Lecture 13:
Weighted
Shortest Paths

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole.



Announcements

e Lab 13 released tomorrow — Dijkstra’s algorithm
e Studio 13 Thursday
e Exam 3 May 1st 10 am — 12 pm



Adding Weights to Graphs

e A weighted graph assignsto each edge e a real-valued weight w(e)

e Fortoday, we will assume that w(e) 2 0.




Path Lengths

e The length (or total weight) of a path is the sum of its edges’ weights

Total weight (ABCF)

= 2+1+5=8
B L C
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Weighted Shortest Paths

e Problem:given a starting vertex v, find path of least total weight
from v to each other vertex in the graph.




Weighted Shortest Paths

e Problem:given a starting vertex v, find path of least total weight
from v to each other vertex in the graph.

Generalizes unweighted
shortest path problem,

which we solved by BFS.




Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

Start from A
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e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.
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Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,C) = 3

Start from A




Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,D) = 227

Start from A
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Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,D)=5

Start from A
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Weighted Sh

Weighted shortest path to a
vertex may not be one with
fewest edges.

e Given a startinc
to each other v

t D(v,u) fromv

D(A,D) =5

Start from A




Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(AF) = 227

Start from A
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Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,F) = 8

Start from A
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Why Solve Weighted Shortest Paths?

Road map with distances between cities — shortest route

Routing network with cost to each hop — cheapest way to
send data

State-space search in Al with action costs (A* search)
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How Can We Solve Weighted Shortest Paths?

e Could reduce to unweighted problem:
o—0 - 0000

o Apply to every edge; use BFS on resulting graph

o Only works If weights are integers

o Would be very expensive for graphs with large weights .



Alternate Strategy — “Relaxation”

e Explore graph while maintaining, for each vertex v, length of shortest
path to v seen so far. Store this shortest path estimate as v.dist.

e Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
e If so, we've found a new, shorter path to u via v.

o o | ]

e Update v.dist with new estimate and continue
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path to v seen so far. Store this shortest path estimate as v.dist.
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Alternate Strategy — “Relaxation”

Explore graph while maintaining, for each vertex v, length of shortest
path to v seen so far. Store this shortest path estimate as v.dist.

Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
If so, we've found a new, shorter path to u via v.

o > o | ]

Update v.dist with new estimate and continue
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Who Gets to Relax, When?

Need to decide which vertices to relax at each step.
Also, need to know when we are done!

Proposal (E. Dijkstra*): at each step, explore edges out of vertex v
with smallest v.dist, and relax all its adjacent vertices.

Stop when each vertex has had its outgoing edges explored once.

* Fun fact: font on the title slide is Dijkstra's handwriting!
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Dijkstra’s Shortest Path Algorithm

e Starting vertex v gets v.dist € 0; all other u get u.dist & ©0
e mark all vertices as unfinished

e Wwhile (any vertex unfinished)

o v < unfinished vertex with smallest v.dist

o for each edge (v,u)

o If (v.dist + w(u,v) < u.dist)

o u.dist < v.dist + w(u,V) // relax!
o mark v finished



Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm

0 dist

As for BFS/DFS, we
explore a vertex's

outgoing edges in

‘ some arbitrary order.
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Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm

26



Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm

DONE!
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Example of Dijkstra’s Algor

0 dist
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Correctness of Dijkstra’s Algorithm

e Claim:when we explore the edges out of vertex v, v has its correct
shortest-path distance D(start, v) stored in current best estimate v.dist.

e Pf: by induction on order of exploration.

e Bas: starting vertex is explored first, with its correct shortest-path
distance of 0.

38



Correctness of Dijkstra’s Algorithm

e Claim:when we explore the edges out of vertex v, v has its correct
shortest-path distance D(start, v) stored in current best estimate v.dist.

e Ind: suppose the algorithm is about to choose v for exploration.

e Assume thatv.dist > D(start, v) (i.e.V’s distance is wrong).
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Correctness of Dijkstra’s Algorithm

e Claim:when we explore the edges out of vertex v, v has its correct
shortest-path distance D(start, v) stored in current best estimate v.dist.

e Ind: suppose the algorithm is about to choose v for exploration.
e Assume thatv.dist > D(start, v) (i.e.V’s distance is wrong).

e [we will derive a contradiction... hence, v.dist must be = D(start, v)]
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Correctness of Dijkstra’s Algorithm

e Ind: suppose the algorithm is about to choose v for exploration.
e Assume thatv.dist > D(start, v) (i.e. Vv's distanceis wrong).

e Consider a shortest path from startto v.

®/\/\/’°
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Correctness of Dijkstra’s Algorithm

e Ind: suppose the algorithm is about to choose v for exploration.
e Assume thatv.dist > D(start, v) (i.e. Vv's distanceis wrong).

e Consider a shortest path from startto v.

@ o

e Letubelastfinished (i.e., already explored) vertex on this path.
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Correctness of Dijkstra’s Algorithm

e By IH, u had its correct shortest-path distance when it was explored.

e Moreover, D(start, u) < D(start, v), since u precedes v on shortest
path to v.

e If edge u - vis on shortest path, then exploring u’s outgoing edges
assigns v its correct shortest-path distance D(start,v). > &
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Correctness of Dijkstra’s Algorithm

e If edge u - vis on shortest path, then exploring u’s outgoing edges
assigns v its correct shortest-path distance D(start,v). > &

e Otherwise, some other vertex x lies between u and v on this path, with
D(start,x) < D(start,v).

@ eo® "

e Since v does not have its correct shortest-path distance,
v.dist > x.dist, and so x would be explored next, notv. >< QED 44



How Do We Track Next Vertex to Explore?

e Maintain collection of unfinished vertices

e At each step, must efficiently find vertex v in collection with smallest
v.distand remove it

e But vertices’ distances may change repeatedly due to relaxation!

e Changes are all in one direction (decrease)

What Data Structure Can We Use To Track Distancesto
Unfinished Vertices? 45



Use a Priority Queue!

Maintain priority queue PQ of unfinished vertices, keyed on dist
Initially, every vertex is inserted into PQ w/its starting dist

At each step, find next vertex to explore by PQ.extractMin()
Decreasing v.distis done using v's Decreaser object

We assume a map D[ ] from vertices to their Decreasers
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Dijkstra’s Shortest Path Algorithm w/Prio Queue

e Vv.dist & 0; D[v] € PQ.insert(starting vertex v)
e Forall other vertices u

e u.dist & OO; D[u] €« PQ.insert(u)

e while (PQ not empty)

o v €& PQ.extractMin()

o for each edge (v,u)

o If (v.dist + w(v, u) < u.dist)
o u.dist €< v.dist + w(v,u)
o D[u].decrease(u)
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Dijkstra’s Shortest Path Algorithm w/Queue

e Vv.dist & 0; D[v] € PQ.insert(starting vertex v)
e For all other vertices u

e u.dist & OO; D[u] €« PQ.insert(u)

e Wwhile (PQ not empty) g
o v €& PQ.extractMin()

o for each edge (v,u)

o If (v.dist + w(v, u) <u.dist)

o u.dist < v.dist + w(v,u) <

o D[u].decrease(u)



Example of Dijkstra’s Algorithm

0 dist

PQ
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Example of Dijkstra’s Algorithm

0 dist
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Example of Dijkstra’s Algorithm

0 dist

PQ
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Example of Dijkstra’s Algorithm

0 dist PQ

M m QOO @
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Example of Dijkstra’s Algorithm

PQ
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Example of Dijkstra’s Algorithm

PQ
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Example of Dijkstra’s Algorithm

PQ

88@00

Mmoo
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Example of Dijkstra’s Algorithm

PQ
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm

PQ
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Example of Dijkstra’s Algorithm

PQ

@ 8
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Example of Dijkstra’s Algorithm

0 dist

PQ

E 10
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Example of Dijkstra’s Algorithm

PQ

E 10
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Example of Dijkstra’s Algorithm

PQ
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Example of Dijkstra’s Algorithm

DONE!

PQ
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Running Time of Dijkstra’s Algorithm

e Foreachvertex, we do one PQ insert() and one PQ extractMin()

e Foreachedge, we do one PQ decrease()
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Running Time of Dijkstra’s Algorithm

For each vertex, we do one PQ insert() and one PQ extractMin()
For each edge, we do one PQ decrease()

Hence, tOtal cost iS |V|(Tinsert + TextractMin) + |E| Tdecrease

Times for PQ operations using binary heap are all ???
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Running Time of Dijkstra’s Algorithm

For each vertex, we do one PQ insert() and one PQ extractMin()
For each edge, we do one PQ decrease()

Hence, tOtal cost iS |V|(Tinsert + TextractMin) + |E| Tdecrease

Times for PQ operations using binary heap are all ©(log |V|)

Hence, algorithmrunsin time O((|V| + |E]) log |V|)
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Running Time of Dijkstra’s Algorithm

N extractMin()

I e Slightly faster algorithms are
possible for dense graphs,
N EE RG] Using much fancier heaps

with O(1) decrease time.
e Times for P(

(log [VI])
e Hence, algorithmrunsintime O((|V| + |E|) log |V|)
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Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.
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Alternatives to Dijkstra

If negative-weight edges are allowed...

May use Bellman-Ford algorithm (O(|V||E]))

If shortest-path distances are desired between every pair of vertices...

May use Floyd-Warshall algorithm (O(|V[®))

(Other approaches may be better for sparse graphs)
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