Lecture 13:
Weighted
Shortest Paths

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole.

Announcements

e Lab 13 released tomorrow — Dijkstra’s algorithm
e Studio 13 Thursday
e Exam 3 May 1st 10 am — 12 pm

Adding Weights to Graphs

e A weighted graph assignsto each edge e a real-valued weight w(e)

e Fortoday, we will assume that w(e) 2 0.

Path Lengths

e The length (or total weight) of a path is the sum of its edges’ weights

Total weight (ABCF)

= 2+1+5=8
B L C
2 5

Weighted Shortest Paths

e Problem:given a starting vertex v, find path of least total weight
from v to each other vertex in the graph.

Weighted Shortest Paths

e Problem:given a starting vertex v, find path of least total weight
from v to each other vertex in the graph.

Generalizes unweighted
shortest path problem,

which we solved by BFS.

Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

Start from A

Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,B) =2

Start from A

Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,C) = 3

Start from A

Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,D) = 227

Start from A

10

Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,D)=5

Start from A

11

Weighted Sh

Weighted shortest path to a
vertex may not be one with
fewest edges.

e Given a startinc
to each other v

t D(v,u) fromv

D(A,D) =5

Start from A

Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(AF) = 227

Start from A

13

Weighted Shortest Paths

e Given a starting vertex v, find path of least total weight D(v,u) from v
to each other vertex u in the graph.

D(A,F) = 8

Start from A

14

Why Solve Weighted Shortest Paths?

Road map with distances between cities — shortest route

Routing network with cost to each hop — cheapest way to
send data

State-space search in Al with action costs (A* search)

15

How Can We Solve Weighted Shortest Paths?

e Could reduce to unweighted problem:
o—0 - 0000

o Apply to every edge; use BFS on resulting graph

o Only works If weights are integers

o Would be very expensive for graphs with large weights .

Alternate Strategy — “Relaxation”

e Explore graph while maintaining, for each vertex v, length of shortest
path to v seen so far. Store this shortest path estimate as v.dist.

e Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
e If so, we've found a new, shorter path to u via v.

o o |]

e Update v.dist with new estimate and continue

17

Alternate Strategy — “Relaxation”

e Explore graph while maintaining, for each vertex v, length of shortest
path to v seen so far. Store this shortest path estimate as v.dist.

e Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
e If so, we've found a new, shorter path to u via v.

o > 0 |]

e Update v.dist with new estimate and continue

18

Alternate Strategy — “Relaxation”

Explore graph while maintaining, for each vertex v, length of shortest
path to v seen so far. Store this shortest path estimate as v.dist.

Whenever we follow an edge (v,u), check whether

v.dist + w(v,u) < u.dist
If so, we've found a new, shorter path to u via v.

o > o |]

Update v.dist with new estimate and continue

19

Who Gets to Relax, When?

Need to decide which vertices to relax at each step.
Also, need to know when we are done!

Proposal (E. Dijkstra*): at each step, explore edges out of vertex v
with smallest v.dist, and relax all its adjacent vertices.

Stop when each vertex has had its outgoing edges explored once.

* Fun fact: font on the title slide is Dijkstra's handwriting!

20

Dijkstra’s Shortest Path Algorithm

e Starting vertex v gets v.dist € 0; all other u get u.dist & ©0
e mark all vertices as unfinished

e Wwhile (any vertex unfinished)

o v < unfinished vertex with smallest v.dist

o for each edge (v,u)

o If (v.dist + w(u,v) < u.dist)

o u.dist < v.dist + w(u,V) // relax!
o mark v finished

Example of Dijkstra’s Algorithm

0 dist

22

Example of Dijkstra’s Algorithm

0 dist

23

Example of Dijkstra’s Algorithm

0 dist

As for BFS/DFS, we
explore a vertex's

outgoing edges in

‘ some arbitrary order.

24

Example of Dijkstra’s Algorithm

0 dist

25

Example of Dijkstra’s Algorithm

26

Example of Dijkstra’s Algorithm

27

Example of Dijkstra’s Algorithm

0 dist

28

Example of Dijkstra’s Algorithm

29

Example of Dijkstra’s Algorithm

30

Example of Dijkstra’s Algorithm

0 dist

31

Example of Dijkstra’s Algorithm

32

Example of Dijkstra’s Algorithm

0 dist

33

Example of Dijkstra’s Algorithm

0 dist

34

Example of Dijkstra’s Algorithm

35

Example of Dijkstra’s Algorithm

DONE!

36

Example of Dijkstra’s Algor

0 dist

37

Correctness of Dijkstra’s Algorithm

e Claim:when we explore the edges out of vertex v, v has its correct
shortest-path distance D(start, v) stored in current best estimate v.dist.

e Pf: by induction on order of exploration.

e Bas: starting vertex is explored first, with its correct shortest-path
distance of 0.

38

Correctness of Dijkstra’s Algorithm

e Claim:when we explore the edges out of vertex v, v has its correct
shortest-path distance D(start, v) stored in current best estimate v.dist.

e Ind: suppose the algorithm is about to choose v for exploration.

e Assume thatv.dist > D(start, v) (i.e.V’s distance is wrong).

39

Correctness of Dijkstra’s Algorithm

e Claim:when we explore the edges out of vertex v, v has its correct
shortest-path distance D(start, v) stored in current best estimate v.dist.

e Ind: suppose the algorithm is about to choose v for exploration.
e Assume thatv.dist > D(start, v) (i.e.V’s distance is wrong).

e [we will derive a contradiction... hence, v.dist must be = D(start, v)]

40

Correctness of Dijkstra’s Algorithm

e Ind: suppose the algorithm is about to choose v for exploration.
e Assume thatv.dist > D(start, v) (i.e. Vv's distanceis wrong).

e Consider a shortest path from startto v.

®/\/\/’°

41

Correctness of Dijkstra’s Algorithm

e Ind: suppose the algorithm is about to choose v for exploration.
e Assume thatv.dist > D(start, v) (i.e. Vv's distanceis wrong).

e Consider a shortest path from startto v.

@ o

e Letubelastfinished (i.e., already explored) vertex on this path.

42

Correctness of Dijkstra’s Algorithm

e By IH, u had its correct shortest-path distance when it was explored.

e Moreover, D(start, u) < D(start, v), since u precedes v on shortest
path to v.

e If edge u - vis on shortest path, then exploring u’s outgoing edges
assigns v its correct shortest-path distance D(start,v). > &

43

Correctness of Dijkstra’s Algorithm

e If edge u - vis on shortest path, then exploring u’s outgoing edges
assigns v its correct shortest-path distance D(start,v). > &

e Otherwise, some other vertex x lies between u and v on this path, with
D(start,x) < D(start,v).

@ eo® "

e Since v does not have its correct shortest-path distance,
v.dist > x.dist, and so x would be explored next, notv. >< QED 44

How Do We Track Next Vertex to Explore?

e Maintain collection of unfinished vertices

e At each step, must efficiently find vertex v in collection with smallest
v.distand remove it

e But vertices’ distances may change repeatedly due to relaxation!

e Changes are all in one direction (decrease)

What Data Structure Can We Use To Track Distancesto
Unfinished Vertices? 45

Use a Priority Queue!

Maintain priority queue PQ of unfinished vertices, keyed on dist
Initially, every vertex is inserted into PQ w/its starting dist

At each step, find next vertex to explore by PQ.extractMin()
Decreasing v.distis done using v's Decreaser object

We assume a map D[] from vertices to their Decreasers

46

Dijkstra’s Shortest Path Algorithm w/Prio Queue

e Vv.dist & 0; D[v] € PQ.insert(starting vertex v)
e Forall other vertices u

e u.dist & OO; D[u] €« PQ.insert(u)

e while (PQ not empty)

o v €& PQ.extractMin()

o for each edge (v,u)

o If (v.dist + w(v, u) < u.dist)
o u.dist €< v.dist + w(v,u)
o D[u].decrease(u)

47

Dijkstra’s Shortest Path Algorithm w/Queue

e Vv.dist & 0; D[v] € PQ.insert(starting vertex v)
e For all other vertices u

e u.dist & OO; D[u] €« PQ.insert(u)

e Wwhile (PQ not empty) g
o v €& PQ.extractMin()

o for each edge (v,u)

o If (v.dist + w(v, u) <u.dist)

o u.dist < v.dist + w(v,u) <

o D[u].decrease(u)

Example of Dijkstra’s Algorithm

0 dist

PQ

Mmoo m®™ >

8 8 8 8 8 ©

49

Example of Dijkstra’s Algorithm

0 dist

PQ

m m QO @

8 8 8 8 8

50

Example of Dijkstra’s Algorithm

0 dist

PQ

m m QO @

8 8 8 8 ™

51

Example of Dijkstra’s Algorithm

0 dist PQ

M m QOO @
8§ 8 ¥ 8 M

52

Example of Dijkstra’s Algorithm

PQ

MmO 0O
8§ 8 N 8

53

Example of Dijkstra’s Algorithm

PQ

88\](}0

Mmoo

54

Example of Dijkstra’s Algorithm

PQ

88@00

Mmoo

55

Example of Dijkstra’s Algorithm

PQ

m m O

8

56

Example of Dijkstra’s Algorithm

PQ

m m O

00

o7

Example of Dijkstra’s Algorithm

PQ

m m O

o0

58

Example of Dijkstra’s Algorithm

PQ

@ 8

59

Example of Dijkstra’s Algorithm

0 dist

PQ

E 10

60

Example of Dijkstra’s Algorithm

PQ

E 10

61

Example of Dijkstra’s Algorithm

PQ

62

Example of Dijkstra’s Algorithm

DONE!

PQ

63

Running Time of Dijkstra’s Algorithm

e Foreachvertex, we do one PQ insert() and one PQ extractMin()

e Foreachedge, we do one PQ decrease()

64

Running Time of Dijkstra’s Algorithm

For each vertex, we do one PQ insert() and one PQ extractMin()
For each edge, we do one PQ decrease()

Hence, tOtal cost iS |V|(Tinsert + TextractMin) + |E| Tdecrease

Times for PQ operations using binary heap are all ???

65

Running Time of Dijkstra’s Algorithm

For each vertex, we do one PQ insert() and one PQ extractMin()
For each edge, we do one PQ decrease()

Hence, tOtal cost iS |V|(Tinsert + TextractMin) + |E| Tdecrease

Times for PQ operations using binary heap are all ©(log |V|)

Hence, algorithmrunsin time O((|V| + |E]) log |V|)

66

Running Time of Dijkstra’s Algorithm

N extractMin()

I e Slightly faster algorithms are
possible for dense graphs,
N EE RG] Using much fancier heaps

with O(1) decrease time.
e Times for P(

(log [VI])
e Hence, algorithmrunsintime O((|V| + |E|) log |V|)

67

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

68

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

69

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

70

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

71

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

72

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

73

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

74

Why Must Edge Weights Be Non-Negative?

e \With negative weights, Dijkstra’s algorithm does not necessarily find a
shortest (smallest total sum of edge weights) path.

75

Alternatives to Dijkstra

If negative-weight edges are allowed...

May use Bellman-Ford algorithm (O(|V||E]))

If shortest-path distances are desired between every pair of vertices...

May use Floyd-Warshall algorithm (O(|V[®))

(Other approaches may be better for sparse graphs)

76

