
Lecture 13:  

Weighted 

Shortest Paths
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These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements

● Lab 13 released tomorrow – Dijkstra’s algorithm

● Studio 13 Thursday

● Exam 3 May 1st 10 am – 12 pm
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Adding Weights to Graphs

● A weighted graph assigns to each edge e a real-valued weight w(e)

● For today, we will assume that w(e) ≥ 0.
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Path Lengths

● The length (or total weight) of a path is the sum of its edges’ weights
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Weighted Shortest Paths

● Problem: given a starting vertex v, find path of least total weight 

from v to each other vertex in the graph.
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Weighted Shortest Paths

● Problem: given a starting vertex v, find path of least total weight 

from v to each other vertex in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Weighted Shortest Paths

● Given a starting vertex v, find path of least total weight D(v,u) from v 

to each other vertex u in the graph.
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Why Solve Weighted Shortest Paths?

● Road map with distances between cities – shortest route

● Routing network with cost to each hop – cheapest way to 

send data

● State-space search in AI with action costs (A* search)

● …
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How Can We Solve Weighted Shortest Paths?

● Could reduce to unweighted problem:

● Apply to every edge; use BFS on resulting graph

● Only works if weights are integers

● Would be very expensive for graphs with large weights
16
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Alternate Strategy – “Relaxation”

● Explore graph while maintaining, for each vertex v, length of shortest 

path to v seen so far.  Store this shortest path estimate as v.dist.

● Whenever we follow an edge (v,u), check whether 

v.dist + w(v,u) < u.dist
● If so, we’ve found a new, shorter path to u via v.

● Update v.dist with new estimate and continue
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Alternate Strategy – “Relaxation”

● Explore graph while maintaining, for each vertex v, length of shortest 

path to v seen so far.  Store this shortest path estimate as v.dist.

● Whenever we follow an edge (v,u), check whether 

v.dist + w(v,u) < u.dist
● If so, we’ve found a new, shorter path to u via v.

● Update v.dist with new estimate and continue
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Alternate Strategy – “Relaxation”

● Explore graph while maintaining, for each vertex v, length of shortest 

path to v seen so far.  Store this shortest path estimate as v.dist.

● Whenever we follow an edge (v,u), check whether 

v.dist + w(v,u) < u.dist
● If so, we’ve found a new, shorter path to u via v.

● Update v.dist with new estimate and continue

19

A B
3

2 5
B.dist 5



Who Gets to Relax, When?

● Need to decide which vertices to relax at each step.

● Also, need to know when we are done!

● Proposal (E. Dijkstra *): at each step, explore edges out of vertex v 

with smallest v.dist, and relax all its adjacent vertices.

● Stop when each vertex has had its outgoing edges explored once.

20
* Fun fact: font on the title slide is Dijkstra's handwriting!



Dijkstra’s Shortest Path Algorithm

● starting vertex v gets v.dist 0; all other u get u.dist∞
● mark all vertices as unfinished

● while (any vertex unfinished)

● v  unfinished vertex with smallest v.dist

● for each edge (v,u)

● if (v.dist + w(u,v) < u.dist)

● u.dist v.dist + w(u,v)                            // relax!

● mark v finished
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm

30

A

B

D

C

E

F

2

7

4

1

2

5

9

5

2

unfinished

finished

0

2

6

3

∞

8

0 dist

Start @ A



Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Correctness of Dijkstra’s Algorithm

● Claim: when we explore the edges out of vertex v, v has its correct 

shortest-path distance D(start, v) stored in current best estimate v.dist.

● Pf: by induction on order of exploration.

● Bas: starting vertex is explored first, with its correct shortest-path 

distance of 0.

38



Correctness of Dijkstra’s Algorithm

● Claim: when we explore the edges out of vertex v, v has its correct 

shortest-path distance D(start, v) stored in current best estimate v.dist.

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v) (i.e. v’s distance is wrong).
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Correctness of Dijkstra’s Algorithm

● Claim: when we explore the edges out of vertex v, v has its correct 

shortest-path distance D(start, v) stored in current best estimate v.dist.

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v) (i.e. v’s distance is wrong).

● [we will derive a contradiction… hence, v.dist must be = D(start, v)]
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Correctness of Dijkstra’s Algorithm

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v)  (i.e. v’s distance is wrong).

● Consider a shortest path from start to v.
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Correctness of Dijkstra’s Algorithm

● Ind: suppose the algorithm is about to choose v for exploration.

● Assume that v.dist > D(start, v)  (i.e. v’s distance is wrong).

● Consider a shortest path from start to v.

● Let u be last finished (i.e., already explored) vertex on this path.
42
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Correctness of Dijkstra’s Algorithm

● By IH, u had its correct shortest-path distance when it was explored.

● Moreover, D(start, u) ≤ D(start, v), since u precedes v on shortest  

path to v.

● If edge u → v is on shortest path, then exploring u’s outgoing edges 

assigns v its correct shortest-path distance D(start,v). →
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Correctness of Dijkstra’s Algorithm

● If edge u → v is on shortest path, then exploring u’s outgoing edges 

assigns v its correct shortest-path distance D(start,v). →

● Otherwise, some other vertex x lies between u and v on this path, with        

D(start,x) ≤ D(start,v).

● Since v does not have its correct shortest-path distance,              

v.dist > x.dist, and so x would be explored next, not v.  → QED 44
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How Do We Track Next Vertex to Explore?

● Maintain collection of unfinished vertices

● At each step, must efficiently find vertex v in collection with smallest

v.dist and remove it

● But vertices’ distances may change repeatedly due to relaxation!

● Changes are all in one direction (decrease)

What Data Structure Can We Use To Track Distances to    

Unfinished Vertices? 45



Use a Priority Queue!

● Maintain priority queue PQ of unfinished vertices, keyed on dist

● Initially, every vertex is inserted into PQ w/its starting dist

● At each step, find next vertex to explore by PQ.extractMin()

● Decreasing v.dist is done using v’s Decreaser object

● We assume a map D[ ] from vertices to their Decreasers

46



Dijkstra’s Shortest Path Algorithm w/Prio Queue

● v.dist 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.dist∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (v.dist + w(v, u) < u.dist)

● u.dist v.dist + w(v,u)

● D[u].decrease(u)
47



Dijkstra’s Shortest Path Algorithm w/Queue

● v.dist 0; D[v]  PQ.insert(starting vertex v)

● For all other vertices u

● u.dist∞; D[u]  PQ.insert(u)

● while (PQ not empty)

● v  PQ.extractMin()

● for each edge (v,u)

● if (v.dist + w(v, u) < u.dist)

● u.dist v.dist + w(v,u)

● D[u].decrease(u)
48

Note that Lab 13 creates 

pairs (vertex, dist) rather 

than vertices with an 

internal distance field.



Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Example of Dijkstra’s Algorithm
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Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()
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Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()

● Hence, total cost is |V|(Tinsert + TextractMin) + |E| Tdecrease

● Times for PQ operations using binary heap are all ???
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Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()

● Hence, total cost is |V|(Tinsert + TextractMin) + |E| Tdecrease

● Times for PQ operations using binary heap are all Θ(log |V|)

● Hence, algorithm runs in time Θ((|V| + |E|) log |V|)
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Running Time of Dijkstra’s Algorithm

● For each vertex, we do one PQ insert() and one PQ extractMin()

● For each edge, we do one PQ decrease()

● Hence, total cost is |V|(Tinsert + TextractMin) + |E| Tdecrease

● Times for PQ operations using binary heap are all Θ(log |V|)

● Hence, algorithm runs in time Θ((|V| + |E|) log |V|)
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Slightly faster algorithms are 

possible for dense graphs, 

using much fancier heaps 

with O(1) decrease time.



Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra’s algorithm does not necessarily find a 

shortest (smallest total sum of edge weights) path.
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Alternatives to Dijkstra

● If negative-weight edges are allowed…

● May use Bellman-Ford algorithm (Θ(|V||E|))

● If shortest-path distances are desired between every pair of vertices…

● May use Floyd-Warshall algorithm (Θ(|V|3))

● (Other approaches may be better for sparse graphs)
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