
Lecture 2:

Limit Tests and 

ADTs

1
These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements

● Lab 1 is due on 2/8
○ Log in to Gradescope and try uploading something soon! Don't 

get caught by tech issue at last minute.

● Studio 2 Thursday (do short pre-lab beforehand)

● Office Hours locations now posted

● Outline for today:
○ Limit Tests

○ Algorithm Comparisons

○ Abstract Data Types

○ Linked Lists
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Review from Last Time: O, Ω, Θ
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Describes order of growth ignoring behavior for small n, constant factors



How Did We Prove O, Ω, and Θ Bounds?

● Pick constants c, n0 (two constants needed for Θ)

● Prove the right bounding inequality (or pair of inequalities for Θ)

● Used a variety of math tools for this proof

○ arithmetic

○ algebra

○ calculus
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How Did We Prove O, Ω, and Θ Bounds?

● Pick constants c, n0 (two constants needed for Θ)

● Prove the right bounding inequality (or pair of inequalities for Θ)

● Used a variety of math tools for this proof

○ arithmetic

○ algebra

○ calculus

Is there a single, uniform proof strategy that gives answers 

quickly and requires less creativity? 5



Let’s Talk About Limits

6

Suppose



Let’s Talk About Limits

7

Suppose

Which function grows faster?



Let’s Talk About Limits
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Suppose

Which function grows faster?  g(n)



Let’s Talk About Limits
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Suppose

Which function grows faster?  g(n)

Claim: f(n) = O(g(n))



Let’s Talk About Limits

10

Suppose

Which function grows faster?  g(n)

Claim: f(n) = O(g(n))

For any constant c > 0, we can find n0 s.t.

f(n)/g(n) ≤ c when n ≥ n0.

Defn

of

Limit



Let’s Talk About Limits

11

Suppose

Which function grows faster?  g(n)

Claim: f(n) = O(g(n))

For c=1, we can find n0 s.t.

f(n) ≤ c g(n) when n ≥ n0.



Let’s Talk About Limits
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Suppose

Which function grows faster?  g(n)

Claim: f(n) = O(g(n))

For c=1, we can find n0 s.t.

f(n) ≤ c g(n) when n ≥ n0.    QED

Defn of

O(g(n))



Let’s Talk About Limits

13

Suppose

Which function grows faster?  g(n)

Claim: f(n) ≠ Ω(g(n))



Let’s Talk About Limits

14

Suppose

Which function grows faster?  g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)).



Let’s Talk About Limits

15

Suppose

Which function grows faster?  g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0, 

f(n) ≥ c g(n) when n ≥ n0.



Let’s Talk About Limits
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Suppose

Which function grows faster?  g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0, 

f(n)/g(n) ≥ c when n ≥ n0.



Let’s Talk About Limits

17

Suppose

Which function grows faster?  g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0, 

f(n)/g(n) ≥ c when n ≥ n0.
But then the limit above 

would be at least c > 0.



Let’s Talk About Limits
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Suppose

Which function grows faster?  g(n)

Claim: f(n) != Ω(g(n))

Suppose f(n) = Ω(g(n)). Then for some c > 0, n0 > 0, 

f(n)/g(n) ≥ c when n ≥ n0.

Contradiction!

Contradiction!



Let’s Talk About Limits
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Suppose

Which function grows faster?  g(n)

Claim: f(n) ≠ Ω(g(n))

Suppose f(n) = Ω(g(n)).
Implication: this 

assumption was 

false. QED



What Have We Learned?

● Thm: when 

● f(n) = O(g(n)) but f(n) ≠ Ω(g(n))

20



What Have We Learned?

● Thm: when 

● f(n) = O(g(n)) but f(n) ≠ Ω(g(n))

● We sometimes write “f(n) = o(g(n))”

● “f(n) is little-o of g(n)”
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More Limits…

22

Suppose

Now which function grows faster?



More Limits…

23

Suppose

Now which function grows faster?  f(n)



More Limits…
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Suppose

Now which function grows faster?  f(n)

Thm: f(n) = Ω(g(n)) but f(n) ≠ O(g(n))

[proof strategy is basically identical to previous]



More Limits…
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Suppose

Now which function grows faster?  f(n)

Thm: f(n) is Ω(g(n)) but not O(g(n))

We sometimes write “f(n) = ω(g(n))” 

“f(n) is little-omega of g(n)”



Yet More Limits
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Suppose



Yet More Limits

27

Suppose

Then

If the ratio converges to k, then 

after some point it must be ≤ k + ϵ 
for any fixed ϵ > 0.



Yet More Limits
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Suppose

Then

Similar logic: after some point the 

ratio must be ≥ k - ϵ for any fixed 
ϵ > 0.



Yet More Limits

29

Suppose

Thm: f(n) = Θ(g(n))

[we just proved this]



Summary: the 

Limit Test
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31

If… Then…



32

If… Then…



33

If… Then…
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If… Then…

f(n) = o(g(n))

f(n) = ω(g(n))

f(n) = Θ(g(n))
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If… Then…

“f(n) grows slower

than g(n)”

“f(n) grows faster

than g(n)”

“f(n), g(n) grow

at same rate”
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If… Then…

“g(n) grows faster

than f(n)”

“f(n) grows faster

than g(n)”

“f(n), g(n) grow

at same rate”

These are 

asymptotic 

statements



Examples
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Compare n3 with n2

38

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare n3 with n2

39

1

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare n3 with n2

40

1

n3 = ω(n2)

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare n3 with n2
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1 n3 = Ω(n2), but n3 ≠ O(n2)

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare log n with n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare log n with n
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Undefined!

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare log n with n
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Undefined!

Recall L'Hôpital's rule?

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Compare log n with n
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Undefined!

Recall L'Hôpital's rule?

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Compare log n with n

46

Undefined!

Recall L'Hôpital's rule?

= 1 / n

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Compare log n with n
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Undefined!

Recall L'Hôpital's rule?

= 1 / n

=    1

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Compare log n with n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare log n with n
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log(n) = o(n)

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare log n with n
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log(n) = O(n) but log(n) ≠ Ω(n)

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  3n2+5n+7 with n2
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  3n2+5n+7 with n2

52

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

= 3



Compare  3n2+5n+7 with n2
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

= 3

3n2 + 5n + 7 = Θ(n2)



Compare  n4 with 2n 0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n

Undefined!

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
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∞
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Compare  n4 with 2n 0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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∞
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Compare  n4 with 2n
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f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞
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Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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Keep applying  L'Hôpital's rule

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Compare  n4 with 2n
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Keep applying  L'Hôpital's rule

0

∞
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lim
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𝑓(𝑛)

𝑔(𝑛)

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Compare  n4 with 2n

69

Keep applying  L'Hôpital's rule

0

∞
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Compare  n4 with 2n
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Keep applying  L'Hôpital's rule

0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)
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https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

n4 = o(2n)



Compare  n4 with 2n
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0

∞
k > 0

f(n)  = o(g(n))

f(n)  = ω(g(n))

f(n)  = Θ(g(n))

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

n4 = O(2n) but n4 ≠ Ω(2n)



More generally

Can show inductively that for any real-valued a > 1, b ≥ 0, 

“Exponentials grow faster than polynomials”

74

𝑛𝑏 ≠ Ω(𝑎𝑛)𝑛𝑏 = 𝑂(𝑎𝑛) but



Interlude
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Given some algorithms, which is fastest?

76

Algorithm Time

A1

A2

A3

A4

A5



Given some algorithms, which is fastest?
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Algorithm Time

A1

A2

A3

A4

A5

These are tight bounds, so they can easily be 

compared against each other.

Either n log n  time  is better than the other 

two times



Given some algorithms, which is fastest?
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Algorithm Time

A1

A2

A3

A4

A5



Given some algorithms, which is fastest?
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Algorithm Time

A1

A2

A3

A4

A5



Given some algorithms, which is fastest?
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Algorithm Time

A1

A2

A3

A4

A5

Not a tight bound, but this 

algorithm takes at least n2 time.

Thus it is slower than A2 or A5



Given some algorithms, which is fastest?
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Algorithm Time

A1

A2

A3

A4

A5

How do we decide between A2 and A5?



Given some algorithms, which is fastest?
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Algorithm Time

A1

A2

A3

A4

A5

● Constant factors

● Empirical behavior

● Properties other than speed



Given some algorithms, which is fastest?
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Algorithm Time

A1

A2

A3

A4

A5

Could I sell you an O(n2) algorithm?  Would 

you use it instead of A2 or A5?



Given an algorithm, which is best?   A2 or A5 so far
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Algorithm Time

A1

A2

A3

A4

A5

o An O(n2) algorithm could be faster than A2 or A5

o But it could also be slower!

o We can’t tell without a lower bound



And Now For Something Completely Different

● We’ve been focused on how to express, compare 

running times.

● Now we’re going to put that knowledge into practice!

● We’ll start with basic data structures.

85



Collection Abstract Data Types

● A collection is just a bunch of objects (of some 

common type)

86
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Collection Abstract Data Types

● A collection is just a bunch of objects (of some 

common type)

87

7

26
34

57

3

299

189

• Numbers

• Strings

• Records

• …



Collection Abstract Data Types

● A collection is just a bunch of objects (of some 

common type)

● Each object has a key, and maybe some other 

attached data

88

Name: J. Random Hacker

Student ID: 247247

Year: Sophomore

Home Town: Kalamazoo



Collection Abstract Data Types

● A collection is just a bunch of objects (of some 

common type)

● Each object has a key, and maybe some other 

attached data

● (We usually focus on the keys and ignore the rest)

89



Things We Might Do With a Collection

● Enumerate the keys of all objects

● Add an object

● Remove an object

● Find an object by key

90



Things We Might Do With a Collection

● Enumerate the keys of all objects

● Add an object

● Remove an object

● Find an object by key

● Locate largest/smallest key
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Things We Might Do With a Collection

● Enumerate the keys of all objects

● Add an object

● Remove an object

● Find an object by key

● Locate largest/smallest key

92

Assumes 

keys are 

ordered!

(More later)



ADTs Have Methods – for Example:

● Enumerate()

● Add(key)

● Remove(key)

● Find(key)

● Max(), Min()

93



ADTs Have Methods – for Example:

● Enumerate()

● Add(key)

● Remove(key)

● Find(key)

● Max(), Min()

94

We know how these methods 

act on the collection, but not 

how they are implemented



Some Collections are Structured

● Objects may be logically arranged inside a collection.

95



Example: Queue (Java notation)

● Queue<T>  : 2 basic operations

96

enqueue dequeue

contains things of type T



Example: Queue

● Queue<T>  : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

97

enqueue dequeue

contains things of type T



Example: Queue

● Queue<T>  : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

○ T dequeue()

■ Removes and returns the thing at the beginning of the queue

● Fails if the queue is empty

98

enqueue dequeue

contains things of type T



Example: Queue

● Queue<T>  : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

○ T dequeue()

■ Removes and returns the thing at the beginning of the queue

● Fails if the queue is empty

○ boolean isEmpty()

■ Returns whether the queue is empty

99

enqueue dequeue

contains things of type T



Example: Queue

● Queue<T>  : 2 basic operations
○ void enqueue(T thing)

■ Adds thing to the end of the queue

○ T dequeue()

■ Removes and returns the thing at the beginning of the queue

● Fails if the queue is empty

○ boolean isEmpty()

■ Returns whether the queue is empty

100

enqueue dequeue

contains things of type T

What does it mean to 

“fail”?  Two choices:
● return null
● throw an Exception

NoSuchElement



Example: Queue

● Queue<T> 

○ Key characteristic: FIFO order

■ First In, First Out

101

enqueue dequeue

contains things of type T



Example: Queue

● Queue<T>  

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: add, then remove objects holding 5, 3, and 8; note FIFO order of removal

102

enqueue dequeue

contains things of type T



Example: Queue

● Queue<T> 

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: 

■ Add: enqueue(5)

103

enqueue dequeue

contains things of type T

5



Example: Queue

● Queue<T> 

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: 

■ Add: enqueue(5), enqueue(3)

104

enqueue dequeue

contains things of type T

53



Example: Queue

● Queue<T>  

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: 

■ Add: enqueue(5), enqueue(3), enqueue(8)

105

enqueue dequeue
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Example: Queue

● Queue<T>  

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: 

■ Add: enqueue(5), enqueue(3), enqueue(8)

■ Remove: x = dequeue()
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Example: Queue

● Queue<T>  

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: 

■ Add: enqueue(5), enqueue(3), enqueue(8)

■ Remove: x = dequeue(), x = dequeue()
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Example: Queue

● Queue<T>  

○ Key characteristic: FIFO order

■ First In, First Out

○ Example: 

■ Add: enqueue(5), enqueue(3), enqueue(8)

■ Remove: x = dequeue(), x = dequeue(), x = dequeue()
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enqueue dequeue

contains things of type T

x: 85 3 8



Example: Stack (Java notation)

● Stack<T>  : 2 basic operations
○ void push(T thing)

■ Adds thing to the top of the stack

○ T pop()

■ Removes and returns the thing at the top of the stack

● Fails if the stack is empty

○ Key characteristic: LIFO order

■ Last In, First Out
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

110

push pop
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example: add 5, 3, 8 to stack, then remove -- note LIFO order

■ Add: 
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5)

112

push pop
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3)
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push pop
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

114

push pop
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop()

115

push pop
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop(),x=pop()

116
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop(), x=pop(), x=pop()

117

push pop

contains things of type T
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Example: Stack

● Stack<T>  : 2 basic operations
○ Key characteristic: LIFO order

■ Last In, First Out

○ Example

■ Add: push(5), push(3), push(8)

■ Remove: x=pop(), x=pop(), x=pop()

○ Note: elements come out in reverse order compared to Queue!

■ LIFO vs. FIFO
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An ADT can be 

implemented in 

different ways.
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Example: Queue Implementations

● Our picture of a Queue suggests an array
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Example: Queue Implementations

● Our picture of a Queue suggests an array

● Idea: maintain two pointers – “head” and “tail”
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Example: Queue Implementations

● Our picture of a Queue suggests an array

● Idea: maintain two pointers – “head” and “tail”

● Enqueue items at the tail

● Dequeue items at the head

● (Maintains FIFO ordering)
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Alternative Structure: Linked List

● We could implement the same behavior using a linked list

● A list consists of nodes, each of which holds a key (object).

123
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Alternative Structure: Linked List

● We could implement the same behavior using a linked list

● A list consists of nodes, each of which holds a key (object).

● Each node’s next pointer points to its successor.
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Alternative Structure: Linked List

● A basic linked list has a head pointer to its first node.

● The last node’s next pointer is null.

(There are fancier lists, e.g. doubly-linked with next and previous 

pointers, but we’ll focus on this basic list for now.)
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Implementing a Queue With a List

● How can we map the basic Queue operations 

onto a linked list?

● Need enqueue, dequeue
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Implementing a Queue With a List (One Way)

● Enqueue items at the end of the list

● Dequeue from the beginning of the list

● FIFO order is preserved!
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Performance Implications

● In an array-based queue, cost of enqueue, dequeue is ???
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Performance Implications

● In an array-based queue, cost of enqueue, dequeue is Θ(1)

● [read/write one element and bump a pointer]
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Performance Implications

● In an array-based queue, cost of enqueue, dequeue is Θ(1)

● [read/write one element and bump a pointer]

● But for our list-based queue, enqueue must find the tail to add a 

new object.

● Moving from head to tail requires following Θ(n) pointers in an  

n-element list.
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Performance of an ADT is 

sensitive to the data structure 

used to implement it.



What’s Next?

● We’ll look at an ADT for which neither arrays nor lists 

provide satisfactory performance for all operations.

● We’ll see an entirely new data structure to implement it.

● We’ll reason about the performance of this structure.
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