
Lecture 14:

Greedy

Algorithms and

the Minimum

Spanning Tree
1

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

https://www.shmoop.com/quotes/greed-is-good-misquote.html

Announcements

● Lab 13 – Pre-lab due tonight, code and post-lab due Friday

● Exam 3 – May 1st, 10 am – 12 pm

● Similar procedure to previous exams; stay tuned to Piazza

● Exam review Sun. 4/28 2-5 pm Louderman 458

● Course eval: don't forget
○ Easy 1% of final grade, feedback extremely helpful

● Stay tuned to Piazza for any TA office hours next week. (Prof.

Cole will hold his as usual)
2

Problem du Jour – Network Design

● You have a collection of cities on a map…

3

Problem du Jour – Network Design

● You have a collection of cities on a map…

4

Problem du Jour – Network Design

● You have a collection of cities on a map…

● You want to connect them all into an

electric power grid.

5

Problem du Jour – Network Design

● You have a collection of cities on a map…

● You want to connect them all into an

electric power grid.

● Can string transmission lines

between cities

● Every city must be

connected!
6

7

8

9

One possible solution

Abstract Graph Problem

● Cities form set of vertices

● All possible transmission lines are edges between vertices

● Goal is to pick a subset of edges that “spans” graph (that is, subset

that connects all vertices

● So why not just add all possible edges?

10

Abstract Graph Problem

● Cities form set of vertices

● All possible transmission lines are edges between vertices

● Goal is to pick a subset of edges that “spans” graph (that is, subset

that connects all vertices)

● So why not just add all possible edges?

COST! 11

Adding Construction Costs

● Using edge between vertices u,v has cost w(u,v) ≥ 0

● Want to minimize total cost to connect all vertices

● Hence, pick a set T of edges that spans graph s.t.

𝑊 𝑇 = σ𝑒∈𝑇𝑤(𝑒) is minimized.

12

13

14

We probably don’t

want to do this!

Observation: Desired T is a Tree!

● We just need to connect all vertices.

● If any cycle exists, some edge can be removed without disconnecting

any vertex.

● Since edges have non-negative cost, this can only improve W(T).

● Hence, T is an (undirected) acyclic graph, also known as a tree.

15

16

Possible edge set T

17

T contains a cycle…

18

One acyclic subset

19

Another acyclic subset

(which seems better?)

Formal Problem: Minimum Spanning Tree

● Given undirected graph G = (V,E) with weights w(e) ≥ 0 for all e ϵ E

● Find a tree T that spans G, s.t.

𝑊 𝑇 = σ𝑒∈𝑇𝑤(𝑒) is minimized.

● T is called a minimum spanning tree of G.

20

Other Applications of Minimum Spanning Tree

● Other network design problems (phone, Internet, road, …)

● Clustering data points by proximity

[remove k-1 largest MST edges to form k clusters]

● Approximate answers to much harder problems (e.g.

travelling salesperson problem)

21

General Approach

● Start with empty edge set T

● Keep adding edges to T, without creating a cycle, until T

spans G.

● Question: how do we know which edge to add next to

ensure that W(T) ends up being minimal?

22

Greedy Principle

● Define a “local” criterion to apply when picking each edge

● At each step, pick the edge that is currently best by this

criterion and add it to T.

● Keep picking edges until T spans G.

23

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

24

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

25

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Starting vertex for

building T is arbitrary.

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

26

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

27

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

28

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Break ties arbitrarily

between edges of

equal weight.

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

29

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

30

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

31

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

32

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

33

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

34

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

35

A

B C D

H G F

EI

4
8 7

2
4

9

1 2

unconnected

connected

W(T) = 37

Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that

connects a vertex in T to a vertex not yet in T.

36

A

B C D

H G F

EI

4
7

2
4

9

1 2

unconnected

connected

W(T) = 37

8

Note that G may not

have a unique MST!

Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current

edge set T is a subset of some minimum spanning tree for G.

● (Hence, once T spans all of G, T is itself an MST for G.)

37

Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current

edge set T is a subset of some minimum spanning tree for G.

● (Hence, once T spans all of G, T is itself an MST for G.)

● Pf: by induction on # of edges chosen so far.

● Bas: before any edges are chosen, T is empty, so is a subset of every

MST for G.

38

Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current

edge set T is a subset of some minimum spanning tree for G.

● Ind: Suppose Prim’s criterion picks a next edge e.

● Let C and N be the connected and unconnected vertices of G after

picking edge set T.

39

Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current

edge set T is a subset of some minimum spanning tree for G.

40

C N

vertices connected to T vertices not connected to T

e

Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current

edge set T is a subset of some minimum spanning tree for G.

● By IH, T is a subset of some MST T* for G.

● Some unique edge e’ of T* connects C and N, as does edge e.

41

C N

vertices connected to T vertices not connected to T

e

e’

Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current

edge set T is a subset of some minimum spanning tree for G.

● By IH, T is a subset of some MST T* for G.

● Some unique edge e’ of T* connects C and N, as does edge e.

42

C N

vertices connected to T vertices not connected to T

e = e’

If e = e’, then T U {e}

is a subset of T*,

and we are done.

Why Does Prim’s Greedy Criterion Work?

● Some unique edge e’ of T* connects C and N, as does edge e.

● If e ≠ e’, then T* U {e} (spanning tree + 1 edge) forms a cycle in G.

43

C N

vertices connected to T vertices not connected to T

e

e’

Why Does Prim’s Greedy Criterion Work?

● Some unique edge e’ of T* connects C and N, as does edge e.

● If e ≠ e’, then T* U {e} (spanning tree + 1 edge) forms a cycle in G.

● Hence, T’ = T* U {e} – {e’} is another spanning tree for G.

44

C N

vertices connected to T vertices not connected to T

e

Why Does Prim’s Greedy Criterion Work?

● Some unique edge e’ of T* connects C and N, as does edge e.

● If e ≠ e’, then T* U {e} (spanning tree + 1 edge) forms a cycle in G.

● Hence, T’ = T* U {e} – {e’} is another spanning tree for G.

● Prim’s criterion picked e instead of e’, so w(e) ≤ w(e’).

● Conclude that W(T’) = W(T*) – w(e’) + w(e) ≤ W(T*), and so T’ is a

minimum spanning tree that contains T U {e}, as claimed. QED
45

Implementing Prim’s Algorithm

● Maintain set of unconnected vertices.

● For each unconnected vertex v, maintain v.conn, weight of lowest-

weight edge connecting v to any vertex in T.

● When we add an edge (u,v) to T, update connections to each x

adjacent to v:

If w(v,x) < x.conn, then x.conn  w(v,x)

46

Prim’s MST Algorithm (Adding to T Not Shown)

● starting vertex v gets v.conn 0; all other u get u.conn∞
● mark all vertices as unconnected

● while (any vertex unconnected)

● v  unconnected vertex with smallest v.conn

● for each edge (v,u)

● if (u.conn > w(u,v))

● u.conn w(u,v)

● mark v connected // augment partial MST with edge from T to v

47

Prim’s MST Algorithm (Adding to T Not Shown)

● starting vertex v gets v.conn 0; all other u get u.conn∞
● mark all vertices as unconnected

● while (any vertex unconnected)

● v  unconnected vertex with smallest v.conn

● for each edge (v,u)

● if (u.conn > w(u,v))

● u.conn w(u,v)

● mark v connected // augment partial MST with edge from T to v

48

Does this

pseudocode

look familiar?

Dijkstra’s Shortest Path Algorithm

● starting vertex v gets v.dist 0; all other u get u.dist∞
● mark all vertices as unfinished

● while (any vertex unfinished)

● v  unfinished vertex with smallest v.dist

● for each edge (v,u)

● if (u.dist > v.dist + w(u,v))

● u.dist v.dist + w(u,v)

● mark v finished

49

Prim vs Dijkstra

● Prim’s MST algorithm is nearly identical to Dijkstra’s shortest-path

algorithm

● Only difference is in greedy criterion for next vertex to process.

○ Dijkstra – total weight of path from start to unfinished vertex v

○ Prim – weight of last edge on path from start to unconnected vertex v

● We can use same min-first priority queue trick to efficiently select next

vertex to connect to T; for Prim’s algo, use u.conn as vertex’s key.

50

Prim’s MST Algorithm w/Queue

● v.conn 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.conn∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (u.conn > w(v,u))

● u.conn w(v,u)

● D[u].decrease(u)
51

Prim’s MST Algorithm w/Queue

● v.conn 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.conn∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (u.conn > w(v,u))

● u.conn w(v,u)

● D[u].decrease(u)
52

Note: book’s

pseudocode uses

common variable

names, so that Prim &

Dijkstra code, including

tree maintenance, differ

by only one line.

Running Time of Prim’s Algorithm

● Exactly the same analysis as for Dijkstra’s algorithm!

● Dominant cost is again heap operations.

● Algorithm runs in time Θ((|V| + |E|) log |V|) using a binary heap.

53

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

54

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

55

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

56

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

57

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

58

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

59

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

60

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected
Edge I-G

forms a cycle,

so we can’t

pick it.

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

61

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

62

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e)

that does not form a cycle when combined with edges

already in T.

63

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

A Few More Words on Greedy Algorithms

● Greedy choice is a design principle for algorithms.

● Many different problems can be solved using it.

● Does it always work?

● Tune in to Studio 14 to find out!
64

Course wrap-up: what to do next?

● Take more CSE classes (no matter your degree program)

● Join the WashU chapter of the ACM (Association

for Computing Machinery)
○ Programming competitions, tech talks, course registration

discussions, social events...

● Apply to be a TA (look for e-mail about "TA draft")

● Be an active, CSE-literate member of society

65

https://acm.wustl.edu/

Course wrap-up: thank you!

● Getting to know you as CSE thinkers and as people has

been a pleasure

● We've seen you work hard, grow intellectually, work

together in studio, graciously help each other and us

● We look forward to seeing you around the department and

having you as CSE colleagues

● All the best!

Thank you for a great semester!
66

