Lecture 14
Greedy
Algorithms and
the Minimum
Spanning Tree

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole.


https://www.shmoop.com/quotes/greed-is-good-misquote.html

Announcements

e Lab 13 - Pre-lab due tonight, code and post-lab due Friday

e Exam 3 — May 1st, 10 am — 12 pm
o Similar procedure to previous exams; stay tuned to Piazza
e Exam review Sun. 4/28 2-5 pm Louderman 458

e Course eval: don't forget
o Easy 1% of final grade, feedback extremely helpful
o Stay tuned to Piazza for any TA office hours next week. (Prof.

Cole will hold his as usual)
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Problem du Jour — Network Design

e You have a collection of cities on a map...
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One possible solution



Abstract Graph Problem

e Cities form set of vertices

e All possible transmission lines are edges between vertices

e Goalis to pick a subset of edges that “spans” graph (that is, subset
that connects all vertices

e S0 why notjust add all possibleedges?
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Abstract Graph Problem

e Cities form set of vertices

e All possible transmission lines are edges between vertices

e Goalis to pick a subset of edges that “spans” graph (that is, subset
that connects all vertices)

e S0 why notjust add all possibleedges?

COST!
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Adding Construction Costs

e Using edge between vertices u,v has costw(u,v)20
e Wantto minimize total costto connect all vertices

e Hence, pick a set T of edges that spans graph s.t.

W(T) = Y .erw(e) is minimized.
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We probably don't
want to do this!
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Observation: Desired T is a Tree!

e Wejust need to connect all vertices.

e If any cycle exists, some edge can be removed without disconnecting
any vertex.

e Since edges have non-negative cost, this can only improve W(T).

e Hence, T is an (undirected) acyclic graph, also known as a tree.

15



Possible edge set T

16



T contains a cycle...
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One acyclic subset

18



Another acyclic subset
(which seems better?)
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Formal Problem: Minimum Spanning Tree

e Given undirected graph G = (V,E) with weights w(e) 20 for alle e E

e Findatree T that spans G, s.t.

W(T) = )..erw(e) is minimized.

e Tis called a minimum spanning tree of G.
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Other Applications of Minimum Spanning Tree

e Other network design problems (phone, Internet, road, ...)

o Clustering data points by proximity
[remove k-1 largest MST edges to form k clusters]

e Approximate answers to much harder problems (e.qg.
travelling salesperson problem)
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General Approach

o Start with empty edge set T

o Keep adding edges to T, without creating a cycle, until T
spans G.

e Question: how do we know which edge to add next to
ensure that W(T) ends up being minimal?
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Greedy Principle

o Define a “local” criterion to apply when picking each edge

o At each step, pick the edge that is currently best by this
criterion and add it to T.

o Keep picking edges until T spans G.
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Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected
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o Prim’s criteriq nimum w(e) that
connects a ver ot In T.

@ unconnected
@ connected
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Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e (Hence,once T spans all of G, T is itselfan MST for G.)
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Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e (Hence,once T spans all of G, T is itselfan MST for G.)
e Pf: by induction on # of edges chosen so far.

e Bas: before any edges are chosen, T is empty, so is a subset of every
MST for G.
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Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e Ind: Suppose Prim’s criterion picks a next edge e.

e LetC and N be the connected and unconnected vertices of G after
picking edge set T.
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Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

vertices connected to T vertices not connected to T
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Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e ByIH, Tis a subset of some MST T*for G.

e Some unique edge e’ of T* connects C and N, as does edge e.
e,

vertices connected to T vertices not connected to T
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Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e ByIH, Tis a subset of some MST T*for G.

e Some unique edge e’ of T* connects C and N, as does edge e.

Ife=¢€’,then T U {e}
IS a subset of T*,
and we are done.

e=e€

vertices connected to T vertices not connected to T 42



Why Does Prim’s Greedy Criterion Work?

e Some unique edge e’ of T* connects C and N, as does edge e.

o Ife#e’,thenT” U{e} (spanningtree + 1 edge)forms a cyclein G.

vertices connected to T vertices not connected to T
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Why Does Prim’s Greedy Criterion Work?

e Some unique edge e’ of T* connects C and N, as does edge e.
o Ife#e’,thenT” U{e} (spanningtree + 1 edge)forms a cyclein G.

e Hence, T’=T*U {e} — {e’}is another spanning tree for G.

vertices connected to T vertices not connected to T
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Why Does Prim’s Greedy Criterion Work?

Some unique edge e’ of T* connects C and N, as does edge e.

If e # €', then T* U {e} (spanning tree + 1 edge) forms a cycle in G.

Hence, T'=T* U {e} — {e’} is another spanning tree for G.
Prim’s criterion picked e instead of €', so w(e) < w(e’).

Conclude that W(T’) =W (T*)—w(e’) + w(e) = W(T*),andso T is a
minimum spanning tree that contains T U {e}, as claimed. QED
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Implementing Prim’s Algorithm

e Maintain set of unconnected vertices.

e Foreach unconnected vertex v, maintain v.conn, weight of lowest-
weight edge connecting v to any vertexin T.

e Whenwe add an edge (u,v) to T, update connections to each x
adjacentto v:

If w(v,X) < x.conn, then x.conn < w(Vv,x)
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Prim’s MST Algorithm (Adding to T Not Shown)

e sStarting vertex v gets v.conn < 0; all other u get u.conn & 00
e mark all vertices as unconnected

e Wwhile (any vertex unconnected)

o v €< unconnected vertex with smallest v.conn

o for each edge (v,u)

o iIf (u.conn > w(u,v))

o u.conn < w(u,v)

o mark v connected //augment partial MST with edge from T to v
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Prim’s MST Algorithm (Adding to T Not Shown)

e starting verte
e mark all vertic

Does this
while (any ver pseudocode
el [00k familiar?

for each ed

u.conn < w(u,v)
mark v connected  //augment partial MST with edge from T to v
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Dijkstra’s Shortest Path Algorithm

e Starting vertex v gets v.dist € 0; all other u get u.dist & ©0
e mark all vertices as unfinished

e Wwhile (any vertex unfinished)

o v < unfinished vertex with smallest v.dist
o for each edge (v,u)

o If (u.dist > v.dist + w(u,Vv))

o u.dist € v.dist + w(u,Vv)

o mark v finished



Prim's MST algorithm is nearly identical to Dijkstra’s shortest-path
algorithm

Only difference is in greedy criterion for next vertex to process.
o Dijkstra — total weight of path from start to unfinished vertex v

o Prim—weight of last edge on path from start to unconnected vertex v

We can use same min-first priority queue trick to efficiently select next
vertex to connect to T; for Prim’s algo, use u.conn as vertex’s key.
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Prim’s MST Algorithm w/Queue

e Vv.conn < 0; D[v] € PQ.insert(starting vertex v)
e Forall other vertices u

e u.conn < O0; D[u] € PQ.insert(u)

e while (PQ not empty)

o v €& PQ.extractMin()
o for each edge (v,u)

o If (u.conn > w(v,u))
o u.conn < w(v,u)
o D[u].decrease(u)
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Prim’s MST Algorithm w/Queue

e Vv.conn < 0; D[v] € PQ.insert(starting vertex v)
e For all other vertices u

e u.conn < 00; D[u] € PQ.insert(u) Note: book’s

pseudocode uses
common variable
names, so that Prim &

e Wwhile (PQ not empty)

o v & PQ.extractMin()
o for each edge (v,u)

o if (u.conn > w(v,u))
o u.conn < w(v,u)
o D[u].decrease(u)

Dijkstra code, including
tree maintenance, differ
by only one line.




Running Time of Prim’s Algorithm

e Exactly the same analysis as for Dijkstra’s algorithm!
e Dominant cost is again heap operations.

e Algorithmrunsintime O((|V| + |E|) log |V]|) using a binary heap.
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Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected
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Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected

3 7 4 cted
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Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges
already Iin T.

@ unconnected
@ connected
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A Few More Words on Greedy Algorithms

Greedy choice Is a design principle for algorithms.
Many different problems can be solved using it.
Does it always work?

Tune in to Studio 14 to find out!
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Course wrap-up: what to do next?

o« Take more CSE classes (no matter your degree program)
o Join the WashU chapter of the ACM (Association

for Computing Machinery)
o Programming competitions, tech talks, course registration
discussions, social events...

o Apply to be a TA (look for e-mail about "TA draft")
o Be an active, CSE-literate member of society
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https://acm.wustl.edu/

Course wrap-up: thank you!

o Getting to know you as CSE thinkers and as people has
been a pleasure

o« We've seen you work hard, grow intellectually, work
together in studio, graciously help each other and us

e We look forward to seeing you around the department and
having you as CSE colleagues

o All the best!

Thank you for agreat semester!
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