
Lecture 13:

Weighted

Shortest Paths

1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

● Lab 13 released tomorrow – Dijkstra’s algorithm

● Studio 13 Thursday

● Exam 3 May 1st 10 am – 12 pm

2

Adding Weights to Graphs

● A weighted graph assigns to each edge e a real-valued weight w(e)

● For today, we will assume that w(e) ≥ 0.

3

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Path Lengths

● The length (or total weight) of a path is the sum of its edges’ weights

4

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Total weight (ABCF)

= 2+1+5=8

Weighted Shortest Paths

● Problem: given a starting vertex v, find path of least total weight

from v to each other vertex in the graph.

5

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Weighted Shortest Paths

● Problem: given a starting vertex v, find path of least total weight

from v to each other vertex in the graph.

6

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Generalizes unweighted

shortest path problem,

which we solved by BFS.

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

7

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

8

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

D(A,B) = 2

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

9

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

D(A,C) = 3

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

10

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

D(A,D) = ???

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

11

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

D(A,D) = 5

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

12

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

D(A,D) = 5

Weighted shortest path to a

vertex may not be one with

fewest edges.

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

13

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

D(A,F) = ???

Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v

to each other vertex u in the graph.

14

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

Start from A

D(A,F) = 8

Why Solve Weighted Shortest Paths?

● Road map with distances between cities – shortest route

● Routing network with cost to each hop – cheapest way to

send data

● State-space search in AI with action costs (A* search)

● …

15

How Can We Solve Weighted Shortest Paths?

● Could reduce to unweighted problem:

● Apply to every edge; use BFS on resulting graph

● Only works if weights are integers

● Would be very expensive for graphs with large weights
16

A B
3

A B

Alternate Strategy – “Relaxation”

● Explore graph while maintaining, for each vertex v, length of shortest

path to v seen so far. Store this shortest path estimate as v.dist.

● Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
● If so, we’ve found a new, shorter path to u via v.

● Update v.dist with new estimate and continue

17

A B
3

2 7
Old B.dist = 7

Alternate Strategy – “Relaxation”

● Explore graph while maintaining, for each vertex v, length of shortest

path to v seen so far. Store this shortest path estimate as v.dist.

● Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
● If so, we’ve found a new, shorter path to u via v.

● Update v.dist with new estimate and continue

18

A B
3

2 7
2+3=5 < 7

Alternate Strategy – “Relaxation”

● Explore graph while maintaining, for each vertex v, length of shortest

path to v seen so far. Store this shortest path estimate as v.dist.

● Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
● If so, we’ve found a new, shorter path to u via v.

● Update v.dist with new estimate and continue

19

A B
3

2 5
B.dist 5

Who Gets to Relax, When?

● Need to decide which vertices to relax at each step.

● Also, need to know when we are done!

● Proposal (E. Dijkstra *): at each step, explore edges out of vertex v

with smallest v.dist, and relax all its adjacent vertices.

● Stop when each vertex has had its outgoing edges explored once.

20
* Fun fact: font on the title slide is Dijkstra's handwriting!

Dijkstra’s Shortest Path Algorithm

● starting vertex v gets v.dist 0; all other u get u.dist∞
● mark all vertices as unfinished

● while (any vertex unfinished)

● v  unfinished vertex with smallest v.dist

● for each edge (v,u)

● if (v.dist + w(u,v) < u.dist)

● u.dist v.dist + w(u,v) // relax!

● mark v finished

21

Example of Dijkstra’s Algorithm

22

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

∞

∞

∞

∞

∞

0 dist

Start @ A

Example of Dijkstra’s Algorithm

23

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

∞

∞

∞

∞

0 dist

Start @ A

Example of Dijkstra’s Algorithm

24

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

∞

∞

∞

∞

0 dist

Start @ A

As for BFS/DFS, we

explore a vertex’s

outgoing edges in

some arbitrary order.

Example of Dijkstra’s Algorithm

25

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

7

∞

∞

∞

0 dist

Start @ A

Example of Dijkstra’s Algorithm

26

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

7

∞

∞

∞

0 dist

Start @ A

Example of Dijkstra’s Algorithm

27

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

7

3

∞

∞

0 dist

Start @ A

Example of Dijkstra’s Algorithm

28

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

6

3

∞

∞

0 dist

Start @ A

Relaxation can change

estimated distance and

parent edge!

Example of Dijkstra’s Algorithm

29

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

6

3

∞

∞

0 dist

Start @ A

Example of Dijkstra’s Algorithm

30

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

6

3

∞

8

0 dist

Start @ A

Example of Dijkstra’s Algorithm

31

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

∞

8

0 dist

Start @ A

Example of Dijkstra’s Algorithm

32

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

∞

8

0 dist

Start @ A

Example of Dijkstra’s Algorithm

33

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

Example of Dijkstra’s Algorithm

34

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

Example of Dijkstra’s Algorithm

35

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

Example of Dijkstra’s Algorithm

36

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

DONE!

Example of Dijkstra’s Algorithm

37

A

B

D

C

E

F

2

1

2

5

5

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

As with BFS, parent edges

from Dijkstra’s algo form a

shortest-path tree from

starting vertex.

Correctness of Dijkstra’s Algorithm

● Claim: when we explore the edges out of vertex v, v has its correct

shortest-path distance D(start, v) stored in current best estimate v.dist.

● Pf: by induction on order of exploration.

● Bas: starting vertex is explored first, with its correct shortest-path

distance of 0.

38

Correctness of Dijkstra’s Algorithm

● Claim: when we explore the edges out of vertex v, v has its correct

shortest-path distance D(start, v) stored in current best estimate v.dist.

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v) (i.e. v’s distance is wrong).

39

Correctness of Dijkstra’s Algorithm

● Claim: when we explore the edges out of vertex v, v has its correct

shortest-path distance D(start, v) stored in current best estimate v.dist.

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v) (i.e. v’s distance is wrong).

● [we will derive a contradiction… hence, v.dist must be = D(start, v)]

40

Correctness of Dijkstra’s Algorithm

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v) (i.e. v’s distance is wrong).

● Consider a shortest path from start to v.

41

v

start

Correctness of Dijkstra’s Algorithm

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v) (i.e. v’s distance is wrong).

● Consider a shortest path from start to v.

● Let u be last finished (i.e., already explored) vertex on this path.
42

v

start u

Correctness of Dijkstra’s Algorithm

● By IH, u had its correct shortest-path distance when it was explored.

● Moreover, D(start, u) ≤ D(start, v), since u precedes v on shortest

path to v.

● If edge u → v is on shortest path, then exploring u’s outgoing edges

assigns v its correct shortest-path distance D(start,v). →

43

v

start
u

Correctness of Dijkstra’s Algorithm

● If edge u → v is on shortest path, then exploring u’s outgoing edges

assigns v its correct shortest-path distance D(start,v). →

● Otherwise, some other vertex x lies between u and v on this path, with

D(start,x) ≤ D(start,v).

● Since v does not have its correct shortest-path distance,

v.dist > x.dist, and so x would be explored next, not v. → QED 44

v

start u

x

How Do We Track Next Vertex to Explore?

● Maintain collection of unfinished vertices

● At each step, must efficiently find vertex v in collection with smallest

v.dist and remove it

● But vertices’ distances may change repeatedly due to relaxation!

● Changes are all in one direction (decrease)

What Data Structure Can We Use To Track Distances to

Unfinished Vertices? 45

Use a Priority Queue!

● Maintain priority queue PQ of unfinished vertices, keyed on dist

● Initially, every vertex is inserted into PQ w/its starting dist

● At each step, find next vertex to explore by PQ.extractMin()

● Decreasing v.dist is done using v’s Decreaser object

● We assume a map D[] from vertices to their Decreasers

46

Dijkstra’s Shortest Path Algorithm w/Prio Queue

● v.dist 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.dist∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (v.dist + w(v, u) < u.dist)

● u.dist v.dist + w(v,u)

● D[u].decrease(u)
47

Dijkstra’s Shortest Path Algorithm w/Queue

● v.dist 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.dist∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (v.dist + w(v, u) < u.dist)

● u.dist v.dist + w(v,u)

● D[u].decrease(u)
48

Note that Lab 13 creates

pairs (vertex, dist) rather

than vertices with an

internal distance field.

Example of Dijkstra’s Algorithm

49

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

∞

∞

∞

∞

∞

0 dist

Start @ A

PQ

A 0

B ∞
C ∞
D ∞
E ∞
F ∞

Example of Dijkstra’s Algorithm

50

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

∞

∞

∞

∞

∞

0 dist

Start @ A

PQ

B ∞
C ∞
D ∞
E ∞
F ∞

A

Example of Dijkstra’s Algorithm

51

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

∞

∞

∞

∞

0 dist

Start @ A

PQ

B 2

C ∞
D ∞
E ∞
F ∞

Example of Dijkstra’s Algorithm

52

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

7

∞

∞

∞

0 dist

Start @ A

PQ

B 2

C ∞
D 7

E ∞
F ∞

Example of Dijkstra’s Algorithm

53

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

7

∞

∞

∞

0 dist

Start @ A

PQ

C ∞
D 7

E ∞
F ∞

B

Example of Dijkstra’s Algorithm

54

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

7

3

∞

∞

0 dist

Start @ A

PQ

C 3

D 7

E ∞
F ∞

Example of Dijkstra’s Algorithm

55

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

6

3

∞

∞

0 dist

Start @ A

PQ

C 3

D 6

E ∞
F ∞

Example of Dijkstra’s Algorithm

56

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

6

3

∞

∞

0 dist

Start @ A

PQ

D 6

E ∞
F ∞

C

Example of Dijkstra’s Algorithm

57

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

6

3

∞

8

0 dist

Start @ A

PQ

D 6

E ∞
F 8

Example of Dijkstra’s Algorithm

58

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

∞

8

0 dist

Start @ A

PQ

D 5

E ∞
F 8

Example of Dijkstra’s Algorithm

59

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

∞

8

0 dist

Start @ A

PQ

E ∞
F 8

D

Example of Dijkstra’s Algorithm

60

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

PQ

E 10

F 8

Example of Dijkstra’s Algorithm

61

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

PQ

E 10

F

Example of Dijkstra’s Algorithm

62

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

PQ

E

Example of Dijkstra’s Algorithm

63

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

5

3

10

8

0 dist

Start @ A

DONE!

PQ

Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()

64

Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()

● Hence, total cost is |V|(Tinsert + TextractMin) + |E| Tdecrease

● Times for PQ operations using binary heap are all ???

65

Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()

● Hence, total cost is |V|(Tinsert + TextractMin) + |E| Tdecrease

● Times for PQ operations using binary heap are all Θ(log |V|)

● Hence, algorithm runs in time Θ((|V| + |E|) log |V|)

66

Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()

● Hence, total cost is |V|(Tinsert + TextractMin) + |E| Tdecrease

● Times for PQ operations using binary heap are all Θ(log |V|)

● Hence, algorithm runs in time Θ((|V| + |E|) log |V|)

67

Slightly faster algorithms are

possible for dense graphs,

using much fancier heaps

with O(1) decrease time.

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

68

A

B

C

D

1

3

1

-2

0

∞

∞

∞

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

69

A

B

C

D

1

3

1

-2

0

1

3

∞

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

70

A

B

C

D

1

3

1

-2

0

1

3

∞

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

71

A

B

C

D

1

3

1

-2

0

1

3

2

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

72

A

B

C

D

1

3

1

-2

0

1

3

2

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

73

A

B

C

D

1

3

1

-2

0

1

3

2
D is finalized

with distance 2.

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

74

A

B

C

D

1

3

1

-2

0

1

3

2

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a

shortest (smallest total sum of edge weights) path.

75

A

B

C

D

1

3

1

-2

0

1

3

2 But shortest

path is of length

3 + -2 = 1

Alternatives to Dijkstra

● If negative-weight edges are allowed…

● May use Bellman-Ford algorithm (Θ(|V||E|))

● If shortest-path distances are desired between every pair of vertices…

● May use Floyd-Warshall algorithm (Θ(|V|3))

● (Other approaches may be better for sparse graphs)

76

