Lecture 4: Analyzing **Complexity** via **Recurrences**

1 *These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.*

Announcements: Lab 3

- Pre-lab due **Tuesday** (tonight!) at 11:59 PM
- Code and Post-lab due **Friday** at 11:59 pm
	- Pre- and post-labs via Gradescope (usual writeup standards)
	- Code in your Bitbucket repo
	- Please **verify that your work has been checked in** by looking at your repo via the browser, and double-checking Gradescope
		- Avoid pull-before-push failure
- Academic Integrity (the other AI)
	- Many, many legitimate resources
	- Don't panic, even at last minute—reach out instead
		- Zero credit w/explanation is much, much better than an AI case
	- Previous semesters \Rightarrow many cases from Lab 3 reported to Dean's office
	- This semester $==$ can we go for zero??

Announcements: Exam 1

- **Wednesday 2/20 6:30-8:30 PM – rooms TBA (Piazza)**
- Please see Piazza for details (forthcoming), especially if you must reschedule for religious or other acceptable reasons
- Covers **Lectures** and **Studios 0-4**
- Exam review Sunday, Feb. 17, 2-5 pm Louderman 458 (instead of recitation)
- A practice exam will be posted this week

Last Time: Cost of heapify

- We gave a recursive procedure for heapify
- We defined its running time to be **T(n)** on a heap of size n
- We derived a *recursive formula (recurrence)* for T(n)

T(n) = T(2n/3) + k

We magically solved this recurrence: T(n) = Θ(log n)

5

But how did we get it?

າດັ

6

Strategies We Will Consider

• Problem: given a recurrence for T(n), find a closed**form asymptotic complexity function that satisfies the recurrence.**

• Possible strategies

- Guess and check (a.k.a. substitution)
- Recursion tree accounting (for certain kinds of recurrence)
- Master Method (next time)

Guess and Check

- Guess an **exact** (not asymptotic) function $f(n)$ for $T(n)$
- Prove that $f(n)$ satisfies the recurrence for all $n > 0$
- Proof is inductive on n
- [Requires that we know a base case for the recurrence]

- $T(n) = T(n-1) + k$
- \bullet Let's say T(1) = k

- $T(n) = T(n-1) + k$
- Let's say $T(1) = k$
- **What solution should we guess?**

- $T(n) = T(n-1) + k$
- Let's say $T(1) = k$
- \bullet Intuitively, we add k every time n goes up by 1, so $T(n)$ is something like nk.

- $T(n) = T(n-1) + k$
- Let's say $T(1) = k$
- \bullet Intuitively, we add k every time n goes up by 1, so $T(n)$ is something like nk.
- **Claim: T(n) = nk**

- **Claim: T(n) = nk**
- **By induction on n**

- **Claim: T(n) = nk**
- **By induction on n**
- Bas $(n=1)$: $T(1) = k = 1*k$ \leftarrow claim holds!

- **Claim: T(n) = nk**
- **By induction on n**
- Bas $(n=1)$: $T(1) = k = 1*k$ \leftarrow claim holds!
- \bullet Ind (n > 1): assume true for m < n.

- **Claim: T(n) = nk**
- **By induction on n**
- Bas $(n=1)$: $T(1) = k = 1*k$ \leftarrow claim holds!
- \bullet Ind (n > 1): assume true for m < n.
- $T(n) = T(n-1) + k = (n-1)k + k$

- **Claim: T(n) = nk**
- **By induction on n**
- Bas $(n=1)$: $T(1) = k = 1*k$ \leftarrow claim holds!
- \bullet Ind (n > 1): assume true for m < n.
- \bullet $T(n) = T(n-1) + k = (n-1)k + k$

By IH, we can **algebraically substitute T(m) by** proposed **f(m)** for m < n on the RHS

- **Claim: T(n) = nk**
- **By induction on n**
- Bas $(n=1)$: $T(1) = k = 1*k$ \leftarrow claim holds!
- \bullet Ind (n > 1): assume true for m < n.
- $T(n) = T(n-1) + k = (n-1)k + k = nk$ \leftarrow claim holds!
- Conclude that $T(n)$ indeed = nk = $\Theta(n)$

A Slightly More Interesting Example

- **Binary search**: an algorithm for finding a value in a sorted array
- **Problem**: Given sorted array A of size n, and a *query value* x…
- If x occurs in A, return an index \mathbf{j} s.t. A[j] = x
- If x does not occur in A, return special value "**notFound**"

3 5 6 17 22 23 30 48 0 1 2 3 4 5 6 7

Algorithm Idea

- Divide the array in half, and look at the middle element A[mid]
- If $A[\text{mid}] < x$, x must be in the _________ half of A if it appears at all.

Algorithm Idea

- \bullet Divide the array in half, and look at the middle element A[mid]
- If A[mid] < x, x must be in the **upper** half of A if it appears at all.
- If $A[\text{mid}] > x$, x must be in the $_____\$ half of A if it appears at all.

Algorithm Idea

- Divide the array in half, and look at the middle element A[mid]
- If A[mid] < x, x must be in the **upper** half of A if it appears at all.
- If A[mid] > x, x must be in the **lower** half of A if it appears at all.
- In either case, recursively look for x in the appropriate half of A.

Binary search

● Looking for 3

- Try a middle element
- \circ From there, discard $\frac{1}{2}$
- Repeat

Binary search

- Looking for 3
	- Try a middle element
	- \circ From there, discard $\frac{1}{2}$
	- Repeat

Binary search

- Looking for 3
	- Try a middle element
	- \circ From there, discard $\frac{1}{2}$
	- Repeat

Binary search

● Looking for 3

- Try a middle element
- \circ From there, discard $\frac{1}{2}$
- Repeat

Binary search

- Looking for 3
	- Try a middle element
	- \circ From there, discard $\frac{1}{2}$
	- Repeat

Binary search

- Looking for 3
	- Try a middle element
	- \circ From there, discard $\frac{1}{2}$
	- Repeat

Binary search

● Looking for 3

- Try a middle element
- \circ From there, discard $\frac{1}{2}$
- Repeat

Binary search

- Looking for 3
	- Try a middle element
	- \circ From there, discard $\frac{1}{2}$
	- Repeat

Binary search

● Looking for 3

- Try a middle element
- \circ From there, discard $\frac{1}{2}$
- Repeat

● Found it!

Binary Search

- You'll study the code and correctness of binary search more deeply in Studio 5.
- For today, let's focus on a rough running time analysis.

Binary Search

• We start with an array of size n.

- At each step, we
	- \circ do constant work (compare midpoint of A to x)
	- cut the problem size in half
	- recur on the appropriate half

Binary Search

• We start with an array of size n. **T(n)**

- At each step, we
	- do constant work (compare midpoint of A to x) **c**
	- cut the problem size in half
	- recur on the appropriate half **T(n/2)**

Binary Search Recurrence

- $T(n) = T(n/2) + c$
- What's the base case?
- If not specified, assume it is *some* constant for $T(1)$
- *Which* constant doesn't affect asymptotic solution \rightarrow pick for convenience
- *(More on this in Studio 4)* 35

Guessing Running Time

- \bullet Is T(n) constant-time?
- Let's guess $T(n) = c$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- \bullet $T(n) = T(n/2) + c = ?$?? [what does substitution yield?]
Guessing Running Time

- \bullet Is T(n) constant-time?
- Let's guess $T(n) = c$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- $T(n) = T(n/2) + c = c + c = 2c$
- \bullet But we are trying to prove that $T(n) = c$, so proof failed!

Guessing Running Time

- \bullet Is $T(n)$ constant-time?
- Let's guess $T(n) = c$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- $T(n) = T(n/2) + c = c + c = 2c$
- \bullet But we are trying to prove that $T(n) = c$, so proof failed!
- *(And indeed, can see that no other constant > 0 would work either)*

- \bullet Is T(n) linear-time?
- Let's guess $T(n) = cn$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- $T(n) = T(n/2) + c = ?$??

- \bullet Is T(n) linear-time?
- Let's guess $T(n) = cn$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- \bullet $T(n) = T(n/2) + c = cn/2 + c$ \leftarrow not cn as desired! Proof fails, *but*...

- \bullet Is T(n) linear-time?
- Let's guess $T(n) = cn$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- T(n) = T(n/2) + c = cn/2 + c *= c(n/2 + 1) ≤ cn for n ≥ 2*

- Is T(n) linear-time?
- Let's guess $T(n) = cn$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- T(n) = T(n/2) + c = cn/2 + c *= c(n/2 + 1) ≤ cn for n ≥ 2*
- *Conclude that T(n) ≤ cn for all n.*
- *Therefore, T(n) = ??? [asymptotically]*

- Is T(n) linear-time?
- Let's guess $T(n) = cn$
- Pick $T(1) = c$ to make base case match [constant for $T(1)$ doesn't matter!]
- T(n) = T(n/2) + c = cn/2 + c *= c(n/2 + 1) ≤ cn for n ≥ 2*
- *Conclude that T(n) ≤ cn for all n.*
- *Therefore, T(n) = O(n) proving ≤ implies upper bound*

- $Is T(n)$ linear-time?
- Let's guess $T(n) = cn$

- Is T(n) logarithmic-time?
- Let's guess $T(n) = c \log_2 n$
- If $T(1) = c... c log₂ 1 = 0 \neq c.$ Whoops.

- Is T(n) logarithmic-time?
- Let's guess $T(n) = c \log_2 n$
- \bullet T(1) = c log₂ 1 = 0 \neq c. Whoops.

- \bullet Is T(n) logarithmic-time?
- Let's guess $T(n) = c \log_2 n$
- $T(2) = c \log_2 2 = c$. So induction will start at $n = 2$ (fine for asymptotic!)
- $T(n) = T(n/2) + c$ $= c \log_2(n/2) + c$ $= c(\log_2 n - \log_2 2) + c$ $= c$ log₂ n – c + c $= c \log_2 n$ \leftarrow Yay, it worked! So T(n) =Θ(log n)

Pros and Cons of Guess and Check

- + For **any recurrence**, given right guess, can prove that it is correct.
- + Can use separate upper-, lower-bound proofs to prove Θ result.

Pros and Cons of Guess and Check

- + For **any recurrence**, given right guess, can prove that it is correct.
- + Can use separate upper-, lower-bound proofs to prove Θ result.
- **You must start from a correct guess**
- Guessing the right constants and lower-order terms to make the induction work can be quite challenging

Pros and Cons of Guess and Check

- + For **any recurrence**, given right guess, can prove that it is correct.
- + Can use separate upper-, lower-bound proofs to prove Θ result.
- **You must start from a correct guess**
- Guessing the right constants and lower-order terms to make the induction work can be quite challenging

Can we take the guess-work out of solving recurrences?

Pros and Cons of G

- + For **any recurrence, THI GENETAL, NO.** that it is correct.
- + Can use separate upper- bound prove Θ result.
- **You must start**
-

Example 1 Finding values and the make the induction work for *c* and *n_0* in Can we take the guess-work or only of solving recurrences? (It's a bit like a Big-Oh proof)

In general, no.

Pros and Cons of G

- + For **any recurrence in grandral notably that it is correct.**
-
- **You must start from a correct guess**
- Guessing the right constants and lower-order terms to make the induction work

+ Can use separate up prove Can use Separate up prove Θ result. **In general, no.**

But for certain common cases, there's a way.

Can we take the guide of the solution of solving recurrences?

- You have an algorithm FOO that runs on an input of size n.
- FOO does some *local* work.
- FOO makes some recursive calls on inputs whose size is a fraction of n.

```
FOO(A[1..n])
FOO(A[1..n/2])
Print(A)
FOO(A[n/2+1..n])
```
- FOO takes time **T(n) on input of size n**.
- FOO does some *local* work taking time **f(n)**.
- FOO makes **a** recursive calls on inputs of size **n/b.**

```
FOO(A[1..n])
FOO(A[1..n/2])
Print(A)
FOO(A[n/2+1..n])
```
- FOO takes time **T(n) on input of size n**.
- FOO does some *local* work taking time **f(n)**.
- FOO makes **a** recursive calls on inputs of size **n/b.**

FOO(A[1..n]) FOO(A[1..n/2]) Print(A) FOO(A[n/2+1..n]) $a = 2$ $b = 2$ **f(n) = cn**

- FOO takes time **T(n) on input of size n**.
- FOO does some *local* work taking time **f(n)**.
- FOO makes **a** recursive calls on inputs of size **n/b.**

T(n) = aT(n/b) + f(n)

- FOO takes time **T(n) on input of size n**.
- FOO does some *local* work taking time **f(n)**.
- FOO makes **a** recursive calls on inputs of size **n/b.**

T(n) = aT(n/b) + f(n)

Assumes T(n) = constant for small enough n – see Studio 4 for more on this

Examples That Fit the Paradigm

- Binary search: $T(n) = T(n/2) + c$
- Merge sort: $T(n) = 2T(n/2) + cn$
- Strassen's matrix multiply: $T(n) = 7T(n/2) + cn^2$
- [Maximum subarray:](http://www.utdallas.edu/~daescu/maxsa.pdf) $T(n) = 2T(n/2) + c$

New Strategy

- We could, in principle, expand the recurrence to a sum of terms (as we sketched for heapify) and add them up
- E.g., $T(n) = T(n/2) + c = (T(n/4) + c) + c = ((T(n/8) + c) + c) + c = ...$

$$
= C + C + C + \dots + C
$$

How many times?

New Strategy

- We could, in principle, expand the recurrence to a sum of terms (as we sketched for heapify) and add them up
- E.g., $T(n) = T(n/2) + c = (T(n/4) + c) + c = ((T(n/8) + c) + c) + c = ...$

$$
= c + c + c + \dots + c
$$

= **Θ(log n) About log² n times**

Idea: Draw a Picture!

- We'll draw a tree showing all the terms in the recurrence.
- It's called a recursion tree.

- Each node records work of one term in expansion of recurrence.
- Add up work over all nodes to get total work.

● Root contains first term of expansion

● Root contains first term of expansion

● Expand once to get second term

• Now repeat...

- What's *the last term*?
- (Assume n is power of 2)
- What is the last term?

- What's *the last term*?
- (Assume n is power of 2)
- We stop at $T(1)$
- What is $T(1)$?

Example: T(n) = T(n/2) + c

- What's *the last term*? • (Assume n is power of 2) • We stop at $T(1)$ • What is $T(1)$?
	- We assumed $T(1) = c$

Accounting $T(n) = T(n/2) + c$

Accounting $T(n) = T(n/2) + c$

Max depth $=$ # of divisions by 2 needed to get from n down to 1.

Accounting $T(n) = T(n/2) + c$

> Total work is sum of local work in each row

Recursion Tree Methodology

- Given recurrence...
- Sketch the tree (figure out its height!)
- Figure out problem size and local work/node at each level
- Sum local work over whole tree

● Root contains first term of expansion

• There are two subproblems at next level

• How much work in each node?

• How much work in each node?

- cn/2 [but it doesn't fit in the circles]
- Let's just draw the tree…

- Let's just draw the tree…
- \bullet # of nodes doubles at each level $(a = 2)$

- Let's just draw the tree…
- \bullet # of nodes doubles at each level $(a = 2)$
- After j steps, we have **2 ^j** nodes at level j

- Let's just draw the tree…
- \bullet # of nodes doubles at each level $(a = 2)$
- After j steps, we have **2 ^j** nodes at level j
- Bottom out at $T(1)$ again

T(n) = 2T(n/2) + cn

Multiply across each level to get its work

(Simplification isn't always this nice)

T(n) = 2T(n/2) + cn

Recursion Tree Methodology (Again)

- Given recurrence…
- Sketch the tree (figure out its height!)
- Figure out problem size, # nodes, and local work/node at each level
- Sum local work at each level, then across levels

Example: $T(n) = 3T(n/4) + cn^2$ $[T(1) = d]$

• [This one is worked in your text as well $-$ see p. 89]

Example: $T(n) = 3T(n/4) + cn^2$ $[T(1) = d]$

• This time, $a = 3$, so each node branches 3 ways!

Example: $T(n) = 3T(n/4) + cn^2$ $[T(1) = d]$

• This time, $a = 3$, so each node branches 3 ways!

• This time, $b = 4$, so problem size goes down by factor of 4 per level.

A Brief Diversion

 $a^{\log_b n} = a$ by change of base $\log_b n = \log_a n \log_b a$ $= n^{\log_b a}$

$$
a^{\log_b n}=n^{\log_b a}
$$

$T(n) = 3T(n/4) + cn^2$

$T(n) = 3T(n/4) + cn^2$

$T(n) = 3T(n/4) + cn^2$

Switch to separate PDF for algebraic resolution of this formula into an asymptotic complexity

End of Lecture 4