
Lecture 4:

Analyzing

Complexity

via

Recurrences

1
These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements: Lab 3

● Pre-lab due Tuesday (tonight!) at 11:59 PM

● Code and Post-lab due Friday at 11:59 pm

○ Pre- and post-labs via Gradescope (usual writeup standards)

○ Code in your Bitbucket repo

○ Please verify that your work has been checked in by looking at your repo via the

browser, and double-checking Gradescope

■ Avoid pull-before-push failure

● Academic Integrity (the other AI)

■ Many, many legitimate resources

■ Don't panic, even at last minute—reach out instead

● Zero credit w/explanation is much, much better than an AI case

■ Previous semesters ==> many cases from Lab 3 reported to Dean's office

■ This semester ==> can we go for zero??
2

Announcements: Exam 1

● Wednesday 2/20 6:30-8:30 PM – rooms TBA (Piazza)

● Please see Piazza for details (forthcoming), especially if

you must reschedule for religious or other acceptable

reasons

● Covers Lectures and Studios 0-4

● Exam review Sunday, Feb. 17, 2-5 pm Louderman 458

(instead of recitation)

● A practice exam will be posted this week

3

Last Time: Cost of heapify

● We gave a recursive procedure for heapify

● We defined its running time to be T(n) on a heap of size n

● We derived a recursive formula (recurrence) for T(n)

T(n) = T(2n/3) + k

We magically solved this recurrence: T(n) = Θ(log n)

5

Solution is

empirically correct!

6

Solution is

empirically correct!

But how did we get it?

Strategies We Will Consider

● Problem: given a recurrence for T(n), find a closed-

form asymptotic complexity function that satisfies the

recurrence.

● Possible strategies

● Guess and check (a.k.a. substitution)

● Recursion tree accounting (for certain kinds of recurrence)

● Master Method (next time)

7

Guess and Check

● Guess an exact (not asymptotic) function f(n) for T(n)

● Prove that f(n) satisfies the recurrence for all n > 0

● Proof is inductive on n

● [Requires that we know a base case for the recurrence]

8

Example

● T(n) = T(n-1) + k

● Let’s say T(1) = k

9

Example

● T(n) = T(n-1) + k

● Let’s say T(1) = k

● What solution should we guess?

10

Example

● T(n) = T(n-1) + k

● Let’s say T(1) = k

● Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.

11

Example

● T(n) = T(n-1) + k

● Let’s say T(1) = k

● Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.

● Claim: T(n) = nk

12

Example: Proof [T(n) = T(n-1) + k]

● Claim: T(n) = nk

● By induction on n

13

Example: Proof [T(n) = T(n-1) + k]

● Claim: T(n) = nk

● By induction on n

● Bas (n=1): T(1) = k = 1*k  claim holds!

14

Example: Proof [T(n) = T(n-1) + k]

● Claim: T(n) = nk

● By induction on n

● Bas (n=1): T(1) = k = 1*k  claim holds!

● Ind (n > 1): assume true for m < n.

15

Example: Proof [T(n) = T(n-1) + k]

● Claim: T(n) = nk

● By induction on n

● Bas (n=1): T(1) = k = 1*k  claim holds!

● Ind (n > 1): assume true for m < n.

● T(n) = T(n-1) + k = (n-1)k + k

16

Example: Proof [T(n) = T(n-1) + k]

● Claim: T(n) = nk

● By induction on n

● Bas (n=1): T(1) = k = 1*k  claim holds!

● Ind (n > 1): assume true for m < n.

● T(n) = T(n-1) + k = (n-1)k + k

17

By IH, we can algebraically

substitute T(m) by proposed

f(m) for m < n on the RHS

Example: Proof [T(n) = T(n-1) + k]

● Claim: T(n) = nk

● By induction on n

● Bas (n=1): T(1) = k = 1*k  claim holds!

● Ind (n > 1): assume true for m < n.

● T(n) = T(n-1) + k = (n-1)k + k = nk  claim holds!

● Conclude that T(n) indeed = nk = Θ(n)

18

A Slightly More Interesting Example

● Binary search: an algorithm for finding a value in a sorted array

● Problem: Given sorted array A of size n, and a query value x…

● If x occurs in A, return an index j s.t. A[j] = x

● If x does not occur in A, return special value “notFound”

19

3 5 6 17 22 23 30 48

0 1 2 3 4 5 6 7

Algorithm Idea

● Divide the array in half, and look at the middle element A[mid]

● If A[mid] < x, x must be in the ________ half of A if it appears at all.

20

Algorithm Idea

● Divide the array in half, and look at the middle element A[mid]

● If A[mid] < x, x must be in the upper half of A if it appears at all.

● If A[mid] > x, x must be in the _____ half of A if it appears at all.

21

Algorithm Idea

● Divide the array in half, and look at the middle element A[mid]

● If A[mid] < x, x must be in the upper half of A if it appears at all.

● If A[mid] > x, x must be in the lower half of A if it appears at all.

● In either case, recursively look for x in the appropriate half of A.

22

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

23

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

24

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

25

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

26

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

27

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

28

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

29

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

30

3 5 6 17 22 23 30 48

Example of Binary Search

Binary search

● Looking for 3
○ Try a middle element

○ From there, discard ½

○ Repeat

● Found it!

31

3 5 6 17 22 23 30 48

Binary Search

● You’ll study the code and correctness of binary search

more deeply in Studio 5.

● For today, let’s focus on a rough running time analysis.

32

Binary Search

● We start with an array of size n.

● At each step, we

○ do constant work (compare midpoint of A to x)

○ cut the problem size in half

○ recur on the appropriate half

33

Binary Search

● We start with an array of size n. T(n)

● At each step, we

○ do constant work (compare midpoint of A to x) c

○ cut the problem size in half

○ recur on the appropriate half T(n/2)

34

Binary Search Recurrence

● T(n) = T(n/2) + c

● What’s the base case?

● If not specified, assume it is some constant for T(1)

● Which constant doesn’t affect asymptotic solution

→ pick for convenience

● (More on this in Studio 4) 35

Guessing Running Time

● Is T(n) constant-time?

● Let’s guess T(n) = c

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = ??? [what does substitution yield?]

36

Guessing Running Time

● Is T(n) constant-time?

● Let’s guess T(n) = c

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = c + c = 2c

● But we are trying to prove that T(n) = c, so proof failed!

37

Guessing Running Time

● Is T(n) constant-time?

● Let’s guess T(n) = c

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = c + c = 2c

● But we are trying to prove that T(n) = c, so proof failed!

● (And indeed, can see that no other constant > 0 would work either)

38

Guessing Running Time, Try #2

● Is T(n) linear-time?

● Let’s guess T(n) = cn

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = ???

39

Guessing Running Time, Try #2

● Is T(n) linear-time?

● Let’s guess T(n) = cn

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = cn/2 + c  not cn as desired! Proof fails, but…

40

Guessing Running Time, Try #2

● Is T(n) linear-time?

● Let’s guess T(n) = cn

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = cn/2 + c = c(n/2 + 1) ≤ cn for n ≥ 2

41

Guessing Running Time, Try #2

● Is T(n) linear-time?

● Let’s guess T(n) = cn

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = cn/2 + c = c(n/2 + 1) ≤ cn for n ≥ 2

● Conclude that T(n) ≤ cn for all n.

● Therefore, T(n) = ??? [asymptotically]

42

Guessing Running Time, Try #2

● Is T(n) linear-time?

● Let’s guess T(n) = cn

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = cn/2 + c = c(n/2 + 1) ≤ cn for n ≥ 2

● Conclude that T(n) ≤ cn for all n.

● Therefore, T(n) = O(n)  proving ≤ implies upper bound

43

Guessing Running Time, Try #2

● Is T(n) linear-time?

● Let’s guess T(n) = cn

● Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

● T(n) = T(n/2) + c = cn/2 + c = c(n/2 + 1) ≤ cn for n ≥ 2

● Conclude that T(n) ≤ cn for all n.

● Therefore, T(n) = O(n) -proving ≤ implies upper bound

44

We need to prove either an equality

(as before) or both an upper and a

lower bound to prove Θ.

Guessing Running Time, Try #3

● Is T(n) logarithmic-time?

● Let’s guess T(n) = c log2 n

● If T(1) = c… c log2 1 = 0 ≠ c. Whoops.

45

Guessing Running Time, Try #3

● Is T(n) logarithmic-time?

● Let’s guess T(n) = c log2 n

● T(1) = c log2 1 = 0 ≠ c. Whoops.

46

Guessing Running Time, Try #3

● Is T(n) logarithmic-time?

● Let’s guess T(n) = c log2 n

● T(2) = c log2 2 = c. So induction will start at n = 2 (fine for asymptotic!)

● T(n) = T(n/2) + c

= c log2(n/2) + c

= c(log2 n – log2 2) + c

= c log2 n – c + c

= c log2 n  Yay, it worked! So T(n) =Θ(log n)

47

Guessing Running Time, Try #3

● Is T(n) logarithmic-time?

● Let’s guess T(n) = c log2 n

● T(2) = c log2 2 = c. So induction will start at n = 2 (fine for asymptotic!)

● T(n) = T(n/2) + c

= c log2(n/2) + c

= c(log2 n – log2 2) + c

= c log2 n – c + c

= c log2 n  Yay, it worked! So T(n) =Θ(log n)

48

EXERCISE

Apply the same logic to show that

T(n) = T(2n/3) + k

has solution T(n) = Θ(log n)

Guessing Running Time, Try #3

● Is T(n) logarithmic-time?

● Let’s guess T(n) = c log2 n

● T(2) = c log2 2 = c. So induction will start at n = 2 (fine for asymptotic!)

● T(n) = T(n/2) + c

= c log2(n/2) + c

= c(log2 n – log2 2) + c

= c log2 n – c + c

= c log2 n  Yay, it worked! So T(n) =Θ(log n)

49

EXERCISE

Apply the same logic to show that

T(n) = T(2n/3) + k

has solution T(n) = Θ(log n)

[hint: try a guess involving log3/2 n]

Pros and Cons of Guess and Check

+ For any recurrence, given right guess, can prove that it is correct.

+ Can use separate upper-, lower-bound proofs to prove Θ result.

50

Pros and Cons of Guess and Check

+ For any recurrence, given right guess, can prove that it is correct.

+ Can use separate upper-, lower-bound proofs to prove Θ result.

- You must start from a correct guess

- Guessing the right constants and lower-order terms to make the

induction work can be quite challenging

51

Pros and Cons of Guess and Check

+ For any recurrence, given right guess, can prove that it is correct.

+ Can use separate upper-, lower-bound proofs to prove Θ result.

- You must start from a correct guess

- Guessing the right constants and lower-order terms to make the

induction work can be quite challenging

52

Can we take the guess-work out of solving recurrences?

Pros and Cons of Guess and Check

+ For any recurrence, given right guess, can prove that it is correct.

+ Can use separate upper-, lower-bound proofs to prove Θ result.

- You must start from a correct guess

- Guessing the right constants and lower-order terms to make the

induction work can be quite challenging

53

Can we take the guess-work out of solving recurrences?

In general, no.

(It’s a bit like

finding values

for c and n_0 in

a Big-Oh

proof)

Pros and Cons of Guess and Check

+ For any recurrence, given right guess, can prove that it is correct.

+ Can use separate upper-, lower-bound proofs to prove Θ result.

- You must start from a correct guess

- Guessing the right constants and lower-order terms to make the

induction work can be quite challenging

54

Can we take the guess-work out of solving recurrences?

In general, no.

But for certain

common cases,

there’s a way.

A Very Common Case

● You have an algorithm FOO that runs on an input of size n.

● FOO does some local work.

● FOO makes some recursive calls on inputs whose size

is a fraction of n.

55

FOO(A[1..n])

FOO(A[1..n/2])

Print(A)

FOO(A[n/2+1..n])

A Very Common Case

● FOO takes time T(n) on input of size n.

● FOO does some local work taking time f(n).

● FOO makes a recursive calls on inputs of size n/b.

56

FOO(A[1..n])

FOO(A[1..n/2])

Print(A)

FOO(A[n/2+1..n])

A Very Common Case

● FOO takes time T(n) on input of size n.

● FOO does some local work taking time f(n).

● FOO makes a recursive calls on inputs of size n/b.

57

FOO(A[1..n])

FOO(A[1..n/2])

Print(A)

FOO(A[n/2+1..n])

a = 2 b = 2

f(n) = cn

A Very Common Case

● FOO takes time T(n) on input of size n.

● FOO does some local work taking time f(n).

● FOO makes a recursive calls on inputs of size n/b.

58

T(n) = aT(n/b) + f(n)

A Very Common Case

● FOO takes time T(n) on input of size n.

● FOO does some local work taking time f(n).

● FOO makes a recursive calls on inputs of size n/b.

59

T(n) = aT(n/b) + f(n)

Assumes T(n) = constant for small enough n – see Studio 4 for more on this

Examples That Fit the Paradigm

● Binary search: T(n) = T(n/2) + c

● Merge sort: T(n) = 2T(n/2) + cn

● Strassen’s matrix multiply: T(n) = 7T(n/2) + cn2

● Maximum subarray: T(n) = 2T(n/2) + c

60

http://www.utdallas.edu/~daescu/maxsa.pdf

New Strategy

● We could, in principle, expand the recurrence to a sum of terms

(as we sketched for heapify) and add them up

● E.g., T(n) = T(n/2) + c = (T(n/4) + c) + c = ((T(n/8) + c) + c) + c = …

= c + c + c + … + c

61

How many times?

New Strategy

● We could, in principle, expand the recurrence to a sum of terms

(as we sketched for heapify) and add them up

● E.g., T(n) = T(n/2) + c = (T(n/4) + c) + c = ((T(n/8) + c) + c) + c = …

= c + c + c + … + c

= Θ(log n)

62

About log2 n times

New Strategy

● We could, in principle, expand the recurrence to a sum of terms

(as we sketched for heapify) and add them up

● E.g., T(n) = T(n/2) + c = (T(n/4) + c) + c = ((T(n/8) + c) + c) + c = …

= c + c + c + … + c

= Θ(log n)

63

About log2 n times

We’ll develop a way to compute

this sum for any recurrence of

form T(n) = aT(n/b) + f(n)

Idea: Draw a Picture!

● We’ll draw a tree showing all the terms in the recurrence.

● It’s called a recursion tree.

● Each node records work of one term in expansion of

recurrence.

● Add up work over all nodes to get total work.

64

● Root contains first term

of expansion

Example: T(n) = T(n/2) + c

65

c T(n)

● Root contains first term

of expansion

Example: T(n) = T(n/2) + c

66

c T(n)

● Expand once to get

second term

Example: T(n) = T(n/2) + c

67

c T(n)

c T(n/2)

● Now repeat…

Example: T(n) = T(n/2) + c

68

c T(n)

c T(n/2)

c T(n/4)

● What’s the generic term

(after j steps)?

Example: T(n) = T(n/2) + c

69

c T(n)

c T(n/2)

c T(n/4)

c T(n/???)

● What’s the generic term

(after j steps)?

● We divide by 2, j times,

hence T(n/2j)

● Each term is still just “c”

Example: T(n) = T(n/2) + c

70

c T(n)

c T(n/2)

c T(n/4)

c T(n/2j)

● What’s the last term?

● (Assume n is power of 2)

● What is the last term?

Example: T(n) = T(n/2) + c

71

c T(n)

c T(n/2)

c T(n/4)

c T(n/2j)

T(???)

● What’s the last term?

● (Assume n is power of 2)

● We stop at T(1)

● What is T(1)?

Example: T(n) = T(n/2) + c

72

c T(n)

c T(n/2)

c T(n/4)

c T(n/2j)

T(1)

● What’s the last term?

● (Assume n is power of 2)

● We stop at T(1)

● What is T(1)?

● We assumed T(1) = c

Example: T(n) = T(n/2) + c

73

c T(n)

c T(n/2)

c T(n/4)

c T(n/2j)

c T(1)

74

c

c

c

c

c

Depth Problem Size Local Work

0 n c

1 n/2 c

2 n/4 c

j n/2j c

??? 1 c

Accounting

T(n) = T(n/2) + c

75

c

c

c

c

c

Depth Problem Size Local Work

0 n c

1 n/2 c

2 n/4 c

j n/2j c

log2 n 1 c

Accounting

T(n) = T(n/2) + c

Max depth =

of divisions by 2

needed to get from

n down to 1.

76

c

c

c

c

c

Depth Problem Size Local Work

0 n c

1 n/2 c

2 n/4 c

j n/2j c

log2 n 1 c

Accounting

T(n) = T(n/2) + c

Total work is sum of

local work in each row

77

c

c

c

c

c

Depth Problem Size Local Work

0 n c

1 n/2 c

2 n/4 c

j n/2j c

log2 n 1 c

Accounting

T(n) = T(n/2) + c

78

c

c

c

c

c

Depth Problem Size Local Work

0 n c

1 n/2 c

2 n/4 c

j n/2j c

log2 n 1 c

Accounting

T(n) = T(n/2) + c

= c (log2 n + 1)

= Θ(log n)

Recursion Tree Methodology

● Given recurrence…

● Sketch the tree (figure out its height!)

● Figure out problem size and local work/node at each level

● Sum local work over whole tree

79

● Root contains first term

of expansion

Example: T(n) = 2T(n/2) + cn [Assume T(1) = d]

80

cn T(n)

● There are two

subproblems at next

level

Example: T(n) = 2T(n/2) + cn [Assume T(1) = d]

81

cn T(n)

T(n/2)

● How much work in each

node?

Example: T(n) = 2T(n/2) + cn [Assume T(1) = d]

82

cn T(n)

? ? T(n/2)

● How much work in each

node?

● cn/2 [but it doesn’t fit in

the circles]

● Let’s just draw the

tree…

Example: T(n) = 2T(n/2) + cn [Assume T(1) = d]

83

cn T(n)

T(n/2)

● Let’s just draw the

tree…

● # of nodes doubles at

each level (a = 2)

Example: T(n) = 2T(n/2) + cn [Assume T(1) = d]

84

T(n)

T(n/2)

T(n/4)

● Let’s just draw the

tree…

● # of nodes doubles at

each level (a = 2)

● After j steps, we have

2j nodes at level j

Example: T(n) = 2T(n/2) + cn [Assume T(1) = d]

85

T(n)

T(n/2)

T(n/4)

...

...

T(n/2j)

● Let’s just draw the

tree…

● # of nodes doubles at

each level (a = 2)

● After j steps, we have

2j nodes at level j

● Bottom out at T(1)

again

Example: T(n) = 2T(n/2) + cn [Assume T(1) = d]

86

T(n)

T(n/2)

T(n/4)

...

...

T(n/2j)...

T(1)

87

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/2 2

2 n/4 4

j n/2j ???

log2 n 1

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

88

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/2 2

2 n/4 4

j n/2j 2j

log2 n 1 ???

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

89

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/2 2

2 n/4 4

j n/2j 2j

log2 n 1

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

2log2 𝑛

90

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/2 2

2 n/4 4

j n/2j 2j

log2 n 1 n

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

91

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn

1 n/2 2 cn/2

2 n/4 4 ???

j n/2j 2j

log2 n 1 n

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

92

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn

1 n/2 2 cn/2

2 n/4 4 cn/4

j n/2j 2j ???

log2 n 1 n

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

93

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn

1 n/2 2 cn/2

2 n/4 4 cn/4

j n/2j 2j cn/2j

log2 n 1 n

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

Substitute problem size into f(n)

94

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn

1 n/2 2 cn/2

2 n/4 4 cn/4

j n/2j 2j cn/2j

log2 n 1 n ???

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

95

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn

1 n/2 2 cn/2

2 n/4 4 cn/4

j n/2j 2j cn/2j

log2 n 1 n d

T(n) = 2T(n/2) + cn

T(1) = d

...

...
...

96

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn 1 x cn

1 n/2 2 cn/2 2 x cn/2

2 n/4 4 cn/4 4 x cn/4

j n/2j 2j cn/2j 2j x cn/2j

log2 n 1 n d n x d

T(n) = 2T(n/2) + cn

Multiply across each

level to get its work

97

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn cn

1 n/2 2 cn/2 cn

2 n/4 4 cn/4 cn

j n/2j 2j cn/2j cn

log2 n 1 n d dn

T(n) = 2T(n/2) + cn

(Simplification isn’t

always this nice)

98

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn cn

1 n/2 2 cn/2 cn

2 n/4 4 cn/4 cn

j n/2j 2j cn/2j cn

log2 n 1 n d dn

T(n) = 2T(n/2) + cn

99

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn cn

1 n/2 2 cn/2 cn

2 n/4 4 cn/4 cn

j n/2j 2j cn/2j cn

log2 n 1 n d dn

T(n) = 2T(n/2) + cn

= dn + cn log2 n

= Θ(n log n)

Recursion Tree Methodology (Again)

● Given recurrence…

● Sketch the tree (figure out its height!)

● Figure out problem size, # nodes, and local work/node at

each level

● Sum local work at each level, then across levels

100

Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● [This one is worked in your text as well – see p. 89]

101

Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● This time, a = 3, so

each node branches

3 ways!

102

...

...
...

Example: T(n) = 3T(n/4) + cn2 [T(1) = d]

● This time, a = 3, so

each node branches

3 ways!

● This time, b = 4, so

problem size goes

down by factor of 4

per level.

103

T(n)

T(n/4)

T(n/16)

...

...

T(n/4j)...

T(1)

104

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n

1 n/4

2 n/16

j n/4j

??? 1

T(n) = 3T(n/4) + cn2

T(1) = d

105

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 ???

j n/4j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

106

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j ???

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

107

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1 ???

T(n) = 3T(n/4) + cn2

T(1) = d

108

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

3log4 𝑛

A Brief Diversion

𝑎log𝑏𝑛=𝑎log𝑎 𝑛 log𝑏 𝑎 by change of base log𝑏 𝑛 = log𝑎 𝑛 log𝑏 𝑎

= 𝑛log𝑏 𝑎

109

110

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3

111

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1

1 n/4 3

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3Please simplify to this form!

112

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn2

1 n/4 3 ???

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3

113

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9

j n/4j 3j

log4n 1

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3

114

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9 c(n/16)2

j n/4j 3j c(n/4j)2

log4n 1 ???

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3

115

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9 c(n/16)2

j n/4j 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

T(1) = d

𝑛log4 3

116

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2

1 n/4 3 c(n/4)2

2 n/16 9 c(n/16)2

j n/4j 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3

117

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2 1 x cn2

1 n/4 3 c(n/4)2 3 x c(n/4)2

2 n/16 9 c(n/16)2 9 x c(n/16)2

j n/4j 3j c(n/4j)2 3j x c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3

118

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2 cn2

1 n/4 3 c(n/4)2 3c(n/4)2

2 n/16 9 c(n/16)2 9c(n/16)2

j n/4j 3j c(n/4j)2 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3

119

Depth
Problem

Size

Nodes Per

Level

Local Work

per Node

Local Work

per Level

0 n 1 cn2 cn2

1 n/4 3 c(n/4)2 3c(n/4)2

2 n/16 9 c(n/16)2 9c(n/16)2

j n/4j 3j c(n/4j)2 3j c(n/4j)2

log4n 1 d

T(n) = 3T(n/4) + cn2

𝑛log4 3 𝑑𝑛log4 3

120

Switch to separate PDF for algebraic resolution of

this formula into an asymptotic complexity

121

End of Lecture 4

