
Lecture 3:  

Priority Queues, and 

a Tree Grows in 247
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These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements
● Lab 1 due Friday 2/8 at 11:59 PM

○ Turn in via Gradescope

○ Math hint:

○ Lab 3 out this Wednesday

○ Has three parts: pre-lab (due 2/12), coding, and write-up parts (due 2/15)
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Overview

● What is a Priority Queue

○ ADT

○ Applications

● Some not so great implementations (which you’ll explore in Studio 3)

○ Lists

○ Arrays
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Overview

● What is a Priority Queue

○ ADT

○ Applications

● Some not so great implementations (which you’ll explore in Studio 3)

○ Lists

○ Arrays

● Trees

● Priority Queue using trees

● Using arrays to simulate trees

○ Implementation of this is Lab 3
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ADTs from Last Time

● The data structures we reviewed last time (queues, 

stacks) track the positions of their elements.

○ “Add to the tail”/ “Remove from the head” [queues]

○ “Add to the top”/ “Remove from the top”  [stacks]

● Elements themselves were completely generic – we 

neither knew nor cared about their properties.
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Working With Ordered Data

● But let’s suppose we have data that is ordered (e.g. 

integers).

● Given a collection of such data, we may want to ask 

questions that depend on the order of the elements.
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Working With Ordered Data

● But let’s suppose we have data that is ordered (e.g. 

integers).

● Given a collection of such data, we may want to ask 

questions that depend on the order of the elements.

● Challenge: can we efficiently answer these questions 

when the collection is changing dynamically?
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Example: Auto Repair

● Garage receives a stream of cars needing repairs.

● Each repair job comes with a deadline.

● Cars may not show up in order of deadlines.
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Example: Auto Repair

● Garage receives a stream of cars needing repairs.

● Each repair job comes with a deadline.

91:00 PM



Example: Auto Repair

● Garage receives a stream of cars needing repairs.

● Each repair job comes with a deadline.
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Example: Auto Repair

● Garage receives a stream of cars needing repairs.

● Each repair job comes with a deadline.

111:00 PM 5:00 PM 11:00 AM!!!



What Do We Want?

● Query: at any time, which car needs to be ready first? 

(earliest deadline)

● Insertion: new cars can show up at any time, with any 

deadline.

● Update: when we repair the car with the earliest deadline, 

which car has next earliest deadline?

12



More Abstractly…

● Maintain a collection of ordered values [e.g. deadlines]

● Values can be inserted in any order

● At any time, may remove smallest value

● Want to maintain O(1) query time for smallest value

13



More Abstractly…

● Maintain a “min-first priority queue”  PQ

● PQ.insert(v) – insert element v

● PQ.extractMin() – extract and return minimum element

● PQ.peekMin() – must be constant-time
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A Few More Details

● PQ has a fixed maximum size [e.g. size of garage]

● An item’s value might decrease while it is in PQ

[e.g. a customer now wants their car back sooner]

Assumptions:

1. Items are not known until they are inserted

2. An item’s value cannot increase while it is in PQ
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What PQ Methods Might Look Like in Java

● instantiation:   PriorityQueue<T>(int size)

○ The queue has a bounded size that is specified upon creation

● insertion into the PQ:  Decreaser<T> insert(T thing)

○ The returned “Decreaser” object is often called a handle

○ Decreaser<T> allows outside activity to decrease the value of inserted thing

● is the PQ empty?  boolean isEmpty()

● remove and return the currently smallest T: extractMin()

● inspect but do not remove the currently smallest T: peekMin()
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What PQ Methods Might Look Like in Java

● instantiation:   PriorityQueue<T>(int size)

○ The queue has a bounded size that is specified upon creation

● insertion into the PQ:  Decreaser<T> insert(T thing)

○ The returned “Decreaser” object is often called a handle

○ Decreaser<T> allows outside activity to decrease the value of inserted thing

● is the PQ empty?  boolean isEmpty()

● remove and return the currently smallest T: extractMin()

● inspect but do not remove the currently smallest T: peekMin()
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We could just as well define a max-first PQ that maintains the largest 

element. The book makes this choice.



Further Notes on Java Impl (See Lab 3)

● What about Decreaser<T>?

○ T getValue() to get at the current value of this thing

○ void decrease(T newvalue)

○ We require that newvalue be no greater than the current value for the affected item

○ Why is this an operation on an object (Decreaser) outside of the PQ,

instead of, say, PQ.decreaseItem(T which, T newvalue) ?
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Further Notes on Java Impl (See Lab 3)

● What about Decreaser<T>?

○ T getValue() to get at the current value of this thing

○ void decrease(T newvalue)

○ We require that newvalue be no greater than the current value for the affected item

○ Why is this an operation on an object (Decreaser) outside of the PQ,

instead of, say, PQ.decreaseItem(T which, T newvalue) ?
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In the alternative, how long could it take to locate “which”? 

Is the entry “which” unique?



Example of a Priority Queue

20

new PriorityQueue(5)



Example of a Priority Queue
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new PriorityQueue(5)

● Can hold up to 5 

elements



Example of a Priority Queue
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new PriorityQueue(5)

● Can hold up to 5 

elements
● Is initially empty



Example of a Priority Queue
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84

insert(84)



Example of a Priority Queue
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92

84

insert(92)



Example of a Priority Queue
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92

46

84

insert(46)



Example of a Priority Queue
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53
92

46

84

insert(53)



Example of a Priority Queue
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53
92

46
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extractMin()



Example of a Priority Queue
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53
92

46

84

extractMin()



Example of a Priority Queue
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53
92

84

insert(247)

247



Example of a Priority Queue
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extractMin()
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Example of a Priority Queue

31

53

92

84

extractMin()
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Example of a Priority Queue

32
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247 decrease(131)



Example of a Priority Queue
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92

84

247 decrease(131)

We decrease 247 using its handle, the 
Decreaser object, which has a direct 

reference to the 247 entry.

Why do we need the Decreaser?

It references 247 directly, so we can 
decrease the value in the 
Priority Queue without having to find

247 first in the Priority Queue.

This avoids a search for 247, which 
might require looking at every entry, 
taking O(n) time for a Priority Queue of 

n elements.



Example of a Priority Queue

34

92

84

247 decrease(131)

We have not yet considered the 

implementation, but we will soon see 
that the 247 entry may move around in 
the data structure we use.



Example of a Priority Queue

35

92

84

247

decrease(131)

We have not yet considered the 

implementation, but we will soon see 
that the 247 entry may move around in 
the data structure we use.

As it does, the Decreaser continues 

to follow it, no matter where it goes.



Example of a Priority Queue

36

92

84

247

decrease(131)

We have not yet considered the 

implementation, but we will soon see 
that the 247 entry may move around in 
the data structure we use.

As it does, the Decreaser continues 

to follow it, no matter where it goes.

The data structure returns an entry’s 
unique Decreaser object as the result 

of insertion.

This provides a fast method for 
decreasing the value, as shown on the 

next slides.



Example of a Priority Queue
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Example of a Priority Queue
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131 decrease(131)



Example of a Priority Queue
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Example of a Priority Queue
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84

insert(347)
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Example of a Priority Queue
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92

84

insert(347)

131

347



Example of a Priority Queue
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131

decrease(77)
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Example of a Priority Queue
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Example of a Priority Queue
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77

84

131

decrease(77)
347



Example of a Priority Queue
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84

131
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Example of a Priority Queue
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extractMin()
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Example of a Priority Queue
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84

extractMin()
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Example of a Priority Queue
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84

131

347



Applications

● Scheduling Tasks with Priorities

○ Find/Handle highest-priority task first

○ E.g. in computer operating systems

○ Searching for the Best Solution

○ Add solutions to PQ as they are found

○ At any time, can query/remove the optimum

○ Cost of solutions may decrease over time

○ (e.g. shortest path to each node in a graph)

49
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Applications

● Scheduling Tasks with Priorities

○ Find/Handle highest-priority task first

○ E.g. in computer operating systems

○ Searching for the Best Solution

○ Add solutions to PQ as they are found

○ At any time, can query/remove the optimum

○ Cost of solutions may decrease over time

○ (e.g. shortest path to each node in a graph)

● Can you think of others?
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131

347



Performance Goals for Priority Queue

● Let n be the size of the queue at a given time.

● peekMin() should be constant-time

● Want “nice” complexity for insert, decrease, extractMin as fcn of n.

● Ideally, all these operations should take time sub-linear in n (i.e. 

o(n))
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Ideas? (Analyzed in Studio 3)

52

PQ ops needed:

insert(v)

decrease(item, k)

extractMin()

peekMin()

o(n)

Θ(1)● Unsorted linked list?



Ideas?

● Unsorted linked list?

○ [high cost to find new min on extractMin()]

● Sorted linked list?
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PQ ops needed:

insert(v)

decrease(item, k)

extractMin()

peekMin()

o(n)

Θ(1)



Ideas?

● Unsorted linked list?

○ [high cost to find new min on extractMin()]

● Sorted linked list? 

○ [high cost to insert]

● Unsorted array?
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PQ ops needed:

insert(v)

decrease(item, k)

extractMin()

peekMin()

o(n)

Θ(1)



Ideas?

● Unsorted linked list?

○ [high cost to find new min on extractMin()]

● Sorted linked list? 

○ [high cost to insert]

● Unsorted array? 

○ [just as bad as unsorted list]
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PQ ops needed:

insert(v)

decrease(item, k)

extractMin()

peekMin()

o(n)

Θ(1)



Ideas?

● Unsorted linked list?

● Sorted linked list? 

● Unsorted array?

Argh – we need a new data structure to meet 

better-than-Θ(n) performance goals for both 

insertion and extraction!
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PQ ops needed:

insert(v)

decrease(item, k)

extractMin()

peekMin()

o(n)

Θ(1)



A Brief Diversion: Trees

● Lists are a one-dimensional data structure
○ One-dimensional connections (forward, back)

● We can use them to implement other data structures
○ Queue

○ Stack

● We now consider trees
○ These are two-dimensional

○ Movement up or down

○ Movement left or right

● We will use trees to implement several interesting data structures
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Trees

● Many definitions

● Here’s an example:

58Text p. 1088 (Appendix B)



Trees

● Many definitions

● Here’s an example

● Some notes:
○ Trees have

■ Nodes

59Text p. 1088 (Appendix B)



Trees

● Many definitions

● Here’s an example

● Some notes:
○ Trees have

■ Nodes

■ Edges

60Text p. 1088 (Appendix B)



Trees

● Many definitions

● Here’s an example

● Some notes:
○ Trees have

■ Nodes

■ Edges

○ The edges are undirected

61Text p. 1088 (Appendix B)



Trees

● Many definitions

● Here’s an example

● Some notes:
○ Tree is upside down!

62Text p. 1088 (Appendix B)



Trees

● Many definitions

● Here’s an example

● Some notes:
○ Tree is upside down!
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Trees

● Many definitions

● Here’s an example

● Some notes:
○ Tree is upside down!

○ We speak of a parent

64Text p. 1088 (Appendix B)



Trees

● Many definitions

● Here’s an example

● Some notes:
○ Tree is upside down!

○ We speak of a parent

■ And its children

■ They are siblings

65Text p. 1088 (Appendix B)



Trees

● Many definitions

● Here’s an example

● Some notes:
○ Tree is upside down!

○ We speak of a parent

■ And its children

● For now
○ A tree is rooted

■ Root is orphan node

66Text p. 1088 (Appendix B)



Trees

● Each node occurs at 

some depth from the root
○ The root is at depth 0

67Text p. 1088 (Appendix B)



Trees

● Each node occurs at 

some depth from the root
○ The root is at depth 0

● The height of a tree is 

the maximum depth 

among all of the tree’s 

nodes

68Text p. 1088 (Appendix B)



Trees

● Each node occurs at 

some depth from the root
○ The root is at depth 0

● The height of a tree is 

the maximum depth 

among all of the tree’s 

nodes

● Some nodes are leaves

69Text p. 1088 (Appendix B)



Trees

● Each node occurs at 

some depth from the root
○ The root is at depth 0

● The height of a tree is 

the maximum depth 

among all of the tree’s 

nodes

● Some nodes are leaves

● Others are 

internal nodes

70Text p. 1088 (Appendix B)



Trees

● If the left-to-right 

orientation of the 

children matters,        

tree is ordered

71Text p. 1088 (Appendix B)

?



Trees

● If the left-to-right 

orientation of the 

children matters,        

tree is ordered

● The degree of a node is 

the count of its children

72Text p. 1088 (Appendix B)

3

2 2

2

1

1

00

0

0

0 0



OK, Back to Priority 

Queues…
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Specializing Trees for Our Needs

● We’ll focus on binary trees – every node has at most 

two children.

● We’ll focus on compact binary trees – nodes are 

always added top-to-bottom and left-to-right
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Specializing Trees for Our Needs

● We’ll focus on binary trees – every node has at most 

two children.

● We’ll focus on compact binary trees – nodes are 

always added top-to-bottom and left-to-right

● (There is a unique compact binary tree with n nodes)
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Compact binary tree Initially the tree is empty



Compact binary tree Initially the tree is empty

● unoccupied
● occupied

size  =   0



Compact binary tree The tree fills in from

● left to right
● top to bottom

size  =   1



Compact binary tree The tree fills in from

● left to right
● top to bottom

size  =   1

This node 

currently has 
no children



Compact binary tree ● All levels are complete up 

to the filling level.
● The filling level is compact 

from left to rightsize  =   2

Now it has 

one child



Compact binary tree ● All levels are complete up 

to the filling level.
● The filling level is compact 

from left to rightsize  =   3

Now it has two 

children



Compact binary tree

size  =   4



Compact binary tree

size  =   5



Compact binary tree

size  =   6



Compact binary tree

size  =   7



Compact binary tree

size  =   8



Compact binary tree

size  =   9



This tree is not compact!



A binary heap is a 

compact binary tree 

with an ordering 

invariant – the heap 

property. 
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Heap property: a special relationship between    

each parent and its children

90

p

a b

● p.value ≤ min(a.value, b.value)

● Says nothing about how a.value and b.value compare

property for

min-first heaps!



Examples

● Has heap property

91

3

7 3



Examples

● Has heap property

● Lacks heap property (what do you see that is wrong?)
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Examples

● Has heap property

● Lacks heap property

93

3

7 3

5

5 3



Heap Property Implies Fast peekMin()

● In a heap, the heap property applies between every 

node and its children (if any).

● So where is the smallest element in a binary heap?
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Heap Property Implies Fast peekMin()

● In a heap, the heap property applies between every 

node and its children (if any).

● So where is the smallest element in a binary heap?

● At the root, of course…

95



Heap Property Implies Fast peekMin()

● In a heap, the heap property applies between every 

node and its children (if any).

● So where is the smallest element in a binary heap?

● At the root, of course?

● Better prove it…

96



Theorem

● If a heap is not empty → a minimum element is found at its root
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

100
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

101

p

a

1

a

n

Nodes above p in 

the tree → proper 
ancestors of p



Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

102

p

a

1

a

n

Nodes above p in 

the tree → proper 
ancestors of p

Nodes below p in the tree → 

proper descendants



Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

○ Here let’s say the name and value of a node are synonymous

■ so p contains value p, a1 contains value a1 , and so on

103

p
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

○ Here let’s say the name and value of a node are synonymous

■ so p contains value p, a1 contains value a1 , and so on

○ Consider the sequence of proper ancestors of p

■ a1 a2 ….an

104
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

○ Here let’s say the name and value of a node are synonymous

■ so p contains value p, a1 contains value a1 , and so on

○ Consider the sequence of proper ancestors of p

■ a1 a2 ….an

○ Applying the heap property we obtain:
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

○ Here let’s say the name and value of a node are synonymous

■ so p contains value p, a1 contains value a1 , and so on

○ Consider the sequence of proper ancestors of p

■ a1 a2 ….an

○ Applying the heap property we obtain:

○ This contradicts the claim that an is not a minimal element
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Theorem

● If a heap is not empty → a minimum element is found at its root

● Proof (by contradiction):
○ Suppose we have a nonempty heap and the root node is not a minimal element

○ Then a minimal element must exist somewhere else, say at node p

○ Here let’s say the name and value of a node are synonymous

■ so p contains value p, a1 contains value a1 , and so on

○ Consider the sequence of proper ancestors of p

■ a1 a2 ….an

○ Applying the heap property we obtain:

○ This contradicts the claim that an is not a minimal element
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p

a

1

a

n

QED



Binary Heap Operations

● How do we implement

● insert

● extractMin

● decrease
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Binary Heap Operations

● How do we implement

● insert

● extractMin

● decrease We’ll do this one first

109



Consider the following values in a heap

87 91 31 17 46 77 79 4 58
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Consider the following values in a heap

87 91 31 17 46 77 79 4 58
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Consider the following values in a heap

87 91 31 17 46 77 79 4 58
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91 58

31 46 87 79

17 77

4



Consider the following values in a heap

113

91 58

31 46 87 79

17 77

4

decrease(32)



Consider the following values in a heap

114

91 32

31 46 87 79

17 77

4

decrease(32)



Consider the following values in a heap

115

91 32

31 46 87 79

17 77

4

decrease(32)

Heap property maintained

So no action is necessary



Consider the following values in a heap
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91 32

31 46 87 79

17 77

4



Consider the following values in a heap
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91 32

31 46 87 79

17 77

4

decrease(14)



Consider the following values in a heap
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91 14

31 46 87 79

17 77

4

decrease(14)



Consider the following values in a heap

119

91 14

31 46 87 79

17 77

4



Consider the following values in a heap

120

91 14

31 46 87 79

17 77

4

Heap property broken!

What do we do?



Consider the following values in a heap

121

91 14

31 46 87 79

17 77

4● If a1> p

○ then heap property is broken
○ ...but swapping them makes those two values OK,
○ so we can keep swapping up the tree until the heap property 

is restored.

p

a

1

a

n



Consider the following values in a heap
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91 14

31 46 87 79

17 77
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Consider the following values in a heap
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91 14

31 46 87 79

17 77

4



Consider the following values in a heap
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91 31

14 46 87 79

17 77

4



Consider the following values in a heap
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91 31

14 46 87 79

17 77

4



Consider the following values in a heap
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91 31

14 46 87 79

17 77

4



Consider the following values in a heap
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91 31

17 46 87 79

14 77

4



Consider the following values in a heap

128

91 31

17 46 87 79

14 77

4



Consider the following values in a heap

129

91 31

17 46 87 79

14 77

4



OK, Now For Insertion

● Claim: if you can do decrease(), you can do insert()!
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OK, Now For Insertion

● Claim: if you can do decrease(), you can do insert()!
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Algorithm for 

insert?
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● Claim: if you can do decrease(), you can do insert()!
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OK, Now For Insertion

● Claim: if you can do decrease(), you can do insert()!
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OK, Now For Insertion

● Claim: if you can do decrease(), you can do insert()!

● Will argue that insert() reduces to decrease()

134

Algorithm for 

insert!

Algorithm for 

decrease



OK, Now For Insertion

● Claim: if you can do decrease(), you can do insert()!

● Will argue that insert() reduces to decrease()

● [“If you can do decrease, here’s how to use it for insert”] 135

Algorithm for 

insert!

Algorithm for 

decrease



Consider the following values in a heap

136

91 31

17 46 87 79

14 77

4



Consider the following values in a heap

137

91 31

17 46 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value



Consider the following values in a heap
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91 31

17 46 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value



Consider the following values in a heap
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91 31

17 46 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value



Consider the following values in a heap

140

91 31

17 46 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

decrease(12)



Consider the following values in a heap

141

91 31 12

17 46 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

decrease(12)



Consider the following values in a heap

142

91 31 12

17 46 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease

decrease(12)



Consider the following values in a heap

143

91 31 12

17 46 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap

144

91 31 46

17 12 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap
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91 31 46

17 12 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap
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91 31 46

17 12 87 79

14 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap

147

91 31 46

17 14 87 79

12 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap
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91 31 46

17 14 87 79

12 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap
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91 31 46

17 14 87 79

12 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap
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91 31 46

17 14 87 79

12 77

4

● The empty nodes are not really there yet in this heap

● But we could regard them as having infinite value
● Upon insertion

○ value decreases from         to inserted element’s value

● But we know how to handle this already
○ So insert is reduced to decrease



Consider the following values in a heap
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91 31 46

17 14 87 79

12 77

4



One More Operation

● extractMin – remove smallest element of heap

● We know where the smallest element is… [root]

● But once we remove it, tree is no longer compact!

152



Extracting the min

153

91 31 46

17 14 87 79

12 77

4
We will remove and return 

this value



Extracting the min
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91 31 46

17 14 87 79

12 77

What about this hole?



Extracting the min
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91 31 46

17 14 87 79

12 77

● Move the last value to the root



Extracting the min
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91 31 46

17 14 87 79

12 77

● Move the last value to the root



Extracting the min
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91 31

17 14 87 79

12 77

46

● Move the last value to the root



Wait, what?????

● The tree is compact again – hooray!

● But heap property at root may now be violated – boo!

● How can we we fix up the tree to be a heap again?

● Will use another swapping procedure: heapify
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Extracting the min

159

91 31

17 14 87 79

12 77

46

● Move the last value to the root

● Heapify at that node
○ Exchange it with the lesser of 

its children if necessary



Extracting the min
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91 31

17 14 87 79

12 77

46

● Move the last value to the root

● Heapify at that node
○ Exchange it with the lesser of 

its children if necessary

12 < 77 so we exchange 46 with 12



Extracting the min

161

91 31

17 14 87 79

46 77

12

● Move the last value to the root

● Heapify at that node
○ Exchange it with the lesser of 

its children if necessary

● Recursively Heapify



Extracting the min

162

91 31

17 14 87 79

46 77

12

● Move the last value to the root

● Heapify at that node
○ Exchange it with the lesser of 

its children if necessary

● Recursively Heapify

14 wins here



Extracting the min
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91 31

17 46 87 79

14 77

12

● Move the last value to the root

● Heapify at that node
○ Exchange it with the lesser of 

its children if necessary

● Recursively Heapify



Extracting the min
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91 31

17 46 87 79

14 77

12

● Done!

● But let’s do that again



Extracting the min

165

91 31

17 46 87 79

14 77

12

● We will return 12



Extracting the min

166

91 31

17 46 87 79

14 77

● We will return 12

● Creates a hole at root



Extracting the min

167

91 31

17 46 87 79

14 77

● We will return 12

● Creates a hole at root
● Move last element to root



Extracting the min
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91

17 46 87 79

14 77

31

● Heapify



Extracting the min

169

91

17 46 87 79

14 77

31

● Heapify

14 < 77 so we exchange 31 with 14



Extracting the min

170

91

17 46 87 79

31 77

14

● Heapify



Extracting the min

171

91

17 46 87 79

31 77

14

● Heapify

17 wins here



Extracting the min

172

91

31 46 87 79

17 77

14

● Heapify



Extracting the min
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91

31 46 87 79

17 77

14

● Heapify

● Done



Extracting the min

174

91

31 46 87 79

17 77

14

● Again



Extracting the min

175

91

31 46 87 79

17 77

14

● Again

● 14 will be returned



Extracting the min

176

91

31 46 87 79

17 77

● Again

● 14 will be returned



Extracting the min

177

91

31 46 87 79

17 77

● Again

● 14 will be returned



Extracting the min

178

31 46 87 79

17 77

91

● Move last element to root



Extracting the min

179

31 46 87 79

17 77

91

● Heapify



Extracting the min

180

31 46 87 79

17 77

91

● Heapify

17 < 77 so we exchange 91 with 17



Extracting the min

181

31 46 87 79

91 77

17

● Heapify



Extracting the min

182

31 46 87 79

91 77

17

● Heapify

31 wins here



Extracting the min

183

91 46 87 79

31 77

17

● Heapify



Extracting the min

184

91 46 87 79

31 77

17

● Again, 17 will be returned



Pause… you try it

Take a minute to work through the next couple of extractions yourself…
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Extracting the min

186

91 46 87 79

31 77

● Again, 17 will be returned



Extracting the min

187

91 46 87 79

31 77

● Move last element to root



Extracting the min

188

91 46 87

31 77

79

● Move last element to root



Extracting the min

189

91 46 87

31 77

79

● Heapify



Extracting the min

190

91 46 87

31 77

79

● Heapify

31 < 77 so we exchange 79 with 31



Extracting the min

191

91 46 87

79 77

31

● Heapify



Extracting the min

192

91 46 87

79 77

31

● Heapify

46 wins here



Extracting the min

193

91 79 87

46 77

31

● Heapify



Extracting the min

194

91 79 87

46 77

31

● Done



Extracting the min

195

91 79 87

46 77

31

● Again, 31 will be returned



Extracting the min

196

91 79 87

46 77

● Again, 31 will be returned

● Tell me what to do !!



Extracting the min

197

91 79 87

46 77

● Tell me what to do



Extracting the min

198

91 79

46 77

87

● Tell me what to do



Extracting the min

199

91 79

46 77

87

● Tell me what to do

????



Extracting the min

200

91 79

87 77

46

● Tell me what to do

????



Extracting the min

201

91

79 77

46

● Tell me what to do

87



Extracting the min

202

91

79 77

46

● Tell me what to do

87



Extracting the min

203

91

79 77

46

● Again, 46 will be returned

87



Extracting the min

204

91

79 77

● Again, 46 will be returned

87



Extracting the min

205

91

79 77

● What should I do?

87



Extracting the min

206

91

79 77

● What should I do?

87



Extracting the min

207

91

79 77

87

● What should I do?



Extracting the min

208

91

79 77

87

● What should I do?

????



Extracting the min

209

91

79 77

87

● What should I do?



Extracting the min

210

91

79 87

77

● What should I do?



Extracting the min

211

91

79 87

77

● What should I do?



Extracting the min
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91

79 87

77

● Again, 77 will be returned



Extracting the min

213

91

79 87

● Again, 77 will be returned



Extracting the min

214

91

79 87

● What to do?



Extracting the min

215

91

79 87

● What to do?



Extracting the min

216

79 87

91

● What to do?



Extracting the min

217

79 87

91

● What to do?

????



Extracting the min

218

91 87

79

● What to do?



Extracting the min

219

91 87

79

● What to do?



Extracting the min

220

91 87

79

● 79 is returned next



Extracting the min

221

91 87

● 79 is returned next



Extracting the min

222

91 87

● And…?



Extracting the min

223

91 87

● And…?



Extracting the min

224

91

87

● And…?



Extracting the min

225

91

87

● And…?

????



Extracting the min

226

91

87

● And…?



Extracting the min

227

91

87

● 87 is returned next



Extracting the min

228

91

● You know….



Extracting the min
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91

● You know….



Extracting the min

230

91

● You know….



Extracting the min

231

91

● You know….



Extracting the min

232

91

● Finally 91 is returned



Extracting the min

233

● Finally 91 is returned

● And the heap is empty



Time For Performance Analysis

● We now have correct procedures for the binary heap operations
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Time For Performance Analysis

● We now have correct? procedures for the binary heap operations

● (Should really write proofs that heap property is restored… later)

● Right now, we ask: just how fast are these operations?
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Intuition

● We want to give the cost of operations on a heap of size n. 
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Intuition

● We want to give the cost of operations on a heap of size n. 

● An insert or decrease might move a value from the bottom of the tree 

up to the root.

● An extractMin might move a value (the new root) from the root of the 

tree down to the bottom.
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Intuition

● We want to give the cost of operations on a heap of size n. 

● An insert or decrease might move a value from the bottom of the tree 

up to the root.

● An extractMin might move a value (the new root) from the root of the 

tree down to the bottom.

● So we need to reason about how tall a heap with n elements is.

238



Height vs # Nodes

239

For a complete binary tree, how does 

the height of tree affect the number of 
nodes?

Height 1?    #nodes= 3



Height vs # Nodes

240

For a complete binary tree, how does the 

height of tree affect the number of 
nodes?

Height 2?    #nodes= 7



Height vs # Nodes
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For a complete binary tree, how does the 

height of tree affect the number of 
nodes?

Height 3?    #nodes= 15



Height vs # Nodes
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For a complete binary tree, how does the 

height of tree affect the number of 
nodes?

Height 3?    #nodes= 15

height k #nodes = ???

0 1

1 3

2 7

3 15



Height vs # Nodes

243

For a complete binary tree, how does the 

height of tree affect the number of 
nodes?

Height 3?    #nodes= 15

height k #nodes = 2k+1-1

0 1

1 3

2 7

3 15



Theorem

● A complete binary tree (all non-leaves have two children) of 

height k has 2k+1 -1 nodes.

244



But First…

● Lemma: a complete binary tree of height k has 2k leaves.
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But First…

● Lemma: a complete binary tree of height k has 2k leaves.

● Pf: By induction on k.
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But First…

● Lemma: a complete binary tree of height k has 2k leaves.

● Pf: By induction on k.

● Base: k = 0 → tree is a single node → 20 = 1 leaf.
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But First…

● Lemma: a complete binary tree of height k has 2k leaves.

● Pf: By induction on k.

● Base: k = 0 → tree is a single node → 20 = 1 leaf.

● Ind: Suppose true for tree T of height k.
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But First…

● Lemma: a complete binary tree of height k has 2k leaves.

● Pf: By induction on k.

● Base: k = 0 → tree is a single node → 20 = 1 leaf.

● Ind: Suppose true for tree T of height k.

● We extend T by one level, adding two leaves below each node at 

the bottom of T.   By IH, T has 2k leaves, so extension has 2k+1.
249QED



Back To Theorem…

● Thm: a complete binary tree of height k has 2k+1 - 1 nodes.

● Pf: By induction on k.
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Back To Theorem…

● Thm: a complete binary tree of height k has 2k+1 – 1 nodes.

● Pf: By induction on k.

● Bas: k = 0 → single node → 20+1 – 1 = 1 nodes.
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Back To Theorem…

● Thm: a complete binary tree of height k has 2k+1 – 1 nodes.

● Pf: By induction on k.

● Bas: k = 0 → single node → 20+1 – 1 = 1 nodes.

● Ind: Suppose true for tree T of height k.

252



Back To Theorem…

● Thm: a complete binary tree of height k has 2k+1 – 1 nodes.

● Pf: By induction on k.

● Bas: k = 0 → single node → 20+1 – 1 = 1 nodes.

● Ind: Suppose true for tree T of height k.

● By IH, T has 2k+1 – 1 nodes. Adding k+1st level adds 2k+1 leaves.
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Back To Theorem…

● Thm: a complete binary tree of height k has 2k+1 – 1 nodes.

● Pf: By induction on k.

● Bas: k = 0 → single node → 20+1 – 1 = 1 nodes.

● Ind: Suppose true for tree T of height k.

● By IH, T has 2k+1 – 1 nodes. Adding k+1st level adds 2k+1 leaves.

254

by Lemma



Back To Theorem…

● Thm: a complete binary tree of height k has 2k+1 – 1 nodes.

● Pf: By induction on k.

● Bas: k = 0 → single node → 20+1 – 1 = 1 nodes.

● Ind: Suppose true for tree T of height k.

● By IH, T has 2k+1 – 1 nodes. Adding k+1st level adds 2k+1 leaves.

● Extended tree has 2(2k+1) – 1 = 2k+2 – 1 nodes.  QED
255

by Lemma



So What?

● Complete binary tree of height k has Θ(2k) nodes.

● Hence, complete binary tree with n nodes has height Θ(log n).
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So What?

● Complete binary tree of height k has Θ(2k) nodes.

● Hence, complete binary tree with n nodes has height Θ(log n).

● What about compact but not complete trees?
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So What?

● Complete binary tree of height k has Θ(2k) nodes.

● Hence, complete binary tree with n nodes has height Θ(log n).

● What about compact but not complete trees?

● All levels except the bottom are full → can show tree of height k has 

at least 2k nodes.

● Conclude that a compact tree with n nodes still has height Θ(log n).
258



Conclusions About Running Time

● decrease/insert/heapify may move an element from the bottom to top 

or top to bottom of a compact tree – Θ(log n) levels.

● Time to move is O(1) per level of tree.

● Conclude that these operations take worst-case time Θ(log n).
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Another Way to Analyze Complexity

● Heapify is often written as a recursive procedure.

260



Another Way to Analyze Complexity

● Heapify is often written as a recursive procedure.

261

Heapify(tree rooted at v)

if (v is bigger than its smallest child c)

swap values of nodes v and c

Heapify(tree rooted at c)



Another Way to Analyze Complexity

● Heapify is often written as a recursive procedure.

● How can we analyze complexity of code like this?

262

Heapify(tree rooted at v)

if (v is bigger than its smallest child c)

swap values of nodes v and c

Heapify(tree rooted at c)



Basic Approach

● Suppose a recursive procedure runs in time T(n) on inputs 

of size n.

● Procedure does work f(n), plus a recursive call on input of 

size g(n) < n.

● Then we can write T(n) = T(g(n)) + f(n)
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Basic Approach

● Suppose a recursive procedure runs in time T(n) on inputs 

of size n.

● Procedure does work f(n), plus a recursive call on input of 

size g(n) < n.

● Then we can write T(n) = T(g(n)) + f(n)

264

recurrence 

for T(n)



Basic Approach

● Suppose a recursive procedure runs in time T(n) on inputs 

of size n.

● Procedure does work f(n), plus a recursive call on input of 

size g(n) < n.

● Then we can write T(n) = T(g(n)) + f(n)

265

recurrence 

for T(n)

Let’s apply this approach to the analysis of heapify



Consider Heapify(r) on a tree of n nodes

266

r
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r

Heapify first 

spends a 
constant amount 
of time arranging 

a swap among 
these nodes

Consider Heapify(r) on a tree of n nodes
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r

And then acts 

recursively on 
one subtree

Heapify first 

spends a 
constant amount 
of time arranging 

a swap among 
these nodes

Consider Heapify(r) on a tree of n nodes



269

r

And then acts 

recursively on 
one subtree

Heapify first 

spends a 
constant amount 
of time arranging 

a swap among 
these nodes

Consider Heapify(r) on a tree of n nodes

Worst-case assumption:

it’s the larger subtree



270

r

And then acts 

recursively on 
larger subtree

Heapify first 

spends a 
constant amount 
of time arranging 

a swap among 
these nodes

Consider Heapify(r) on a tree of n nodes

k



271

r

And then acts 

recursively on 
larger subtree

Heapify first 

spends a 
constant amount 
of time arranging 

a swap among 
these nodes

How many nodes?

Consider Heapify(r) on a tree of n nodes

k
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r

And then acts 

recursively on 
larger subtree

Heapify first 

spends a 
constant amount 
of time arranging 

a swap among 
these nodes

How many nodes?

Consider Heapify(r) on a tree of n nodes

Time to process n nodes:

T(n) = T(?) + k

k
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r

And then acts 

recursively on 
larger subtree

Heapify first 

spends a 
constant amount 
of time arranging 

a swap among 
these nodes

How many nodes?

Consider Heapify(r) on a tree of n nodes

Time to process n nodes:

T(n) = T(?) + k

k
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r

And then acts 

recursively on 
larger subtree

How many nodes?

Consider Heapify(r) on a tree of n nodes

Time to process n nodes:

T(n) = T(?) + k
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r

How many nodes?

Consider Heapify(r) on a tree of n nodes

How big could the shaded 

tree be compared to the 
original one?
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r

How many nodes?

Consider Heapify(r) on a tree of n nodes

How big could the shaded 

tree be compared to the 
original one?

CLRS:  ≤ 2n/3
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r

How many nodes?

Consider Heapify(r) on a tree of n nodes

Let’s prove it….

(proof is not in our text)

How big could the shaded 

tree be compared to the 
original one?

CLRS:  ≤ 2n/3
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h

Complete binary tree 

of height h has
2h+1-1
nodes

(Theorem from 
earlier)
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h

Complete binary tree 

of height h has
2h+1-1
nodes

(Theorem)

And it has 2h leaves

(Lemma)
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h

Complete binary tree 

of height h has
2h+1-1
nodes

(Theorem)

And it has 2h leaves

(Lemma)

So this is a complete 

tree except for  
2h/2 = 2h-1 nodes
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h

Complete binary tree 

of height h has
2h+1-1
nodes

(Theorem)

And it has 2h leaves

(Lemma)

So this is a complete 

tree except for  
2h/2 = 2h-1 nodes

So this tree has

2h+1- 1 - 2h-1 nodes
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h

Complete binary tree 

of height h has
2h+1-1
nodes

(Theorem)

And it has 2h leaves

(Lemma)

So this is a complete 

tree except for  
2h/2 = 2h-1 nodes

So this tree has

2h+1- 1 - 2h-1 nodes

#nodes in this tree: 
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h

#nodes in this tree: 
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h-1

#nodes in this tree: 

How many nodes?
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r

Consider Heapify(r) on a tree of n nodes

Tree of 

height h-1

#nodes in this tree: 

How many nodes?

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio

293

#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree



Let’s compute the ratio
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#nodes in this tree: 

#nodes in

shaded tree

#nodes in

shaded tree
#nodes in the larger tree 
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r

Consider Heapify(r) on a tree of n nodes
T(n) = time spent on n nodes
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r

Consider Heapify(r) on a tree of n nodes

some constant time k spent on these 3 nodes

T(n) = time spent on n nodes

=



300

r

How many nodes?

Consider Heapify(r) on a tree of n nodes

+ time spent 

on this subtree

some constant time k spent on these 3 nodes

T(n) = time spent on n nodes

=



301

r

How many nodes?

Consider Heapify(r) on a tree of n nodes

+ T(2n/3)

some constant time k spent on these 3 nodes

T(n) = time spent on n nodes

=
(worst case)



● T(n) =
○ k   constant time spent on the top 3 nodes

○ + T(2n/3)

● T(n) = T(2n/3) + k

302

Consider Heapify(r) on a tree of n nodes



● T(n) =
○ k   constant time spent on the top 3 nodes

○ + T(2n/3)

● T(n) = T(2n/3) + k

303

Consider Heapify(r) on a tree of n nodes

T(100) = T(66) + k

= T(44) + k + k
= T(29) + k + k + k
= T(19) + k + k + k + k

= T(12) + k + k + k + k + k
= T(8)    + k + k + k + k + k + k

= T(5)    + k + k + k + k + k + k + k
= T(3)    + k + k + k + k + k + k + k + k
= T(2)    + k + k + k + k + k + k + k + k + k

= T(1)    + k + k + k + k + k + k + k + k + k + k
= 0         + k + k + k + k + k + k + k + k + k + k   = 10 k



● T(n) =
○ k   constant time spent on the top 3 nodes

○ + T(2n/3)

● T(n) = T(2n/3) + k

304

Consider Heapify(r) on a tree of n nodes

T(100) = T(66) + k

= T(44) + k + k
= T(29) + k + k + k
= T(19) + k + k + k + k

= T(12) + k + k + k + k + k
= T(8)    + k + k + k + k + k + k

= T(5)    + k + k + k + k + k + k + k
= T(3)    + k + k + k + k + k + k + k + k
= T(2)    + k + k + k + k + k + k + k + k + k

= T(1)    + k + k + k + k + k + k + k + k + k + k
= 0         + k + k + k + k + k + k + k + k + k + k   = 10 k

If the size of our 

problem is multiplied 
by 1.5, to get T(150), 
it takes just one more 

step, so T(150) = 11 k



● T(n) =
○ k   constant time spent on the top 3 nodes

○ + T(2n/3)

● T(n) = T(2n/3) + k
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Consider Heapify(r) on a tree of n nodes

T(100) = T(66) + k

= T(44) + k + k
= T(29) + k + k + k
= T(19) + k + k + k + k

= T(12) + k + k + k + k + k
= T(8)    + k + k + k + k + k + k

= T(5)    + k + k + k + k + k + k + k
= T(3)    + k + k + k + k + k + k + k + k
= T(2)    + k + k + k + k + k + k + k + k + k

= T(1)    + k + k + k + k + k + k + k + k + k + k
= 0         + k + k + k + k + k + k + k + k + k + k   = 10 k

If the size of our 

problem is multiplied 
by 1.5, to get T(150), 
it takes just one more 

step, so T(150) = 11 k

We will be able to show soon that this T(n) = Θ(log n)



● T(n) =
○ k   constant time spent on the top 3 nodes

○ + T(2n/3)

● T(n) = T(2n/3) + k

● [ magic we have not yet studied but will do so next week ]

● T(n) = Θ(log n)

● Same asymptotic result as we got the other way

● Approach applies to many recursive procedures, as we’ll see

306

Consider Heapify(r) on a tree of n nodes



Summary of Binary Heap Performance

● Decrease: worst-case Θ(log n)

● Insert: worst-case Θ(log n)    [reduction from decrease]

● ExtractMin: worst-case Θ(log n)
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Summary of Binary Heap Performance

● Decrease: worst-case Θ(log n)

● Insert: worst-case Θ(log n)    [reduction from decrease]

● ExtractMin: worst-case Θ(log n)
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Moral: we can dynamically maintain the minimum 

of a binary heap in time Θ(log n) per operation.



Follow-up: Time To Build Heap

● What does it cost to do n successive insertions into an empty heap?
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Follow-up: Time To Build Heap

● What does it cost to do n successive insertions into an empty heap?

● k log(1) + k log(2) + …. + k log(n)
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Follow-up: Time To Build Heap

● What does it cost to do n successive insertions into an empty heap?

● k log(1) + k log(2) + …. + k log(n)

● ≤ k log(n) + k log(n) + …. + k log(n) = kn log(n)
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Follow-up: Time To Build Heap

● What does it cost to do n successive insertions into an empty heap?

● k log(1) + k log(2) + …. + k log(n)

● ≤ k log(n) + k log(n) + …. + k log(n) = kn log(n)

● So building a heap takes worst-case time O(n log n)
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Follow-up: Time To Build Heap

● What does it cost to do n successive insertions into an empty heap?

● k log(1) + k log(2) + …. + k log(n)

● ≤ k log(n) + k log(n) + …. + k log(n) = kn log(n)

● So building a heap takes worst-case time O(n log n)

● (But in fact, this O is not a Θ – see text for better bound!)

313



Practical advice: do 

not actually store your 

binary heap as a tree!
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Efficient representation of binary heap

● Binary heaps have so far been depicted as trees
○ And we could implement them that way

○ But there is a more efficient treatment

○ Motivated by

■ Max size is known a priori

■ Elements are always added to the end for insert(T thing)

■ In response to extractMin(), heapify() removes the last element

● So an array is actually a good way to store a tree
○ But how do we keep track of

■ parents

■ children

● Easy solution to that for a binary tree
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Tree implemented as an array

● An important implementation note
○ Java arrays

■ Start at 0
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Tree implemented as an array

● An important implementation note
○ Java arrays

■ Start at 0

■ So new int[10]
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Tree implemented as an array

● An important implementation note
○ Java arrays

■ Start at 0

■ So new int[10]

● Provides for 10 integer locations

● Numbered 0….9

● We could start filling in the array at 0

● But for the purposes of the binary heap we will start at 1

○ The text does it this way, so we’ll be consistent with it.

○ The math that follows is very slightly easier starting with 1

○ Older programming languages started arrays at 1 (some, like Matlab, still do)

318
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Tree implemented as an array

● An important implementation note
○ Java arrays

■ Start at 0

■ So new int[10]

● Provides for 10 integer locations

● Numbered 0….9

● We could start filling in the array at 0

● But for the purposes of the binary heap we will start at 1

○ The text does it this way, so we’ll be consistent with it.

○ The math that follows is very slightly easier starting with 1

○ Older programming languages started arrays at 1 (some, like Matlab, still do)

319

0 1 2 3 5 6 7 84 9

We ignore location 0 

even though it’s 
there



Tree implemented as an array

● So we will store the tree in an array

● It’s a binary tree
○ So each node has at most 2 children

● It’s compact
○ So it’s predictable where childless parents will appear

■ Near the end

320
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent
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Tree implemented as an array
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r

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1



Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b

● If p is stored at index i
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b

● If p is stored at index i
○ The left child is stored at 2 x i
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b

● If p is stored at index i
○ The left child is stored at 2 x i
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b

● If p is stored at index i
○ The left child is stored at 2 x i

○ The right child is stored at 2 x i + 1
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b

● If p is stored at index i
○ The left child is stored at 2 x i

○ The right child is stored at 2 x i + 1
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b

● If p is stored at index i
○ The left child is stored at 2 x i

○ The right child is stored at 2 x i + 1

● For every node n except the root
○ The parent of n is at  
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Tree implemented as an array

● So we will store the tree in an array

● How do we infer the relationship
○ Between a parent and its children

○ Between a child and its parent

● The root will always be stored at 1

● Given a parent node p
○ Left child a

○ Right child b

● If p is stored at index i
○ The left child is stored at 2 x i

○ The right child is stored at 2 x i + 1

● For every node n except the root
○ The parent of n is at  
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This is the 

result you get 
from normal int 

division:

6/2 = 3
7/2 = 3

a



Back to our example, but using an array
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Consider the following values in a heap

87 91 31 17 46 77 79 4 58
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Tree stored as an array
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Tree stored as an array
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Tree stored as an array
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Tree stored as an array
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Tree stored as an array
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Tree stored as an array
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Tree stored as an array
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Tree stored as an array
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Tree stored as an array
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31 46 87 79

17 77
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4 17 77 31 46 87 79 91



Tree stored as an array
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91 58

31 46 87 79

17 77

4
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4 17 77 31 46 87 79 91 58



Lab 3: Implement Heap
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For studio
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Some possible implementations

● Let’s think through some implementation possibilities
○ Using data structures we already know

○ Reasoning about their complexity

● The “n” here
○ Means the current size of our priority queue

● Given a priority queue of n items
○ How expensive is each of the methods we have described so far

○ For a particular implementation

■ Binary heap

■ List

● Links vs. array

● Ordered vs. not ordered
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Running example

● Table will track complexity

● We are interested in worst-case times
○ We’ll come back to this shortly
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Implementation insert extractMin

Unordered list

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46
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Implementation insert extractMin

Unordered list

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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Implementation insert extractMin

Unordered list

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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Implementation insert extractMin

Unordered list Θ(1)
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Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()     84
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Implementation insert extractMin

Unordered list Θ(1)

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()     84
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84 53 92 46
this

p

Implementation insert extractMin

Unordered list Θ(1)

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()     53
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84 53 92 46
this

p

Implementation insert extractMin

Unordered list Θ(1)

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()     53
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84 53 92 46
this

p

Implementation insert extractMin

Unordered list Θ(1)

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()     46
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this

p

Implementation insert extractMin

Unordered list Θ(1)

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()     46

356

84 53 92 46
this

Implementation insert extractMin

Unordered list Θ(1)

Ordered list

Unordered array

Ordered array

p



Running example

PQ contains 53, 92, 46

extractMin()     46

357

84 53 92 46
this

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list

Unordered array

Ordered array

p



Running example

PQ contains 53, 92, 46

insert(84)

358

46 53 92
this

p

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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46 53 92
this

p

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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46 53 92
this

p

84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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46 53 92
this

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

84

Wait!  Is this right?  Look 

at what happens next if 
we wanted to insert “1” 
into the ordered list



Running example

PQ contains 53, 92, 46

insert(84)
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46 53 92
this

84

It would go here, 

seemingly taking 
constant time!

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Wait!  Is this right?  Look 

at what happens next if 
we wanted to insert “1” 
into the ordered list...



Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

insert(84)

363

46 53 92
this

84

Wait!  Is this right?  Look 

at what happens next if 
we wanted to insert “1” 
into the ordered list...

It would go here, 

seemingly taking 
constant time!

Remember we set out to analyze 

the complexity of the worst-case.  
That complexity is as shown here, 
bound above and below by n



A common source of confusion

● Many of us confuse
○ Best vs. worst case

○ vs.
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A common source of confusion

● Many of us confuse
○ Best vs. worst case

○ vs.

● To avoid this
○ First think about the function f(n) that characterizes the property of interest

■ Worst-case

■ Best-case

■ Average-case
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● Many of us confuse
○ Best vs. worst case

○ vs.

● To avoid this
○ First think about the function f(n) that characterizes the property of interest

■ Worst-case

■ Best-case

■ Average-case

○ Then think about whether that f(n) is bounded

■ From above

367



A common source of confusion

368

● Many of us confuse
○ Best vs. worst case

○ vs.
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■ From below



A common source of confusion

● Many of us confuse
○ Best vs. worst case

○ vs.

● To avoid this
○ First think about the function f(n) that characterizes the property of interest

■ Worst-case

■ Best-case

■ Average-case

○ Then think about whether that f(n) is bounded

■ From above

■ From below

■ Both     
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Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

insert(84)
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this

84

Wait!  Is this right?  Look 

at what happens next if 
we wanted to insert “1” 
into the ordered list…

It would go here, 

seemingly taking 
constant time!

Remember we set out to analyze 

the complexity of the worst-case.  
That complexity is as shown here, 
bound above and below by n



Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

insert(84)

371
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this

84

Just be sure, why is 

this right?



Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

insert(84)
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this

84

Just be sure, why is 

this right?

And this?



Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

insert(84)
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Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

extractMin()
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Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

extractMin()     46
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Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n)

Unordered array

Ordered array

Running example

PQ contains 53, 92, 46

extractMin()     46

376

53 9284
this



PQ contains 53, 92, 46

extractMin()     46

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array

Ordered array

Running example
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What about arrays?
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Running example

379

size = 0

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46
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size = 3

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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size = 3

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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53 92 46

size = 3

84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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Implementation insert extractMin

Unordered list Θ(1) Θ(n)
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Unordered array Θ(1)

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()
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Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1)

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()
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size = 4

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1)

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()      53
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size = 4

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1)

Ordered array



Running example

PQ contains 53, 92, 46

extractMin()      53
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Implementation insert extractMin
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Running example

PQ contains 53, 92, 46

extractMin()      46
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Running example

PQ contains 53, 92, 46

extractMin()      46
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Running example

PQ contains 53, 92, 46

extractMin()      46
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Running example

PQ contains 53, 92, 46

extractMin()      46
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Running example
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Running example

PQ contains 53, 92, 46

394

46 53 92

size = 3

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)
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Running example

PQ contains 53, 92, 46

insert(84)
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1. Find where 84 

should go
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Running example

PQ contains 53, 92, 46

insert(84)
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1. Find where 84 

should go
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Running example

PQ contains 53, 92, 46

insert(84)
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46 53 92

size = 3

1. Find where 84 

should go
2. Move elements 

to make room for 

84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)
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size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84

Implementation insert extractMin
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Running example

PQ contains 53, 92, 46

insert(84)
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46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

401

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

Running example

PQ contains 53, 92, 46

insert(84)

402

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

84

????



Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

Running example

PQ contains 53, 92, 46

insert(84)

403

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

84

?????

Let’s look at this one step at a time



Running example

PQ contains 53, 92, 46

insert(84)

404

46 53 92

size = 3

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

405

46 53 92

size = 3

1. Find where 84 

should go

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

406

46 53 92

size = 3

1. Find where 84 

should go

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

407

46 53 92

size = 3

1. Find where 84 

should go

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

What say you?



Running example

PQ contains 53, 92, 46

insert(84)

408

46 53 92

size = 3

1. Find where 84 

should go

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

What say you?  We could 

look through the entire 
array O(n)



Running example

PQ contains 53, 92, 46

insert(84)

409

46 53 92

size = 3

1. Find where 84 

should go

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

What say you?  We could 

look through the entire 
array O(n) but there is a 
faster way, do you see?



Running example

PQ contains 53, 92, 46

insert(84)

410

46 53 92

size = 3

1. Find where 84 

should go

Remember phone books?  To find somebody, 

would you start at the first page and keep looking?

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

What say you?  We could 

look through the entire 
array O(n) but there is a 
faster way, do you see?

https://en.wikipedia.org/wiki/Telephone_directory


Running example

PQ contains 53, 92, 46

insert(84)

411

46 53 92

size = 3

1. Find where 84 

should go

Remember phone books?  To find somebody, 

would you start at the first page and keep looking?  
Or is there a faster way?

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

What say you?  We could 

look through the entire 
array O(n) but there is a 
faster way, do you see?

https://en.wikipedia.org/wiki/Telephone_directory


One method for searching a phone book efficiently

● Look in the middle
○ Is the target of your search later or earlier than what you find?

○ Throw away the half of the phone book that cannot contain your target

■ Really, throw it away, or shred it, or burn it

○ Repeat this procedure (recursively!) on the half you did not throw away

● We will soon study a general method to reason about this procedure’s 

complexity

● But do you see what it is?
○ Think about the size of what remains to be searched

○ When it reaches 1 you are done

● 8 → 4 → 2 → 1   3 steps   log28

412



One method for searching a phone book efficiently

● Look in the middle
○ Is the target of your search later or earlier than what you find?

○ Throw away the half of the phone book that cannot contain your target

■ Really, throw it away, or shred it, or burn it

○ Repeat this procedure (recursively!) on the half you did not throw away

● We will soon study a general method to reason about this procedure’s 

complexity

● But do you see what it is?
○ Think about the size of what remains to be searched

○ When it reaches 1 you are done

● 8 → 4 → 2 → 1   3 steps   log28

● Because these logarithms are so common, we abbreviate them using “lg”

413



One method for searching a phone book efficiently

● Look in the middle
○ Is the target of your search later or earlier than what you find?

○ Throw away the half of the phone book that cannot contain your target

■ Really, throw it away, or shred it, or burn it

○ Repeat this procedure (recursively!) on the half you did not throw away

● We will soon study a general method to reason about this procedure’s 

complexity

● But do you see what it is?
○ Think about the size of what remains to be searched

○ When it reaches 1 you are done

● 8 → 4 → 2 → 1   3 steps   log28

● Because these logarithms are so common, we abbreviate them using “lg”

414

However, asymptotically the 

base doesn’t matter, so we 
write O(log(n))



Running example

PQ contains 53, 92, 46

insert(84)

415

46 53 92

size = 3

1. Find where 84 

should go

Remember phone books?  To find somebody, 

would you start at the first page and keep looking?  
Or is there a faster way?

O(log(n))

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

https://en.wikipedia.org/wiki/Telephone_directory


Running example

PQ contains 53, 92, 46

insert(84)

416

46 53 92

size = 3

1. Find where 84 

should go
2. Move elements 

to make room for 

84

O(log(n))

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

417

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84

O(log(n))

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

418

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84

O(log(n))

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

Here we only had to move one 

element, but worst case is that 
they all have to shift right by 
one cell.



Running example

PQ contains 53, 92, 46

insert(84)

419

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84

O(log(n))

O(n)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array

Here we only had to move one 

element, but worst case is that 
they all have to shift right by 
one cell.



Running example

PQ contains 53, 92, 46

insert(84)

420

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

O(log(n))

O(n)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

421

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

O(log(n))

O(n)
84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

422

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

O(log(n))

O(n)
84

O(1)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

423

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

O(log(n))

O(n)
84

O(1)

O(log(n)) + O(n) + O(1) = O(n)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array



Running example

PQ contains 53, 92, 46

insert(84)

424

46 53 92

size = 4

1. Find where 84 

should go
2. Move elements 

to make room for 

84
3. Insert 84

O(log(n))

O(n)
84

O(1)

O(log(n)) + O(n) + O(1) = O(n)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

425

46 53 92

size = 4

84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()

426

46 53 92

size = 4

84

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()

427

46 53 92

size = 4

84

1. Capture the 

array’s first 
element

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

428

46 53 92

size = 4

84

1. Capture the 

array’s first 
element

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

429

46 53 92

size = 4

84

1. Capture the 

array’s first 
element

O(1)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

430

46 53 92

size = 4

84

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

431

53 53 92

size = 4

84

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

432

53 84 92

size = 4

84

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

433

53 84 92

size = 4

92

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

434

53 84

size = 3

92

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

435

53 84

size = 3

92

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

O(n)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

436

53 84

size = 3

92

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

O(n)

O(n) + O(1) = O(n)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n)



Running example

PQ contains 53, 92, 46

extractMin()     46

437

53 84

size = 3

92

1. Capture the 

array’s first 
element

2. Move all 

elements one 
cell to the left

O(1)

O(n)

O(n) + O(1) = O(n)

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n) Θ(n)



Running example

438

53 84

size = 3

92

Do you see how to modify 

Ordered array so that 
extractMin() can be done in 
constant time?

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n) Θ(n)



● Not so great
○ Lists

○ Arrays

● Much better
○ Use a heap

○ A kind of a tree

○ Implemented using an array

○ Provides O(log(n)) time bound on all operations

■ O(1) peek at minimum element

Running example

439

Implementation insert extractMin

Unordered list Θ(1) Θ(n)

Ordered list Θ(n) Θ(1)

Unordered array Θ(1) Θ(n)

Ordered array Θ(n) Θ(n)



Enrichment

https://xkcd.com/835/

● Don’t forget to read the mouseover text

440

https://xkcd.com/835/

