Lecture 4:
Analyzing
Complexity
via
Recurrences

These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements: Lab 3

e Pre-lab due Tuesday (tonight!) at 11:59 PM
e Code and Post-lab due Friday at 11:59 pm

o Pre- and post-labs via Gradescope (usual writeup standards)
o Code in your Bitbucket repo
o Please verify that your work has been checked in by looking at your repo via the
browser, and double-checking Gradescope
m Avoid pull-before-push failure

e Academic Integrity (the other Al)

m  Many, many legitimate resources
m Don't panic, even at last minute—reach out instead
e Zero credit w/explanation is much, much better than an Al case
m Previous semesters ==> many cases from Lab 3 reported to Dean's office

m This semester ==> can we go for zero?? 2



Announcements: Exam 1

o Wednesday 2/20 6:30-8:30 PM —rooms TBA (Piazza)
o Please see Piazza for details (forthcoming), especially if
you must reschedule for religious or other acceptable

reasons

e Covers Lectures and Studios 0-4

o« Exam review Sunday, Feb. 17, 2-5 pm Louderman 458
(instead of recitation)

e A practice exam will be posted this week



Last Time: Cost of heapify

e \We gave a recursive procedure for heapify
e Wedefined its running time to be T(n) on a heap of size n

e Wederived a recursive formula (recurrence) for T(n)
T(n) =T(2n/3) + k

We magically solved this recurrence: T(n) = ©(log n)
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Strategies We Will Consider

e Problem: given arecurrence for T(n), find a closed-
form asymptotic complexity function that satisfies the
recurrence.

o Possible strategies
e Guess and check (a.k.a. substitution)
e Recursiontree accounting (for certain kinds of recurrence)
e Master Method (next time)



Guess and Check

e Guess an exact (not asymptotic) function f(n) for T(n)
e Prove that f(n) satisfies the recurrence for alln >0
e Proof is inductive on n

e [Requiresthatwe know a base case for the recurrence]



Example
e T(n)=T(n-1) +Kk

o lLet'ssay T(1) =k



Example
e T(n)=T(n-1) +Kk
o let'ssay T(1) =Kk

e What solution should we guess?
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Example
e T(n)=T(n-1) +Kk
o let'ssay T(1) =Kk

e Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.
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Example
e T(n)=T(n-1) +k
o let'ssay T(1) =Kk
e Intuitively, we add k every time n goes up by 1, so T(n) is something like nk.

e Claim: T(n) = nk
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Example: Proof [T(n)=T(n-1) + k]

e Claim: T(n)=nk
e Byinductiononn
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Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claim holds!
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Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1):assume true for m<n.
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Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1):assume true for m<n.
e T(N)=T(n-1)+k=(n-1)k+k
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Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1): assume true for m < n. ("

e T(n)=T(n-1) + k = (N-1)K ¢uu——

-

17




Example: Proof [T(n)=T(n-1) + k]

e Claim:T(n)=nk
e Byinductiononn

e Bas(n=1):T(1)=k=1*k < claimholds!

e Ind(n>1):assume true for m<n.
e T(nN)=T(n-1) + k=(n-1)k + k=nk < claim holds!

e Concludethat T(n) indeed = nk = ©(n)
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A Slightly More Interesting Example

e Binary search:an algorithm for finding a value in a sorted array
e Problem: Given sorted array A of size n, and a query value x...
e IfxoccursinA, returnanindexjs.t. A[j] = x

e |f x does not occurin A, return special value “notFound”

3 5 6 | 17| 22| 23 | 30 | 48

0 1 2 3 4 5 6 7




Algorithm Idea

e Divide the array in half, and look at the middle element A[mid]

e If A[mid]<x, x mustbe inthe half of A if it appears at all.

20



Algorithm Idea

e Divide the array in half, and look at the middle element A[mid]
e If A[mid]<x, x mustbe inthe upper half of A if it appears at all.

e If A[mid]>x, xmustbe inthe half of A if it appears at all.
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Algorithm Idea

e Divide the array in half, and look at the middle element A[mid]
e If A[mid]<x, x mustbe inthe upper half of A if it appears at all.
e If A[mid]>x, x mustbe inthelower half of A if it appears at all.

e In either case, recursively look for x in the appropriate half of A.

22



Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17

22

23

30

48
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Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17“ 22

23

30

48

24



Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17
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Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17
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Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

17
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Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat
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Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat
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Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

30



Example of Binary Search

Binary search

e Looking for 3

o Try amiddle element
o Fromthere, discard %2
o Repeat

e Found it!
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Binary Search

e You'll study the code and correctness of binary search
more deeply in Studio 5.

e Fortoday, let's focus on a rough running time analysis.
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Binary Search

o We start with an array of size n.

o At each step, we
- do constant work (compare midpoint of A to X)
o cut the problem size in half

o recur on the appropriate half
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Binary Search

o We start with an array of size n.

o At each step, we
- do constant work (compare midpoint of A to X)
o cut the problem size in half

o recur on the appropriate half

T(n)

C

T(n/2)
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Binary Search Recurrence

T(n)=T(n/2)+ C

What's the base case?

If not specified, assume it is some constant for T(1)
Which constant doesn’t affect asymptotic solution

-> pick for convenience
(More on this in Studio 4)

35



Guessing Running Time

e Is T(n) constant-time?
e Let'sguessT(n)=c
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

e T(n)=T(n/2) + c =777 [what does substitution yield?]

36



Guessing Running Time

e [s T(n) constant-time?

e Let'sguessT(n)=c

e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]
e T(n)=T(n/2)+c=c+c=2cC

e But we are trying to prove that T(n) = c, so proof failed!
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Guessing Running Time

Is T(n) constant-time?

Let’'s guess T(n) =c

Pick T(1) = c to make base case match [constantfor T(1) doesn’t matter!]
T(n) =T(n/2) +c=c+c=2C

But we are trying to prove that T(n) = c, so proof failed!

(And indeed, can see that no other constant > 0 would work either)
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Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguess T(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

e T(N)=T(N/2) +c=72?2?

39



Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguessT(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

e T(n)=T(n/2)+c=cn/2+cC < not cn as desired! Proof fails, but...
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Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguess T(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]

o T(N)=T(n/2)+c=cn/2+c=c(n/2+1)<cnfornz2
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Guessing Running Time, Try #2

Is T(n) linear-time?

Let's guess T(n) =cn

Pick T(1) = c to make base case match [constantfor T(1) doesn’t matter!]
T(nN)=T(n/2) +c=cn/2+c=c(n/2+ 1) <cnfornz=2

Conclude that T(n) <cn for all n.

Therefore, T(n) = ??? [asymptotically]
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Guessing Running Time, Try #2
e |[s T(n) linear-time?
e Let'sguessT(n)=cn
e Pick T(1) = c to make base case match [constant for T(1) doesn’t matter!]
e T(N)=T(n/2)+c=cn/2+c=c(n/2+ 1)<cnfornz2
e Conclude that T(n) <cn for all n.

e Therefore, T(n) =0(n) € proving < implies upper bound



Guessing Running Time, Try #2
e |Is T(n) linear-time?
e Let’sguess T(n)=cn

n’'t matter!]

We need to prove either an equality

° (as before) or both an upper and a
lower bound to prove ©.

e Therefore, T(n) =0(n) &-proving < implies upper bound
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Guessing Running Time, Try #3
e [s T(n) logarithmic-time?
e Let'sguessT(n)=clog,n

e IfT(1)=c...clog,1=0 #c. Whoops.
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Guessing Running Time, Try #3
e [s T(n) logarithmic-time?
e Let'sguessT(n)=clog,n

e T(1)=clog,1=0 #c. Whoops.
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Guessing Running Time, Try #3
e [s T(n) logarithmic-time?
e Let'sguessT(n)=clog,n
e T(2) =clog,2=c. Soinduction will start at n = 2 (fine for asymptotic!)

e T(n)=T(n/2) +cC
=c log,(n/2) + ¢
=c(log,n—-1log,2) + ¢
=clog,n —c+c
=clog,n < Yay, it worked! So T(n) =O(log n)
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Guessing Running Time, Try #3

e IsT(n)l
. Letsg EXERCI_SE

Apply the same logic to show that
o T(2)= T(n) =T(2n/3) + k

has solution T(n) = O(log n)
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Guessing Running Time, Try #3

e IsT(n)l
. Letsg EXERCI_SE

Apply the same logic to show that
o T(2)= T(n) =T(2n/3) + k

has solution T(n) = O(log n)

[hint: try a guess involving log;, N]
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Pros and Cons of Guess and Check

+ Forany recurrence, given right guess, can prove thatit is correct.
+ Canuse separate upper-, lower-bound proofs to prove O result.
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Pros and Cons of Guess and Check

+ Forany recurrence, given right guess, can prove thatit is correct.
+ Canuse separate upper-, lower-bound proofs to prove O result.

- You muststart from acorrectguess
- Guessing the right constants and lower-order terms to make the
iInduction work can be quite challenging
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Pros and Cons of Guess and Check

+ Forany recurrence, given right guess, can prove thatit is correct.
+ Canuse separate upper-, lower-bound proofs to prove O result.

- You muststart from acorrect guess

- Guessing the right constants and lower-order terms to make the
iInduction work can be quite challenging

Can we take the guess-work out of solving recurrences?

52



Pros and Cons of G
+ Forany recurreng In general’ no.

hat it is correct.

+ Canuse separg e O result.
You muststa (It S a blt Ilke
Guessingther flndlng values ) make the

induction work for c and n o N
a Big-Oh

Can we take the g¥ proof ) g recurrences?
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Pros and Cons of G

+ Forany recurreng In gen eral : no. hat it is correct.

+ Canuse separg e O result.
You muststa
Guessingther ) make the

But for certain
common cases,
there’s a way.

induction work

Can we take the g% g recurrences?
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A Very Common Case

e You have an algorithm FOO that runs on an input of size n.

e FOO does some local work.

e FOO makes some recursive calls on inputs whose size
Is a fraction of n.

FOO (A[l..n])
FOO(A[l..n/2])
Print (A)
FOO(A[n/2+1. .n])
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A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

FOO (A[l..n])
FOO(A[l..n/2])
Print (A)
FOO(A[n/2+1. .n])
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A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

_ _ FOO (A[1..n])
a=2 b=2 FOO(A[1l..n/2])
Print (A)
f(n) =cn FOO(A[n/2+1..n])

o7



A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

T(n) = aT(n/b) + f(n)
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A Very Common Case

e FOOtakestime T(n)oninputofsizen.
e FOO does some local work taking time f(n).

e FOO makes a recursive calls on inputs of size n/b.

T(n) = aT(n/b) + f(n)

Assumes T(n) = constant for small enough n — see Studio 4 for more on this .



Examples That Fit the Paradigm

Binary search: T(n) = T(n/2) + ¢
Merge sort: T(n) = 2T(n/2) + cn

Strassen’s matrix multiply: T(n) = 7T(n/2) + ¢cn?

Maximum subarray: T(n)=2T(n/2) +c

60


http://www.utdallas.edu/~daescu/maxsa.pdf

New Strategy

e Wecould, in principle, expand the recurrence to a sum of terms
(as we sketched for heapify) and add them up

e Eg.,T(N)=T(n/2)+c=(T(n/4)+c)+c=((T(n/8)+c)+c)+c=...

=c+Cc+cCct+...+C

. J
Y

How many times?
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New Strategy

e Wecould, in principle, expand the recurrence to a sum of terms
(as we sketched for heapify) and add them up

e Eg.,T(N)=T(n/2)+c=(T(n/4)+c)+c=((T(n/8)+c)+c)+c=...

=c+Cc+cCct+...+C

. J
Y

About log, n times

= 0O(log n)
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New Strategy

e Weco 2rms

e Eg. We'll develop a way to compute .

this sum for any recurrence of
form T(n) = aT(n/b) + f(n)
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ldea: Draw a Picture!

e We'lldraw a tree showing all the terms in the recurrence.

e It's called a recursion tree.

o Each node records work of one term in expansion of
recurrence.

o Add up work over all nodes to get total work.

64



Example: T(n) = T(n/2) + c

e RoOot contains first term @ T(n)
of expansion
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Example: T(n) = T(n/2) + c

e RoOot contains first term @ T(n)
of expansion
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Example: T(n) = T(n/2) + c

e Expand once to get
secondterm

T(n)

T(n/2)
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Example: T(n) = T(n/2) + c

e Now repeat...

T(n)

T(n/2)

T(n/4)

68



Example: T(n) = T(n/2) + c

e \What'sthe generic term
(after j steps)?

T(n)

T(n/2)

T(n/4)

T(n/?27)
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Example: T(n) = T(n/2) + c

e \What'sthe generic term T(n)
(after | steps)?

e Wedivide by 2, ] times, T(n/2)
hence T(n/2)
e Eachtermis still just “c” T(n/4)

@ T(n/2))
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Example: T(n) = T(n/2) + c
e \What'sthe last term? T(n)

e (Assumen is power of 2) T(n/2)

e \Whatis the last term?
T(n/4)

@ T(n/2))
Q T(22?)
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Example: T(n) = T(n/2) + c
e \What'sthe last term? T(n)

e (Assumen is power of 2) T(n/2)

e WestopatT(1) .
n

e Whatis T(1)? :
@ T(n/2))
O [
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Example: T(n) = T(n/2) + c
e \What'sthe last term? T(n)

e (Assumen is power of 2) T(n/2)

e WestopatT(1) .
n

e Whatis T(1)? :
@ T(n/2))

e WeassumedT(1l)=c :
Oh"
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O-OOOC

Depth

27?7

Accounting

Problem Size = Local Work T(n)=T(n/2) +c
0 c
n/2 C
n/4 c
n/2i c
1 c

74



OO

Depth Problem Size Local Work
0 n C
1 n/2 C
2 n/4 C
j n/2) C
log,n 1 C

Accounting
T(n)=T(n/2) +c

Max depth =

# of divisions by 2
needed to get from
n down to 1.
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020207020

Depth

log, N

Problem Size

n/2

n/4

n/2l

Local Work

Accounting

T(n) = T(n/2) + ¢

>

Total work is sum of
local work in each row
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020207020

Accounting
T(n) =T(n/2) +C

" C z
n/4 C > C
n/2; ﬁ

Depth Problem Size Local Work
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O202070%0

Depth

log, N

Problem Size

n/2

n/4

n/2l

Local Work

Accounting
T(n) =T(n/2) +C

log, n
SR
J=0

=c (log,n +1)
= 0(log n)
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Recursion Tree Methodology

o Given recurrence...

o Sketch the tree (figure out its height!)

e Figure out problem size and local work/node at each level
e Sum local work over whole tree
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Example: T(n) = 2T(n/2) + cn

[Assume T(1) = d]

e RoOot contains first term @ T(n)

of expansion
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Example: T(n) = 2T(n/2) + cn

e There are two
subproblems at next
level

[Assume T(1) = d]

T(n)

T(n/2)
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Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e How much work in each ° T(n)

node?
ONROL"
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Example: T(n) = 2T(n/2) + cn

e How much work in each
node?

e Cn/2 [butit doesn’tfitin
the circles]

e Let'sjustdraw the
tree...

[Assume T(1) = d]

T(n)

T(n/2)
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Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e Let'sjustdraw the T(n)
tree...
T(n/2)
e # of nodes doubles at

each level (a = 2) T(n/4)
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Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e Let'sjustdraw the T(n)
tree...

T(n/2)
e # of nodes doubles at

each level (a = 2) T(n/4)

e After | steps, we have .

2 nodes at level | Q . Q T(n/2))
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Example: T(n) = 2T(n/2) + cn [Assume T(1) =d]

e Let'sjustdraw the ()
tree...
T(n/2)
e # of nodes doubles at
each level (a = 2) Ta)

o After j steps, we have

2 nodes at level | Q Q
e Bottomoutat T(1)
again Q O T(1) g6

T(n/2))



T(n) = 2T(n/2) + cn
T(1) =d

O O
O O

Depth Problem  # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
J n/2) 227?
log, n 1




T(n) = 2T(n/2) + cn
T(1) =d

O O
O O

Depth Problem  # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
| n/2i %)
log, n 1 ?2?7?

(ae)
Qo




T(n) =2T(n/2) + cn
T(1)=d

O O
O O

Denth Problem # Nodes Per Local Work
P Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
j n/2i 2]
|
log, n 1 » plogn

o
(o)




T(n) = 2T(n/2) + cn
T(1) =d

O O
O O

Depth Problem  # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/2 2
2 n/4 4
| n/2i )
log, n 1 n

©
(e»)




T(n) =2T(n/2) + cn

T(1) = d

O O

Depth

Problem | # Nodes Per
Size Level
n 1
n/2 2
n/4 4
n/2) 2)
1 n

Local Work
per Node

cn

cn/2

P77

(o)
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T(n) =2T(n/2) + cn

T(1) = d

O O

Depth

Problem # Nodes Per Local Work
Size Level per Node
n 1 cn
n/2 2 cn/2
n/4 4 » cn/4
n/2l 2! 27?7
1 n

(o]
N



T(n) =2T(n/2) + cn - - e
roblem # Nodes Per Local Wor
T(l) =d N\ Depth Size Level per Node
0 n 1 ch
1 n/2 2 ch/2
2 n/4 4 cn/4
W
j n/2; 2] > cn/2

O O
O O

log Substitute problem size into f(n)

v



T(n) =2T(n/2) + cn

T(1) = d

O O

Depth

Problem
Size

n/2

n/4

n/2!

# Nodes Per
Level

1

2

Local Work

per Node

cn

cn/2

cn/4

cn/2i

277
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T(n) =2T(n/2) + cn
T(1)=d

Depth

Problem
Size

# Nodes Per
Level

Local Work
per Node

cn

cn/2

cn/4

cn/2i

(o]
an



T(n) =2T(n/2) + cn

Problem # Nodes Per Local Work Local Work

Depth Size Level per Node per Level
0 n 1 cn 1xcen Multiply across each
level to get its work
1 n/2 2 cn/2 2 xcn/2
2 n/4 4 cn/4 4 x cn/4
j n/2i 2! cn/2! 2 x cn/2i
log, N 1 n d nxd
96



T(n) =2T(n/2) + cn

Problem # Nodes Per Local Work Local Work

Depth Size Level per Node per Level
0 n 1 cn cn (Simplifica’_tion_isn’t
always this nice)
1 n/2 2 cn/2 cn
2 n/4 4 cn/4 cn
J n/2i 2 cn/2i cn
log, N 1 n d dn
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Depth

log, N

Problem
Size

n/2

n/4

n/2!

# Nodes Per
Level

9

Local Work
per Node

chn

ch/2

ch/4

cn/2l

T(n) =2T(n/2) + cn

Local Work
per Level

cnhn

chn

chn

cn

dn

\

>dn+

log, n—1

5
j=0
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Depth

log, N

Problem
Size

n/2

n/4

n/2!

# Nodes Per
Level

9

Local Work
per Node

chn

ch/2

ch/4

cn/2l

T(n) =2T(n/2) + cn

Local Work
per Level

cnhn

chn

chn

cn

dn

\

log, n—1

>dn+ Z cn
j=0

=dn+cnlog,n

=0O(n log n)
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Recursion Tree Methodology (Again)

o Given recurrence...
o Sketch the tree (figure out its height!)

e Figure out problem size, # nodes, and local work/node at
each level

e Sum local work at each level, then across levels
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Example: T(n) = 3T(n/4) + cn? [T(1) =d]

e [This one is worked In your text as well — see p. 89]
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Example: T(n) = 3T(n/4) + cn? [T(1) =d]

e Thistime, a =3, soO

each node branches

3 ways! &
O O
() O
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Example: T(n) = 3T(n/4) + cn? [T(1) =d]

e Thistime, a =3, so T(n)

each node branches
T(n/4)
e O/gé
T(n/16)

e Thistime, b =4, so
problem size goes

down by factor of 4 Q

per level.
()

T(n/4))

O O

T(1) _)3



T(n) = 3T(n/4) + cn?

T(1)=d

O
O

oo

O
O

Depth

277

Problem # Nodes Per
Size Level

n

n/4

n/16

n/4i

Local Work

per Node



T(n) = 3T(n/4) + cn?

T(1) =d
oo

O
O

O
O

Depth Problem  # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/4 3
2 n/16 277
] n/4
log,n 1




T(n) = 3T(n/4) + cn?

T(1)=d Depth Pfgibz'gm
0 n

Q _ ) O 2 n/16
O O i na

log,n 1

# Nodes Per Local Work
Level per Node

1

P77



T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

# Nodes Per
Level

1

3

777

Local Work

per Node

=

S



T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

# Nodes Per
Level

1

3

310g411

Local Work

per Node



A Brief Diversion

alo8pn=qlogan logp a by change of base log, n =log, nlog, a
= nlogb a

alogb n _— nlogb a
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T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

# Nodes Per
Level

1

Local Work

per Node



T(n) = 3T(n/4) + cn?
T(1)=d

szt

O 4+ O
O " O

Depth Problem | # Nodes Per Local Work
Size Level per Node
0 n 1
1 n/4 3
2 n/16 9
J n/4 3
> nlog4 3

Please simplify to this form! ===

[NEY
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T(n) = 3T(n/4) + cn?

Problem
T(l) — d Depth Size
0 n

O 2 n/16
O

j n/4i

O
O

log,n 1

# Nodes Per
Level

Local Work
per Node

ch?

P77

[HEY
[IEY
NS



T(n) = 3T(n/4) + cn?

T(1) = d Deptn | g
0 n
&) 1 n/4
2 n/16

O & O
O . Q j n/4

log,n 1

# Nodes Per
Level

Local Work
per Node

ch?

c(n/4)?

l._\
|.A
CI.J



T(n) = 3T(n/4) + cn?

T(1) = d Depth g
0) n

Q . . O 2 n/16
O O i na

log,n 1

# Nodes Per
Level

1

Local Work
per Node

cn?
c(n/4)?
c(n/16)2
c(n/4))2

277
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T(n) = 3T(n/4) + cn?

T(1) = d Oeptn e
0 n

O . . O 2 n/16
O O i na

log,n 1

# Nodes Per
Level

1

Local Work
per Node

cn?
c(n/4)?
c(n/16)2

c(n/4))2

=
=
c‘n



T(n) = 3T(n/4) + cn?

Problem # Nodes Per Local Work Local Work

Depth Size Level per Node per Level
0 n 1 ch?
1 n/4 3 c(n/4)?
2 n/16 9 c(n/16)?
j n/4) 3 c(n/4))?
log,n 1 nlogs 3 d
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T(n) = 3T(n/4) + cn?

Problem # Nodes Per Local Work Local Work

Depth Size Level oer Node oer Level
0 n 1 cn? 1 x cn?
1 n/4 3 c(n/4)? 3 x ¢c(n/4)?
2 n/16 9 c(n/16)? | 9 x c(n/16)?
j n/4 3 c(n/4)?2 3 x c(n/4))?
log,n 1 nlo8a3 d dnlo8a 3
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Depth

2

log,n

Problem
Size

n/4

n/16

n/4

1

# Nodes Per
Level

3

nlog4 3

Local Work
per Node

ch?
c(n/4)?
c(n/16)?

c(n/4))2

T(n) = 3T(n/4) + cn?

Local Work
per Level

cn?
3c(n/4)?
9c¢c(n/16)?
3 c(n/4))2

dnlog4 3
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T(n) = 3T(n/4) + cn?

Depth Pro_blem # Nodes Per Local Work Local Work
Size Level per Node per Level
0
1
2
J
log,n 1 nlogs3 d dnlo8a 3
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Switch to separate PDF for algebraic resolution of
this formula into an asymptotic complexity
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End of Lecture 4
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