
Lecture 12:

Graphs and

Their Traversals

1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

● Lab 11 pre-lab due tonight; post-lab and code due 11/27

○ exists() method bugfix: see Piazza post from Prof. Cole

● Exam 2 graded: regrade requests open until Sunday night

● Lab 6 regrade requests re-opened until tomorrow night

○ If your grade wasn't posted before last Sunday at 12 am

● Exam 3 Wednesday, May 1st 10 am

2

Review: What is a Graph?

● Collections describe groups of objects / entities

● But sometimes, we also want to describe relationships

among objects

● A graph is a way of describing pairwise relationships

among a set of objects.

3

Objects

4

A

B

C

E

D

Relationships Among Pairs of Objects

5

A

B

C

E

D

Graphs: Some Definitions

● A graph G = (V,E) is a set V of nodes or vertices, together

with a set E of edges (described as pairs of vertices)

● Each pair of vertices u and v may be connected by an

edge (u,v), or not.

● Optional: are self-edges (u,u) allowed?

6

A

Graphs: Some Definitions

● A graph G = (V,E) is a set V of nodes or vertices, together

with a set E of edges (described as pairs of vertices)

● Each pair of vertices u and v may be connected by an

edge (u,v), or not.

● Optional: are self-edges (u,u) allowed?

7

A

By default, we will assume self-

edges are not allowed in our

graphs. Such graphs are

sometimes called “simple”.

Directions in Graphs

● Is (u,v) the same edge as (v,u)?

● No: graph is directed

● Yes: graph is undirected

● A directed graph may have

either or both edges (u,v) and (v,u)

8

vu

vu

vu

Which Kind of Graph Might We Use?

● Railroad lines connecting cities (A connected to B)

● Currency transactions (A sells a stock to B)

● Compatible pairings for tennis doubles match (A can play together

with B)

● Web page references (A links to B)

● Road map (Can drive from A to B)
9

Which Kind of Graph Might We Use?

● Railroad lines connecting cities (A connected to B) [undirected]

● Currency transactions (A sells a stock to B) [directed]

● Compatible pairings for tennis doubles match (A can play together

with B) [undirected]

● Web page references (A links to B) [directed]

● Road map (Can drive from A to B) [??? – one way streets?]
10

Which Kind of Graph Might We Use?

● Railroad lines connecting cities (A connected to B) [undirected]

● Currency transactions (A sells a stock to B) [directed]

● Compatible pairings for tennis doubles match (A can play together

with B) [undirected]

● Web page references (A links to B) [directed]

● Road map (Can drive from A to B) [??? – one way streets?]
11

If the relationship is

asymmetric (A → B does not

imply B → A), then a directed

graph makes sense. If it is

symmetric, an undirected

graph makes sense.

How Many Edges Can a Graph Have?

● If a (simple) graph has n vertices...

● If directed, max # of edges is ???

12

How Many Edges Can a Graph Have?

● If a (simple) graph has n vertices...

● If directed, max # of edges is n(n-1)

● If undirected, max # of edges is ???

13

How Many Edges Can a Graph Have?

● If a (simple) graph has n vertices...

● If directed, max # of edges is n(n-1)

● If undirected, max # of edges is n(n-1)/2

● In either case, n vertices implies O(n2) edges

14

Definitions Related to Edge Count

● If a graph has n vertices...

● If the graph has Θ(n2) edges, it is dense

● If the graph has O(n) edges, it is sparse

● (Some graphs are in between)

15

Examples of Dense and Sparse Graph Families

16

Complete graph

Complete bipartite graph

Ladder

Tree

How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists

17

1

2
3

4
5

How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists

18

1

2
3

4
5

An adjacency matrix for

an undirected graph is

always symmetric. Not

true for directed graphs.

How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists

19

1

2
3

4
5

For simple graphs, the

diagonal is always 0.

How Do We Represent Graphs in a Computer?

● Two strategies: adjacency list and adjacency matrix

● Matrix: Mnxn – M(i,j) is 1 if edge (i,j) exists

20

1

2
3

4
5

How Do We Represent Graphs in a Computer?

● List: Array A[1..n] – A[i] contains list of edges (i,j)

21

1

2
3

4
5

1

2

3

4

5

{3, 4}

{5}

{1, 4}

{1, 3}

{2}

How Do We Represent Graphs in a Computer?

● List: Array A[1..n] – A[i] contains list of edges (i,j)

22

1

2
3

4
5

1

2

3

4

5

{3, 4}

{5}

{ }

{3}

{ }

Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G

23

List Matrix

??? ???

Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G

24

List Matrix

Θ(|V|+|E|) Θ(|V|2)

??? ???

Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G

25

List Matrix

Θ(|V|+|E|) Θ(|V|2)

Θ(|E|)* O(1)

??? ???

* More precisely, proportional to # of edges adjacent to u.

Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G

26

List Matrix

Θ(|V|+|E|) Θ(|V|2)

Θ(|E|)* O(1)

Θ(|V|+|E|) Θ(|V|2)

* More precisely, proportional to # of edges adjacent to u.

Properties of Adjacency List vs Matrix

● For graph G = (V,E)

● Space to represent G

● Time to check if edge (u,v) exists

● Time to enumerate all edges in G

27

List Matrix

Θ(|V|+|E|) Θ(|V|2)

Θ(|E|)* O(1)

Θ(|V|+|E|) Θ(|V|2)

* More precisely, proportional to # of edges adjacent to u.

Most graph algorithms

we’ll consider here use

the adjacency list.

So, What Can We Do With Graphs?

28

Exploration – Graph Traversals

● Given a starting vertex v, try to discover every vertex in the graph

● We can move between vertices only by following edges

● When we see a vertex for first time, we mark it to avoid repeated work

● Two basic strategies for traversal

○ Breadth-first search (BFS)

○ Depth-first search (DFS)

● These traversals reveal different properties of graph
29

BFS: First Come, First Searched

● BFS utilizes a FIFO queue Q that tracks vertices to be searched.

● Initially, Q contains only starting vertex v, which is marked

● While Q is not empty

● u  Q.dequeue()

● for each edge (u,w)

● if w is not marked

● mark w

● Q.enqueue(w)
30

BFS Example

31

A

B

D

C

E

F

Q

Start at A

unmarked

marked

BFS Example

32

A

B

D

C

E

F

Q

unmarked

marked

A

BFS Example

33

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE A

BFS Example

34

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE A

BD

BFS Example

35

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE A

BD

Order in which B, D

were queued is arbitrary.

BFS Example

36

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE B

D

BFS Example

37

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE B

DC

BFS Example

38

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE D

C

BFS Example

39

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE D

CE

BFS Example

40

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE C

E

BFS Example

41

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE C

EF

BFS Example

42

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE E

F

BFS Example

43

A

B

D

C

E

F

Q

unmarked

marked

DONE

What Can We Learn from BFS?

● For any vertices v and u,

distance D(v,u) = smallest # of edges on any path from v to u.

● By definition, D(v,v) = 0.

● For any fixed v, we can use BFS to compute D(v,u) for all u.

● We can also compute a path from v to each u with D(v,u) edges.

44

BFS Augmented for Distances, Starting Vertex v

● mark v; v.distance 0; v.parent null

● Q.enqueue(v)

● While Q is not empty

● u  Q.dequeue()

● for each edge (u,w)

● if w is not marked

● mark w; w.distance u.distance + 1; w.parent u

● Q.enqueue(w)

45

BFS Example

46

A

B

D

C

E

F

Q

Start at A

unmarked

marked

BFS Example

47

A

B

D

C

E

F

Q

unmarked

marked

A

0

BFS Example

48

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE A

0

BFS Example

49

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE A

BD

0

1

1

BFS Example

50

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE B

D

0

1

1

BFS Example

51

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE B

DC

0

1

1

2

BFS Example

52

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE D

C

0

1 2

1

BFS Example

53

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE D

CE

0

1 2

1 2

BFS Example

54

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE C

E

0

1 2

1 2

BFS Example

55

A

B

D

C

E

F

Q

unmarked

marked

EXPLORE C

EF

0

1 2

1 2

3

BFS Example

56

A

B

D

C

E

F

Q

0

1 2

1 2

3

Parent pointers form a tree of shortest paths

connecting each vertex to starting point.

BFS Computes Shortest Paths (1/4)

● Claim: BFS enqueues every vertex w with D(v,w) = d

before any vertex x with D(v,x) > d.

● Pf: by induction on d

● Bas (d = 0): v itself is enqueued first and has D(v,v) = 0

57

BFS Computes Shortest Paths (2/4)

● Ind: consider vertex w with D(v,w) = d.

● There is some u s.t. D(v,u) = d-1, and edge (u,w) exists.

● By IH, u is enqueued before any vertex with distance ≥ d.

● Hence, by FIFO property of Q, u is dequeued before any

vertex with dist ≥ d.

58

BFS Computes Shortest Paths (3/4)

● When u is dequeued, w is enqueued (if not yet seen)

● Any vertex with distance > d must be discovered via edge

from a vertex at distance ≥ d, which is dequeued after u.

● Conclude that no vertex at distance > d will be enqueued

prior to w. QED

59

BFS Computes Shortest Paths (4/4)

● Above argument proves that BFS enqueues vertices in

order of distance from v.

● Corollary: BFS assigns every vertex its correct

shortest-path distance from v.

● NB: if graph not connected, some vertices may be

unreachable from v → their distances should be ∞
60

Cost of BFS

● For every vertex reachable from start, we

○ Mark it; enqueue it; dequeue it (all O(1))

○ Enumerate its adjacent edges (???)

61

Cost of BFS

● For every vertex reachable from start, we

○ Mark it; enqueue it; dequeue it (all O(1) per vertex, Θ(|V|) total)

○ Enumerate its adjacent edges (Θ(|E|) summed over all vertices)

○ [assuming we use an adjacency list]

● → Total cost is Θ(|V| + |E|)

62

Cost of BFS

● For every vertex reachable from start, we

○ Mark it; enqueue it; dequeue it (all O(1) per vertex, Θ(|V|) total)

○ Enumerate its adjacent edges (O(|E|) summed over all vertices)

○ [assuming we use an adjacency list]

● → Total cost is O(|V| + |E|)

63

Exercise: if we used

an adjacency matrix,

how would the

algorithm’s cost

change?

Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.

64

L R

Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.

How can we tell if an arbitrary graph is bipartite?

65

Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.

How can we tell if an arbitrary graph is bipartite?

66

Yes!

Example Application: Bipartite Testing

● A bipartite graph consists of two sets L, R of vertices, s.t.

all edges go between L and R.

How can we tell if an arbitrary graph is bipartite?

67

No!

Idea: Use BFS to Label Two Sides of Graph

● Pick arbitrary starting vertex v; label v to be on side L.

● Run BFS. If we discover vertex w via edge (u,w), label w

to be on opposite side from u.

● Claim: graph is bipartite iff BFS never labels both

endpoints of an edge (u,w) with same side.

68

Proof Idea of Claim

● Claim: graph is bipartite iff BFS never labels both endpoints of an edge (u,w)

with same side.

● Can show that a graph is bipartite iff it contains no odd-length cycle (e.g. a

triangle).

● If not bipartite, impossible to label vertices of odd cycle L or R w/o labeling

both endpoints of some edge the same.

● If bipartite, vertices on side L are at even distance from start, while those on

side R are at odd distance, so labels will be consistent.

69

And Now for Something

Completely Different…

70

DFS: First Started, Last Finished

● DFS finds all vertices reachable from a given v before completing v.

● Instead of simply marking vertices, we assign them two integer times:

○ Time at which we first discover vertex (v.start)

○ Time at which we complete vertex (v.finish)

● (Time “ticks” after each assignment to a vertex.)

71

DFS Pseudocode (Recursive)

● Once again, pick a starting vertex v.

● Set global time variable = 0

● DFSVisit(v)

● v.start time++

● for each edge (v,u)

● if (u.start is not yet set)

● DFSVisit(u)

● v.finish time++

72

DFS Pseudocode (Recursive)

● Once again, pick a starting vertex v.

● Set global time variable = 0

● DFSVisit(v)

● v.start time++

● for each edge (v,u)

● if (u.start is not yet set)

● DFSVisit(u)

● v.finish time++

73

Recursive code

implicitly uses a

stack; could

implement with

explicit stack (vs

queue for BFS)

DFS Example

74

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 0

start / finish

? / ?

? / ?

? / ?

? / ?

? / ?

? / ?

DFS Example

75

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 1

start / finish

0 / ?

? / ?

? / ?

? / ?

? / ?

? / ?

DFS Example

76

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 2

start / finish

0 / ?

1 / ?

? / ?

? / ?

? / ?

? / ?

DFS Example

77

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 2

start / finish

0 / ?

1 / ?

? / ?

? / ?

? / ?

? / ?

Again, order of

exploration for

adjacent edges

is arbitrary.

DFS Example

78

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 3

start / finish

0 / ?

1 / ?

2 / ?

? / ?

? / ?

? / ?

DFS Example

79

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 4

start / finish

0 / ?

1 / ?

2 / ?

? / ?

3 / ?

? / ?

DFS Example

80

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 5

start / finish

0 / ?

1 / ?

2 / ?

? / ?

3 / ?

4 / ?

DFS Example

81

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 6

start / finish

0 / ?

1 / ?

2 / ?

? / ?

3 / ?

4 / 5

DFS Example

82

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 6

start / finish

0 / ?

1 / ?

2 / ?

? / ?

3 / ?

4 / 5

DFS Example

83

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 7

start / finish

0 / ?

1 / ?

2 / ?

6 / ?

3 / ?

4 / 5

DFS Example

84

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 8

start / finish

0 / ?

1 / ?

2 / ?

6 / 7

3 / ?

4 / 5

DFS Example

85

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 9

start / finish

0 / ?

1 / ?

2 / ?

6 / 7

3 / 8

4 / 5

DFS Example

86

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 10

start / finish

0 / ?

1 / ?

2 / 9

6 / 7

3 / 8

4 / 5

DFS Example

87

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 11

start / finish

0 / ?

1 / 10

2 / 9

6 / 7

3 / 8

4 / 5

DFS Example

88

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 12

start / finish

0 / 11

1 / 10

2 / 9

6 / 7

3 / 8

4 / 5

Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.

89

A

B

D

C

E

F

Start at E

? / ?

? / ?

? / ?

? / ?

? / ?

? / ?

Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.

90

A

B

D

C

E

F
? / ?

? / ?

4 / 5

3 / 6

0 / 7

1 / 2

Continue at B

Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.

91

A

B

D

C

E

F
? / ?

8 / 9

4 / 5

3 / 6

0 / 7

1 / 2

Continue at A

Question: What If We Didn’t Start At Vertex A?

● If we finish DFSVisit of starting vertex without labeling entire graph…

● Continue by calling DFSVisit again on any unlabeled vertex.

92

A

B

D

C

E

F
10 / 11

8 / 9

4 / 5

3 / 6

0 / 7

1 / 2

Continue at A

Cost of DFS

● Similar analysis to BFS

● Every vertex must be discovered and marked in time O(1) apiece

● For each vertex, we check all edges that touch it.

● Hence, total cost is still Θ(|V| + |E|)

● (assuming adjacency list)

93

What Good is DFS?

● Search ordering can be used to infer properties of graph.

● Example: a graph G contains a cycle iff DFSVisit(v) ever

finds an edge (v,u) for which u has been started but not

finished.

94

Cycle Finding Example

95

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 7

start / finish

0 / ?

1 / ?

2 / ?

6 / ?

3 / ?

4 / 5

Cycle Finding Example

96

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 7

start / finish

0 / ?

1 / ?

2 / ?

6 / ?

3 / ?

4 / 5

DFSVisit(C)

explores

edge (C,D)

Cycle Finding Example

97

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 7

start / finish

0 / ?

1 / ?

2 / ?

6 / ?

3 / ?

4 / 5

D is started,

not finished

Cycle Finding Example

98

A

B

D

C

E

FStart at A

not started

started, not finished

finished

Time = 7

start / finish

0 / ?

1 / ?

2 / ?

6 / ?

3 / ?

4 / 5

Cycle DEC

Why Cycle Finding Works (1/2)

● Claim: G contains a cycle iff DFS finds a vertex that is

started, not finished.

● If DFSVisit(u) finds adjacent vertex w that is started, not

finished…

● DFSVisit(w) was called earlier and is not yet done.

● Hence, DFS found a path from w to u.

● But edge (u,w) also exists, hence a cycle.
99

Why Cycle Finding Works (2/2)

● Claim: G contains a cycle iff DFS finds a vertex that is

started, not finished.

● If G contains a cycle, let w be first vertex of cycle found

by DFS, and suppose cycle includes edge (u,w).

● DFSVisit(w) does not return until it finds every vertex

reachable from w.

● That includes u, so DFSVisit(u) finds unfinished vertex w.
100

What Else Can We Do With DFS?

● If a directed graph does not contain a cycle, we can

assign an order to its vertices.

● Defn: if u ≠ v, u < v if there exists a path in G from u to v.

● This rule yields a partial order on G.

101

A

B

C

D

A < B

A < C

B < D

C < D

What Else Can We Do With DFS?

● If a directed graph does not contain a cycle, we can

assign an order to its vertices.

● Defn: if u ≠ v, u < v if there exists a path in G from u to v.

● This rule yields a partial order on G.

102

A

B

C

D

A < B

A < C

B < D

C < D

A < D

What Else Can We Do With DFS?

● If a directed graph does not contain a cycle, we can

assign an order to its vertices.

● Defn: if u ≠ v, u < v if there exists a path in G from u to v.

● This rule yields a partial order on G.

103

A

B

C

D

A < B

A < C

B < D

C < D

A < D B, C incomparable

Topological Order

● A topological order on a directed, acyclic graph (DAG) is

any total ordering of the vertices consistent with the partial

order defined by the edges.

104

A

B

C

D

A < B

A < C

B < D

C < D

A < D

{ A, B, C, D }

Topological Order

● A topological order on a directed, acyclic graph (DAG) is

any total ordering of the vertices consistent with the partial

order defined by the edges.

105

A

B

C

D

A < B

A < C

B < D

C < D

A < D

{ A, B, C, D }

{ A, C, B, D }

A DAG may have more than one topological order.

Example (from Book) – Getting Dressed

106

X → Y if X must be done before Y

Example (from Book) – Getting Dressed

107

(time in book starts at 1, not 0)

Start with “shirt”

Example (from Book) – Getting Dressed

108

(time in book starts at 1, not 0)

Start with “shirt”

Continue with “watch”

Example (from Book) – Getting Dressed

109

(time in book starts at 1, not 0)

Start with “shirt”

Continue with “watch”

Continue with “undershorts”

Example (from Book) – Getting Dressed

110

(time in book starts at 1, not 0)

Start with “shirt”

Continue with “watch”

Continue with “undershorts”

Continue with “socks”

Example (from Book) – Getting Dressed

111Give one possible topological ordering of this graph.

Example (from Book) – Getting Dressed

112Give one possible topological ordering of this graph.

A consistent total order

directs all edges left → right

Example (from Book) – Getting Dressed

113Give one possible topological ordering of this graph.

Can you find a different topological order

for this graph?

Example (from Book) – Getting Dressed

114Give one possible topological ordering of this graph.

What’s interesting about this order

relative to DFS times?

Example (from Book) – Getting Dressed

115Give one possible topological ordering of this graph.

What’s interesting about this order

relative to DFS times?

We’ll explore the relationship

between DFS and topological

order in Studio 13.

Some Uses of BFS and DFS

116

BFS DFS

• Shortest distances

• Bipartite detection

• Bipartite matching

• State-space search in AI

• Cycle detection

• Dependency resolution

• Reachability (e.g. strongly

connected components)

• Compiler analyses

