
Lecture 5:

Solving Recurrences via the

Master Method

1

These slides include material

originally prepared by Dr. Ron
Cytron, Dr. Jeremy Buhler,
and Dr. Steve Cole.

Announcements

● Exam 1 tomorrow night (see Piazza post for all details)

○ Crib sheet, ID, where to go

● Lab 1 grades posted, Lab 3 grades in progress

○ 1 week regrade request deadline from posting time

● Studio 5 on Thursday as normal

2

Overview: recurrence-solving strategies

● Problem: given a recurrence for T(n), find a closed-

form asymptotic complexity function that satisfies the

recurrence.

● Possible strategies

● Guess and check (a.k.a. substitution)

● Recursion tree accounting (for certain kinds of recurrence)

● Master Method (for certain kinds of recurrence)

3

Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● [The same one we did at the end of last time]

4

Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● This time, a = 3, so

each node branches

3 ways!

5

...

...
...

Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● This time, a = 3, so

each node branches

3 ways!

● This time, b = 4, so

problem size goes

down by factor of 4

per level.

6

T(n)

T(n/4)

T(n/16)

...

...

T(n/4j)...

T(1)

7

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n

1 n/4

2 n/16

j n/4j

??? 1

T(n) = 3T(n/4) + cn2

T(1) = d

8

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1 ???

T(n) = 3T(n/4) + cn2

T(1) = d

9

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

3log4 𝑛

10

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3

11

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9 c(n/16)2

j n/4j 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3

12

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9 c(n/16)2

j n/4j 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3

13

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2 1 x cn2

1 n/4 3 c(n/4)2 3 x c(n/4)2

2 n/16 9 c(n/16)2 9 x c(n/16)2

j n/4j 3j c(n/4j)2 3j x c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3

14

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2 cn2

1 n/4 3 c(n/4)2 3c(n/4)2

2 n/16 9 c(n/16)2 9c(n/16)2

j n/4j 3j c(n/4j)2 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3

15

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2 cn2

1 n/4 3 c(n/4)2 3c(n/4)2

2 n/16 9 c(n/16)2 9c(n/16)2

j n/4j 3j c(n/4j)2 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3

Let’s Break This Summation Down a Bit

16

Let’s Break This Summation Down a Bit

17

(pulled first term out of sum)

18

T(n) = 3T(n/4) + cn2

T(1) = d

Which parts of the tree

contribute to which parts

of the sum?

19

T(n) = 3T(n/4) + cn2

T(1) = d

20

T(n) = 3T(n/4) + cn2

T(1) = d

This term is from the

base case (i.e.

bottom of the tree).

21

T(n) = 3T(n/4) + cn2

T(1) = d

22

T(n) = 3T(n/4) + cn2

T(1) = d

This term is from the

top-level call (i.e. the

root of the tree).

23

T(n) = 3T(n/4) + cn2

T(1) = d

24

T(n) = 3T(n/4) + cn2

T(1) = d

This term is from the

non-base-case

recursive calls (i.e.

the rest of the tree).

Let’s Generalize

● We split up the sum for a particular recurrence

25

T(n) = 3T(n/4) + cn2; T(1) = d

Let’s Generalize

● We split up the sum for a particular recurrence

● Let’s do this for a general recurrence

26

T(n) = 3T(n/4) + cn2; T(1) = d

T(n) = aT(n/b) + f(n); T(1) = d

Let’s Generalize

● We split up the sum for a particular recurrence

● Let’s do this for a general recurrence

27

T(n) = 3T(n/4) + cn2; T(1) = d

T(n) = aT(n/b) + f(n); T(1) = d

As you saw in

Studio 4, we could

start from T(c0)

rather than T(1);

would not affect

asymptotic result.

28

T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

Which term, if any,

dominates the sum?

29

T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If top-of-tree work

dominates,

T(n) = ???

30

T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If top-of-tree work

dominates,

T(n) = Θ(f(n))

31

T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If bottom-of-tree

work dominates,

𝑇 𝑛 =? ? ?

32

T(n) = aT(n/b) + f(n)

T(1) = d

a

a a a

If bottom-of-tree

work dominates,

𝑇 𝑛 = 𝚯(𝒏𝐥𝐨𝐠𝒃 𝒂)

What if the top and

bottom work balance?

33

What does “balance” mean?

● Top and bottom work are asymptotically the same.

● In other words,

34

𝒇 𝒏 = 𝚯(𝒏𝐥𝐨𝐠𝒃 𝒂)

What does “balance” mean?

● Top and bottom work are asymptotically the same.

● In other words,

35

𝒇 𝒏 = 𝚯(𝒏𝐥𝐨𝐠𝒃 𝒂)

For intuition, we’ll pretend that 𝑓 𝑛 = 𝑐𝑛log𝑏 𝑎

36

T(n) = aT(n/b) + f(n)

T(1) = d

37

T(n) = aT(n/b) + f(n)

T(1) = d

38

T(n) = aT(n/b) + f(n)

T(1) = d

39

T(n) = aT(n/b) + f(n)

T(1) = d

40

T(n) = aT(n/b) + f(n)

T(1) = d

41

T(n) = aT(n/b) + f(n)

T(1) = d

42

T(n) = aT(n/b) + f(n)

T(1) = d

43

T(n) = aT(n/b) + f(n)

T(1) = d

𝑇 𝑛 = 𝑑𝑛log𝑏 𝑎 + 𝑐𝑛log𝑏 𝑎 log𝑏 𝑛

44

T(n) = aT(n/b) + f(n)

T(1) = d

)
)

When top and bottom of tree balance, all

levels contribute equally to sum – and there

are Θ(log n) levels.

Summary of Intuition

● Given recurrence T(n) = aT(n/b) + f(n)…

● If f(n) dominates 𝑛log𝑏 𝑎, then solution should be Θ(f(n))

● If 𝑛log𝑏 𝑎 dominates f(n), then solution should be Θ(𝑛log𝑏 𝑎)

● If f(n) = Θ(𝑛log𝑏 𝑎) [balance], then solution should be Θ(f(n) log n)

45

Summary of Intuition

● Given recurrence T(n) = aT(n/b) + f(n)…

● If f(n) dominates 𝑛log𝑏 𝑎, then solution should be Θ(f(n))

● If 𝑛log𝑏 𝑎 dominates f(n), then solution should be Θ(𝑛log𝑏 𝑎)

● If f(n) = Θ(𝑛log𝑏 𝑎) [balance], then solution should be Θ(f(n) log n)

46

This is not yet a

theorem – in part

because we haven’t

carefully defined

“dominates,” and in

part because we didn’t

do a careful proof.

So is there a

theorem that

captures our

intuition?

47

Master Theorem (p. 94 of text)

48

Master Theorem (p. 94 of text)

49

We won’t actually prove it

(see the book), but we will

break down the statement.

Master Theorem (p. 94 of text)

50

Master Theorem (p. 94 of text)

51

This is the scenario we’ve

been studying!

Master Theorem (p. 94 of text)

52

Master Theorem (p. 94 of text)

53

Theorem generalizes to non-

power-of-b input sizes!

Master Theorem (p. 94 of text)

54

Master Theorem (p. 94 of text)

55

“𝑛log𝑏 𝑎 dominates f(n)”

Master Theorem (p. 94 of text)

56

Master Theorem (p. 94 of text)

57

“f(n) dominates 𝑛log𝑏 𝑎”

Master Theorem (p. 94 of text)

58

Master Theorem (p. 94 of text)

59

“if f(n) is not a weird function”

Master Theorem (p. 94 of text)

60

“if f(n) is not a weird function”

[polynomials, logs, exponentials,

and sums and products of them

are not weird! (exercise)]

Master Theorem (p. 94 of text)

61

“if f(n) is not a weird function”

[Otherwise, check. See

Wikipedia on Master Theorem for

examples of weird functions.]

Master Theorem (p. 94 of text)

62

“if f(n) is not a weird function”

“Weird” ~ middle-of-tree work

“blows up” compared to root

Key Elaboration of Theorem vs Intuition

● Precisely defines “dominates”

● “f(n) dominates g(n)” iff f(n) grows polynomially faster

than g(n)

● This is a stronger condition than f(n) = ω(g(n))

63

64

f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

f(
n

)
g

ro
w

s
 f

a
s
te

r

65

f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

T(n) = Θ(f(n))

T(n) = Θ(𝑛log𝑏 𝑎)

T(n) = Θ(𝑓 𝑛 log 𝑛)

Case 1.

Case 2.

Case 3.

66

f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

Case 1.

Case 2.

Case 3.

f(n) = ω(𝑛log𝑏 𝑎), but f(n) = o(𝑛log𝑏 𝑎+𝜖)

f(n) = o(𝑛log𝑏 𝑎), but f(n) = ω(𝑛log𝑏 𝑎−𝜖)

67

f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

Case 1.

Case 2.

Case 3.

f(n) = ω(𝑛log𝑏 𝑎), but f(n) = o(𝑛log𝑏 𝑎+𝜖)

f(n) = o(𝑛log𝑏 𝑎), but f(n) = ω(𝑛log𝑏 𝑎−𝜖)

?

?

68

f(n) = O(𝑛log𝑏 𝑎−𝜖)

f(n) = Ω(𝑛log𝑏 𝑎+𝜖)

f(n) = Θ(𝑛log𝑏 𝑎)

T(n) = a T(n/b) + f(n)

Case 1.

Case 2.

Case 3.

f(n) = ω(𝑛log𝑏 𝑎), but f(n) = o(𝑛log𝑏 𝑎+𝜖)

f(n) = o(𝑛log𝑏 𝑎), but f(n) = ω(𝑛log𝑏 𝑎−𝜖)

?

?

Limits of the Master Theorem

● If the form of the recurrence does not match the statement

of the theorem…

● …or the recurrence falls into “gap” between two cases…

● …then the Master Theorem does not apply.

● (You must find another way to solve the recurrence.)

69

Limits of the Master Theorem

70

● See the Wikipedia page on the Master Theorem

● Examples of situations where Master Thm doesn’t apply
○ Note: a and b in Master Theorem don’t have to be integers

■ (though for recursive programs, a is an integer – why?)

■ a must be ≥ 1

■ b must be > 1 – why?

● Example of function that fails non-weirdness condition

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

n log n vs. n1+ε

71

● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

n log n vs. n1+ε

72

● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

n log n vs. n1+ε

73

● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1

n log n vs. n1+ε

74

● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1

○ = lim (1 / ε(1+ε)nnε-1)

n log n vs. n1+ε

75

● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1

○ = lim (1 / ε(1+ε)nnε-1)

○ = lim (1 / ε(1+ε)nε) = 0, because ε > 0

● Hence, n log n is o(n1+ε) for every ε > 0

● So NO, Case 3 of Master Theorem does not apply.

n log n vs. n1+ε

76

● Example recurrence: T(n) = 2T(n/2) + nlogn

● Question: does Case 3 apply?

○ I.e. does n log n = Ω(n1+ε) for some ε > 0 ?

● Analysis by limit test
○ lim (n log n) / (n1+ε) = lim (log n + 1) / (1+ε)nε

○ = lim (1/n) / ε(1+ε)nε-1

○ = lim (1 / ε(1+ε)nnε-1)

○ = lim (1 / ε(1+ε)nε) = 0, because ε > 0

● Hence, n log n is o(n1+ε) for every ε > 0

● So NO, Case 3 of Master Theorem does not apply.

But for Studio 5, see Wiki for a

more general “balanced case”

that specifically allows for f(n)

to have extra log terms.

A little practice with “polynomially larger”

77

polynomially larger than?

n2 n

n2 log n n2

n3 log n n2

n2.001 n2

n log n 𝑛log4 3

A little practice with “polynomially larger”

78

polynomially larger than?

n2 YES n

n2 log n NO n2

n3 log n YES n2

n2.001 YES n2

n log n ??? 𝑛log4 3

A little practice with “polynomially larger”

79

polynomially larger than?

n2 YES n

n2 log n NO n2

n3 log n YES n2

n2.001 YES n2

n log n YES! 𝑛log4 3

Applying the Master Theorem

● T(n) = 2T(n/2) + cn

80

Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = ???, b = ???, f(n) = ???

81

Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

82

Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛log𝑏 𝑎 vs f(n)

83

Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛log2 2 vs cn

84

Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛1 vs cn

85

Applying the Master Theorem

● T(n) = 2T(n/2) + cn

● a = 2, b = 2, f(n) = cn

● Compare 𝑛1 vs cn → f(n) = Θ(𝑛log𝑏 𝑎)

● Therefore T(n) = Θ(f(n) log n) = Θ(n log n)

86

Applying the Master Theorem

● T(n) = T(2n/3) + c

87

Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = ???, b = ???, f(n) = ???

88

Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c

89

Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c

● Compare 𝑛log𝑏 𝑎 vs f(n)

90

Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c

● Compare 𝑛log3/2 1 vs cn0

91

Applying the Master Theorem

● T(n) = T(2n/3) + c

● a = 1, b = 3/2, f(n) = c

● Compare 𝑛0 vs cn0
→ f(n) = Θ(𝑛log𝑏 𝑎)

● Therefore T(n) = Θ(f(n) log n) = Θ(log n)

92

Applying the Master Theorem

● T(n) = 4T(n/2) + cn

93

Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = ???, b = ???, f(n) = ???

94

Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

95

Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛log𝑏 𝑎 vs f(n)

96

Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛log2 4 vs cn

97

Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛2 vs cn

98

Applying the Master Theorem

● T(n) = 4T(n/2) + cn

● a = 4, b = 2, f(n) = cn

● Compare 𝑛2 vs cn → f(n) = O(𝑛log𝑏 𝑎 −1)

● Therefore T(n) = Θ(𝑛log𝑏 𝑎) = Θ(n2)

99

Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

100

Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = ???, b = ???, f(n) = ???

101

Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = 3, b = 4, f(n) = cn log n

102

Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = 3, b = 4, f(n) = cn log n

● Compare 𝑛log𝑏 𝑎 vs f(n)

103

Applying the Master Theorem

● T(n) = 3T(n/4) + cn log n

● a = 3, b = 4, f(n) = cn log n

● Compare 𝑛log4 3 vs cn log n

104

Applying the Master Theorem

105

You’ll get more Master

Method practice, plus

bonus experience with

Binary Search, in

Studio 5.

106

