Lecture 14
Greedy
Algorithms and
the Minimum
Spanning Tree

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole.

https://www.shmoop.com/quotes/greed-is-good-misquote.html

Announcements

e Lab 13 - Pre-lab due tonight, code and post-lab due Friday

e Exam 3 — May 1st, 10 am — 12 pm
o Similar procedure to previous exams; stay tuned to Piazza
e Exam review Sun. 4/28 2-5 pm Louderman 458

e Course eval: don't forget
o Easy 1% of final grade, feedback extremely helpful
o Stay tuned to Piazza for any TA office hours next week. (Prof.

Cole will hold his as usual)
2

Problem du Jour — Network Design

e You have a collection of cities on a map...

Problem du Jour — Network Design

e You have a collection of cities on a map...

a
Mahrisch
Alrstadt

MAHRISCH
SCHOMNBERG
.
L
RémersTADT
-

HoHensTADT

. & STERNEERG

MaHRISCH .
TrBAU Lirau

ir4
. WeisskIRcHEN
-

L
MNEUSTADTL Boskowirz .

s prosoel s
Mo M| ARKGRAFSCHAFT MAHREN.,
. HolLescHaU
Wmt:m.u KRemsIER
Tnm.rrscu Beoun S
UnGaRIscH
-Herapisch
DATSCHITZ L UnicariscH-Broo
. @ MAHRISCH @ G"'r' b
e Kromau AuskITZ

Strassnitz

Zuam
L NIKOLSBURG
.

Problem du Jour — Network Design

e You have a collection of cities on a map...

Q

Mahrisch

Altstadt

MaHRISCH

SCHOMBERG
.

L
RémersTADT

e You wantto connectthem all into an
electric power grid.

-
HoHensTADT

. & STERNEERG

MiHriscH .
TrBAU Lirau

Neutimserein MISTER

WeisskIRCHEN
-

.
MNEUSTADTL Boskowitz

. . =
Prossurz sl it
Grolt s
Mo M| ARKGRAFSCHAFT MAHREN.,
. HeiLLEseHAU
Wmt:m.u KRemsIER
Tnm.rrscu Beoun S
UnGaRIscH
-HrapiscH
DATSCHITZ L UnicariscH-Broo
. @ MAHRISCH @ Gava b
e Kromau AuskITZ

.
Zuam
L NIKOLSBURG
.

Problem du Jour — Network Design

e You have a collection of cities on a map...

AAAAAA
SCHOMBERG
.

L
RémersTADT

e You wantto connectthem all into an
electric power grid.

-
HoHensTADT

. ® STERNEE RG
MAHRISCH .
TrBAU Limau

Neutimserein MISTER

WeisskIRCHEN
-

L
MNEUSTADTL Boskowrz

e Can string transmissionlines

i ol Maacsscr
" veerse MARKGRAFSCHAFT MAHREN.,
between cities . T s
Tm:rscu — WiscHau
. DaTsCHI TZ L] UnGariscH-Broo
e Every city must be t Cwe e N L % .

connected!

Zuam

L NIKOLSBURG
.

RO&MERSTADT

HoHEMSTADT

. @ STEANBERG
MéHRIscH L
TrizAL LiTau
Oumiirz
. WEISSKIRCHEM
L]

MEUSTADTL Boskowitz
. - L] .
. Prossnimz PRERAL H;LEL;?;S:H_
GRo n
Mesmser MMARKGRAFSCHAFT MAHREN.
WISCM: - H;EH HowLescHaL
TREB.',TSG" BrRONMN

-HraniscH
DaTscHITZ L UncariscH-Broo
L]

. MAHRISCH @ L=

(]
Mihrisch KRomaL .
i Auspiz

MIKOLSBURG

One possible solution

Abstract Graph Problem

e Cities form set of vertices

e All possible transmission lines are edges between vertices

e Goalis to pick a subset of edges that “spans” graph (that is, subset
that connects all vertices

e S0 why notjust add all possibleedges?

10

Abstract Graph Problem

e Cities form set of vertices

e All possible transmission lines are edges between vertices

e Goalis to pick a subset of edges that “spans” graph (that is, subset
that connects all vertices)

e S0 why notjust add all possibleedges?

COST!

11

Adding Construction Costs

e Using edge between vertices u,v has costw(u,v)20
e Wantto minimize total costto connect all vertices

e Hence, pick a set T of edges that spans graph s.t.

W(T) = Y .erw(e) is minimized.

12

13

We probably don't
want to do this!

14

Observation: Desired T is a Tree!

e Wejust need to connect all vertices.

e If any cycle exists, some edge can be removed without disconnecting
any vertex.

e Since edges have non-negative cost, this can only improve W(T).

e Hence, T is an (undirected) acyclic graph, also known as a tree.

15

Possible edge set T

16

T contains a cycle...

17

One acyclic subset

18

Another acyclic subset
(which seems better?)

19

Formal Problem: Minimum Spanning Tree

e Given undirected graph G = (V,E) with weights w(e) 20 for alle e E

e Findatree T that spans G, s.t.

W(T) =)..erw(e) is minimized.

e Tis called a minimum spanning tree of G.

20

Other Applications of Minimum Spanning Tree

e Other network design problems (phone, Internet, road, ...)

o Clustering data points by proximity
[remove k-1 largest MST edges to form k clusters]

e Approximate answers to much harder problems (e.qg.
travelling salesperson problem)

21

General Approach

o Start with empty edge set T

o Keep adding edges to T, without creating a cycle, until T
spans G.

e Question: how do we know which edge to add next to
ensure that W(T) ends up being minimal?

22

Greedy Principle

o Define a “local” criterion to apply when picking each edge

o At each step, pick the edge that is currently best by this
criterion and add it to T.

o Keep picking edges until T spans G.

23

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

24

Greedy Princir[iPrim’s Algo)

o Prim’s criteriq nimum w(e) that
connects a ver ot In T.

@ unconnected
@ connected

25

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

26

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

27

Greedy Princi{ iPrim’s Algo)

o Prim’s criteriq nimum w(e) that
connects a ver ot In T.

@ unconnected
@ connected

28

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

29

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

30

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

31

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

32

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

33

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

34

Greedy Principle Applied to MST (Prim’s Algo)

e Prim’s criterion: pick the edge e of minimum w(e) that
connects a vertex in T to a vertex not yet in T.

@ unconnected
@ connected

Greedy Princi{ iPrim’s Algo)

o Prim’s criteriq nimum w(e) that
connects a ver ot In T.

@ unconnected
@ connected

Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e (Hence,once T spans all of G, T is itselfan MST for G.)

37

Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e (Hence,once T spans all of G, T is itselfan MST for G.)
e Pf: by induction on # of edges chosen so far.

e Bas: before any edges are chosen, T is empty, so is a subset of every
MST for G.

38

Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e Ind: Suppose Prim’s criterion picks a next edge e.

e LetC and N be the connected and unconnected vertices of G after
picking edge set T.

39

Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

vertices connected to T vertices not connected to T

40

Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e ByIH, Tis a subset of some MST T*for G.

e Some unique edge e’ of T* connects C and N, as does edge e.
e,

vertices connected to T vertices not connected to T

41

Why Does Prim’s Greedy Criterion Work?

e Claim: After any number of edges are chosen, algorithm’s current
edge set T is a subset of some minimum spanning tree for G.

e ByIH, Tis a subset of some MST T*for G.

e Some unique edge e’ of T* connects C and N, as does edge e.

Ife=¢€’,then T U {e}
IS a subset of T*,
and we are done.

e=e€

vertices connected to T vertices not connected to T 42

Why Does Prim’s Greedy Criterion Work?

e Some unique edge e’ of T* connects C and N, as does edge e.

o Ife#e’,thenT” U{e} (spanningtree + 1 edge)forms a cyclein G.

vertices connected to T vertices not connected to T

43

Why Does Prim’s Greedy Criterion Work?

e Some unique edge e’ of T* connects C and N, as does edge e.
o Ife#e’,thenT” U{e} (spanningtree + 1 edge)forms a cyclein G.

e Hence, T’=T*U {e} — {e’}is another spanning tree for G.

vertices connected to T vertices not connected to T

a4

Why Does Prim’s Greedy Criterion Work?

Some unique edge e’ of T* connects C and N, as does edge e.

If e # €', then T* U {e} (spanning tree + 1 edge) forms a cycle in G.

Hence, T'=T* U {e} — {e’} is another spanning tree for G.
Prim’s criterion picked e instead of €', so w(e) < w(e’).

Conclude that W(T’) =W (T*)—w(e’) + w(e) = W(T*),andso T is a
minimum spanning tree that contains T U {e}, as claimed. QED

45

Implementing Prim’s Algorithm

e Maintain set of unconnected vertices.

e Foreach unconnected vertex v, maintain v.conn, weight of lowest-
weight edge connecting v to any vertexin T.

e Whenwe add an edge (u,v) to T, update connections to each x
adjacentto v:

If w(v,X) < x.conn, then x.conn < w(Vv,x)

46

Prim’s MST Algorithm (Adding to T Not Shown)

e sStarting vertex v gets v.conn < 0; all other u get u.conn & 00
e mark all vertices as unconnected

e Wwhile (any vertex unconnected)

o v €< unconnected vertex with smallest v.conn

o for each edge (v,u)

o iIf (u.conn > w(u,v))

o u.conn < w(u,v)

o mark v connected //augment partial MST with edge from T to v

47

Prim’s MST Algorithm (Adding to T Not Shown)

e starting verte
e mark all vertic

Does this
while (any ver pseudocode
el [00k familiar?

for each ed

u.conn < w(u,v)
mark v connected //augment partial MST with edge from T to v

48

Dijkstra’s Shortest Path Algorithm

e Starting vertex v gets v.dist € 0; all other u get u.dist & ©0
e mark all vertices as unfinished

e Wwhile (any vertex unfinished)

o v < unfinished vertex with smallest v.dist
o for each edge (v,u)

o If (u.dist > v.dist + w(u,Vv))

o u.dist € v.dist + w(u,Vv)

o mark v finished

Prim's MST algorithm is nearly identical to Dijkstra’s shortest-path
algorithm

Only difference is in greedy criterion for next vertex to process.
o Dijkstra — total weight of path from start to unfinished vertex v

o Prim—weight of last edge on path from start to unconnected vertex v

We can use same min-first priority queue trick to efficiently select next
vertex to connect to T; for Prim’s algo, use u.conn as vertex’s key.

50

Prim’s MST Algorithm w/Queue

e Vv.conn < 0; D[v] € PQ.insert(starting vertex v)
e Forall other vertices u

e u.conn < O0; D[u] € PQ.insert(u)

e while (PQ not empty)

o v €& PQ.extractMin()
o for each edge (v,u)

o If (u.conn > w(v,u))
o u.conn < w(v,u)
o D[u].decrease(u)

51

Prim’s MST Algorithm w/Queue

e Vv.conn < 0; D[v] € PQ.insert(starting vertex v)
e For all other vertices u

e u.conn < 00; D[u] € PQ.insert(u) Note: book’s

pseudocode uses
common variable
names, so that Prim &

e Wwhile (PQ not empty)

o v & PQ.extractMin()
o for each edge (v,u)

o if (u.conn > w(v,u))
o u.conn < w(v,u)
o D[u].decrease(u)

Dijkstra code, including
tree maintenance, differ
by only one line.

Running Time of Prim’s Algorithm

e Exactly the same analysis as for Dijkstra’s algorithm!
e Dominant cost is again heap operations.

e Algorithmrunsintime O((|V| + |E|) log |V]|) using a binary heap.

53

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

54

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

55

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

56

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

o7

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

58

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

59

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected

3 7 4 cted

60

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

61

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges

already in T. @ unconnected
@ connected

62

Another Greedy Criterion for MST

o Kruskal’s criterion: add to T the edge e of minimum w(e)
that does not form a cycle when combined with edges
already Iin T.

@ unconnected
@ connected

63

A Few More Words on Greedy Algorithms

Greedy choice Is a design principle for algorithms.
Many different problems can be solved using it.
Does it always work?

Tune in to Studio 14 to find out!

64

Course wrap-up: what to do next?

o« Take more CSE classes (no matter your degree program)
o Join the WashU chapter of the ACM (Association

for Computing Machinery)
o Programming competitions, tech talks, course registration
discussions, social events...

o Apply to be a TA (look for e-mail about "TA draft")
o Be an active, CSE-literate member of society

65

https://acm.wustl.edu/

Course wrap-up: thank you!

o Getting to know you as CSE thinkers and as people has
been a pleasure

o« We've seen you work hard, grow intellectually, work
together in studio, graciously help each other and us

e We look forward to seeing you around the department and
having you as CSE colleagues

o All the best!

Thank you for agreat semester!

66

