Lecture 4:
Analyzing
Complexity
via
Recurrences

These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements: Lab 3

e Pre-lab due Tuesday (tonight!) at 11:59 PM
e Code and Post-lab due Friday at 11:59 pm

o Pre- and post-labs via Gradescope (usual writeup standards)
o Code in your Bitbucket repo
o Please verify that your work has been checked in by looking at your repo via the
browser, and double-checking Gradescope
m Avoid pull-before-push failure

e Academic Integrity (the other Al)

m Many, many legitimate resources
m Don't panic, even at last minute—reach out instead
e Zero credit w/explanation is much, much better than an Al case
m Previous semesters ==> many cases from Lab 3 reported to Dean's office

m This semester ==> can we go for zero?? 2

Announcements: Exam 1

o Wednesday 2/20 6:30-8:30 PM —rooms TBA (Piazza)
o Please see Piazza for details (forthcoming), especially if
you must reschedule for religious or other acceptable

reasons

e Covers Lectures and Studios 0-4

o« Exam review Sunday, Feb. 17, 2-5 pm Louderman 458
(instead of recitation)

e A practice exam will be posted this week

Last Time: Cost of heapify

e \We gave a recursive procedure for heapify
e Wedefined its running time to be T(n) on a heap of size n

e Wederived a recursive formula (recurrence) for T(n)
T(n) =T(2n/3) + k

We magically solved this recurrence: T(n) = ©(log n)

O R R =S

W o=l Sh LA B W R

RS R EEREE e we s wN

B

PEBEEEESRER

Cell holding
value
at
2*nf3
SF51
§F51
5052
5052
5053
054
5C54
5C55
586
5056
57
5C58
sc58
S50
SC510
SC510
50511
50512
sC512
50513
0514
50514
SC515
0516
SC516
50517
SC51E
SC518
SC519
50520
SC520
i
sC522
50522

Tin)=T(2*n/3)+5

B s BB R R R R R R R R EEE BB R R REEEB 1w

Solutionis

empirically correct!

T(n}=T(2*n/3}+5

AL 08 =i Oh LA B W R

=
(=]

e e
L

30
31
32
EE]
34
a5

WO e O LA Ik RS

31
iz
33

B

Cell holding
walue
at
2*nf3
4F51
§F51
052
5052
5053
4054
5054
3055
5C56
5056

SC518
50319

50520
L3521
504522
SC522

Tin)=T(2*n,/3)+5

10

10
15
15
15

Strategies We Will Consider

e Problem: given arecurrence for T(n), find a closed-
form asymptotic complexity function that satisfies the
recurrence.

o Possible strategies
e Guess and check (a.k.a. substitution)
e Recursiontree accounting (for certain kinds of recurrence)
e Master Method (next time)

Guess and Check

e Guess an exact (not asymptotic) function f(n) for T(n)
e Prove that f(n) satisfies the recurrence for alln >0
e Proof is inductive on n

e [Requiresthatwe know a base case for the recurrence]

Example
e T(n)=T(n-1) +Kk

o lLet'ssay T(1) =k

Example
e T(n)=T(n-1) +Kk
o let'ssay T(1) =Kk

e What solution should we guess?

10

Example
e T(n)=T(n-1) +Kk
o let'ssay T(1) =Kk

e Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.

11

Example
e T(n)=T(n-1) +k
o let'ssay T(1) =Kk
e Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.

e Claim: T(n) = nk

12

Example: Proof [T(n)=T(n-1) + k]

e Claim: T(n)=nk
e Byinductiononn

13

Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claim holds!

14

Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1):assume true for m<n.

15

Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1):assume true for m<n.
e T(N)=T(n-1)+k=(n-1)k+k

16

Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1): assume true for m < n. ("

e T(n)=T(n-1) + k = (N-1)K ¢uu——

-

17

Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1):assume true for m<n.
e T(nN)=T(n-1) + k=(n-1)k + k=nk < claim holds!

e Concludethat T(n) indeed = nk = ©(n)

18

A Slightly More Interesting Example

e Binary search:an algorithm for finding a value in a sorted array
e Problem: Given sorted array A of size n, and a query value x...
e IfxoccursinA, returnanindexjs.t. A[j] = x

e |f x does not occurin A, return special value “notFound”

3 5 6 | 17| 22| 23 | 30 | 48

0 1 2 3 4 5 6 7

Algorithm Idea

e Divide the array in half, and look at the middle element A[mid]

e If A[mid]<x, x mustbe inthe half of A if it appears at all.

20

Algorithm Idea

e Divide the array in half, and look at the middle element A[mid]
e If A[mid]<x, x mustbe inthe upper half of A if it appears at all.

e If A[mid]>x, xmustbe inthe half of A if it appears at all.

21

Algorithm Idea

e Divide the array in half, and look at the middle element A[mid]
e If A[mid]<x, x mustbe inthe upper half of A if it appears at all.
e If A[mid]>x, x mustbe inthelower half of A if it appears at all.

e In either case, recursively look for x in the appropriate half of A.

22

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17

22

23

30

48

23

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17“ 22

23

30

48

24

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17

25

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17

26

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17

27

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

28

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

29

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

30

Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

e Found it!

31

Binary Search

e You'll study the code and correctness of binary search
more deeply in Studio 5.

e Fortoday, let's focus on a rough running time analysis.

32

Binary Search

o We start with an array of size n.

o At each step, we
- do constant work (compare midpoint of A to X)
o cut the problem size in half

o recur on the appropriate half

33

Binary Search

o We start with an array of size n.

o At each step, we
- do constant work (compare midpoint of A to X)
o cut the problem size in half

o recur on the appropriate half

T(n)

C

T(n/2)

34

Binary Search Recurrence

T(n)=T(n/2)+ C

What's the base case?

If not specified, assume it is some constant for T(1)
Which constant doesn’t affect asymptotic solution

-> pick for convenience
(More on this in Studio 4)

35

Guessing Running Time

e Is T(n) constant-time?
e Let'sguessT(n)=c
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

e T(n)=T(n/2) + c =777 [what does substitution yield?]

36

Guessing Running Time

e [s T(n) constant-time?

e Let'sguessT(n)=c

e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]
e T(n)=T(n/2)+c=c+c=2cC

e But we are trying to prove that T(n) = c, so proof failed!

37

Guessing Running Time

Is T(n) constant-time?

Let’'s guess T(n) =c

Pick T(1) = c to make base case match [constantfor T(1) doesn’t matter!]
T(n) =T(n/2) +c=c+c=2C

But we are trying to prove that T(n) = c, so proof failed!

(And indeed, can see that no other constant > 0 would work either)

38

Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguess T(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

e T(N)=T(N/2) +c=72?2?

39

Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguessT(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

e T(n)=T(n/2)+c=cn/2+cC < not cn as desired! Proof fails, but...

40

Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguess T(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

o T(N)=T(n/2)+c=cn/2+c=c(n/2+1)<cnfornz2

41

Guessing Running Time, Try #2

Is T(n) linear-time?

Let's guess T(n) =cn

Pick T(1) = c to make base case match [constantfor T(1) doesn’t matter!]
T(nN)=T(n/2) +c=cn/2+c=c(n/2+ 1) <cnfornz=2

Conclude that T(n) <cn for all n.

Therefore, T(n) = ??? [asymptotically]

42

Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguessT(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]
e T(N)=T(n/2)+c=cn/2+c=c(n/2+ 1)<cnfornz2
e Conclude that T(n) <cn for all n.

e Therefore, T(n) =0(n) € proving < implies upper bound

Guessing Running Time, Try #2
e |Is T(n) linear-time?
e Let’sguess T(n)=cn

n’'t matter!]

We need to prove either an equality

° (as before) or both an upper and a
lower bound to prove ©.

e Therefore, T(n) =0(n) &-proving < implies upper bound

44

Guessing Running Time, Try #3
e [s T(n) logarithmic-time?
e Let'sguessT(n)=clog,n

e IfT(1)=c...clog,1=0 #c. Whoops.

45

Guessing Running Time, Try #3
e [s T(n) logarithmic-time?
e Let'sguessT(n)=clog,n

e T(1)=clog,1=0 #c. Whoops.

46

Guessing Running Time, Try #3
e [s T(n) logarithmic-time?
e Let'sguessT(n)=clog,n
e T(2) =clog,2=c. Soinduction will start at n = 2 (fine for asymptotic!)

e T(n)=T(n/2) +cC
=c log,(n/2) + ¢
=c(log,n—-1log,2) + ¢
=clog,n —c+c
=clog,n < Yay, it worked! So T(n) =O(log n)

47

Guessing Running Time, Try #3

e IsT(n)l
. Letsg EXERCI_SE

Apply the same logic to show that
o T(2)= T(n) =T(2n/3) + k

has solution T(n) = O(log n)

48

Guessing Running Time, Try #3

e IsT(n)l
. Letsg EXERCI_SE

Apply the same logic to show that
o T(2)= T(n) =T(2n/3) + k

has solution T(n) = O(log n)

[hint: try a guess involving log;, N]

49

Pros and Cons of Guess and Check

+ Forany recurrence, given right guess, can prove thatit is correct.
+ Canuse separate upper-, lower-bound proofs to prove O result.

50

Pros and Cons of Guess and Check

+ Forany recurrence, given right guess, can prove thatit is correct.
+ Canuse separate upper-, lower-bound proofs to prove O result.

- You muststart from acorrectguess
- Guessing the right constants and lower-order terms to make the
iInduction work can be quite challenging

51

Pros and Cons of Guess and Check

+ Forany recurrence, given right guess, can prove thatit is correct.
+ Canuse separate upper-, lower-bound proofs to prove O result.

- You muststart from acorrect guess

- Guessing the right constants and lower-order terms to make the
iInduction work can be quite challenging

Can we take the guess-work out of solving recurrences?

52

Pros and Cons of G
+ Forany recurreng In general’ no.

hat it is correct.

+ Canuse separg e O result.
You muststa (It S a blt Ilke
Guessingther flndlng values) make the

induction work for c and n o N
a Big-Oh

Can we take the g¥ proof) g recurrences?

53

Pros and Cons of G

+ Forany recurreng In gen eral : no. hat it is correct.

+ Canuse separg e O result.
You muststa
Guessingther) make the

But for certain
common cases,
there’s a way.

induction work

Can we take the g% g recurrences?

54

A Very Common Case

e You have an algorithm FOO that runs on an input of size n.

e FOO does some local work.

e FOO makes some recursive calls on inputs whose size
Is a fraction of n.

FOO (A[l..n])
FOO(A[l..n/2])
Print (A)
FOO(A[n/2+1. .n])

55

A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

FOO (A[l..n])
FOO(A[l..n/2])
Print (A)
FOO(A[n/2+1. .n])

56

A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

_ _ FOO (A[1..n])
a=2 b=2 FOO(A[1l..n/2])
Print (A)
f(n) =cn FOO(A[n/2+1..n])

o7

A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

T(n) = aT(n/b) + f(n)

58

A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

T(n) = aT(n/b) + f(n)

Assumes T(n) = constant for small enough n — see Studio 4 for more on this .

Examples That Fit the Paradigm

Binary search: T(n) = T(n/2) + ¢
Merge sort: T(n) = 2T(n/2) + cn

Strassen’s matrix multiply: T(n) = 7T(n/2) + ¢cn?

Maximum subarray: T(n)=2T(n/2) +c

60

http://www.utdallas.edu/~daescu/maxsa.pdf

New Strategy

e Wecould, in principle, expand the recurrence to a sum of terms
(as we sketched for heapify) and add them up

e Eg.,T(N)=T(n/2)+c=(T(n/4)+c)+c=((T(n/8)+c)+c)+c=...

=c+Cc+cCct+...+C

. J
Y

How many times?

61

New Strategy

e Wecould, in principle, expand the recurrence to a sum of terms
(as we sketched for heapify) and add them up

e Eg.,T(N)=T(n/2)+c=(T(n/4)+c)+c=((T(n/8)+c)+c)+c=...

=c+Cc+cCct+...+C

. J
Y

About log, n times

= 0O(log n)

62

New Strategy

e Weco 2rms

e Eg. We'll develop a way to compute .

this sum for any recurrence of
form T(n) = aT(n/b) + f(n)

63

ldea: Draw a Picture!

e We'lldraw a tree showing all the terms in the recurrence.

e It's called a recursion tree.

o Each node records work of one term in expansion of
recurrence.

o Add up work over all nodes to get total work.

64

Example: T(n) = T(n/2) + c

e RoOot contains first term @ T(n)
of expansion

65

Example: T(n) = T(n/2) + c

e RoOot contains first term @ T(n)
of expansion

66

Example: T(n) = T(n/2) + c

e Expand once to get
secondterm

T(n)

T(n/2)

67

Example: T(n) = T(n/2) + c

e Now repeat...

T(n)

T(n/2)

T(n/4)

68

Example: T(n) = T(n/2) + c

e \What'sthe generic term
(after j steps)?

T(n)

T(n/2)

T(n/4)

T(n/?27)

69

Example: T(n) = T(n/2) + c

e \What'sthe generic term T(n)
(after | steps)?

e Wedivide by 2,] times, T(n/2)
hence T(n/2)
e Eachtermis still just “c” T(n/4)

@ T(n/2))

70

Example: T(n) = T(n/2) + c
e \What'sthe last term? T(n)

e (Assumen is power of 2) T(n/2)

e \Whatis the last term?
T(n/4)

@ T(n/2))
Q T(22?)

71

Example: T(n) = T(n/2) + c
e \What'sthe last term? T(n)

e (Assumen is power of 2) T(n/2)

e WestopatT(1) .
n

e Whatis T(1)? :
@ T(n/2))
O [

72

Example: T(n) = T(n/2) + c
e \What'sthe last term? T(n)

e (Assumen is power of 2) T(n/2)

e WestopatT(1) .
n

e Whatis T(1)? :
@ T(n/2))

e WeassumedT(1l)=c :
Oh"

73

O-OOOC

Depth

27?7

Accounting

Problem Size = Local Work T(n)=T(n/2) +c
0 c
n/2 C
n/4 c
n/2i c
1 c

74

OO

Depth Problem Size Local Work
0 n C
1 n/2 C
2 n/4 C
j n/2) C
log,n 1 C

Accounting
T(n)=T(n/2) +c

Max depth =

of divisions by 2
needed to get from
n down to 1.

75

020207020

Depth

log, N

Problem Size

n/2

n/4

n/2l

Local Work

Accounting

T(n) = T(n/2) + ¢

>

Total work is sum of
local work in each row

76

020207020

Accounting
T(n) =T(n/2) +C

" C z
n/4 C > C
n/2; ﬁ

Depth Problem Size Local Work

77

O202070%0

Depth

log, N

Problem Size

n/2

n/4

n/2l

Local Work

Accounting
T(n) =T(n/2) +C

log, n
SR
J=0

=c (log,n +1)
= 0(log n)

78

Recursion Tree Methodology

o Given recurrence...

o Sketch the tree (figure out its height!)

e Figure out problem size and local work/node at each level
e Sum local work over whole tree

79

Example: T(n) = 2T(n/2) + cn

[Assume T(1) = d]

e RoOot contains first term @ T(n)

of expansion

80

Example: T(n) = 2T(n/2) + cn

e There are two
subproblems at next
level

[Assume T(1) = d]

T(n)

T(n/2)

81

Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e How much work in each ° T(n)

node?
ONROL"

82

Example: T(n) = 2T(n/2) + cn

e How much work in each
node?

e Cn/2 [butit doesn’tfitin
the circles]

e Let'sjustdraw the
tree...

[Assume T(1) = d]

T(n)

T(n/2)

83

Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e Let'sjustdraw the T(n)
tree...
T(n/2)
e # of nodes doubles at

each level (a = 2) T(n/4)

84

Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e Let'sjustdraw the T(n)
tree...

T(n/2)
e # of nodes doubles at

each level (a = 2) T(n/4)

e After | steps, we have .

2 nodes at level | Q . Q T(n/2))

85

Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e Let'sjustdraw the ()
tree...
T(n/2)
e # of nodes doubles at
each level (a = 2) Ta)

o After j steps, we have

2 nodes at level | Q Q
e Bottomoutat T(1)
again Q O T(1) g6

T(n/2))

T(n) = 2T(n/2) + cn
T(1) =d

O O
O O

Depth Problem # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
J n/2) 227?
log, n 1

T(n) = 2T(n/2) + cn
T(1) =d

O O
O O

Depth Problem # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
| n/2i %)
log, n 1 ?2?7?

(ae)
Qo

T(n) =2T(n/2) + cn
T(1)=d

O O
O O

Denth Problem # Nodes Per Local Work
P Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
j n/2i 2]
|
log, n 1 » plogn

o
(o)

T(n) = 2T(n/2) + cn
T(1) =d

O O
O O

Depth Problem # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
| n/2i)
log, n 1 n

©
(e»)

T(n) =2T(n/2) + cn

T(1) = d

O O

Depth

Problem | # Nodes Per
Size Level
n 1
n/2 2
n/4 4
n/2) 2)
1 n

Local Work
per Node

cn

cn/2

P77

(o)
o

T(n) =2T(n/2) + cn

T(1) = d

O O

Depth

Problem # Nodes Per Local Work
Size Level per Node
n 1 cn
n/2 2 cn/2
n/4 4 » cn/4
n/2l 2! 27?7
1 n

(o]
N

T(n) =2T(n/2) + cn - - e
roblem # Nodes Per Local Wor
T(l) =d N\ Depth Size Level per Node
0 n 1 ch
1 n/2 2 ch/2
2 n/4 4 cn/4
W
j n/2; 2] > cn/2

O O
O O

log Substitute problem size into f(n)

v

T(n) =2T(n/2) + cn

T(1) = d

O O

Depth

Problem
Size

n/2

n/4

n/2!

Nodes Per
Level

1

2

Local Work

per Node

cn

cn/2

cn/4

cn/2i

277

©
I

T(n) =2T(n/2) + cn
T(1)=d

Depth

Problem
Size

Nodes Per
Level

Local Work
per Node

cn

cn/2

cn/4

cn/2i

(o]
an

T(n) =2T(n/2) + cn

Problem # Nodes Per Local Work Local Work

Depth Size Level per Node per Level
0 n 1 cn 1xcen Multiply across each
level to get its work
1 n/2 2 cn/2 2 xcn/2
2 n/4 4 cn/4 4 x cn/4
j n/2i 2! cn/2! 2 x cn/2i
log, N 1 n d nxd
96

T(n) =2T(n/2) + cn

Problem # Nodes Per Local Work Local Work

Depth Size Level per Node per Level
0 n 1 cn cn (Simplifica’_tion_isn’t
always this nice)
1 n/2 2 cn/2 cn
2 n/4 4 cn/4 cn
J n/2i 2 cn/2i cn
log, N 1 n d dn

97

Depth

log, N

Problem
Size

n/2

n/4

n/2!

Nodes Per
Level

9

Local Work
per Node

chn

ch/2

ch/4

cn/2l

T(n) =2T(n/2) + cn

Local Work
per Level

cnhn

chn

chn

cn

dn

\

>dn+

log, n—1

5
j=0

98

Depth

log, N

Problem
Size

n/2

n/4

n/2!

Nodes Per
Level

9

Local Work
per Node

chn

ch/2

ch/4

cn/2l

T(n) =2T(n/2) + cn

Local Work
per Level

cnhn

chn

chn

cn

dn

\

log, n—1

>dn+ Z cn
j=0

=dn+cnlog,n

=0O(n log n)

99

Recursion Tree Methodology (Again)

o Given recurrence...
o Sketch the tree (figure out its height!)

e Figure out problem size, # nodes, and local work/node at
each level

e Sum local work at each level, then across levels

100

Example: T(n) = 3T(n/4) + cn? [T(1) =d]

e [This one is worked In your text as well — see p. 89]

101

Example: T(n) = 3T(n/4) + cn? [T(1) =d]

e Thistime, a =3, soO

each node branches

3 ways! &
O O
() O

102

Example: T(n) = 3T(n/4) + cn? [T(1) =d]

e Thistime, a =3, so T(n)

each node branches
T(n/4)
e O/gé
T(n/16)

e Thistime, b =4, so
problem size goes

down by factor of 4 Q

per level.
()

T(n/4))

O O

T(1) _)3

T(n) = 3T(n/4) + cn?

T(1)=d

O
O

oo

O
O

Depth

277

Problem # Nodes Per
Size Level

n

n/4

n/16

n/4i

Local Work

per Node

T(n) = 3T(n/4) + cn?

T(1) =d
oo

O
O

O
O

Depth Problem # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/4 3
2 n/16 277
] n/4
log,n 1

T(n) = 3T(n/4) + cn?

T(1)=d Depth Pfgibz'gm
0 n

Q _) O 2 n/16
O O i na

log,n 1

Nodes Per Local Work
Level per Node

1

P77

T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

Nodes Per
Level

1

3

777

Local Work

per Node

=

S

T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

Nodes Per
Level

1

3

310g411

Local Work

per Node

A Brief Diversion

alo8pn=qlogan logp a by change of base log, n =log, nlog, a
= nlogb a

alogb n _— nlogb a

109

T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

Nodes Per
Level

1

Local Work

per Node

T(n) = 3T(n/4) + cn?
T(1)=d

szt

O 4+ O
O " O

Depth Problem | # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/4 3
2 n/16 9
J n/4 3
> nlog4 3

Please simplify to this form! ===

[NEY
[EEN

T(n) = 3T(n/4) + cn?

Problem
T(l) — d Depth Size
0 n

O 2 n/16
O

j n/4i

O
O

log,n 1

Nodes Per
Level

Local Work
per Node

ch?

P77

[HEY
[IEY
NS

T(n) = 3T(n/4) + cn?

T(1) = d Deptn | g
0 n
&) 1 n/4
2 n/16

O & O
O . Q j n/4

log,n 1

Nodes Per
Level

Local Work
per Node

ch?

c(n/4)?

l._\
|.A
CI.J

T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

Nodes Per
Level

1

Local Work
per Node

cn?
c(n/4)?
c(n/16)2
c(n/4))2

277

|._\
|.A
~

T(n) = 3T(n/4) + cn?

T(1) = d Oeptn e
0 n

O . . O 2 n/16
O O i na

log,n 1

Nodes Per
Level

1

Local Work
per Node

cn?
c(n/4)?
c(n/16)2

c(n/4))2

=
=
c‘n

T(n) = 3T(n/4) + cn?

Problem # Nodes Per Local Work Local Work

Depth Size Level per Node per Level
0 n 1 ch?
1 n/4 3 c(n/4)?
2 n/16 9 c(n/16)?
j n/4) 3 c(n/4))?
log,n 1 nlogs 3 d

116

T(n) = 3T(n/4) + cn?

Problem # Nodes Per Local Work Local Work

Depth Size Level oer Node oer Level
0 n 1 cn? 1 x cn?
1 n/4 3 c(n/4)? 3 x ¢c(n/4)?
2 n/16 9 c(n/16)? | 9 x c(n/16)?
j n/4 3 c(n/4)?2 3 x c(n/4))?
log,n 1 nlo8a3 d dnlo8a 3

117

Depth

2

log,n

Problem
Size

n/4

n/16

n/4

1

Nodes Per
Level

3

nlog4 3

Local Work
per Node

ch?
c(n/4)?
c(n/16)?

c(n/4))2

T(n) = 3T(n/4) + cn?

Local Work
per Level

cn?
3c(n/4)?
9c¢c(n/16)?
3 c(n/4))2

dnlog4 3

118

T(n) = 3T(n/4) + cn?

Depth Pro_blem # Nodes Per Local Work Local Work
Size Level per Node per Level
0
1
2
J
log,n 1 nlogs3 d dnlo8a 3

119

Switch to separate PDF for algebraic resolution of
this formula into an asymptotic complexity

120

End of Lecture 4

121

