Hallecture 13: Ee FFCaHh Ii Weighted[®] Shortest Paths

1 *These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.*

1234567890

Announcements

- Lab 13 released tomorrow Dijkstra's algorithm
- Studio 13 Thursday
- \bullet Exam 3 May 1st 10 am $-$ 12 pm

Adding Weights to Graphs

- A weighted graph assigns to each edge e a real-valued **weight** w(e)
- For today, we will assume that **w(e) ≥ 0**.

Path Lengths

● The **length** (or total weight) of a path is the sum of its edges' weights

● **Problem**: given a starting vertex v, *find path of least total weight* from v to each other vertex in the graph.

● **Problem**: given a starting vertex v, *find path of least total weight* from v to each other vertex in the graph.

Why Solve Weighted Shortest Paths?

- Road map with distances between cities shortest route
- Routing network with cost to each hop cheapest way to send data
- State-space search in AI with action costs (A* search)

How Can We Solve Weighted Shortest Paths?

• Could reduce to unweighted problem:

- Apply to every edge; use BFS on resulting graph
- Only works if weights are integers
- Would be very expensive for graphs with large weights

Alternate Strategy – "Relaxation"

- Explore graph while maintaining, for each vertex v, length of shortest path to v seen *so far*. Store this shortest path estimate as **v.dist**.
- \bullet Whenever we follow an edge (v, u) , check whether v .dist + w(v,u) < u.dist
- If so, *we've found a new, shorter path to u via v.*

Update v.dist with new estimate and continue

Alternate Strategy – "Relaxation"

- Explore graph while maintaining, for each vertex v, length of shortest path to v seen *so far*. Store this shortest path estimate as **v.dist**.
- \bullet Whenever we follow an edge (v, u) , check whether v .dist + w(v,u) < u.dist
- If so, *we've found a new, shorter path to u via v.*

Update v.dist with new estimate and continue

Alternate Strategy – "Relaxation"

- Explore graph while maintaining, for each vertex v, length of shortest path to v seen *so far*. Store this shortest path estimate as **v.dist**.
- \bullet Whenever we follow an edge (v, u) , check whether v .dist + w(v,u) < u.dist
- If so, *we've found a new, shorter path to u via v.*

Update v.dist with new estimate and continue

Who Gets to Relax, When?

- Need to decide which vertices to relax at each step.
- Also, need to know when we are done!
- **Proposal** (*E. Dijkstra **): at each step, explore edges out of vertex v with *smallest* v.dist, and relax all its adjacent vertices.
- Stop when each vertex has had its outgoing edges explored once.

Dijkstra's Shortest Path Algorithm

- starting vertex v gets v.dist \leftarrow 0; all other u get u.dist $\leftarrow \infty$
- mark all vertices as unfinished
- while (*any vertex unfinished*)
- $v \leftarrow$ unfinished vertex with smallest v.dist
- for each edge (v, u)
- if $(v.dist + w(u,v) < u.dist)$
- $u.dist \leftarrow v.dist + w(u,v)$ // relax!
- mark v finished

A B D C E F 2 7 4 1 2 5 9 5 2 unfinished finished **0 2 7 3 ∞ ∞ 0** dist Start @ A

B unfinished finished dist Start @ A

A D E F DONE!

C
As with BFS, parent edges from Dijkstra's algo form a *shortest-path tree* from starting vertex.

- **Claim**: when we explore the edges out of vertex v, v has its correct shortest-path distance D(start, v) stored in current best estimate v.dist.
- **Pf**: by induction on order of exploration.
- **Bas**: starting vertex is explored first, with its correct shortest-path distance of 0.

- **Claim**: when we explore the edges out of vertex v, v has its correct shortest-path distance D(start, v) stored in current best estimate v.dist.
- Ind: suppose the algorithm is about to choose v for exploration.
- Assume that v.dist $> D(\text{start}, \nu)$ (i.e. v's distance is wrong).

- **Claim**: when we explore the edges out of vertex v, v has its correct shortest-path distance D(start, v) stored in current best estimate v.dist.
- Ind: suppose the algorithm is about to choose v for exploration.
- Assume that v.dist $> D(\text{start}, \nu)$ (i.e. v's distance is wrong).
- *[we will derive a contradiction… hence, v.dist must be = D(start, v)]*

- Ind: suppose the algorithm is about to choose v for exploration.
- Assume that v.dist > D (start, v) (i.e. v's distance is wrong).
- Consider a *shortest* path from start to v.

- Ind: suppose the algorithm is about to choose v for exploration.
- Assume that v.dist $> D(\text{start}, \nu)$ (i.e. v's distance is wrong).
- Consider a *shortest* path from start to v.

● Let u be last **finished** (i.e., already explored) vertex on this path.

- By IH, u had its correct shortest-path distance when it was explored.
- Moreover, D(start, u) ≤ D(start, v), since *u precedes v* on shortest path to v.
- If edge $u \rightarrow v$ is on shortest path, then exploring u's outgoing edges assigns v its correct shortest-path distance D (start,v). $\rightarrow \leftarrow$

- If edge $u \rightarrow v$ is on shortest path, then exploring u's outgoing edges assigns v its correct shortest-path distance D (start,v). $\rightarrow \leftarrow$
- Otherwise, some *other* vertex x lies between u and v on this path, with $D(start,x) \leq D(start,v)$.

Since v does *not* have its correct shortest-path distance, **v.dist** > x.dist, and so x would be explored next, not v. \rightarrow \leftarrow QED 44

How Do We Track Next Vertex to Explore?

- Maintain collection of unfinished vertices
- At each step, must efficiently **find** vertex v in collection with smallest v.dist and **remove** it
- But vertices' distances may change repeatedly due to relaxation!
- Changes are all in one direction (*decrease*)

What Data Structure Can We Use To Track Distances to Unfinished Vertices? 45

Use a Priority Queue!

- Maintain priority queue PQ of unfinished vertices, keyed on **dist**
- Initially, every vertex is inserted into PQ w/its starting dist
- At each step, find next vertex to explore by PQ extractMin()
- Decreasing v.dist is done using v's **Decreaser** object
- We assume a map D[] from vertices to their Decreasers

Dijkstra's Shortest Path Algorithm w/Prio Queue

- v.dist $\leftarrow 0$; D[v] \leftarrow PQ.insert(starting vertex v)
- For all other vertices u
- \bullet u.dist $\leftarrow \infty$; D[u] \leftarrow PQ.insert(u)
- while (PQ not empty)
- $v \leftarrow PQ$.extractMin()
- \bullet for each edge (v, u)
- if (v.dist + w(v, u) $<$ u.dist)
- \bullet u.dist \leftarrow v.dist + w(v,u)
- D[u].decrease(u)

Dijkstra's Shortest Path Algorithm w/Queue

- v.dist $\leftarrow 0$; D[v] \leftarrow PQ.insert(starting vertex v)
- **For all other vertices u**
- u .dist $\leftarrow \infty$; D[u] \leftarrow PQ.insert(u)
- while (PQ not empty)
- $v \leftarrow PQ$.extractMin()
- for each edge (v, u)
- if (v.dist + w(v, u) $<$ u.dist)
- u .dist $\leftarrow v$.dist + w(v,u)
- D[u].decrease(u)

Note that Lab 13 creates pairs (vertex, dist) rather than vertices with an internal distance field.

- For each **vertex**, we do one PQ insert() and one PQ extractMin()
- For each **edge**, we do one PQ decrease()

- For each **vertex**, we do one PQ insert() and one PQ extractMin()
- For each **edge**, we do one PQ decrease()
- Hence, total cost is $|V|(T_{insert} + T_{extractMin}) + |E| T_{decrease}$
- Times for PQ operations using binary heap are all **???**

- For each **vertex**, we do one PQ insert() and one PQ extractMin()
- For each **edge**, we do one PQ decrease()
- Hence, total cost is $|V|(T_{insert} + T_{extractMin}) + |E|T_{decrease}$
- Times for PQ operations using binary heap are all **Θ(log |V|)**
- **Hence, algorithm runs in time Θ((|V| + |E|) log |V|)**

● **Hence, algorithm runs in time Θ((|V| + |E|) log |V|)**

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra's algorithm does not necessarily find a shortest (smallest total sum of edge weights) path.

D is *finalized* with distance 2.

Why Must Edge Weights Be Non-Negative?

● With negative weights, Dijkstra's algorithm does not necessarily find a shortest (smallest total sum of edge weights) path.

Why Must Edge Weights Be Non-Negative?

With negative weights, Dijkstra's algorithm does not necessarily find a shortest (smallest total sum of edge weights) path.

2 But *shortest* path is of length $3 + -2 = 1$

Alternatives to Dijkstra

- If negative-weight edges are allowed...
- May use *Bellman-Ford* algorithm (Θ(|V||E|))
- If shortest-path distances are desired between every pair of vertices...
- May use *Floyd-Warshall* algorithm (Θ(|V|³))
- (*Other approaches may be better for sparse graphs*)