
Lecture 14:  

Greedy 

Algorithms and 

the Minimum 

Spanning Tree
1

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

https://www.shmoop.com/quotes/greed-is-good-misquote.html


Announcements

● Lab 13 – Pre-lab due tonight, code and post-lab due Friday

● Exam 3 – May 1st, 10 am – 12 pm

● Similar procedure to previous exams; stay tuned to Piazza

● Exam review Sun. 4/28 2-5 pm Louderman 458

● Course eval: don't forget
○ Easy 1% of final grade, feedback extremely helpful

● Stay tuned to Piazza for any TA office hours next week. (Prof. 

Cole will hold his as usual)
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Problem du Jour – Network Design

● You have a  collection of cities on a map… 
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Problem du Jour – Network Design

● You have a  collection of cities on a map… 
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Problem du Jour – Network Design

● You have a  collection of cities on a map…

● You want to connect them all into an

electric power grid.
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Problem du Jour – Network Design

● You have a  collection of cities on a map…

● You want to connect them all into an

electric power grid.

● Can string transmission lines

between cities

● Every city must be 

connected!
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One possible solution



Abstract Graph Problem

● Cities form set of vertices

● All possible transmission lines are edges between vertices

● Goal is to pick a subset of edges that “spans” graph (that is, subset 

that connects all vertices

● So why not just add all possible edges?
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Abstract Graph Problem

● Cities form set of vertices

● All possible transmission lines are edges between vertices

● Goal is to pick a subset of edges that “spans” graph (that is, subset 

that connects all vertices)

● So why not just add all possible edges?

COST! 11



Adding Construction Costs

● Using edge between vertices u,v has cost w(u,v) ≥ 0

● Want to minimize total cost to connect all vertices

● Hence, pick a set T of edges that spans graph s.t.

𝑊 𝑇 = σ𝑒∈𝑇𝑤(𝑒) is minimized.
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We probably don’t 

want to do this!



Observation: Desired T is a Tree!

● We just need to connect all vertices.

● If any cycle exists, some edge can be removed without disconnecting 

any vertex.

● Since edges have non-negative cost, this can only improve W(T).

● Hence, T is an (undirected) acyclic graph, also known as a tree.
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Possible edge set T
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T contains a cycle…
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One acyclic subset
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Another acyclic subset

(which seems better?)



Formal Problem: Minimum Spanning Tree

● Given undirected graph G = (V,E) with weights w(e) ≥ 0 for all e ϵ E

● Find a tree T that spans G, s.t.

𝑊 𝑇 = σ𝑒∈𝑇𝑤(𝑒) is minimized.

● T is called a minimum spanning tree of G.
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Other Applications of Minimum Spanning Tree

● Other network design problems (phone, Internet, road, …)

● Clustering data points by proximity

[remove k-1 largest MST edges to form k clusters]

● Approximate answers to much harder problems (e.g. 

travelling salesperson problem)
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General Approach

● Start with empty edge set T

● Keep adding edges to T, without creating a cycle, until T 

spans G.

● Question: how do we know which edge to add next to 

ensure that W(T) ends up being minimal?
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Greedy Principle

● Define a “local” criterion to apply when picking each edge

● At each step, pick the edge that is currently best by this 

criterion and add it to T.

● Keep picking edges until T spans G.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.

31

A

B C D

H G F

EI

4

8

11

8 7

2

7 6
4

14

9

10

1 2

unconnected

connected

start



Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Greedy Principle Applied to MST (Prim’s Algo)

● Prim’s criterion: pick the edge e of minimum w(e) that 

connects a vertex in T to a vertex not yet in T.
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Note that G may not 

have a unique MST!



Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current 

edge set T is a subset of some minimum spanning tree for G.

● (Hence, once T spans all of G, T is itself an MST for G.)
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Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current 

edge set T is a subset of some minimum spanning tree for G.

● (Hence, once T spans all of G, T is itself an MST for G.)

● Pf: by induction on # of edges chosen so far.

● Bas: before any edges are chosen, T is empty, so is a subset of every

MST for G.
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Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current 

edge set T is a subset of some minimum spanning tree for G.

● Ind: Suppose Prim’s criterion picks a next edge e.

● Let C and N be the connected and unconnected vertices of G after 

picking edge set T.
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Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current 

edge set T is a subset of some minimum spanning tree for G.
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Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current 

edge set T is a subset of some minimum spanning tree for G.

● By IH, T is a subset of some MST T* for G.

● Some unique edge e’ of T* connects C and N, as does edge e.
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Why Does Prim’s Greedy Criterion Work?

● Claim: After any number of edges are chosen, algorithm’s current 

edge set T is a subset of some minimum spanning tree for G.

● By IH, T is a subset of some MST T* for G.

● Some unique edge e’ of T* connects C and N, as does edge e.

42

C N

vertices connected to T vertices not connected to T

e = e’

If e = e’, then T U {e} 

is a subset of T*, 

and we are done.



Why Does Prim’s Greedy Criterion Work?

● Some unique edge e’ of T* connects C and N, as does edge e.

● If e ≠ e’, then T* U {e} (spanning tree + 1 edge) forms a cycle in G.
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Why Does Prim’s Greedy Criterion Work?

● Some unique edge e’ of T* connects C and N, as does edge e.

● If e ≠ e’, then T* U {e} (spanning tree + 1 edge) forms a cycle in G.

● Hence, T’ = T* U {e} – {e’} is another spanning tree for G.
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Why Does Prim’s Greedy Criterion Work?

● Some unique edge e’ of T* connects C and N, as does edge e.

● If e ≠ e’, then T* U {e} (spanning tree + 1 edge) forms a cycle in G.

● Hence, T’ = T* U {e} – {e’} is another spanning tree for G.

● Prim’s criterion picked e instead of e’, so w(e) ≤ w(e’).

● Conclude that W(T’) = W(T*) – w(e’) + w(e) ≤ W(T*), and so T’ is a 

minimum spanning tree that contains T U {e}, as claimed.  QED
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Implementing Prim’s Algorithm

● Maintain set of unconnected vertices.

● For each unconnected vertex v, maintain v.conn, weight of lowest-

weight edge connecting v to any vertex in T.

● When we add an edge (u,v) to T, update connections to each x 

adjacent to v:

If w(v,x) < x.conn,  then x.conn  w(v,x)
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Prim’s MST Algorithm (Adding to T Not Shown)

● starting vertex v gets v.conn 0; all other u get u.conn∞
● mark all vertices as unconnected

● while (any vertex unconnected)

● v  unconnected vertex with smallest v.conn

● for each edge (v,u)

● if (u.conn > w(u,v))

● u.conn w(u,v)

● mark v connected // augment partial MST with edge from T to v 
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Prim’s MST Algorithm (Adding to T Not Shown)

● starting vertex v gets v.conn 0; all other u get u.conn∞
● mark all vertices as unconnected

● while (any vertex unconnected)

● v  unconnected vertex with smallest v.conn

● for each edge (v,u)

● if (u.conn > w(u,v))

● u.conn w(u,v)

● mark v connected // augment partial MST with edge from T to v 
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Does this 

pseudocode 

look familiar?



Dijkstra’s Shortest Path Algorithm

● starting vertex v gets v.dist 0; all other u get u.dist∞
● mark all vertices as unfinished

● while (any vertex unfinished)

● v  unfinished vertex with smallest v.dist

● for each edge (v,u)

● if (u.dist > v.dist + w(u,v))

● u.dist v.dist + w(u,v)

● mark v finished
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Prim vs Dijkstra

● Prim’s MST algorithm is nearly identical to Dijkstra’s shortest-path 

algorithm

● Only difference is in greedy criterion for next vertex to process.

○ Dijkstra – total weight of path from start to unfinished vertex v

○ Prim – weight of last edge on path from start to unconnected vertex v

● We can use same min-first priority queue trick to efficiently select next 

vertex to connect to T; for Prim’s algo, use u.conn as vertex’s key.
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Prim’s MST Algorithm w/Queue

● v.conn 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.conn∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (u.conn > w(v,u))

● u.conn w(v,u)

● D[u].decrease(u)
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Prim’s MST Algorithm w/Queue

● v.conn 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.conn∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (u.conn > w(v,u))

● u.conn w(v,u)

● D[u].decrease(u)
52

Note: book’s 

pseudocode uses 

common variable 

names, so that Prim & 

Dijkstra code, including 

tree maintenance, differ 

by only one line.



Running Time of Prim’s Algorithm

● Exactly the same analysis as for Dijkstra’s algorithm!

● Dominant cost is again heap operations.

● Algorithm runs in time Θ((|V| + |E|) log |V|) using a binary heap.
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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Another Greedy Criterion for MST

● Kruskal’s criterion: add to T the edge e of minimum w(e) 

that does not form a cycle when combined with edges 

already in T. 
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A Few More Words on Greedy Algorithms

● Greedy choice is a design principle for algorithms.

● Many different problems can be solved using it.

● Does it always work?

● Tune in to Studio 14 to find out!
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Course wrap-up: what to do next?

● Take more CSE classes (no matter your degree program)

● Join the WashU chapter of the ACM (Association 

for Computing Machinery)
○ Programming competitions, tech talks, course registration 

discussions, social events...

● Apply to be a TA (look for e-mail about "TA draft")

● Be an active, CSE-literate member of society

65

https://acm.wustl.edu/


Course wrap-up: thank you!

● Getting to know you as CSE thinkers and as people has 

been a pleasure

● We've seen you work hard, grow intellectually, work 

together in studio, graciously help each other and us

● We look forward to seeing you around the department and 

having you as CSE colleagues

● All the best!

Thank you for a great semester!
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