Lecture 2: Limit Tests and ADTs

These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

- Lab 1 is due on 2/8
 - Log in to Gradescope and try uploading something soon! Don't get caught by tech issue at last minute.
- Studio 2 Thursday (do short pre-lab beforehand)
- Office Hours locations now posted
- Outline for today:
 - Limit Tests
 - Algorithm Comparisons
 - Abstract Data Types
 - Linked Lists

Review from Last Time: O, Ω , Θ

Describes order of growth ignoring behavior for small n, constant factors

3

How Did We Prove O, Ω , and Θ Bounds?

- Pick constants c, n₀ (two constants needed for Θ)
- Prove the right bounding inequality (or pair of inequalities for Θ)
- Used a variety of math tools for this proof
 - arithmetic
 - algebra
 - calculus

How Did We Prove O, Ω , and Θ Bounds?

- Pick constants c, n₀ (two constants needed for Θ)
- Prove the right bounding inequality (or pair of inequalities for Θ)
- Used a variety of math tools for this proof
 - arithmetic
 - algebra
 - calculus

Is there a single, uniform proof strategy that gives answers quickly and requires less creativity? 5

Suppose

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster?

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)

Claim: f(n) = O(g(n))

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n) Claim: f(n) = O(g(n))For any constant c > 0, we can find n_0 s.t. $f(n)/g(n) \le c$ when $n \ge n_0$.

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)Claim: f(n) = O(g(n))For c=1, we can find n_0 s.t. $f(n) \le c g(n)$ when $n \ge n_0$.

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n) Claim: f(n) = O(g(n))For c=1, we can find n_0 s.t. $f(n) \le c g(n)$ when $n \ge n_0$. QED

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)Claim: $f(n) \neq \Omega(g(n))$

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)

Claim: $f(n) \neq \Omega(g(n))$

Suppose $f(n) = \Omega(g(n))$.

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)

Claim: $f(n) \neq \Omega(g(n))$

Suppose $f(n) = \Omega(g(n))$. Then for some c > 0, $n_0 > 0$, $f(n) \ge c g(n)$ when $n \ge n_0$.

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)

Claim: $f(n) \neq \Omega(g(n))$

Suppose $f(n) = \Omega(g(n))$. Then for some c > 0, $n_0 > 0$, $f(n)/g(n) \ge c$ when $n \ge n_0$.

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)

Claim: $f(n) \neq \Omega(g(n))$

Suppose $f(n) = \Omega(g(n))$. Then for some $0, n_0 > 0$, But then the limit above would be at least c > 0.

Contradiction!

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Which function grows faster? g(n)

Claim: $f(n) \neq \Omega(g(n))$

Suppose $f(n) = \Omega(g(n))$.

Implication: this assumption was false. QED

What Have We Learned?

• Thm: when
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

• f(n) = O(g(n)) but $f(n) \neq \Omega(g(n))$

What Have We Learned?

• Thm: when
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

•
$$f(n) = O(g(n))$$
 but $f(n) \neq \Omega(g(n))$

- We sometimes write "f(n) = o(g(n))"
- "f(n) is little-o of g(n)"

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Now which function grows faster?

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Now which function grows faster? f(n)

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Now which function grows faster? f(n)

Thm: $f(n) = \Omega(g(n))$ but $f(n) \neq O(g(n))$

[proof strategy is basically identical to previous]

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Now which function grows faster? f(n) Thm: f(n) is $\Omega(g(n))$ but not O(g(n))We sometimes write "f(n) = $\omega(g(n))$ "

"f(n) is little-omega of g(n)"

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, \ k > 0$

 $\exists n_0 \mid \forall n \ge n_0 \quad f(n) \le (k+\epsilon)g(n) \to f(n) = O(g(n))$

Suppose
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, \ k > 0$$

Similar logic: after some point the ratio must be $\geq k - \epsilon$ for any fixed $\epsilon > 0$.
Then
 $\exists n_0 \mid \forall n \ge n_0 \quad f(n) \le (k + \epsilon)g(n) \rightarrow f(n) = O(g(n))$
 $\exists n_0 \mid \forall n \ge n_0 \quad g(n) \le \frac{f(n)}{(k - \epsilon)} \rightarrow f(n) = \Omega(g(n))$
 $\exists n_0 \mid \forall n \ge n_0 \quad g(n) \le \frac{f(n)}{(k - \epsilon)} \rightarrow f(n) = \Omega(g(n))$

Suppose
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, \ k > 0$$

Thm: $f(n) = \Theta(g(n))$

[we just proved this]

Summary: the Limit Test

Then...

Then...

 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \ f(n) = O(g(n)) \ f(n) = \Omega(g(n))$

Then...

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \ f(n) \equiv O(q(n)) \ f(n) = \Omega(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, \ k > 0 \qquad \qquad f(n) = \Theta(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Then...

f(n) = o(g(n))

$$f(n) = \omega(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, \ k > 0$$

 $f(n) = \Theta(g(n))$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, \ k > 0$$

Then...

"f(n) grows slower than g(n)"

"f(n) grows faster than g(n)"

"f(n), g(n) grow at same rate"

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, \ k > 0$$

Then...

These are asymptotic statements
Examples

Compare n³ with n²

 $\begin{array}{ll} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{array}$ $\lim_{n\to\infty}\frac{f(n)}{g(n)}$

 $\lim_{n \to \infty} \frac{n^3}{n^2}$

Compare n^3 with n^2

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} \mathbf{0} & f(n) = \mathbf{o}(g(n)) \\ \infty & f(n) = \mathbf{\omega}(g(n)) \\ \mathbf{k} > \mathbf{0} & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{n^3}{n^2}$$

$$=\lim_{n\to\infty}n^{\scriptscriptstyle L}=\infty$$

Compare n^3 with n^2

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} \mathbf{0} & f(n) = \mathbf{o}(g(n)) \\ \infty & f(n) = \mathbf{\omega}(g(n)) \\ \mathbf{k} > \mathbf{0} & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{n^3}{n^2}$$

$$=\lim_{n\to\infty}n^1=\infty$$

$$n^3 = \omega(n^2)$$

Compare n³ with n²

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} \mathbf{0} & f(n) = \mathbf{o}(g(n)) \\ \infty & f(n) = \mathbf{\omega}(g(n)) \\ \mathbf{k} > \mathbf{0} & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{n^3}{n^2}$$

$= \lim_{n \to \infty} n^{1} = \infty \qquad n^{3} = \Omega(n^{2}), \text{ but } n^{3} \neq O(n^{2})$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{\log n}{n} = ?$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{\log n}{n} = ?$$
 Undefined!

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} \mathbf{0} & f(n) = \mathbf{o}(g(n)) \\ \infty & f(n) = \mathbf{\omega}(g(n)) \\ \mathbf{k} > \mathbf{0} & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{\log n}{n} = ?$$

Undefined!

Recall <u>L'Hôpital's rule</u>?

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} \mathbf{0} & f(n) = \mathbf{o}(g(n)) \\ \infty & f(n) = \mathbf{\omega}(g(n)) \\ \mathbf{k} > \mathbf{0} & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{\log n}{n} = ?$$

$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\frac{d}{dn} \log n}{\frac{d}{dn} n} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Compare log n with n

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{bmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = 0(g(n)) \end{bmatrix}$$

$$\lim_{n \to \infty} \frac{\log n}{n} = ?$$

$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\frac{d}{dn} \log n}{\frac{d}{dn} n} = \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} \mathbf{0} & f(n) = \mathbf{o}(g(n)) \\ \infty & f(n) = \mathbf{\omega}(g(n)) \\ \mathbf{k} > \mathbf{0} & f(n) = \Theta(g(n)) \end{pmatrix}$$

Compare
$$3n^2+5n+7$$
 with $n^2 \lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{bmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{bmatrix}$

Compare
$$3n^2+5n+7$$
 with $n^2 \lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$

$$= \lim_{n \to \infty} 3 + \frac{5}{n} + \frac{7}{n^2}$$

= 3

Compare
$$3n^2+5n+7$$
 with $n^2 \lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{bmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{bmatrix}$

$$= \lim_{n \to \infty} 3 + \frac{5}{n} + \frac{7}{n^2}$$

$3n^2 + 5n + 7 = \Theta(n^2)$

= 3

Compare n^4 with 2^n

$$\lim_{n \to \infty} \frac{n^4}{2^n}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$$

Compare n⁴ with 2ⁿ

 $\lim_{n \to \infty} \frac{n^4}{2^n}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{pmatrix} 0 & f(n) = o(g(n)) \\ \infty & f(n) = \omega(g(n)) \\ k > 0 & f(n) = \Theta(g(n)) \end{pmatrix}$$

f(n) = o(g(n))0 Compare n⁴ with 2ⁿ $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ $f(n) = \omega(g(n))$ $f(n) = \Theta(g(n))$ n^4 k > 0 $n \rightarrow \infty 2^n$ $2 = e^{\ln 2}$ $\frac{d}{dn}n^4$ $2^n = \left(e^{\ln 2}\right)^n$ $=\lim_{n\to\infty_0}$

Compare n⁴ with 2ⁿ

$$\lim_{n \to \infty} \frac{n^4}{2^n}$$

$$= \lim_{n \to \infty} \frac{\frac{d}{dn}n^4}{\frac{d}{dn}2^n}$$

$$2 = e^{\ln 2}$$

$$2^n = (e^{\ln 2})^n = e^{(\ln 2)n}$$

$$\frac{d}{dn}e^{(\ln 2)n} = \ln 2 e^{(\ln 2)n}$$
61

Compare n⁴ with 2ⁿ

$$\lim_{n \to \infty} \frac{n^4}{2^n}$$

$$= \lim_{n \to \infty} \frac{\frac{d}{dn}n^4}{\frac{d}{dn}2^n}$$

$$\frac{d}{dn}e^{(\ln 2)n} = \ln 2 e^{(\ln 2)n}$$
62

More generally

Can show inductively that for any *real-valued* a > 1, $b \ge 0$,

$$n^b = O(a^n)$$
 but $n^b \neq \Omega(a^n)$

"Exponentials grow faster than polynomials"

Interlude

Algorithm	Time
A1	$\Theta(n^2)$
A2	$\Theta(n\log n)$
A3	$\Omega(n^2)$
A4	$\Theta(n^3)$
A5	$\Theta(n\log n)$

Algorithm	Time
These are tight bounds, so they can easily be compared against each other. Either n log n time is better than the other two times	$\Theta(n^2)$
	$\Theta(n\log n)$
	$\Omega(n^2)$
	$\Theta(n^3)$
	$\Theta(n\log n)$

Given an algorithm, which is best? A2 or A5 so far

Algorithm	Time	
A1	$\Theta(n^2)$	
A2	$\Theta(n\log n)$	
 An O(n²) algorithm could be faster than A2 or A5 But it could also be slower! We can't tell without a lower bound 		
A5	$\Theta(n\log n)$	

And Now For Something Completely Different

- We've been focused on how to express, compare running times.
- Now we're going to put that knowledge into practice!
- We'll start with basic data structures.

A collection is just a bunch of objects (of some common type)

A collection is just a bunch of objects (of some common type)

- Numbers
- Strings
- Records

•

- A collection is just a bunch of objects (of some common type)
- Each object has a key, and maybe some other attached data

Name: J. Random Hacker **Student ID: 247247** Year: Sophomore Home Town: Kalamazoo

- A collection is just a bunch of objects (of some common type)
- Each object has a key, and maybe some other attached data
- (We usually focus on the keys and ignore the rest)

Things We Might Do With a Collection

- Enumerate the keys of all objects
- Add an object
- Remove an object
- Find an object by key

Things We Might Do With a Collection

- Enumerate the keys of all objects
- Add an object
- Remove an object
- Find an object by key
- Locate largest/smallest key

Things We Might Do With a Collection

- Enumerate the keys of all objects
- Add an object
- Remove an object
- Find an object by key
- Locate largest/smallest key

ADTs Have Methods – for Example:

- Enumerate()
- Add(key)
- Remove(key)
- Find(key)
- Max(), Min()

ADTs Have Methods – for Example:

- Enumerate()
- Add(key)
- Remove(key)
- Find(key)
- Max(), Min()

We know how these methods act on the collection, but not how they are implemented

Some Collections are Structured

• Objects may be logically arranged inside a collection.

Example: Queue (Java notation)

• Queue<T> : 2 basic operations

- Queue<T> : 2 basic operations
 - void enqueue(T thing)
 - Adds thing to the end of the queue

- Queue<T> : 2 basic operations
 - void enqueue(T thing)
 - Adds thing to the end of the queue
 - T dequeue()
 - Removes and returns the thing at the beginning of the queue
 - Fails if the queue is empty

- Queue<T> : 2 basic operations
 - void enqueue(T thing)
 - Adds thing to the end of the queue
 - T dequeue()
 - Removes and returns the thing at the beginning of the queue
 - Fails if the queue is empty
 - boolean isEmpty()
 - Returns whether the queue is empty

- Queue<T>
 - Key characteristic: FIFO order
 - First In, First Out

- Queue<T>
 - Key characteristic: FIFO order
 - First In, First Out
 - Example: add, then remove objects holding 5, 3, and 8; note FIFO order of removal

- Queue<T>
 - Key characteristic: FIFO order
 - First In, First Out
 - Example:
 - Add: enqueue(5)

- Queue<T>
 - Key characteristic: FIFO order
 - First In, First Out
 - Example:
 - Add: enqueue(5), enqueue(3)

- Key characteristic: FIFO order
 - First In, First Out
- Example:
 - Add: enqueue(5), enqueue(3), enqueue(8)

- Key characteristic: FIFO order
 - First In, First Out
- Example:
 - Add: enqueue(5), enqueue(3), enqueue(8)
 - Remove: x = dequeue()

- Key characteristic: FIFO order
 - First In, First Out
- Example:
 - Add: enqueue(5), enqueue(3), enqueue(8)
 - Remove: x = dequeue(), x = dequeue()

- Key characteristic: FIFO order
 - First In, First Out
- Example:
 - Add: enqueue(5), enqueue(3), enqueue(8)
 - Remove: x = dequeue(), x = dequeue(), x = dequeue()

Example: Stack (Java notation)

- Stack<T> : 2 basic operations
 - Key characteristic: LIFO order
 - Last In, First Out

- Stack<T> : 2 basic operations
 - $\circ \quad \text{Key characteristic: LIFO order}$
 - Last In, First Out
 - Example: add 5, 3, 8 to stack, then remove -- note LIFO order
 - Add:

- Stack<T> : 2 basic operations
 - Key characteristic: LIFO order
 - Last In, First Out
 - Example
 - Add: push(5)

- Stack<T> : 2 basic operations
 - Key characteristic: LIFO order
 - Last In, First Out
 - Example
 - Add: push(5), push(3)

- Stack<T> : 2 basic operations
 - $\circ \quad \text{Key characteristic: LIFO order}$
 - Last In, First Out
 - Example
 - Add: push(5), push(3), push(8)

pop

- Note: elements come out in reverse order compared to Queue!
 - LIFO vs. FIFO

An ADT can be implemented in different ways.

Example: Queue Implementations

• Our picture of a Queue suggests an array

Example: Queue Implementations

- Our picture of a Queue suggests an array
- Idea: maintain two pointers "head" and "tail"

Example: Queue Implementations

- Our picture of a Queue suggests an array
- Idea: maintain two pointers "head" and "tail"
- Enqueue items at the tail
- Dequeue items at the head
- (Maintains FIFO ordering)

Alternative Structure: Linked List

- We could implement the same behavior using a linked list
- A list consists of nodes, each of which holds a key (object).

Alternative Structure: Linked List

- We could implement the same behavior using a linked list
- A list consists of nodes, each of which holds a key (object).

• Each node's next pointer points to its successor.

Alternative Structure: Linked List

- A basic linked list has a head pointer to its first node.
- The last node's next pointer is null.

(There are fancier lists, e.g. *doubly-linked* with next *and* previous pointers, but we'll focus on this basic list for now.)

Implementing a Queue With a List

• How can we map the basic Queue operations onto a linked list?

• Need enqueue, dequeue

Implementing a Queue With a List (One Way)

- Enqueue items at the end of the list
- Dequeue from the beginning of the list
- FIFO order is preserved!

Performance Implications

• In an array-based queue, cost of enqueue, dequeue is ???

Performance Implications

- In an array-based queue, cost of enqueue, dequeue is Θ(1)
- [read/write one element and bump a pointer]

Performance Implications

- In an array-based queue, cost of enqueue, dequeue is Θ(1)
- [read/write one element and bump a pointer]
- But for our list-based queue, enqueue must find the tail to add a new object.
- Moving from head to tail requires following Θ(n) pointers in an n-element list.

Performance of an ADT is sensitive to the data structure used to implement it.

What's Next?

- We'll look at an ADT for which neither arrays nor lists provide satisfactory performance for all operations.
- We'll see an entirely new data structure to implement it.
- We'll reason about the performance of this structure.