Lecture 5:

Solving Recurrences via the Master Method

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

- Exam 1 tomorrow night (see Piazza post for all details)
 - Crib sheet, ID, where to go

- Lab 1 grades posted, Lab 3 grades in progress
 - 1 week regrade request deadline from posting time

• Studio 5 on Thursday as normal

Overview: recurrence-solving strategies

• Problem: given a recurrence for T(n), find a closedform asymptotic complexity function that satisfies the recurrence.

• Possible strategies

- Guess and check (a.k.a. substitution)
- Recursion tree accounting (for certain kinds of recurrence)
- Master Method (for certain kinds of recurrence)

Example: $T(n) = 3T(n/4) + cn^2$ [T(1) = d]

• [The same one we did at the end of last time]

Example: $T(n) = 3T(n/4) + cn^2$ [T(1) = d]

This time, a = 3, so each node branches 3 ways!

Example: $T(n) = 3T(n/4) + cn^2$ [T(1) = d]

This time, a = 3, so each node branches 3 ways!

 This time, b = 4, so problem size goes down by factor of 4 per level.

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n		
1	n/4		
2	n/16		
j	n/4 ^j		
???	1		7

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	9	
j	n/4 ^j	3 j	
log ₄ n	1	???	8

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	9	
j	n/4 ^j	3 ^j	
log ₄ n	1	$3^{\log_4 n}$	9

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	9	
j	n/4 ^j	3 ^j	
log ₄ n	1	$n^{\log_4 3}$	10

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	cn ²
1	n/4	3	c(n/4)²
2	n/16	9	c(n/16) ²
j	n/4 ^j	3 ^j	c(n/4 ^j) ²
log₄n	1	$n^{\log_4 3}$	d 11

$T(n) = 3T(n/4) + cn^2$

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level
0	n	1	cn ²	
1	n/4	3	c(n/4)²	
2	n/16	9	c(n/16) ²	
j	n/4 ^j	3 ^j	c(n/4 ^j) ²	
log₄n	1	$n^{\log_4 3}$	d	

$T(n) = 3T(n/4) + cn^2$

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level
0	n	1	cn²	1 x cn ²
1	n/4	3	c(n/4)²	3 x c(n/4)²
2	n/16	9	c(n/16) ²	9 x c(n/16) ²
j	n/4 ^j	3 ^j	c(n/4 ^j) ²	3 ^j x c(n/4 ^j)²
log₄n	1	$n^{\log_4 3}$	d	dn ^{log₄ 3}

$T(n) = 3T(n/4) + cn^2$

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level
0	n	1	cn ²	cn²
1	n/4	3	c(n/4)²	3c(n/4)²
2	n/16	9	c(n/16) ²	9c(n/16) ²
j	n/4 ^j	3 ^j	c(n/4 ^j) ²	3 ^j c(n/4 ^j)²
log₄n	1	$n^{\log_4 3}$	d	dn ^{log₄ 3}

Let's Break This Summation Down a Bit

$$T(n) = dn^{\log_4 3} + \sum_{j=0}^{\log_4 n-1} 3^j c (n/4^j)^2$$

Let's Break This Summation Down a Bit

$$T(n) = dn^{\log_4 3} + cn^2 + \sum_{j=1}^{\log_4 n-1} 3^j c (n/4^j)^2$$

(pulled first term out of sum)

$T(n) = 3T(n/4) + cn^{2}$ T(1) = d $T(n) = dn^{\log_{4} 3} + cn^{2} + \sum_{j=1}^{\log_{4} n-1} 3^{j}c(n/4^{j})^{2}$

Which parts of the tree contribute to which parts of the sum?

$T(n) = 3T(n/4) + cn^2$ T(1) = d $\log_4 n-1$ $T(n) = \frac{dn^{\log_4 3}}{dn^2} + cn^2 + \sum$ $3^j c \left(n/4^j\right)^2$ $\overline{i=1}$

T(n) = 3T(n/4) + cn² T(1) = d $T(n) = dn^{\log_4 3} + cn^2 + \sum_{j=1}^{\log_4 n-1} 3^j c(n/4^j)^2$

This term is from the base case (i.e. bottom of the tree).

$T(n) = 3T(n/4) + cn^2$ T(1) = d $\log_4 n-1$ $3^j c \left(n/4^j\right)^2$ $T(n) = \frac{dn^{\log_4 3}}{dn^2} + \frac{cn^2}{dn^2} +$ $\overline{i=1}$

Let's Generalize

• We split up the sum for a particular recurrence

Let's Generalize

• We split up the sum for a particular recurrence

$$T(n) = 3T(n/4) + cn^2; T(1) = d$$

• Let's do this for a general recurrence

T(n) = aT(n/b) + f(n); T(1) = d

Let's Generalize

• We split up the sum for a particula

$$T(n) = 3T(n/4) + cn^2;$$

As you saw in Studio 4, we could start from T(c₀) rather than T(1); would not affect asymptotic result.

Let's do this for a general recurred

T(n) = aT(n/b) + f(n)T(1) = d $\log_b n-1$ $T(n) = \frac{dn^{\log_b a}}{dn} + \frac{f(n)}{dn} + \frac$ $a^{j}f(n/b^{j})$ $\overline{j=1}$ a a Which term, if any, dominates the sum?

T(n) = aT(n/b) + f(n)T(1) = d $\log_h n - 1$ $T(n) = \frac{dn^{\log_b a}}{dn} + f(n) + f$ $a^{j}f(n/b^{j})$ i=1a а If bottom-of-tree work dominates, T(n) = ???

T(n) = aT(n/b) + f(n)T(1) = d $\log_h n - 1$ $T(n) = \frac{dn^{\log_b a}}{dn} + f(n) + f$ $a^{j}f(n/b^{j})$ i=1а a If bottom-of-tree work dominates, $T(n) = \Theta(n^{\log_b a})$

What if the top and bottom work balance?

What does "balance" mean?

- Top and bottom work are asymptotically the same.
- In other words,

$$f(n) = \Theta(n^{\log_b a})$$

What does "balance" mean?

- Top and bottom work are asymptotically the same.
- In other words,

$$f(n) = \Theta(n^{\log_b a})$$

For intuition, we'll pretend that

$$f(n) = cn^{\log_b a}$$

T(n) = aT(n/b) + f(n)T(1) = d

$$T(n) = dn^{\log_b a} + f(n) + \sum_{j=1}^{\log_b n-1} a^j f(n/b^j)$$
$$T(n) = dn^{\log_b a} + cn^{\log_b a} + \sum_{j=1}^{\log_b n-1} a^j c \left(\frac{n}{b^j}\right)^{\log_b a}$$

$$T(n) = dn^{\log_b a} + \sum_{j=0}^{\log_b n-1} a^j c \left(\frac{n}{b^j}\right)^{\log_b a}$$

$$T(n) = dn^{\log_b a} + cn^{\log_b a} \sum_{j=0}^{\log_b n-1} a^j \left(\frac{1}{b^j}\right)^{\log_b a}$$

$$T(n) = dn^{\log_{b} a} + cn^{\log_{b} a} \sum_{j=0}^{\log_{b} n-1} \frac{a^{j}}{(b^{\log_{b} a})^{j}}$$

$$T(n) = dn^{\log_b a} + cn^{\log_b a} \sum_{j=0}^{\log_b n-1} \frac{a^j}{a^j}$$

$$T(n) = dn^{\log_b a} + cn^{\log_b a} \sum_{j=0}^{\log_b n-1} 1$$

$T(n) = dn^{\log_b a} + cn^{\log_b a} \log_b n$

$T(n) = \Theta(n^{\log_b a} \log n)$ = $\Theta(f(n) \log n)$

When top and bottom of tree balance, all levels contribute equally to sum – and there are $\Theta(\log n)$ levels.

Summary of Intuition

- Given recurrence T(n) = aT(n/b) + f(n)...
- If f(n) dominates $n^{\log_b a}$, then solution should be $\Theta(f(n))$
- If $n^{\log_b a}$ dominates f(n), then solution should be $\Theta(n^{\log_b a})$
- If $f(n) = \Theta(n^{\log_b a})$ [balance], then solution should be $\Theta(f(n) \log n)$

Summary of Intuition

- Given recurrence T(n) = aT(n/b)
- If f(n) dominates $n^{\log_b a}$, then so
- If $n^{\log_b a}$ dominates f(n), then so
- If $f(n) = \Theta(n^{\log_b a})$ [balance], the

This is not yet a **theorem** – in part because we haven't carefully defined "dominates," and in part because we didn't do a careful proof.

So is there a theorem that captures our intuition?

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Master The

Theorem 4.1 (Mast Let $a \ge 1$ and b >on the nonnegative i

$$T(n) = aT(n/b) +$$

where we interpret *i* ing asymptotic bour

1. If $f(n) = O(n^{\log_{b} a})$, then $f(n) = O(n^{\log_{b} a})$.

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

We won't actually prove it

(see the book), but we will

break down the statement.

ned

DW-

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n) ,

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n) ,

This is the scenario we've been studying!

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n) ,

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

Theorem generalizes to nonpower-of-b input sizes!

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$ ing asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n \rceil$ " $n^{\log_b a}$ dominates f(n)" ing asymptotic bounds:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$ then $T(n) = \Theta(n^{\log_b a})$.

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$,
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$ "f(n) dominates $n^{\log_b a}$

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$.

Key Elaboration of Theorem vs Intuition

- Precisely defines "dominates"
- "f(n) dominates g(n)" iff f(n) grows polynomially faster than g(n)
- This is a **stronger condition** than $f(n) = \omega(g(n))$

$$f(n) = \Omega(n^{\log_b a + \epsilon})$$

$$f(n) = \Theta(n^{\log_b a})$$

$$f(n) = O(n^{\log_b a - \epsilon})$$

$$T(n) = a T(n/b) + f(n)$$
Case 3.

$$f(n) = \Omega(n^{\log_{b} a + \epsilon}) \longrightarrow T(n) = \Theta(f(n))$$
Case 2.

$$f(n) = \Theta(n^{\log_{b} a}) \longrightarrow T(n) = \Theta(f(n) \log n)$$
Case 1.

$$f(n) = O(n^{\log_{b} a - \epsilon}) \longrightarrow T(n) = \Theta(n^{\log_{b} a})$$
65

T(n) = a T(n/b) + f(n)

$$f(n) = \omega(n^{\log_b a})$$
, but $f(n) = o(n^{\log_b a + \epsilon})$

$$f(n) = \Theta(n^{\log_b a})$$

$$f(n) = o(n^{\log_b a})$$
, but $f(n) = \omega(n^{\log_b a - \epsilon})$

$$f(n) = O(n^{\log_b a - \epsilon})$$

T(n) = a T(n/b) + f(n)

$$f(n) = \Omega(n^{\log_b a + \epsilon})$$

$$f(n) = \omega(n^{\log_b a}), \text{ but } f(n) = O(n^{\log_b a + \epsilon}) \longrightarrow ?$$

$$f(n) = O(n^{\log_b a}), \text{ but } f(n) = \omega(n^{\log_b a - \epsilon}) \longrightarrow ?$$

$$f(n) = O(n^{\log_b a}), \text{ but } f(n) = \omega(n^{\log_b a - \epsilon}) \longrightarrow ?$$

67

Case 3.
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $f(n) = \omega(n^{\log_b a}), \text{ but } f(n) = o(n^{\log_b a + \epsilon})$ Case 2. $f(n) = \Theta(n^{\log_b a})$ $f(n) = o(n^{\log_b a}), \text{ but } f(n) = \omega(n^{\log_b a - \epsilon})$ Case 1. $f(n) = O(n^{\log_b a - \epsilon})$

Limits of the Master Theorem

• If the form of the recurrence does not match the statement of the theorem...

- ...or the recurrence falls into "gap" between two cases...
- ...then the Master Theorem does not apply.
- (You must find another way to solve the recurrence.)

Limits of the Master Theorem

See the Wikipedia page on the Master Theorem

• Examples of situations where Master Thm doesn't apply

- Note: a and b in Master Theorem don't have to be integers
 - (though for recursive programs, a is an integer why?)
 - a must be ≥ 1
 - b must be > 1 why?

• Example of function that fails non-weirdness condition

n log n vs. $n^{1+\epsilon}$

- Example recurrence: T(n) = 2T(n/2) + nlogn
- Question: does Case 3 apply?
 - I.e. does n log n = $\Omega(n^{1+\epsilon})$ for some $\epsilon > 0$?

n log n vs. n^{1+ε}

- Example recurrence: T(n) = 2T(n/2) + nlogn
- Question: does Case 3 apply?
 - $\circ \quad \text{I.e. does } n \text{ log } n = \Omega(n^{1+\epsilon}) \text{ for some } \epsilon > 0 \ ?$
- Analysis by limit test
 - $\circ \quad \text{lim (n log n) / (n^{1+\epsilon}) = lim (log n + 1) / (1+\epsilon)n^{\epsilon}}$
n log n vs. n^{1+ε}

- Example recurrence: T(n) = 2T(n/2) + nlogn
- Question: does Case 3 apply?
 - $\circ \quad \text{I.e. does } n \text{ log } n = \Omega(n^{1+\epsilon}) \text{ for some } \epsilon > 0 \ ?$
- Analysis by limit test

0

 $\circ \quad \text{lim (n log n) / (n^{1+\epsilon}) = lim (log n + 1) / (1+\epsilon)n^{\epsilon}}$

= lim (1/n) / ε(1+ε)n^{ε-1}

n log n vs. $n^{1+\epsilon}$

- Example recurrence: T(n) = 2T(n/2) + nlogn•
- Question: does Case 3 apply?
 - I.e. does n log n = $\Omega(n^{1+\epsilon})$ for some $\epsilon > 0$? 0
- Analysis by limit test

= lim (1 /
$$\epsilon$$
(1+ ϵ)nn ^{ϵ -1})

n log n vs. n^{1+ε}

- Example recurrence: T(n) = 2T(n/2) + nlogn
- Question: does Case 3 apply?
 - $\circ \quad \text{I.e. does } n \text{ log } n = \Omega(n^{1+\epsilon}) \text{ for some } \epsilon > 0 \ ?$
- Analysis by limit test

Ο

- $\lim_{t \to \infty} (n \log n) / (n^{1+\epsilon}) = \lim_{t \to \infty} (\log n + 1) / (1+\epsilon)n^{\epsilon}$ $= \lim_{t \to \infty} (1/n) / \epsilon(1+\epsilon)n^{\epsilon-1}$ $= \lim_{t \to \infty} (1 / \epsilon(1+\epsilon)nn^{\epsilon-1})$
 - $= \lim_{t \to \infty} (1 / s(1+s)n^{\varepsilon}) 0$ becau
 - = lim $(1 / \epsilon(1+\epsilon)n^{\epsilon}) = 0$, because $\epsilon > 0$
- Hence, n log n is $o(n^{1+\epsilon})$ for every $\epsilon > 0$
- So NO, Case 3 of Master Theorem does not apply.

n log n vs. n^{1+ε}

- Example recurrence: T(n) = 2T(n/2) + nlogn
- Question
 - l.e. c
- Analysis

0

0

0

∘ lim (ı

But for Studio 5, see Wiki for a more general "balanced case" that specifically allows for f(n) to have extra log terms.

• Hence, n

• So **NO**, Case 3 of Master Theorem does not apply.

A little practice with "polynomially larger"

	polynomially larger than?	
n²		n
n² log n		n²
n ³ log n		n²
n ^{2.001}		n²
n log n		$n^{\log_4 3}$

A little practice with "polynomially larger"

	polynomially larger than?	
n²	YES	n
n² log n	NO	n²
n ³ log n	YES	n²
n ^{2.001}	YES	n²
n log n	???	$n^{\log_4 3}$

A little practice with "polynomially larger"

	polynomially larger than?	
n²	YES	n
n² log n	NO	n²
n ³ log n	YES	n²
n ^{2.001}	YES	n²
n log n	YES!	$n^{\log_4 3}$

• T(n) = 2T(n/2) + cn

- T(n) = 2T(n/2) + cn
- a = ???, b = ???, f(n) = ???

- T(n) = 2T(n/2) + cn
- a = 2, b = 2, f(n) = cn

- T(n) = 2T(n/2) + cn
- a = 2, b = 2, f(n) = cn
- Compare $n^{\log_b a}$ vs f(n)

- T(n) = 2T(n/2) + cn
- a = 2, b = 2, f(n) = cn
- Compare $n^{\log_2 2}$ vs cn

- T(n) = 2T(n/2) + cn
- a = 2, b = 2, f(n) = cn
- Compare n^1 vs cn

- T(n) = 2T(n/2) + cn
- a = 2, b = 2, f(n) = cn
- Compare n^1 vs cn \rightarrow f(n) = $\Theta(n^{\log_b a})$
- Therefore $T(n) = \Theta(f(n) \log n) = \Theta(n \log n)$

• T(n) = T(2n/3) + c

- T(n) = T(2n/3) + c
- a = ???, b = ???, f(n) = ???

- T(n) = T(2n/3) + c
- a = 1, b = 3/2, f(n) = c

- T(n) = T(2n/3) + c
- a = 1, b = 3/2, f(n) = c
- Compare $n^{\log_b a}$ vs f(n)

- T(n) = T(2n/3) + c
- a = 1, b = 3/2, f(n) = c
- Compare $n^{\log_{3/2} 1}$ vs cn⁰

- T(n) = T(2n/3) + c
- a = 1, b = 3/2, f(n) = c
- Compare n^0 vs cn⁰ \rightarrow f(n) = $\Theta(n^{\log_b a})$
- Therefore $T(n) = \Theta(f(n) \log n) = \Theta(\log n)$

• T(n) = 4T(n/2) + cn

- T(n) = 4T(n/2) + cn
- a = ???, b = ???, f(n) = ???

- T(n) = 4T(n/2) + cn
- a = 4, b = 2, f(n) = cn

- T(n) = 4T(n/2) + cn
- a = 4, b = 2, f(n) = cn
- Compare $n^{\log_b a}$ vs f(n)

- T(n) = 4T(n/2) + cn
- a = 4, b = 2, f(n) = cn
- Compare $n^{\log_2 4}$ vs cn

- T(n) = 4T(n/2) + cn
- a = 4, b = 2, f(n) = cn
- Compare n^2 vs cn

- T(n) = 4T(n/2) + cn
- a = 4, b = 2, f(n) = cn
- Compare n^2 vs cn \rightarrow f(n) = O($n^{\log_b a 1}$)
- Therefore $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$

• $T(n) = 3T(n/4) + cn \log n$

- $T(n) = 3T(n/4) + cn \log n$
- a = ???, b = ???, f(n) = ???

- $T(n) = 3T(n/4) + cn \log n$
- a = 3, b = 4, f(n) = cn log n

- $T(n) = 3T(n/4) + cn \log n$
- a = 3, b = 4, f(n) = cn log n
- Compare $n^{\log_b a}$ vs f(n)

- $T(n) = 3T(n/4) + cn \log n$
- a = 3, b = 4, f(n) = cn log n
- Compare $n^{\log_4 3}$ vs cn log n

- $T(n) = 3T(n/4) + cn \log n$
- a = 3, b = 4, f(n) = cn log n
- Compare $n^{\log_4 3}$ vs cn log n \rightarrow f(n) = $\Omega(n^{\log_b a + \varepsilon})$
- Therefore $T(n) = \Theta(f(n)) = \Theta(n \log n)$

You'll get more Master Method practice, plus bonus experience with Binary Search, in Studio 5.