
Lecture 12:  

Graphs and 

Their Traversals
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These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements

● Lab 11 pre-lab due tonight; post-lab and code due 11/27

○ exists() method bugfix: see Piazza post from Prof. Cole

● Exam 2 graded: regrade requests open until Sunday night

● Lab 6 regrade requests re-opened until tomorrow night

○ If your grade wasn't posted before last Sunday at 12 am

● Exam 3 Wednesday, May 1st 10 am
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Review: What is a Graph?

● Collections describe groups of objects / entities

● But sometimes, we also want to describe relationships

among objects

● A graph is a way of describing pairwise relationships 

among a set of objects.
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Relationships Among Pairs of Objects
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Graphs: Some Definitions

● A graph G = (V,E) is a set V of nodes or vertices, together 

with a set E of edges (described as pairs of vertices)

● Each pair of vertices u and v may be connected by an 

edge (u,v), or not.

● Optional: are self-edges (u,u) allowed?
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Graphs: Some Definitions

● A graph G = (V,E) is a set V of nodes or vertices, together 

with a set E of edges (described as pairs of vertices)

● Each pair of vertices u and v may be connected by an 

edge (u,v), or not.

● Optional: are self-edges (u,u) allowed?
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A

By default, we will assume self-

edges are not allowed in our 

graphs.  Such graphs are 

sometimes called “simple”.



Directions in Graphs

● Is (u,v) the same edge as (v,u)?

● No: graph is directed

● Yes: graph is undirected

● A directed graph may have

either or both edges (u,v) and (v,u)
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Which Kind of Graph Might We Use?

● Railroad lines connecting cities  (A connected to B)

● Currency transactions (A sells a stock to B)

● Compatible pairings for tennis doubles match  (A can play together 

with B)

● Web page references (A links to B)

● Road map (Can drive from A to B)
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Which Kind of Graph Might We Use?

● Railroad lines connecting cities  (A connected to B)  [undirected]

● Currency transactions (A sells a stock to B) [directed]

● Compatible pairings for tennis doubles match  (A can play together 

with B) [undirected]

● Web page references (A links to B) [directed]

● Road map (Can drive from A to B) [??? – one way streets?]
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Which Kind of Graph Might We Use?

● Railroad lines connecting cities  (A connected to B)  [undirected]

● Currency transactions (A sells a stock to B) [directed]

● Compatible pairings for tennis doubles match  (A can play together 

with B) [undirected]

● Web page references (A links to B) [directed]

● Road map (Can drive from A to B) [??? – one way streets?]
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If the relationship is 

asymmetric (A → B does not 

imply B → A), then a directed 

graph makes sense.  If it is 

symmetric, an undirected 

graph makes sense.



How Many Edges Can a Graph Have?

● If a (simple) graph has n vertices...

● If directed, max # of edges is ???
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How Many Edges Can a Graph Have?

● If a (simple) graph has n vertices...

● If directed, max # of edges is n(n-1)

● If undirected, max # of edges is ???
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How Many Edges Can a Graph Have?

● If a (simple) graph has n vertices...

● If directed, max # of edges is n(n-1)

● If undirected, max # of edges is n(n-1)/2

● In either case, n vertices implies O(n2) edges
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Definitions Related to Edge Count

● If a graph has n vertices...

● If the graph has Θ(n2) edges, it is dense

● If the graph has O(n) edges, it is sparse

● (Some graphs are in between)
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Examples of Dense and Sparse Graph Families
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How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists
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How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists
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An adjacency matrix for 

an undirected graph is 

always symmetric. Not 

true for directed graphs.



How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists
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How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists
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How Do We Represent Graphs in a Computer?

● List: Array A[1..n] – A[i] contains list of edges (i,j)
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How Do We Represent Graphs in a Computer?

● List: Array A[1..n] – A[i] contains list of edges (i,j)
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Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G
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Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G
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Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G
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List                 Matrix

Θ(|V|+|E|) Θ(|V|2)

Θ(|E|)* O(1)

??? ???

* More precisely, proportional to # of edges adjacent to u. 



Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G
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Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G
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List                 Matrix

Θ(|V|+|E|) Θ(|V|2)

Θ(|E|)* O(1)

Θ(|V|+|E|) Θ(|V|2)

* More precisely, proportional to # of edges adjacent to u. 

Most graph algorithms 

we’ll consider here use 

the adjacency list.



So, What Can We Do With Graphs?
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Exploration – Graph Traversals

● Given a starting vertex v, try to discover every vertex in the graph

● We can move between vertices only by following edges

● When we see a vertex for first time, we mark it to avoid repeated work

● Two basic strategies for traversal

○ Breadth-first search (BFS)

○ Depth-first search (DFS)

● These traversals reveal different properties of graph
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BFS: First Come, First Searched

● BFS utilizes a FIFO queue Q that tracks vertices to be searched.

● Initially, Q contains only starting vertex v, which is marked 

● While Q is not empty

● u  Q.dequeue()

● for each edge (u,w)

● if w is not marked

● mark w

● Q.enqueue(w)
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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What Can We Learn from BFS?

● For any vertices v and u, 

distance D(v,u) = smallest # of edges on any path from v to u.

● By definition, D(v,v) = 0.

● For any fixed v, we can use BFS to compute D(v,u) for all u.

● We can also compute a path from v to each u with D(v,u) edges.
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BFS Augmented for Distances, Starting Vertex v

● mark v; v.distance 0; v.parent null

● Q.enqueue(v)

● While Q is not empty

● u  Q.dequeue()

● for each edge (u,w)

● if w is not marked

● mark w; w.distance u.distance + 1; w.parent u

● Q.enqueue(w)
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example

51

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE B

DC

0

1

1

2



BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Example
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BFS Computes Shortest Paths (1/4)

● Claim: BFS enqueues every vertex w with D(v,w) = d 

before any vertex x with D(v,x) > d.

● Pf: by induction on d

● Bas (d = 0): v itself is enqueued first and has D(v,v) = 0
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BFS Computes Shortest Paths (2/4)

● Ind: consider vertex w with D(v,w) = d.

● There is some u s.t. D(v,u) = d-1, and edge (u,w) exists.

● By IH, u is enqueued before any vertex with distance ≥ d.

● Hence, by FIFO property of Q, u is dequeued before any 

vertex with dist ≥ d.
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BFS Computes Shortest Paths (3/4)

● When u is dequeued, w is enqueued (if not yet seen)

● Any vertex with distance > d must be discovered via edge 

from a vertex at distance ≥ d, which is dequeued after u.

● Conclude that no vertex at distance > d will be enqueued 

prior to w.  QED
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BFS Computes Shortest Paths (4/4)

● Above argument proves that BFS enqueues vertices in 

order of distance from v.

● Corollary: BFS assigns every vertex its correct     

shortest-path distance from v.

● NB: if graph not connected, some vertices may be 

unreachable from v → their distances should be ∞
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Cost of BFS

● For every vertex reachable from start, we

○ Mark it; enqueue it; dequeue it  (all O(1))

○ Enumerate its adjacent edges (???)
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Cost of BFS

● For every vertex reachable from start, we

○ Mark it; enqueue it; dequeue it  (all O(1) per vertex, Θ(|V|) total)

○ Enumerate its adjacent edges (Θ(|E|) summed over all vertices)

○ [assuming we use an adjacency list]

● → Total cost is Θ(|V| + |E|)
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Cost of BFS

● For every vertex reachable from start, we

○ Mark it; enqueue it; dequeue it  (all O(1) per vertex, Θ(|V|) total)

○ Enumerate its adjacent edges (O(|E|) summed over all vertices)

○ [assuming we use an adjacency list]

● → Total cost is O(|V| + |E|)
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Exercise: if we used 

an adjacency matrix, 

how would the 

algorithm’s cost 

change?



Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.
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Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.

How can we tell if an arbitrary graph is bipartite?
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Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.

How can we tell if an arbitrary graph is bipartite?
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Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.

How can we tell if an arbitrary graph is bipartite?
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No!



Idea: Use BFS to Label Two Sides of Graph

● Pick arbitrary starting vertex v; label v to be on side L.

● Run BFS.  If we discover vertex w via edge (u,w), label w 

to be on opposite side from u.

● Claim: graph is bipartite iff BFS never labels both 

endpoints of an edge (u,w) with same side.
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Proof Idea of Claim

● Claim: graph is bipartite iff BFS never labels both endpoints of an edge (u,w) 

with same side.

● Can show that a graph is bipartite iff it contains no odd-length cycle (e.g. a 

triangle).

● If not bipartite, impossible to label vertices of odd cycle L or R w/o labeling 

both endpoints of some edge the same.

● If bipartite, vertices on side L are at even distance from start, while those on 

side R are at odd distance, so labels will be consistent. 
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And Now for Something      

Completely Different…
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DFS: First Started, Last Finished

● DFS finds all vertices reachable from a given v before completing v.

● Instead of simply marking vertices, we assign them two integer times:

○ Time at which we first discover vertex (v.start)

○ Time at which we complete vertex (v.finish)

● (Time “ticks” after each assignment to a vertex.)
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DFS Pseudocode (Recursive)

● Once again, pick a starting vertex v.

● Set global time variable = 0

● DFSVisit(v)

● v.start time++

● for each edge (v,u)

● if (u.start is not yet set)

● DFSVisit(u)

● v.finish time++
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DFS Pseudocode (Recursive)

● Once again, pick a starting vertex v.

● Set global time variable = 0

● DFSVisit(v)

● v.start time++

● for each edge (v,u)

● if (u.start is not yet set)

● DFSVisit(u)

● v.finish time++
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Recursive code 

implicitly uses a 

stack; could 

implement with 

explicit stack (vs 

queue for BFS)



DFS Example
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DFS Example
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DFS Example
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DFS Example
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DFS Example
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DFS Example

79

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 4

start / finish

0 / ?

1 / ?

2 / ?

? / ?

3 / ?

? / ?



DFS Example
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DFS Example
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DFS Example
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DFS Example
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DFS Example
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DFS Example
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DFS Example
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DFS Example
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DFS Example
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Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.
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Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.
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Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.
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Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.
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Cost of DFS

● Similar analysis to BFS

● Every vertex must be discovered and marked in time O(1) apiece

● For each vertex, we check all edges that touch it.

● Hence, total cost is still Θ(|V| + |E|)

● (assuming adjacency list)
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What Good is DFS?

● Search ordering can be used to infer properties of graph.

● Example: a graph G contains a cycle iff DFSVisit(v) ever 

finds an edge (v,u) for which u has been started but not 

finished.
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Cycle Finding Example
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Cycle Finding Example
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Cycle Finding Example
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Cycle Finding Example
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Why Cycle Finding Works (1/2)

● Claim: G contains a cycle iff DFS finds a vertex that is 

started, not finished.

● If DFSVisit(u) finds adjacent vertex w that is started, not 

finished…

● DFSVisit(w) was called earlier and is not yet done.

● Hence, DFS found a path from w to u.

● But edge (u,w) also exists, hence a cycle.
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Why Cycle Finding Works (2/2)

● Claim: G contains a cycle iff DFS finds a vertex that is 

started, not finished.

● If G contains a cycle, let w be first vertex of cycle found 

by DFS, and suppose cycle includes edge (u,w).

● DFSVisit(w) does not return until it finds every vertex 

reachable from w.

● That includes u, so DFSVisit(u) finds unfinished vertex w.
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What Else Can We Do With DFS?

● If a directed graph does not contain a cycle, we can 

assign an order to its vertices.

● Defn: if u ≠ v, u < v if there exists a path in G from u to v.

● This rule yields a partial order on G.
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What Else Can We Do With DFS?

● If a directed graph does not contain a cycle, we can 

assign an order to its vertices.

● Defn: if u ≠ v, u < v if there exists a path in G from u to v.

● This rule yields a partial order on G.
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What Else Can We Do With DFS?

● If a directed graph does not contain a cycle, we can 

assign an order to its vertices.

● Defn: if u ≠ v, u < v if there exists a path in G from u to v.

● This rule yields a partial order on G.
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Topological Order

● A topological order on a directed, acyclic graph (DAG) is 

any total ordering of the vertices consistent with the partial 

order defined by the edges.

104

A

B

C

D

A < B

A < C

B < D

C < D

A < D

{ A, B, C, D }



Topological Order

● A topological order on a directed, acyclic graph (DAG) is 

any total ordering of the vertices consistent with the partial 

order defined by the edges.
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A

B

C

D

A < B

A < C

B < D

C < D

A < D

{ A, B, C, D }

{ A, C, B, D }

A DAG may have more than one topological order.



Example (from Book) – Getting Dressed
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X → Y if X must be done before Y



Example (from Book) – Getting Dressed
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(time in book starts at 1, not 0)

Start with “shirt”



Example (from Book) – Getting Dressed
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(time in book starts at 1, not 0)

Start with “shirt”

Continue with “watch”



Example (from Book) – Getting Dressed
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(time in book starts at 1, not 0)

Start with “shirt”

Continue with “watch”

Continue with “undershorts”



Example (from Book) – Getting Dressed
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(time in book starts at 1, not 0)

Start with “shirt”

Continue with “watch”

Continue with “undershorts”

Continue with “socks”



Example (from Book) – Getting Dressed

111Give one possible topological ordering of this graph.



Example (from Book) – Getting Dressed

112Give one possible topological ordering of this graph.

A consistent total order

directs all edges left → right



Example (from Book) – Getting Dressed

113Give one possible topological ordering of this graph.

Can you find a different topological order 

for this graph?



Example (from Book) – Getting Dressed

114Give one possible topological ordering of this graph.

What’s interesting about this order 

relative to DFS times?



Example (from Book) – Getting Dressed

115Give one possible topological ordering of this graph.

What’s interesting about this order 

relative to DFS times?

We’ll explore the relationship 

between DFS and topological 

order in Studio 13.



Some Uses of BFS and DFS
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BFS DFS

• Shortest distances

• Bipartite detection

• Bipartite matching

• State-space search in AI

• Cycle detection

• Dependency resolution

• Reachability (e.g. strongly 

connected components)

• Compiler analyses


