
Lecture 5:  

Solving Recurrences via the 

Master Method
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These slides include material 

originally prepared by Dr. Ron 
Cytron, Dr. Jeremy Buhler,
and Dr. Steve Cole.



Announcements

● Exam 1 tomorrow night (see Piazza post for all details)

○ Crib sheet, ID, where to go

● Lab 1 grades posted, Lab 3 grades in progress

○ 1 week regrade request deadline from posting time

● Studio 5 on Thursday as normal
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Overview: recurrence-solving strategies

● Problem: given a recurrence for T(n), find a closed-

form asymptotic complexity function that satisfies the 

recurrence.

● Possible strategies

● Guess and check (a.k.a. substitution)

● Recursion tree accounting (for certain kinds of recurrence)

● Master Method (for certain kinds of recurrence)
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Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● [The same one we did at the end of last time]
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Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● This time, a = 3, so 

each node branches 

3 ways!
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...

...
...



Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● This time, a = 3, so 

each node branches 

3 ways!

● This time, b = 4, so 

problem size goes 

down by factor of 4 

per level.
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T(n)

T(n/4)

T(n/16)

...

...

T(n/4j)...

T(1)
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

0 n

1 n/4

2 n/16

j n/4j

??? 1

T(n) = 3T(n/4) + cn2

T(1) = d
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1 ???

T(n) = 3T(n/4) + cn2

T(1) = d
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

3log4 𝑛
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9 c(n/16)2

j n/4j 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

Local Work 

per Level

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9 c(n/16)2

j n/4j 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

Local Work 

per Level

0 n 1 cn2 1 x cn2

1 n/4 3 c(n/4)2 3 x c(n/4)2

2 n/16 9 c(n/16)2 9 x c(n/16)2

j n/4j 3j c(n/4j)2 3j x c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

Local Work 

per Level

0 n 1 cn2 cn2

1 n/4 3 c(n/4)2 3c(n/4)2

2 n/16 9 c(n/16)2 9c(n/16)2

j n/4j 3j c(n/4j)2 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3
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Depth
Problem 

Size

# Nodes Per 

Level

Local Work 

per Node

Local Work 

per Level

0 n 1 cn2 cn2

1 n/4 3 c(n/4)2 3c(n/4)2

2 n/16 9 c(n/16)2 9c(n/16)2

j n/4j 3j c(n/4j)2 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3



Let’s Break This Summation Down a Bit
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Let’s Break This Summation Down a Bit

17

(pulled first term out of sum)
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T(n) = 3T(n/4) + cn2

T(1) = d

Which parts of the tree 

contribute to which parts 

of the sum?



19

T(n) = 3T(n/4) + cn2

T(1) = d
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T(n) = 3T(n/4) + cn2

T(1) = d

This term is from the 

base case (i.e. 

bottom of the tree).
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T(n) = 3T(n/4) + cn2

T(1) = d
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T(n) = 3T(n/4) + cn2

T(1) = d

This term is from the 

top-level call (i.e. the 

root of the tree).
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T(n) = 3T(n/4) + cn2

T(1) = d
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T(n) = 3T(n/4) + cn2

T(1) = d

This term is from the 

non-base-case 

recursive calls (i.e. 

the rest of the tree).



Let’s Generalize

● We split up the sum for a particular recurrence
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T(n) = 3T(n/4) + cn2; T(1) = d



Let’s Generalize

● We split up the sum for a particular recurrence

● Let’s do this for a general recurrence
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T(n) = 3T(n/4) + cn2; T(1) = d

T(n) = aT(n/b) + f(n); T(1) = d



Let’s Generalize

● We split up the sum for a particular recurrence

● Let’s do this for a general recurrence
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T(n) = 3T(n/4) + cn2; T(1) = d

T(n) = aT(n/b) + f(n); T(1) = d

As you saw in 

Studio 4, we could 

start from T(c0) 

rather than T(1); 

would not affect 

asymptotic result.
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T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

Which term, if any, 

dominates the sum?
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T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If top-of-tree work 

dominates, 

T(n) = ???
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T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If top-of-tree work 

dominates, 

T(n) = Θ(f(n))
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T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If bottom-of-tree 

work dominates,

𝑇 𝑛 =? ? ?
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T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If bottom-of-tree 

work dominates,

𝑇 𝑛 = 𝚯(𝒏𝐥𝐨𝐠𝒃 𝒂)



What if the top and 

bottom work balance?
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What does “balance” mean?

● Top and bottom work are asymptotically the same.

● In other words,
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𝒇 𝒏 = 𝚯(𝒏𝐥𝐨𝐠𝒃 𝒂)



What does “balance” mean?

● Top and bottom work are asymptotically the same.

● In other words,

35

𝒇 𝒏 = 𝚯(𝒏𝐥𝐨𝐠𝒃 𝒂)

For intuition, we’ll pretend that 𝑓 𝑛 = 𝑐𝑛log𝑏 𝑎
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T(n) = aT(n/b) + f(n)

T(1) = d



37

T(n) = aT(n/b) + f(n)

T(1) = d
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T(n) = aT(n/b) + f(n)

T(1) = d
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T(n) = aT(n/b) + f(n)

T(1) = d
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T(n) = aT(n/b) + f(n)

T(1) = d
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T(n) = aT(n/b) + f(n)

T(1) = d
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T(n) = aT(n/b) + f(n)

T(1) = d
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T(n) = aT(n/b) + f(n)

T(1) = d

𝑇 𝑛 = 𝑑𝑛log𝑏 𝑎 + 𝑐𝑛log𝑏 𝑎 log𝑏 𝑛
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T(n) = aT(n/b) + f(n)

T(1) = d

)
)

When top and bottom of tree balance, all 

levels contribute equally to sum – and there 

are Θ(log n) levels.



Summary of Intuition

● Given recurrence T(n) = aT(n/b) + f(n)…

● If f(n) dominates 𝑛log𝑏 𝑎, then solution should be Θ(f(n))

● If 𝑛log𝑏 𝑎 dominates f(n), then solution should be Θ(𝑛log𝑏 𝑎)

● If f(n) = Θ(𝑛log𝑏 𝑎) [balance], then solution should be Θ(f(n) log n)
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Summary of Intuition

● Given recurrence T(n) = aT(n/b) + f(n)…

● If f(n) dominates 𝑛log𝑏 𝑎, then solution should be Θ(f(n))

● If 𝑛log𝑏 𝑎 dominates f(n), then solution should be Θ(𝑛log𝑏 𝑎)

● If f(n) = Θ(𝑛log𝑏 𝑎) [balance], then solution should be Θ(f(n) log n)
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This is not yet a 

theorem – in part 

because we haven’t 

carefully defined 

“dominates,” and in 

part because we didn’t 

do a careful proof.



So is there a 

theorem that 

captures our 

intuition?
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Master Theorem (p. 94 of text)
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Master Theorem (p. 94 of text)
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We won’t actually prove it 

(see the book), but we will 

break down the statement.



Master Theorem (p. 94 of text)
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Master Theorem (p. 94 of text)
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This is the scenario we’ve 

been studying!



Master Theorem (p. 94 of text)
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Master Theorem (p. 94 of text)
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Theorem generalizes to non-

power-of-b input sizes!



Master Theorem (p. 94 of text)
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Master Theorem (p. 94 of text)
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“𝑛log𝑏 𝑎 dominates f(n)”



Master Theorem (p. 94 of text)
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Master Theorem (p. 94 of text)
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“f(n) dominates 𝑛log𝑏 𝑎”



Master Theorem (p. 94 of text)

58



Master Theorem (p. 94 of text)

59

“if f(n) is not a weird function”



Master Theorem (p. 94 of text)
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“if f(n) is not a weird function”

[polynomials, logs, exponentials, 

and sums and products of them 

are not weird! (exercise) ]



Master Theorem (p. 94 of text)
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“if f(n) is not a weird function”

[Otherwise, check. See 

Wikipedia on Master Theorem for 

examples of weird functions.]



Master Theorem (p. 94 of text)
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“if f(n) is not a weird function”

“Weird” ~ middle-of-tree work 

“blows up” compared to root



Key Elaboration of Theorem vs Intuition

● Precisely defines “dominates”

● “f(n) dominates g(n)” iff f(n) grows polynomially faster 

than g(n)

● This is a stronger condition than f(n) = ω(g(n)) 
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f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

f(
n

) 
g

ro
w

s
 f

a
s
te

r
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f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

T(n) = Θ(f(n))

T(n) = Θ(𝑛log𝑏 𝑎)

T(n) = Θ(𝑓 𝑛 log 𝑛)

Case 1.

Case 2.

Case 3.
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f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

Case 1.

Case 2.

Case 3.

f(n) = ω(𝑛log𝑏 𝑎), but f(n) = o(𝑛log𝑏 𝑎+𝜖)

f(n) = o(𝑛log𝑏 𝑎), but f(n) = ω(𝑛log𝑏 𝑎−𝜖)
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f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

Case 1.

Case 2.

Case 3.

f(n) = ω(𝑛log𝑏 𝑎), but f(n) = o(𝑛log𝑏 𝑎+𝜖)

f(n) = o(𝑛log𝑏 𝑎), but f(n) = ω(𝑛log𝑏 𝑎−𝜖)

?

?
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f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

Case 1.

Case 2.

Case 3.

f(n) = ω(𝑛log𝑏 𝑎), but f(n) = o(𝑛log𝑏 𝑎+𝜖)

f(n) = o(𝑛log𝑏 𝑎), but f(n) = ω(𝑛log𝑏 𝑎−𝜖)

?

?



Limits of the Master Theorem

● If the form of the recurrence does not match the statement 

of the theorem…

● …or the recurrence falls into “gap” between two cases…

● …then the Master Theorem does not apply. 

● (You must find another way to solve the recurrence.)
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Limits of the Master Theorem

70

● See the Wikipedia page on the Master Theorem

● Examples of situations where Master Thm doesn’t apply
○ Note: a and b in Master Theorem don’t have to be integers

■ (though for recursive programs, a is an integer – why?)

■ a must be ≥ 1

■ b must be > 1 – why?

● Example of function that fails non-weirdness condition

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)


n log n vs. n1+ε

71

● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?  

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?



n log n vs. n1+ε
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● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?  

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε



n log n vs. n1+ε
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● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?  

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1 



n log n vs. n1+ε
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● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?  

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1 

○ = lim (1 / ε(1+ε)nnε-1)



n log n vs. n1+ε
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● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?  

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1 

○ = lim (1 / ε(1+ε)nnε-1)

○ = lim (1 / ε(1+ε)nε) = 0, because ε > 0

● Hence, n log n is o(n1+ε) for every ε > 0

● So NO, Case 3 of Master Theorem does not apply.



n log n vs. n1+ε
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● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?  

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1 

○ = lim (1 / ε(1+ε)nnε-1)

○ = lim (1 / ε(1+ε)nε) = 0, because ε > 0

● Hence, n log n is o(n1+ε) for every ε > 0

● So NO, Case 3 of Master Theorem does not apply.

But for Studio 5, see Wiki for a 

more general “balanced case” 

that specifically allows for f(n) 

to have extra log terms.



A little practice with “polynomially larger”
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polynomially larger than?

n2 n

n2 log n n2

n3 log n n2

n2.001 n2

n log n 𝑛log4 3



A little practice with “polynomially larger”
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polynomially larger than?

n2 YES n

n2 log n NO n2

n3 log n YES n2

n2.001 YES n2

n log n ??? 𝑛log4 3



A little practice with “polynomially larger”
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polynomially larger than?

n2 YES n

n2 log n NO n2

n3 log n YES n2

n2.001 YES n2

n log n YES! 𝑛log4 3



Applying the Master Theorem

● T(n) = 2T(n/2) + cn
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Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = ???, b = ???, f(n) = ???
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Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn
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Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛log𝑏 𝑎 vs f(n)
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Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛log2 2 vs cn
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Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛1 vs cn
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Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛1 vs cn → f(n) = Θ(𝑛log𝑏 𝑎)

● Therefore T(n) = Θ(f(n) log n) = Θ(n log n)
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Applying the Master Theorem

● T(n) = T(2n/3) + c
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Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = ???, b = ???, f(n) = ???
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Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c
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Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c

● Compare 𝑛log𝑏 𝑎 vs f(n)
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Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c

● Compare 𝑛log3/2 1 vs cn0
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Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c

● Compare 𝑛0 vs cn0  
→ f(n) = Θ(𝑛log𝑏 𝑎)

● Therefore T(n) = Θ(f(n) log n) = Θ(log n)
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Applying the Master Theorem

● T(n) = 4T(n/2) + cn
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Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = ???, b = ???, f(n) = ???
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Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn
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Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛log𝑏 𝑎 vs f(n)
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Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛log2 4 vs cn

97



Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛2 vs cn
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Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛2 vs cn → f(n) = O(𝑛log𝑏 𝑎 −1)

● Therefore T(n) = Θ(𝑛log𝑏 𝑎) = Θ(n2)
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Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

100



Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = ???, b = ???, f(n) = ???
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Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = 3, b = 4, f(n) = cn log n
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Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = 3, b = 4, f(n) = cn log n

● Compare 𝑛log𝑏 𝑎 vs f(n)
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Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = 3, b = 4, f(n) = cn log n

● Compare 𝑛log4 3 vs cn log n
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Applying the Master Theorem

105



You’ll get more Master 

Method practice, plus 

bonus experience with 

Binary Search, in 

Studio 5.
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