting using comparisons

Sorting 3 elements (Figure 8.1 from text)

height = 3

49

Generic Lower Bound Argument

e Suppose every decision tree for a problem of size n has
at least t(n) leaves.

e Moreover, the operation labeling each internal node has
at most w possible outcomes.

e Claim:the problem requires at least log,, t(n) operations
to solve.

50

Generic Lower Bound Argument

e Claim:the problem requires at least log,, t(n) operations
to solve.

e Pf: Tree starts with one root
o Every level of tree increases # nodes by a factor < w

51

Generic Lower Bound Argument

e Claim:the problem requires at least log,, t(n) operations
to solve.

e Pf: Tree starts with one root

o Every level of tree increases # nodes by a factor < w
o Need enough levels h s.t. wh > t(n).

52

Generic Lower Bound Argument

Claim: the problem requires at least log,, t(n) operations
to solve.

Pf: Tree starts with one root

Every level of tree increases # nodes by a factor <w
Need enough levels h s.t. w" = t(n).

Hence, h 2 log, t(n). QED

53

Application to Comparison Sorting

o Every node of the tree is a comparison using >.

e Hence, w= 777,

54

Application to Comparison Sorting

o Every node of the tree is a comparison using >.
e Hence, w=2. [# of outcomes for “Is x > y?7]

o Every leaf of the tree Is a possible sorted order of n
elements.

e Hence, t(n) = ?7?

55

Application to Comparison Sorting

o Every node of the tree is a comparison using >.
e Hence, w=2. [# of outcomes for “Is x > y?7]

o Every leaf of the tree Is a possible sorted order of n
elements.

e Hence, t(n) = n! [Really?]

56

t(n) =n!

e Whenn =1, only one sorted order.

o7

t(n) =n!

e Whenn =1, only one sorted order.

e Forn> 1, assume all elements of input distinct.

58

t(n) =n!

e Whenn =1, only one sorted order.
e Forn> 1, assume all elements of input distinct.

e N possibilities for which element goes first in output.

59

t(n) =n!

e Whenn =1, only one sorted order.

e Forn> 1, assume all elements of input distinct.

e N possibilities for which element goes first in output.

o Given 1st choice, # of orders of remaining n-1 elts is (n-1)!

60

t(n) =n!

e Whenn =1, only one sorted order.

e FOorn>1, assume all ele

W e applied the

o n possibilities for which elf [Flelleiie flsasissen

e Given 1st choice, # of orders of remaining n-1 elts is (n-1)!

61

t(n) =n!

e Whenn =1, only one sorted order.

e Forn> 1, assume all elements of input distinct.

e N possibilities for which element goes first in output.

o Given 1st choice, # of orders of remaining n-1 elts is (n-1)!

e Hence, n x (n-1)! = n! possible orders of n elements. QEDs:

Summary

e For comparison sorting, w = 2, t(n) = n!

e Hence, by our general theorem, sorting an array of size n
requires at least log, n! comparisons in the worst case.

63

Summary

e For comparison sorting, w = 2, t(n) = n!

e Hence, by our general theorem, sorting an array of size n
requires at least log, n! comparisons in the worst case.

e Wait, how bigis log n! ??7?

64

Bounding log(n!)

e log(n!)=log(nx (n-1)x (n-2) x...x 1)

65

Bounding log(n!)

e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log n+log (n-1) + log (n-2) + ... + log(2) + log(1)

66

Bounding log(n!)

e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

<log (n)+ log(n) + log(n) +...+log (n) +log (n)

67

Bounding log(n!)
e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

<log (n)+ log(n) + log(n) +...+log (n) +log (n)
=nlog (n)

68

Bounding log(n!)

e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

<log (n)+ log(n) + log(n) +...+log (n) +log (n)
=nlog (n)

So log(n!) = O(nlog n) <--Upper Bound

69

Bounding log(n!)

e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

<log (n)+ log(n) + log(n) +...+log (n) +log (n)
=nlog (n)

So log(n!) = O(nlog n) <--Upper Bound
--look familiar? bound on n heap operations!

70

Bounding log(n!): lower bound*

e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

* proof written by WUSTL student Aidan Kelley

71

Bounding log(n!): lower bound

e log(n!)=log(nx (n-1)x (n-2) x...x 1)

=log (n) + log (n-1) + log (n-2) + ..

. +1log(2) + log(1)

=2log (n) +log (n-1)+ ... +log(n/2 + 1) <--first n/2 terms

72

Bounding log(n!): lower bound

e log(n!)=log(nx (n-1)x (n-2) x...x 1)

=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

2log (n) +log (n-1)+ ... +log(n/2 +1)

<-- first n/2 terms

2 log (n/2) + log (n/2) + ... +log(n/2) <-1.b.on each term

73

Bounding log(n!): lower bound

e log(n!)=log(nx (n-1)x (n-2) x...x 1)

=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

2log (n) +log (n-1)+ ... +log(n/2 +1)

<-- first n/2 terms

2 log (n/2) + log (n/2) + ... +log(n/2) <-1.b.on each term

=(n/2) log (n/2)

74

Bounding log(n!): lower bound

e log(n!)=log(nx (n-1)x (n-2) x...x 1)

=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

2log (n) +log (n-1)+ ... +log(n/2 +1)

<-- first n/2 terms

2 log (n/2) + log (n/2) + ... +log(n/2) <-1.b.on each term

=(n/2) log (n/2)
= (n/2)(log n —log 2)

75

Bounding log(n!): lower bound

e log(n!)=log(nx (n-1)x (n-2) x...x 1)

=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

2log (n) +log (n-1)+ ... +log(n/2 +1)

<-- first n/2 terms

2 log (n/2) + log (n/2) + ... +log(n/2) <-1.b.on each term

=(n/2) log (n/2)
= (n/2)(log n —log 2)
=(nlog n/2)-(n/2)

76

Bounding log(n!): lower bound

e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)
2log (n) +log (n-1)+ ... +log(n/2 +1) <--firstn/2 terms
2 log (n/2) + log (n/2) + ... +log(n/2) <-1.b.on each term
= (n/2) log (n/2)
= (n/2)(log n —log 2)
=(nlog n/2)-(n/2)

Solog(n!)=Q(nlogn) <-- Lower bound

* proof written by WUSTL studentAidan Kelley

77

Bounding log(n!)

e log(n!)=log(nx (n-1)x (n-2) x...x 1)

=log (n) + log (n-1) + log (n-2) + ..

. +1log(2) + log(1)

log(n!) =O(nlog n) <-- Upper bound
log(n!') =Q(nlogn) <--Lower bound

78

Bounding log(n!)

e log(n!)=log(nx (n-1)x (n-2) x...x 1)
=log (n) + log (n-1) + log (n-2) + ... + log(2) + log(1)

log(n!) =O(nlog n) <-- Upper bound
log(n!') =Q(nlogn) <--Lower bound

log(n!) = ©(n log n)

79

Summary

e For comparison sorting, w = 2, t(n) = n!

e Hence, by our general theorem, sorting an array of size n
requires at least log, n! comparisons in the worst case.

80

Summary

e For comparison sorting, w = 2, t(n) = n!

e Hence, by our general theorem, sorting an array of size n
requires Q(n log n) comparisons in the worst case.

e > MergeSort and HeapSort are asymptotically optimal
comparison sorts!

81

OK, so it's impossible
to sort In time less
than n log n...

82

OK, so it's impossible
to sort In time less
than n log n...

83

Next, let's see how we
can sort in time less
than n log n.

84

Breaking the n log n barrier

e Our lower bound is for comparison sorts, which work on
items from any totally ordered set.

e To sort faster, we need to be able to inspect input using
ops other than comparisons.

o Will limit attention to sorting integers.

85

Counting Sort

e Assume our inputs are n integers in range [0, k).
o Count how often each value occurs in input.

o Write that many values to output.

86

Counting Sort (k = 5)

(142013012 3]

0

A W DN P

87

Counting Sort (k = 5)

(142013012 3]

|

0
1 1
2

B~ W

88

Counting Sort (k = 5)

(142013012 3]

1

0
1 1
2

B~ W
=

89

Counting Sort (k = 5)

(142013012 3]

|

0
1
2

B~ W
=

90

Counting Sort (k = 5)

(142013012 3]

|

0 1
1 1
2 1

B~ W

1

91

Counting Sort (k = 5)

(142013012 3]

|

0 1
1 2
2 1

B~ W

1

92

Counting Sort (k =5)

(142013012 3]

|

0 1
1 2
2 1
3 1
4 1

93

Counting Sort (k = 5)

(142013012 3]

|

0 2
1
2

B~ W

e

94

Counting Sort (k = 5)

(142013012 3]

|

0 2
1
2

B~ W

N N s

95

Counting Sort (k = 5)

(142013012 3]

1

0 2
1
2

B~ W

P P DN W

96

Counting Sort (k =5)

(142013012 3]

|

0 2
1 3
2 2
3 2
4 1

97

Counting Sort (k =5)

(142013012 3]

[]

0 2
1 3
2 2
3 2
4 1

98

Counting Sort (k = 5)

(142013012 3]

[00]

0 2
1
2

B~ W

R N DN W

99

Counting Sort (k =5)

(142013012 3]

[00111]

0 2
1 3
2 2
3 2
4 1

100

Counting Sort (k =5)

(142013012 3]

[0011122]

Value | Count
0 2
1
2

B~ W

R N NN W

101

Counting Sort (k =5)

(142013012 3]

[001112233]

0 2
1
2

B~ W

R NN W

102

Counting Sort (k = 5)

(142013012 3]

(0011122334]

0

B W N P

2

R N DN W

103

Counting Sort (k = 5)

value | Count
0 2
(142013012 3] 1 3
2 2
3 2
[0011122334] S

Cost = O(n + k)

104

Fun Facts About Counting Sort

e Counting sort is a “linear-time” sort (in n)

o Still depends on k
o Can extend to sort arbitrary items with integer keys

o Highly efficient when max value k is small vs n

105

Fun Facts About Counting Sort

e Counting sort is a “linear-time” sort (in n)

o Still depends on k
o Can extend to sort arbitrary items with integer keys
o Highly efficient when max value k is small vs n

e Butwhat if kis large?
106

Radix Sort

o Divide each input integer into d digits

e Digits may be in any base k; we'll use base 10 in example
e Sort using d successive passes of counting sort

e |th pass uses jth digit of each input as sorting key

107

Radix Sort — Key Requirements

e Sort using d successive passes of counting sort.
e We sort by least significant digit first.

e Sortin each pass must be stable — never inverts order of
two inputs with the same key.

2 3 2 1

1 2 2 3
TESF St VX

Radix Sort — Key Requirements

e Sort using d successive passes of counting sort.

e We sort by least significant digit first.

e Sort in each pass must be stable — neve
two inputs with the same key. _

2 3 2 1

& SOV

4

1 2 2 3
g TR

109

Radix Sort

e From least significant digit to most significant digit
o Considereachelemente in its current order 3 2
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete; 4 5

65
83
43
72
35

nh O N O Jd J \O| «—

110

Radix Sort

e From least significant digit to most significant digit l
o Considereachelemente in its current order

m Lete representthe value of e in digit position]j

m Append e into the items currently in buckete; 4 5

65
33
43
329 | D
35

h O N O I

111

Radix Sort

e From least significant digit to most significant digit l
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

65
33
43
457 329 | D
35

hnh O O\ \O

112

Radix Sort

e From least significant digit to most significant digit
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

0] 1 2 3 4 5 6 7 9
457 329
657

83
43
72
35

hnh O O\ \O

113

Radix Sort

e From least significant digit to most significant digit
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

0 1 2 3 4 5 6 7 9
457 329
657 839

43
72
35

hnh O O

114

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order

m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

0 1 2 3 4 5 6 7 9
436 || 457 329 ’7 2
657 839

35

nh O

115

Radix Sort

e From least significant digit to most significant digit j

O

Considereach elemente in its current order

m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

0 1 2 3 4 5 6 7 9
720 436 || 457 329
657 839

116

Radix Sort

e From least significant digit to most significant digit j

O

Considereach elemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

0 1 2 3 4 5 6 7 9
720 355 || 436 || 457 329
657 839

117

Radix Sort

e From least significant digit to most significant digit j

(@)

Considereach elemente in its current order
m Leterepresentthe value of e in digit position]j
m Append e into the items currently in buckete;

0 1 2 3 4 5 6 7 9
720 355 || 436 || 457 329
657 839

118

Radix Sort

e From least significant digit to most significant digit j

(@)

Considereach elemente in its current order
m Leterepresentthe value of e in digit position]j
m Append e into the items currently in buckete;

0 1 2 3 4 5 6 7 9
720 355 || 436 || 457 329
657 839

119

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720

0 1 2 3 4 5 6 7 9
355 436 457 329
657 839

120

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720

0 1 2 3 4 5 6 7 9
355 436 457 329
657 839

121

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720

0 1 2 3 4 5 6 7 9
355 436 457 329
657 839

122

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720

0 1 2 3 4 5 6 7 9
355 436 457 329
657 839

123

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720

0 1 2 3 4 5 6 7 9
355 436 457 329
657 839

124

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720

0 1 2 3 4 5 6 7 9
355 436 457 329
657 839

125

Radix Sort

e From least significant digit to most significant digit |

o Considereachelemente in its current order

m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720
355

0 1 2 3 4 5 6 7 9
436 457 329
657 839

126

Radix Sort

e From least significant digit to most significant digit
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720
355
436

0 1 2 3 4 5 6 7 9
457 329
657 839

127

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

720
355
436
457

0] 1 2 3 4 5 6 7 9
329
657 839

128

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

720
355
436
457
657

329
839

129

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

720
355
436
457
657

329
839

130

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

839

720
355
436
457
657
329

131

Radix Sort

e From least significant digit to most significant digit l
o Considereachelemente in its current order ‘7 20

m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete; 3 5 5

436
457
657
329
839

132

Radix Sort

e From least significant digit to most significant digit
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

mmmmmm%«
O \O 1 ~J O\

oL AN B B W]

133

Radix Sort

e From least significant digit to most significant digit l
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

720

LW AN B W
LW DN L L W
NoRNoEEN EEN e V)

134

Radix Sort

e From least significant digit to most significant digit
Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

720

355

oW N B B
W DN U e W
O O 3 J O

135

Radix Sort

e From least significant digit to most significant digit
Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

720

436

355

o0 LW ON B
W D U

O O J

136

Radix Sort

e From least significant digit to most significant digit l
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

0 1 2 3 4 5 6 7 8 9
720 436 355
457

co L O\
W DN
O O

137

Radix Sort

e From least significant digit to most significant digit
Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

0 1 2 3 5
720 || 436 355 37 9

457
657 8 3 9

138

Radix Sort

e From least significant digit to most significant digit j
Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

0 1 2 3 5
720 || 436 355
329 457
657

139

Radix Sort

e From least significant digit to most significant digit j
Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

0 1 2 3 4 5
720 || 436 355
329 || 839 457
657

140

Radix Sort

e From least significant digit to most significant digit j
Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

0 1 2 3 4 5
436 355
329 || 839 457
657

-
720

141

Radix Sort

e From least significant digit to most significant digit
Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

720
329

0 1 2 3 4 5
436 355
839 457
657

142

Radix Sort

e From least significant digit to most significant digit l
o Considereachelemente in its current order 7 20
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete; 3 29

436

0 1 2 3 4 5 6 7 8 9
355
839 457
657

143

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete;

720
329
436
839

355
457
657

144

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete;

720
329
436
839
355

457
657

145

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete;

657

720
329
436
839
355
457

146

Radix Sort

e From least significant digit to most significant digit l
o Considereachelemente in its current order 7 20
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete; 3 29

436
839
355
457
637

147

Radix Sort

e From least significant digit to most significant digit
o Considereachelemente in its current order
m Lete representthe value of e in digit position]j
m Append e into the items currently in buckete;

20
29
36
39
35
57
S7

AN B W OO0 B W] —

148

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

720

AN B W oo B W

29
36
39
35
57
S7

149

Radix Sort

e From least significant digit to most significant digit
Considereach elemente in its current order

O

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

329

720

@)\ SV e ol SN

36
39
35
57
S7

150

Radix Sort

e From least significant digit to most significant digit
Considereach elemente in its current order

O

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

329

436

720

AN B W OO

39
35
57
S7

151

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

329

436

720

839

N B W

35
57
S7

152

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

0 1 2 3 4 7 8
329 || 436 720 || 839 5 '7
355

N

57

153

Radix Sort

e Froml

These end up in the right

orderbecause....

‘qnificant digit

329
355

436

720

839

N

57
S7

154

Radix Sort

e Froml ‘qnificant digit

These end up in the right
orderbecause....

720
1329
436
839
355
ggg 436 720 || 839 457

657

The sortis stable:
the original order
of elements s
preserved within a
bin

155

Radix Sort

e From least significant digit to most significant digit |

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

0 1 2 3 4 7 8
329 || 436 720 || 839 5 '7
355

N

57

156

Radix Sort

e From least significant digit to most significant digit j

O

Considereach elemente in its current order

Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

0 1 2 3 4 7 8
329 436 720 839
355 457

157

Radix Sort

e From least significant digit to most significant digit j
Considereach elemente in its current order
Let e;representthe value of e in digit position|
Append e into the items currently in buckete,

O

0 1 2 3 4 6 7 8
329 436 657 || 720 839
355 457

158

Radix Sort

e From least significant digit to most significant digit
Considereach elemente in its current order
Let e;representthe value of e in digit position|
Append e into the items currently in buckete;

O

0 1 2 3 4 6 7 8
329 436 657 | 720 839
355 457

329
355
436
457
657
720

839

159

Radix Sort

e Alternative visualization: Radix sort on the playground

160

https://www.youtube.com/watch?v=ibtN8rY7V5k

Why Does Radix Sort Work?

e Invariant — after | sorting passes, input is sorted by its jth
least significant digits. [Prove inductively on |]

o Stability is needed to show that invariant holds for inputs
with equal-valued jth digits.

e (Proof left as exercise — see Lab 6.)

161

What Does Radix Sort Cost?

o d passes of counting sort

e Each pass takes time O(n + k)

o Why’?

e Hence, total time is O(d(n+k))

162

Application: Sorting Punch Cards

o8

C-

[::Qﬂ 129

Comntv) o

e e
TATEwENT | EORT

woMELR

]
\I'.Irncnlou

00000

|2)os’

UBEE!
|

03000u|000|ua-uuwu,E D0

VBN DKIS% (@i X DB REIHE

lllllllllll]'llll~l PRI 5119 A 18 169 Ea Y . 1111

2422222/ 2212

!
33333 3 3333333333333333 3313

A
9

'“0000000u000000000|030

GSIECIEREIIVTINBBTSIEN B TEE

HlHlILHllIHl

222222212222222122

33333333-33333l3ll
|

~14444444i4

IRNE ST kil

https://en.wikipedia.org/wiki/Computer_programming_in_the_punched card era

163

Whoops! We Dropped our Deck!

164

Appllcatlon Sortlng Punch Cards

https://en.wikipedia.org/wiki/IBM_card_sorter 165

Sorting

End of notes

166

