
Lecture 2:

Limit Tests and

ADTs

1
These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

● Lab 1 is due on 2/8
○ Log in to Gradescope and try uploading something soon! Don't

get caught by tech issue at last minute.

● Studio 2 Thursday (do short pre-lab beforehand)

● Office Hours locations now posted

● Outline for today:
○ Limit Tests

○ Algorithm Comparisons

○ Abstract Data Types

○ Linked Lists
2

Review from Last Time: O, Ω, Θ

3

Describes order of growth ignoring behavior for small n, constant factors

How Did We Prove O, Ω, and Θ Bounds?

● Pick constants c, n0 (two constants needed for Θ)

● Prove the right bounding inequality (or pair of inequalities for Θ)

● Used a variety of math tools for this proof

○ arithmetic

○ algebra

○ calculus

4

How Did We Prove O, Ω, and Θ Bounds?

● Pick constants c, n0 (two constants needed for Θ)

● Prove the right bounding inequality (or pair of inequalities for Θ)

● Used a variety of math tools for this proof

○ arithmetic

○ algebra

○ calculus

Is there a single, uniform proof strategy that gives answers

quickly and requires less creativity? 5

Let’s Talk About Limits

6

Suppose

Let’s Talk About Limits

7

Suppose

Which function grows faster?

Let’s Talk About Limits

8

Suppose

Which function grows faster? g(n)

Let’s Talk About Limits

9

Suppose

Which function grows faster? g(n)

Claim: f(n) = O(g(n))

Let’s Talk About Limits

10

Suppose

Which function grows faster? g(n)

Claim: f(n) = O(g(n))

For any constant c > 0, we can find n0 s.t.

f(n)/g(n) ≤ c when n ≥ n0.

Defn

of

Limit

Let’s Talk About Limits

11

Suppose

Which function grows faster? g(n)

Claim: f(n) = O(g(n))

For c=1, we can find n0 s.t.

f(n) ≤ c g(n) when n ≥ n0.

Let’s Talk About Limits

12

Suppose

Which function grows faster? g(n)

Claim: f(n) = O(g(n))

For c=1, we can find n0 s.t.

f(n) ≤ c g(n) when n ≥ n0. QED

Defn of

O(g(n))

Let’s Talk About Limits

13

Suppose

Which function grows faster? g(n)

Claim: f(n) ≠ Ω(g(n))

Let’s Talk About Limits

14

Suppose

Which function grows faster? g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)).

Let’s Talk About Limits

15

Suppose

Which function grows faster? g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0,

f(n) ≥ c g(n) when n ≥ n0.

Let’s Talk About Limits

16

Suppose

Which function grows faster? g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0,

f(n)/g(n) ≥ c when n ≥ n0.

Let’s Talk About Limits

17

Suppose

Which function grows faster? g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0,

f(n)/g(n) ≥ c when n ≥ n0.
But then the limit above

would be at least c > 0.

Let’s Talk About Limits

18

Suppose

Which function grows faster? g(n)

Claim: f(n) != Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0,

f(n)/g(n) ≥ c when n ≥ n0.

Contradiction!

Contradiction!

Let’s Talk About Limits

19

Suppose

Which function grows faster? g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)).
Implication: this

assumption was

false. QED

What Have We Learned?

● Thm: when

● f(n) = O(g(n)) but f(n) ≠ Ω(g(n))

20

What Have We Learned?

● Thm: when

● f(n) = O(g(n)) but f(n) ≠ Ω(g(n))

● We sometimes write “f(n) = o(g(n))”

● “f(n) is little-o of g(n)”

21

More Limits…

22

Suppose

Now which function grows faster?

More Limits…

23

Suppose

Now which function grows faster? f(n)

More Limits…

24

Suppose

Now which function grows faster? f(n)

Thm: f(n) = Ω(g(n)) but f(n) ≠ O(g(n))

[proof strategy is basically identical to previous]

More Limits…

25

Suppose

Now which function grows faster? f(n)

Thm: f(n) is Ω(g(n)) but not O(g(n))

We sometimes write “f(n) = ω(g(n))”

“f(n) is little-omega of g(n)”

Yet More Limits

26

Suppose

Yet More Limits

27

Suppose

Then

If the ratio converges to k, then

after some point it must be ≤ k + ϵ
for any fixed ϵ > 0.

Yet More Limits

28

Suppose

Then

Similar logic: after some point the

ratio must be ≥ k - ϵ for any fixed
ϵ > 0.

Yet More Limits

29

Suppose

Thm: f(n) = Θ(g(n))

[we just proved this]

Summary: the

Limit Test

30

31

If… Then…

32

If… Then…

33

If… Then…

34

If… Then…

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

35

If… Then…

“f(n) grows slower

than g(n)”

“f(n) grows faster

than g(n)”

“f(n), g(n) grow

at same rate”

36

If… Then…

“g(n) grows faster

than f(n)”

“f(n) grows faster

than g(n)”

“f(n), g(n) grow

at same rate”

These are

asymptotic

statements

Examples

37

Compare n3 with n2

38

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n3 with n2

39

1

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n3 with n2

40

1

n3 = ω(n2)

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n3 with n2

41

1 n3 = Ω(n2), but n3 ≠ O(n2)

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare log n with n

42

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare log n with n

43

Undefined!

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare log n with n

44

Undefined!

Recall L'Hôpital's rule?

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare log n with n

45

Undefined!

Recall L'Hôpital's rule?

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare log n with n

46

Undefined!

Recall L'Hôpital's rule?

= 1 / n

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare log n with n

47

Undefined!

Recall L'Hôpital's rule?

= 1 / n

= 1

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare log n with n

48

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare log n with n

49

log(n) = o(n)

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare log n with n

50

log(n) = O(n) but log(n) ≠ Ω(n)

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare 3n2+5n+7 with n2

51

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare 3n2+5n+7 with n2

52

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

= 3

Compare 3n2+5n+7 with n2

53

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

= 3

3n2 + 5n + 7 = Θ(n2)

Compare n4 with 2n 0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

Undefined!

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n 0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n 0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

58

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

59

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

60

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

61

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

62

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

63

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

64

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

65

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

66

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

67

Keep applying L'Hôpital's rule

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare n4 with 2n

68

Keep applying L'Hôpital's rule

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare n4 with 2n

69

Keep applying L'Hôpital's rule

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare n4 with 2n

70

Keep applying L'Hôpital's rule

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Compare n4 with 2n

71

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

Compare n4 with 2n

72

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

n4 = o(2n)

Compare n4 with 2n

73

0

∞
k > 0

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

n4 = O(2n) but n4 ≠ Ω(2n)

More generally

Can show inductively that for any real-valued a > 1, b ≥ 0,

“Exponentials grow faster than polynomials”

74

𝑛𝑏 ≠ Ω(𝑎𝑛)𝑛𝑏 = 𝑂(𝑎𝑛) but

Interlude

75

Given some algorithms, which is fastest?

76

Algorithm Time

A1

A2

A3

A4

A5

Given some algorithms, which is fastest?

77

Algorithm Time

A1

A2

A3

A4

A5

These are tight bounds, so they can easily be

compared against each other.

Either n log n time is better than the other

two times

Given some algorithms, which is fastest?

78

Algorithm Time

A1

A2

A3

A4

A5

Given some algorithms, which is fastest?

79

Algorithm Time

A1

A2

A3

A4

A5

Given some algorithms, which is fastest?

80

Algorithm Time

A1

A2

A3

A4

A5

Not a tight bound, but this

algorithm takes at least n2 time.

Thus it is slower than A2 or A5

Given some algorithms, which is fastest?

81

Algorithm Time

A1

A2

A3

A4

A5

How do we decide between A2 and A5?

Given some algorithms, which is fastest?

82

Algorithm Time

A1

A2

A3

A4

A5

● Constant factors

● Empirical behavior

● Properties other than speed

Given some algorithms, which is fastest?

83

Algorithm Time

A1

A2

A3

A4

A5

Could I sell you an O(n2) algorithm? Would

you use it instead of A2 or A5?

Given an algorithm, which is best? A2 or A5 so far

84

Algorithm Time

A1

A2

A3

A4

A5

o An O(n2) algorithm could be faster than A2 or A5

o But it could also be slower!

o We can’t tell without a lower bound

And Now For Something Completely Different

● We’ve been focused on how to express, compare

running times.

● Now we’re going to put that knowledge into practice!

● We’ll start with basic data structures.

85

Collection Abstract Data Types

● A collection is just a bunch of objects (of some

common type)

86

7

26
34

57

3

299

189

Collection Abstract Data Types

● A collection is just a bunch of objects (of some

common type)

87

7

26
34

57

3

299

189

• Numbers

• Strings

• Records

• …

Collection Abstract Data Types

● A collection is just a bunch of objects (of some

common type)

● Each object has a key, and maybe some other

attached data

88

Name: J. Random Hacker

Student ID: 247247

Year: Sophomore

Home Town: Kalamazoo

Collection Abstract Data Types

● A collection is just a bunch of objects (of some

common type)

● Each object has a key, and maybe some other

attached data

● (We usually focus on the keys and ignore the rest)

89

Things We Might Do With a Collection

● Enumerate the keys of all objects

● Add an object

● Remove an object

● Find an object by key

90

Things We Might Do With a Collection

● Enumerate the keys of all objects

● Add an object

● Remove an object

● Find an object by key

● Locate largest/smallest key

91

Things We Might Do With a Collection

● Enumerate the keys of all objects

● Add an object

● Remove an object

● Find an object by key

● Locate largest/smallest key

92

Assumes

keys are

ordered!

(More later)

ADTs Have Methods – for Example:

● Enumerate()

● Add(key)

● Remove(key)

● Find(key)

● Max(), Min()

93

ADTs Have Methods – for Example:

● Enumerate()

● Add(key)

● Remove(key)

● Find(key)

● Max(), Min()

94

We know how these methods

act on the collection, but not

how they are implemented

Some Collections are Structured

● Objects may be logically arranged inside a collection.

95

Example: Queue (Java notation)

● Queue<T> : 2 basic operations

96

enqueue dequeue

contains things of type T

Example: Queue

● Queue<T> : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

97

enqueue dequeue

contains things of type T

Example: Queue

● Queue<T> : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

○ T dequeue()

■ Removes and returns the thing at the beginning of the queue

● Fails if the queue is empty

98

enqueue dequeue

contains things of type T

Example: Queue

● Queue<T> : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

○ T dequeue()

■ Removes and returns the thing at the beginning of the queue

● Fails if the queue is empty

○ boolean isEmpty()

■ Returns whether the queue is empty

99

enqueue dequeue

contains things of type T

Example: Queue

● Queue<T> : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

○ T dequeue()

■ Removes and returns the thing at the beginning of the queue

● Fails if the queue is empty

○ boolean isEmpty()

■ Returns whether the queue is empty

100

enqueue dequeue

contains things of type T

What does it mean to

“fail”? Two choices:
● return null
● throw an Exception

NoSuchElement

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

101

enqueue dequeue

contains things of type T

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: add, then remove objects holding 5, 3, and 8; note FIFO order of removal

102

enqueue dequeue

contains things of type T

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

○ Example:

■ Add: enqueue(5)

103

enqueue dequeue

contains things of type T

5

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

○ Example:

■ Add: enqueue(5), enqueue(3)

104

enqueue dequeue

contains things of type T

53

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

○ Example:

■ Add: enqueue(5), enqueue(3), enqueue(8)

105

enqueue dequeue

contains things of type T

538

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

○ Example:

■ Add: enqueue(5), enqueue(3), enqueue(8)

■ Remove: x = dequeue()

106

enqueue dequeue

contains things of type T

x: 55

38

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

○ Example:

■ Add: enqueue(5), enqueue(3), enqueue(8)

■ Remove: x = dequeue(), x = dequeue()

107

enqueue dequeue

contains things of type T

x: 35 3

8

Example: Queue

● Queue<T>

○ Key characteristic: FIFO order

■ First In, First Out

○ Example:

■ Add: enqueue(5), enqueue(3), enqueue(8)

■ Remove: x = dequeue(), x = dequeue(), x = dequeue()

108

enqueue dequeue

contains things of type T

x: 85 3 8

Example: Stack (Java notation)

● Stack<T> : 2 basic operations
○ void push(T thing)

■ Adds thing to the top of the stack

○ T pop()

■ Removes and returns the thing at the top of the stack

● Fails if the stack is empty

○ Key characteristic: LIFO order

■ Last In, First Out

109

push pop

contains things of type T

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

110

push pop

contains things of type T

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example: add 5, 3, 8 to stack, then remove -- note LIFO order

■ Add:

111

push pop

contains things of type T

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5)

112

push pop

contains things of type T

5

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3)

113

push pop

contains things of type T

5

3

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

114

push pop

contains things of type T

5

3

8

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop()

115

push pop

contains things of type T

5

3

8x:8

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop(),x=pop()

116

push pop

contains things of type T

5

3x:8 3

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop(), x=pop(), x=pop()

117

push pop

contains things of type T

5x:8 3 5

Example: Stack

● Stack<T> : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop(), x=pop(), x=pop()

○ Note: elements come out in reverse order compared to Queue!

■ LIFO vs. FIFO

118

push pop

8 3 5

An ADT can be

implemented in

different ways.

119

Example: Queue Implementations

● Our picture of a Queue suggests an array

120

Example: Queue Implementations

● Our picture of a Queue suggests an array

● Idea: maintain two pointers – “head” and “tail”

121

Example: Queue Implementations

● Our picture of a Queue suggests an array

● Idea: maintain two pointers – “head” and “tail”

● Enqueue items at the tail

● Dequeue items at the head

● (Maintains FIFO ordering)

122

Alternative Structure: Linked List

● We could implement the same behavior using a linked list

● A list consists of nodes, each of which holds a key (object).

123

key

next

Alternative Structure: Linked List

● We could implement the same behavior using a linked list

● A list consists of nodes, each of which holds a key (object).

● Each node’s next pointer points to its successor.

124

key

next

key

next

key

next

key

next

Alternative Structure: Linked List

● A basic linked list has a head pointer to its first node.

● The last node’s next pointer is null.

(There are fancier lists, e.g. doubly-linked with next and previous

pointers, but we’ll focus on this basic list for now.)
125

key

next

key

next

key

next

key

next

Implementing a Queue With a List

● How can we map the basic Queue operations

onto a linked list?

● Need enqueue, dequeue

126

Implementing a Queue With a List (One Way)

● Enqueue items at the end of the list

● Dequeue from the beginning of the list

● FIFO order is preserved!

127

Performance Implications

● In an array-based queue, cost of enqueue, dequeue is ???

128

Performance Implications

● In an array-based queue, cost of enqueue, dequeue is Θ(1)

● [read/write one element and bump a pointer]

129

Performance Implications

● In an array-based queue, cost of enqueue, dequeue is Θ(1)

● [read/write one element and bump a pointer]

● But for our list-based queue, enqueue must find the tail to add a

new object.

● Moving from head to tail requires following Θ(n) pointers in an

n-element list.

130

Performance of an ADT is

sensitive to the data structure

used to implement it.

What’s Next?

● We’ll look at an ADT for which neither arrays nor lists

provide satisfactory performance for all operations.

● We’ll see an entirely new data structure to implement it.

● We’ll reason about the performance of this structure.

131

