Lecture 4: Analyzing Complexity via Recurrences

These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements: Lab 3

- Pre-lab due **Tuesday** (tonight!) at 11:59 PM
- Code and Post-lab due Friday at 11:59 pm
 - Pre- and post-labs via Gradescope (usual writeup standards)
 - Code in your Bitbucket repo
 - Please verify that your work has been checked in by looking at your repo via the browser, and double-checking Gradescope
 - Avoid pull-before-push failure
- Academic Integrity (the other AI)
 - Many, many legitimate resources
 - Don't panic, even at last minute—reach out instead
 - Zero credit w/explanation is much, much better than an AI case
 - Previous semesters ==> many cases from Lab 3 reported to Dean's office
 - This semester ==> can we go for zero??

Announcements: Exam 1

- Wednesday 2/20 6:30-8:30 PM rooms TBA (Piazza)
- Please see Piazza for details (forthcoming), especially if you must reschedule for religious or other acceptable reasons
- Covers Lectures and Studios 0-4
- Exam review Sunday, Feb. 17, 2-5 pm Louderman 458 (instead of recitation)
- A practice exam will be posted this week

Last Time: Cost of heapify

- We gave a recursive procedure for heapify
- We defined its running time to be **T(n)** on a heap of size n
- We derived a *recursive formula* (*recurrence*) for T(n)

T(n) = T(2n/3) + k

We magically solved this recurrence: $T(n) = \Theta(\log n)$

	A	В	С	D	E	F	G	н	1	J	к	L	M	N
1	n	Cell holding value at 2*n/3	T(n)=T(2*n/3)+5			0								
2	1	SE\$1	5			ï								
3	2	\$F\$1	5											
4	3	\$C\$2	10								201	utior	IS	
5	4	\$C\$2	10											
6	5	\$C\$3	10							emi	Dirica	allv c	:orre	Ct!
7	6	\$C\$4	15											
8	7	\$C\$4	15											
9	8	\$C\$5	15											
10	9	\$C\$6	15											
11	10	\$C\$6	15											-
12	11	\$C\$7	20							T(n)=T(2)	*n/3)+5			
13	12	\$C\$8	20								11/07/0			
14	13	\$C\$8	20				70							[
15	14	\$C\$9	20											
16	15	\$C\$10	20				60				_			
17	16	\$C\$10	20											
18	17	\$C\$11	20				50							
19	18	\$C\$12	25						-					
20	19	\$C\$12	25				40							
21	20	\$C\$13	25					_						
22	21	\$C\$14	25				30							
23	22	\$C\$14	25											
24	23	\$C\$15	25				20							
25	24	\$C\$16	25											
26	25	\$C\$16	25				10							
27	26	\$C\$17	25				. T							
28	27	\$C\$18	25				0	100	200	3	00	400	500	600
29	28	\$C\$18	25				-			-				
30	29	\$C\$19	30											
31	30	\$C\$20	30											
32	31	\$C\$20	30											
33	32	\$C\$21	30											
34	33	\$C\$22	30											
35	34	\$C\$22	30											

	A	В	C	D	E	F	G	н	1	J	ĸ	L	M	N
	n	Cell holding value at 2*n/3	T(n)=T(2*n/3)+5			0								
2	1	SES1	5			i								
3	2	\$F\$1	5									.4		
4	3	\$C\$2	10								501	Jtion		
5	4	\$C\$2	10											
6	5	\$C\$3	10							empirically correct				Ct!
7	6	\$C\$4	15											
8	7	\$C\$4	15											
9	8	\$C\$5	15											_
10	9	\$C\$6	15											
11	10	\$C\$6												
12	11	444												
13	1													
10														

But how did we get it?

21	20													
22	21	SUPPO												
23	22	\$C\$14	6											
24	23	\$C\$15	25			_								
25	24	\$C\$16	25			F								
26	25	\$C\$16	25		10	Γ								
27	26	\$C\$17	25			T								
28	27	\$C\$18	25		0	0	100	200	30)	400	500	e	.00
29	28	\$C\$18	25			-								
30	29	\$C\$19	30											
31	30	\$C\$20	30											
32	31	\$C\$20	30											
33	32	\$C\$21	30											
34	33	\$C\$22	30											
35	34	\$C\$22	30											

Strategies We Will Consider

 Problem: given a recurrence for T(n), find a closedform asymptotic complexity function that satisfies the recurrence.

• Possible strategies

- Guess and check (a.k.a. substitution)
- Recursion tree accounting (for certain kinds of recurrence)
- Master Method (next time)

Guess and Check

- Guess an **exact** (not asymptotic) function f(n) for T(n)
- Prove that f(n) satisfies the recurrence for all n > 0
- Proof is inductive on n
- [Requires that we know a base case for the recurrence]

- T(n) = T(n-1) + k
- Let's say T(1) = k

- T(n) = T(n-1) + k
- Let's say T(1) = k
- What solution should we guess?

- T(n) = T(n-1) + k
- Let's say T(1) = k
- Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.

- T(n) = T(n-1) + k
- Let's say T(1) = k
- Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.
- Claim: T(n) = nk

- Claim: T(n) = nk
- By induction on n

- Claim: T(n) = nk
- By induction on n
- Bas (n=1): T(1) = k = 1^k \leftarrow claim holds!

- Claim: T(n) = nk
- By induction on n
- Bas (n=1): $T(1) = k = 1^k \leftarrow claim holds!$
- Ind (n > 1): assume true for m < n.

- Claim: T(n) = nk
- By induction on n
- Bas (n=1): $T(1) = k = 1^k \leftarrow claim holds!$
- Ind (n > 1): assume true for m < n.
- T(n) = T(n-1) + k = (n-1)k + k

- Claim: T(n) = nk
- By induction on n
- Bas (n=1): $T(1) = k = 1^k \leftarrow claim holds!$
- Ind (n > 1): assume true for m < n.
- T(n) = T(n-1) + k = (n-1)k

By IH, we can **algebraically substitute T(m) by** proposed **f(m)** for m < n on the RHS

- Claim: T(n) = nk
- By induction on n
- Bas (n=1): $T(1) = k = 1^k \leftarrow claim holds!$
- Ind (n > 1): assume true for m < n.
- $T(n) = T(n-1) + k = (n-1)k + k = nk \leftarrow claim holds!$
- Conclude that T(n) indeed = $nk = \Theta(n)$

A Slightly More Interesting Example

- **Binary search**: an algorithm for finding a value in a sorted array
- **Problem**: Given sorted array A of size n, and a *query value* x...
- If x occurs in A, return an index j s.t. A[j] = x
- If x does not occur in A, return special value "notFound"

Algorithm Idea

- Divide the array in half, and look at the middle element A[mid]
- If A[mid] < x, x must be in the _____ half of A if it appears at all.

Algorithm Idea

- Divide the array in half, and look at the middle element A[mid]
- If A[mid] < x, x must be in the **upper** half of A if it appears at all.
- If A[mid] > x, x must be in the _____ half of A if it appears at all.

Algorithm Idea

- Divide the array in half, and look at the middle element A[mid]
- If A[mid] < x, x must be in the **upper** half of A if it appears at all.
- If A[mid] > x, x must be in the **lower** half of A if it appears at all.
- In either case, recursively look for x in the appropriate half of A.

Binary search

• Looking for 3

- Try a middle element
- \circ From there, discard $\frac{1}{2}$
- Repeat

3	5	6	17	22	23	30	48
---	---	---	----	----	----	----	----

- Looking for 3
 - Try a middle element
 - \circ From there, discard $\frac{1}{2}$
 - Repeat

- Looking for 3
 - Try a middle element
 - \circ From there, discard $\frac{1}{2}$
 - Repeat

3 5	6	17
-----	---	----

- Looking for 3
 - Try a middle element
 - \circ From there, discard $\frac{1}{2}$
 - Repeat

3 5	6	17
-----	---	----

- Looking for 3
 - Try a middle element
 - \circ From there, discard $\frac{1}{2}$
 - Repeat

3 5	6	17
-----	---	----

- Looking for 3
 - Try a middle element
 - \circ From there, discard $\frac{1}{2}$
 - Repeat

Binary search

• Looking for 3

- Try a middle element
- \circ From there, discard $\frac{1}{2}$
- Repeat

- Looking for 3
 - Try a middle element
 - \circ From there, discard $\frac{1}{2}$
 - Repeat

Binary search

• Looking for 3

- Try a middle element
- \circ From there, discard $\frac{1}{2}$
- Repeat
- Found it!

- You'll study the code and correctness of binary search more deeply in Studio 5.
- For today, let's focus on a rough running time analysis.

Binary Search

• We start with an array of size n.

- At each step, we
 - do constant work (compare midpoint of A to x)
 - cut the problem size in half
 - recur on the appropriate half

Binary Search

• We start with an array of size n.

T(n/2)

- At each step, we
 - do constant work (compare midpoint of A to x)
 - cut the problem size in half
 - recur on the appropriate half

Binary Search Recurrence

- T(n) = T(n/2) + c
- What's the base case?
- If not specified, assume it is some constant for T(1)
- Which constant doesn't affect asymptotic solution
 → pick for convenience
- (More on this in Studio 4)

Guessing Running Time

- Is T(n) constant-time?
- Let's guess T(n) = c
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- T(n) = T(n/2) + c = ??? [what does substitution yield?]
Guessing Running Time

- Is T(n) constant-time?
- Let's guess T(n) = c
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- T(n) = T(n/2) + c = c + c = 2c
- But we are trying to prove that T(n) = c, so proof failed!

Guessing Running Time

- Is T(n) constant-time?
- Let's guess T(n) = c
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- T(n) = T(n/2) + c = c + c = 2c
- But we are trying to prove that T(n) = c, so proof failed!
- (And indeed, can see that no other constant > 0 would work either)

- Is T(n) linear-time?
- Let's guess T(n) = cn
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- T(n) = T(n/2) + c = ???

- Is T(n) linear-time?
- Let's guess T(n) = cn
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- T(n) = T(n/2) + c = cn/2 + c \leftarrow not cn as desired! Proof fails, *but*...

- Is T(n) linear-time?
- Let's guess T(n) = cn
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- $T(n) = T(n/2) + c = cn/2 + c = c(n/2 + 1) \le cn$ for $n \ge 2$

- Is T(n) linear-time?
- Let's guess T(n) = cn
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- $T(n) = T(n/2) + c = cn/2 + c = c(n/2 + 1) \le cn$ for $n \ge 2$
- Conclude that $T(n) \leq cn$ for all n.
- Therefore, T(n) = ??? [asymptotically]

- Is T(n) linear-time?
- Let's guess T(n) = cn
- Pick T(1) = c to make base case match [constant for T(1) doesn't matter!]
- $T(n) = T(n/2) + c = cn/2 + c = c(n/2 + 1) \le cn \text{ for } n \ge 2$
- Conclude that $T(n) \leq cn$ for all n.
- Therefore, T(n) = O(n) \leftarrow proving \leq implies upper bound

- Is T(n) linear-time?
- Let's guess T(n) = cn

- Is T(n) logarithmic-time?
- Let's guess $T(n) = c \log_2 n$
- If $T(1) = c... c \log_2 1 = 0 \neq c$. Whoops.

- Is T(n) logarithmic-time?
- Let's guess $T(n) = c \log_2 n$
- $T(1) = c \log_2 1 = 0 \neq c$. Whoops.

- Is T(n) logarithmic-time?
- Let's guess $T(n) = c \log_2 n$
- $T(2) = c \log_2 2 = c$. So induction will start at n = 2 (fine for asymptotic!)
- T(n) = T(n/2) + c $= c \log_2(n/2) + c$ $= c(\log_2 n - \log_2 2) + c$ $= c \log_2 n - c + c$ $= c \log_2 n$ \leftarrow Yay, it worked! So $T(n) = \Theta(\log n)$

Pros and Cons of Guess and Check

- + For any recurrence, given right guess, can prove that it is correct.
- + Can use separate upper-, lower-bound proofs to prove Θ result.

Pros and Cons of Guess and Check

- + For **any recurrence**, given right guess, can prove that it is correct.
- + Can use separate upper-, lower-bound proofs to prove Θ result.
- You must start from a correct guess
- Guessing the right constants and lower-order terms to make the induction work can be quite challenging

Pros and Cons of Guess and Check

- + For **any recurrence**, given right guess, can prove that it is correct.
- + Can use separate upper-, lower-bound proofs to prove Θ result.
- You must start from a correct guess
- Guessing the right constants and lower-order terms to make the induction work can be quite challenging

Can we take the guess-work out of solving recurrences?

Pros and Cons of Gr

- + For any recurrence
- + Can use separa
- You must star
- Guessing the r induction work

Can we take the g

(It's a bit like finding values for *c* and *n_0* in a Big-Oh proof)

In general, no.

that it is correct. e Θ result.

make the

Ag recurrences?

Pros and Cons of Gr

- + For any recurrence
- + Can use separa
- You must star
- Guessing the r induction work

Can we take the g

In general, no.

that it is correct. Θ result.

But for certain common cases, there's a way. make the

Ag recurrences?

- You have an algorithm FOO that runs on an input of size n.
- FOO does some *local* work.
- FOO makes some recursive calls on inputs whose size is a fraction of n.

- FOO takes time T(n) on input of size n.
- FOO does some *local* work taking time **f(n)**.
- FOO makes a recursive calls on inputs of size n/b.

- FOO takes time **T(n)** on input of size n.
- FOO does some *local* work taking time **f(n)**.
- FOO makes a recursive calls on inputs of size n/b.

- FOO takes time T(n) on input of size n.
- FOO does some *local* work taking time **f(n)**.
- FOO makes a recursive calls on inputs of size n/b.

T(n) = aT(n/b) + f(n)

- FOO takes time T(n) on input of size n.
- FOO does some *local* work taking time **f(n)**.
- FOO makes a recursive calls on inputs of size n/b.

T(n) = aT(n/b) + f(n)

Assumes T(n) = constant for small enough n - see Studio 4 for more on this

Examples That Fit the Paradigm

- Binary search: T(n) = T(n/2) + c
- Merge sort: T(n) = 2T(n/2) + cn
- Strassen's matrix multiply: T(n) = 7T(n/2) + cn²
- <u>Maximum subarray</u>: T(n) = 2T(n/2) + c

New Strategy

- We could, in principle, expand the recurrence to a sum of terms (as we sketched for heapify) and add them up
- E.g., T(n) = T(n/2) + c = (T(n/4) + c) + c = ((T(n/8) + c) + c) + c = ...

$$= c + c + c + \dots + c$$

How many times?

New Strategy

- We could, in principle, expand the recurrence to a sum of terms (as we sketched for heapify) and add them up
- E.g., T(n) = T(n/2) + c = (T(n/4) + c) + c = ((T(n/8) + c) + c) + c = ...

About log_2 n times = $\Theta(log n)$

Idea: Draw a Picture!

- We'll draw a tree showing all the terms in the recurrence.
- It's called a recursion tree.

- Each node records work of one term in expansion of recurrence.
- Add up work over all nodes to get total work.

• Root contains first term of expansion

• Root contains first term of expansion

• Expand once to get second term

• Now repeat...

• What's the generic term С T(n) (after j steps)? С T(n/2) С T(n/4) С T(n/???)

- What's the last term?
- (Assume n is power of 2)
- What is the last term?

- What's the last term?
- (Assume n is power of 2)
- We stop at T(1)
- What is T(1)?

Example: T(n) = T(n/2) + c

- What's the last term?
- (Assume n is power of 2)
- We stop at T(1)
- What is T(1)?
- We assumed T(1) = c

Depth	Problem Size	Local Work
0	n	С
1	n/2	С
2	n/4	С
j	n/2 ^j	С
???	1	С

Accounting T(n) = T(n/2) + c

Depth	Problem Size	Local Work
0	n	С
1	n/2	С
2	n/4	С
j	n/2 ^j	С
log ₂ n	1	С

Accounting T(n) = T(n/2) + c

Max depth = # of divisions by 2 needed to get from n down to 1.

Accounting T(n) = T(n/2) + c

Total work is sum of local work in each row

	Depth	Problem Size	Local Work	Accounting T(n) = T(n/2) + c
С	0	n	С	
c	1	n/2	С	$\log_2 n$
c	2	n/4	С	\sum_{c}
c	j	n/2 ^j	С	
С	log ₂ n	1	C	

Recursion Tree Methodology

- Given recurrence...
- Sketch the tree (figure out its height!)
- Figure out problem size and local work/node at each level
- Sum local work over whole tree

• Root contains first term of expansion

 There are two subproblems at next level

• How much work in each node?

• How much work in each node?

- cn/2 [but it doesn't fit in the circles]
- Let's just draw the tree...

- Let's just draw the tree...
- # of nodes doubles at each level (a = 2)

- Let's just draw the tree...
- # of nodes doubles at each level (a = 2)
- After j steps, we have
 2^j nodes at level j

- Let's just draw the tree...
- # of nodes doubles at each level (a = 2)
- After j steps, we have
 2^j nodes at level j
- Bottom out at T(1) again

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	
\mathcal{Q}	1	n/2	2	
	2	n/4	4	
) j	n/2 ^j	???	
	log ₂ n	1		0

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	
\mathcal{Q}	1	n/2	2	
	2	n/4	4	
	j	n/2 ^j	2 ^j	
	log ₂ n	1	???	00

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	
\mathcal{Q}	1	n/2	2	
	2	n/4	4	
	j	n/2 ^j	2 ^j	
	log ₂ n	11	$\rightarrow 2^{\log_2 n}$	0

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	
\mathcal{Q}	1	n/2	2	
	2	n/4	4	
	j	n/2 ^j	2 ^j	
	log ₂ n	1	n	

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	cn
\mathcal{Q}	1	n/2	2	cn/2
	2	n/4	4	???
	j	n/2 ^j	2 ^j	
	log ₂ n	1	n	0

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	cn
\square	1	n/2	2	cn/2
	2	n/4 —	4	→ cn/4
	j	n/2 ^j	2 ^j	???
	log ₂ n	1	n	01

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	cn
\mathcal{Q}	1	n/2	2	cn/2
	2	n/4	4	cn/4
) j	n/2 ^j	2 ^j	cn/2 ^j
	log ₂ n	1	n	???

T(n) = 2T(n/2) + cn T(1) = d	Depth	Problem Size	# Nodes Per Level	Local Work per Node
	0	n	1	cn
Q Q	1	n/2	2	cn/2
	2	n/4	4	cn/4
	j	n/2 ^j	2 ^j	cn/2 ^j
	log ₂ n	1	n	d

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level
0	n	1	cn	1 x cn
1	n/2	2	cn/2	2 x cn/2
2	n/4	4	cn/4	4 x cn/4
j	n/2 ^j	2 ^j	cn/2 ^j	2 ^j x cn/2 ^j
log ₂ n	1	n	d	n x d

Multiply across each level to get its work

T(n) = 2T(n/2) + cn

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level		
0	n	1	cn	cn		
1	n/2	2	cn/2	cn		
2	n/4	4	cn/4	cn		
j	n/2 ^j	2 ^j	cn/2 ^j	cn		
log ₂ n	1	n	d	dn		

T(n) = 2T(n/2) + cn

(Simplification isn't always this nice)

2T(n/2) + c	T(n) =								
	Local Work per Level	Local Work per Node	# Nodes Per Level	Problem Size	Depth				
	cn	cn	1	n	0				
	cn	cn/2	2	n/2	1				
$> dn + \sum^{\log_2 n-1} dn$	cn	cn/4	4	n/4	2				
j=0	cn	cn/2 ^j	2 ^j	n/2 ^j	j				
98	dn	d	n	1	log ₂ n				

T(n)				
Local Work per Level	Local Work per Node	# Nodes Per Level	Problem Size	Depth
cn	cn	1	n	0
cn	cn/2	2	n/2	1
cn	cn/4	4	n/4	2
cn	cn/2 ^j	2 ^j	n/2 ^j	j
dn	d	n	1	log ₂ n

Recursion Tree Methodology (Again)

- Given recurrence...
- Sketch the tree (figure out its height!)
- Figure out problem size, # nodes, and local work/node at each level
- Sum local work at each level, then across levels

Example: $T(n) = 3T(n/4) + cn^2$ [T(1) = d]

• [This one is worked in your text as well – see p. 89]

Example: $T(n) = 3T(n/4) + cn^2$ [T(1) = d]

This time, a = 3, so
 each node branches
 3 ways!

Example: $T(n) = 3T(n/4) + cn^2$ [T(1) = d]

This time, a = 3, so each node branches 3 ways!

 This time, b = 4, so problem size goes down by factor of 4 per level.

Problem Size	# Nodes Per Level	Local Work per Node
n		
n/4		
n/16		
n/4 ^j		
1		
	Problem Size n/4 n/4 n/4 ^j 1	Problem Size# Nodes Per Leveln·n/4·n/16·n/4j·1·

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	???	
j	n/4 ^j		
log ₄ n	1		10

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	9	
j	n/4 ^j	???	
log ₄ n	1		106

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	9	
j	n/4 ^j	3 j	
log ₄ n	1	???	10

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	9	
j	n/4 ^j	3 ^j	
log₄n	1	$3^{\log_4 n}$	108
A Brief Diversion

 $a^{\log_b n} = a^{\log_a n \log_b a}$ by change of base $\log_b n = \log_a n \log_b a$ = $n^{\log_b a}$

$$a^{\log_b n} = n^{\log_b a}$$

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	
1	n/4	3	
2	n/16	9	
j	n/4 ^j	3 ^j	
log₄n	1	$n^{\log_4 3}$	11(

$T(n) = 3T(n/4) + cn^2$ Problem **# Nodes Per** Local Work T(1) = dDepth Size per Node Level 0 n n/4 3 n/16 2 9 n/4^j 3j **Please simplify to this form!** → $n^{\log_4 3}$

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	cn ²
1	n/4	3	???
2	n/16	9	
j	n/4 ^j	3 ^j	
log ₄ n	1	$n^{\log_4 3}$	11

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	cn ²
1	n/4	3	c(n/4) ²
2	n/16	9	
j	n/4 ^j	3 ^j	
log ₄ n	1	$n^{\log_4 3}$	111

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	cn ²
1	n/4	3	c(n/4) ²
2	n/16	9	c(n/16) ²
j	n/4 ^j	3 ^j	c(n/4 ^j) ²
log ₄ n	1	$n^{\log_4 3}$???

Depth	Problem Size	# Nodes Per Level	Local Work per Node
0	n	1	cn ²
1	n/4	3	c(n/4)²
2	n/16	9	c(n/16) ²
j	n/4 ^j	3 ^j	c(n/4 ^j) ²
log₄n	1	$n^{\log_4 3}$	d 11

$T(n) = 3T(n/4) + cn^2$

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level
0	n	1	cn ²	
1	n/4	3	c(n/4) ²	
2	n/16	9	c(n/16) ²	
j	n/4 ^j	3 j	c(n/4 ^j) ²	
log₄n	1	$n^{\log_4 3}$	d	

$T(n) = 3T(n/4) + cn^2$

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level
0	n	1	cn ²	1 x cn ²
1	n/4	3	c(n/4) ²	3 x c(n/4)²
2	n/16	9	c(n/16) ²	9 x c(n/16) ²
j	n/4 ^j	3 j	c(n/4 ^j) ²	3 ^j x c(n/4 ^j) ²
log₄n	1	$n^{\log_4 3}$	d	dn ^{log₄ 3}

$T(n) = 3T(n/4) + cn^2$

Depth	Problem Size	# Nodes Per Level	Local Work per Node	Local Work per Level
0	n	1	cn ²	cn ²
1	n/4	3	c(n/4) ²	3c(n/4) ²
2	n/16	9	c(n/16) ²	9c(n/16) ²
j	n/4 ^j	3 j	c(n/4 ^j) ²	3 ^j c(n/4 ^j) ²
log₄n	1	$n^{\log_4 3}$	d	dn ^{log₄ 3}

Switch to separate PDF for algebraic resolution of this formula into an asymptotic complexity

End of Lecture 4